National Library of Energy BETA

Sample records for ignition facility nif

  1. The National Ignition Facility (NIF) A Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2006-11-27

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

  2. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  3. The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)

    SciTech Connect (OSTI)

    Moses, E

    2009-09-17

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments is planned for summer 2009. This paper summarizes the design, performance, and status of NIF and plans for the NIF ignition experimental program. A brief summary of the overall NIF experimental program is also presented.

  4. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Moses, E

    2009-10-15

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  5. National Ignition Facility & Photon Science What

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility & Photon Science What is NiF? the national ignition Facility: bringing star Power to earth The National Ignition Facility (NIF) is the world's largest and...

  6. The National Ignition Facility (NIF) and the issue of nonproliferation. Final study

    SciTech Connect (OSTI)

    NONE

    1995-12-19

    NIF, the next step proposed by DOE in a progression of Inertial Confinement Fusion (ICF) facilities, is expected to reach the goal of ICF capsule ignition in the laboratory. This report is in response to a request of a Congressman that DOE resolve the question of whether NIF will aid or hinder U.S. nonproliferation efforts. Both technical and policy aspects are addressed, and public participation was part of the decision process. Since the technical proliferation concerns at NIF are manageable and can be made acceptable, and NIF can contribute positively to U.S. arms control and nonproliferation policy goals, it is concluded that NIF supports the nuclear nonproliferation objectives of the United States.

  7. National Ignition Facility & Photon Science NIF Fun Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    steel erected: about 5,000 * hours of craft labor worked: more than 1.7 million NIF Optics NIF is not only the world's highest-energy laser, it's also the largest optical...

  8. Progress on Establishing Guidelines for National Ignition Facility (NIF) Experiments to Extend Debris Shield Lifetime

    SciTech Connect (OSTI)

    Tobin, M; Eder, D; Braun, D; MacGowan, B

    2000-07-26

    The survivability and performance of the debris shields on the National Ignition Facility (NIF) are a key factor for the successful conduct and affordable operation of the facility. The improvements required over Nova debris shields are described. Estimates of debris shield lifetimes in the presence of target emissions with 4 - 5 J/cm{sup 2} laser fluences (and higher) indicate lifetimes that may contribute unacceptably to operations costs for NIF. We are developing detailed guidance for target and experiment designers for NIF to assist in minimizing the damage to, and therefore the cost of, maintaining NIF debris shields. The guidance limits the target mass that is allowed to become particulate on the debris shields (300 mg). It also limits the amount of material that can become shrapnel for any given shot (10 mg). Finally, it restricts the introduction of non-volatile residue (NVR) that is a threat to the sol-gel coatings on the debris shields to ensure that the chamber loading at any time is less than 1 pg/cm{sup 2}. We review the experimentation on the Nova chamber that included measuring quantities of particulate on debris shields by element and capturing shrapnel pieces in aerogel samples mounted in the chamber. We also describe computations of x-ray emissions from a likely NIF target and the associated ablation expected from this x-ray exposure on supporting target hardware. We describe progress in assessing the benefits of a pre-shield and the possible impact on the guidance for target experiments on NIF. Plans for possible experimentation on Omega and other facilities to improve our understanding of target emissions and their impacts are discussed. Our discussion of planned future work provides a forum to invite possible collaboration with the IFE community.

  9. Plans for Ignition Experiments on NIF

    SciTech Connect (OSTI)

    Moses, E

    2007-07-27

    The National Ignition Facility (NIF) is a 192-beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) in support of inertial confinement fusion (ICF) and high-energy-density (HED) science. NIF will produce 1.8 MJ, 500 TW of ultraviolet light, making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for the study of matter at extreme temperatures and densities and for producing and developing ICF. The ignition studies will be the next important step in developing inertial fusion energy.

  10. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security maintaining the nuclear weapons stockpile As the largest, highest-energy laser ever built, the National Ignition Facility (NIF) can create conditions in the...

  11. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Shelton, R T; O'Brien, D W; Kamperschroer, J H; Nelson, J R

    2007-10-03

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated and gated X-ray sensors, and laser velocity interferometry. Diagnostics to diagnose fusion ignition implosion and neutron emissions are being planned. Many diagnostics will be developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. An instrument-based controls (I-BC) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the I-BC architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. I-BCs are reusable by replication and reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and better reliability. Collaborators save costs by assembling diagnostics with existing I-BCs. This paper discusses target diagnostic instrumentation used on NIF and presents the I-BC architecture and framework.

  12. National Ignition Facility LLNL-AR-585912_NIF-0135637-AA_2012...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 47 6 * NIF User Guide * Lawrence Livermore National Laboratory Contents 5.11. Final Optics Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  13. Description and performance of the preamplifier for the National Ignition Facility (NIF) laser system

    SciTech Connect (OSTI)

    Crane, J.K.; Martinez, M., Moran, B.

    1996-12-01

    The authors describe the prototype preamplifier for the NIF laser system and discuss the performance of the regenerative amplifier and 4-pass laser systems that comprise the preamplifier.

  14. National Ignition Facility Project Input for Assessment of Environmental Impacts of NIF for the Sitewide Environmental Impact Statement

    SciTech Connect (OSTI)

    Brereton, S

    2003-10-01

    This report provides the baseline data from which the environmental impacts of bounding NIF operations can be assessed. Included are operations in the NE Laser and Target Area Building (LTAB) and the Optics Assembly Building (OAB), (Buildings 581 and 681), and the Building 582 equipment building. The NIF is an experimental laser fusion facility undergoing construction and commissioning at Lawrence Livermore National Laboratory. The LTAB, the main experimental building of the NIF, is where laser-driven experiments will be conducted. The LTAB consists of two laser bays, two optical switchyards, a target bay, target diagnostics areas, capacitor bays, mechanical equipment areas, control rooms, and operational support areas. The LTAB provides an optically stable and clean environment and provides sufficient shielding against prompt radiation and residual radioactivity to meet the as low as reasonably achievable (ALARA) principle.

  15. Target Diagnostics Supports NIF's Path to Ignition

    SciTech Connect (OSTI)

    Shelton, R

    2011-12-07

    The physics requirements derived from the National Ignition Facility (NIF) experimental campaigns are leading to a wide variety of target diagnostics. Software development for the control and analysis of these diagnostics is included in the NIF Integrated Computer Control System, Diagnostic Control System and Data Visualization. These projects implement the configuration, controls, data analysis and visual representation of most of these diagnostics. To date, over 40 target diagnostics have been developed to support NIF experiments. In 2011 diagnostics were developed or enhanced to measure Ignition performance in a high neutron yield environment. Performance is optimized around four key variables: Adiabat (a) which is the strength and timing of four shocks delivered to the target, Velocity (V) of the imploding target, Mix (M) is the uniformity of the burn, and the Shape (S) of the imploding Deuterium Tritium (DT) hot spot. The diagnostics used to measure each of these parameters is shown in figure 1. Adiabat is measured using the Velocity Interferometer System for Any Reflector (VISAR) diagnostic consisting of three streak cameras. To provide for more accurate adiabat measurements the VISAR streak cameras were enhanced in FY11 with a ten comb fiducial signal controller to allow for post shot correction of the streak camera sweep non-linearity. Mix is measured by the Neutron Time of Flight (NTOF) and Radiochemical Analysis of Gaseous Samples (RAGS) diagnostics. To accommodate high neutron yield shots, NTOF diagnostic controls are being modified to use Mach Zehnder interferometer signals to allow the digitizers to be moved from near the target chamber to the neutron shielded diagnostic mezzanine. In December 2011 the first phase of RAGS diagnostic commissioning will be completed. This diagnostic will analyze the tracers that are added to NIF target capsules that undergo nuclear reactions during the shot. These gases are collected and purified for nuclear counting by the RAGS system. Three new instrument controllers were developed and commissioned to support this diagnostic. A residual-gas analyzer (RGA) instrument measures the gas content at various points in the system. The Digital Gamma Spectrometer instrument measures the radiological spectrum of the decaying gas isotopes. A final instrument controller was developed to interface to a PLC based Gas collection system. In order to support the implosion velocity measurements an additional Gated X-ray Detector (GXD) diagnostic was tested and commissioned. This third GXD views the target through a slit contained in its snout and allows the other GXD diagnostics to be used for measuring the shape on the same shot. In order to measure the implosion shape in a high neutron environment, Actide Readout In A Neutron Environment (ARIANE) and Neutron Imaging (NI) diagnostics were commissioned. The controls for ARIANE, a fixed port gated x-ray imager, contain a neutron shielded camera and micro channel plate pulser with its neutron sensitive electronics located in the diagnostic mezzanine. The NI diagnostic is composed of two Spectral Instruments SI-1000 cameras located 20M from the target and provides neutron images of the DT hot spot for high yield shots. The development and commissioning of these new or enhanced diagnostics in FY11 have provided meaningful insight that facilitates the optimization of the four key Ignition variables. In FY12 they will be adding three new diagnostics and enhancing four existing diagnostics in support of the continuing optimization series of campaigns.

  16. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  17. Preparing for Ignition Experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E; Meier, W

    2007-08-28

    The National Ignition Facility (NIF) is a 192-beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing ignition experiments for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF will produce 1.8 MJ, 500 TW of ultraviolet light ({lambda} = 351 nm) making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for the study of matter at extreme temperatures and densities for producing and developing ICF. The ignition studies will be an essential step in developing inertial fusion energy (IFE). the NIF Project is over 93% complete and scheduled for completion in 2009. Experiments using one beam have demonstrated that NIF can meet all of its performance goals. A detailed plan called the National Ignition Campaign (NIC) has been developed to begin ignition experiments in 2010. The plan includes the target physics and the equipment such as diagnostics, cryogenic target manipulator and user optics required for the ignition experiment. Target designs have been developed that calculate to ignite at energy as low as 1 MJ. Plans are under way to make NIF a national user facility for experiments on HED physics and nuclear science, including experiments relevant to the development of IFE.

  18. National Ignition Facility Title II Design Plan

    SciTech Connect (OSTI)

    Kumpan, S

    1997-03-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

  19. Impacts assessment for the National Ignition Facility

    SciTech Connect (OSTI)

    Bay Area Economics

    1996-12-01

    This report documents the economic and other impacts that will be created by the National Ignition Facility (NIF) construction and ongoing operation, as well as the impacts that may be created by new technologies that may be developed as a result of NIF development and operation.

  20. The National Ignition Facility: A New Era in High Energy Density Science

    SciTech Connect (OSTI)

    Moses, E

    2009-06-10

    The National Ignition Facility, the world's most energetic laser system, is now operational. This talk will describe NIF, the ignition campaign, and new opportunities in fusion energy and high energy density science enabled by NIF.

  1. IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Moses, E

    2009-06-22

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed and has high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments to be conducted by the academic community is planned for summer 2009. This paper summarizes the design, performance, and status of NIF, experimental plans for NIC, and will present a brief discussion of the unparalleled opportunities to explore frontier basic science that will be available on the NIF.

  2. UCRL-PRES-225531 National ignition facility

    E-Print Network [OSTI]

    shock Point Design pulse Outer cone Time (ns) This level of capability is unique to NIF NIC ignition ignition Campaign 2006 #12;Major elements of the NIC #12;31 NIF Indirect Drive target point design #12;MOVIE: Fill tube #12;Low-Yield diagnostics #12;NIC High yield diagnostics #12;35 NIF/NIC Integration

  3. Progress towards ignition on the National Ignition Facility

    SciTech Connect (OSTI)

    Edwards, M. J.; Patel, P. K.; Lindl, J. D.; Atherton, L. J.; Glenzer, S. H.; Haan, S. W.; Landen, O. L.; Moses, E. I.; Springer, P. T.; Benedetti, R.; Bernstein, L.; Bleuel, D. L.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Dewald, E. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2013-07-15

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-?m light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ?0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ?5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ?1000 g/cm{sup 3} with an areal density (?R) of ?1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ?10 keV and a ?R ?0.3 g/cm{sup 2}, or approximately an ?-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ?80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ?3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

  4. Development of nuclear diagnostics for the National Ignition Facility ,,invited...

    E-Print Network [OSTI]

    Development of nuclear diagnostics for the National Ignition Facility ,,invited... V. Yu. Glebov, D 87185 S. P. Padalino SUNY Geneseo, Geneseo, New York 14454 C. Horsfield Atomic Weapons Establishment of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF

  5. Stockpile Stewardship and the National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2012-01-04

    The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

  6. National Ignition Facility project acquisition plan

    SciTech Connect (OSTI)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

  7. The National Ignition Facility: Laser Performance and First Experiments

    SciTech Connect (OSTI)

    Wuest, C R; Moses, E I

    2004-09-09

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 108 K and 1011 bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has successfully activated, commissioned, and utilized the first four beams of the laser system to conduct over 300 shots between November 2002 and August 2004. NIF laser scientists have established that the laser meets nearly all performance requirements on a per beam basis for energy, uniformity, timing, and pulse shape. Using these four beams, ICF and high-energy-density physics researchers have conducted a number of experimental campaigns resulting in high quality data that could not be reached on any other laser system. We discuss the successful NIF Early Light Program including details of laser performance, examples of experiments performed to date, and recent advances in the ICF Program that enhance prospects for successful achievement of fusion ignition on NIF.

  8. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  9. Development of nuclear diagnostics for the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.; Stoeckl, C.; Roberts, S.; Barrera, C. A.; Celeste, J. R.; Cerjan, C. J.; Dauffy, L. S.; Eder, D. C.; Griffith, R. L.; Haan, S. W.; Hammel, B. A.; Hatchett, S. P.; Izumi, N.; Kimbrough, J. R.; Koch, J. A.; Landen, O. L.; Lerche, R. A.; MacGowan, B. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); CEA-DAM, lle de France, BP 12, 91680 Bruyeres-le-Chatel (France); Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); SUNY Geneseo, Geneseo, New York 14454 (United States); Atomic Weapons Establishment (AWE), Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); National Security Technologies, Nevada, North Las Vegas, Nevada 89030 (United States)] (and others)

    2006-10-15

    The National Ignition Facility (NIF) will provide up to 1.8 MJ of laser energy for imploding inertial confinement fusion (ICF) targets. Ignited NIF targets are expected to produce up to 10{sup 19} DT neutrons. This will provide unprecedented opportunities and challenges for the use of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF was defined and they are under development through collaborative efforts at several institutions. This suite includes PROTEX and copper activation for primary yield measurements, a magnetic recoil spectrometer and carbon activation for fuel areal density, neutron time-of-flight detectors for yield and ion temperature, a gamma bang time detector, and neutron imaging systems for primary and downscattered neutrons. An overview of the conceptual design, the developmental status, and recent results of prototype tests on the OMEGA laser will be presented.

  10. Prompt Beta Spectroscopy as a Diagnostic for Mix in Ignited NIF Capsules

    E-Print Network [OSTI]

    A. C. Hayes; G. Jungman; J. C. Solem; P. A. Bradley; R. S. Rundberg

    2004-08-12

    The National Ignition Facility (NIF) technology is designed to drive deuterium-tritium (DT) internal confinement fusion (ICF) targets to ignition using indirect radiation from laser beam energy captured in a hohlraum. Hydrodynamical instabilities at interfaces in the ICF capsule leading to mix between the DT fue l and the ablator shell material are of fundamental physical interest and can affect the performance characteristics of the capsule. In this Letter we describe new radiochemical diagnostics for mix processes in ICF capsules with plastic or Be (0.9%Cu) ablator shells. Reactions of high-energy tritons with shell material produce high-energy $\\beta$-emitters. We show that mix between the DT fuel and the shell material enhances high-energy prompt beta emission from these reactions by more than an order of magnitude over that expected in the absence of mix.

  11. National Ignition Facility wet weather construction plan

    SciTech Connect (OSTI)

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  12. The National Ignition Facility: Studying the Stars in the Laboratory

    SciTech Connect (OSTI)

    Boyd, R

    2008-09-17

    The National Ignition Facility, to be completed in 2009, will be the highest energy laser ever built. The high temperatures and densities it will produce will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as in nuclear astrophysics, X-ray astronomy, hydrodynamics, and planetary science. The National Ignition Facility, NIF (1), located at Lawrence Livermore National Lab, (LLNL) is expected to produce inertial confinement fusion (ICF) by delivering sufficient laser energy to compress and heat a millimeter-radius pellet of DT sufficiently to produce fusion to {sup 4}He+neutron and 17.6 MeV per reaction. NIF will be completed by March, 2009, at which time a National Ignition Campaign (2), NIC, a series of experiments to optimize the ICF parameters, will begin. Although NIF is a research facility, a successful NIC would have implications for future energy sources. In addition to the goal of ICF, NIF will support programs in stockpile stewardship. However, the conditions that NIF creates will simulate those inside stars and planets sufficiently closely to provide compelling motivation for experiments in basic high-energy-density (HED) science especially, for the first time, in nuclear astrophysics.

  13. The National Ignition Facility: The Path to a Carbon-Free Energy Future

    SciTech Connect (OSTI)

    Stolz, C J

    2011-03-16

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  14. Nuclear diagnostics for the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Murphy, Thomas J.; Barnes, Cris W.; Berggren, R. R.; Bradley, P.; Caldwell, S. E.; Chrien, R. E.; Faulkner, J. R.; Gobby, P. L.; Hoffman, N.; Jimerson, J. L.

    2001-01-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, will provide unprecedented opportunities for the use of nuclear diagnostics in inertial confinement fusion experiments. The completed facility will provide 2 MJ of laser energy for driving targets, compared to the approximately 40 kJ that was available on Nova and the approximately 30 kJ available on Omega. Ignited NIF targets are anticipated to produce up to 10{sup 19} DT neutrons. In addition to a basic set of nuclear diagnostics based on previous experience, these higher NIF yields are expected to allow innovative nuclear diagnostic techniques to be utilized, such as neutron imaging, recoil proton techniques, and gamma-ray-based reaction history measurements.

  15. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    SciTech Connect (OSTI)

    Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  16. A Kirkpatrick-Baez microscope for the National Ignition Facility

    SciTech Connect (OSTI)

    Pickworth, L. A., E-mail: pickworth1@llnl.gov; McCarville, T.; Decker, T.; Pardini, T.; Ayers, J.; Bell, P.; Bradley, D.; Brejnholt, N. F.; Izumi, N.; Mirkarimi, P.; Pivovaroff, M.; Smalyuk, V.; Vogel, J.; Walton, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kilkenny, J. [General Atomics, San Diego, California 92121 (United States)

    2014-11-15

    Current pinhole x ray imaging at the National Ignition Facility (NIF) is limited in resolution and signal throughput to the detector for Inertial Confinement Fusion applications, due to the viable range of pinhole sizes (10–25 ?m) that can be deployed. A higher resolution and throughput diagnostic is in development using a Kirkpatrick-Baez microscope system (KBM). The system will achieve <9 ?m resolution over a 300 ?m field of view with a multilayer coating operating at 10.2 keV. Presented here are the first images from the uncoated NIF KBM configuration demonstrating high resolution has been achieved across the full 300 ?m field of view.

  17. The National Ignition Facility Project

    SciTech Connect (OSTI)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-06-16

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project.

  18. National Ignition Facility Configuration Management Plan

    SciTech Connect (OSTI)

    Cabral, S G; Moore, T L

    2002-10-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and approved changes are implemented according to the change requirements documents.

  19. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

  20. The National Ignition Facility and the Golden Age of High Energy Density Science

    SciTech Connect (OSTI)

    Moses, E

    2007-08-14

    The National Ignition Facility (NIF) is a 192-beam Nd:glass laser facility being constructed at the Lawrence Livermore National Laboratory (LLNL) to conduct research in inertial confinement fusion (ICF) and high energy density (HED) science. When completed, NIF will produce 1.8 MJ, 500 TW of ultraviolet light, making it the world's largest and highest-energy laser system. The NIF is poised to become the world's preeminent facility for conducting ICF and fusion energy research and for studying matter at extreme densities and temperatures.

  1. The National Ignition Facility and the Golden Age of High Energy Density Science

    SciTech Connect (OSTI)

    Meier, W; Moses, E I; Newton, M

    2007-09-27

    The National Ignition Facility (NIF) is a 192-beam Nd:glass laser facility being constructed at the Lawrence Livermore National Laboratory (LLNL) to conduct research in inertial confinement fusion (ICF) and high energy density (HED) science. When completed, NIF will produce 1.8 MJ, 500 TW of ultraviolet light, making it the world's largest and highest-energy laser system. The NIF is poised to become the world's preeminent facility for conducting ICF and fusion energy research and for studying matter at extreme densities and temperatures.

  2. Target diagnostic system for the national ignition facility (invited)

    SciTech Connect (OSTI)

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.; Fehl, D.L.; Hebron, D.E.; Moats, A.R.; Noack, D.D.; Porter, J.L.; Ruggles, L.E.; Ruiz, C.L.; Torres, J.A.; Cable, M.D.; Bell, P.M.; Clower, C.A.; Hammel, B.A.; Kalantar, D.H.; Karpenko, V.P.; Kauffman, R.L.; Kilkenny, J.D.; Lee, F.D.; Lerche, R.A.; MacGowan, B.J.; Moran, M.J.; Nelson, M.B.; Olson, W.; Orzechowski, T.J.; Phillips, T.W.; Ress, D.; Tietbohl, G.L.; Trebes, J.E.; Bartlett, R.J.; Berggren, R.; Caldwell, S.E.; Chrien, R.E.; Failor, B.H.; Fernandez, J.C.; Hauer, A.; Idzorek, G.; Hockaday, R.G.; Murphy, T.J.; Oertel, J.; Watt, R.; Wilke, M.; Bradley, D.K.; Knauer, J.; Petrasso, R.D.; Li, C.K.

    1997-01-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x ray, gamma ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating in the high radiation, electromagnetic pulse, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests. {copyright} {ital 1997 American Institute of Physics.}

  3. ICF basics, NIF and IFE Mark C. Herrmann

    E-Print Network [OSTI]

    ICF basics, NIF and IFE Mark C. Herrmann Lawrence Livermore National Laboratory Special Thanks force balanced by g) · Magnetic (pressure force balanced by B2) · NIF= National Ignition Facility d = 1

  4. National Ignition Facility computational fluid dynamics modeling and light fixture case studies

    SciTech Connect (OSTI)

    Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

    1998-02-01

    This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

  5. 02-NIF Dedication: Edward Moses

    ScienceCinema (OSTI)

    Edward Moses

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by NIF Director Edward Moses.

  6. National Ignition Facility and Managing Location, Component, and State

    SciTech Connect (OSTI)

    Foxworthy, C; Fung, T; Beeler, R; Li, J; Dugorepec, J; Chang, C

    2011-07-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  7. Neutron source reconstruction from pinhole imaging at National Ignition Facility

    SciTech Connect (OSTI)

    Volegov, P.; Danly, C. R.; Grim, G. P.; Guler, N.; Merrill, F. E.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N.; Ma, T.; Warrick, A. L. [Livermore National Laboratory, Livermore, California 94550 (United States)] [Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-02-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (?100 ?m) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-?m resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics.

  8. The First Experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Landen, O L; Glenzer, S; Froula, D; Dewald, E; Suter, L J; Schneider, M; Hinkel, D; Fernandez, J; Kline, J; Goldman, S; Braun, D; Celliers, P; Moon, S; Robey, H; Lanier, N; Glendinning, G; Blue, B; Wilde, B; Jones, O; Schein, J; Divol, L; Kalantar, D; Campbell, K; Holder, J; MacDonald, J; Niemann, C; Mackinnon, A; Collins, R; Bradley, D; Eggert, J; Hicks, D; Gregori, G; Kirkwood, R; Young, B; Foster, J; Hansen, F; Perry, T; Munro, D; Baldis, H; Grim, G; Heeter, R; Hegelich, B; Montgomery, D; Rochau, G; Olson, R; Turner, R; Workman, J; Berger, R; Cohen, B; Kruer, W; Langdon, B; Langer, S; Meezan, N; Rose, H; Still, B; Williams, E; Dodd, E; Edwards, J; Monteil, M; Stevenson, M; Thomas, B; Coker, R; Magelssen, G; Rosen, P; Stry, P; Woods, D; Weber, S; Alvarez, S; Armstrong, G; Bahr, R; Bourgade, J; Bower, D; Celeste, J; Chrisp, M; Compton, S; Cox, J; Constantin, C; Costa, R; Duncan, J; Ellis, A; Emig, J; Gautier, C; Greenwood, A; Griffith, R; Holdner, F; Holtmeier, G; Hargrove, D; James, T; Kamperschroer, J; Kimbrough, J; Landon, M; Lee, D; Malone, R; May, M; Montelongo, S; Moody, J; Ng, E; Nikitin, A; Pellinen, D; Piston, K; Poole, M; Rekow, V; Rhodes, M; Shepherd, R; Shiromizu, S; Voloshin, D; Warrick, A; Watts, P; Weber, F; Young, P; Arnold, P; Atherton, L J; Bardsley, G; Bonanno, R; Borger, T; Bowers, M; Bryant, R; Buckman, S; Burkhart, S; Cooper, F; Dixit, S; Erbert, G; Eder, D; Ehrlich, B; Felker, B; Fornes, J; Frieders, G; Gardner, S; Gates, C; Gonzalez, M; Grace, S; Hall, T; Haynam, C; Heestand, G; Henesian, M; Hermann, M; Hermes, G; Huber, S; Jancaitis, K; Johnson, S; Kauffman, B; Kelleher, T; Kohut, T; Koniges, A E; Labiak, T; Latray, D; Lee, A; Lund, D; Mahavandi, S; Manes, K R; Marshall, C; McBride, J; McCarville, T; McGrew, L; Menapace, J; Mertens, E; Munro, D; Murray, J; Neumann, J; Newton, M; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rinnert, R; Riordan, B; Ross, G; Robert, V; Tobin, M; Sailors, S; Saunders, R; Schmitt, M; Shaw, M; Singh, M; Spaeth, M; Stephens, A; Tietbohl, G; Tuck, J; Van Wonterghem, B; Vidal, R; Wegner, P; Whitman, P; Williams, K; Winward, K; Work, K

    2005-11-11

    A first set of laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and x-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options.

  9. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    SciTech Connect (OSTI)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2014-05-15

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6?×?10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  10. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear astrophysics, material properties, plasma physics, nonlinear optical physics, radiation sources, radiative properties, and other areas of science. NIF will generate...

  11. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. The goals of NIF are to provide a better understanding of the complex physics of nuclear weapons; provide scientists with the physics understanding necessary to create...

  12. NIF-0607-13692.ppt NIF Town Hall Meeting, June 16, 2007 1 Title page -APS, Orlando, FL, November 13,

    E-Print Network [OSTI]

    13, 2007 This work performed under the auspices of the U.S. Department of Energy by Lawrence 2 The National Ignition FacilityThe National Ignition Facility Limitless Clean Energy Eye on the Cosmos Limitless Clean Energy Eye on the Cosmos #12;NIF-0607-13692.ppt NIF Town Hall Meeting, June 16

  13. Polar-direct-drive experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; et al

    2015-05-11

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore »geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D? gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10ą? to 1.2 10ą?W/cm˛. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

  14. Polar-direct-drive experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hohenberger, M. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000258879711); Radha, P. B. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Myatt, J. F. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marozas, J. A. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Marshall, F. J. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Michel, D. T. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000166894359); Regan, S. P. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Seka, W. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Shvydky, A. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Sangster, T. C. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000340402672); Bates, J. W. [U. S. Naval Research Lab., Washington, DC (United States)] (ORCID:0000000188087240); Betti, R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Boehly, T. R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Bonino, M. J. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, T. J. B. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Craxton, R. S. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000158858227); Delettrez, J. A. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Edgell, D. H. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Epstein, R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000340628444); Fiksel, G. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Fitzsimmons, P. [General Atomics, San Diego, CA (United States); Frenje, J. A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Froula, D. H. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Goncharov, V. N. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Harding, D. R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Kalantar, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Karasik, M. [U. S. Naval Research Lab., Washington, DC (United States); Kessler, T. J. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Knauer, J. P. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Kurz, C. [General Atomics, San Diego, CA (United States); Lafon, M. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); LaFortune, K. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacGowan, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mackinnon, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacPhee, A. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000341604479); McCrory, R. L. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); McKenty, P. W. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Meeker, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meyerhofer, D. D. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)

    2015-05-01

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D? gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10ą? to 1.2 10ą?W/cm˛. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  15. The National Ignition Facility and the Promise of Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E I

    2010-12-13

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  16. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    SciTech Connect (OSTI)

    Perkins, L J; Betti, R; Schurtz, G P; Craxton, R S; Dunne, A M; LaFortune, K N; Schmitt, A J; McKenty, P W; Bailey, D S; Lambert, M A; Ribeyre, X; Theobald, W R; Strozzi, D J; Harding, D R; Casner, A; Atzemi, S; Erbert, G V; Andersen, K S; Murakami, M; Comley, A J; Cook, R C; Stephens, R B

    2010-04-12

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term ({approx}3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of {approx}60 may be achievable on NIF at laser drive energies around {approx}0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R&D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  17. 12-NIF Dedication: Concluding remarks and video

    ScienceCinema (OSTI)

    Edward Moses

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the concluding remarks by NIF Director Edward Moses, and a brief video presentation.

