National Library of Energy BETA

Sample records for ignition facility nif

  1. National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record | Princeton Plasma Physics Lab National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record American Fusion News Category: National Ignition Facility Link: National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record

  2. The National Ignition Facility (NIF) - September 23, 2010 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    NIF03.23.10(1).pdf More Documents & Publications The National Ignition Facility (NIF) - September 23, 2010 EIS-0236-S1: Supplemental Environmental Impact Statement EIS-0236-S1:...

  3. The National Ignition Facility (NIF) - September 23, 2010 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    NIF03.23.10.pdf More Documents & Publications The National Ignition Facility (NIF) - September 23, 2010 EIS-0236-S1: Supplemental Environmental Impact Statement EIS-0236-S1:...

  4. National Ignition Facility & Photon Science NIF AT A GLANCe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 National Ignition Facility & Photon Science NIF AT A GLANCe the national ignition Facility at a glance The National Ignition Facility (NIF) is the world's largest laser system, housed in a 10-story building the size of three football fields at lawrence livermore National laboratory, east of san Francisco. NIF's 192 laser beams are capable of delivering at least 100 times more energy than any previous laser system. during full-scale ignition experiments, NIF will focus up to 1.8 million

  5. National Ignition Facility & Photon Science HOW NIF WORKS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 National Ignition Facility & Photon Science HOW NIF WORKS beam me up: how niF works In the National Ignition Facility (NIF), 192 laser beams travel a long path, about 1,500 meters, from their birth at the master oscillator-a device that generates the single pulse that seeds the entire NIF laser system-to the center of the target chamber. As the beams move through NIF's amplifiers, their energy increases exponentially. From beginning to end, the beams' total energy grows from one- billionth

  6. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  7. HEC-DPSSL 2012 Workshop, NIF Tour: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science NIF Tour TEXT SIZE Workshops About Organizing Committee Agenda Deadlines Abstract Submission Venue NIF Tour Directions Lake Tahoe Workshop Sign-up NIF Tour Non-US Citizen Deadline: July 11, 2012 US Citizen Deadline: August 10, 2012 Lawrence Livermore National Laboratory is home to the National Ignition Facility (NIF). NIF is a national resource — a unique experimental facility addressing compelling national security, energy, and science missions. NIF's 192 powerful laser beams,

  8. The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)

    SciTech Connect (OSTI)

    Moses, E

    2009-09-17

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely

  9. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Moses, E

    2009-10-15

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  10. The National Ignition Facility (NIF) and the issue of nonproliferation. Final study

    SciTech Connect (OSTI)

    1995-12-19

    NIF, the next step proposed by DOE in a progression of Inertial Confinement Fusion (ICF) facilities, is expected to reach the goal of ICF capsule ignition in the laboratory. This report is in response to a request of a Congressman that DOE resolve the question of whether NIF will aid or hinder U.S. nonproliferation efforts. Both technical and policy aspects are addressed, and public participation was part of the decision process. Since the technical proliferation concerns at NIF are manageable and can be made acceptable, and NIF can contribute positively to U.S. arms control and nonproliferation policy goals, it is concluded that NIF supports the nuclear nonproliferation objectives of the United States.

  11. Optomechanical considerations for the VISAR diagnostic at the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Kaufman, Morris I.; Celeste, John R.; Frogget, Brent C.; Lee, Tony L.; GacGowan, Brian J.; Malone, Robert M.; Ng, Edmund W.; Tunnell, Tom W.; Watts, Phillip W.

    2006-09-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The velocity interferometer for any reflector measures shock velocities at a location remote to the NIF target chamber. Our team designed two systems, one for a polar port orientation, and the other to accommodate two equatorial ports. The polar-oriented design requires a 48-m optical relay to move the light from inside the target chamber to a separately housed measurement and laser illumination station. The currently operational equatorial design requires a much shorter relay of 21 m. Both designs posed significant optomechanical challenges due to the long optical path length, large quantity of optical elements, and stringent NIF requirements. System design had to tightly control the use of lubricants and materials, especially those inside the vacuum chamber; tolerate earthquakes and radiation; and consider numerous other tolerance, alignment, and steering adjustment issues. To ensure compliance with NIF performance requirements, we conducted a finite element analysis.

  12. Near Field Intensity Trends of Main Laser Alignment Images in the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Leach, R R; Beltsar, I; Burkhart, S; Lowe-Webb, R; Kamm, V M; Salmon, T; Wilhelmsen, K

    2015-01-22

    The National Ignition Facility (NIF) utilizes 192 high-energy laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to potentially initiate a fusion reaction. NIF has been operational for six years; during that time, thousands of successful laser firings or shots have been executed. Critical instrument measurements and camera images are carefully recorded for each shot. The result is a massive and complex database or ‘big data’ archive that can be used to investigate the state of the laser system at any point in its history or to locate and track trends in the laser operation over time. In this study, the optical light throughput for more than 1600 NIF shots for each of the 192 main laser beams and 48 quads was measured over a three year period from January 2009 to October 2012. The purpose was to verify that the variation in the transmission of light through the optics over time performed within design expectations during this time period. Differences between average or integrated intensity from images recorded by the input sensor package (ISP) and by the output sensor package (OSP) in the NIF beam-line were examined. A metric is described for quantifying changes in the integrated intensity measurements and was used to view potential trends. Results are presented for the NIF input and output sensor package trends and changes over the three year time-frame.

  13. Progress on Establishing Guidelines for National Ignition Facility (NIF) Experiments to Extend Debris Shield Lifetime

    SciTech Connect (OSTI)

    Tobin, M; Eder, D; Braun, D; MacGowan, B

    2000-07-26

    The survivability and performance of the debris shields on the National Ignition Facility (NIF) are a key factor for the successful conduct and affordable operation of the facility. The improvements required over Nova debris shields are described. Estimates of debris shield lifetimes in the presence of target emissions with 4 - 5 J/cm{sup 2} laser fluences (and higher) indicate lifetimes that may contribute unacceptably to operations costs for NIF. We are developing detailed guidance for target and experiment designers for NIF to assist in minimizing the damage to, and therefore the cost of, maintaining NIF debris shields. The guidance limits the target mass that is allowed to become particulate on the debris shields (300 mg). It also limits the amount of material that can become shrapnel for any given shot (10 mg). Finally, it restricts the introduction of non-volatile residue (NVR) that is a threat to the sol-gel coatings on the debris shields to ensure that the chamber loading at any time is less than 1 pg/cm{sup 2}. We review the experimentation on the Nova chamber that included measuring quantities of particulate on debris shields by element and capturing shrapnel pieces in aerogel samples mounted in the chamber. We also describe computations of x-ray emissions from a likely NIF target and the associated ablation expected from this x-ray exposure on supporting target hardware. We describe progress in assessing the benefits of a pre-shield and the possible impact on the guidance for target experiments on NIF. Plans for possible experimentation on Omega and other facilities to improve our understanding of target emissions and their impacts are discussed. Our discussion of planned future work provides a forum to invite possible collaboration with the IFE community.

  14. Overview of the gamma reaction history diagnostic for the national ignition facility (NIF)

    SciTech Connect (OSTI)

    Kim, Yong Ho; Evans, Scott C; Herrmann, Hans W; Mack, Joseph M; Young, Carl S; Malone, Robert M; Cox, Brian C; Frogget, Brent C; Kaufman, Morris I; Tunnell, Thomas W; Tibbitts, Aric; Palagi, Martin J

    2010-01-01

    The National Ignition Facility (NIF) has a need for measuring gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic uses 900 off-axis parabolic mirrors to rel ay Cherenkov light from a volume of pressurized gas. This non imaging optical system has the high-speed detector placed at a stop position with the Cherenkov light delayed until after the prompt gammas have passed through the detector. Because of the wavelength range (250 to 700 nm), the optical element surface finish was a key design constraint. A cluster of four channels (each set to a different gas pressure) will collect the time histories for different energy ranges of gammas.

  15. The National Ignition Facility (NIF) Diagnostic Set at the Completion of the National Ignition Campaign (NIC) September 2013

    SciTech Connect (OSTI)

    Kilkenny, J.; Bell, P. E.; Bradley, D. K.; Bleuel, D. L.; Caggiano, J. A.; Dewald, E. L.; Hsing, W.; Kalantar, H.; Kauffman, R.; Moody, J. D.; Schneider, M. B.; Shaughnessy, D. A.; Shelton, R. T.; Yeamans, C. B.; Batha, S. H.; Grim, G. P.; Herrmann, H. W.; Merrill, F. E.; Leeper, R. J.; Sangster, T. C.; Edgell, D. H.; Glebov, V. Y.; Regan, S. P.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Rindernecht, H. G.; Zylstra, A. B.; Cooper, G. W.; Ruiz, C.

    2015-01-05

    At the completion of the National Ignition Campaign NIF had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole US ICF community. A plan for a limited of NIF Diagnostics was documented by the Joint Central Diagnostic Team in the NIF Conceptual Design Report in 1994. These diagnostics and many more were installed diagnostics by two decades later. We give a short description of each of the 36 different types of NIC diagnostics grouped by the function of the diagnostics, namely target drive, target response and target assembly, stagnation and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova’s in 1999. NIF diagnostics have a much greater degree of automation and rigor than Nova’s and the NIF diagnostic suite incorporates some scientific innovation compared to Nova and OMEGA namely one much higher speed x-ray imager. Directions for future NIF diagnostics are discussed.

  16. Concept of operations for channel characterization and simulation of coaxial transmission channels at the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Brown, Jr., Charles G.

    2015-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) executes experiments for inertial con nement fusion (ICF), world-class high energy density physics (HEDP), and critical national security missions. While the laser systems, target positioners, alignment systems, control systems, etc. enable the execution of such experiments, NIF’s utility would be greatly reduced without its suite of diagnostics. It would be e ectively “blind” to the incredible physics unleashed in its target chamber. Since NIF diagnostics are such an important part of its mission, the quality and reliability of the diagnostics, and of the data recorded from them, is crucial.

  17. National Ignition Facility | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Ignition Facility Subscribe to RSS - National Ignition Facility National Ignition Facility Image: National Ignition Facility Summary of Assessment of Prospects for Inertial Fusion Energy Read more about Summary of Assessment of Prospects for Inertial Fusion Energy National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record Read more about National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record NATIONAL IGNITION FACILITY Read more about

  18. National Ignition Facility LLNL-AR-585912_NIF-0135637-AA_2012...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 47 6 * NIF User Guide * Lawrence Livermore National Laboratory Contents 5.11. Final Optics Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  19. Description and performance of the preamplifier for the National Ignition Facility (NIF) laser system

    SciTech Connect (OSTI)

    Crane, J.K.; Martinez, M., Moran, B.

    1996-12-01

    The authors describe the prototype preamplifier for the NIF laser system and discuss the performance of the regenerative amplifier and 4-pass laser systems that comprise the preamplifier.

  20. Occupational dose estimates for the National Ignition Facility...

    Office of Scientific and Technical Information (OSTI)

    The National Ignition Facility (NIF) is currently being constructed at Lawrence Livermore National Laboratory (LLNL). During peak operation, the NIF will attain D-T fusion yields ...

  1. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Ignition Facility Glass amplifiers in Laser Bay 2 at the National Ignition Facility. The construction of the 192-beam 1.8 MJ UV NIF, the world's most energetic laser, was ...

  2. Backlighter development at the National Ignition Facility (NIF). Zinc to Zirconium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barrios, M. A.; Fournier, K. B.; Regan, S. P.; Landen, O.; May, M.; Opachich, Y. P.; Widmann, K.; Bradley, D. K.; Collins, G. W.

    2013-06-07

    A K-shell X-ray emission from laser-irradiated planar Zn, Ge, Br, and Zr foils was measured at the National Ignition Facility for laser irradiances in the range of 0.6–9.5 × 1015 W/cm 2. The incident laser power had a pre-pulse to enhance the laser-to-X-ray conversion efficiency (CE) of a 2–5 ns constant-intensity pulse used as the main laser drive. The measured CE into the 8–16 keV energy band ranged from 0.43% to 2%, while the measured CE into the He-like resonance 1s2–1s2p(1P) and intercombination 1s2–1s2p(3P) transitions, as well as from their 1s2(2s,2p)l–1s2p(2s,2p)l satellite transitions for l = 1, 2, 3, correspondingmore » to the Li-, Be-, and B-like resonances, respectively, ranged from 0.3% to 1.5%. Moreover, absolute and relative CE measurements are consistent with X-ray energy scaling of (hν) -3 to (hν) -5, where hν is the X-ray energy. The temporal evolution of the broadband X-ray power was similar to the main laser drive for ablation plasmas having a critical density surface.« less

  3. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    33 National Ignition Facility & Photon Science Frequently asked Questions Q. What is NIF? A. The National Ignition Facility (NIF) is the world's largest and highest-energy laser. NIF's 192 intense laser beams are capable of delivering to their target more than 100 times the energy of any previous laser system. experiments on the path to ignition began in 2010. during full-scale ignition experiments, NIF will direct up to 1.8 million joules of ultraviolet laser energy in billionth-of-a-second

  4. COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab March 26, 2014, 3:00pm to 4:30pm Colloquia MBG Auditorium COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility Dr. M. John Edwards Lawrence Livermore National Laboratory Presentation: PDF icon WC26MAR2014_JEdwards.pdf The Inertial Confinement Fusion (ICF) Program is conducting experiments at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel

  5. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  6. National Ignition Facility | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) National Ignition Facility Glass amplifiers in Laser Bay 2 at the National Ignition Facility. The construction of the 192-beam 1.8 MJ UV NIF, the world's most energetic laser, was completed in March 2009. Current experiments are focusing on using the NIF laser and other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and SSP experiments. By the end of FY 2012, the

  7. National Ignition Facility project acquisition plan revision 1

    SciTech Connect (OSTI)

    Clobes, A.R.

    1996-10-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

  8. Princeton Plasma Physics Lab - National Ignition Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb 2013 14:30:50 +0000 jgreenwa 1361 at http:www.pppl.gov National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record http:www.pppl.govnode248

  9. lasers. National Ignition Facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    target shot of fiscal year 2015 WASHINGTON - Last week, the National Ignition Facility (NIF) fired its 300th laser target shot in fiscal year (FY) 2015, meeting the year's goal...

  10. "New Results from the National Ignition Facility", Dr. John Lindl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence Livermore National Laboratory Since completion of the NIF construction project in March ...

  11. National Ignition Facility Title II Design Plan

    SciTech Connect (OSTI)

    Kumpan, S

    1997-03-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

  12. NIF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    group NIF User Group The National Ignition Facility User Group provides an organized framework and independent vehicle for interaction between the scientists who use NIF for "Science Use of NIF" experiments and NIF management. Responsibility for NIF and the research programs carried out at NIF resides with the NIF Director. The NIF User Group advises the NIF Director on matters of concern to users, as well as providing a channel for communication for NIF users with funding agencies and

  13. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; Bell, P.; Bionta, R.; Cerjan, C.; Gatu Johnson, M.; Kilkenny, J. D.; Li, C. K.; Séguin, F. H.; et al

    2016-08-02

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with amore » time resolution of ~20 ps and energy resolution of ~100 keV for total neutron yields above ~1016. Lastly, at lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ~20 ps.« less

  14. IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Moses, E

    2009-06-22

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of

  15. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security maintaining the nuclear weapons stockpile As the largest, highest-energy laser ever built, the National Ignition Facility (NIF) can create conditions in the laboratory-temperatures of 100 million degrees and pressures 100 billion times that of the earth's atmosphere-similar to those in stars and nuclear weapons. NIF is the only facility that can perform controlled, experimental studies of thermonuclear burn, the phenomenon that gives rise to the immense energy of modern nuclear weapons.

  16. Confinement of ignition and yield on the National Ignition Facility

    SciTech Connect (OSTI)

    Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

    1996-06-14

    The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented.

  17. Need for the National Ignition Facility

    SciTech Connect (OSTI)

    Crandall, D.H.

    1996-12-31

    This paper has an attitude - that the National Ignition Facility (NIF) is needed. The NIF will be unique in its ability to address high energy density physics and to test fusion ignition in the laboratory. This is a major scientific step and has high appeal to scientists and engineers. The reason for taking this step now is the importance of high energy density physics for US policy on nuclear weapons. The fact that the same capability and experiments give the most fundamental information on the potential of inertial fusion for commercial energy, and have value for applications in astrophysics, further supports the case for proceeding with this facility. 21 refs., 6 figs.

  18. Safety overview of the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.J.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.

    1996-05-23

    The National Ignition Facility (NIF) is a proposed US Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium- tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF. It provides an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low.

  19. The national ignition facility and atomic data

    SciTech Connect (OSTI)

    Crandall, David H.

    1998-07-08

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.

  20. The national ignition facility and atomic data

    SciTech Connect (OSTI)

    Crandall, D.H.

    1998-07-01

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today{close_quote}s inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds. {copyright} {ital 1998 American Institute of Physics.}

  1. Director of the National Ignition Facility, Lawrence Livermore National

    National Nuclear Security Administration (NNSA)

    Laboratory | National Nuclear Security Administration | (NNSA) Director of the National Ignition Facility, Lawrence Livermore National Laboratory Edward Moses Edward Moses September 2009 Edward Teller Medal Edward Moses of the Lawrence Livermore National Laboratory is a recipient of the 2009 Edward Teller Medal. Moses was cited for his "leadership in the development and completion of the National Ignition Facility" (NIF). As principal associate director for NIF and Photon Science

  2. National Ignition Facility environmental protection systems

    SciTech Connect (OSTI)

    Mintz, J.M.; Reitz, T.C.; Tobin, M.T.

    1994-06-01

    The conceptual design of Environmental Protection Systems (EPS) for the National Ignition Facility (NIF) is described. These systems encompass tritium and activated debris handling, chamber, debris shield and general decontamination, neutron and gamma monitoring, and radioactive, hazardous and mixed waste handling. Key performance specifications met by EPS designs include limiting the tritium inventory to 300 Ci and total tritium release from NIF facilities to less than 10 Ci/yr. Total radiation doses attributable to NIF shall remain below 10 mrem/yr for any member of the general public and 500 mrem/yr for NIF staff. ALARA-based design features and operational procedures will, in most cases, result in much lower measured exposures. Waste minimization, improved cycle time and reduced exposures all result from the proposed CO2 robotic arm cleaning and decontamination system, while effective tritium control is achieved through a modern system design based on double containment and the proven detritiation technology.

  3. Confinement of ignition and yield on the National Ignition Facility

    SciTech Connect (OSTI)

    Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

    1996-12-31

    The National Ignition Facility Target Area and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented. 16 refs., 3 figs.

  4. NIF Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users NIF Users Research Opportunities at the National Ignition Facility The National Ignition Facility provides the scientific community with an unprecedented capability for studying materials at extreme pressures, temperatures, and densities. NIF is expected to achieve temperatures and densities almost an order of magnitude greater than those in the sun's core and pressures far in excess of those at the core of Jupiter. The density of neutrons during the tens of picoseconds the NIF target

  5. Safety overview of the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.; Yatabe, J.

    1996-12-31

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory - New Mexico, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996, after independent review. This paper summarizes the safety issues associated with the construction and operation of the NIF. It provides an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low. 9 refs., 2 figs., 2 tabs.

  6. Radiological assessments for the National Ignition Facility

    SciTech Connect (OSTI)

    Hong, Kou-John; Lazaro, M.A.

    1996-08-01

    The potential radiological impacts of the National Ignition Facility (NIF), a proposed facility for fusion ignition and high energy density experiments, were assessed for five candidate sites to assist in site selection. The GENII computer program was used to model releases of radionuclides during normal NIF operations and a postulated accident and to calculate radiation doses to the public. Health risks were estimated by converting the estimated doses into health effects using a standard cancer fatality risk factor. The greatest calculated radiation dose was less than one thousandth of a percent of the dose received from natural background radiation; no cancer fatalities would be expected to occur in the public as the result of normal operations. The highest dose conservatively estimated to result from a postulated accident could lead to one in one million risk of cancer.

  7. Stockpile Stewardship and the National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2012-01-04

    The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

  8. National Ignition Facility project acquisition plan

    SciTech Connect (OSTI)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

  9. National Ignition Facility Comes to Life

    SciTech Connect (OSTI)

    Moses, E

    2003-09-01

    First conceived of nearly 15 years ago, the National Ignition Facility (NIF) is up and running and successful beyond almost everyone's expectations. During commissioning of the first four laser beams, the laser system met design specifications for everything from beam quality to energy output. NIF will eventually have 192 laser beams. Yet with just 2% of its final beam configuration complete, NIF has already produced the highest energy laser shots in the world. In July, laser shots in the infrared wavelength using four beams produced a total of 26.5 kilojoules of energy per beam, not only meeting NIF's design energy requirement of 20 kilojoules per beam but also exceeding the energy of any other infrared laser beamline. In another campaign, NIF produced over 11.4 kilojoules of energy when the infrared light was converted to green light. An earlier performance campaign of laser light that had been frequency converted from infrared to ultraviolet really proved NIF's mettle. Over 10.4 kilojoules of ultraviolet energy were produced in about 4 billionths of a second. If all 192 beamlines were to operate at these levels, over 2 megajoules of energy would result. That much energy for the pulse duration of several nanoseconds is about 500 trillion watts of power, more than 500 times the US peak generating power.

  10. National Ignition Facility Quality Assurance Program Plan. Revision 1

    SciTech Connect (OSTI)

    Wolfe, C.R.; Yatabe, J.

    1996-09-01

    The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

  11. NIF Target Chamber Dedicated | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) NIF Target Chamber Dedicated NIF Target Chamber Dedicated Livermore, CA Secretary Richardson dedicates the National Ignition Facility target chamber at DOE's Lawrence Livermore National Laboratory

  12. Heating National Ignition Facility, Realistic Financial Planning...

    Office of Environmental Management (EM)

    National Ignition Facility, Realistic Financial Planning & Rapid Modification Lessons Learned Report Apr 2010 Heating National Ignition Facility, Realistic Financial Planning &...

  13. Large optics for the National Ignition Facility

    SciTech Connect (OSTI)

    Baisden, P.

    2015-01-12

    The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world’s largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF’s high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advanced optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.

  14. Progress Toward Ignition on the National Ignition Facility

    SciTech Connect (OSTI)

    Kauffman, R L

    2011-10-17

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger

  15. National Ignition Facility

    National Nuclear Security Administration (NNSA)

    NIF, in particular the first Pu experiment on NIF, the return to operations of the TA-55 gas gun, a successful series of plutonium experiments on Joint Actinide Shock Physics...

  16. The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; Bleuel, D. L.; Caggiano, J. A.; Dewald, E. L.; Hsing, W. W.; Kalantar, D. H.; Kauffman, R. L.; Larson, D. J.; et al

    2016-01-06

    At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by themore » function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova’s, new diagnostics are limited such as the higher-speed X-ray imager. Lastly, recommendations for future diagnostics on the NIF are discussed.« less

  17. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  18. National Ignition Facility fires 300th laser target shot of fiscal year

    National Nuclear Security Administration (NNSA)

    2015 | National Nuclear Security Administration | (NNSA) Ignition Facility fires 300th laser target shot of fiscal year 2015 August 18, 2015 WASHINGTON - Last week, the National Ignition Facility (NIF) fired its 300th laser target shot in fiscal year (FY) 2015, meeting the year's goal more than six weeks early. In comparison, the facility completed 191 target shots in FY 2014. Located at Lawrence Livermore National Laboratory (LLNL), the NIF is the world's most energetic laser. Increasing

  19. Development of nuclear diagnostics for the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.; Stoeckl, C.; Roberts, S.; Barrera, C. A.; Celeste, J. R.; Cerjan, C. J.; Dauffy, L. S.; Eder, D. C.; Griffith, R. L.; Haan, S. W.; Hammel, B. A.; Hatchett, S. P.; Izumi, N.; Kimbrough, J. R.; Koch, J. A.; Landen, O. L.; Lerche, R. A.; MacGowan, B. J.

    2006-10-15

    The National Ignition Facility (NIF) will provide up to 1.8 MJ of laser energy for imploding inertial confinement fusion (ICF) targets. Ignited NIF targets are expected to produce up to 10{sup 19} DT neutrons. This will provide unprecedented opportunities and challenges for the use of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF was defined and they are under development through collaborative efforts at several institutions. This suite includes PROTEX and copper activation for primary yield measurements, a magnetic recoil spectrometer and carbon activation for fuel areal density, neutron time-of-flight detectors for yield and ion temperature, a gamma bang time detector, and neutron imaging systems for primary and downscattered neutrons. An overview of the conceptual design, the developmental status, and recent results of prototype tests on the OMEGA laser will be presented.

  20. National Ignition Facility wet weather construction plan

    SciTech Connect (OSTI)

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  1. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    making a star 17 How to make a miniature star The idea for the National Ignition Facility (NIF) grew out of a decades-long effort to generate fusion burn and energy gain in the laboratory. Current nuclear power plants, which use the splitting of atoms (fission) to produce energy, have been pumping out electric power for more than 50 years. But achieving nuclear fusion burn and gain has not yet been demonstrated as viable for energy production. For fusion burn and gain to occur, a special fuel

  2. Diagnostics Implemented on NIF - Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert M. Malone et al., "Overview of the gamma reaction history diagnostic for the National Ignition Facility (NIF)." Proc. SPIE. 7652, International Optical Design Conference ...