  18. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-08-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  19. High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility

    SciTech Connect (OSTI)

    Koch, J.A.; Landen, O.L.; Hammel, B.A.

    1997-08-26

    Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view.

  20. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  1. Physics issues related to the confinement of ICF experiments in the US National Ignition Facility

    SciTech Connect (OSTI)

    Tobin, M.; Anderson, A.; Latkowski, J. [and others

    1995-04-01

    ICF experiments planned for the proposed US National Ignition Facility (NIF) will produce emissions of neutrons, x rays, debris, and shrapnel. The NIF Target Area (TA) must acceptably confine these emissions and respond to their effects to allow an efficient rate of experiments, from 600 to possibly 1500 per year, and minimal down time for maintenance. Detailed computer code predictions of emissions are necessary to study their effects and impacts on Target Area operations. Preliminary results show that the rate of debris shield transmission loss (and subsequent periodicity of change-out) due to ablated material deposition is acceptable, neutron effects on optics are manageable, and preliminary safety analyses show a facility rating of low hazard, non-nuclear. Therefore, NIF Target Area design features such as fused silica debris shields, refractory first wall coating, and concrete shielding are effective solutions to confinement of ICF experiment emissions.

  2. Neutron time-of-flight and emission time diagnostics for the National Ignition Facility

    SciTech Connect (OSTI)

    Murphy, T. J.; Jimerson, J. L.; Berggren, R. R.; Faulkner, J. R.; Oertel, J. A.; Walsh, P. J.

    2001-01-01

    Current plans call for a system of current mode neutron detectors for the National Ignition Facility for extending the range of neutron yields below that of the neutron activation system, for ion-temperature measurements over a wide yield range, and for determining the average neutron emission time. The system will need to operate over a yield range of 10{sup 6} for the lowest-yield experiments to 10{sup 19} for high-yield ignited targets. The requirements will be satisfied using several detectors located at different distances from the target. This article presents a conceptual design for the NIF nToF system.

  3. Initial Activation and Operation of the Power Conditioning System for the National Ignition Facility

    SciTech Connect (OSTI)

    Newton, M A; Kamm, R E; Fulkerson, E S; Hulsey, S D; Lao, N; Parrish, G L; Pendleton, D L; Petersen, D E; Polk, M; Tuck, J M; Ullery, G T; Moore, W B

    2003-08-20

    The NIF Power Conditioning System (PCS) resides in four Capacitor Bays, supplying energy to the Master and Power Amplifiers which reside in the two adjacent laser bays. Each capacitor bay will initially house 48 individual power conditioning modules, shown in Figure 2, with space reserved for expansion to 54 modules. The National Ignition Facility (NIF) Power Conditioning System (PCS) is a modular capacitive energy storage system that will be capable of storing nearly 400 MJ of electrical energy and delivering that energy to the nearly 8000 flashlamps in the NIF laser. The first sixteen modules of the power conditioning system have been built, tested and installed. Activation of the first nine power conditioning modules has been completed and commissioning of the first ''bundle'' of laser beamlines has begun. This paper will provide an overview of the power conditioning system design and describe the status and results of initial testing and activation of the first ''bundle'' of power conditioning modules.

  4. Nuclear Physics using NIF

    SciTech Connect (OSTI)

    Bernstein, L A; Bleuel, D L; Caggiano, J A; Cerjan, C; Gostic, J; Hatarik, R; Hartouni, E; Hoffman, R D; Sayre, D; Schneider, D G; Shaughnessy, D; Stoeffl, W; Yeamans, C; Greife, U; Larson, R; Hudson, M; Herrmann, H; Kim, Y H; Young, C S; Mack, J; Wilson, D; Batha, S; Hoffman, N; Langenbrunner, J; Evans, S

    2011-09-28

    The National Ignition Facility (NIF) is the world's premier inertial confinement fusion facility designed to achieve sustained thermonuclear burn (ignition) through the compression of hydrogen isotopic fuels to densities in excess of 10{sup 3} g/cm{sup 3} and temperatures in excess of 100 MK. These plasma conditions are very similar to those found in the cores of Asymptotic Giant Branch (AGB) stars where the s-process takes place, but with a neutron fluence per year 10{sup 4} times greater than a star. These conditions make NIF an excellent laboratory to measure s-process (n,{gamma}) cross sections in a stellar-like plasma for the first time. Starting in Fall 2009, NIF has been operating regularly with 2-4 shots being performed weekly. These experiments have allowed the first in situ calibration of the detectors and diagnostics needed to measure neutron capture, including solid debris collection and prompt {gamma}-ray detection. In this paper I will describe the NIF facility and capsule environment and present two approaches for measuring s-process neutron capture cross sections using NIF.

  5. Activation Analysis of the Final Optics Assemblies at the National Ignition Facility

    SciTech Connect (OSTI)

    Dauffy, L S; Khater, H Y; Sitaraman, S; Brereton, S J

    2008-10-14

    Commissioning shots have commenced at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory. Within a year, the 192 laser beam facility will be operational and the experimental phase will begin. At each shot, the emitted neutrons will interact in the facility's surroundings, activating them, especially inside the target bay where the neutron flux is the highest. We are calculating the dose from those activated structures and objects in order to plan and minimize worker exposures during maintenance and normal NIF operation. This study presents the results of the activation analysis of the optics of the Final Optics Assemblies (FOA), which are a key contributor to worker exposure. Indeed, there are 48 FOAs weighting three tons each, and routine change-out and maintenance of optics and optics modules is expected. The neutron field has been characterized using the three-dimensional Monte Carlo particle transport code MCNP with subsequent activation analysis performed using the activation code, ALARA.

  6. Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility

    SciTech Connect (OSTI)

    Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T

    2012-04-20

    Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

  7. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-02-15

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

  8. Observations and Modeling of Debris and Shrapnel Impacts on Optics and Diagnostics at the National Ignition Facility

    SciTech Connect (OSTI)

    Eder, D; Bailey, D; Chamgers, F; Darnell, I; Nicola, P D; Dixit, S; Fisher, A; Gururangan, G; Kalantar, D; Koniges, A; Liu, W; Marinak, M; Masters, N; Mlaker, V; Prasad, R; Sepke, S; Whitman, P

    2011-11-04

    A wide range of targets with laser energies spanning two orders of magnitude have been shot at the National Ignition Facility (NIF). The National Ignition Campaign (NIC) targets are cryogenic with Si supports and cooling rings attached to an Al thermo-mechanical package (TMP) with a thin (30 micron) Au hohlraum inside. Particular attention is placed on the low-energy shots where the TMP is not completely vaporized. In addition to NIC targets, a range of other targets has also been fielded on NIF. For all targets, simulations play a critical role in determining if the risks associated with debris and shrapnel are acceptable. In a number of cases, experiments were redesigned, based on simulations, to reduce risks or to obtain data. The majority of these simulations were done using the ALE-AMR code, which provides efficient late-time (100-1000X the pulse duration) 3D calculations of complex NIF targets.

  9. NIF: A Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2007-06-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-{micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury uses state-of-the-art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

  10. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    SciTech Connect (OSTI)

    Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  11. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; et al

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 ?m/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore »the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less

  12. PLANNING TOOLS FOR ESTIMATING RADIATION EXPOSURE AT THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Verbeke, J; Young, M; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Sitaraman, S

    2010-10-22

    A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10{sup 16} D-T shot and will be presented in this paper.

  13. NIF featured on BBC "Horizon"

    SciTech Connect (OSTI)

    Brian Cox

    2010-01-12

    The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.

  14. NIF featured on BBC "Horizon"

    ScienceCinema (OSTI)

    Brian Cox

    2010-09-01

    The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.

  15. Diagnosing inertial confinement fusion implosions at OMEGA and the NIF Using novel neutron spectrometry

    E-Print Network [OSTI]

    Casey, Daniel Thomas

    2012-01-01

    A novel neutron spectrometer, called the Magnetic Recoil Spectrometer (MRS), was designed, built, and implemented on the OMEGA laser facility and the National Ignition Facility (NIF) to measure the neutron spectra from ...

  16. Precision Shock Tuning on the National Ignition Facility

    E-Print Network [OSTI]

    Frenje, Johan A.

    Ignition implosions on the National Ignition Facility [ J.?D. Lindl et al. Phys. Plasmas 11 339 (2004)] are underway with the goal of compressing deuterium-tritium fuel to a sufficiently high areal density (?R) to sustain ...

  17. National Ignition Facility & Photon Science HOW NIF WORKS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the 48 preamplifiers are then split into four beams each for injection into the 192 main laser amplifier beamlines. each beam zooms through two systems of large glass amplifiers,...

  18. National Ignition Facility & Photon Science NIF AT A GLANCe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    similar to those that exist only in the cores of stars and giant planets and inside nuclear weapons. The resulting fusion reaction will release many times more energy than...

  19. The National Ignition Facility (NIF) - September 23, 2010 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency MaineAutoSecurity | Departmenthistory ofEnergy

  20. The National Ignition Facility (NIF) - September 23, 2010 | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority J-I-12 GeV

  1. National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications TheScience (SC) National EnvironmentalInRecord

  2. Radiochemical determination of Inertial Confinement Fusion capsule compression at the National Ignition Facility

    SciTech Connect (OSTI)

    Shaughnessy, D. A., E-mail: shaughnessy2@llnl.gov; Moody, K. J.; Gharibyan, N.; Grant, P. M.; Gostic, J. M.; Torretto, P. C.; Wooddy, P. T.; Bandong, B. B.; Cerjan, C. J.; Hagmann, C. A.; Caggiano, J. A.; Yeamans, C. B.; Bernstein, L. A.; Schneider, D. H. G.; Henry, E. A.; Fortner, R. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Despotopulos, J. D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Radiochemistry Program, University of Nevada Las Vegas, Las Vegas, Nevada 89154 (United States)

    2014-06-15

    We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,?) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of {sup 198m+g}Au and {sup 196g}Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

  3. The National Ignition Facility: Ushering in a new age for high energy density science

    SciTech Connect (OSTI)

    Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R.

    2009-04-15

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  4. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A. S. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Cooper, A. B.R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacLaren, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graham, P. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seugling, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Satcher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klingmann, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Comley, A. J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Marrs, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sain, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Back, C. A. [General Atomics, San Diego, CA (United States); Hund, J. [General Atomics, San Diego, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Young, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di#11;usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  5. National Ignition Facility | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CSNational Ignition Facility Subscribe

  6. Assembling and Installing LRUs for NIF

    SciTech Connect (OSTI)

    Bonanno, R E

    2003-12-31

    Within the 192 National Ignition Facility (NIF) beamlines, there are over 7000 large (40 x 40 cm) optical components, including laser glass, mirrors, lenses, and polarizers. These optics are held in large opto-mechanical assemblies called line-replaceable units (LRUs). Each LRU has strict specifications with respect to cleanliness, alignment, and wavefront so that once activated, each NIF beamline will meet its performance requirements. NIF LRUs are assembled, tested, and refurbished in on-site cleanroom facilities. The assembled LRUs weigh up to 1800 kilograms, and are about the size of a phone booth. They are transported in portable clean canisters and inserted into the NIF beampath using robotic transporters. This plug and play design allows LRUs to be easily removed from the beampath for maintenance or upgrades. Commissioning of the first NIF quad, an activity known as NIF Early Light (NEL), has validated LRU designs and architecture, as well as demonstrated that LRUs can be assembled and installed as designed. Furthermore, it has served to develop key processes and tools forming the foundation for NIF s long-term LRU production and maintenance strategy. As we look forward to building out the rest of NIF, the challenge lies in scaling up the production rate while maintaining quality, implementing process improvements, and fully leveraging the learning and experience gained from NEL. This paper provides an overview of the facilities, equipment and processes used to assemble and install LRUs in NIF.

  7. Summary of the first neutron image data collected at the National Ignition Facility

    SciTech Connect (OSTI)

    Grim, G P; Archuleta, T N; Aragonez, R J; Atkinson, D P; Batha, S H; Barrios, M A; Bower, D E; Bradley, D K; Buckles, R A; Clark, D D; Clark, D J; Cradick, J R; Danly, C; Drury, O B; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Glenn, S M; Hsu, A H; Izumi, N; Jaramillo, S A; Kyrala, G A; Pape, S L; Loomis, E N; Mares, D; Martinson, D D; Ma, T; MacKinnon, A J; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Polk, P J; Schmidt, D W; Tommasini, T; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Dzenitis, J M; Felker, B; Fittinghoff, D N; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Kauffman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-11-01

    A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of the data collected and measurements made to date. Data form directly driven, DT filled microballoons, as well as, indirectly driven, cryogenically layered ignition experiments are presented. The data presented show that the primary cores from directly driven implosions are approximately twice as large, 64 {+-} 3 {mu}m, as indirect cores 25 {+-} 4 and 29 {+-} 4 {mu}m and more asymmetric, P2/P0 = 47% vs. -14% and 7%. Further, comparison with the size and shape of X-ray image data on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion.

  8. Using laser entrance hole shields to increase coupling efficiency in indirect drive ignition targets for the National Ignition Facility

    SciTech Connect (OSTI)

    Callahan, D.A.; Amendt, P.A.; Dewald, E.L.; Haan, S.W.; Hinkel, D.E.; Izurni, N.; Jones, O.S.; Landen, O.L.; Lindl, J.D.; Pollaine, S.M.; Suter, L.J.; Tabak, M.; Turner, R.E. [Lawrence Livermore National Laboratory, P.O. Box 808, Mail stop L-015, Livermore, California 94550 (United States)

    2006-05-15

    Coupling efficiency, the ratio of the capsule absorbed energy to the driver energy, is a key parameter in ignition target designs. The hohlraum originally proposed for the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, S228 (2004)] coupled {approx}11% of the absorbed laser energy to the capsule as x rays. Described here is a second generation of the hohlraum target which has a higher coupling efficiency, {approx}16%. Because the ignition capsule's ability to withstand three-dimensional effects increases rapidly with absorbed energy, the additional energy can significantly increase the likelihood of ignition. The new target includes laser entrance hole (LEH) shields as a principal method for increasing coupling efficiency while controlling symmetry in indirect-drive inertial confinement fusion. The LEH shields are high Z disks placed inside the hohlraum on the symmetry axis to block the capsule's view of the relatively cold LEHs. The LEH shields can reduce the amount of laser energy required to drive a target to a given temperature via two mechanisms: (1) keeping the temperature high near the capsule pole by putting a barrier between the capsule and the pole; (2) because the capsule pole does not have a view of the cold LEHs, good symmetry requires a shorter hohlraum with less wall area. Current integrated simulations of this class of target couple 140 kJ of x rays to a capsule out of 865 kJ of absorbed laser energy and produce {approx}10 MJ of yield. In the current designs, which continue to be optimized, the addition of the LEH shields saves {approx}95 kJ of energy (about 10%) over hohlraums without LEH shields.

  9. AN UPDATE ON NIF PULSED POWER

    SciTech Connect (OSTI)

    Arnold, P A; James, G F; Petersen, D E; Pendleton, D L; McHale, G B; Barbosa, F; Runtal, A S; Stratton, P L

    2009-06-22

    The National Ignition Facility (NIF) is a 192-beam laser fusion driver operating at Lawrence Livermore National Laboratory. NIF relies on three large-scale pulsed power systems to achieve its goals: the Power Conditioning Unit (PCU), which provides flashlamp excitation for the laser's injection system; the Power Conditioning System (PCS), which provides the multi-megajoule pulsed excitation required to drive flashlamps in the laser's optical amplifiers; and the Plasma Electrode Pockels Cell (PEPC), which enables NIF to take advantage of a fourpass main amplifier. Years of production, installation, and commissioning of the three NIF pulsed power systems are now complete. Seven-day-per-week operation of the laser has commenced, with the three pulsed power systems providing routine support of laser operations. We present the details of the status and operational experience associated with the three systems along with a projection of the future for NIF pulsed power.

  10. Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Spears, Brian K. Edwards, M. J.; Hatchett, S.; Kritcher, A.; Lindl, J.; Munro, D.; Patel, P.; Robey, H. F.; Town, R. P. J.; Kilkenny, J.; Knauer, J.

    2014-04-15

    Mode 1 radiation drive asymmetry (pole-to-pole imbalance) at significant levels can have a large impact on inertial confinement fusion implosions at the National Ignition Facility (NIF). This asymmetry distorts the cold confining shell and drives a high-speed jet through the hot spot. The perturbed hot spot shows increased residual kinetic energy and reduced internal energy, and it achieves reduced pressure and neutron yield. The altered implosion physics manifests itself in observable diagnostic signatures, especially the neutron spectrum which can be used to measure the neutron-weighted flow velocity, apparent ion temperature, and neutron downscattering. Numerical simulations of implosions with mode 1 asymmetry show that the resultant simulated diagnostic signatures are moved toward the values observed in many NIF experiments. The diagnostic output can also be used to build a set of integrated implosion performance metrics. The metrics indicate that P{sub 1} has a significant impact on implosion performance and must be carefully controlled in NIF implosions.

  11. Progress in hohlraum physics for the National Ignition Facility

    SciTech Connect (OSTI)

    Moody, J. D., E-mail: moody4@llnl.gov; Callahan, D. A.; Hinkel, D. E.; Amendt, P. A.; Baker, K. L.; Bradley, D.; Celliers, P. M.; Dewald, E. L.; Divol, L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Jones, O.; Haan, S. W.; Ho, D.; Hopkins, L. B.; Izumi, N.; Kalantar, D.; Kauffman, R. L.; Kilkenny, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); and others

    2014-05-15

    Advances in hohlraums for inertial confinement fusion at the National Ignition Facility (NIF) were made this past year in hohlraum efficiency, dynamic shape control, and hot electron and x-ray preheat control. Recent experiments are exploring hohlraum behavior over a large landscape of parameters by changing the hohlraum shape, gas-fill, and laser pulse. Radiation hydrodynamic modeling, which uses measured backscatter, shows that gas-filled hohlraums utilize between 60% and 75% of the laser power to match the measured bang-time, whereas near-vacuum hohlraums utilize 98%. Experiments seem to be pointing to deficiencies in the hohlraum (instead of capsule) modeling to explain most of the inefficiency in gas-filled targets. Experiments have begun quantifying the Cross Beam Energy Transfer (CBET) rate at several points in time for hohlraum experiments that utilize CBET for implosion symmetry. These measurements will allow better control of the dynamic implosion symmetry for these targets. New techniques are being developed to measure the hot electron energy and energy spectra generated at both early and late time. Rugby hohlraums offer a target which requires little to no CBET and may be less vulnerable to undesirable dynamic symmetry “swings.” A method for detecting the effect of the energetic electrons on the fuel offers a direct measure of the hot electron effects as well as a means to test energetic electron mitigation methods. At higher hohlraum radiation temperatures (including near vacuum hohlraums), the increased hard x-rays (1.8–4?keV) may pose an x-ray preheat problem. Future experiments will explore controlling these x-rays with advanced wall materials.

  12. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Hohenberger, M. Stoeckl, C.; Albert, F.; Palmer, N. E.; Döppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K.; Lee, J. J.

    2014-11-15

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic–a multichannel, hard x-ray spectrometer operating in the 20–500 keV range–has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ?300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U K{sub ?}). The detectors impulse response function was measured in situ on NIF short-pulse (?90 ps) experiments, and in off-line tests.

  13. Neutron spectrometry-An essential tool for diagnosing implosions at the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Johnson, M. Gatu; Frenje, J. A.; Casey, D. T.; Li, C. K.; Seguin, F. H.; Petrasso, R. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Ashabranner, R.; Bionta, R. M.; Bleuel, D. L.; Bond, E. J.; Caggiano, J. A.; Carpenter, A.; Cerjan, C. J.; Clancy, T. J.; Doeppner, T.; Eckart, M. J.; Edwards, M. J.; Friedrich, S.; Glenzer, S. H.; Haan, S. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    DT neutron yield (Y{sub n}), ion temperature (T{sub i}), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y{sub n}, T{sub i}, and dsr. From the measured dsr value, an areal density ({rho}R) is determined through the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6) Multiplication-Sign dsr{sub 10-12MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.

  14. IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou

    E-Print Network [OSTI]

    Abdou, Mohamed

    chamber technology testing program in NIF involoving: criteria for evaluation to testing in ignition facility serves a critical role in chamber R&D test plans in order to reduce the risks for chamber technology testing in NIF might not be achievable because its integrated performance is evaluated

  15. IMPACT OF TARGET MATERIAL ACTIVATION ON PERSONNEL EXPOSURE AND RADIOACTIVE CONTAMINATION IN THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Khater, H; Epperson, P; Thacker, R; Beale, R; Kohut, T; Brereton, S

    2009-06-30

    Detailed activation analyses are performed for the different materials under consideration for use in the target capsules and hohlraums used during the ignition campaign on the National Ignition Facility. Results of the target material activation were additionally used to estimate the levels of contamination within the NIF target chamber and the workplace controls necessary for safe operation. The analysis examined the impact of using Be-Cu and Ge-doped CH capsules on the external dose received by workers during maintenance activities. Five days following a 20 MJ shot, dose rates inside the Target Chamber (TC) due to the two proposed capsule materials are small ({approx} 1 {micro}rem/h). Gold and depleted-uranium (DU) are considered as potential hohlraum materials. Following a shot, gold will most probably get deposited on the TC first wall. On the other hand, while noble-gas precursors from the DU are expected to stay in the TC, most of the noble gases are pumped out of the chamber and end up on the cryopumps. The dose rates inside the TC due to activated gold or DU, at 5 days following a 20 MJ shot, are about 1 mrem/h. Dose rates in the vicinity of the cryo-pumps (containing noble 'fission' gases) drop-off to about 1 mrem/h during the first 12 hours following the shot. Contamination from activation of NIF targets will result in the NIF target chamber exceeding DOE surface contamination limits. Objects removed from the TC will need to be managed as radioactive material. However, the results suggest that airborne contamination from resuspension of surface contamination will not be significant and is at levels that can be managed by negative ventilation when accessing the TC attachments.

  16. Report from the Integrated Modeling Panel at the Workshop on the Science of Ignition on NIF

    SciTech Connect (OSTI)

    Marinak, M; Lamb, D

    2012-07-03

    This section deals with multiphysics radiation hydrodynamics codes used to design and simulate targets in the ignition campaign. These topics encompass all the physical processes they model, and include consideration of any approximations necessary due to finite computer resources. The section focuses on what developments would have the highest impact on reducing uncertainties in modeling most relevant to experimental observations. It considers how the ICF codes should be employed in the ignition campaign. This includes a consideration of how the experiments can be best structured to test the physical models the codes employ.

  17. Activation of Air and Utilities in the National Ignition Facility

    SciTech Connect (OSTI)

    Khater, H; Pohl, B; Brererton, S

    2010-04-08

    Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment within the NIF. Neutrons streaming outside the NIF Target Chamber will activate the air present inside the Target Bay and the Ar gas inside the laser tubes. Smaller levels of activity are also generated in the Switchyard air and in the Ar portion of the SY laser beam path. The impact of neutron activation of utilities located inside the Target Bay is analyzed for variety of shot types. The impact of activating TB utilities on dose received by maintenance personnel post-shot is analyzed. The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration. Flow of activated air from the Target Bay is controlled by the HVAC system. The amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. Activation of Switchyard air is negligible. Activation of Target Bay utilities result in a manageable dose rate environment post high yield (20 MJ) shots. The levels of activation generated in air and utilities during D-D and THD shots are small and do not impact work planning post shots.

  18. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility

    SciTech Connect (OSTI)

    Town, R. P. J., E-mail: town2@llnl.gov; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Döppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Ma, T.; Milovich, J. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-05-15

    In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments.

  19. Summary of the First Neutron Image Data Collected at the National Ignition Facility

    SciTech Connect (OSTI)

    Grim, G P; Aragonez, R J; Batha, S H; Clark, D D; Clark, D J; Clark, D J; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T.-S. F; Wilde, C H; Wilke, M D; Wilson, D C; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Fittinghoff, D N; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M

    2011-11-01

    A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of the data collected and measurements made to date. Data form directly driven, DT filled microballoons, as well as, indirectly driven, cryogenically layered ignition experiments are presented. The data presented show that the primary cores from directly driven implosions are approximately twice as large, 64 +/- 3 um, as indirect cores (25 +/- 4 and 29 +/- 4 um and more asymmetric, P2/P0 = 47% vs. -14% and -7%. Further, comparison with the size and shape of X-ray image data from on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion. This work was performed for the U.S. Department of Energy, National Nuclear Security Administration and by the National Ignition Campaign partners; Lawrence Livermore National Laboratory (LLNL), University of Rochester -Laboratory for Laser Energetics (LLE), General Atomics(GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL). Other contributors include Lawrence Berkeley National Laboratory (LBNL), Massachusetts Institute of Technology (MIT), Atomic Weapons Establishment (AWE), England, and Commissariat `a l’ ´ Energie Atomique (CEA), France.

  20. Bayesian Analysis of Inertial Confinement Fusion Experiments at the National Ignition Facility

    E-Print Network [OSTI]

    Gaffney, J A; Sonnad, V; Libby, S B

    2012-01-01

    We develop a Bayesian inference method that allows the efficient determination of several interesting parameters from complicated high-energy-density experiments performed on the National Ignition Facility (NIF). The model is based on an exploration of phase space using the hydrodynamic code HYDRA. A linear model is used to describe the effect of nuisance parameters on the analysis, allowing an analytic likelihood to be derived that can be determined from a small number of HYDRA runs and then used in existing advanced statistical analysis methods. This approach is applied to a recent experiment in order to determine the carbon opacity and X-ray drive; it is found that the inclusion of prior expert knowledge and fluctuations in capsule dimensions and chemical composition significantly improve the agreement between experiment and theoretical opacity calculations. A parameterisation of HYDRA results is used to test the application of both Markov chain Monte Carlo (MCMC) and genetic algorithm (GA) techniques to e...

  1. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Grim, G. P.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; et al

    2014-09-09

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T?-gas filled CH-shell implosions equipped with 4 ?m thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within themore »CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 ?m have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.« less

  2. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smalyuk, V. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tipton, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pino, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grim, G. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Remington, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rowley, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, S. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benedetti, L. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bleuel, D. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bond, E. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Callahan, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerjan, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, K. C. [General Atomics, San Diego, CA (United States); Edgell, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, NY (United States); Edwards, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fittinghoff, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Gatu-Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Glebov, V. Y. [Laboratory for Laser Energetics, University of Rochester, Rochester, NY (United States); Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guler, N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamza, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hatarik, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herrmann, H. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hoover, D. [General Atomics, San Diego, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Izumi, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kervin, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khan, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Kline, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Knauer, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, NY (United States); Kyrala, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacPhee, A. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNaney, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mintz, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moore, A. [AWE Aldermaston, Reading, Berkshire, (United Kingdom); Nikroo, A. [General Atomics, San Diego, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Parham, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petrasso, R. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Rinderknecht, H. G. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-09-01

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T?-gas filled CH-shell implosions equipped with 4 ?m thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 ?m have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  3. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    SciTech Connect (OSTI)

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Grim, G. P.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Chen, K. C.; Edgell, D. H.; Edwards, M. J.; Fittinghoff, D.; Frenje, J. A.; Gatu-Johnson, M.; Glebov, V. Y.; Glenn, S.; Guler, N.; Haan, S. W.; Hamza, A.; Hatarik, R.; Herrmann, H. W.; Hoover, D.; Hsing, W. W.; Izumi, N.; Kervin, P.; Khan, S.; Kilkenny, J. D.; Kline, J.; Knauer, J.; Kyrala, G.; Landen, O. L.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Mintz, M.; Moore, A.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R.; Rinderknecht, H. G.; Sayre, D. B.; Schneider, M.; Stoeffl, W.; Tommasini, R.; Town, R. P.; Widmann, K.; Wilson, D. C.; Yeamans, C. B.

    2014-09-09

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T?-gas filled CH-shell implosions equipped with 4 ?m thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 ?m have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  4. Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    SciTech Connect (OSTI)

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Edwards, M. J.; Fittinghoff, D.; Glenn, S.; Haan, S. W.; Hamza, A.; and others

    2014-09-15

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T{sub 2}-gas filled CH-shell implosions equipped with 4 ?m thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8??m have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  5. A geophysical shock and air blast simulator at the National Ignition Facility

    SciTech Connect (OSTI)

    Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H.; Guyton, R. L.; Huffman, E.