  3. X-ray area backlighter development at the National Ignition Facility...

    Office of Scientific and Technical Information (OSTI)

    Title: X-ray area backlighter development at the National Ignition Facility (NIF) Authors: Barrios, M A ; Regan, S P ; Fournier, K B ; Epstein, R ; Smith, R ; Lazicki, A ; Rygg, R ...

  4. The National Ignition Facility: Studying the Stars in the Laboratory

    SciTech Connect (OSTI)

    Boyd, R

    2008-09-17

    The National Ignition Facility, to be completed in 2009, will be the highest energy laser ever built. The high temperatures and densities it will produce will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as in nuclear astrophysics, X-ray astronomy, hydrodynamics, and planetary science. The National Ignition Facility, NIF (1), located at Lawrence Livermore National Lab, (LLNL) is expected to produce inertial confinement fusion (ICF) by delivering sufficient laser energy to compress and heat a millimeter-radius pellet of DT sufficiently to produce fusion to {sup 4}He+neutron and 17.6 MeV per reaction. NIF will be completed by March, 2009, at which time a National Ignition Campaign (2), NIC, a series of experiments to optimize the ICF parameters, will begin. Although NIF is a research facility, a successful NIC would have implications for future energy sources. In addition to the goal of ICF, NIF will support programs in stockpile stewardship. However, the conditions that NIF creates will simulate those inside stars and planets sufficiently closely to provide compelling motivation for experiments in basic high-energy-density (HED) science especially, for the first time, in nuclear astrophysics.

  5. Nuclear diagnostics for the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Murphy, Thomas J.; Barnes, Cris W.; Berggren, R. R.; Bradley, P.; Caldwell, S. E.; Chrien, R. E.; Faulkner, J. R.; Gobby, P. L.; Hoffman, N.; Jimerson, J. L.

    2001-01-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, will provide unprecedented opportunities for the use of nuclear diagnostics in inertial confinement fusion experiments. The completed facility will provide 2 MJ of laser energy for driving targets, compared to the approximately 40 kJ that was available on Nova and the approximately 30 kJ available on Omega. Ignited NIF targets are anticipated to produce up to 10{sup 19} DT neutrons. In addition to a basic set of nuclear diagnostics based on previous experience, these higher NIF yields are expected to allow innovative nuclear diagnostic techniques to be utilized, such as neutron imaging, recoil proton techniques, and gamma-ray-based reaction history measurements.

  6. "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore National Laboratory | Princeton Plasma Physics Lab November 7, 2012, 4:15pm Colloquia MBG Auditorium "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence Livermore National Laboratory Since completion of the NIF construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been qualified. NIF reached its design goal of 1.8 MJ and 500 TW of ultraviolet light in 2012. The Ignition Campaign

  7. The National Ignition Facility: The Path to a Carbon-Free Energy Future

    SciTech Connect (OSTI)

    Stolz, C J

    2011-03-16

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  8. Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System

    SciTech Connect (OSTI)

    Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

    2011-03-18

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

  9. Who Works for NIF & PS?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nif Who Works for NIF & PS? The National Ignition Facility is the product of thousands of hours of work by some of the world's most creative and visionary scientists, engineers and technicians, supported by a team of construction workers, health and safety experts, computer programmers, accountants, and administrators, among others. Come back to this page often to learn more about the people who make NIF possible. The People of NIF Stories about members of Team NIF NIF Management Profiles of

  10. Status of the US inertial fusion program and the National Ignition Facility

    SciTech Connect (OSTI)

    Crandall, David H.

    1997-04-15

    Research programs supported by the United States Office of Inertial Fusion and the NIF are summarized. The US inertial fusion program has developed an approach to high energy density physics and fusion ignition in the laboratory relying on the current physics basis of capsule drive by lasers and on the National Ignition Facility which is under construction. (AIP)

  11. Response to Comment on "The National Ignition Facility Laser Performance Status"

    SciTech Connect (OSTI)

    Haynam, C A; Sacks, R A; Moses, E I; Manes, K; Haan, S; Spaeth, M L

    2007-12-11

    We appreciate Stephen Bodner's continuing interest in the performance of the NIF laser system. However, we find it necessary to disagree with the conclusions he reached in his comments [Appl. Opt. 47, XXX (2008)] on 'National Ignition Facility Laser Performance Status' [Appl. Opt. 46, 3276 (2007)]. In fact, repeated and ongoing tests of the NIF beamlines have demonstrated that NIF can be expected not only to meet or exceed its requirements as established in the mid-1990s in the document National Ignition Facility Functional Requirements and Primary Criteria [Revision 1.3, Report NIF-LLNL-93-058 (1994)], but also to have the flexibility that provides for successfully meeting an ever expanding range of mission goals, including those of ignition.

  12. National Ignition Facility Configuration Management Plan

    SciTech Connect (OSTI)

    Cabral, S G; Moore, T L

    2002-10-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  13. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility

  14. Target diagnostic system for the national ignition facility (invited)

    SciTech Connect (OSTI)

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.; Fehl, D.L.; Hebron, D.E.; Moats, A.R.; Noack, D.D.; Porter, J.L.; Ruggles, L.E.; Ruiz, C.L.; Torres, J.A.; Cable, M.D.; Bell, P.M.; Clower, C.A.; Hammel, B.A.; Kalantar, D.H.; Karpenko, V.P.; Kauffman, R.L.; Kilkenny, J.D.; Lee, F.D.; Lerche, R.A.; MacGowan, B.J.; Moran, M.J.; Nelson, M.B.; Olson, W.; Orzechowski, T.J.; Phillips, T.W.; Ress, D.; Tietbohl, G.L.; Trebes, J.E.; Bartlett, R.J.; Berggren, R.; Caldwell, S.E.; Chrien, R.E.; Failor, B.H.; Fernandez, J.C.; Hauer, A.; Idzorek, G.; Hockaday, R.G.; Murphy, T.J.; Oertel, J.; Watt, R.; Wilke, M.; Bradley, D.K.; Knauer, J.; Petrasso, R.D.; Li, C.K.

    1997-01-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x ray, gamma ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating in the high radiation, electromagnetic pulse, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests. {copyright} {ital 1997 American Institute of Physics.}

  15. Overview of the preliminary safety analysis of the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.; McLouth, L.; Odell, B.

    1997-06-01

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, New Mexico, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 individual laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF has been classified as a low hazard, radiological facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis report be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A Preliminary Safety Analysis Report (PSAR) has been approved, which documents and evaluates the safety issues associated with the construction, operation, and decommissioning of the NIF. 10 refs., 6 figs., 4 tabs.

  16. June 11, 1999: National Ignition Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1, 1999: National Ignition Facility June 11, 1999: National Ignition Facility June 11, 1999: National Ignition Facility June 11, 1999 Secretary Richardson dedicates the National Ignition Facility target chamber at DOE's Lawrence Livermore National Laboratory.

  17. National Ignition Facility quality assurance plan for laser materials and optical technology

    SciTech Connect (OSTI)

    Wolfe, C.R.

    1996-05-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials & Optical Technology (LM&OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM&OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies.

  18. Alignment of an x-Ray Imager Line of Sight in the National Ignition...

    Office of Scientific and Technical Information (OSTI)

    Alignment of an x-Ray Imager Line of Sight in the National Ignition Facility (NIF) Target ... Title: Alignment of an x-Ray Imager Line of Sight in the National Ignition Facility (NIF) ...

  19. Configuring the National Ignition Facility for direct-drive experiments

    SciTech Connect (OSTI)

    Eimerl, D.

    1995-07-01

    The National Ignition Facility (NIF) is a project whose primary mission is to provide an above-ground experimental capability for maintaining nuclear competence and weapons effects simulation, and to pursue the achievement of fusion ignition utilizing solid state lasers as the energy driver. In this facility a large number of laser beams are focused onto a small target located at the center of a spherical target chamber. The laser energy is delivered in a few billionths of a second, raising the temperature and density of the nuclear materials in the target to levels where significant thermonuclear energy is released. The thermonuclear reaction proceeds very rapidly, so that the target materials remain confined by their own inertia during the thermonuclear reaction. This type of approach is called inertial confinement fusion (ICF). The proposed project is described in a conceptual design report (CDR) that was released in May 1994. Early in FY95, a collaboration between the University of Rochester and the Lawrence Livermore National Laboratory was established to study reconfiguring the NIF to accommodate direct-drive experiments. The present paper is a report to the scientific community, primarily the scientists and engineers working on the design of the NIF. It represents results from work in progress, specifically work completed by the end of the second quarter FY95. This report has two main sections. The first describes the target requirements on the laser drive, and the second part describes how the NIF laser can be configured to accommodate both indirect and direct drive. The report includes a description of the scientific basis for these conclusions. Though a complete picture does not exist, the present understanding is sufficient to conclude that the primary target requirements and laser functional requirements for indirect and direct drive are quite compatible. It is evidently straightforward to reconfigure the NIF to accommodate direct and indirect drive.

  20. Preliminary hazards analysis for the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.J.

    1993-10-01

    This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

  1. Design, Assembly, and Testing of the Neutron Imaging Lens for the National Ignition Facility

    SciTech Connect (OSTI)

    Malone, R. M., Kaufman, M. I.

    2010-12-01

    The Lawrence Livermore National Laboratory’s National Ignition Facility (NIF) is the world’s largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high energy density science. Neutron imaging of ICF targets provides a powerful tool for understanding the implosion conditions of deuterium and tritium (DT) filled targets. The primary purpose of imaging ICF targets at NIF is to determine the symmetry of the fuel in an imploded ICF target. The image data are then combined with other nuclear information to gain insight into the drive laser and radiation conditions required to drive the targets to ignition.

  2. Technical documentation in support of the project-specific analysis for construction and operation of the National Ignition Facility

    SciTech Connect (OSTI)

    Lazaro, M.A.; Vinikour, W.; Allison, T.

    1996-09-01

    This document provides information that supports or supplements the data and impact analyses presented in the National Ignition Facility (NIF) Project-Specific Analysis (PSA). The purposes of NIF are to achieve fusion ignition in the laboratory for the first time with inertial confinement fusion (ICF) technology and to conduct high- energy-density experiments ins support of national security and civilian application. NIF is an important element in the DOE`s science-based SSM Program, a key mission of which is to ensure the reliability of the nation`s enduring stockpile of nuclear weapons. NIF would also advance the knowledge of basic and applied high-energy- density science and bring the nation a large step closer to developing fusion energy for civilian use. The NIF PSA includes evaluations of the potential environmental impacts of constructing and operating the facility at one of five candidate site and for two design options.

  3. NIF and Jupiter User Group Meeting 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workshops / user group 2014 / NIF and Jupiter User Group Meeting 2014 About the NIF and Jupiter User Group Meeting The 192-beam National Ignition Facility (NIF), the most energetic inertial confinement fusion (ICF) facility in the world, is now operational. The NIF laser's unprecedented power, precision, and reproducibility, coupled with over 50 available diagnostics and sophisticated target fabrication capability, enable a wide range of leading edge scientific experiments. Initial experiments

  4. Software quality assurance plan for the National Ignition Facility integrated computer control system

    SciTech Connect (OSTI)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project`s controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy`s (DOE`s) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project.

  5. National ignition facility environment, safety, and health management plan

    SciTech Connect (OSTI)

    1995-11-01

    The ES&H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES&H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK.

  6. Laser design basis for the National Ignition Facility

    SciTech Connect (OSTI)

    Hunt, J.T.; Manes, K.R.; Murray, J.R.; Renard, P.A.; Sawicki, R.; Trenholme, J.B.; Williams, W.

    1994-06-01

    Controlled nuclear fusion initiated by highly intense laser beams has been the subject of experiment for many years. The National Ignition Facility (NIF) represents the culmination of design efforts to provide a laser facility that will successfully demonstrate fusion ignition in the laboratory. In this so-called inertial confinement approach, energetic driver beams (laser, X-ray, or charged particle) heat the outer surface of a spherical capsule containing deuterium and tritium (DT) fuel. As the capsule surface explosively evaporates, reaction pressure compresses the DT fuel causing the central core of the fuel to reach extreme density and temperature. When the central temperature is high enough, DT fusion reactions occur. The energy released from these reactions further heats the compressed fuel, and fusion burn propagates outward through the colder regions of the capsule much more rapidly than the inertially confined capsule can expand. The resulting fusion reactions yield many times more energy than was absorbed from the driver beams.

  7. 02-NIF Dedication: Edward Moses

    ScienceCinema (OSTI)

    Edward Moses

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by NIF Director Edward Moses.