    2014-09-01

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  6. The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions

    SciTech Connect (OSTI)

    Peterson, J. L.; Clark, D. S.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Masse, L. P. [CEA, DAM, DIF, 91297 Arpajon (France)

    2014-09-15

    Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.

  7. National Ignition Facility & Photon Science Seven WonderS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for NIF's optics needs in rapid- growth crystals, continuous-pour glass, optical coatings, and new finishing techniques that can withstand NIF's extremely high energies. The...

  8. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    E-Print Network [OSTI]

    E. I. Moses

    2001-11-09

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

  9. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    SciTech Connect (OSTI)

    Wuest, C

    2001-10-29

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

  10. NIF Ambient Vibration Measurements

    SciTech Connect (OSTI)

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  11. Penetrating radiation impact on NIF final optic components

    SciTech Connect (OSTI)

    Marshall, C.D.; Speth, J.A.; DeLoach, L.D.; Payne, S.A.

    1996-10-15

    Goal of the National Ignition Facility (NIF) is to achieve thermonuclear ignition in a laboratory environment in inertial confinement fusion (ICF). This will enable NIF to service the DOE stockpile stewardship management program, inertial fusion energy goals, and advance scientific frontiers. All of these applications will make use of the extreme conditions that the facility will create in the target chamber. In the case of a prospected 20 MJ yield scenario, NIF will produce 10{sup 19} neutrons with DT fusion 14 MeV energy per neutron. There will also be high-energy x rays as well as solid, liquid, and gaseous target debris produced either directly or indirectly by the inertial confinement fusion process. A critical design issue is the protection of the final optical components as well as sophisticated target diagnostics in such a harsh environment.

  12. X-ray area backlighter development at the National Ignition Facility...

    Office of Scientific and Technical Information (OSTI)

    Facility (NIF) Authors: Barrios, M A ; Regan, S P ; Fournier, K B ; Epstein, R ; Smith, R ; Lazicki, A ; Rygg, R ; Fratanduono, D E ; Eggert, J ; Park, H S ; Huntington, C ;...

  13. Construction safety program for the National Ignition Facility

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF.

  14. Pathway to a lower cost high repetition rate ignition facility

    SciTech Connect (OSTI)

    Obenschain, S.P.; Colombant, D.G.; Schmitt, A.J.; Sethian, J.D.; McGeoch, M. W. [Plasma Physics Division, U.S. Naval Research Laboratory, Washington, D.C. 20375 (United States); Plex LLC, Brookline, Massachusetts 02446-5478 (United States)

    2006-05-15

    An approach to a high-repetition ignition facility based on direct drive with the krypton-fluoride laser is presented. The objective is development of a 'Fusion Test Facility' that has sufficient fusion power to be useful as a development test bed for power plant materials and components. Calculations with modern pellet designs indicate that laser energies well below a megajoule may be sufficient. A smaller driver would result in an overall smaller, less complex and lower cost facility. While this facility might appear to have most direct utility to inertial fusion energy, the high flux of neutrons would also be able to address important issues concerning materials and components for other approaches to fusion energy. The physics and technological basis for the Fusion Test Facility are presented along with a discussion of its applications.

  15. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    SciTech Connect (OSTI)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States); Peterson, K. J. [Sandia National Laboratory, Albuquerque, New Mexico 87125 (United States)

    2014-07-15

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

  16. How NIF Works

    ScienceCinema (OSTI)

    None

    2010-09-01

    The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

  17. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    SciTech Connect (OSTI)

    Fishler, B

    2011-03-18

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  18. Studying Nuclear Astrophysics at NIF

    SciTech Connect (OSTI)

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on measurements of some of the nuclear reaction probabilities that are important to nuclear astrophysics, the field that relates energy production and nucleosynthesis from nuclear reactions in stars and in the Big Bang to the environments in which those nuclear reactions occur. NIF, unlike previous nuclear-physics facilities, will enable measurements of nuclear reactions at the temperatures, densities, and ionization states similar to those that occur in stars.

  19. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  20. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  1. Prompt radiochemistry at the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Grim, G. P.; Bradley, P. A.; Bredeweg, T. A.; Keksis, A. L.; Fowler, M. M.; Hayes, A. C.; Jungman, G.; Obst, A. W.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Bernstein, L. A.; Cerjan, C. J.; Fortner, R. J.; Moody, K. J.; Schneider, D. H.; Shaughnessy, D. A.; Stoeffl, W.; Stoyer, M. A. [Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550 (United States)

    2008-10-15

    Understanding mix in inertial confinement fusion (ICF) experiments at the National Ignition Facility requires the diagnosis of charged-particle reactions within an imploded target. Radiochemical diagnostics of these reactions are currently under study by scientists at Los Alamos and Lawrence Livermore National Laboratories. Measurement of these reactions requires assay of activated debris and tracer gases from the target. Presented below is an overview of the prompt radiochemistry diagnostic development efforts, including a discussion of the reactions of interest as well as the progress being made to collect and count activated material.

  2. NIF frequently asked questions

    SciTech Connect (OSTI)

    Carpenter, J; Warner, B

    2000-09-15

    The Stockpile Stewardship Program is an initiative to maintain the nuclear deterrent of the United States in the post-Cold War era. It is based on the maintenance of our stockpile through an ongoing process of surveillance, assessment, refurbishment, and recertification, without nuclear testing. At the heart of the SSP is an attempt to bring advanced experimental and computational tools to bear on the evaluation and certification of the stockpile itself; these advanced scientific capabilities are necessary because of the cessation of nuclear testing. This science-based approach requires new tools: advanced computers for more detailed 3-D simulations, multi-axis hydrodynamic facilities and plutonium research facilities for physics measurements of primaries, and the National Ignition Facility for fusion burn and high-energy-density science. The science basis requires summing up the pieces we can measure and simulate, which cannot be done without a complete set of tools. Refurbishing weapons with confidence, without testing, is a difficult challenge. Only with high-quality scientists and a complete set of tools, can the US accomplish this program. NIF is a unique element of the Stockpile Stewardship Program because it is the only facility that will allow the experimental study of thermonuclear burn and important regimes of high-energy-density science. Understanding these phenomena is critical to understanding how modern nuclear weapons work. NIF supports the Stockpile Stewardship Program in three essential ways: (1)It permits the study of issues that can affect an aging or refurbished stockpile. (2) It permits advancement of the critical elements of the underlying science of nuclear weapons. (3) It will attract and help train the exceptional scientific and technical talent required to sustain Stockpile Stewardship over the long term.

  3. Update on NIF and NIC Presentation to

    E-Print Network [OSTI]

    Update on NIF and NIC Presentation to TOFE 2012, Nashville August 30, 2012 Mike Dunne Director, Laser Fusion Energy #12;NIF is the culmination of a decades-long effort to demonstrate fusion ignition and energy gain 22012-030585.ppt #12;Dunne--CLEO 2012, San Jose, May 10, 2012 32012-030585.ppt The NIF

  4. Advanced ignition options for laser ICF

    E-Print Network [OSTI]

    University of Rochester and Princeton Plasma Physics Laboratory #12;FSC · With day-one hardware, the NIF can explore high-gain shock ignition - Polar Shock Ignition (uses half the NIF beams to drive the implosion: multi-FM or 2D-SSD (talk by J. Soures at this meeting) The NIF can explore advanced ignition options

  5. X-ray area backlighter development at the National Ignition Facility (NIF)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonfor DirectSciTechConnect Conference:(Journal Article) |

  6. X-ray area backlighter development at the National Ignition Facility (NIF)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonfor DirectSciTechConnect Conference:(Journal Article)

  7. HEC-DPSSL 2012 Workshop, NIF Tour: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— WeUpdate JonGuided65Bob8,Science

  8. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    E-Print Network [OSTI]

    Ma, T.

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165???m in thickness, 10% and 15% thinner, respectively, than the nominal ...

  9. A technique for extending by ?10{sup 3} the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA

    SciTech Connect (OSTI)

    Sio, H., E-mail: hsio@mit.edu; Séguin, F. H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Petrasso, R. D. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    2014-11-15

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ?R and ?R asymmetries in direct- and indirect-drive implosions of D{sup 3}He-, D{sub 2}-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10{sup 2} for obtaining the spectral shape, and by 10{sup 3} for mean energy (?R) measurement, corresponding to proton fluences of 10{sup 8} and 10{sup 9} cm{sup ?2}, respectively. Using this new technique, ?R asymmetries can be measured during both shock and compression burn (proton yield ?10{sup 8} and ?10{sup 12}, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±?10 mg/cm{sup 2}.

  10. Ignition Capsules with Aerogel-Supported Liquid DT Fuel For The National Ignition Facility

    SciTech Connect (OSTI)

    Ho, D D; Salmonson, J D; Clark, D S; Lindl, J D; Haan, S W; Amendt, P; Wu, K J

    2011-10-25

    For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to {beta}-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65-75% at peak velocity. A scan (in ablator and fuel thickness parameter space) is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  11. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA

    SciTech Connect (OSTI)

    Glebov, V. Yu.; Forrest, C.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Caggiano, J. A.; Carman, M. L.; Clancy, T. J.; Hatarik, R.; McNaney, J.; Zaitseva, N. P.

    2012-10-15

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  12. The neutron imaging diagnostic at NIF (invited)

    SciTech Connect (OSTI)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Bower, D.; Dzenitis, J. M. [Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  13. The Neutron Imaging Diagnostic at NIF

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherly, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of ICF implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  14. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Frenje, J. A. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu Johnson, M. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Seguin, F. H. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Li, C. K. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. D. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Glebov, V. Yu. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Katz, J. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Magoon, J. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Meyerhofer, D. D. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Sangster, T. C. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Shoup, M. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Ulreich, J. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Ashabranner, R. C. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bionta, R. M. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Carpenter, A. C. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Felker, B. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Khater, H. Y. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); LePape, S. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); MacKinnon, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); McKernan, M. A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Moran, M. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Yeoman, M. F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Zacharias, R. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Leeper, R. J. [Sandia National Laboratories, Albuquerque, NM (United States); Fletcher, K. [State Univ. of New York at Geneseo, NY (United States); Farrell, M. [General Atomics, San Diego, CA (United States); Jasion, D. [General Atomics, San Diego, CA (United States); Kilkenny, J. [General Atomics, San Diego, CA (United States); Paguio, R. [General Atomics, San Diego, CA (United States)

    2013-01-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  15. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; et al

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore »ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  16. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; Friedrich, S.; Bionta, R.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Berzak Hopkins, L.; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dixit, S.; Doppner, T.; Edgell, D.; Edwards, M. J.; Gatu Johnson, M.; Glenn, S.; Glenzer, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kritcher, A.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Macphee, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moody, J.; Moses, E.; Nagel, S.R.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Rosen, M.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Springer, P.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Zacharias, R.

    2014-11-01

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2! higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.

  17. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    SciTech Connect (OSTI)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D{sup 3}He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D{sup 3}He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (?R) and the shell center-of-mass radius (R{sub cm}) from the downshift of the shock-produced D{sup 3}He protons. The observed ?R at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ?R. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (?800 ps) than in the short-coast (?400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ?R.

  18. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    SciTech Connect (OSTI)

    Zylstra, A. B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Frenje, J. A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Seguin, F. H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Hicks, D. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dewald, E. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Robey, H. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meezan, N. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosenberg, M. J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Rinderknecht, H. G. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Friedrich, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bionta, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olson, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Los Alamos National Lab., NM (United States); Atherton, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bell, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benedetti, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berzak Hopkins, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betti, R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Bradley, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Callahan, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Casey, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dixit, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edgell, D. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Edwards, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gatu Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenzer, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grim, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hatchett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khan, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. [General Atomics, San Diego, CA (United States); Kline, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Knauer, J. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Kritcher, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kyrala, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Landen, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Li, C. K. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Lindl, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mackinnon, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Macphee, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-01

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2! higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.

  19. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; et al

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infermore »the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  20. NIF Status Update - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    status NIF Status Update - 2014 May - Highlights of May Experiments on NIF Gigabar Equation-of-State Experiments Production of Beryllium Capsules for NIF Begins First Weekly...

  1. Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible

    E-Print Network [OSTI]

    Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible Energy Source" John D. Moody, Lawrence Livermore National Laboratory" " Presented to: MIT ­ PSFC IAP 2014" " January 15, 2014" This work performed under the auspices of the U.S. Department of Energy

  2. GIGABAR MATERIAL PROPERTIES EXPERIMENTS ON NIF AND OMEGA

    SciTech Connect (OSTI)

    Swift, D C; Hawreliak, J A; Braun, D; Kritcher, A; Glenzer, S; Collins, G W; Rothman, S D; Chapman, D; Rose, S

    2011-08-04

    The unprecedented laser capabilities of the National Ignition Facility (NIF) make it possible for the first time to countenance laboratory-scale experiments in which gigabar pressures can be applied to a reasonable volume of material, and sustained long enough for percent level equation of state measurements to be made. We describe the design for planned experiments at the NIF, using a hohlraum drive to induce a spherically-converging shock in samples of different materials. Convergence effects increase the shock pressure to several gigabars over a radius of over 100 microns. The shock speed and compression will be measured radiographically over a range of pressures using an x-ray streak camera. In some cases, we will use doped layers to allow a radiographic measurement of particle velocity.

  3. Monte Carlo validation experiments for the gas Cherenkov detectors at the National Ignition Facility and Omega

    SciTech Connect (OSTI)

    Rubery, M. S.; Horsfield, C. J. [Plasma Physics Department, AWE plc, Reading RG7 4PR (United Kingdom)] [Plasma Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Herrmann, H.; Kim, Y.; Mack, J. M.; Young, C.; Evans, S.; Sedillo, T.; McEvoy, A.; Caldwell, S. E. [Plasma Physics Department, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Plasma Physics Department, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Grafil, E.; Stoeffl, W. [Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Milnes, J. S. [Photek Limited UK, 26 Castleham Road, St. Leonards-on-sea TN38 9NS (United Kingdom)] [Photek Limited UK, 26 Castleham Road, St. Leonards-on-sea TN38 9NS (United Kingdom)

    2013-07-15

    The gas Cherenkov detectors at NIF and Omega measure several ICF burn characteristics by detecting multi-MeV nuclear ? emissions from the implosion. Of primary interest are ? bang-time (GBT) and burn width defined as the time between initial laser-plasma interaction and peak in the fusion reaction history and the FWHM of the reaction history respectively. To accurately calculate such parameters the collaboration relies on Monte Carlo codes, such as GEANT4 and ACCEPT, for diagnostic properties that cannot be measured directly. This paper describes a series of experiments performed at the High Intensity ? Source (HI?S) facility at Duke University to validate the geometries and material data used in the Monte Carlo simulations. Results published here show that model-driven parameters such as intensity and temporal response can be used with less than 50% uncertainty for all diagnostics and facilities.

  4. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  5. NIF & PS People - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Named NIF Director Laser Roadshow Featured at Boy Scout STEM Encampment NIF's "Formula One" Model Receives Operational Excellence Award September Susana Reyes Assumes Chair...

  6. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-01-14

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

  7. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect (OSTI)

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2010-02-04

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  8. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect (OSTI)

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2009-10-02

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  9. NIF Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact: Janet Lambert4NIEHS REPORT on Health Effects NIF

  10. NIF Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CS Seminars CalendarOilPSTargetNIF User

  11. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    SciTech Connect (OSTI)

    Hall, G. N. Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L.

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  12. Science on high-energy lasers: From today to the NIF

    SciTech Connect (OSTI)

    Lee, R.W.; Petrasso, R.; Falcone, R.W.

    1995-01-01

    This document presents both a concise definition of the current capabilities of high energy lasers and a description of capabilities of the NIF (National Ignition Facility). Five scientific areas are discussed (Astrophysics, Hydrodynamics, Material Properties, Plasma Physics, Radiation Sources, and Radiative Properties). In these five areas we project a picture of the future based on investigations that are being carried on today. Even with this very conservative approach we find that the development of new higher energy lasers will make many extremely exciting areas accessible to us.

  13. Laser irradiance scaling in polar direct drive implosions on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Murphy, T. J.; Krasheninnikova, N. S.; Kyrala, G. A.; Bradley, P. A.; Baumgaertel, J. A.; Cobble, J. A.; Hakel, P.; Hsu, S. C.; Kline, J. L.; Montgomery, D. S.; et al

    2015-09-17

    Polar-direct-drive experiments conducted at the National Ignition Facility [E. I. Moses, Fusion Sci. Technol. 54, 361 (2008)] performed at laser irradiance between 1 and 2×1015 W/cm2 exhibit increased hard x-ray emission, decreased neutron yield, and reduced areal density as the irradiance is increased. Experimental x-ray images at the higher irradiances show x-ray emission at the equator, as well as degraded symmetry, that is not predicted in hydrodynamic simulations using flux-limited energy transport, but that appear when non-local electron transport together with a model to account for cross beam energy transfer (CBET) is utilized. The reduction in laser power for equatorialmore »beams required in the simulations to reproduce the effects of CBET on the observed symmetry also reproduces the yield degradation consistent with experimental data.« less

  14. X-ray area backlighter development at the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Barrios, M. A. Fournier, K. B.; Smith, R.; Lazicki, A.; Rygg, R.; Fratanduono, D. E.; Eggert, J.; Park, H.-S.; Huntington, C.; Bradley, D. K.; Landen, O. L.; Collins, G. W.; Regan, S. P.; Epstein, R.

    2014-11-15

    1D spectral imaging was used to characterize the K-shell emission of Z ? 30–35 and Z ? 40–42 laser-irradiated foils at the National Ignition Facility. Foils were driven with up to 60 kJ of 3? light, reaching laser irradiances on target between 0.5 and 20 × 10{sup 15} W/cm{sup 2}. Laser-to-X-ray conversion efficiency (CE) into the He{sub ?} line (plus satellite emission) of 1.0%–1.5% and 0.15%–0.2% was measured for Z ? 30–32 and Z ? 40–42, respectively. Measured CE into He{sub ?} (plus satellite emission) of Br (Z = 35) compound foils (either KBr or RbBr) ranged between 0.16% and 0.29%. Measured spectra are compared with 1D non-local thermodynamic equilibrium atomic kinetic and radiation transport simulations, providing a fast and accurate predictive capability.

  15. 01-NIF Dedication: George Miller

    ScienceCinema (OSTI)

    George Miller

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Lab Director George Miller.

  16. 08-NIF Dedication: Zoe Lofgren

    ScienceCinema (OSTI)

    Congresswoman Zoe Lofgren

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Zoe Lofgren, of California's 16th district.

  17. 09-NIF Dedication: Arnold Schwarzenegger

    ScienceCinema (OSTI)

    Governor Arnold Schwarzenegger

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by California Governor Arnold Schwarzenegger.

  18. 11-NIF Dedication: Dianne Feinstein

    ScienceCinema (OSTI)

    U.S. Senator Dianne Feinstein

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by U.S. Senator Dianne Feinstein of California.

  19. 10-NIF Dedication: Ellen Tauscher

    ScienceCinema (OSTI)

    Congresswoman Ellen Tauscher

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Ellen Tauscher, of California's 10th district, which includes Livermore.

  20. NIF & PS People - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center. Plasma Science and Fusion Center Logo Three of the students in the NIF-MIT Thesis Program have successfully defended their theses based on NIF data, while also serving...

  1. NIF Status Update - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    news NIF Status Update - 2014 May Gigabar Equation-of-State Experiment Reaches Record Pressures On May 29, the NIF Team fired two gigabar (Gbar)-class equation-of-state experiments...

  2. Developing the Physics Basis of Fast Ignition Experiments at Future Large Fusion-class lasers

    SciTech Connect (OSTI)

    Mackinnon, A J; Key, M H; Hatchett, S; MacPhee, A G; Foord, M; Tabak, M; Town, R J; Patel, P K

    2008-02-08

    The Fast Ignition (FI) concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional 'central hot spot' (CHS) target ignition by using one driver (laser, heavy ion beam or Z-pinch) to create a dense fuel and a separate ultra-short, ultra-intense laser beam to ignite the dense core. FI targets can burn with {approx} 3X lower density fuel than CHS targets, resulting in (all other things being equal) lower required compression energy, relaxed drive symmetry, relaxed target smoothness tolerances, and, importantly, higher gain. The short, intense ignition pulse that drives this process interacts with extremely high energy density plasmas; the physics that controls this interaction is only now becoming accessible in the lab, and is still not well understood. The attraction of obtaining higher gains in smaller facilities has led to a worldwide explosion of effort in the studies of FI. In particular, two new US facilities to be completed in 2009/2010, OMEGA/OMEGA EP and NIF-ARC (as well as others overseas) will include FI investigations as part of their program. These new facilities will be able to approach FI conditions much more closely than heretofore using direct drive (dd) for OMEGA/OMEGA EP and indirect drive (id) for NIF-ARC. This LDRD has provided the physics basis for the development of the detailed design for integrated Fast ignition experiments on these facilities on the 2010/2011 timescale. A strategic initiative LDRD has now been formed to carry out integrated experiments using NIF ARC beams to heat a full scale FI assembled core by the end of 2010.

  3. The high-foot implosion campaign on the National Ignition Facility

    SciTech Connect (OSTI)

    Hurricane, O. A., E-mail: hurricane1@llnl.gov; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Barrios Garcia, M. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kervin, P.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Milovich, J. L.; Moody, J.; Pak, A. E.; Patel, P. K.; Park, H.-S.; Remington, B. A.; Robey, H. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); and others

    2014-05-15

    The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×10{sup 15}) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidence for the “bootstrapping” associated with alpha-particle self-heating.

  4. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Döppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; et al

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore »the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v???. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v???) and is additional evidence that these experiments have significant alpha heating.« less

  5. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Callahan, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000315498916); Hurricane, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinkel, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Döppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. -S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios Garcia, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berzak Hopkins, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000291875667); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerjan, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000251686845); Dewald, E. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dittrich, T. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000184045131); Hamza, A. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kline, J. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Knauer, J. P. [Univ. of Rochester, NY (United States); Kritcher, A. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacPhee, A. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000341604479); Milovich, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikroo, A. [General Atomics, San Diego, CA (United States)] (ORCID:0000000288550378); Pak, A. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salmonson, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spears, B. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Springer, P. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tommasini, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benedetti, L. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bionta, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bond, E. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Field, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fittinghoff, D. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Gatu Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Grim, G. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hatarik, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Merrill, F. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000277686819); Izumi, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khan, S. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-01

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v???. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v???) and is additional evidence that these experiments have significant alpha heating.

  6. Cherenkov radiation conversion and collection considerations for a gamma bang time/reaction history diagnostic for the NIF

    SciTech Connect (OSTI)

    Herrmann, Hans W.; Mack, Joseph M.; Young, Carlton S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Malone, Robert M. [National Security Technologies, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States); Stoeffl, Wolfgang [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Horsfield, Colin J. [Atomic Weapons Establishment, Aldermaston (United Kingdom)

    2008-10-15

    Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from {gamma} rays to relativistic electrons to UV/visible Cherenkov radiation.

  7. NIF & PS People - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  8. Polar-direct-drive experiments on the national ignition facilitya)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hohenberger, M.; Radha,, P. B.; Myatt, J. F.; LePape, S.; Marozas,, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; et al

    2015-05-01

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore »geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D? gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 x 10ą? to 1.2 x 10ą?W/cm˛. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

  9. The effect of laser pulse shape variations on the adiabat of NIF capsule implosions

    SciTech Connect (OSTI)

    Robey, H. F.; MacGowan, B. J.; Landen, O. L.; LaFortune, K. N.; Widmayer, C.; Celliers, P. M.; Moody, J. D.; Ross, J. S.; Ralph, J.; LePape, S.; Berzak Hopkins, L. F.; Spears, B. K.; Haan, S. W.; Clark, D.; Lindl, J. D.; Edwards, M. J. [LLNL, Livermore, California 94550 (United States)] [LLNL, Livermore, California 94550 (United States)

    2013-05-15

    Indirectly driven capsule implosions on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are being performed with the goal of compressing a layer of cryogenic deuterium-tritium (DT) fuel to a sufficiently high areal density (?R) to sustain the self-propagating burn wave that is required for fusion power gain greater than unity. These implosions are driven with a temporally shaped laser pulse that is carefully tailored to keep the DT fuel on a low adiabat (ratio of fuel pressure to the Fermi degenerate pressure). In this report, the impact of variations in the laser pulse shape (both intentionally and unintentionally imposed) on the in-flight implosion adiabat is examined by comparing the measured shot-to-shot variations in ?R from a large ensemble of DT-layered ignition target implosions on NIF spanning a two-year period. A strong sensitivity to variations in the early-time, low-power foot of the laser pulse is observed. It is shown that very small deviations (?0.1% of the total pulse energy) in the first 2 ns of the laser pulse can decrease the measured ?R by 50%.

  10. 06-NIF Dedication: Steven Koonin

    ScienceCinema (OSTI)

    Steven Koonin

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Steven Koonin, the undersecretary for science of the U.S. Department of Energy.

  11. 03-NIF Dedication: Norm Pattiz

    ScienceCinema (OSTI)

    Norm Pattiz

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Norm Pattiz, the chairman of Lawrence Livermore National Security, which manages Lawrence Livermore National Laboratory for the U.S. Department of Energy.

  12. NIF & PS People - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Honored July Driven to Serve Her Country Fourth NIF-MIT PhD Student Defends His Thesis June Pierre Michel Awarded 2015 Fabre Prize Tiziana Bond Named OSA Senior Member May...

  13. Core science and technology development plan for indirect-drive ICF ignition. Revision 1

    SciTech Connect (OSTI)

    Powell, H.T.; Kilkenny, J.D. [eds.

    1995-12-01

    To define the development work needed to support inertial confinement fusion (ICF) program goals, the authors have assembled this Core Science and Technology (CS and T) Plan that encompasses nearly all science research and technology development in the ICF program. The objective of the CS and T Plan described here is to identify the development work needed to ensure the success of advanced ICF facilities, in particular the National Ignition Facility (NIF). This plan is intended as a framework to facilitate planning and coordination of future ICF programmatic activities. The CS and T Plan covers all elements of the ICF program including laser technology, optic manufacturing, target chamber, target diagnostics, target design and theory, target components and fabrication, and target physics experiments. The CS and T Plan has been divided into these seven different technology development areas, and they are used as level-1 categories in a work breakdown structure (WBS) to facilitate the organization of all activities in this plan. The scope of the CS and T Plan includes all research and development required to support the NIF leading up to the activation and initial operation as an indirect-drive facility. In each of the CS and T main development areas, the authors describe the technology and issues that need to be addressed to achieve NIF performance goals. To resolve all issues and achieve objectives, an extensive assortment of tasks must be performed in a coordinated and timely manner. The authors describe these activities and present planning schedules that detail the flow of work to be performed over a 10-year period corresponding to estimated time needed to demonstrate fusion ignition with the NIF. Besides the benefits to the ICF program, the authors also discuss how the commercial sector and the nuclear weapons science may profit from the proposed research and development program.

  14. Who Works for NIF & PS?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentatabout Who Works for NIF & PS? The National Ignition

  15. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    SciTech Connect (OSTI)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.

  16. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    ScienceCinema (OSTI)

    Chou, Jason

    2014-07-22

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

  17. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    SciTech Connect (OSTI)

    Chou, Jason

    2014-04-03

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

  18. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Döppner, T.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Ma, T.; Park, H. -S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P. P.; Dewald, E. L.; et al

    2015-07-28

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “highfoot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shapemore »closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 1016 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.« less

  19. A neutron spectrometer for precise measurements of DT neutrons from 10 to 18 MeV at OMEGA and the National Ignition Facility

    E-Print Network [OSTI]

    and the National Ignition Facility J. A. Frenje, K. M. Green, D. G. Hicks, C. K. Li, F. H. Se´guin, and R. D to determine fuel R is to measure the energy spectrum and yield of elastically scattered primary neutrons, a novel spectrometer for measurements of neutrons in the energy range 10­18 MeV is proposed. From

  20. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA

    SciTech Connect (OSTI)

    Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2014-05-15

    Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of ? ? 4, an implosion velocity of 3.8?×?10{sup 7}?cm/s, and a laser intensity of ?10{sup 15}?W/cm{sup 2}. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

  1. Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility

    SciTech Connect (OSTI)

    Chapman, D. A., E-mail: david.chapman@awe.co.uk [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kraus, D.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Gaffney, J. A.; Hawreliak, J. A.; Landen, O. L.; Le Pape, S.; Ma, T.; Nilsen, J.; Pak, A.; Swift, D. C.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Guymer, T. M. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Neumayer, P. [Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Redmer, R. [Institut für Physik, Universität Rostock, 18051 Rostock (Germany); and others

    2014-08-15

    We have developed a model for analysing x-ray Thomson scattering data from high-density, millimetre-scale inhomogeneous plasmas created during ultra-high pressure implosions at the National Ignition Facility in a spherically convergent geometry. The density weighting of the scattered signal and attenuation of the incident and scattered x-rays throughout the target are included using radial profiles of the density, opacity, ionization state, and temperature provided by radiation-hydrodynamics simulations. These simulations show that the scattered signal is strongly weighted toward the bulk of the shocked plasma and the Fermi degenerate material near the ablation front. We show that the scattered signal provides a good representation of the temperature of this highly nonuniform bulk plasma and can be determined to an accuracy of ca. 15% using typical data analysis techniques with simple 0D calculations. On the other hand, the mean ionization of the carbon in the bulk is underestimated. We suggest that this discrepancy is due to the convolution of scattering profiles from different regions of the target. Subsequently, we discuss modifications to the current platform to minimise the impact of inhomogeneities, as well as opacity, and also to enable probing of conditions more strongly weighted toward the compressed core.

  2. Measurements of the Radiated Fields and Conducted Current Leakage from the Pulsed Power Systems in the National Ignition Facility at LLNL

    SciTech Connect (OSTI)

    Anderson, R A; Clancy, T J; Fulkerson, S; Petersen, D; Pendelton, D; Hulsey, S; Ullery, G; Tuck, J; Polk, M; Kamm, R; Newton, M; Moore, W B; Arnold, P; Ollis, C; Hinz, A; Robb, C; Fornes, J; Watson, J

    2003-07-31

    An important pulsed power system consideration is that they inherently generate fields and currents that can cause interference in other subsystems and diagnostics. Good pulsed power design, grounding and isolation practices can help mitigate these unwanted signals. During the laser commissioning shots for the NIF Early Light milestone at LLNL, measurements were made of the radiated field and conducted currents caused by the Power Conditioning System (PCS) modules with flash lamp load and the Plasma Electrode Pockels Cell (PEPC) driver. The measurements were made in the capacitor bay, laser bay, control room and target bay. The field measurements were made with B-dot and E-dot probes with bandwidth of about 100MHz. The current measurements were made with a clamp on probe with a bandwidth of about 20 MHz. The results of these measurements show fields and currents in the NIF Facility well below that required for interference with other subsystems. Currents on the target chamber from the pulsed power systems are well below the background noise currents.

  3. The National Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(activeInforumMILC The NERSCIgnition Facility

  4. NIF & PS People

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CS Seminars CalendarOilPS People NIF

  5. Fusion Power Associates Annual Meeting and Symposium Fusion Energy: Preparing for the NIF and ITER Era

    E-Print Network [OSTI]

    Materials Labs ­ S. Zinkle Fusion Technology ­ S. Milora 5:30 Depart ORNL 6:00 Reception 7:30 Board:50 Preparations for NIF Ignition Campaign ­ John Lindl, LLNL 9:10 Status of Z-Pinch Research ­ Keith Matzen Technology Program­ Stan Milora, ORNL 1:40 Issues and Opportunities from ITER Review ­ R. Hawryluk, PPPL 2

  6. 07-NIF Dedication: Jerry McNerney

    ScienceCinema (OSTI)

    Congressman Jerry McNerney

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congressman Jerry McNerney, of California's 11th district, which adjoins Livermore.

  7. A concept to collect neutron and x-ray images on the same line of sight at NIF

    SciTech Connect (OSTI)

    Merrill, F. E., E-mail: fmerrill@lanl.gov; Danly, C. R.; Grim, G. P.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Izumi, N.; Jedlovec, D.; Fittinghoff, D. N.; Pak, A.; Park, H.-S. [Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

  8. Comparison of the Recently proposed Super Marx Generator Approach to Thermonuclear Ignition with the DT Laser Fusion-Fission Hybrid Concept by the Lawrence Livermore National Laboratory

    E-Print Network [OSTI]

    Winterberg, Friedwardt

    2009-01-01

    The recently proposed Super Marx generator pure deuterium micro-detonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser DT fusion-fission hybrid concept (LiFE) [1]. In a Super Marx generator a large number of ordinary Marx generators charge up a much larger second stage ultra-high voltage Marx generator, from which for the ignition of a pure deuterium micro-explosion an intense GeV ion beam can be extracted. A typical example of the LiFE concept is a fusion gain of 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation a gain of the same magnitude can in theory be reached [2]. If feasible, the Super Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of ther...

  9. LLNL-PRES-421079 NIF-1109-17901

    E-Print Network [OSTI]

    ;NIF-1109-17901 LIFE roadmap Moses, Fusion Power Associates 31 #12;NIF-1109-17901 Moses, Fusion Power

  10. The Fifth Omega Laser Facility Users Group Workshop

    SciTech Connect (OSTI)

    Petrasso, R. D.

    2015-10-01

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Fifth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual Omega users and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour l’Utilisation des Lasers Intenses (LULI)]; to provide an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback to LLE management from the users about ways to improve the facility and future experimental campaigns.

  11. The Sixth Omega Laser Facility Users Group Workshop

    SciTech Connect (OSTI)

    Petrasso, R. D.

    2014-10-01

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Sixth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual OMEGA users, and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour l’Utilisation des Lasers Intenses (LULI)]; to provide an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback from the users to LLE management about ways to improve and keep the facility and future experimental campaigns at the cutting edge.

  12. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Winterberg, F.

    2009-10-29

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.

  13. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fissionmore »as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.« less

  14. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.

  15. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect (OSTI)

    Brunckhorst, K

    2009-04-21

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  16. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    SciTech Connect (OSTI)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Landen, O. L.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Hohenberger, M.; Boehly, T. R. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Nikroo, A. [General Atomics, San Diego, California 92196 (United States)] [General Atomics, San Diego, California 92196 (United States)

    2014-02-15

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  17. Correlation of Test Data from Some NIF Small Optical Components

    SciTech Connect (OSTI)

    Chow, R; McBurney, M; Eickelberg, W K; Williams, W H; Thomas, M D

    2001-06-12

    The NIF injection laser system requires over 8000 precision optical components. Two special requirements for such optics are wavefront and laser damage threshold. Wavefront gradient is an important specification on the NIF ILS optics. The gradient affects the spot size and, in the second order, the contrast ratio of the laser beam. Wavefront errors are specified in terms of peak-to-valley, rms, and rms gradient, with filtering requirements. Typical values are lambda/8 PV, lambda/30 rms, and lambda/30/cm rms gradient determined after filtering for spatial periods greater than 2 mm. One objective of this study is to determine whether commercial software supplied with common phase measuring interferometers can filter, perform the gradient analysis, and produce numbers comparable to that by CVOS, the LLNL wavefront analysis application. Laser survivability of optics is another important specification for the operational longevity of the laser system. Another objective of this study is to find alternate laser damage test facilities. The addition of non-NIF testing would allow coating suppliers to optimize their processes according to their test plans and NIF integrators to validate the coatings from their sub-tiered suppliers. The maximum level required for anti-reflective, 45-degree high reflector, and polarizer coatings are 20, 30, and 5 J/cm{sup 2} (1064 nm, 3 ns pulse-width), respectively. The damage threshold correlation between a common set of samples tested by LLNL and a commercial test service is given.

  18. A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report

    SciTech Connect (OSTI)

    Stephens, Richarad Burnite; Freeman, Richard R.; Van Woekom, L. D.; Key, M.; MacKinnon, Andrew J.; Wei, Mingsheng

    2014-02-27

    The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.

  19. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    SciTech Connect (OSTI)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS configurations have a resolution of 7 microns or better. The 28 m LOS with a 7 x 7 array of 100-micron mini-penumbral apertures or 50-micron square pinholes meets the design requirements and is a very good design alternative.

  20. NIF Title III engineering plan

    SciTech Connect (OSTI)

    Deis, G

    1998-06-01

    The purpose of this document is to define the work that must be accomplished by the NIF Project during Title III Engineering. This definition is intended to be sufficiently detailed to provide a framework for yearly planning, to clearly identify the specific deliverables so that the Project teams can focus on them, and to provide a common set of objectives and processes across the Project. This plan has been preceded by similar documents for Title I and Title II design and complements the Site Management Plan, the Project Control Manual, the Quality Assurance Program Plan, the RM Parsons NIF Title III Configuration Control Plan, the Integrated Project Schedule, the Preliminary Safety Analysis Report, the Configuration Management Plan, and the Transition Plan.

  1. An Experimental Study into the Ignition of Methane and Ethane Blends in a New Shock-tube Facility 

    E-Print Network [OSTI]

    Aul, Christopher Joseph Erik

    2011-02-22

    pump for driver section GRI Gas Research Institute NTC negative temperature coefficient PT pressure transducer RCM rapid compression machine RMS root-mean square RP roughing pump for driven section TP turbomolecular pump for driven section ix... Turbomolecular PumpTP Backing PumpBP Roughing PumpRP Driver PumpDP Diaphragm Location Inertial Mass (7,700 kg) Figure 2. Shock tube facility with two available configurations shown The total facility consists of the shock-tube hardware, control system, data...

  2. NIF/LMJ prototype amplifier mechanical design

    SciTech Connect (OSTI)

    Horvath, J.

    1996-10-01

    Amplifier prototypes for the National Ignition Facility and the Laser Megajoule will be tested at Lawrence Livermore National Laboratory. The prototype amplifier, which is an ensemble of modules from LLNL and Centre d`Etudes de Limeil-Valenton, is cassette-based with bottom access for maintenance. A sealed maintenance transfer vehicle which moves optical cassettes between the amplifier and the assembly cleanroom, and a vacuum gripper which holds laser slabs during cassette assembly will also be tested. The prototype amplifier will be used to verify amplifier optical performance, thermal recovery time, and cleanliness of mechanical operations.

  3. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  4. NIF User Group Executive Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CS Seminars CalendarOilPSTargetNIF User

  5. nif | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII:National1-2130 1 AN APPROACH6, 19988,nif

  6. CHARACTERIZATION OF THE ADVANCED RADIOGRAPHIC CAPABILITY FRONT END ON NIF

    SciTech Connect (OSTI)

    Haefner, C; Heebner, J; Dawson, J; Fochs, S; Shverdin, M; Crane, J K; Kanz, V K; Halpin, J; Phan, H; Sigurdsson, R; Brewer, W; Britten, J; Brunton, G; Clark, W; Messerly, M J; Nissen, J D; Nguyen, H; Shaw, B; Hackel, R; Hermann, M; Tietbohl, G; Siders, C W; Barty, C J

    2009-07-15

    We have characterized the Advanced Radiographic Capability injection laser system and demonstrated that it meets performance requirements for upcoming National Ignition Facility fusion experiments. Pulse compression was achieved with a scaled down replica of the meter-scale grating ARC compressor and sub-ps pulse duration was demonstrated at the Joule-level.

  7. nif

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of intense...

  8. nif

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afedkcp |field2/%2A0/%2A

  9. Mach-Zehnder Modulator performance using the Comet Laser facility...

    Office of Scientific and Technical Information (OSTI)

    Conference: Mach-Zehnder Modulator performance using the Comet Laser facility and implications for use on NIF Citation Details In-Document Search Title: Mach-Zehnder Modulator...

  10. A New Gated X-Ray Detector for the Orion Laser Facility

    SciTech Connect (OSTI)

    Clark, David D.; Aragonez, Robert J.; Archuleta, Thomas N.; Fatherley, Valerie E.; Hsu, Albert H.; Jorgenson, H. J.; Mares, Danielle; Oertel, John A.; Oades, Kevin; Kemshall, Paul; Thomas, Philip; Young, Trevor; Pederson, Neal

    2012-08-08

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from the what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  11. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an acronym for light amplification by stimulated emission of radiation. If the electrons in special glasses, crystals, or gases are energized, they will emit light photons...

  12. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy, have been pumping out electric power for more than 50 years. But achieving nuclear fusion burn and gain has not yet been demonstrated as viable for energy...

  13. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 to 100 times more energy than the amount of laser energy required to initiate the fusion reaction. The nuclear power plants in use around the world today utilize fission,...

  14. Laser ignition

    DOE Patents [OSTI]

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  15. Polar-drive implosions on OMEGA and the National Ignition Facility P. B. Radha, F. J. Marshall, J. A. Marozas, A. Shvydky, I. Gabalski et al.

    E-Print Network [OSTI]

    energy deposition farther from the ablation surface, and consequently reduced kinetic energy of the imploding shell. Ignition designs3,4 compensate for this reduced hydro- dynamic efficiency (defined as the ratio of the maximum shell kinetic energy to the laser energy) by increasing the energy of the most

  16. NIF Presentation by Ed Moses | Department of Energy

    Office of Environmental Management (EM)

    NIF Presentation by Ed Moses NIF Presentation by Ed Moses Moses-LLNL-SEAB-10.11.pdf More Documents & Publications Summary Minutes of the Secretary of Energy Advisory Board Public...

  17. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    SciTech Connect (OSTI)

    Miley, George H.

    2012-10-24

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.

  18. Laser preheat enhanced ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    1999-01-01

    A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided.

  19. Laser preheat enhanced ignition

    DOE Patents [OSTI]

    Early, J.W.

    1999-03-02

    A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided. 11 figs.

  20. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  1. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  2. Low profile thermite igniter

    DOE Patents [OSTI]

    Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1991-03-05

    A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  3. Characterization of NIF cryogenic beryllium capsules using x...

    Office of Scientific and Technical Information (OSTI)

    phase contrast imaging. Beryllium capsules filled with cryogenic deuterium and tritium fuel layers may provide many advantages for obtaining ignition at the National Ignition...

  4. NIF and Jupiter User Group Meeting 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact: Janet Lambert4NIEHS REPORT on Health Effects NIF

  5. COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury

  6. Use of Lubricants in the NIF

    SciTech Connect (OSTI)

    Gourdin, W; Biltoft, P

    2006-07-06

    There are two principal concerns that govern the use of lubricants in NIF: (1) Airborne molecular contaminants (AMCs)--AMCs are known to seriously degrade the performance of sol-gel coated optics. AMCs are produced by the slow outgassing of residues (non-volatile residues or ''NVRs'') of high molecular weight compounds left on surfaces. Lubricants, particularly hydrocarbon lubricants, are a primary source of such NVRs. (2) Particulates--Particulates that accumulate on optical surfaces can cause permanent physical damage when exposed to high energy density laser light. Lubricant residues exposed to high energy density light will pyrolyze or decompose and produce carbon particulates. The NIF Approved Materials Database lists several lubricants that have been tested for use in NIF environments. Many of these lubricants were tested according to MELs 99-006 (oven outgassing test) or 99-007 (vacuum outgassing test). In these tests, the change in percent transmission of light through a sol-gel coated optic placed next to the sample under evaluation is used as the diagnostic. Samples that cause less than 0.1% change in optical transmission are deemed suitable for use inside beam enclosures. This testing, however, addresses only the concern associated with AMCs. To assess the issue of particle generation, a flashlamp or ''aerosol'' test is used. In this test a sample with residues is subjected to intense light from the main amplifier flashlamps. The number density of particles per unit volume is measure after each flash. A measurement of an average of fewer than 1000 particles >0.5{micro}m in diameter produced per square foot of exposed surface per flash for each of the last ten flashes in a series of 60 flashes of light is deemed to be acceptable for polymers. A measurement of an average of fewer than 100 particles >0.5{micro}m in diameter produced per square foot of exposed surface per flash for each of the last ten flashes in a series of 60 flashes of light is deemed to be acceptable for metals.

  7. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedules PrintNIF About BlogFacilities

  8. COLLOQUIUM: Progress towards fusion on NIF and Z requires new...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 3, 2015, 3:00pm to 4:30pm Colloquia MBG Auditorium COLLOQUIUM: Progress towards fusion on NIF and Z requires new plasma measurement capabilities Dr. Joe Kilkenny LLNLGA Dr....

  9. NNSA's Summary of Experiments Conducted in Support of Stockpile...

    National Nuclear Security Administration (NNSA)

    National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The summary also provides the number of experiments...

  10. Multimedia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo Gallery Video Gallery home Multimedia Experience the sights and sounds of the National Ignition Facility and learn more about NIF & Photon Science in our multimedia...

  11. Joe Kilkenny

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Measurements National Ignition Facility Joe Kilkenny, vice president for high energy density physics at General Atomics, currently is assigned to the NIF diagnostic...

  12. OMEGA: A NEW COLD X-RAY SIMULATION FACILITY FOR THE EVALUATION OF OPTICAL COATINGS

    SciTech Connect (OSTI)

    Fisher, J H; Newlander, C D; Fournier, K B; Beutler, D E; Coverdale, C A; May, M J; Tobin, M; Davis, J F; Shiekh, D

    2007-04-27

    We report on recent progress for the development of a new cold X-ray optical test capability using the Omega Facility located at the Laboratory for Laser Energetics (LLE) at the University of Rochester. These tests were done on the 30 kJ OMEGA laser at the Laboratory for Laser Energetics (LLE) at the University of Rochester, Rochester, NY. We conducted a six-shot series called OMEGA II on 14 July 2006 in one eight-hour day (supported by the Defense Threat Reduction Agency). The initial testing was performed using simple protected gold optical coatings on fused silica substrates. PUFFTFT analyses were completed and the specimen's thermal lateral stress and transverse stress conditions were calculated and interpreted. No major anomalies were detected. Comparison of the pre- and posttest reflective measurements coupled with the TFCALC analyses proved invaluable in guiding the analyses and interpreting the observed damage. The Omega facility is a high quality facility for performing evaluation of optical coatings and coupons and provides experience for the development of future National Ignition Facility (NIF) testing.

  13. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  14. Workshops: National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresentedlynda.comWorkshops

  15. NATIONAL IGNITION FACILITY | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy Moving Forward tocomponent NASA

  16. National Ignition Facility | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications TheScience (SC) National2015 | National Nuclear

  17. Princeton Plasma Physics Lab - National Ignition Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matrices in HydrothermalMagneticA

  18. Burner ignition system

    DOE Patents [OSTI]

    Carignan, Forest J. (Bedford, MA)

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  19. Rapid Classification of NifH Protein Sequences using Classification and Regression Trees

    E-Print Network [OSTI]

    Frank, Ildiko E.

    2014-01-01

    of nifH in the Yellowstone Geothermal Complex. MicrobialMicrobial mat, Yellowstone Park geothermal springs Table 2.

  20. Ignition dynamics of high explosives

    SciTech Connect (OSTI)

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.; Brewster, M.Q.

    1999-04-01

    The laser ignition of the explosives HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, C{sub 4}H{sub 8}N{sub 8}O{sub 8}), {delta}-phase HMX, PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), TATB (1,3,5-triamino-2,4,6-trinitrobenzene, C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502 has been conducted with the intent to compare the relative sensitivities of those explosives and to investigate the effect of beam profile, binder addition, and porosity. It has been found that there was little difference between a gaussian beam and a top hat profile on the laser ignition of HMX. The authors observe that the addition of binder in the amounts present in PBX 9501 resulted in longer ignition delays than that of HMX. In contrast to HMX, the addition of binder to TATB in PBX 9502 shows no measurable effect. Porosity effects were considered by comparing the ignition of granular HMX and pressed HMX pellets. Porosity appears to increase ignition delay due to an increased effective absorption scale and increased convective heat loss. This porosity effect also resulted in longer ignition delays for {delta}-phase HMX than for {beta}-phase HMX. In order to simulate ignition in voids or cracks, the standard ignition experiment was modified to include a NaCl window placed at variable distances above the sample surface. When ignition experiments were performed at 29 W/cm{sup 2} and 38 W/cm{sup 2} a critical gap distance was observed of 6 {+-} 0.4 mm below which ignition was severely inhibited. This result underscores the importance of gas phase processes in ignition and illustrates that conditions can exist where simple ignition criteria such as surface temperature is inadequate.

  1. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    SciTech Connect (OSTI)

    Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R; Cerjan, C; Dylla-Spears, R; Mapoles, E; Munro, D; Salmonson, J; Sepke, S; Weber, S; Hatchett, S; Haan, S; Springer, P; Moses, E; Mapoles, E; Munro, D; Salmonson, J; Sepke, S

    2011-12-16

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  2. Performance of CID camera X-ray imagers at NIF in a harsh neutron environment

    SciTech Connect (OSTI)

    Palmer, N. E. [LLNL; Schneider, M. B. [LLNL; Bell, P. M. [LLNL; Piston, K. W. [LLNL; Moody, J. D. [LLNL; James, D. L. [LLNL; Ness, R. A. [LLNL; Haugh, M. J. [NSTec; Lee, J. J. [NSTec; Romano, E. D. [NSTec

    2013-09-01

    Charge-injection devices (CIDs) are solid-state 2D imaging sensors similar to CCDs, but their distinct architecture makes CIDs more resistant to ionizing radiation.1–3 CID cameras have been used extensively for X-ray imaging at the OMEGA Laser Facility4,5 with neutron fluences at the sensor approaching 109 n/cm2 (DT, 14 MeV). A CID Camera X-ray Imager (CCXI) system has been designed and implemented at NIF that can be used as a rad-hard electronic-readout alternative for time-integrated X-ray imaging. This paper describes the design and implementation of the system, calibration of the sensor for X-rays in the 3 – 14 keV energy range, and preliminary data acquired on NIF shots over a range of neutron yields. The upper limit of neutron fluence at which CCXI can acquire useable images is ~ 108 n/cm2 and there are noise problems that need further improvement, but the sensor has proven to be very robust in surviving high yield shots (~ 1014 DT neutrons) with minimal damage.

  3. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect (OSTI)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  4. Pathways to Laser Fusion Beyond NIF Fusion Power Associates Meeting

    E-Print Network [OSTI]

    Pathways to Laser Fusion Beyond NIF Fusion Power Associates Meeting Washington DC 10 December 2013 and hydrodynamic efficiency · Reduces risk from hydro and all laser plasma instabilities Multi-stage focal zooming · Demonstrate integrated physics / technologies for a power plant. · Tritium breeding, fusion power handling

  5. Design for manufacturability evaluation: Composite NIF Pockel Cell body

    SciTech Connect (OSTI)

    Jensen, W.A.; Spellman, G.P.

    1994-04-01

    A survey of composite materials and processes for the NIF Optical Switch Body is described. Mechanical and physical criterion set upon the part are used as guidelines for the selection of materials and processes for manufacturing. Benefits, costs, and risks associated with selected processes, as well as a recommendation for prototype fabrication is presented.

  6. ORIGINAL ARTICLE Regulation of nif gene expression and the

    E-Print Network [OSTI]

    Nitrogen fixation, a prokaryotic, O2-inhibited process that reduces N2 gas to biomass, is of paramount importance in biogeochemical cycling of nitrogen. We analyzed the levels of nif transcripts of Synechococcus: Synechococcus; microsensor; gene expression; nitrogen fixation; Yellowstone National Park; in situ Introduction

  7. Plasma jet ignition device

    DOE Patents [OSTI]

    McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

    1985-01-15

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  8. NAS/NAE Committee on the Prospects for IFE Systems

    E-Print Network [OSTI]

    for Polar-Drive Ignition on the NIF J. D. Zuegel University of Rochester Laboratory for Laser Energetics 0 0 be tested on the NIF with a few modest modifications to the facility · Beam-smoothingimprovements: ­ Multi modifications to the NIF facility ­ Beamsmoothingisonlyrequiredatthebeginningofthelaserpulse, which minimizes

  9. Detailed Description of Key NIF Milestones for NNSA Description

    E-Print Network [OSTI]

    Operationally qualify ignition diagnostics [Neutron Activation Detector (Cooper), Magnetic Recoil Spectrometer ignition. Q4 FY2011 4073 Demonstrating we can light the "match" ­ alpha heating Conduct first DT implosion experimental campaign to demonstrate limited alpha heating Demonstrate cryogenic layered DT experiments

  10. TOWARD A STANDARD IGNITION SOURCE

    E-Print Network [OSTI]

    Volkingburg, David R. Van

    2011-01-01

    and ignited with a small propane torch. The top center ofhead is supplied with propane. In these experiments allin the pre-mixed mode with propane alone to simulate trash

  11. ENHANCED IGNITION FOR I.C. ENGINES WITH PREMIXED CHARGE

    E-Print Network [OSTI]

    Dale, J.D.

    2013-01-01

    Stratified Charge Engines Flame Jet Igniters Combustion Jetand testing of jet igniters in engines was reported by Asikstratified charge engines; (6) flame jet igniters; (7)

  12. Microsoft Word - NA-02-29 NIF reaches milestone.doc

    National Nuclear Security Administration (NNSA)

    moving this important project ahead of schedule." NIF will use cutting edge laser and optics technologies to create conditions of extreme temperatures and pressures in small...

  13. SCB thermite igniter studies

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.; Wackerbarth, D.E.; Mohler, J.H.

    1996-12-31

    The authors report on recent studies comparing the ignition threshold of temperature cycled, SCB thermite devices with units that were not submitted to temperature cycling. Aluminum/copper-oxide thermite was pressed into units at two densities, 45% of theoretical maximum density (TMD) or 47% of TMD. Half of each of the density sets underwent three thermal cycles; each cycle consisted of 2 hours at 74 C and 2 hours at {minus}54 C, with a 5 minute maximum transfer time between temperatures. The temperature cycled units were brought to ambient temperature before the threshold testing. Both the density and the thermal cycling affected the all-fire voltage. Using a 5.34 {micro}F CDU (capacitor discharge unit) firing set, the all-fire voltage for the units that were not temperature cycled increased with density from 32.99 V (45% TMD) to 39.32 V (47% TMD). The all-fire voltages for the thermally cycled units were 34.42 V (45% TMD) and 58.1 V (47% TMD). They also report on no-fire levels at ambient temperature for two component designs; the 5 minute no-fire levels were greater than 1.2 A. Units were also subjected to tests in which 1 W of RF power was injected into the bridges at 10 MHz for 5 minutes. The units survived and fired normally afterwards. Finally, units were subjected to pin-to-pin electrostatic discharge (ESD) tests. None of the units fired upon application of the ESD pulse, and all of the tested units fired normally afterwards.

  14. Enhanced Model for Fast Ignition

    SciTech Connect (OSTI)

    Dr. Rodney J. Mason

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nationâ??s energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, â??implicitness and fluid modeling,â?ť can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  15. Thermonuclear Ignition of Dark Galaxies

    E-Print Network [OSTI]

    J. Marvin Herndon

    2006-04-13

    Dark matter is thought to be at least an order of magnitude more abundant than luminous matter in the Universe, but there has yet to be an unambiguous identification of a wholly dark, galactic-scale structure. There is, however, increasing evidence that VIRGOHI 21 may be a dark galaxy. If VIRGOHI 21 turns out to be composed of dark stars, having approximately the same mass of stars found in luminous galaxies, it will pose an enigma within the framework of current astrophysical models, but will provide strong support for my concept, published in 1994 in the Proceedings of the Royal Society of London, of the thermonuclear ignition of stars by nuclear fission, and the corollary, non-ignition of stars. The possibility of galactic thermonuclear ignition is discussed from that framework and leads to my suggestion that the distribution of luminous stars in a galaxy may simply be a reflection of the galactic distribution of the heavy elements.

  16. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  17. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  18. Integral low-energy thermite igniter

    DOE Patents [OSTI]

    Gibson, A.; Haws, L.D.; Mohler, J.H.

    1983-05-13

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  19. Integral low-energy thermite igniter

    DOE Patents [OSTI]

    Gibson, Albert (Dayton, OH); Haws, Lowell D. (Springboro, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1984-08-14

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  20. FABRICATION OF WINDOW SADDLES FOR NIF CRYOGENIC HOHLRAUMS

    SciTech Connect (OSTI)

    GIRALDEZ,E; KAAE,J.L

    2003-06-01

    OAK-B135 A planar diagnostic viewing port attached to the cylindrical wall of the NIF cryogenic hohlraum requires a saddle-like transition piece. While the basic design of this window saddle is straightforward, its fabrication is not, given the scale and precision of the component. They solved the problem through the use of a two segment copper mandrel to electroform the gold window saddle. The segments were micro-machined using a combination of single-point diamond turning and single point diamond milling. These processes as well as the electroplating conditions, final machining and mandrel removal are described in this paper.