  8. The First Experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Landen, O L; Glenzer, S; Froula, D; Dewald, E; Suter, L J; Schneider, M; Hinkel, D; Fernandez, J; Kline, J; Goldman, S; Braun, D; Celliers, P; Moon, S; Robey, H; Lanier, N; Glendinning, G; Blue, B; Wilde, B; Jones, O; Schein, J; Divol, L; Kalantar, D; Campbell, K; Holder, J; MacDonald, J; Niemann, C; Mackinnon, A; Collins, R; Bradley, D; Eggert, J; Hicks, D; Gregori, G; Kirkwood, R; Young, B; Foster, J; Hansen, F; Perry, T; Munro, D; Baldis, H; Grim, G; Heeter, R; Hegelich, B; Montgomery, D; Rochau, G; Olson, R; Turner, R; Workman, J; Berger, R; Cohen, B; Kruer, W; Langdon, B; Langer, S; Meezan, N; Rose, H; Still, B; Williams, E; Dodd, E; Edwards, J; Monteil, M; Stevenson, M; Thomas, B; Coker, R; Magelssen, G; Rosen, P; Stry, P; Woods, D; Weber, S; Alvarez, S; Armstrong, G; Bahr, R; Bourgade, J; Bower, D; Celeste, J; Chrisp, M; Compton, S; Cox, J; Constantin, C; Costa, R; Duncan, J; Ellis, A; Emig, J; Gautier, C; Greenwood, A; Griffith, R; Holdner, F; Holtmeier, G; Hargrove, D; James, T; Kamperschroer, J; Kimbrough, J; Landon, M; Lee, D; Malone, R; May, M; Montelongo, S; Moody, J; Ng, E; Nikitin, A; Pellinen, D; Piston, K; Poole, M; Rekow, V; Rhodes, M; Shepherd, R; Shiromizu, S; Voloshin, D; Warrick, A; Watts, P; Weber, F; Young, P; Arnold, P; Atherton, L J; Bardsley, G; Bonanno, R; Borger, T; Bowers, M; Bryant, R; Buckman, S; Burkhart, S; Cooper, F; Dixit, S; Erbert, G; Eder, D; Ehrlich, B; Felker, B; Fornes, J; Frieders, G; Gardner, S; Gates, C; Gonzalez, M; Grace, S; Hall, T; Haynam, C; Heestand, G; Henesian, M; Hermann, M; Hermes, G; Huber, S; Jancaitis, K; Johnson, S; Kauffman, B; Kelleher, T; Kohut, T; Koniges, A E; Labiak, T; Latray, D; Lee, A; Lund, D; Mahavandi, S; Manes, K R; Marshall, C; McBride, J; McCarville, T; McGrew, L; Menapace, J; Mertens, E; Munro, D; Murray, J; Neumann, J; Newton, M; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rinnert, R; Riordan, B; Ross, G; Robert, V; Tobin, M; Sailors, S; Saunders, R; Schmitt, M; Shaw, M; Singh, M; Spaeth, M; Stephens, A; Tietbohl, G; Tuck, J; Van Wonterghem, B; Vidal, R; Wegner, P; Whitman, P; Williams, K; Winward, K; Work, K

    2005-11-11

    A first set of laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and x-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options.

  9. Status of the US inertial fusion program and the National Ignition Facility

    SciTech Connect (OSTI)

    Crandall, D.H.

    1997-04-01

    Research programs supported by the United States Office of Inertial Fusion and the NIF are summarized. The US inertial fusion program has developed an approach to high energy density physics and fusion ignition in the laboratory relying on the current physics basis of capsule drive by lasers and on the National Ignition Facility which is under construction. (AIP) {copyright} {ital 1997 American Institute of Physics.}

  10. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    SciTech Connect (OSTI)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D.; McCrory, R. L.

    2014-05-15

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6??10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  11. Prospects for high-gain, high yield National Ignition Facility targets driven by 2(omega) (green) light

    SciTech Connect (OSTI)

    Suter, L J; Glenzer, S; Haan, S; Hammel, B; Manes, K; Meezan, N; Moody, J; Spaeth, M; Divol, L; Oades, K; Stevenson, M

    2003-12-16

    The National Ignition Facility (NIF), operating at green (2{omega}) light, has the potential to drive ignition targets with significantly more energy than the 1.8 MJ it will produce with its baseline, blue (3{omega}) operations. This results in a greatly increased 'target design space', providing a number of exciting opportunities for fusion research. These include the prospect of ignition experiments with capsules absorbing energies in the vicinity of 1 MJ. This significant increase in capsule absorbed energy over the original designs at {approx}150 kJ could allow high-gain, high yield experiments on NIF. This paper reports the progress made exploring 2{omega} for NIF ignition, including potential 2{omega} laser performance, 2{omega} ignition target designs and 2{omega} Laser Plasma Interaction (LPI) studies.

  12. Hot-spot mix in ignition-scale implosions on the NIF

    SciTech Connect (OSTI)

    Regan, S. P.; Epstein, R.; McCrory, R. L.; Meyerhofer, D. D.; Sangster, T. C.; Hammel, B. A.; Suter, L. J.; Ralph, J.; Scott, H.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Doeppner, T.; Edwards, M. J.; Farley, D. R.; Glenn, S.; Glenzer, S. H.; and others

    2012-05-15

    Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraum x-ray drive [D. S. Clark et al., Phys. Plasmas 17, 052703 (2010)]. Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities seeded by high-mode () ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase [B. A. Hammel et al., Phys. Plasmas 18, 056310 (2011)]. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium-hydrogen-deuterium (THD) and deuterium-tritium (DT) cryogenic targets and gas-filled plastic-shell capsules, which replace the THD layer with a mass-equivalent CH layer, was examined. The inferred amount of hot-spot-mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code [J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2006)], is typically below the 75-ng allowance for hot-spot mix [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.

  13. Sandia National Laboratories participation in the National Ignition Facility project

    SciTech Connect (OSTI)

    Boyes, J.; Boyer, W.; Chael, J.; Cook, D.; Cook, W.; Downey, T.; Hands, J.; Harjes, C.; Leeper, R.; McKay, P.; Micano, P.; Olson, R.; Porter, J.; Quintenz, J.; Roberts, V.; Savage, M.; Simpson, W.; Seth, A.; Smith, R.; Wavrik, M.; Wilson, M.

    1996-08-01

    The National Ignition Facility is a $1.1B DOE Defense Programs Inertial Confinement Fusion facility supporting the Science Based Stockpile Stewardship Program. The goal of the facility is to achieve fusion ignition and modest gain in the laboratory. The NIF project is responsible for the design and construction of the 192 beam, 1.8 MJ laser necessary to meet that goal. - The project is a National project with participation by Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester Laboratory for Laser Energetics (URLLE) and numerous industrial partners. The project is centered at LLNL which has extensive expertise in large solid state lasers. The other partners in the project have negotiated their participation based on the specific expertise they can bring to the project. In some cases, this negotiation resulted in the overall responsibility for a WBS element; in other cases, the participating laboratories have placed individuals in the project in areas that need their individual expertise. The main areas of Sandia`s participation are in the management of the conventional facility design and construction, the design of the power conditioning system, the target chamber system, target diagnostic instruments, data acquisition system and several smaller efforts in the areas of system integration and engineering analysis. Sandia is also contributing to the technology development necessary to support the project by developing the power conditioning system and several target diagnostics, exploring alternate target designs, and by conducting target experiments involving the ``foot`` region of the NIF power pulse. The project has just passed the mid-point of the Title I (preliminary) design phase. This paper will summarize Sandia`s role in supporting the National Ignition Facility and discuss the areas in which Sandia is contributing. 3 figs.

  14. Polar-direct-drive experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Froula, D. H.; and others

    2015-05-15

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drivespecific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D{sub 2} gas were imploded with total drive energies ranging from ?500 to 750?kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8??10{sup 14} to 1.2??10{sup 15?}W/cm{sup 2}. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  15. Polar-direct-drive experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; et al

    2015-05-11

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore » geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D₂ gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹⁴ to 1.2 10¹⁵W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

  16. Polar-direct-drive experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Bates, J. W.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Fitzsimmons, P.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Harding, D. R.; Kalantar, D. H.; Karasik, M.; Kessler, T. J.; Kilkenny, J. D.; Knauer, J. P.; Kurz, C.; Lafon, M.; LaFortune, K. N.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; McCrory, R. L.; McKenty, P. W.; Meeker, J. F.; Meyerhofer, D. D.; Nagel, S. R.; Nikroo, A.; Obenschain, S.; Petrasso, R. D.; Ralph, J. E.; Rinderknecht, H. G.; Rosenberg, M. J.; Schmitt, A. J.; Wallace, R. J.; Weaver, J.; Widmayer, C.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.

    2015-05-11

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D₂ gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹⁴ to 1.2 10¹⁵W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  17. Polar-direct-drive experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Bates, J. W.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Fitzsimmons, P.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Harding, D. R.; Kalantar, D. H.; Karasik, M.; Kessler, T. J.; Kilkenny, J. D.; Knauer, J. P.; Kurz, C.; Lafon, M.; LaFortune, K. N.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; McCrory, R. L.; McKenty, P. W.; Meeker, J. F.; Meyerhofer, D. D.; Nagel, S. R.; Nikroo, A.; Obenschain, S.; Petrasso, R. D.; Ralph, J. E.; Rinderknecht, H. G.; Rosenberg, M. J.; Schmitt, A. J.; Wallace, R. J.; Weaver, J.; Widmayer, C.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.

    2015-05-01

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D2 gas were imploded with total drive energies ranging from ~500-750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 x 1014 to 1.2 x 1015 W/cm2. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  18. The National Ignition Facility and the Promise of Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E I

    2010-12-13

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  19. Los Alamos contribution to target diagnostics on the National Ignition Facility

    SciTech Connect (OSTI)

    Mack, J.M.; Baker, D.A.; Caldwell, S.E.

    1994-07-01

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ``phase I diagnostics.`` Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given.

  20. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    SciTech Connect (OSTI)

    Perkins, L J; Betti, R; Schurtz, G P; Craxton, R S; Dunne, A M; LaFortune, K N; Schmitt, A J; McKenty, P W; Bailey, D S; Lambert, M A; Ribeyre, X; Theobald, W R; Strozzi, D J; Harding, D R; Casner, A; Atzemi, S; Erbert, G V; Andersen, K S; Murakami, M; Comley, A J; Cook, R C; Stephens, R B

    2010-04-12

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term ({approx}3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of {approx}60 may be achievable on NIF at laser drive energies around {approx}0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R&D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  1. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-08-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  2. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    SciTech Connect (OSTI)

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; Clark, D. S.; Robey, H. F.; Pak, A.; MacPhee, A. G.; Baker, K. L.; Weber, C. R.; Ma, T.; Park, H. -S.; Döppner, T.; Callahan, D. A.; Haan, S. W.; Patel, P. K.; Peterson, J. L.; Hoover, D.; Nikroo, A.; Yeamans, C. B.; Merrill, F. E.; Volegov, P. L.; Fittinghoff, D. N.; Grim, G. P.; Edwards, M. J.; Landen, O. L.; Lafortune, K. N.; MacGowan, B. J.; Widmayer, C. C.; Sayre, D. B.; Hatarik, R.; Bond, E. J.; Nagel, S. R.; Benedetti, L. R.; Izumi, N.; Khan, S.; Bachmann, B.; Spears, B. K.; Cerjan, C. J.; Gatu Johnson, M.; Frenje, J. A.

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  3. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; Clark, D. S.; Robey, H. F.; Pak, A.; MacPhee, A. G.; Baker, K. L.; Weber, C. R.; Ma, T.; et al

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  4. Site selection study for Sandia National Laboratories/New Mexico as an alternative site for the National Ignition Facility

    SciTech Connect (OSTI)

    Miller, D.; Wheeler, T.; McClellan, Y.

    1996-03-01

    The Department of Energy (DOE) proposes to construct and operate the National Ignition Facility (NIF) in support of the Stockpile Stewardship and Management (SSM) Programmatic Environmental impact Statement (PEIS). The National Environmental Policy Act requires the DOE to look at alternative sites for the NIF. The SSM PEIS will evaluate four alternative locations for the NIF. This study documents the process and results of a site selection study for a preferred site for the NIF at SNL/NM. The NIF research objectives are to provide the world`s most powerful laser systems to be used in ignition of fusion fuel and energy gain to perform high energy density and radiation effects experiments in support of the DOE`s national security, energy, and basic science research mission. The most immediate application of the NIF will be to provide nuclear-weapon-related physics data, since many phenomena occurring on the laboratory scale are similar to those that occur in weapons. The NIF may also provide an important capability for weapons effects simulation. The NIF is designed to achieve propagating fusion bum and modest energy gain for development as a source of civilian energy.

  5. 12-NIF Dedication: Concluding remarks and video

    ScienceCinema (OSTI)

    Edward Moses

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the concluding remarks by NIF Director Edward Moses, and a brief video presentation.