  1. Fabrication of Window Saddles for NIF Cryogenic Hohlraums

    SciTech Connect (OSTI)

    Giraldez, Emilio; Kaae, James L. [General Atomics (United States)

    2004-03-15

    A planar diagnostic viewing port attached to the cylindrical wall of the NIF cryogenic hohlraum requires a saddle-like transition piece. While the basic design of this window saddle is straightforward, its fabrication is not, given the scale and precision of the component. We solved the problem through the use of a two segment copper mandrel to electroform the gold window saddle. The segments were micro-machined using a combination of single-point diamond turning and single point diamond milling. These processes as well as the electroplating conditions, final machining and mandrel removal are described in this pap0008.

  2. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOE Patents [OSTI]

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  3. Assembly and maintenance of full scale NIF amplifiers in the amplifier module prototype laboratory (AMPLAB)

    SciTech Connect (OSTI)

    Horvath, J. A.

    1998-07-16

    Mechanical assembly and maintenance of the prototype National Ignition Facility amplifiers in the Amplifier Module Prototype Laboratory (AMPLAB) at Lawrence Livermore National Laboratory requires specialized equipment designed to manipulate large and delicate amplifier components in a safe and clean manner. Observations made during the operation of this assembly and maintenance equipment in AMPLAB provide design guidance for similar tools being built for the National Ignition Facility. Fixtures used for amplifier frame installation, laser slab and flashlamp cassette assembly, transport, and installation, and in-situ blastshield exchange are presented. Examples include a vacuum slab gripper, slab handling clean crane, slab cassette assembly fixture, sealed transport vehicle for slab cassette movement between the cleanroom and amplifier, slab cassette transfer fixture between the cleanroom and transport vehicle, and equipment needed for frame assembly unit, blastshield, an d flashlamp cassette installation and removal. The use of these tools for amplifier assembly, system reconfiguration, reflector replacement, and recovery from an abnormal occurrence such as a flashlamp explosion is described. Observations are made on the design and operation of these tools and their contribution to the final design.

  4. Please Post DepartmentofPhysicsColloquium

    E-Print Network [OSTI]

    Yavuz, Deniz

    (NIF) have achieved the conditions where the thermonuclear fuel is self-heated by the alpha particles to thermonuclear ignition is uncertain. Other concepts like direct drive and shock ignition provide additional for Achieving Thermonuclear Ignition on the National Ignition Facility #12;

  5. Random vibration sensitivity studies of modeling uncertainties in the NIF structures

    SciTech Connect (OSTI)

    Swensen, E.A.; Farrar, C.R. [Los Alamos National Lab., NM (United States); Barron, A.A. [Stanford Univ., CA (United States). Dept. of Civil Engineering; Cornwell, P. [Rose-Hulman Inst. of Tech., Terre Haute, IN (United States). Mechanical Engineering Dept.

    1996-12-31

    The National Ignition Facility is a laser fusion project that will provide an above-ground experimental capability for nuclear weapons effects simulation. This facility will achieve fusion ignition utilizing solid-state lasers as the energy driver. The facility will cover an estimated 33,400 m{sup 2} at an average height of 5--6 stories. Within this complex, a number of beam transport structures will be houses that will deliver the laser beams to the target area within a 50 {micro}m ms radius of the target center. The beam transport structures are approximately 23 m long and reach approximately heights of 2--3 stories. Low-level ambient random vibrations are one of the primary concerns currently controlling the design of these structures. Low level ambient vibrations, 10{sup {minus}10} g{sup 2}/Hz over a frequency range of 1 to 200 Hz, are assumed to be present during all facility operations. Each structure described in this paper will be required to achieve and maintain 0.6 {micro}rad ms laser beam pointing stability for a minimum of 2 hours under these vibration levels. To date, finite element (FE) analysis has been performed on a number of the beam transport structures. Certain assumptions have to be made regarding structural uncertainties in the FE models. These uncertainties consist of damping values for concrete and steel, compliance within bolted and welded joints, and assumptions regarding the phase coherence of ground motion components. In this paper, the influence of these structural uncertainties on the predicted pointing stability of the beam line transport structures as determined by random vibration analysis will be discussed.

  6. A new metric of the low-mode asymmetry for ignition target designs

    SciTech Connect (OSTI)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng; Fan, Zhengfeng; Zou, Shiyang, E-mail: zou-shiyang@iapcm.ac.cn; Ye, Wenhua; Pei, Wenbing; Zhu, Shaoping [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-01-15

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the measured neutron yield and hot spot pressure are significantly lower than simulations. Understanding the underlying physics of the deficit is essential to achieving ignition. This paper investigates the low-mode areal density asymmetry in the main fuel of ignition capsule. It is shown that the areal density asymmetry breaks up the compressed shell and significantly reduces the conversion of implosion kinetic energy to hot spot internal energy, leading to the calculated hot spot pressure and neutron yield quite close to the experimental data. This indicates that the low-mode shell areal density asymmetry can explain part of the large discrepancy between simulations and experiments. Since only using the hot spot shape term could not adequately characterize the effects of the shell areal density asymmetry on implosion performance, a new metric of the low-mode asymmetry is developed to accurately measure the probability of ignition.

  7. LLE Review 102 (January-March 2005)

    SciTech Connect (OSTI)

    Shmayda, W.T., ed.

    2005-09-01

    This volume of the LLE Review, covering January–March 2005, features the new “Saturn” target design concept for use in polar direct drive on National Ignition Facility (NIF) while the facility is in its initial, indirect-drive configuration.

  8. Measurements of collective fuel velocities in deuterium-tritium exploding pusher and cryogenically layered deuterium-tritium implosions on the NIF

    E-Print Network [OSTI]

    Measurements of collective fuel velocities in deuterium-tritium exploding pusher and cryogenically://pop.aip.org/about/rights_and_permissions #12;Measurements of collective fuel velocities in deuterium-tritium exploding pusher and cryogenically fuel velocities in Inertial Confinement Fusion implosions at the National Ignition Facility

  9. Diagnostics for Fast Ignition Science

    SciTech Connect (OSTI)

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  10. In-flight observations of low-mode ?R asymmetries in NIF implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B. [Massachusetts Institute of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center, High Energy Density Physics Div.; Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)] (ORCID:0000000168460378); Seguin, F. H. [Massachusetts Institute of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center, High Energy Density Physics Div.; Rygg, J. R. [Lawrence Livermore National Laboratory, Livermore, California (United States); Kritcher, A. [Lawrence Livermore National Laboratory, Livermore, California (United States); Rosenberg, M. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Rinderknecht, H. G. [Massachusetts Institute of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center, High Energy Density Physics Div.; Hicks, D. G. [Lawrence Livermore National Laboratory, Livermore, California (United States)] (ORCID:0000000183229983); Friedrich, S. [Lawrence Livermore National Laboratory, Livermore, California (United States); Bionta, R. [Lawrence Livermore National Laboratory, Livermore, California (United States); Meezan, N. B. [Lawrence Livermore National Laboratory, Livermore, California (United States); Olson, R. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Atherton, J. [Lawrence Livermore National Laboratory, Livermore, California (United States); Barrios, M. [Lawrence Livermore National Laboratory, Livermore, California (United States); Bell, P. [Lawrence Livermore National Laboratory, Livermore, California (United States); Benedetti, R. [Lawrence Livermore National Laboratory, Livermore, California (United States); Berzak Hopkins, L. [Lawrence Livermore National Laboratory, Livermore, California (United States)] (ORCID:0000000291875667); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York (United States); Bradley, D. [Lawrence Livermore National Laboratory, Livermore, California (United States); Callahan, D. [Lawrence Livermore National Laboratory, Livermore, California (United States)] (ORCID:0000000315498916); Casey, D. [Lawrence Livermore National Laboratory, Livermore, California (United States); Collins, G. [Lawrence Livermore National Laboratory, Livermore, California (United States); Dewald, E. L. [Lawrence Livermore National Laboratory, Livermore, California (United States); Dixit, S. [Lawrence Livermore National Laboratory, Livermore, California (United States); Doppner, T. [Lawrence Livermore National Laboratory, Livermore, California (United States); Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California (United States); Gatu Johnson, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Glenn, S. [Lawrence Livermore National Laboratory, Livermore, California (United States); Grim, G. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Hatchett, S. [Lawrence Livermore National Laboratory,Livermore, California (United States); Jones, O. [Lawrence Livermore National Laboratory, Livermore, California (United States); Khan, S. [Lawrence Livermore National Laboratory, Livermore, California (United States); Kilkenny, J. [General Atomics, San Diego, California (United States); Kline, J. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Knauer, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York (United States); Kyrala, G. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)] (ORCID:0000000336850798); Landen, O. [Lawrence Livermore National Laboratory, Livermore, California (United States); LePape, S. [Lawrence Livermore National Laboratory, Livermore, California (United States); Li, C. K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Lindl, J. [Lawrence Livermore National Laboratory, Livermore, California (United States)

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal density (?R) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ?10%, which are interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.

  11. In-flight observations of low-mode ?R asymmetries in NIF implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Rygg, J. R.; Kritcher, A.; Rosenberg, M. J.; Rinderknecht, H. G.; Hicks, D. G.; Friedrich, S.; Bionta, R.; et al

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal density (?R) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ?10%, which aremore »interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  12. Investigation of ignition of thermoplastics through the Hot Wire Ignition Test 

    E-Print Network [OSTI]

    De Araujo, Luiz Claudio Bonilla

    1998-01-01

    in enclosures or insulation systems of electrical equipment. The main objective of this project was to identify the effect of specimen thickness on the ignition time. In addition, temperature changes at the surface of some materials during the ignition process...

  13. Fast ignition of inertial confinement fusion targets

    SciTech Connect (OSTI)

    Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-01-15

    Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

  14. Sandia Energy - Particle Ignition and Char Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of CO2 and H2O (from flue gas recirculation) create very different physical and chemical properties of the combustion medium, influencing coal ignition and combustion rates....

  15. High Efficiency Fuel Reactivity Controlled Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion An optimized dual-fuel PCCI concept, RCCI, is proposed. deer10reitz.pdf More Documents & Publications...

  16. Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application

    E-Print Network [OSTI]

    Pitsch, Heinz

    progress has been made, these engines continue to suffer from high carbon monoxide (CO) and unburnt hydro of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA b Combustion Research Facility, Sandia, Western States Section of the Combustion Institute, Boise, Idaho 06S-08, 2006] showed that both ignition

  17. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies.

    SciTech Connect (OSTI)

    Bailey, James E.; Chandler, Gordon Andrew; Vesey, Roger Alan; Hanson, David Lester; Olson, Craig Lee; Nash, Thomas J.; Matzen, Maurice Keith; Ruiz, Carlos L.; Porter, John Larry, Jr.; Cuneo, Michael Edward; Varnum, William S.; Bennett, Guy R. (K-tech Corporation, Albuquerque, NM); Cooper, Gary Wayne; Schroen, Diana Grace (Schafer Gorp., Livermore, CA); Slutz, Stephen A.; MacFarlane, Joseph John (Prism Computational Sciences, Madison, WI); Leeper, Ramon Joe; Golovkin, I. E. (Prism Computational Sciences, Madison, WI); Mehlhorn, Thomas Alan; Mancini, Roberto Claudio (University of Nevada, Reno, NV)

    2003-07-01

    Inertial confinement fusion capsule implosions absorbing up to 35 kJ of x-rays from a {approx}220 eV dynamic hohlraum on the Z accelerator at Sandia National Laboratories have produced thermonuclear D-D neutron yields of (2.6 {+-} 1.3) x 10{sup 10}. Argon spectra confirm a hot fuel with Te {approx} 1 keV and n{sub e} {approx} (1-2) x 10{sup 23} cm{sup -3}. Higher performance implosions will require radiation symmetry control improvements. Capsule implosions in a {approx}70 eV double-Z-pinch-driven secondary hohlraum have been radiographed by 6.7 keV x-rays produced by the Z-beamlet laser (ZBL), demonstrating a drive symmetry of about 3% and control of P{sub 2} radiation asymmetries to {+-}2%. Hemispherical capsule implosions have also been radiographed in Z in preparation for future experiments in fast ignition physics. Z-pinch-driven inertial fusion energy concepts are being developed. The refurbished Z machine (ZR) will begin providing scaling information on capsule and Z-pinch in 2006. The addition of a short pulse capability to ZBL will enable research into fast ignition physics in the combination of ZR and ZBL-petawatt. ZR could provide a test bed to study NIF-relevant double-shell ignition concepts using dynamic hohlraums and advanced symmetry control techniques in the double-pinch hohlraum backlit by ZBL.

  18. High Fidelity Modeling of Premixed Charge Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fidelity Modeling of Premixed Charge Compression Ignition Engines High Fidelity Modeling of Premixed Charge Compression Ignition Engines Most accurate and detailed chemical kinetic...

  19. Modeling the Number of Ignitions Following an Earthquake: Developing...

    Office of Environmental Management (EM)

    Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Modeling the Number of Ignitions Following an Earthquake:...

  20. Effects of Ignition Quality and Fuel Composition on Critical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ignition Quality and Fuel Composition on Critical Equivalence Ratio Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Our research shows that fuel can...

  1. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel...

  2. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

  3. Advanced ignition and propulsion technology program

    SciTech Connect (OSTI)

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  4. Pyrotechnic ignition studies using a gun tunnel

    SciTech Connect (OSTI)

    Evans, N.A.

    1989-01-01

    A gun tunnel is being used to investigate the ignition characteristics of center-hole iron/potassium perchlorate thermal battery discs. Details are given of the construction, operation, and data reduction method for the gun tunnel. To simulate an igniter, this system can readily produce a pulse of hot argon at maximum pressures and temperatures up to P/sub max/ = 8 MPa and T/sub max/ = 4000K, respectively, with flow times of the order of 3 msec. For a single battery disc, a segment of the ignition boundary was found to lie in the region of T/sub max/ = 1200 to 1300K and 0.7 MPa < P/sub max/ < 2.0 MPa. The results also showed two types of ignition: prompt ignition, requiring an average delivered enthalpy /ovr /Delta/H//sub ig/ = 6 cal during an average flow time /ovr /Delta/t//sub ig/ = 0.7 msec, and delayed ignition, with /ovr /Delta/H//sub ig/ = 16 cal and /ovr /Delta/t//sub ig/ = 2.4 msec. In addition, near an ignition boundary, high speed motion photography showed the ignition delay increased to 6 msec with significant spatial non-uniformity. 1 ref., 6 figs.

  5. The National Ignition Campaign Presentation to

    E-Print Network [OSTI]

    of the diagnostics and infrastructure needed for optimizing ignition implosions are essentially independent to identify the optimal tradeoff between Laser Plasma Interaction effects, hydrodynamic instability and laser Hydro Risk 5 End of 2010 #12;Projected ignition scale hohlraum temperature from initial hohlraum

  6. Managing transient behaviors of a dual mode spark ignition-- controlled auto ignition engine with a variable valve timing system

    E-Print Network [OSTI]

    Santoso, Halim G. (Halim Gustiono), 1975-

    2005-01-01

    Gasoline Homogeneous Charge Compression Ignition (HCCI) engine has the potential of providing better fuel economy and emissions characteristics than current spark ignition engines. One implementation of this technology ...

  7. Spark ignition of lifted turbulent jet flames

    SciTech Connect (OSTI)

    Ahmed, S.F.; Mastorakos, E. [Hopkinson Laboratory, Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2006-07-15

    This paper presents experiments on ignition and subsequent edge flame propagation in turbulent nonpremixed methane jets in air. The spark position, energy, duration, electrode diameter and gap, and the jet velocity and air premixing of the fuel stream are examined to study their effects on the ignition probability defined as successful flame establishment. The flame is visualized by a high-speed camera and planar laser-induced fluorescence of OH. It was found that after an initially spherical shape, the flame took a cylindrical shape with a propagating edge upstream. The probability of successful ignition increases with high spark energy, thin electrode diameter and wide gap, but decreases with increasing dilution of the jet with air. The flame kernel growth rate is high when the ignition probability is high for all parameters, except for jet velocity. Increasing the jet velocity decreases the ignition probability at all locations. The average flame position as a function of time from the spark was measured and the data were used to estimate a net propagation speed, which then resulted in an estimate of the average edge flame speed relative to the incoming flow. This was about 3 to 6 laminar burning velocities of a stoichiometric mixture. The measurements can assist theoretical models for the probability of ignition of nonpremixed flames and for edge flame propagation in turbulent inhomogeneous mixtures, both of which determine the success of ignition in practical combustion systems. (author)

  8. LLE 2008 annual report, October 2007 - September 2008

    SciTech Connect (OSTI)

    2009-01-31

    The research program at the University of Rochester’s Laboratory for Laser Energetics (LLE) focuses on inertial confinement fusion (ICF) research supporting the goal of achieving ignition on the National Ignition Facility (NIF). This program includes the full use of the OMEGA EP Laser System. Within the National Ignition Campaign (NIC), LLE is the lead laboratory for the validation of the performance of cryogenic target implosions, essential to all forms of ICF ignition. LLE has taken responsibility for a number of critical elements within the Integrated Experimental Teams (IET’s) supporting the demonstration of indirect-drive ignition on the NIF and is the lead laboratory for the validation of the polardrive approach to ignition on the NIF. LLE is also developing, testing, and building a number of diagnostics to be deployed on the NIF for the NIC.

  9. Igniting Engaged Scholars: The Graduate Certification in

    E-Print Network [OSTI]

    Communication and Information Technology E-mail: bargerst@msu.edu Igniting Innovation: MSUglobal 10-year models) ­ Evaluating engaged partnerships ­ The ethics of engaged scholarship Offered face-to-face over

  10. Ignition methods and apparatus using microwave energy

    DOE Patents [OSTI]

    DeFreitas, Dennis Michael (Oxford, NY); Migliori, Albert (Santa Fe, NM)

    1997-01-01

    An ignition apparatus for a combustor includes a microwave energy source that emits microwave energy into the combustor at a frequency within a resonant response of the combustor, the combustor functioning as a resonant cavity for the microwave energy so that a plasma is produced that ignites a combustible mixture therein. The plasma preferably is a non-contact plasma produced in free space within the resonant cavity spaced away from with the cavity wall structure and spaced from the microwave emitter.

  11. Infrared Thermographic Study of Laser Ignition

    SciTech Connect (OSTI)

    Mohler, Jonathan H.; Chow, Charles T. S.

    1986-07-01

    Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet. The experimental apparatus used to make these observations is described. The temperature distributions recorded are shown to be in good agreement with those predicted by heat transfer theory. Heat content values calculated from the observed temperature distributions are used to calculate thermal and kinetic parameters for several samples. These values are found to be in reasonable agreement with theory.

  12. Infrared thermographic study of laser ignition

    SciTech Connect (OSTI)

    Mohler, J.H.; Chow, C.T.S.

    1986-07-21

    Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet.

  13. Transonic Combustion ?- Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine

    Broader source: Energy.gov [DOE]

    Novel fuel injection equipment enables knock-free ignition with low noise and smoke in compression-ignition engines and low-particulates in spark-ignition engines.

  14. Construction safety program for the National Ignition Facility, Appendix B

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    This Appendix contains material from the LLNL Health and Safety Manual as listed below. For sections not included in this list, please refer to the Manual itself. The areas covered are: asbestos, lead, fire prevention, lockout, and tag program confined space traffic safety.

  15. DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...

    Office of Environmental Management (EM)

    to stakeholders and by announcements in the Federal Register (FR) on November 5, 1999, (64 FR 60430) (Attachment 4 of Volume I) and on November 12, 1999 (64 FR 61635)...

  16. Construction safety program for the National Ignition Facility, Appendix A

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  17. Heating National Ignition Facility, Realistic Financial Planning & Rapid

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,Security Officer Program |quickHeather Zichal -

  18. June 11, 1999: National Ignition Facility | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergy CopyrightsRoomRussianJonathan

  19. Director of the National Ignition Facility, Lawrence Livermore National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReporteeo | National/%2A en| NationalDepartmentLaboratory |

  20. Groundbreaking at National Ignition Facility | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— We wantInvestigationsMeasurement

  1. National Ignition Facility Reaches Milestone Early | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications TheScience (SC) National

  2. The MIT HED Accelerator Facility for Diagnostic Development for OMEGA, Z and NIF

    E-Print Network [OSTI]

    and enhance the capabilities for diagnostic development and CR-39 response testing · A pulsed DT neutron Dump AccessPort NECRFIon Source Focus (Einzel Lens) IonSource Power Supplies GasControl System ErD2 + 4He + + + D (9.5 MeV)+ T #12;SBDs and an MCA provide real-time monitoring of fusion rates

  3. Status of Next Step Option Study on Fusion Ignition Research Experiment

    E-Print Network [OSTI]

    Conditions (Alpha Dominated) Q ~ 1 Q ~ 0.01 Q ~ 0.00001 Q ~ 0.001 Q ~ 0.01 NIF LMJ NIF LMJ T-3 1965 T-3 1968

  4. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  5. Devloping High Energy Radiography for HED Experiments on NIF and Omega-EP

    SciTech Connect (OSTI)

    Maddox, B; Tommasini, R; Remington, B; Key, M; Town, R

    2008-02-14

    High energy radiography capabilities are essential for many future DNT/HED experiments on NIF. We have been developing bright, high-energy (15-100 keV), high resolution (< 20 {micro}m), 1-D and 2-D radiography solutions for DNT experiments on NIF. In this LDRD, we have made significant progress utilizing high-energy, high-intensity, short-pulse lasers to generate hard K-{alpha} photons. High energy K-{alpha} sources are created by hot electrons interacting in the target fluor material after irradiation by lasers with intensity I{sub L} > 10{sup 17} W/cm{sup 2}. High resolution point projection 1-D and 2-D radiography have been achieved using {mu}-foil and {mu}-wire targets attached to low-Z substrate materials. The {mu}-wire size was 10 x 10 x 300 {micro}m on a 300 x 300 x 5 {micro}m CH substrate creating the point source size equivalent to these micro targets. This unique technique will utilize the NIF short pulse laser (ARC) as a backlighter suitable for the full range of DNT science experiments on NIF.

  6. Fig. 1. Magnetic hysteresis of NiO-doped NiF2 conversion materials

    E-Print Network [OSTI]

    Siegel, Paul H.

    member with CMRR, is leading her group to design, optimize and develop new materials for energy storage materials for higher energy lithium ion batteries (at least double the energy density of today's technologyFig. 1. Magnetic hysteresis of NiO-doped NiF2 conversion materials CMRR Newsletter Shirley Meng

  7. Basics of Inertial Confinement Fusion NIF and Photon Science Directorate Chief Scientist

    E-Print Network [OSTI]

    Basics of Inertial Confinement Fusion John Lindl NIF and Photon Science Directorate Chief Scientist - Boston #12;#12;Outline · The challenge of Inertial Confinement Fusion · Development of the science basis to compression in Inertial Confinement Fusion Direct Drive DT gas 2.5 mm 0.1 mm 10 mm #12;The scale of ICF

  8. MIT Research using High-Energy Density Plasmas at OMEGA and the NIF

    E-Print Network [OSTI]

    MIT Research using High-Energy Density Plasmas at OMEGA and the NIF Hans Rinderknecht Wednesday He D-D T 2.3 m SiO2 D3He gas 860 m #12;The High Energy Density Physics Division at MIT of Inertial Confinement Fusion (ICF) implosions VII. Proton Radiography #12;High Energy Density Physics

  9. Thermonuclear supernova simulations with stochastic ignition

    E-Print Network [OSTI]

    W. Schmidt; J. C. Niemeyer

    2005-10-14

    We apply an ad hoc model for dynamical ignition in three-dimensional numerical simulations of thermonuclear supernovae assuming pure deflagrations. The model makes use of the statistical description of temperature fluctuations in the pre-supernova core proposed by Wunsch & Woosley (2004). Randomness in time is implemented by means of a Poisson process. We are able to vary the explosion energy and nucleosynthesis depending on the free parameter of the model which controls the rapidity of the ignition process. However, beyond a certain threshold, the strength of the explosion saturates and the outcome appears to be robust with respect to number of ignitions. In the most energetic explosions, we find about 0.75 solar masses of iron group elements. Other than in simulations with simultaneous multi-spot ignition, the amount of unburned carbon and oxygen at radial velocities of a few 1000 km/s tends to be reduced for an ever increasing number of ignition events and, accordingly, more pronounced layering results.

  10. Analytical model for fast-shock ignition

    SciTech Connect (OSTI)

    Ghasemi, S. A. Farahbod, A. H.; Sobhanian, S.

    2014-07-15

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ?4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ?0.3??micron and the shock ignitor energy weight factor about 0.25.

  11. Ignition of THKP and TKP pyrotechnic powders :

    SciTech Connect (OSTI)

    Maharrey, Sean P.; Erikson, William W; Highley, Aaron M.; Wiese-Smith, Deneille; Kay, Jeffrey J

    2014-03-01

    We have conducted Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS) experiments on igniter/actuator pyrotechnic powders to characterize the reactive processes controlling the ignition and combustion behavior of these materials. The experiments showed a complex, interactive reaction manifold involving over ten reaction pathways. A reduced dimensionality reaction manifold was developed from the detailed 10-step manifold and is being incorporated into existing predictive modeling codes to simulate the performance of pyrotechnic powders for NW component development. The results from development of the detailed reaction manifold and reduced manifold are presented. The reduced reaction manifold has been successfully used by SNL/NM modelers to predict thermal ignition events in small-scale testing, validating our approach and improving the capability of predictive models.

  12. Ignition threshold for non-Maxwellian plasmas

    E-Print Network [OSTI]

    Hay, Michael J

    2015-01-01

    An optically thin $p$-$^{11}$B plasma loses more energy to bremsstrahlung than it gains from fusion reactions, unless the ion temperature can be elevated above the electron temperature. In thermal plasmas, the temperature differences required are possible in small Coulomb logarithm regimes, characterized by high density and low temperature. The minimum Lawson criterion for thermal $p$-$^{11}$B plasmas and the minimum $\\rho R$ required for ICF volume ignition are calculated. Ignition could be reached more easily if the fusion reactivity can be improved with nonthermal ion distributions. To establish an upper bound for this utility, we consider a monoenergetic beam with particle energy selected to maximize the beam- thermal reactivity. Channeling fusion alpha energy to maintain such a beam facilitates ignition at lower densities and $\\rho R$, improves reactivity at constant pressure, and could be used to remove helium ash. The gains realized with a beam thus establish an upper bound for the reductions in igniti...

  13. Low current extended duration spark ignition system

    DOE Patents [OSTI]

    Waters, Stephen Howard; Chan, Anthony Kok-Fai

    2005-08-30

    A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.

  14. Ignition of deuterium-tritium fuel targets

    DOE Patents [OSTI]

    Musinski, D.L.; Mruzek, M.T.

    1991-08-27

    Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

  15. APPLICATION OF FAULT TREE ANALYSIS TO IGNITION OF FIRE

    E-Print Network [OSTI]

    Teresa Ling, W.C.

    2011-01-01

    fuel is present in the vicinity of the potential ignition energy.energy property of the target fuel are usually constant. from the potential ignition source to the target fuel

  16. Fuel effects in homogeneous charge compression ignition (HCCI) engines

    E-Print Network [OSTI]

    Angelos, John P. (John Phillip)

    2009-01-01

    Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

  17. Chaotic Combustion in Spark Ignition Engines

    E-Print Network [OSTI]

    M. Wendeker; J. Czarnigowski; G. Litak; K. Szabelski

    2002-12-27

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process.

  18. Semiconductor bridge, SCB, ignition of energetic materials

    SciTech Connect (OSTI)

    Bickes, R.W.; Grubelich, M.D.; Harris, S.M.; Merson, J.A.; Tarbell, W.W.

    1997-04-01

    Sandia National Laboratories` semiconductor bridge, SCB, is now being used for the ignition or initiation of a wide variety of exeoergic materials. Applications of this new technology arose because of a need at the system level to provide light weight, small volume and low energy explosive assemblies. Conventional bridgewire devices could not meet the stringent size, weight and energy requirements of our customers. We present an overview of SCB technology and the ignition characteristics for a number of energetic materials including primary and secondary explosives, pyrotechnics, thermites and intermetallics. We provide examples of systems designed to meet the modern requirements that sophisticated systems must satisfy in today`s market environments.

  19. ENHANCED IGNITION FOR I.C. ENGINES WITH PREMIXED CHARGE

    E-Print Network [OSTI]

    Dale, J.D.

    2013-01-01

    N, A. Features of Carburetor Engines With Torch Ignition,"D. A. "Carburetor Type Internal Combustion Engine With

  20. Thermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby

    E-Print Network [OSTI]

    Jerby, Eli

    Thermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby Faculty of Engineering Keywords: Thermite Microwave heating Hotspots Thermal runaway Ignition a b s t r a c t This paper presents a new method to ignite pure thermite powder by low-power microwaves ($100 W). In this method

  1. Investigation of spark discharge processes and ignition systems for spark-ignited internal combustion engines 

    E-Print Network [OSTI]

    Khare, Yogesh Jayant

    2000-01-01

    Spark ignition of the air-fuel mixture at the appropriate time is important for successful flame initiation and complete combustion thereafter without unnecessary emissions. The physical and chemical reactions taking place between the spark plug...

  2. Methanol with dimethyl ether ignition promotor as fuel for compression ignition engines

    SciTech Connect (OSTI)

    Brook, D.L.; Cipolat, D.; Rallis, C.J.

    1984-08-01

    Reduction of the world dependence upon crude oil necessitates the use of long term alternative fuels for internal combustion engines. Alcohols appear to offer a solution as in the short term they can be manufactured from natural gas and coal, while ultimately they may be produced from agricultural products. A fair measure of success has been achieved in using alcohols in spark ignition engines. However the more widely used compression ignition engines cannot utilize unmodified pure alcohols. The current techniques for using alcohol fuels in compression ignition engines all have a number of shortcomings. This paper describes a novel technique where an ignition promotor, dimethyl ether (DME), is used to increase the cetane rating of methanol. The systems particular advantage is that the DME can be catalyzed from the methanol base fuel, in situ. This fuel system matches the performance characteristics of diesel oil fuel.

  3. Weapons Activities/ Inertial Confinement Fusion Ignition

    E-Print Network [OSTI]

    , and reliability of the Nation's nuclear weapons without nuclear testing. The program provides this capability of the energy from a nuclear weapon is generated while in the high energy density (HED) state. High thermonuclear ignition to the national nuclear weapons program was one of the earliest motivations of the ICF

  4. Wildfires ignite debate on global warming

    E-Print Network [OSTI]

    Moritz, Max A.

    Wildfires ignite debate on global warming Astemperaturessoar. Is there a link with global warming? We have good reason to think so, and not taking the link seriously could have on climate change and global fire predictions last month, and I have been in my own media storm ever since

  5. Dark matter ignition of type Ia supernovae

    E-Print Network [OSTI]

    Bramante, Joseph

    2015-01-01

    Recent studies of low redshift type Ia supernovae (SNIa) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SNIa progenitors. We show that $0.1-10$ PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SNIa. We combine data on SNIa masses with data on the ages of SNIa-adjacent stars. This combination reveals a $ 3 \\sigma$ inverse correlation between SNIa masses and ignition ages, which could result from increased capture of dark matter in 1.4 versus 1.1 solar mass white dwarfs. Future studies of SNIa in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SNI...

  6. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite [General Atomics; McLean, Harry M. [Lawrence Livermore National Laboratory; Theobald, Wolfgang [Laboratory for Laser Energetics; Akli, Kramer U. [The Ohio State University; Beg, Farhat N. [University of California, San Diego; Sentoku, Yasuhiko [University of Nevada, Reno; Schumacher, Douglass W. [The Ohio State University; Wei, Mingsheng [General Atomics

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density target as well as large and erratic spread of the electron beam with increasing short pulse duration. We have demonstrated, using newly available higher contrast lasers, an improved energy coupling, painting a promising picture for FI feasibility. • Our detailed experiments and analyses of fast electron transport dependence on target material have shown that it is feasible to collimate fast electron beam by self-generated resistive magnetic fields in engineered targets with a rather simple geometry. Stable and collimated electron beam with spot size as small as 50-?m after >100-?m propagation distance (an angular divergence angle of 20°!) in solid density plasma targets has been demonstrated with FI-relevant (10-ps, >1-kJ) laser pulses Such collimated beam would meet the required heating beam size for FI. • Our new experimental platforms developed for the OMEGA laser (i.e., i) high resolution 8 keV backlighter platform for cone-in-shell implosion and ii) the 8 keV imaging with Cu-doped shell targets for detailed transport characterization) have enabled us to experimentally confirm fuel assembly from cone-in-shell implosion with record-high areal density. We have also made the first direct measurement of fast electron transport and spatial energy deposition in integrated FI experiments enabling the first experiment-based benchmarking of integrated simulation codes. Executing this program required a large team. It was managed as a collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. Th

  7. Development of an Experimental Facility for Flame Speed Measurements in Powdered Aerosols 

    E-Print Network [OSTI]

    Vissotski, Andrew John

    2012-10-19

    is given (~4 minutes) for the mixture to become quiescent before ignition occurs. An extinction diagnostic is also applied to the secondary mixing vessel as well as the primary experimental facility (for both dispersion methods) to provide a qualitative...

  8. Enhanced ignition for I. C. engines with premixed gases

    SciTech Connect (OSTI)

    Dale, J.D.; Oppenheim, A.K.

    1981-01-01

    The development of lean charge, fast burn engines depends crucially on enhanced ignition. Enhanced ignition involves not only high energies and long duration of ignition, but also a wide dispersion of its sources, so that combustion is carried out at as many sites throughout the charge as possible. Upon this premise, various ignition systems for I.C. engines, operating with premixed charge, are reviewed. The systems are grouped as follows: high energy spark plugs; plasma jet igniters; photochemical, laser, and microwave ignition concepts; torch cells; divided chamber stratified charge engines; flame jet igniters; combustion jet ignition concepts; EGR ignition system. The first three derive the power from electrical energy, the rest are powered by exothermic chemical reactions. The review emphasizes the concept of staging the processes of initiation and propagation of combustion. Relative positions of various ignition systems are expressed on the plane of relative energies (the ratio of energy consumed by the ignition system, or contained in a pre-chamber, to that of the compressed charge in the main chamber) and relative volumes (the ratio of the volume of the pre-chamber to that of the compressed charge). In principle, ignition systems for engines operating with premixed charge lie on the half-plane of relative energies below one, between 10/sup -5/ for standard spark plugs to 10/sup -1/ for divided chamber stratified charge engines, while their relative volumes extend from 0 for spark igniters to 0.2 for stratified charge engines. This suggests that proper compartmentization of the combustion process may lead to significant improvements in both pollution emissions from the cylinder and specific fuel consumption of I.C. engines.

  9. Multiple laser pulse ignition method and apparatus

    DOE Patents [OSTI]

    Early, J.W.

    1998-05-26

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

  10. Direct-Drive Inertial Fusion Research at the University of Rochester's Laboratory for Laser Energetics: A Review

    SciTech Connect (OSTI)

    McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.; Skupsky, S.; Bahr, R.E.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Collins, T.J.B.; Delettrez, J.A.; Donaldson, W.R.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Jaanimagi, P.A.; Keck, R.L.; Kelly, J.H.; Kessler, T.J.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Lund, L.D.; Marozas, J.A.; McKenty, P.W.; Marshall, F.J.; Morse, S.F.B.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Regan, S.P.; Roberts, S.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Thorp, K.A.; Yaakobi, B.; Zuegel, J.D.

    2010-04-16

    This paper reviews the status of direct-drive inertial confinement fusion (ICF) research at the University of Rochester's Laboratory for Laser Energetics (LLE). LLE's goal is to demonstrate direct-drive ignition on the National Ignition Facility (NIF) by 2014. Baseline "all-DT" NIF direct-drive ignition target designs have been developed that have a predicted gain of 45 (1-D) at a NIF drive energy of ~1.6 MJ. Significantly higher gains are calculated for targets that include a DT-wicked foam ablator. This paper also reviews the results of both warm fuel and initial cryogenic-fuel spherical target implosion experiments carried out on the OMEGA UV laser. The results of these experiments and design calculations increase confidence that the NIF direct-drive ICF ignition goal will be achieved.

  11. Laser spark distribution and ignition system

    DOE Patents [OSTI]

    Woodruff, Steven (Morgantown, WV); McIntyre, Dustin L. (Morgantown, WV)

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  12. Ignitor with stable low-energy thermite igniting system

    DOE Patents [OSTI]

    Kelly, Michael D. (West Alexandria, OH); Munger, Alan C. (Miamisburg, OH)

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  13. J. M. Soures for R. L. McCrory University of Rochester

    E-Print Network [OSTI]

    optics and other technologies National Ignition Campaign (NIC) Support of NIC ignition NIF ignition PDD production Advanced optics and other technologies National Ignition Campaign (NIC) NIF ignition PDD ignition higher gains than the baseline NIF indirect-drive design · LLE will make major contributions to IFE

  14. Radiochemical tracers as a mix diagnostic for the ignition double...

    Office of Scientific and Technical Information (OSTI)

    for the ignition double-shell capsule One of the most important challenges confronting laser-driven capsule implosion experiments will be a quantitative evaluation of the...

  15. Improving the Efficiency of Spark Ignited, Stoichiometric Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Utilizing the Rapid Ignition Region of HCCI to Attain > 60% BTE Compact, electro-hydraulic, variable valve actuation system providing variable lift, timing and duration to...

  16. Advanced CFD Models for High Efficiency Compression Ignition Engines

    Broader source: Energy.gov [DOE]

    Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion.

  17. Advanced CFD Models for High Efficiency Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion. p-19raja.pdf More Documents &...

  18. Heavy Alcohols as a Fuel Blending Agent for Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Downsized SI Engines Using Alcohol DI for Knock Avoidance Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and...

  19. ENHANCED IGNITION FOR I.C. ENGINES WITH PREMIXED CHARGE

    E-Print Network [OSTI]

    Dale, J.D.

    2013-01-01

    Turkish, M. C. "3-Valve Stratified Charge Engines: Analysis741163, Evolvement, Stratified_ Charge Engines, I. Mech. E.Sonic Jet Ignition --A Stratified Charge Concept," Physics

  20. STUDIES OF WALL FLAME QUENCHING AND HYDROCARBON EMISSIONS IN A MODEL SPARK IGNITION ENGINE

    E-Print Network [OSTI]

    Ishikawa, Nobuhiko

    2011-01-01

    ignition timing at 10 msec BTC, time interval 5 msec. flatignition, ignition timing at 12 BTC, time interval 5 msec .ignition timing at 25 msec BTC, time interval 5 msec . . . .

  1. Modeling the Fuel Spray and Combustion Process of the Ignition Quality Tester with KIVA-3V

    SciTech Connect (OSTI)

    Bogin, G. E. Jr.; DeFilippo, A.; Chen, J. Y.; Chin, G.; Luecke, J.; Ratcliff, M. A.; Zigler, B. T.; Dean, A. M.

    2010-05-01

    Discusses the use of KIVA-3V to develop a model that reproduces ignition behavior inside the Ignition Quality Tester, which measures the ignition delay of low-volatility fuels.

  2. Laser-driven proton fast ignition of inertial fusion: concepts, issues and prospects

    SciTech Connect (OSTI)

    Badziak, J.; Jablonski, S.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Honrubia, J. [GIFI, Universidad Politecnica de Madrid, Madrid (Spain)

    2008-03-19

    Fast ignition (FI) is a novel approach to inertial confinement fusion, which has the potential for higher energy gain at lower overall driver energy and cost. This paper is a brief review of basic FI concepts and issues, with a particular emphasis on FI with laser-generated proton beams. General requirements for the DT fuel and the ignitor (particle beam) as well as for the laser drivers are discussed. Key issues related to proton FI are considered and selected results of experimental and numerical studies are described. A progress in development of laser facilities for FI research and prospects for FI experiments are outlined.

  3. Enhanced ignition for I. C. engines with premixed charge

    SciTech Connect (OSTI)

    Dale, J.D.; Oppenheim, A.K.

    1980-10-01

    The development of lean charge, fast burn engines depends crucially on enhanced ignition, since one can obtain thereby proper means for increasing the rate of burn in mixtures characterized notoriously by low normal burning speeds. Enhanced ignition involves a wide dispersion of its sources so that combustion is carried out at as many sites throughout the charge as possible. Upon this premise, various ignition systems for I.C. engines, operating with premixed charge, are reviewed. The systems are grouped within the following categories: (1) high energy spark plugs; (2) plasma jet igniters; (3) photochemical, laser, and microwave ignition concepts; (4) torch cells; (5) divided chamber stratified charge engines; (6) flame jet igniters; (7) combustion jet ignition concepts; (8) EGR ignition system. The first three derive the power from electrical energy, the rest are powered by exothermic chemical reactions at a significantly lower, practically negligible, fuel consumption. The concept of staging the processes of initiation and propagation of combustion is emphasized. Relative positions of various ignition systems are expressed on the plane of relative energies and relative volumes. In principle, ignition systems for engines operating with premixed charge lie on the half-plane of relative energies below one, between 10/sup -5/ for standard spark plugs to 10/sup -1/ for divided chamber stratified charge engines, while their relative volumes extend from 0 for spark igniters to 0.2 for stratified charge engines. This suggests that proper compartmentization of the combustion process may lead to significant improvements in both pollution emissions from the cylinder and specific fuel consumption of I.C. engines.

  4. Low emissions compression ignited engine technology

    DOE Patents [OSTI]

    Coleman, Gerald N. (Dunlap, IL); Kilkenny, Jonathan P. (Peoria, IL); Fluga, Eric C. (Dunlap, IL); Duffy, Kevin P. (East Peoria, IL)

    2007-04-03

    A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

  5. Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF

    E-Print Network [OSTI]

    Ma, Tammy Yee Wing

    2010-01-01

    1.1 Basics of Inertial Confinement Fusion with High Poweredguided fast-ignition inertial confinement fusion, Phys. Rev.Fast-Ignition Inertial Confinement Fusion,” Physical Review

  6. Variable valve timing in a homogenous charge compression ignition engine

    DOE Patents [OSTI]

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  7. SCB ignition of pyrotechnics, thermites and intermetallics

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.; Grubelich, M.C.

    1996-09-01

    We investigated ignition of pyrotechnics, metal-fuel/metal-oxide compositions (thermites), and exothermic alloy compositions (intermetallics) using a semiconductor bridge (SCB). It was shown that these materials could be ignited at low energy levels with an appropriately designed SCB, proper loading density, and good thermal isolation. Materials tested included Al/CuO, B/BaCrO{sub 4}, TiH{sub 1.65}/KClO{sub 4}, Ti/KClO{sub 4}, Zr/BaCrO{sub 4}, Zr/CuO, Zr/Fe{sub 2}O{sub 3}, Zr/KClO{sub 4}, and 100-mesh Al/Pd. Firing set was a capacitor discharge unit with charge capacitors ranging from 3 to 20,000 {mu}F at charge voltages 5-50 V. Devices functioned a few miliseconds after onset of current pulse at input energies as low as 3 mJ. We also report on a thermite torch design.

  8. PBXN-9 Ignition Kinetics and Deflagration Rates

    SciTech Connect (OSTI)

    Glascoe, E; Maienschein, J; Burnham, A; Koerner, J; Hsu, P; Wemhoff, A

    2008-04-24

    The ignition kinetics and deflagration rates of PBXN-9 were measured using specially designed instruments at LLNL and compared with previous work on similar HMX based materials. Ignition kinetics were measured based on the One Dimensional Time-to-Explosion combined with ALE3D modeling. Results of these experiments indicate that PBXN-9 behaves much like other HMX based materials (i.e. LX-04, LX-07, LX-10 and PBX-9501) and the dominant factor in these experiments is the type of explosive, not the type of binder/plasticizer. In contrast, the deflagration behavior of PBXN-9 is quite different from similar high weight percent HMX based materials (i.e LX-10, LX-07 and PBX-9501). PBXN-9 burns in a laminar manner over the full pressure range studied (0-310 MPa) unlike LX-10, LX-07, and PBX-9501. The difference in deflagration behavior is attributed to the nature of the binder/plasticizer alone or in conjunction with the volume of binder present in PBXN-9.

  9. Catalytic igniters and their use to ignite lean hydrogen-air mixtures

    DOE Patents [OSTI]

    McLean, William J. (Oakland, CA); Thorne, Lawrence R. (Livermore, CA); Volponi, Joanne V. (Livermore, CA)

    1988-01-01

    A catalytic igniter which can ignite a hydrogen-air mixture as lean as 5.5% hydrogen with induction times ranging from 20 s to 400 s, under conditions which may be present during a loss-of-liquid-coolant accident at a light water nuclear reactor comprises (a) a perforate catalytically active substrate, such as a platinum coated ceramic honeycomb or wire mesh screen, through which heated gases produced by oxidation of the mixture can freely flow and (b) a plurality of thin platinum wires mounted in a thermally conductive manner on the substrate and positioned thereon so as to be able to receive heat from the substrate and the heated gases while also in contact with unoxidized gases.

  10. NIF Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CS Seminars CalendarOilPS PeopleCalendar

  11. NIF Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CS Seminars CalendarOilPS

  12. Pre-ignition laser ablation of nanocomposite energetic materials

    SciTech Connect (OSTI)

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L. [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)] [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-06-07

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 Multiplication-Sign 10{sup 4} to 1.7 Multiplication-Sign 10{sup 7} K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO{sub 2} lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO{sub 3}) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO{sub 3} at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  13. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    SciTech Connect (OSTI)

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung and x-ray line radiation from K-shell fluorescence. Integrated experiments, which combine target compression with short-pulse laser heating, yield additional information on target heating efficiency. This indirect way of studying the underlying behavior of the electrons must be validated with computational modeling to understand the physics and improve the design. This program execution required a large, well-organized team and it was managed by a joint Collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). The Collaboration was formed 8 years ago to understand the physics issues of the Fast Ignition concept, building on the strengths of each partner. GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). Since RHED physics is pursued vigorously in many countries, international researchers have been an important part of our efforts to make progress. The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser (TPW) at UT Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing supercomputer codes developed by the NNSA ICF program. This Consortium brought together all the components—resources, facilities, and personnel—necessary to accomplish its aggressive goals. The ACE Program has been strongly collaborative, taking advantage of the expertise of the participating institutions to provide a research effort

  14. Fuel quantity modulation in pilot ignited engines

    DOE Patents [OSTI]

    May, Andrew

    2006-05-16

    An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.

  15. Fast Camera Imaging of Hall Thruster Ignition

    SciTech Connect (OSTI)

    C.L. Ellison, Y. Raitses and N.J. Fisch

    2011-02-24

    Hall thrusters provide efficient space propulsion by electrostatic acceleration of ions. Rotating electron clouds in the thruster overcome the space charge limitations of other methods. Images of the thruster startup, taken with a fast camera, reveal a bright ionization period which settles into steady state operation over 50 ?s. The cathode introduces azimuthal asymmetry, which persists for about 30 ?s into the ignition. Plasma thrusters are used on satellites for repositioning, orbit correction and drag compensation. The advantage of plasma thrusters over conventional chemical thrusters is that the exhaust energies are not limited by chemical energy to about an electron volt. For xenon Hall thrusters, the ion exhaust velocity can be 15-20 km/s, compared to 5 km/s for a typical chemical thruster

  16. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A [ORNL; Reitz, Rolf [University of Wisconsin

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  17. PHYSICAL REVIEW E 91, 013101 (2015) Integrated simulation approach for laser-driven fast ignition

    E-Print Network [OSTI]

    Wang, Wei Hua

    2015-01-01

    to realize laser fusion energy, the fast ignition (FI) scheme has attracted significant attention since

  18. Recent Advances in Indirect Drive ICF Target Physics

    SciTech Connect (OSTI)

    Hammel, B; Lindl, J; Amendt, P A; Bernat, G W; Collins, G W; Glenzer, S H; Koch, S H; Haan, S; Landen, O L; Suter, L J

    2002-10-08

    In preparation for ignition on the National Ignition Facility, the Lawrence Livermore National Laboratory's Inertial Confinement Fusion Program, working in collaboration with Los Alamos National Laboratory, Commissariat a lEnergie Atomique (CEA), and Laboratory for Laser Energetics at the University of Rochester, has performed a broad range of experiments on the Nova and Omega lasers to test the fundamentals of the NIF target designs. These studies have refined our understanding of the important target physics, and have led to many of the specifications for the NIF laser and the cryogenic ignition targets. Our recent work has been focused in the areas of hohlraum energetics, symmetry, shock physics, and target design optimization & fabrication.

  19. Hydrogen-assisted catalytic ignition characteristics of different fuels

    SciTech Connect (OSTI)

    Zhong, Bei-Jing; Yang, Fan; Yang, Qing-Tao

    2010-10-15

    Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

  20. Distributed ignition method and apparatus for a combustion engine

    DOE Patents [OSTI]

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  1. Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC

    SciTech Connect (OSTI)

    Lehman, S K

    2006-02-09

    We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated data with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.

  2. Development of a Bayesian method for the analysis of inertial confinement fusion experiments on the NIF

    E-Print Network [OSTI]

    Gaffney, Jim A; Sonnad, Vijay; Libby, Stephen B

    2013-01-01

    The complex nature of inertial confinement fusion (ICF) experiments results in a very large number of experimental parameters that are only known with limited reliability. These parameters, combined with the myriad physical models that govern target evolution, make the reliable extraction of physics from experimental campaigns very difficult. We develop an inference method that allows all important experimental parameters, and previous knowledge, to be taken into account when investigating underlying microphysics models. The result is framed as a modified $\\chi^{2}$ analysis which is easy to implement in existing analyses, and quite portable. We present a first application to a recent convergent ablator experiment performed at the NIF, and investigate the effect of variations in all physical dimensions of the target (very difficult to do using other methods). We show that for well characterised targets in which dimensions vary at the 0.5% level there is little effect, but 3% variations change the results of i...

  3. High Fidelity Modeling of Premixed Charge Compression Ignition Engines

    Broader source: Energy.gov [DOE]

    Most accurate and detailed chemical kinetic models for fuels of practical interest to engine manufacturers and fuels developers are applied for high fidelity engine analysis of premixed charge compression ignition engines.

  4. On the Piloted Ignition of Solid Fuels in Spacecraft Environments

    E-Print Network [OSTI]

    Fereres-Rapoport, Sonya M.

    2011-01-01

    Gpyro- A Generalized Pyrolysis Model for Combustible Solids:Analytical and Applied Pyrolysis Vol. 71:2 (2004) pp. 569–Orientation and Altitude on Pyrolysis and Ignition of Wood”,

  5. Relativistic electron beam transport for fast ignition relevant scenarios

    E-Print Network [OSTI]

    Cottrill, Larissa A

    2009-01-01

    A crucial issue surrounding the feasibility of fast ignition, an alternative inertial confinement fusion scheme, is the ability to efficiently couple energy from an incident short-pulse laser to a high-density, pre-compressed ...

  6. Frictionally induced ignition processes in drop and skid tests

    SciTech Connect (OSTI)

    Dickson, Peter [Los Alamos National Laboratory; Parker, Gary [Los Alamos National Laboratory; Novak, Alan [Los Alamos National Laboratory

    2010-01-01

    The standard LANL/Pantex drop and skid tests rely on subjective assessment of reaction violence to quantify the response of the charge, and completely miss nonpropagating hot-spot ignition sites. Additionally, large variations in test results have been observed, which we propose is due to a misunderstanding of the basic physical processes that lead to threshold ignition in these tests. The tests have been redesigned to provide control of these mechanisms and to permit direct observation of hot spots at the impact site, allowing us to follow the progression of the outcome as the drop height and ignition source density are varied. The results confirm that frictional interactions between high-melting-point solids are the dominant ignition mechanism, not just at the threshold, but in fact at all realistic drop heights.

  7. Ignition technique for an in situ oil shale retort

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO)

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  8. Ignition and burn of a small magnetized fuel target

    SciTech Connect (OSTI)

    Kirkpatrick, Ronald C.

    2012-06-01

    The crucial step for inertial confinement fusion (ICF) is ignition, which leads to sufficiently high gain to enable design of a power producing system. Thus far, this step has not been demonstrated. Magnetized targets may provide an alternative path to ignition. In addition, the 1-D calculations presented here suggest that this approach may provide the gain and other characteristics needed for a practical fusion reactor.

  9. Gasoline Engine Economy as Affected by the Time of Ignition

    E-Print Network [OSTI]

    Hopkins, George Jay

    1907-01-01

    variablesˇ— speed, load, point of ignition, mixture and jacket temperature. Considering any three of these five fixed, the other two will be inter-dependent. In view of this sensitiveness of one variable to changes of any other, it is fortunately... variablesˇ— speed, load, point of ignition, mixture and jacket temperature. Considering any three of these five fixed, the other two will be inter-dependent. In view of this sensitiveness of one variable to changes of any other, it is fortunately...

  10. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    SciTech Connect (OSTI)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  11. Experimental studies on the group ignition of a cloud of coal particles: Volume 2, Pyrolysis and ignition modeling

    SciTech Connect (OSTI)

    Annamalai, K.; Ryan, W.

    1992-01-01

    The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere.

  12. ISIS Facility: Facility Design Challenges

    E-Print Network [OSTI]

    McDonald, Kirk

    ISIS Facility: Facility Design Challenges Matt Fletcher Head, Design Division ISIS Department, FNAL #12;ISIS -- neutrons Diamond -- X-rays #12;#12;· Lifetime · Reliable Operation · Flexibility

  13. Analysis of Homogeneous Charge Compression Ignition (HCCI) Engines for Cogeneration Applications

    SciTech Connect (OSTI)

    Aceves, S; Martinez-Frias, J; Reistad, G

    2004-04-30

    This paper presents an evaluation of the applicability of Homogeneous Charge Compression Ignition Engines (HCCI) for small-scale cogeneration (less than 1 MWe) in comparison to five previously analyzed prime movers. The five comparator prime movers include stoichiometric spark-ignited (SI) engines, lean burn SI engines, diesel engines, microturbines and fuel cells. The investigated option, HCCI engines, is a relatively new type of engine that has some fundamental differences with respect to other prime movers. Here, the prime movers are compared by calculating electric and heating efficiency, fuel consumption, nitrogen oxide (NOx) emissions and capital and fuel cost. Two cases are analyzed. In Case 1, the cogeneration facility requires combined power and heating. In Case 2, the requirement is for power and chilling. The results show that the HCCI engines closely approach the very high fuel utilization efficiency of diesel engines without the high emissions of NOx and the expensive diesel fuel. HCCI engines offer a new alternative for cogeneration that provides a unique combination of low cost, high efficiency, low emissions and flexibility in operating temperatures that can be optimally tuned for cogeneration systems. HCCI engines are the most efficient technology that meets the oncoming 2007 CARB NOx standards for cogeneration engines. The HCCI engine appears to be a good option for cogeneration systems and merits more detailed analysis and experimental demonstration.

  14. Using indium tin oxide material to implement the imaging of microwave plasma ignition process

    SciTech Connect (OSTI)

    Wang, Qiang; Hou, Lingyun; Zhang, Guixin Zhang, Boya; Liu, Cheng; Wang, Zhi; Huang, Jian

    2014-02-17

    In this paper, a method is introduced to get global observation of microwave plasma ignition process at high pressure. A microwave resonator was designed with an indium tin oxide coated glass at bottom. Microwave plasma ignition was implemented in methane and air mixture at 10 bars by a 2?ms-3?kW-2.45?GHz microwave pulse, and the high speed images of the ignition process were obtained. The images visually proved that microwave plasma ignition could lead to a multi-point ignition. The system may also be applied to obtain Schlieren images, which is commonly used to observe the development of flame kernel in an ignition process.

  15. LLE 2007 Annual Report, October 2006 – September 2007

    SciTech Connect (OSTI)

    2008-01-31

    The laser-fusion research program at the University of Rochester’s Laboratory for Laser Energetics (LLE) is focused on the National Nuclear Security Administration’s (NNSA’s) Campaign-10 inertial confinement fusion (ICF) ignition and experimental support technology, operation of facilities (OMEGA), and the construction of OMEGA EP—a high energy petawatt laser system. While LLE is the lead laboratory for research into the direct-drive approach to ICF ignition, it also takes a lead role in certain indirect-drive tasks within the National Ignition Campaign. During this past year progress in the laser-fusion research program was made in three principal areas: OMEGA direct drive and indirect-drive experiments and targets; development of diagnostics for experiments on OMEGA, OMEGA EP, and the National Ignition Facility (NIF); and theoretical analysis and design efforts aimed at improving direct-drive-ignition capsule designs and advanced ignition concepts such as fast ignition and shock ignition.