  6. 2011 Status of the Automatic Alignment System for the National Ignition Facility

    SciTech Connect (OSTI)

    Wilhelmsen, K; Awwal, A; Burkhart, S; McGuigan, D; Kamm, V M; Leach, R; Lowe-Webb, R; Wilson, R

    2011-07-19

    Automated alignment for the National Ignition Facility (NIF) is accomplished using a large-scale parallel control system that directs 192 laser beams along the 300-m optical path. The beams are then focused down to a 50-micron spot in the middle of the target chamber. The entire process is completed in less than 50 minutes. The alignment system commands 9,000 stepping motors for highly accurate adjustment of mirrors and other optics. 41 control loops per beamline perform parallel processing services running on a LINUX cluster to analyze high-resolution images of the beams and their references. This paper describes the status the NIF automatic alignment system and the challenges encountered as NIF development has transitioned from building the laser, to becoming a research project supporting a 24 hour, 7 day laser facility. NIF is now a continuously operated system where performance monitoring is increasingly more critical for operation, maintenance, and commissioning tasks. Equipment wear and the effects of high energy neutrons from fusion experiments are issues which alter alignment efficiency and accuracy. New sensors needing automatic alignment assistance are common. System modifications to improve efficiency and accuracy are prevalent. Handling these evolving alignment and maintenance needs while minimizing the impact on NIF experiment schedule is expected to be an on-going challenge for the planned 30 year operational life of NIF.

  7. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  8. High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility

    SciTech Connect (OSTI)

    Koch, J.A.; Landen, O.L.; Hammel, B.A.

    1997-08-26

    Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view.

  9. National Ignition Facility & Photon Science What

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Because the precise alignment of NIF's laser beams is extremely important for successful ... Optics Inspection System NIF's final optics damage inspection system, when extended into ...

  10. Neutron time-of-flight and emission time diagnostics for the National Ignition Facility

    SciTech Connect (OSTI)

    Murphy, T. J.; Jimerson, J. L.; Berggren, R. R.; Faulkner, J. R.; Oertel, J. A.; Walsh, P. J.

    2001-01-01

    Current plans call for a system of current mode neutron detectors for the National Ignition Facility for extending the range of neutron yields below that of the neutron activation system, for ion-temperature measurements over a wide yield range, and for determining the average neutron emission time. The system will need to operate over a yield range of 10{sup 6} for the lowest-yield experiments to 10{sup 19} for high-yield ignited targets. The requirements will be satisfied using several detectors located at different distances from the target. This article presents a conceptual design for the NIF nToF system.

  11. Control and Information Systems for the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; Demaret, Robert; Fedorov, Mike; Flegel, Michael; Folta, Peg; Fraizer, Timothy; Hutton, Matthew; Kegelmeyer, Laura; et al

    2015-11-03

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. This paper is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  12. Control and Information Systems for the National Ignition Facility

    SciTech Connect (OSTI)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; Demaret, Robert; Fedorov, Mike; Flegel, Michael; Folta, Peg; Fraizer, Timothy; Hutton, Matthew; Kegelmeyer, Laura; Lagin, Lawrence; Ludwigsen, Pete; Reed, Robert; Speck, Douglas; Wilhelmsen, Karl

    2015-11-03

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second. NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. This paper is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.

  13. ENERGY PARTITIONING, ENERGY COUPLING (EPEC) EXPERIMENTS AT THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Fournier, K B; Brown, C G; May, M J; Dunlop, W H; Compton, S M; Kane, J O; Mirkarimi, P B; Guyton, R L; Huffman, E

    2012-01-05

    The energy-partitioning, energy-coupling (EPEC) experiments at the National Ignition Facility (NIF) will simultaneously measure the coupling of energy into both ground shock and air-blast overpressure from a laser-driven target. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of seismic and air-blast phenomena caused by a nuclear weapon. In what follows, we discuss the motivation for our investigation and briefly describe NIF. Then, we introduce the EPEC experiments, including diagnostics, in more detail.

  14. Initial Activation and Operation of the Power Conditioning System for the National Ignition Facility

    SciTech Connect (OSTI)

    Newton, M A; Kamm, R E; Fulkerson, E S; Hulsey, S D; Lao, N; Parrish, G L; Pendleton, D L; Petersen, D E; Polk, M; Tuck, J M; Ullery, G T; Moore, W B

    2003-08-20

    The NIF Power Conditioning System (PCS) resides in four Capacitor Bays, supplying energy to the Master and Power Amplifiers which reside in the two adjacent laser bays. Each capacitor bay will initially house 48 individual power conditioning modules, shown in Figure 2, with space reserved for expansion to 54 modules. The National Ignition Facility (NIF) Power Conditioning System (PCS) is a modular capacitive energy storage system that will be capable of storing nearly 400 MJ of electrical energy and delivering that energy to the nearly 8000 flashlamps in the NIF laser. The first sixteen modules of the power conditioning system have been built, tested and installed. Activation of the first nine power conditioning modules has been completed and commissioning of the first ''bundle'' of laser beamlines has begun. This paper will provide an overview of the power conditioning system design and describe the status and results of initial testing and activation of the first ''bundle'' of power conditioning modules.

  15. Groundbreaking at National Ignition Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Groundbreaking at National Ignition Facility Groundbreaking at National Ignition Facility Livermore, CA Secretary Pena participates in the ground breaking ceremony for the National Ignition Facility, a centerpiece of the stockpile stewardship program, at the Lawrence Livermore National Laboratory

  16. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    SciTech Connect (OSTI)

    Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  17. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; et al

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less

  18. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; Fincke, J. R.

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment to the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.

  19. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; Fincke, J. R.

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 ?m/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment to the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.

  20. Nuclear Physics using NIF

    SciTech Connect (OSTI)

    Bernstein, L A; Bleuel, D L; Caggiano, J A; Cerjan, C; Gostic, J; Hatarik, R; Hartouni, E; Hoffman, R D; Sayre, D; Schneider, D G; Shaughnessy, D; Stoeffl, W; Yeamans, C; Greife, U; Larson, R; Hudson, M; Herrmann, H; Kim, Y H; Young, C S; Mack, J; Wilson, D; Batha, S; Hoffman, N; Langenbrunner, J; Evans, S

    2011-09-28

    The National Ignition Facility (NIF) is the world's premier inertial confinement fusion facility designed to achieve sustained thermonuclear burn (ignition) through the compression of hydrogen isotopic fuels to densities in excess of 10{sup 3} g/cm{sup 3} and temperatures in excess of 100 MK. These plasma conditions are very similar to those found in the cores of Asymptotic Giant Branch (AGB) stars where the s-process takes place, but with a neutron fluence per year 10{sup 4} times greater than a star. These conditions make NIF an excellent laboratory to measure s-process (n,{gamma}) cross sections in a stellar-like plasma for the first time. Starting in Fall 2009, NIF has been operating regularly with 2-4 shots being performed weekly. These experiments have allowed the first in situ calibration of the detectors and diagnostics needed to measure neutron capture, including solid debris collection and prompt {gamma}-ray detection. In this paper I will describe the NIF facility and capsule environment and present two approaches for measuring s-process neutron capture cross sections using NIF.

  1. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Ignition Facility Former Army Ranger wins Sandia-sponsored student of the year award Former Army Ranger Damon Alcorn recently received the Sandia National Laboratories-Livermore Chamber of Commerce Student of the Year Award. Presented at the Chamber's State of the City Luncheon last month, the annual award highlights a Las Positas College student with exemplary academic... NNSA makers and hackers engage innovation and partnerships NNSA's labs change the world everyday through cutting-edge

  2. National Ignition Facility monthly status report--April 2000

    SciTech Connect (OSTI)

    Moses, E

    2000-05-26

    The Project provides for the design, procurement, construction, assembly, installation, and acceptance testing of the National Ignition Facility (NIF), an experimental inertial confinement fusion facility intended to achieve controlled thermonuclear fusion in the laboratory by imploding a small capsule containing a mixture of the hydrogen isotopes, deuterium and tritium. The NIF will be constructed at the Lawrence Livermore National Laboratory (LLNL), Livermore, California as determined by the Record of Decision made on December 19, 1996, as a part of the Stockpile Stewardship and Management Programmatic Environmental Impact Statement (SSM PEIS). Safety: On Saturday April 29, 2000, while preparing the Ringer crane for operation at the NIF site, a mechanical malfunction was observed by the operator. He stopped work and consulted with line management. They agreed with the operator's assessment, and with the Livermore Emergency Duty Officer, implemented a precautionary evacuation of the area around the crane. DOE was notified of the situation. The crane was then placed in a safe condition. A crane maintenance vendor is inspecting the crane and a management team headed by the Beampath Infrastructure System Associate Project Manager is reviewing the documentation, crane history, and repairs to ensure that the crane is fully safe before reuse. Technical Status: The general status of the technologies underlying the NIF Project remains satisfactory. The issues currently being addressed are (1) cleanliness for installation, assembly, and activation of the laser system by Systems Engineering working groups; (2) laser glass, where a second pilot run at both commercial suppliers is expected to confirm the mitigation steps identified in the first pilot run; and (3) operational costs associated with Final Optics Assembly (FOA) optics components, where methods are being developed to mitigate 3 {omega} damage and to resolve beam rotation issues. Schedule: The project completion

  3. PLANNING TOOLS FOR ESTIMATING RADIATION EXPOSURE AT THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Verbeke, J; Young, M; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Sitaraman, S

    2010-10-22

    A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10{sup 16} D-T shot and will be presented in this paper.

  4. National Ignition Facility & Photon Science NIF Fun Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of concrete poured: more than 55,000 * Tons of reinforcing steel rebar installed: 7,600 * Tons of structural steel erected: about 5,000 * hours of craft labor worked: more than ...

  5. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 National Ignition Facility & Photon Science limitless energy the Promise of Limitless energy harnessing the energy of the sun and stars to meet the earth's energy needs has been a decades-long scientific and engineering quest. While a self-sustaining fusion burn has been achieved for brief periods under experimental conditions, the amount of energy that went into creating it was greater than the amount of energy it generated. There was no energy gain, which is essential if fusion energy is

  6. Senate targets fusion, backs NIF

    SciTech Connect (OSTI)

    Lawler, A.

    1995-08-01

    This article discusses a budget approved by the Senate Appropriations Committee which funds the fusion program even lower than the drastically reduced level the House approved in July. Work on the International Thermonuclear Experimental Reactor (ITER) would continue but the Tokamak Physics Experiment would be halted. At the same time, the Senate bill allots money to start work on the National Ignition Facility (NIF).

  7. NIF featured on BBC "Horizon"

    SciTech Connect (OSTI)

    Brian Cox

    2010-01-12

    The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.

  8. NIF featured on BBC "Horizon"

    ScienceCinema (OSTI)

    Brian Cox

    2010-09-01

    The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.

  9. The National Ignition Facility: Ushering in a new age for high energy density science

    SciTech Connect (OSTI)

    Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R.

    2009-04-15

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  10. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A. S.; Cooper, A. B.R.; Schneider, M. B.; MacLaren, S.; Graham, P.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Comley, A. J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Back, C. A.; Hund, J.; Baker, K.; Hsing, W. W.; Foster, J.; Young, B.; Young, P.

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  11. The Radiochemical Analysis of Gaseous Samples (RAGS) Apparatus for Nuclear Diagnostics at the National Ignition Facility

    SciTech Connect (OSTI)

    Shaughnessy, D A; Velsko, C A; Jedlovec, D R; Yeamans, C B; Moody, K J; Tereshatov, E; Stoeffl, W; Riddle, A

    2012-05-11

    The RAGS (Radiochemical Analysis of Gaseous Samples) diagnostic apparatus was recently installed at the National Ignition Facility. Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of {sup 135}Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched {sup 124}Xe and {sup 126}Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

  12. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.; Bionta, R.; Bleuel, D.; Bond, E.; Bradley, D. K.; Caggiano, J.; Callahan, D. A.; Casey, D. T.; et al

    2013-10-19

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  13. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    SciTech Connect (OSTI)

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.; Bionta, R.; Bleuel, D.; Bond, E.; Bradley, D. K.; Caggiano, J.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C. J.; Clark, D.; Dewald, E. L.; Dixit, S. N.; Doeppner, T.; Edgell, D. H.; Edwards, M. J.; Frenje, J.; Gatu-Johnson, M.; Glebov, V. Y.; Glenn, S.; Glenzer, S. H.; Grim, G.; Haan, S. W.; Hammel, B. A.; Hartouni, E.; Hatarik, R.; Hatchett, S.; Hicks, D.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Key, M. H.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Knauer, J.; Kyrala, G. A.; Landen, O. L.; Pape, S. L.; Lindl, J. D.; Ma, T.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; McNaney, J.; Meezan, N. B.; Moody, J. D.; Moore, A.; Moran, M.; Moses, E. I.; Pak, A.; Parham, T; Park, H. -S.; Patel, P. K.; Petrasso, R.; Ralph, J. E.; Regan, S. P.; Remington, B. A.; Robey, H. F.; Ross, J. S.; Spears, B. K.; Springer, P. T.; Suter, L J; Tommasini, R.; Town, R. P.; Weber, S. V.; Widmann, K.