  16. NIF Periscope Wall Modal Study Comparison of Results for 2 FEA Models with 2 Modal Tests

    SciTech Connect (OSTI)

    Eli, M W; Gerhard, M A; Lee, C L; Sommer, S C; Woehrle, T G

    2000-10-26

    This report summarizes experimentally and numerically determined modal properties for one of the reinforced concrete end walls of the NIF Periscope Support Structure in Laser Bay 1. Two methods were used to determine these modal properties: (1) Computational finite-element analyses (modal extraction process); and (2) Experimental modal analysis based on measured test data. This report also includes experimentally determined modal properties for a prototype LM3/Polarizer line-replaceable unit (LRU) and a prototype PEPC LRU. Two important parameters, used during the design phase, are validated through testing [ref 1]. These parameters are the natural frequencies and modal damping (of the system in question) for the first several global modes of vibration. Experimental modal testing provides these modal values, along with the corresponding mode shapes. Another important parameter, the input excitation (expected during normal operation of the NIF laser system) [ref 1], can be verified by performing a series of ambient vibration measurements in the vicinity of the particular system (or subsystem) of interest. The topic of ambient input excitation will be covered in a separate report. Due to the large mass of the Periscope Pedestal, it is difficult to excite the entire series of Periscope Pedestal Walls all at once. It was decided that the experimental modal tests would be performed on just one Periscope End Wall in Laser Bay 1. Experimental modal properties for the Periscope End Wall have been used to validate and update the FE analyses. Results from the analyses and modal tests support the conclusion that the Periscope Pedestal will not exceed the stability budget, which is described in reference 1. The results of the modal tests for the Periscope End Wall in Laser Bay 1 have provided examples of modal properties that can be derived from future modal tests of the entire Periscope Assembly (excluding the LRU's). This next series of larger modal tests can be performed after the support structure for the Periscope Assembly has been completed. There are five optical elements in the Periscope Assembly: PEPC; Polarizer; LM3; LM2; and the Periscope Light Source. All of these optical elements have stability requirements except for the PEPC. During the Title II Design phase, two prototypes of the LM3/Polarizer LRU were used in two different series of modal tests [ref 2,3]. A similar series of modal tests were conducted on a prototype of the PEPC LRU. The results of the modal tests were used to verify the modal properties assumed for use in the corresponding finite-element analyses.

  17. Methane ignition catalyzed by in situ generated palladium nanoparticles

    SciTech Connect (OSTI)

    Shimizu, T.; Abid, A.D.; Poskrebyshev, G.; Wang, H. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Nabity, J.; Engel, J.; Yu, J. [TDA Research, Inc., 12345 W. 52nd Ave, Wheat Ridge, CO 80033 (United States); Wickham, D. [Reaction Systems, LLC, 19039 E. Plaza Drive, Suite 290, Parker, CO 80134 (United States); Van Devener, B.; Anderson, S.L. [Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (United States); Williams, S. [Air Force Research Laboratory, Mail Stop RZA, 1950 Fifth Street, WPAFB, OH 45433 (United States)

    2010-03-15

    Catalytic ignition of methane over the surfaces of freely-suspended and in situ generated palladium nanoparticles was investigated experimentally and numerically. The experiments were conducted in a laminar flow reactor. The palladium precursor was a compound (Pd(THD){sub 2}, THD: 2,2,6,6-tetramethyl-3,5-heptanedione) dissolved in toluene and injected into the flow reactor as a fine aerosol, along with a methane-oxygen-nitrogen mixture. For experimental conditions chosen in this study, non-catalytic, homogeneous ignition was observed at a furnace temperature of {proportional_to}1123 K, whereas ignition of the same mixture with the precursor was found to be {proportional_to}973 K. In situ production of Pd/PdO nanoparticles was confirmed by scanning mobility, transmission electron microscopy and X-ray photoelectron spectroscopy analyses of particles collected at the reactor exit. The catalyst particle size distribution was log-normal. Depending on the precursor loading, the median diameter ranged from 10 to 30 nm. The mechanism behind catalytic ignition was examined using a combined gas-phase and gas-surface reaction model. Simulation results match the experiments closely and suggest that palladium nanocatalyst significantly shortens the ignition delay times of methane-air mixtures over a wide range of conditions. (author)

  18. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01

    4 Stratified charge compression ignition -ratios [9]. 2.2.2 Stratified charge compression ignition -to create areas of stratified charge. The effectiveness of

  19. Data Analysis, Pre-Ignition Assessment, and Post-Ignition Modeling of the Large-Scale Annular Cookoff Tests

    SciTech Connect (OSTI)

    G. Terrones; F.J. Souto; R.F. Shea; M.W.Burkett; E.S. Idar

    2005-09-30

    In order to understand the implications that cookoff of plastic-bonded explosive-9501 could have on safety assessments, we analyzed the available data from the large-scale annular cookoff (LSAC) assembly series of experiments. In addition, we examined recent data regarding hypotheses about pre-ignition that may be relevant to post-ignition behavior. Based on the post-ignition data from Shot 6, which had the most complete set of data, we developed an approximate equation of state (EOS) for the gaseous products of deflagration. Implementation of this EOS into the multimaterial hydrodynamics computer program PAGOSA yielded good agreement with the inner-liner collapse sequence for Shot 6 and with other data, such as velocity interferometer system for any reflector and resistance wires. A metric to establish the degree of symmetry based on the concept of time of arrival to pin locations was used to compare numerical simulations with experimental data. Several simulations were performed to elucidate the mode of ignition in the LSAC and to determine the possible compression levels that the metal assembly could have been subjected to during post-ignition.

  20. Volume Ignition via Time-like Detonation in Pellet Fusion

    E-Print Network [OSTI]

    Csernai, L P

    2015-01-01

    Relativistic fluid dynamics and the theory of relativistic detonation fronts are used to estimate the space-time dynamics of the burning of the D-T fuel in Laser driven pellet fusion experiments. The initial "High foot" heating of the fuel makes the compressed target transparent to radiation, and then a rapid ignition pulse can penetrate and heat up the whole target to supercritical temperatures in a short time, so that most of the interior of the target ignites almost simultaneously and instabilities will have no time to develop. In these relativistic, radiation dominated processes both the interior, time-like burning front and the surrounding space-like part of the front will be stable against Rayleigh-Taylor instabilities. To achieve this rapid, volume ignition the pulse heating up the target to supercritical temperature should provide the required energy in less than ~ 10 ps.

  1. Stratified-charge glow plug ignition engine experiments. Topical report

    SciTech Connect (OSTI)

    Thring, R.H.; Leet, J.A.

    1991-05-01

    An investigation was conducted to study the feasibility of operating a natural gas two-stroke engine using glow plug ignition with very lean mixtures. The term Stratified-Charge Glow Plus Ignition (SCGI) was coined to describe the engine. A JLO DL 365 single-cylinder, two-stroke, diesel engine was converted first to a natural gas fueled spark-ignited engine for the baseline tests, and then to the SCGI engine. The engine was successfully run, but was found to be sensitive to various conditions such as the glow plug temperature. The engine ran very lean, to an equivalence ratio of 0.33, offering the potential of good fuel economy and low NOx emissions. Numerous photographs, diagrams, and charts are included.

  2. Ion beam requirements for fast ignition of inertial fusion targets

    E-Print Network [OSTI]

    Honrubia, J J

    2015-01-01

    Ion beam requirements for fast ignition are investigated by numerical simulation taking into account new effects such as ion beam divergence not included before. We assume that ions are generated by the TNSA scheme in a curved foil placed inside a re-entrant cone and focused on the cone apex or beyond. From the focusing point to the compressed core ions propagate with a given divergence angle. Ignition energies are obtained for two compressed fuel configurations heated by proton and carbon ion beams. The dependence of the ignition energies on the beam divergence angle and on the position of the ion beam focusing point have been analysed. Comparison between TNSA and quasi-monoenergetic ions is also shown.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  4. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  5. Plasma channel from EP beam Direct-drive ignition is the main thrust in LLE

    E-Print Network [OSTI]

    -drive ignition; this is not an optimal configuration fordirectdrivethatrequiressphericalillumination I2093 26 kJ Scale 1:70 in energy Scale 1:1 Scale 1:1 #12;Hydro-equivalentignitiononOMEGA #12;Ignition

  6. A TUTORIAL ON IGNITION AND GAIN FOR SMALL FUSION TARGETS

    SciTech Connect (OSTI)

    Kirkpatrick, R. C. [Los Alamos National Laboratory, Los Alamos, NM 087545 (United States)

    2009-07-26

    Nuclear fusion was discovered experimentally in 1933-34 and other charged particle nuclear reactions were documented shortly thereafter. Work in earnest on the fusion ignition problem began with Edward Teller's group at Los Alamos during the war years. His group quantified all the important basic atomic and nuclear processes and summarized their interactions. A few years later, the success of the early theory developed at Los Alamos led to very successful thermonuclear weapons, but also to decades of unsuccessful attempts to harness fusion as an energy source of the future. The reasons for this history are many, but it seems appropriate to review some of the basics with the objective of identifying what is essential for success and what is not. This tutorial discusses only the conditions required for ignition in small fusion targets and how the target design impacts driver requirements. Generally speaking, the driver must meet the energy, power and power density requirements needed by the fusion target. The most relevant parameters for ignition of the fusion fuel are the minimum temperature and areal density (rhoR), but these parameters set secondary conditions that must be achieved, namely an implosion velocity, target size and pressure, which are interrelated. Despite the apparent simplicity of inertial fusion targets, there is not a single mode of fusion ignition, and the necessary combination of minimum temperature and areal density depends on the mode of ignition. However, by providing a magnetic field of sufficient strength, the conditions needed for fusion ignition can be drastically altered. Magnetized target fusion potentially opens up a vast parameter space between the extremes of magnetic and inertial fusion.

  7. Correlating cookoff violence with pre-ignition damage.

    SciTech Connect (OSTI)

    Wente, William Baker; Hobbs, Michael L.; Kaneshige, Michael Jiro

    2010-03-01

    Predicting the response of energetic materials during accidents, such as fire, is important for high consequence safety analysis. We hypothesize that responses of ener-getic materials before and after ignition depend on factors that cause thermal and chemi-cal damage. We have previously correlated violence from PETN to the extent of decom-position at ignition, determined as the time when the maximum Damkoehler number ex-ceeds a threshold value. We seek to understand if our method of violence correlation ap-plies universally to other explosive starting with RDX.

  8. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  9. Ignition feedback regenerative free electron laser (FEL) amplifier

    DOE Patents [OSTI]

    Kim, Kwang-Je (Burr Ridge, IL); Zholents, Alexander (Walnut Creek, CA); Zolotorev, Max (Oakland, CA)

    2001-01-01

    An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

  10. Features of a point design for fast ignition

    SciTech Connect (OSTI)

    Tabak, M; Clark, D; Town, R J; Key, M H; Amendt, P; Ho, D; Meeker, D J; Shay, H D; Lasinski, B F; Kemp, A; Divol, L; Mackinnon, A J; Patel, P; Strozzi, D; Grote, D P

    2009-10-26

    Fast Ignition is an inertial fusion scheme in which fuel is first assembled and then heated to the ignition temperature with an external heating source. In this note we consider cone and shell implosions where the energy supplied by short pulse lasers is transported to the fuel by electrons. We describe possible failure modes for this scheme and how to overcome them. In particular, we describe two sources of cone tip failure, an axis jet driven from the compressed fuel mass and hard photon preheat leaking through the implosion shell, and laser prepulse that can change the position of laser absorption and the angular distribution of the emitted electrons.

  11. ENGINEERING FEATURES OF THE FUSION IGNITION RESEARCH EXPERIMENT (FIRE)

    E-Print Network [OSTI]

    ENGINEERING FEATURES OF THE FUSION IGNITION RESEARCH EXPERIMENT (FIRE) R.J. Thomea and P.J. Heitzenroederb for the FIRE Design Team a MIT Plasma Science and Fusion Center, 185 Albany St, Cambridge, MA, USA Box 451, Princeton, NJ, USA 08543 The FIRE tokamak is an option for the next step in the US magnetic

  12. ENGINEERING STATUS OF THE FUSION IGNITION RESEARCH EXPERIMENT (FIRE)

    E-Print Network [OSTI]

    ENGINEERING STATUS OF THE FUSION IGNITION RESEARCH EXPERIMENT (FIRE) Philip J. Heitzenroeder Dale 08543 Cambridge, MA 02139 (609)-243-3043 (609)-243-3301 (617)-253-8155 For the FIRE Project Team ABSTRACT FIRE is a compact, high field tokamak being studied as an option for the next step in the US

  13. Carbon dioxide emission during forest fires ignited by lightning

    E-Print Network [OSTI]

    Pelc, Magdalena

    2009-01-01

    In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

  14. Carbon dioxide emission during forest fires ignited by lightning

    E-Print Network [OSTI]

    Magdalena Pelc; Radoslaw Osuch

    2009-03-31

    In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

  15. On Operational Power Reactor Regime and Ignited Spherical Tokamaks

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    , 2003 version of the "cold" magnetic "Fusion without ignition" in the next 35 years, the talk.-Pitersburg, St.-Pitersburg, RF % Insutute of Nuclear Fusion, RRC "Kurchatov Ins.", Moscow, RF & Vyoptics, Inc for magnetic fusion, OPRR requires a low recycling and wall-stabilized high- plasma. Because of the small

  16. Optimization of the process of plasma ignition of coal

    SciTech Connect (OSTI)

    Peregudov, V.S.

    2009-04-15

    Results are given of experimental and theoretical investigations of plasma ignition of coal as a result of its thermochemical preparation in application to the processes of firing up a boiler and stabilizing the flame combustion. The experimental test bed with a commercial-scale burner is used for determining the conditions of plasma ignition of low-reactivity high-ash anthracite depending on the concentration of coal in the air mixture and velocity of the latter. The calculations produce an equation (important from the standpoint of practical applications) for determining the energy expenditure for plasma ignition of coal depending on the basic process parameters. The tests reveal the difficulties arising in firing up a boiler with direct delivery of pulverized coal from the mill to furnace. A scheme is suggested, which enables one to reduce the energy expenditure for ignition of coal and improve the reliability of the process of firing up such a boiler. Results are given of calculation of plasma thermochemical preparation of coal under conditions of lower concentration of oxygen in the air mixture.

  17. Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel on the Initiation and the Combustion Potential of Olefin Impact in a Diesel Base Fuel D. Alseda1,2, X. Montagne1 and P. Dagaut2 1 -- Combustion en mode HCCI : impact de la formulation d'un carburant Diesel sur l'initiation et la combustion

  18. Safety analysis of optically ignited explosive and pyrotechnic devices

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.; Holswade, S.

    1994-05-01

    The future of optical ordnance depends on the acceptance, validation and verification of the stated safety enhancement claims of optical ordnance over existing electrical explosive devices (EED`s). Sandia has been pursuing the development of optical ordnance, with the primary motivation of this effort being the enhancement of explosive safety by specifically reducing the potential of premature detonation that can occur with low energy electrically ignited explosive devices. By using semiconductor laser diodes for igniting these devices, safety improvements can be made without being detrimental to current system concerns since the inputs required for these devices are similar to electrical systems. Laser Diode Ignition (LDI) of the energetic material provides the opportunity to remove the bridgewire and electrically conductive pins from the charge cavity, creating a Faraday cage and thus isolating the explosive or pyrotechnic materials from stray electrical ignition sources. Recent results from our continued study of safety enhancements are presented. The areas of investigation which are presented include: (1) unintended optical source analysis, specifically lightning insensitivity, (2) electromagnetic radiation (EMR) and electrostatic discharge (ESD) insensitivity analysis, and (3) powder safety.

  19. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    SciTech Connect (OSTI)

    Seshadri, Vikram; Kaisare, Niket S.

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  20. Compact proton spectrometers for measurements of shock

    SciTech Connect (OSTI)

    Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M G; Casey, D T; Sinenian, N; Manuel, M; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G; Dewald, E; Doeppner, T; Edwards, M J; Glenzer, S H; Hicks, D; Landen, O L; London, R; Meezan, N B

    2012-05-02

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  1. Progress in Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics

    SciTech Connect (OSTI)

    McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.; Skupsky, S.; Betti, R.; Boehly, T.R.; Collins, T.J.B.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Igumenshchev, I.V.; Keck, R.L.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Marciante, J.; Marozas, J.a.; Marshall, F.J.; Maximov, A.V.; McKenty, P.W.; Morse, S.F.B.; Myatt, J.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Regan, S.P.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J.D.

    2006-06-28

    Direct-drive inertial confinement fusion (ICF) is expected to demonstrate high gain on the National Ignition Facility (NIF) in the next decade and is a leading candidate for inertial fusion energy production. The NIF will initially be configured for x-ray drive and with no beams placed at the target equator to provide a symmetric irradiation of a direct-drive capsule. LLE is developing the “polar-direct-drive” (PDD) approach that repoints beams toward the target equator. Initial 2-D simulations have shown ignition. A unique “Saturn-like” plastic ring around the equator refracts the laser light incident near the equator toward the target, improving the drive uniformity.

  2. Proceedings of the twelfth target fabrication specialists` meeting

    SciTech Connect (OSTI)

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.

  3. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  4. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  5. University of California Lawrence Livermore

    E-Print Network [OSTI]

    University of California Lawrence Livermore National Laboratory John Lindl - LLNL Fusion Energy Program Leader *This work was performed under the auspices of the U. S. Department of Energy by Lawrence and the Inertial Fusion Energy Program #12;Outline of Talk · The National Ignition Facility (NIF) · Indirect Drive

  6. Laser Programs Highlights 1998

    SciTech Connect (OSTI)

    Lowdermilk, H.; Cassady, C.

    1999-12-01

    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  7. Final report for miniature laser ignited bellows motor

    SciTech Connect (OSTI)

    Renfro, S.L.

    1994-02-18

    A miniature optically ignited actuation device has been demonstrated using a laser diode as an ignition source. This pyrotechnic driven motor provides between 4 and 6 lbs of linear force across a 0.090 inch diameter surface. The physical envelope of the device is 1/2 inch long and 1/8 inch diameter. This unique application of optical energy can be used as a mechanical link in optical arming systems or other applications where low shock actuation is desired and space is limited. An analysis was performed to determine pyrotechnic materials suitable to actuate a bellows device constructed of aluminum or stainless steel. The aluminum bellows was chosen for further development and several candidate pyrotechnics were evaluated. The velocity profile and delivered force were quantified using an non-intrusive optical motion sensor.

  8. High load operation in a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Liechty, Michael P. (Chillicothe, IL); Hardy, William L. (Peoria, IL); Rodman, Anthony (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL)

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  9. CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS

    SciTech Connect (OSTI)

    Ma, H.; Woosley, S. E.; Malone, C. M. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Almgren, A.; Bell, J. [Center for Computational Sciences and Engineering, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States)

    2013-07-01

    A leading model for Type Ia supernovae (SNe Ia) begins with a white dwarf near the Chandrasekhar mass that ignites a degenerate thermonuclear runaway close to its center and explodes. In a series of papers, we shall explore the consequences of ignition at several locations within such dwarfs. Here we assume central ignition, which has been explored before, but is worth revisiting, if only to validate those previous studies and to further elucidate the relevant physics for future work. A perturbed sphere of hot iron ash with a radius of {approx}100 km is initialized at the middle of the star. The subsequent explosion is followed in several simulations using a thickened flame model in which the flame speed is either fixed-within the range expected from turbulent combustion-or based on the local turbulent intensity. Global results, including the explosion energy and bulk nucleosynthesis (e.g., {sup 56}Ni of 0.48-0.56 M{sub Sun }) turn out to be insensitive to this speed. In all completed runs, the energy released by the nuclear burning is adequate to unbind the star, but not enough to give the energy and brightness of typical SNe Ia. As found previously, the chemical stratification observed in typical events is not reproduced. These models produce a large amount of unburned carbon and oxygen in central low velocity regions, which is inconsistent with spectroscopic observations, and the intermediate mass elements and iron group elements are strongly mixed during the explosion.

  10. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Academy of Sciences, Hefei, Anhui, P.R. China The Engineering Design of ARC: A Compact, High Field, Fusion Nuclear Science Facility and Demonstration Power Plant B. N....

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  12. Facility Name Facility Name Facility FacilityType Owner Developer...

    Open Energy Info (EERE)

    FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi...

  13. Using multiple secondary fusion products to evaluate fuel ?R, electron temperature, and mix in deuterium-filled implosions at the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; Lahmann, B.; Séguin, F. H.; Frenje, J. A.; Li, C. K.; Gatu Johnson, M.; Petrasso, R. D.; Berzak Hopkins, L. F.; et al

    2015-08-25

    In deuterium-filled inertial confinement fusion implosions, the secondary fusion processes D(3He,p)4He and D(T,n)4He occur, as the primary fusion products 3He and T react in flight with thermal deuterons. In implosions with moderate fuel areal density (~ 5–100 mg/cm2), the secondary D-3He reaction saturates, while the D-T reaction does not, and the combined information from these secondary products is used to constrain both the areal density and either the plasma electron temperature or changes in the composition due to mix of shell material into the fuel. The underlying theory of this technique is developed and applied to three classes of implosionsmore »on the National Ignition Facility: direct-drive exploding pushers, indirect-drive 1-shock and 2-shock implosions,and polar direct-drive implosions. In the 1- and 2-shock implosions, the electron temperature is inferred to be 0.65 x and 0.33 x the burn-averaged ion temperature, respectively. The inferred mixed mass in the polar direct-drive implosions is in agreement with measurements using alternative techniques.« less

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  17. Pilot fuel ignited stratified charge rotary combustion engine and fuel injector therefor

    SciTech Connect (OSTI)

    Loyd, R. W.

    1980-02-12

    For a pilot fuel ignited stratified charge rotary, internal combustion engine, the fuel injection system and a fuel injector therefor comprises a fuel injector having plural discharge ports with at least one of the discharge ports located to emit a ''pilot'' fuel charge (relatively rich fuel-air mixture) into a passage in the engine housing, which passage communicates with the engine combustion chambers. An ignition element is located in the passage to ignite the ''pilot'' fuel (a relatively rich fuel-air mixture) flowing through the passage. At least one other discharge port of the fuel injector is in substantially direct communication with the combustion chambers of the engine to emit a main fuel charge into the latter. The ignited ''pilot'' fuelair mixture, when ignited, flashes into the combustion chambers to ignite the main, relatively lean, fuel-air mixture which is in the combustion chambers.

  18. Two-stage ignition and NTC phenomenon in diesel engines Xiao Fu, Suresh K. Aggarwal

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    investigated in sprays and homogeneous mixtures. Effect of methane on the ignition of n-heptane sprays in dual-fuel-stage ignition NTC phenomenon Diesel spray Dual-fuel engine a b s t r a c t Two-stage ignition and NTC phenomenon in diesel sprays is investigated by performing 3-D two-phase reacting flow simulations in a dual-fuel engine

  19. Observation of a Reflected Shock in an Indirectly Driven Spherical Implosion at the National Ignition Facility

    E-Print Network [OSTI]

    ) or DT fill, launching a strong converging shock that reaches 2 Gbar after rebound. The physics-ray ablation to transfer energy to a much thicker capsule rather than direct laser isochoric heating of a very

  20. DOE/EIS-0236-S1F; National Ignition Facility Final Supplemental...

    Energy Savers [EERE]

    practical application in nuclear weapons programs. It will allow experimental study of thermonuclear burn in the laboratory. It will extend the range of investigations of...

  1. BASIC RESEARCH DIRECTIONS for User Science at the National Ignition Facility

    E-Print Network [OSTI]

    Stewart, Sarah T.

    .................................................................................................... 47 Thermonuclear Hydrodynamics and Transport

  2. Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Kritcher, A. L.; Town, R.; Bradley, D.; Clark, D.; Spears, B.; Jones, O.; Haan, S.; Springer, P. T.; Lindl, J.; Callahan, D.; Edwards, M. J.; Landen, O. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Scott, R. H. H. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom)] [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom)

    2014-04-15

    We investigate yield degradation due to applied low mode P2 and P4 asymmetries in layered inertial confinement fusion implosions. This study has been performed with a large database of >600 2D simulations. We show that low mode radiation induced drive asymmetries can result in significant deviation between the core hot spot shape and the fuel ?R shape at peak compression. In addition, we show that significant residual kinetic energy at peak compression can be induced by these low mode asymmetries. We have developed a metric, which is a function of the hot spot shape, fuel ?R shape, and residual kinetic energy at peak compression, that is well correlated to yield degradation due to low mode shape perturbations. It is shown that the ?R shape and residual kinetic energy cannot, in general, be recovered by inducing counter asymmetries to make the hot core emission symmetric. In addition, we show that the yield degradation due to low mode asymmetries is well correlated to measurements of time dependent shape throughout the entire implosion, including early time shock symmetry and inflight fuel symmetry.

  3. High-density carbon ablator experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    MacKinnon, A. J., E-mail: mackinnon2@llnl.gov; Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-05-15

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5?g/cc) than plastic (CH, 1?g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2?mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He?=?0.03?mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity?=?410?±?20?km/s with no observed ablator mixing into the hot spot.

  4. DOE/EIS-0236-S1F; National Ignition Facility Final Supplemental...

    Broader source: Energy.gov (indexed) [DOE]

    element of science-based stockpile stewardship. It will allow experimental study of thermonuclear burn in the laboratory. It will extend the range of investigations of...

  5. X-ray area backlighter development at the National Ignition Facility...

    Office of Scientific and Technical Information (OSTI)

    capability. Authors: Barrios, M. A., E-mail: barriosgarci1@llnl.gov ; Fournier, K. B. ; Smith, R. ; Lazicki, A. ; Rygg, R. ; Fratanduono, D. E. ; Eggert, J. ; Park, H.-S. ;...

  6. DOE/EIS-0236-S1F; National Ignition Facility Final Supplemental...

    Broader source: Energy.gov (indexed) [DOE]

    application in nuclear weapons programs. It will allow experimental study of thermonuclear burn in the laboratory. It will extend the range of investigations of important...

  7. DOE/EIS-0236-S1F; National Ignition Facility Final Supplemental...

    Broader source: Energy.gov (indexed) [DOE]

    element of science-based stockpile stewardship. It will allow experimental study of thermonuclear burn in the laboratory. It will extend the range of investigations of important...

  8. Pathway from the National Ignition Facility to an operational LIFE power plant

    E-Print Network [OSTI]

    Lawrence Livermore National Laboratory #12;#12;Or, less than a gram of fuel per person per year viable over a range of plant sizes #12;Oxford Economics have calculated the potential impact of domestic

  9. Studies of non-hydrodynamic processes in ICF implosions on OMEGA and the National Ignition Facility

    E-Print Network [OSTI]

    Rinderknecht, Hans G

    2015-01-01

    Ion kinetic effects are expected to modify plasma dynamics when ion mean-free-paths and collision times become comparable to the scale sizes of the plasma. Such conditions arise during the shock convergence phase of inertial ...

  10. The National Ignition Facility - Applications for Inertial Fusion Energy and High Energy Density Science

    SciTech Connect (OSTI)

    Campbell, E.M.; Hogan, W.J.

    1999-08-12

    Over the past several decades, significant and steady progress has been made in the development of fusion energy and its associated technology and in the understanding of the physics of high-temperature plasmas. While the demonstration of net fusion energy (fusion energy production exceeding that required to heat and confine the plasma) remains a task for the next millennia and while challenges remain, this progress has significantly increased confidence that the ultimate goal of societally acceptable (e.g. cost, safety, environmental considerations including waste disposal) central power production can be achieved. This progress has been shared by the two principal approaches to controlled thermonuclear fusion--magnetic confinement (MFE) and inertial confinement (ICF). ICF, the focus of this article, is complementary and symbiotic to MFE. As shown, ICF invokes spherical implosion of the fuel to achieve high density, pressures, and temperatures, inertially confining the plasma for times sufficient long (t {approx} 10{sup -10} sec) that {approx} 30% of the fuel undergoes thermonuclear fusion.

  11. "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentatabout Who WorksNameGlaser, Woodrow WilsonLivermore

  12. X-ray area backlighter development at the National Ignition Facility

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonfor DirectSciTechConnect Conference:

  13. DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153 METHODS DERIVATION-2013,3O1 Supplement

  14. HEC-DPSSL 2012 Workshop: National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based29 1.921 1.892 1.887HDFView HDFView1

  15. HEC-DPSSL 2012 Workshop, Agenda: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— WeUpdate JonGuided65Bob8,

  16. HEC-DPSSL 2012 Workshop, Directions: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— WeUpdate JonGuided65Bob8,Science Directions

  17. HEC-DPSSL 2012 Workshop, Organizing Committee: National Ignition Facility &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— WeUpdate JonGuided65Bob8,SciencePhoton

  18. HEC-DPSSL 2012 Workshop, Topics: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— WeUpdate

  19. HEC-DPSSL 2012 Workshop, Topics: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— WeUpdateScience Deadlines TEXT SIZE

  20. HEC-DPSSL 2012 Workshop, Venue: National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— WeUpdateScience Deadlines TEXT SIZEVenue

  1. National Ignition Facility fires 300th laser target shot of fiscal year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications TheScience (SC) National2015 | National Nuclear

  2. Effect of ambient conditions and fuel properties on homogeneous charge compression ignition engine operation

    E-Print Network [OSTI]

    Andreae, Morgan M. (Morgan MacKenzie)

    2006-01-01

    Practical application of Homogeneous Charge Compression Ignition (HCCI) combustion must demonstrate robust responses to variations in environmental conditions. This work examines the impact of ambient conditions and fuel ...

  3. Investigation of proton focusing and conversion efficiency for proton fast ignition

    E-Print Network [OSTI]

    Bartal, Teresa Jean

    2012-01-01

    After ignition, a thermonuclear burn wave spreads radiallythe shell to create the thermonuclear burn wave. At 10 keV,heating the plasma to thermonuclear temperatures. Protons

  4. Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data

    Broader source: Energy.gov [DOE]

    Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Elizabeth J. Kelly and Raymond N. Tell

  5. Control strategy for hydrocarbon emissions in turbocharged direct injection spark ignition engines during cold-start

    E-Print Network [OSTI]

    Cedrone, Kevin David

    2013-01-01

    Gasoline consumption and pollutant emissions from transportation are costly and have serious, demonstrated environmental and health impacts. Downsized, turbocharged direct-injection spark ignition (DISI) gasoline engines ...

  6. Status of and prospects for the fast ignition inertial fusion concept

    SciTech Connect (OSTI)

    Key, M. H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2007-05-15

    Fast ignition is an alternate concept in inertial confinement fusion, which has the potential for easier ignition and greater energy multiplication. If realized, it could improve the prospects for inertial fusion energy. It poses stimulating challenges in science and technology, and the research is approaching a key stage in which the feasibility of fast ignition will be determined. This review covers the concepts, the state of the science and technology, the near-term prospects, and the challenges and risks involved in demonstrating high-gain fast ignition.

  7. The ePLAS Code for Ignition Studies

    SciTech Connect (OSTI)

    Mason, Rodney J

    2012-09-20

    Inertial Confinement Fusion (ICF) presents unique opportunities for the extraction of clean energy from Fusion. Intense lasers and particle beams can create and interact with such plasmas, potentially yielding sufficient energy to satisfy all our national needs. However, few models are available to help aid the scientific community in the study and optimization of such interactions. This project enhanced and disseminated the computer code ePLAS for the early understanding and control of Ignition in ICF. ePLAS is a unique simulation code that tracks the transport of laser light to a target, the absorption of that light resulting in the generation and transport of hot electrons, and the heating and flow dynamics of the background plasma. It uses an implicit electromagnetic field-solving method to greatly reduce computing demands, so that useful target interaction studies can often be completed in 15 minutes on a portable 2.1 GHz PC. The code permits the rapid scoping of calculations for the optimization of laser target interactions aimed at fusion. Recent efforts have initiated the use of analytic equations of state (EOS), K-alpha image rendering graphics, allocatable memory for source-free usage, and adaption to the latest Mac and Linux Operating Systems. The speed and utility of ePLAS are unequaled in the ICF simulation community. This project evaluated the effects of its new EOSs on target heating, compared fluid and particle models for the ions, initiated the simultaneous use of both ion models in the code, and studied long time scale 500 ps hot electron deposition for shock ignition. ePLAS has been granted EAR99 export control status, permitting export without a license to most foreign countries. Beta-test versions of ePLAS have been granted to several Universities and Commercial users. The net Project was aimed at achieving early success in the laboratory ignition of thermonuclear targets and the mastery of controlled fusion power for the nation.

  8. Ion Fast Ignition-Establishing a Scientific Basis for Inertial Fusion Energy --- Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite; Foord, Mark N.; Wei, Mingsheng; Beg, Farhat N.; Schumacher, Douglass W.

    2013-10-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional ?central hot spot? (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10?s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The compressed fuel is opaque to laser light. The ignition laser energy must be converted to a jet of energetic charged particles to deposit energy in the dense fuel. The original concept called for a spray of laser-generated hot electrons to deliver the energy; lack of ability to focus the electrons put great weight on minimizing the electron path. An alternative concept, proton-ignited FI, used those electrons as intermediaries to create a jet of protons that could be focused to the ignition spot from a more convenient distance. Our program focused on the generation and directing of the proton jet, and its transport toward the fuel, none of which were well understood at the onset of our program. We have developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to create a self-consistent understanding of the fundamental physics underlying these issues. Our strategy was to examine the new physics emerging as we added the complexity necessary to use proton beams in an inertial fusion energy (IFE) application. From the starting point of a proton beam accelerated from a flat, isolated foil, we 1) curved it to focus the beam, 2) attached the foil to a superstructure, 3) added a side sheath to protect it from the surrounding plasma, and finally 4) studied the proton beam behavior as it passed through a protective end cap into plasma. We built up, as we proceeded, a self-consistent picture of the quasi-neutral plasma jet that is the proton beam that, for the first time, included the role of the hot electrons in shaping the jet. Controlling them?through design of the accelerating surface and its connection to the surrounding superstructure?is critical; their uniform spread across the proton accelerating area is vital, but their presence in the jet opposes focus; their electron flow away from the acceleration area reduces conversion efficiency but can also increase focusing ability. The understanding emerging from our work and the improved simulation tools we have developed allow designing structures that optimize proton beams for focused heating. Our findings include: ? The achievable focus of proton beams is limited by the thermal pressure gradient in the laser-generated hot electrons that drive the process. This bending can be suppressed using a controlled flow of hot electrons along the surrounding cone wall, which induces a local transverse focusing sheath electric field. The resultant (vacuum-focused) spot can meet IFE requirements. ? Confinement of laser-generated electrons to the proton accelerating area can be achieved by supporting targets on thin struts. That increases laser-to-proton conversion energy by ~50%. As noted above, confinement should not be total; necessary hot-electron leakage into the surrounding superstructure for proton focusing can be controlled by with the strut width/number. ? Proton jets are further modified as they enter the fuel through the superstructure?s end cap. They can generate currents during that transit that further focus the proton beams. We developed a new ion stopping module for LSP code that properly accounted for changes in stopping power with ionization (e.g. temperature), and will be using it in future studies. The improved understanding, new experimental platforms, and the self-consistent modeling capability allow researchers a new ability to investigate the interaction of large ion currents with warm dense matter. That is of direct importance to the creation and investiga

  9. ICF quarterly report January - March 1997 volume 7, number 3

    SciTech Connect (OSTI)

    Murray, J

    1998-04-09

    The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide critical information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  12. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOE Patents [OSTI]

    Flowers, Daniel L. (San Leandro, CA)

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  13. Ethane ignition and oxidation behind reflected shock waves

    SciTech Connect (OSTI)

    de Vries, Jaap; Hall, Joel M.; Simmons, Stefanie L.; Kalitan, Danielle M.; Petersen, Eric L.; Rickard, Matthew J.A.

    2007-07-15

    Several diluted C{sub 2}H{sub 6}/O{sub 2}/Ar mixtures of varying concentrations and equivalence ratios (0.5<{phi}<2.0) were studied at temperatures between 1218 and 1860 K and at pressures between 0.57 and 3.0 atm using a shock tube. The argon dilution ranged from 91 to 98% by volume. Reaction progress was monitored using chemiluminescence emission from OH{sup *} and CH{sup *} at 307 and 431 nm, respectively. The dependence of ignition delay time on temperature, activation energy, and reactant concentrations is given in a master correlation of all the experimental data. The overall activation energy was found to be 39.6 kcal/mol over the range of conditions studied. For the first time in a shock-tube C{sub 2}H{sub 6} oxidation study, detailed species profile data and quantitative OH{sup *} time histories were documented, in addition to ignition delay times, and compared against modern detailed mechanisms. Because of the comprehensive scope of the present study and the high precision of the experimental data, several conclusions can be drawn that could not have been reached from earlier studies. Although there is some discrepancy among previous ethane oxidation data, the present work clearly shows the convergence of ignition delay time measurements to those herein and the remarkable accuracy of current kinetics models over most of the parameter space explored, despite the variation in the literature data. However, two areas shown to still need more measurements and better modeling are those of higher pressures and fuel-rich ethane-air mixtures. After appropriate OH{sup *} and CH{sup *} submechanisms are added, two modern chemical kinetics mechanisms containing high-temperature ethane chemistry are compared to the data to gauge the current state of C{sub 2}H{sub 6} oxidation modeling over the conditions of this study. The reproduction of the OH{sup *} and CH{sup *} profiles, together with {tau}{sub ign} predictions by these models, are compared against the profiles and ignition times found in the experimental data. The models are then used to identify some key reactions in ethane oxidation and CH formation under the conditions of this study. (author)

  14. Numerical routines for predicting ignition in pyrotechnic devices

    SciTech Connect (OSTI)

    Pierce, K.G.

    1986-06-01

    Two numerical models of the thermal processes leading to ignition in a pyrotechnic device have been developed. These models are based on finite difference approximations to the heat diffusion equation, with temperature-dependent thermal properties, in a single spatial coordinate. The derivation of the finite difference equations is discussed and the methods employed at boundaries and interfaces are given. The sources of the thermal-properties data are identified and how these data are used is explained. The program structure is explained and example runs of the programs are given.

  15. An enthalpy-temperature hybrid method for solving phase change problems and its application to polymer pyrolysis and ignition

    E-Print Network [OSTI]

    Zhou, Ying-Ying; Fernandez-Pello, Carlos

    2000-01-01

    K.M. , “A Mixed Layer Pyrolysis Model for Polypropylene”, toapplication to polymer pyrolysis and ignition Y. Zhou and A.application to polymer pyrolysis and ignition Y. Zhou and A.

  16. Experimental studies on the group ignition of a cloud of coal particles: Volume 2, Pyrolysis and ignition modeling. Final report, August 15, 1988--October 15, 1991

    SciTech Connect (OSTI)

    Annamalai, K.; Ryan, W.

    1992-01-01

    The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere.

  17. Low Frequency Architecture for Multi-Lamp CCFL Systemswith Capacitive Ignition

    E-Print Network [OSTI]

    Low Frequency Architecture for Multi-Lamp CCFL Systemswith Capacitive Ignition Monm Doshi (I-0425 regan.zane@colorado.edu Absfruci-This paper presents a low frequency architecture for driving parallel lamp ignition, and individual lamp current reguration in such designs. In this paper, we present a low

  18. Low-frequency square-wave electronic ballast with resonant ignition using digital mode and power

    E-Print Network [OSTI]

    Low-frequency square-wave electronic ballast with resonant ignition using digital mode and power both the functions of a resonant circuit for lamp ignition and a current controlled low frequency of the FB converter according to the lamp requirements. I. INTRODUCTION The primary motivation for using low

  19. Toward LES of an ignition sequence in a full helicopter combustor

    E-Print Network [OSTI]

    of Turbomeca, 18 main burners are ignited by two pilot flames. The success of an ignition attempt depends burner to generate the pilot flames. In a second step, these two flames must provide a sufficient amount of energy to initiate a stable combustion in the main burners located in their vicinity. Finally

  20. IAEA-CN-50/G-II-1 COMPACT IGNITION TOKAMAK PHYSICS AND

    E-Print Network [OSTI]

    - plasma experiments [1,2]. Burning-plasma operation in ITER and more advanced fusion reactors [3IAEA-CN-50/G-II-1 COMPACT IGNITION TOKAMAK PHYSICS AND ENGINEERING BASIS* R.R. PARKER', G. BATEMAN University, Princeton, New Jersey, United States of America Abstract COMPACT IGNITION TOKAMAK PHYSICS

  1. Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere

    E-Print Network [OSTI]

    Heil, Matthias

    velocity of the fuel kernel v velocity vector (in a frame at rest with the fluid at infinity) x coordinateIgnition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere JOEL DAOU Dpto, Spain. E-mail: daou@tupi.dmt.upm.es Ignition and combustion of an initially spherical pocket of fuel

  2. Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel

    E-Print Network [OSTI]

    Pacheco, Jose Rafael

    droplets of the fuel were allowed to fall in a controlled environment on a heated metallic plateIncreased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel Himanshu Tyagi, Patrick April 2, 2008 ABSTRACT The present study attempts to improve the ignition properties of diesel fuel

  3. Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere

    E-Print Network [OSTI]

    Sidorov, Nikita

    Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere JOEL DAOU Dpto, Spain. E-mail: daou@tupi.dmt.upm.es Ignition and combustion of an initially spherical pocket of fuel, the results provide a good appreciation of the dynamics of the combustion process. For example, it is found

  4. Influence of Loss-on-Ignition Temperature and Heating Time on Ash Content

    E-Print Network [OSTI]

    Selinger, Brent

    Influence of Loss-on-Ignition Temperature and Heating Time on Ash Content of Compost and Manure-on-ignition (LOI) is a simple method for determining ash content, and by reciprocation, organic matter content, 16, 20, and 24-h) on the ash content of a finished compost and a fresh manure. The experiment

  5. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    SciTech Connect (OSTI)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  6. Mise en vidence du phnomne d'auto-ignition dans les

    E-Print Network [OSTI]

    Aubertin, Michel

    pollution et d'augmenter les réserves exploitées. En effet, l'un des avantages de l'utilisation du remblai'auto-ignition. L'auto-ignition se manifeste par une combustion interne des remblais en place suite ŕ une déchets miniers sont celles reliées au problčme d'auto-combustion de stériles sulfureux issus de l

  7. LES of an ignition sequence in a gas turbine M. Boileau a,, G. Staffelbach a

    E-Print Network [OSTI]

    LES of an ignition sequence in a gas turbine engine M. Boileau a,, G. Staffelbach a , B. CuenotTurbomeca (SAFRAN group), Bordes, France Abstract Being able to ignite or reignite a gas turbine engine in a cold including 18 burners. This geometry corresponds to a real gas turbine chamber. Massively parallel computing

  8. A comparison of various models in predicting ignition delay in single-particle coal combustion

    E-Print Network [OSTI]

    A comparison of various models in predicting ignition delay in single-particle coal combustion November 2013 Accepted 7 January 2014 Available online xxxx Keywords: Coal Devolatilization Ignition delay a b s t r a c t In this paper, individual coal particle combustion under laminar conditions

  9. Facility Operations and Maintenance Facilities Management

    E-Print Network [OSTI]

    Capogna, Luca

    Facility Operations and Maintenance Facilities Management D101 Facilities Management R -575/affirmative action institution. 354 3 373 4 373A,B,C,D 4 Alm8/31/12 #12;Facility Operations and Maintenance, B 5 1409 5 1403 5 1403 A, B 4 1408 3 1408 A,B,C 3 1610 3 #12;Facility Operations and Maintenance

  10. Effect of experimentally observed hydrogenic fractionation on inertial confinement fusion ignition target performance

    SciTech Connect (OSTI)

    McKenty, P. W.; Wittman, M. D.; Harding, D. R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2006-10-01

    The need of cryogenic hydrogenic fuels in inertial confinement fusion (ICF) ignition targets has been long been established. Efficient implosion of such targets has mandated keeping the adiabat of the main fuel layer at low levels to ensure drive energies are kept at reasonable minima. The use of cryogenic fuels helps meet this requirement and has therefore become the standard in most ICF ignition designs. To date most theoretical ICF ignition target designs have assumed a homogeneous layer of deuterium-tritium (DT) fuel kept slightly below the triple point. However, recent work has indicated that, as cryogenic fuel layers are formed inside an ICF capsule, isotopic dissociation of the tritium (T), deuterium (D), and DT takes place leading to a 'fractionation' of the final ice layer. This paper will numerically investigate the effects that various scenarios of fractionation have on hot-spot formation, ignition, and burn in ICF ignition target designs.

  11. FIREBALL: Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    SciTech Connect (OSTI)

    Martin, Adam K.; Eskridge, Richard H.; Lee, Michael H. [Propulsion Research Center, NASA Marshall Space Flight Center XD22, Huntsville, AL 35812 (United States); Fimognari, Peter J. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2006-01-20

    Thermo-nuclear fusion may be the key to a high Isp, high specific power propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the Orion concept, is described. A dense FRC plasmoid is accelerated to high velocity (in excess of 500 km/s) and is compressed into a detached liner (pulse unit). The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion burn in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by a pusher-plate, as in the classic Orion concept. However with this concept, the vehicle does not carry a magazine of autonomous pulse-units. By accelerating a second, heavier FRC, which acts as a piston, right behind the first one, the velocity required to initiate the fusion burn is greatly reduced.

  12. Ignition and extinction phenomena in helium micro hollow cathode discharges

    SciTech Connect (OSTI)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R.; Overzet, L. J.

    2013-12-28

    Micro hollow cathode discharges (MHCD) were produced using 250??m thick dielectric layer of alumina sandwiched between two nickel electrodes of 8??m thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2??s long current peak as high as 24?mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400?Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few ?s relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.

  13. Characterization of in situ oil shale retorts prior to ignition

    DOE Patents [OSTI]

    Turner, Thomas F. (Laramie, WY); Moore, Dennis F. (Laramie, WY)

    1984-01-01

    Method and system for characterizing a vertical modified in situ oil shale retort prior to ignition of the retort. The retort is formed by mining a void at the bottom of a proposed retort in an oil shale deposit. The deposit is then sequentially blasted into the void to form a plurality of layers of rubble. A plurality of units each including a tracer gas cannister are installed at the upper level of each rubble layer prior to blasting to form the next layer. Each of the units includes a receiver that is responsive to a coded electromagnetic (EM) signal to release gas from the associated cannister into the rubble. Coded EM signals are transmitted to the receivers to selectively release gas from the cannisters. The released gas flows through the retort to an outlet line connected to the floor of the retort. The time of arrival of the gas at a detector unit in the outlet line relative to the time of release of gas from the cannisters is monitored. This information enables the retort to be characterized prior to ignition.

  14. KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES R OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES INTRODUCTION Engines running on HCCI combustion mode (Homogeneous Charge Compression Ignition) have the potential to provide both diesel

  15. A review of the main driving factors of forest fire ignition over Europe Anne GanteaumeA,C

    E-Print Network [OSTI]

    Boyer, Edmond

    A review of the main driving factors of forest fire ignition over Europe Anne GanteaumeA,C , Andrea of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This paper analyses the factors driving forest fire ignition

  16. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 12, DECEMBER 2011 3307 Microwave-Plasma-Coupled Re-Ignition of

    E-Print Network [OSTI]

    Lee, Tonghun

    , improved fuel efficiency through more complete combustion, reduction of pollution by altering oxidation by-assisted ig- nition and combustion research works. Results indicate that, for re-ignition to occur-ignition to occur. Index Terms--Auto-ignition temperature, laser induced fluores- cence, plasma assisted combustion

  17. 303-K Storage Facility closure plan. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1993-12-15

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  18. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac

  19. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al. , Opt. Commun.133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  20. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect (OSTI)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-06-15

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ?±10% accuracy, and mean neutron energy to ?±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15?20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ?±25?40 km/s.

  1. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect (OSTI)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  2. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; et al

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore »uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  3. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture |GE PutsgovSitesMobile Facility AMF

  4. A simplified model of TiH1.65/KClO4 pyrotechnic ignition.

    SciTech Connect (OSTI)

    Chen, Ken Shuang

    2009-04-01

    A simplified model was developed and is presented in this report for simulating thermal transport coupled with chemical reactions that lead to the pyrotechnic ignition of TiH1.65/KClO4 powder. The model takes into account Joule heating via a bridgewire, thermal contact resistance at the wire/powder interface, convective heat loss to the surroundings, and heat released from the TiH1.65- and KClO4-decomposition and TiO2-oxidation reactions. Chemical kinetic sub-models were put forth to describe the chemical reaction rate(s) and quantify the resultant heat release. The simplified model predicts pyrotechnic ignition when heat from the pyrotechnic reactions is accounted for. Effects of six key parameters on ignition were examined. It was found that the two reaction-rate parameters and the thermal contact resistance significantly affect the dynamic ignition process whereas the convective heat transfer coefficient essentially has no effect on the ignition time. Effects of the initial/ambient temperature and electrical current load through the wire are as expected. Ignition time increases as the initial/ambient temperature is lowered or the wire current load is reduced. Lastly, critical needs such as experiments to determine reaction-rate and other model-input parameters and to measure temperature profiles, time to ignition and burn-rate data for model validation as well as efforts in incorporating reaction-rate dependency on pressure are pointed out.

  5. Final Scientific and Technical Report - Practical Fiber Delivered Laser Ignition Systems for Vehicles

    SciTech Connect (OSTI)

    Yalin, Azer

    2014-03-30

    Research has characterized advanced kagome fiber optics for their use in laser ignition systems. In comparison to past fibers used in laser ignition, these fibers have the important advantage of being relatively bend-insensitivity, so that they can be bent and coiled without degradation of output energy or beam quality. The results are very promising for practical systems. For pulse durations of ~12 ns, the fibers could deliver >~10 mJ pulses before damage onset. A study of pulse duration showed that by using longer pulse duration (~20 – 30 ns), it is possible to carry even higher pulse energy (by factor of ~2-3) which also provides future opportunities to implement longer duration sources. Beam quality measurements showed nearly single-mode output from the kagome fibers (i.e. M2 close to 1) which is the optimum possible value and, combined with their high pulse energy, shows the suitability of the fibers for laser ignition. Research has also demonstrated laser ignition of an engine including reliable (100%) ignition of a single-cylinder gasoline engine using the laser ignition system with bent and coiled kagome fiber. The COV of IMEP was <2% which is favorable for stable engine operation. These research results, along with the continued reduction in cost of laser sources, support our commercial development of practical laser ignition systems.

  6. Shock-ignition relevant experiments with planar targets on OMEGA

    SciTech Connect (OSTI)

    Hohenberger, M.; Hu, S. X.; Anderson, K. S.; Boehly, T. R.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Yaakobi, B.; Theobald, W.; Lafon, M.; Nora, R.; Fusion Science Center, University of Rochester, Rochester, New York 14623 ; Betti, R.; Meyerhofer, D. D.; Fusion Science Center, University of Rochester, Rochester, New York 14623; Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 ; Casner, A.; Fratanduono, D. E.; Ribeyre, X.; Schurtz, G.

    2014-02-15

    We report on laser-driven, strong-shock generation and hot-electron production in planar targets in the presence of a pre-plasma at shock-ignition (SI) relevant laser and pre-plasma conditions. 2-D simulations reproduce the shock dynamics well, indicating ablator shocks of up to 75 Mbar have been generated. We observe hot-electron temperatures of ?70?keV at intensities of 1.4?×?10{sup 15}?W/cm{sup 2} with multiple overlapping beams driving the two-plasmon decay instability. When extrapolated to SI-relevant intensities of ?10{sup 16}?W/cm{sup 2}, the hot electron temperature will likely exceed 100?keV, suggesting that tightly focused beams without overlap are better suited for launching the ignitor shock.

  7. Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion

    SciTech Connect (OSTI)

    Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2013-06-15

    The elliptical magnetic mirror scheme for guiding fast electrons for Fast Ignition proposed by Schmitz et al. (Plasma Phys. Controlled Fusion 54, 085016 (2012)) is studied for conditions on the multi-kJ scale which are much closer to full-scale Fast Ignition. When scaled up, the elliptical mirror scheme is still highly beneficial to Fast Ignition. An increase in the coupling efficiency by a factor of 3–4 is found over a wide range of fast electron divergence half-angles.

  8. A low cost igniter utilizing an SCB and titanium sub-hydride potassium perchlorate pyrotechnic

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.; Grubelich, M.C.; Hartman, J.K.; McCampbell, C.B.; Churchill, J.K.

    1993-12-31

    A conventional NSI (NASA standard initiator) normally employs a hot-wire ignition element to ignite ZPP (zirconium potassium perchlorate). With minor modifications to the interior of a header similar to an NSI device to accommodate an SCB (semiconductor bridge), a low cost initiator was obtained. In addition, the ZPP was replaced with THKP (titanium subhydride potassium perchlorate) to obtain increased overall gas production and reduced static-charge sensitivity. This paper reports on the all-fire and no-fire levels obtained and on a dual mix device that uses THKP as the igniter mix and a thermite as the output mix.

  9. THE ODTX SYSTEM FOR THERMAL IGNITION AND THERMAL SAFETY STUDY OF ENERGETIC MATERIALS

    SciTech Connect (OSTI)

    Hsu, P C; Hust, G; Howard, M; Maienschein, J L

    2010-03-03

    Understanding the response of energetic material to thermal event is very important for the storage and handling of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) can precisely measure times to explosion and minimum ignition temperatures of energetic materials at elevated temperatures. These measurements provide insight into the relative ease of thermal ignition and allow for the determination of kinetic parameters. The ODTX system can potentialy be a good tool to measure violence of the thermal ignition by monitoring the size of anvil cavity. Recent ODTX experimental data on various energetic materials (solid and liquids) are reported in this paper.

  10. Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor

    SciTech Connect (OSTI)

    Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia); Malekynia, B.; Ghoranneviss, M. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran-Poonak 14835-159 (Iran, Islamic Republic of); Miley, G. H. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois 61801 (United States); He, X. [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2008-07-07

    Hydrodynamic analysis for ignition of inertial fusion by Chu [Phys. Fluids 15, 413 (1972)] arrived at extremely high thresholds of a minimum energy flux density E* at 4x10{sup 8} J/cm{sup 2} which could be provided, e.g., by spark ignition. In view of alternative schemes of fast ignition, a re-evaluation of the early analysis including later discovered collective stopping power and the inhibition factor results in a 20 times lowering of the threshold for E*.

  11. Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility

    E-Print Network [OSTI]

    Li, C. K.

    Energy spectra and spectrally resolved one-dimensional fluence images of self-emitted charged-fusion products (14.7 MeV D[superscript 3]He protons) are routinely measured from indirectly driven inertial-confinement fusion ...

  12. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect (OSTI)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business

  13. Qualitative assessment of the ignition of highly flammable fuels by primary explosives

    SciTech Connect (OSTI)

    Elischer, P.P.; De Yong, L.

    1983-06-01

    An assessment of the ignition of fuel/air mixtures and of fabrics soaked with different fuels (ethanol, n-hexane and diethyl ether) by primary explosives has been carried out.

  14. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOE Patents [OSTI]

    Benson, D.A.; Bickes, R.W. Jr.; Blewer, R.S.

    1990-12-11

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose. 2 figs.

  15. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOE Patents [OSTI]

    Benson, David A. (Albuquerque, NM); Bickes, Jr., Robert W. (Albuquerque, NM); Blewer, Robert S. (Albuquerque, NM)

    1990-01-01

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose.

  16. Ignition Delay Times of Natural Gas/Hydrogen Blends at Elevated Pressures 

    E-Print Network [OSTI]

    Brower, Marissa

    2012-10-19

    Applications of natural gases that contain high levels of hydrogen have become a primary interest in the gas turbine market. For reheat gas turbines, understanding of the ignition delay times of high-hydrogen natural gases is important for two...

  17. Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio

    Broader source: Energy.gov [DOE]

    Our research shows that fuel can be blended to have a low ignition quality, which is desirable for high-efficiency advanced combustion, and with a high n-paraffin content to reduce CO and THC.

  18. Assessing the hydrocarbon emissions in a homogeneous direct injection spark ignited engine

    E-Print Network [OSTI]

    Radovanovic, Michael S

    2006-01-01

    For the purpose of researching hydrocarbon (HC) emissions in a direct-injection spark ignited (DISI) engine, five experiments were performed. These experiments clarified the role of coolant temperature, injection pressure, ...

  19. Effects of natural gas composition on ignition delay under diesel conditions

    SciTech Connect (OSTI)

    Naber, J.D.; Siebers, D.L. [Sandia National Labs., Livermore, CA (United States); Di Julio, S.S. [California State Univ., Northridge, CA (United States). Dept. of Mechanical Engineering; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

    1993-12-03

    Effects of variations in natural gas composition on autoignition of natural gas under direct-injection (DI) diesel engine conditions were studied experimentally in a constant-volume combustion vessel and computationally using a chemical kinetic model. Four fuel blends were investigated: pure methane, a capacity weighted mean natural gas, a high ethane content natural gas, and a natural gas with added propane typical of peak shaving conditions. Experimentally measured ignition delays were longest for pure methane and became progressively shorter as ethane and propane concentrations increased. At conditions characteristic of a DI compression ignition natural gas engine at Top Dead Center (CR=23:1, p = 6.8 MPa, T = 1150K), measured ignition delays for the four fuels varied from 1.8 ms for the peak shaving and high ethane gases to 2.7 ms for pure methane. Numerically predicted variations in ignition delay as a function of natural gas composition agreed with these measurements.

  20. Combustion Characteristics of a Two-Stroke Large Bore Natural Gas Spark-Ignited Engine 

    E-Print Network [OSTI]

    Griffin, Aaron A

    2015-07-30

    Naturally, there are complex interactions among internal combustion engine parameters such as in-cylinder pressure, emissions, speed, and load. These basic relationships are studied in a naturally aspirated, spark-ignited, two-stroke, large...