    2013-10-19

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  14. Summary of the first neutron image data collected at the National Ignition Facility

    SciTech Connect (OSTI)

    Grim, G P; Archuleta, T N; Aragonez, R J; Atkinson, D P; Batha, S H; Barrios, M A; Bower, D E; Bradley, D K; Buckles, R A; Clark, D D; Clark, D J; Cradick, J R; Danly, C; Drury, O B; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Glenn, S M; Hsu, A H; Izumi, N; Jaramillo, S A; Kyrala, G A; Pape, S L; Loomis, E N; Mares, D; Martinson, D D; Ma, T; MacKinnon, A J; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Polk, P J; Schmidt, D W; Tommasini, T; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Dzenitis, J M; Felker, B; Fittinghoff, D N; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Kauffman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-11-01

    A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of the data collected and measurements made to date. Data form directly driven, DT filled microballoons, as well as, indirectly driven, cryogenically layered ignition experiments are presented. The data presented show that the primary cores from directly driven implosions are approximately twice as large, 64 {+-} 3 {mu}m, as indirect cores 25 {+-} 4 and 29 {+-} 4 {mu}m and more asymmetric, P2/P0 = 47% vs. -14% and 7%. Further, comparison with the size and shape of X-ray image data on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion.

  15. Progress in the title I design of the National Ignition Facility

    SciTech Connect (OSTI)

    Paisner, J.A.; Hogan, W.J.

    1996-12-31

    The National Ignition Facility (NIF) Project officially began in December of 1995. In October of 1996, advanced conceptual design studies, complete environmental impact study, facilitization of the manufacturing capabilities of optics vendors began. The Title I preliminary engineering design had not yet began until the end of December, but it is expected to be on schedule. It is expected that the conventional facilities design will be completed first. The Independent Cost Estimate (ICF) process will begin after the facilities design is complete. Other elements of the design will be submitted in one- or two-week intervals. This phase method of completing Title I was also used at the end of Complete Design Report and proved to be efficient. 9 refs., 11 figs.

  16. Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Spears, Brian K. Edwards, M. J.; Hatchett, S.; Kritcher, A.; Lindl, J.; Munro, D.; Patel, P.; Robey, H. F.; Town, R. P. J.; Kilkenny, J.; Knauer, J.

    2014-04-15

    Mode 1 radiation drive asymmetry (pole-to-pole imbalance) at significant levels can have a large impact on inertial confinement fusion implosions at the National Ignition Facility (NIF). This asymmetry distorts the cold confining shell and drives a high-speed jet through the hot spot. The perturbed hot spot shows increased residual kinetic energy and reduced internal energy, and it achieves reduced pressure and neutron yield. The altered implosion physics manifests itself in observable diagnostic signatures, especially the neutron spectrum which can be used to measure the neutron-weighted flow velocity, apparent ion temperature, and neutron downscattering. Numerical simulations of implosions with mode 1 asymmetry show that the resultant simulated diagnostic signatures are moved toward the values observed in many NIF experiments. The diagnostic output can also be used to build a set of integrated implosion performance metrics. The metrics indicate that P{sub 1} has a significant impact on implosion performance and must be carefully controlled in NIF implosions.

  17. The Radiochemical Analysis of Gaseous Samples (RAGS) apparatus for nuclear diagnostics at the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Shaughnessy, D. A.; Velsko, C. A.; Jedlovec, D. R.; Yeamans, C. B.; Moody, K. J.; Tereshatov, E.; Stoeffl, W.; Riddle, A.

    2012-10-15

    The Radiochemical Analysis of Gaseous Samples (RAGS) diagnostic apparatus was recently installed at the National Ignition Facility (NIF). Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of {sup 135}Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched {sup 124}Xe and {sup 126}Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

  18. Gas-filled hohlraum experiments at the national ignition facility.

    SciTech Connect (OSTI)

    Fernndez, J. C.; Gautier, D. C.; Goldman, S. R.; Grimm, B. M.; Hegelich, B. M.; Kline, J. L.; Montgomery, D. S.; Lanier, N. E.; Rose, H. A.; Schmidt, D. M.; Swift, D. C.; Workman, J. B.; Alvarez, Sharon; Bower, Dan.; Braun, Dave.; Campbell, K.; DeWald, E.; Glenzer, S.; Holder, J.; Kamperschroer, J. H.; Kimbrough, Joe; Kirkwood, Robert; Landen, O. L.; Mccarville, Tom; Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M; Watts, Phil; Young, Ben-li 194154; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  19. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Hohenberger, M. Stoeckl, C.; Albert, F.; Palmer, N. E.; Dppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K.; Lee, J. J.

    2014-11-15

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostica multichannel, hard x-ray spectrometer operating in the 20500 keV rangehas been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ?300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U K{sub ?}). The detectors impulse response function was measured in situ on NIF short-pulse (?90 ps) experiments, and in off-line tests.

  20. Activation of Air and Utilities in the National Ignition Facility

    SciTech Connect (OSTI)

    Khater, H; Pohl, B; Brererton, S

    2010-04-08

    Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment within the NIF. Neutrons streaming outside the NIF Target Chamber will activate the air present inside the Target Bay and the Ar gas inside the laser tubes. Smaller levels of activity are also generated in the Switchyard air and in the Ar portion of the SY laser beam path. The impact of neutron activation of utilities located inside the Target Bay is analyzed for variety of shot types. The impact of activating TB utilities on dose received by maintenance personnel post-shot is analyzed. The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration. Flow of activated air from the Target Bay is controlled by the HVAC system. The amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. Activation of Switchyard air is negligible. Activation of Target Bay utilities result in a manageable dose rate environment post high yield (20 MJ) shots. The levels of activation generated in air and utilities during D-D and THD shots are small and do not impact work planning post shots.

  1. Prospects for High-Gain, High Yield NIF Targets Driven by 2w (green) Light

    SciTech Connect (OSTI)

    Oades, K; Divol, L; Stevenson, M; Glenzer, S; Suter, L J; Meezan, N; Spaeth, M; Manes, K; Moody, J; Hammel, B; Haan, S

    2003-12-17

    The National Ignition Facility (NIF), operating at green (2{omega}) light, has the potential to drive ignition targets with significantly more energy than the 1.8 MJ it will produce in its baseline, blue (3{omega}) operations. This results in a greatly increased ''target design space'', providing a number of exciting opportunities for fusion research including the possibility of ignition experiments with capsules absorbing energies in the vicinity of 1 MJ. We report the progress made exploring 2{omega} for NIF ignition, including potential 2{omega} laser performance, 2{omega} ignition target designs and 2{omega} Laser Plasma Interaction (LPI) studies.

  2. Report from the Integrated Modeling Panel at the Workshop on the Science of Ignition on NIF

    SciTech Connect (OSTI)

    Marinak, M; Lamb, D

    2012-07-03

    This section deals with multiphysics radiation hydrodynamics codes used to design and simulate targets in the ignition campaign. These topics encompass all the physical processes they model, and include consideration of any approximations necessary due to finite computer resources. The section focuses on what developments would have the highest impact on reducing uncertainties in modeling most relevant to experimental observations. It considers how the ICF codes should be employed in the ignition campaign. This includes a consideration of how the experiments can be best structured to test the physical models the codes employ.

  3. Comparison of Raman Scattering Measurements and Modeling in NIF Ignition Experiments

    SciTech Connect (OSTI)

    Strozzi, D J; Hinkel, D E; Williams, E A; Town, R J; Michel, P A; Divol, L; Berger, R L; Moody, J D

    2011-11-04

    Recent NIF indirect-drive experiments have shown significant Raman scattering from the inner beams. NIF data has motivated improvements to rad-hydro modeling, leading to the 'high flux model' [M. D. Rosen et al., HEDP 7, 180 (2011)]. Cross-beam energy transfer [P. A. Michel et al., Phys. Plasmas 17, 056305 (2010] in the laser entrance hole is an important tool for achieving round implosions, and is uniformly distributed across the laser spot in rad-hydro simulations (but not necessarily in experiments). We find the Raman linear gain spectra computed with these plasma conditions agree well in time-dependent peak wavelength with the measured data, especially when overlapping laser-beam intensities are used. More detailed, spatially non-uniform modeling of the cross-beam transfer has been performed. The resulting gains better follow the time history of the measured backscatter. We shall present the impact of spatially non-uniform energy transfer on SRS gain. This metric is valid when amplification is in a linear regime, and so we shall also present an assessment of whether electron trapping in Langmuir waves can play a role in these shots.

  4. Summary of the First Neutron Image Data Collected at the National Ignition Facility

    SciTech Connect (OSTI)

    Grim, G P; Aragonez, R J; Batha, S H; Clark, D D; Clark, D J; Clark, D J; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T.-S. F; Wilde, C H; Wilke, M D; Wilson, D C; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Fittinghoff, D N; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M

    2011-11-01

    A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of the data collected and measurements made to date. Data form directly driven, DT filled microballoons, as well as, indirectly driven, cryogenically layered ignition experiments are presented. The data presented show that the primary cores from directly driven implosions are approximately twice as large, 64 +/- 3 um, as indirect cores (25 +/- 4 and 29 +/- 4 um and more asymmetric, P2/P0 = 47% vs. -14% and -7%. Further, comparison with the size and shape of X-ray image data from on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion. This work was performed for the U.S. Department of Energy, National Nuclear Security Administration and by the National Ignition Campaign partners; Lawrence Livermore National Laboratory (LLNL), University of Rochester -Laboratory for Laser Energetics (LLE), General Atomics(GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL). Other contributors include Lawrence Berkeley National Laboratory (LBNL), Massachusetts Institute of Technology (MIT), Atomic Weapons Establishment (AWE), England, and Commissariat `a l’ ´ Energie Atomique (CEA), France.

  5. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; et al

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information onmore » hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.« less

  6. Ignition Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ignition experiments Ignition Experiments The goal of many NIF experiments is to create a self-sustaining "burn" of fusion fuel (the hydrogen isotopes deuterium and tritium) that produces as much or more energy than the energy required to initiate the fusion reaction-an event called ignition. In moving closer to achieving ignition, NIF researchers are fulfilling the vision of early laser pioneers who conceived of using the x rays generated by a powerful, brief laser pulse to fuse

  7. National Ignition Facility & Photon Science Seven WonderS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for NIF's optics needs in rapid- growth crystals, continuous-pour glass, optical coatings, and new finishing techniques that can withstand NIF's extremely high energies. The...

  8. Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    SciTech Connect (OSTI)

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Edwards, M. J.; Fittinghoff, D.; Glenn, S.; Haan, S. W.; Hamza, A.; and others

    2014-09-15

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T{sub 2}-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  9. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Grim, G. P.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; et al

    2014-09-09

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T₂-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within themore » CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.« less

  10. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    SciTech Connect (OSTI)

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Grim, G. P.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Chen, K. C.; Edgell, D. H.; Edwards, M. J.; Fittinghoff, D.; Frenje, J. A.; Gatu-Johnson, M.; Glebov, V. Y.; Glenn, S.; Guler, N.; Haan, S. W.; Hamza, A.; Hatarik, R.; Herrmann, H. W.; Hoover, D.; Hsing, W. W.; Izumi, N.; Kervin, P.; Khan, S.; Kilkenny, J. D.; Kline, J.; Knauer, J.; Kyrala, G.; Landen, O. L.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Mintz, M.; Moore, A.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R.; Rinderknecht, H. G.; Sayre, D. B.; Schneider, M.; Stoeffl, W.; Tommasini, R.; Town, R. P.; Widmann, K.; Wilson, D. C.; Yeamans, C. B.

    2014-09-09

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T₂-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  11. The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions

    SciTech Connect (OSTI)

    Peterson, J. L.; Clark, D. S.; Suter, L. J.; Masse, L. P.

    2014-09-15

    Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.

  12. Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observables

    SciTech Connect (OSTI)

    Spears, Brian K. Munro, David H.; Sepke, Scott; Caggiano, Joseph; Clark, Daniel; Hatarik, Robert; Kritcher, Andrea; Sayre, Daniel; Yeamans, Charles; Knauer, James; Hilsabeck, Terry; Kilkenny, Joe

    2015-05-15

    We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding.

  13. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    SciTech Connect (OSTI)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Hohenberger, M.; Regan, S. P.

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  14. A geophysical shock and air blast simulator at the National Ignition Facility

    SciTech Connect (OSTI)

    Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H.; Guyton, R. L.; Huffman, E.

    2014-09-01

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  15. Building NIF

    SciTech Connect (OSTI)

    Ed Moses

    2005-01-01

    This 14-minute video describes the missions, construction challenges, technological breakthroughs and operation of the National Ignition Facility, the world's largest laser.

  16. Lawrence Livermore National Laboratory is home to the National Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory is home to the National Ignition Facility (NIF), which began full operations in March 2009. NIF's 192 powerful laser beams, housed in a 10-story building the size of 3 football fields, can deliver nearly 2 million joules of ultraviolet laser energy in billionth-of-a- second pulses to the target chamber center. When NIF's laser beams focus all of their energy on a target the size of a pencil eraser, they briefly produce extraordinary temperature and pressure conditions within the

  17. Simulation of Laser-Plasma Interaction in National Ignition Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments | Argonne Leadership Computing Facility A volume visualization of the laser light that has been backscattered by Stimulated Raman Scattering A volume visualization of the laser light that has been backscattered by Stimulated Raman Scattering in a simulation of a National Ignition Facility inertial fusion experiment. The band of scattered light near the bottom of the simulation extends across all three quads and is an example of "cooperative backscattering." Eric Brugger

  18. The effect of laser spot shapes on polar-direct-drive implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Weilacher, F.; Radha, P. B. Collins, T. J. B.; Marozas, J. A.

    2015-03-15

    Ongoing polar-direct-drive (PDD) implosions on the National Ignition Facility (NIF) [J. D. Lindl and E. I. Moses, Phys. Plasmas 18, 050901 (2011)] use existing NIF hardware, including indirect-drive phase plates. This limits the performance achievable in these implosions. Spot shapes are identified that significantly improve the uniformity of PDD NIF implosions; outer surface deviation is reduced by a factor of 7 at the end of the laser pulse and hot-spot distortion is reduced by a factor of 2 when the shell has converged by a factor of ?10. As a result, the neutron yield increases by approximately a factor of 2. This set of laser spot shapes is a combination of circular and elliptical spots, along with elliptical spot shapes modulated by an additional higher-intensity ellipse offset from the center of the beam. This combination is motivated in this paper. It is also found that this improved implosion uniformity is obtained independent of the heat conduction model. This work indicates that significant improvement in performance can be obtained robustly with the proposed spot shapes.

  19. Construction safety program for the National Ignition Facility

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF.

  20. Simulation of Laser-plasma Interaction in National Ignition Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments | Argonne Leadership Computing Facility Figure 1a is a volume visualization of the laser light that has been backscattered by Stimulated Raman Scattering in a simulation of a National Ignition Facility inertial fusion experiment. At this point in time, light is scattering independently from the three laser quads (a quad is a group of 2x2 beams propagating in the same direction). Figure 1b is a volume visualization from the same simulation, but at a different time. The band of

  1. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    SciTech Connect (OSTI)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J.; Hoover, D. E.; Nikroo, A.; Peterson, K. J.

    2014-07-15

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure RayleighTaylor and RichtmyerMeshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a low-foot drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

  2. NIF and Jupiter User Group Meeting 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    home / nif workshops / user group 2015 NIF and Jupiter User Group Meeting 2015 Information on the NIF User Facility About the NIF and Jupiter Laser Facility User Group Meeting The NIF and Jupiter Laser Facility (JLF) User Groups hosted a joint meeting from Sunday, February 8, 2015, through Wednesday, February 11, 2015, in Livermore, CA. The meeting described NIF's and JLF's capabilities to current and potential users and included presentations about capabilities and recent experiments. The

  3. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  4. NNSA Elevates National Ignition Facility Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    to oversee the Inertial Confinement Fusion Program and the construction and ... The move consolidates the NIF Project Office and the Inertial Confinement Fusion Program ...

  5. Occupational dose estimates for the National Ignition Facility...

    Office of Scientific and Technical Information (OSTI)

    During peak operation, the NIF will attain D-T fusion yields of 20 MJ in a single ... Resource Type: Conference Resource Relation: Conference: First International Conference on ...

  6. NIF Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calendar NIF Calendar SSP* - Stockpile Stewardship Change Log

  7. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  8. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    SciTech Connect (OSTI)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-01-12

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  9. How NIF Works

    ScienceCinema (OSTI)

    None

    2010-09-01

    The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

  10. NIF: Impacts of chemical accidents and comparison of chemical/radiological accident approaches

    SciTech Connect (OSTI)

    Lazaro, M.A.; Policastro, A.J.; Rhodes, M.

    1996-01-12

    The US Department of Energy (DOE) proposes to construct and operate the National Ignition Facility (NIF). The goals of the NIF are to (1) achieve fusion ignition in the laboratory for the first time by using inertial confinement fusion (ICF) technology based on an advanced-design neodymium glass solid-state laser, and (2) conduct high-energy-density experiments in support of national security and civilian applications. The primary focus of this paper is worker-public health and safety issues associated with postulated chemical accidents during the operation of NIF. The key findings from the accident analysis will be presented. Although NIF chemical accidents will be emphasized, the important differences between chemical and radiological accident analysis approaches and the metrics for reporting results will be highlighted. These differences are common EIS facility and transportation accident assessments.

  11. COLLOQUIUM: NIF An Unexpected Journey or Lessons Learned to Secure Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Scale | Princeton Plasma Physics Lab January 7, 2015, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: NIF An Unexpected Journey or Lessons Learned to Secure Projects of Scale Dr. Edward Michael Campbell Sandia National Laboratory Developing the mission, science, technology and support for projects of scale is a demanding and multifaceted enterprise. There are many lessons to be learned from the National Ignition Facility (NIF) experience that can be applied in the quest to secure

  12. Studying Nuclear Astrophysics at NIF

    SciTech Connect (OSTI)

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on

  13. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    SciTech Connect (OSTI)

    Fishler, B

    2011-03-18

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  14. Validating hydrodynamic growth in National Ignition Facility implosions

    SciTech Connect (OSTI)

    Peterson, J. L. Casey, D. T.; Hurricane, O. A.; Raman, K. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    We present new hydrodynamic growth experiments at the National Ignition Facility, which extend previous measurements up to Legendre mode 160 and convergence ratio 4, continuing the growth factor dispersion curve comparison of the low foot and high foot pulses reported by Casey et al. [Phys. Rev. E 90, 011102(R) (2014)]. We show that the high foot pulse has lower growth factor and lower growth rate than the low foot pulse. Using novel on-capsule fiducial markers, we observe that mode 160 inverts sign (changes phase) for the high foot pulse, evidence of amplitude oscillations during the Richtmyer-Meshkov phase of a spherically convergent system. Post-shot simulations are consistent with the experimental measurements for all but the shortest wavelength perturbations, reinforcing the validity of radiation hydrodynamic simulations of ablation front growth in inertial confinement fusion capsules.

  15. Fast Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fast ignition Fast Ignition Researchers Study Fast Ignition University of California at San Diego researchers participate in experiments on the Titan laser at LLNL's Jupiter Laser Facility to study fast ignition. The approach being taken by the National Ignition Facility to achieve thermonuclear ignition and burn is called the "central hot spot" scenario. This technique relies on simultaneous compression and ignition of a spherical fuel capsule in an implosion, roughly like in a diesel

  16. A NIF record: 17 shots in a week | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) A NIF record: 17 shots in a week Monday, May 2, 2016 - 10:36am During the last week of March, researchers at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) demonstrated new flexibility in collecting data for stockpile stewardship by conducting a record 17 shots. Researchers at NIF have traditionally aimed some or all of the 192 high-power lasers at a single target, then waited for the amplifiers to cool before the lasers were realigned and

  17. Pleiades Experiments on the NIF: Phase II-C

    SciTech Connect (OSTI)

    Benstead, James; Morton, John; Guymer, Thomas; Garbett, Warren; Stevenson, Mark; Moore, Alastair; Kline, John; Schmidt, Derek; Perry, Ted; Lanier, Nick; Workman, Jonathan

    2015-06-08

    Pleiades was a radiation transport campaign fielded at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) between 2011 and 2014. The primary goals of the campaign were to develop and characterise a reproducible ~350eV x-ray drive and to constrain a number of material data properties required to successfully model the propagation of radiation through two low-density foam materials. A further goal involved the development and qualification of diagnostics for future radiation transport experiments at NIF. Pleiades was a collaborative campaign involving teams from both AWE and the Los Alamos National Laboratory (LANL).

  18. Design of precision mounts for optimizing the conversion efficiency of KDP crystals for the National Ignition Facility

    SciTech Connect (OSTI)

    Hibbard, R.L., LLNL

    1998-03-30

    A key design challenge for the National Ignition Facility (NIF), being constructed at Lawrence Livermore National Laboratory (LLNL), [Hibbard, R L , 1998], is the frequency converter consisting of two KDP crystals and a focusing lens Frequency conversion is a critical performance factor for NIF and the optical mount design for this plays a key role in meeting design specifications The frequency converter is a monolithic cell that mounts the optics and is the point on the beamline where the frequency conversion crystals are optimally aligned and the cell is focused on target The lasing medium is neodymium in phosphate glass with a fundamental frequency (1{omega}) of 1 053 {micro}m Sum frequency generation in a pair of conversion crystals (KDP/KD*P) produces 1 8 MJ of the third harmonic light (3{omega} or {lambda}=O 35 pm). The phase-matching scheme on NIF is type I second harmonic generation followed by type II sum-frequency-mixing of the residual fundamental and the second harmonic light This laser unlike previous laser system designs, must achieve high conversion efficiency, 85%, which is close to the 90 8% theoretical maximum As a result, this design is very sensitive to angular variations in beam propagation and in the crystal axes orientation. Factors that influence the phase matching angle include crystal inhomogeneity, residual and induced stress in the crystals, the crystals` natural and mounted surface figure, mounting imperfections and gravity sag These angular variations need to be controlled within a 40 {micro}rad error budget. The optical mount contributions to the angular error budget are 20 {micro}rad and are what make the frequency converter in the Final Optics Cell (FOC) such a challenging precision design. The premise of using full edge support in the FOC design is primarily driven by the spherical target chamber design that has optics mounted at multiple longitudinal angles and thus gravity sag in the crystals that needs to be minimized To meet

  19. Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Casner, A. Masse, L.; Liberatore, S.; Loiseau, P.; Masson-Laborde, P. E.; Jacquet, L.; Martinez, D.; Moore, A. S.; Seugling, R.; Felker, S.; Haan, S. W.; Remington, B. A.; Smalyuk, V. A.; Farrell, M.; Giraldez, E.; Nikroo, A.

    2015-05-15

    Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.

  20. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platforn at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Zylstra, A. B.; Seguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Waugh, C. J.; Li, C. K.; Petrasso, R. D.; et al

    2016-01-18

    A thin-glass-shell, D3He-filled exploding-pusher inertial confinement fusion implosion at the National Ignition Facility (NIF) has been demonstrated as a proton source that serves as a promising first step toward development of a monoenergetic proton, alpha, and triton backlighting platform at the NIF. Among the key measurements, the D3He-proton emission on this experiment (shot N121128) has been well-characterized spectrally, temporally, and in terms of emission isotropy, revealing a highly monoenergetic (ΔE/E~4%) and isotropic source (~3% proton fluence variation and ~0.5% proton energy variation). On a similar shot (N130129, with D2 fill), the DD-proton spectrum has been obtained as well, illustrating thatmore » monoenergetic protons of multiple energies may be utilized in a single experiment. In conclusion, these results, and experiments on OMEGA, point toward future steps in the development of a precision, monoenergetic proton, alpha, and triton source that can readily be implemented at the NIF for backlighting a broad range of high energy density physics (HEDP) experiments in which fields and flows are manifest, and also utilized for studies of stopping power in warm dense matter and in classical plasmas.« less

  1. Direct drive: Simulations and results from the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; et al

    2016-04-19

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivitymore » analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less

  2. X-ray area backlighter development at the National Ignition Facility...

    Office of Scientific and Technical Information (OSTI)

    the National Ignition Facility (invited) 1D spectral imaging was used to characterize the K-shell emission of Z 30-35 and Z 40-42 laser-irradiated foils at the National...

  3. The role of the NIF in the development of inertial fusion energy

    SciTech Connect (OSTI)

    Logan, B.G.

    1995-03-16

    Recent decisions by DOE to proceed with the National Ignition Facility (NIF) and the first half of the Induction Systems Linac Experiments (ILSE) can provide the scientific basis for inertial fusion ignition and high-repetition heavy-ion driver physics, respectively. Both are critical to Inertial Fusion Energy (IFE). A conceptual design has been completed for a 1.8-MJ, 500-TW, 0.35-{micro}m-solid-state laser system, the NIF. The NIF will demonstrate inertial fusion ignition and gain for national security applications, and for IFE development. It will support science applications using high-power lasers. The demonstration of inertial fusion ignition and gain, along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF) identified in the National Energy Policy Act of 1992. The ETF would provide an integrated testbed for the development and demonstration of the technologies needed for IFE power plants. In addition to target physics of ignition, the NIF will contribute important data on IFE target chamber issues, including neutron damage, activation, target debris clearing, operational experience in many areas prototypical to future IFE power plants, and an opportunity to provide tests of candidate low-cost IFE targets and injection systems. An overview of the NIF design and the target area environments relevant to conducting IFE experiments are described in Section 2. In providing this basic data for IFE, the NIF will provide confidence that an ETF can be successful in the integration of drivers, target chambers, and targets for IFE.

  4. Development and implementation of seismic design and evaluation criteria for NIF

    SciTech Connect (OSTI)

    Sommer, S.C.; MacCalden, P.B.

    1998-03-17

    The National Ignition Facility (NIF) is being built at the Lawrence Livermore National Laboratory (LLNL) as an international research center for inertial confinement fusion (ICF). This paper will provide an overview of NIF, review NIF seismic criteria, and briefly discuss seismic analyses of NIF optical support structures that have been performed by LLNL and the Ralph M. Parsons Company, the Architect and Engineer (A&E) for NIF. The NIF seismic design and evaluation criteria is based on provisions in DOE Standard 1020 (DOE-STD-1020), the Uniform Building Code (UBC), and the LLNL Mechanical Engineering Design Safety Standards (MEDSS). Different levels of seismic requirements apply to NIF structures, systems, and components (SSCs) based on their function. The highest level of requirements are defined for optical support structures and SSCs which could influence the performance of optical support structures, while the minimum level of requirements are Performance Category 2 (PC2) requirements in DOE-STD-1020. To demonstrate that the NIF seismic criteria is satisfied, structural analyses have been performed by LLNL and Parsons to evaluate the responses of optical support structures and other SSCs to seismic-induced forces.

  5. Ignition Capsules with Aerogel-Supported Liquid DT Fuel For The National Ignition Facility

    SciTech Connect (OSTI)

    Ho, D D; Salmonson, J D; Clark, D S; Lindl, J D; Haan, S W; Amendt, P; Wu, K J

    2011-10-25

    For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to {beta}-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65-75% at peak velocity. A scan (in ablator and fuel thickness parameter space) is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  6. NIF & PS People - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 / september / NIF & PS People - 2014 September NIF Target Milestones and Key Partnerships Celebrated Two important milestones achieved by the NIF&PS and Weapons and Complex Integration (WCI) directorates' Target Fabrication Team and their key partnerships were celebrated on Sept. 19. Target Fabrication Manager Alex Hamza kicked off the celebration by announcing the first milestone: This summer, the team built the 10,000th target for the OMEGA Laser Facility at the University of

  7. X-ray Streak Camera Cathode Development and Timing Accuracy of the 4w UV Fiducial System at the National Ignition Facility

    SciTech Connect (OSTI)

    Opachich, Y P; Palmer, N; Homoelle, D; Hatch, B W; Bell, P; Bradley, D; Kalantar, D; Browning, D; Landen, O

    2012-05-02

    The convergent ablator experiments at the National Ignition Facility (NIF) are designed to measure the peak velocity and remaining ablator mass of an indirectly driven imploding capsule. Such a measurement can be performed using an x-ray source to backlight the capsule and an x-ray streak camera to record the capsule as it implodes. The ultimate goal of this experiment is to achieve an accuracy of 2% in the velocity measurement, which translates to a {+-}2 ps temporal accuracy over any 300 ps interval for the streak camera. In order to achieve this, a 4-{omega} (263nm) temporal fiducial system has been implemented for the x-ray streak camera at NIF. Aluminum, Titanium, Gold and Silver photocathode materials have been tested. Aluminum showed the highest quantum efficiency, with five times more peak signal counts per fiducial pulse when compared to Gold. The fiducial pulse data was analyzed to determine the centroiding a statistical accuracy for incident laser pulse energies of 1 and 10 nJ, showing an accuracy of {+-}1.6 ps and {+-}0.7 ps respectively.

  8. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; et al

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infermore » the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  9. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    SciTech Connect (OSTI)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; Friedrich, S.; Bionta, R.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Hopkins, L. Berzak; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dixit, S.; Döppner, T.; Edgell, D.; Edwards, M. J.; Johnson, M. Gatu; Glenn, S.; Glenzer, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kritcher, A.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Macphee, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moody, J.; Moses, E.; Nagel, S. R.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Rosen, M.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Springer, P.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Zacharias, R.

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.

  10. NIF Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    construction NIF Construction After careful preparation, a giant rotating crane lifted the NIF target chamber and gently placed it in the Target Bay, a breathtaking event that took only about 30 minutes. Building the World's Largest Laser Planning for NIF began in the early 1990s, and ground was broken on May 29, 1997. Energy Secretary Federico Peña said at the groundbreaking: "NIF will unleash the power of the heavens to make Earth a better place." To prepare the site for

  11. NIF Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF Workshops Laser Safety Laser Safety Officer Workshop 2014 For individuals with laser safety responsibility and interest in a research, industrial or academic setting who want ...

  12. National Ignition Facility subsystem design requirements beam transport enclosures SSDR 1.4.1

    SciTech Connect (OSTI)

    Meick, J.

    1996-10-01

    This SSDR establishes the performance, design, development, and test requirements for the NIF Beam Transport Enclosures.

  13. Use of the target diagnostic control system in the National Ignition Facility

    SciTech Connect (OSTI)

    Shelton, R; Lagin, L; Nelson, J

    2011-07-25

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated, time resolved and gated X-ray sensors, laser velocity interferometry, and neutron time of flight. Diagnostics to diagnose fusion ignition implosion and neutron emissions have been developed. A Diagnostic Control System (DCS) for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Window XP processor and Java application. Instruments are aggregated as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. During the past several years, over thirty-six diagnostics have been deployed using this architecture in support of the National Ignition Campaign (NIC). The DCS architecture facilitates the expected additions and upgrades to diagnostics as more experiments are performed. This paper presents the DCS architecture, framework and our experiences in using it during the NIC to operate, upgrade and maintain a large set of diagnostic instruments.

  14. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA

    SciTech Connect (OSTI)

    Glebov, V. Yu.; Forrest, C.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Caggiano, J. A.; Carman, M. L.; Clancy, T. J.; Hatarik, R.; McNaney, J.; Zaitseva, N. P.

    2012-10-15

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  15. The Neutron Imaging Diagnostic at NIF

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherly, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of ICF implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  16. The neutron imaging diagnostic at NIF (invited)

    SciTech Connect (OSTI)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Bower, D.; Dzenitis, J. M.; and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  17. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    SciTech Connect (OSTI)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  18. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; et al

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore » ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  19. NIF Status Update - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    status NIF Status Update - 2014 May - Highlights of May Experiments on NIF Gigabar Equation-of-State Experiments Production of Beryllium Capsules for NIF Begins First Weekly...

  20. The National Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL SC08 BOF: Computing with Massive and Persistent Data LLNL-PRES-408909. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344 2 Target chamber One Terabyte of data to be downloaded in ~50 Minutes for each shot. 5 Full Aperture Backscatter Diagnostic Instrument Manipulator (DIM) Diagnostic Instrument Manipulator (DIM) X-ray imager

  1. GIGABAR MATERIAL PROPERTIES EXPERIMENTS ON NIF AND OMEGA

    SciTech Connect (OSTI)

    Swift, D C; Hawreliak, J A; Braun, D; Kritcher, A; Glenzer, S; Collins, G W; Rothman, S D; Chapman, D; Rose, S

    2011-08-04

    The unprecedented laser capabilities of the National Ignition Facility (NIF) make it possible for the first time to countenance laboratory-scale experiments in which gigabar pressures can be applied to a reasonable volume of material, and sustained long enough for percent level equation of state measurements to be made. We describe the design for planned experiments at the NIF, using a hohlraum drive to induce a spherically-converging shock in samples of different materials. Convergence effects increase the shock pressure to several gigabars over a radius of over 100 microns. The shock speed and compression will be measured radiographically over a range of pressures using an x-ray streak camera. In some cases, we will use doped layers to allow a radiographic measurement of particle velocity.

  2. Sensitivity of Inferred Electron Temperature from X-ray Emission of NIF Cryogenic DT Implosions

    SciTech Connect (OSTI)

    Klem, Michael

    2015-05-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory seeks to achieve thermonuclear ignition through inertial confinement fusion. The accurate assessment of the performance of each implosion experiment is a crucial step. Here we report on work to derive a reliable electron temperature for the cryogenic deuteriumtritium implosions completed on the NIF using the xray signal from the Ross filter diagnostic. These Xrays are dominated by bremsstrahlung emission. By fitting the xray signal measured through each of the individual Ross filters, the source bremsstrahlung spectrum can be inferred, and an electron temperature of the implosion hot spot inferred. Currently, each filter is weighted equally in this analysis. We present work quantifying the errors with such a technique and the results from investigating the contribution of each filter to the overall accuracy of the temperature inference. Using this research, we also compare the inferred electron temperature against other measured implosion quantities to develop a more complete understanding of the hotspot physics.

  3. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  4. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Ma, T.; Hurricane, O. A.; Callahan, D. A.; Barrios, M. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Doppner, T.; Haan, S. W.; Hinkel, D. E.; Berzak Hopkins, L. F.; Le Pape, S.; MacPhee, A. G.; Pak, A.; Park, H. S.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J. D.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P.; Cerjan, C. J.; Church, J. A.; Dixit, S.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Field, J.; Fittinghoff, D. N.; Frenje, J. A.; Gatu Johnson, M.; Grim, G.; Guler, N.; Hatarik, R.; Herrmann, H. W.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Khan, S. F.; Kilkenny, J. D.; Knauer, J.; Kohut, T.; Kozioziemski, B.; Kritcher, A.; Kyrala, G.; Landen, O. L.; MacGowan, B. J.; Mackinnon, A. J.; Meezan, N. B.; Merrill, F. E.; Moody, J. D.; Nagel, S. R.; Nikroo, A.; Parham, T.; Ralph, J. E.; Rosen, M. D.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M. B.; Shaughnessy, D.; Spears, B. K.; Town, R.P. J.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-04-06

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Earlier results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

  5. HEC-DPSSL 2012 Workshop, Organizing Committee: National Ignition Facility &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science Organizing Committee TEXT SIZE Workshops About Organizing Committee Agenda Deadlines Abstract Submission Venue NIF Tour Directions Lake Tahoe Workshop Sign-up Organizing Committee Andrew J. Bayramian Lawrence Livermore National Laboratory Robert J. Deri Lawrence Livermore National Laboratory Michael Dunne Lawrence Livermore National Laboratory Meeting Support Trina Voelker NIF Event & Protocol Office Deputy Manager Lawrence Livermore National Laboratory Mila Shapovalov NIF

  6. Simulations of indirectly driven gas-filled capsules at the National Ignition Facility

    SciTech Connect (OSTI)

    Weber, S. V.; Casey, D. T.; Eder, D. C.; Pino, J. E.; Smalyuk, V. A.; Remington, B. A.; Rowley, D. P.; Yeamans, C. B.; Tipton, R. E.; Barrios, M.; Benedetti, R.; Berzak Hopkins, L.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Divol, L.; and others

    2014-11-15

    Gas-filled capsules imploded with indirect drive on the National Ignition Facility have been employed as symmetry surrogates for cryogenic-layered ignition capsules and to explore interfacial mix. Plastic capsules containing deuterated layers and filled with tritium gas provide a direct measure of mix of ablator into the gas fuel. Other plastic capsules have employed DT or D{sup 3}He gas fill. We present the results of two-dimensional simulations of gas-filled capsule implosions with known degradation sources represented as in modeling of inertial confinement fusion ignition designs; these are time-dependent drive asymmetry, the capsule support tent, roughness at material interfaces, and prescribed gas-ablator interface mix. Unlike the case of cryogenic-layered implosions, many observables of gas-filled implosions are in reasonable agreement with predictions of these simulations. Yields of TT and DT neutrons as well as other x-ray and nuclear diagnostics are matched for CD-layered implosions. Yields of DT-filled capsules are over-predicted by factors of 1.4–2, while D{sup 3}He capsule yields are matched, as well as other metrics for both capsule types.

  7. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-01-14

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

  8. The Gated X-ray Detector for the National Ignition Facility

    SciTech Connect (OSTI)

    Oertel, J A; Barnes, C; Archuleta, T; Casper, L; Fatherley, V; Heinrichs, T; King, R; Landers, D; Lopez, F; Sanchez, P; Sandoval, G; Schrank, L; Walsh, P; Bell, P; Brown, M; Costa, R; Holder, J; Montalongo, S; Pederson, N

    2006-05-18

    Two new gated x-ray imaging cameras have recently been designed, constructed and delivered to the National Ignition Facility in Livermore, CA. These Gated X-ray Detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significant different from earlier generations of gated x-ray images due in parts to an innovative impendence matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution and no detectable impendence reflections.

  9. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    SciTech Connect (OSTI)

    Rozanov, V. B. Vergunova, G. A.

    2015-11-15

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile (“low-foot” and “high-foot” regimes) have been analyzed. The parameters of the compression of targets with a high-density carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.

  10. A technique for extending by ∼10{sup 3} the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA

    SciTech Connect (OSTI)

    Sio, H. Séguin, F. H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Petrasso, R. D.

    2014-11-15

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D{sup 3}He-, D{sub 2}-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10{sup 2} for obtaining the spectral shape, and by 10{sup 3} for mean energy (ρR) measurement, corresponding to proton fluences of 10{sup 8} and 10{sup 9} cm{sup −2}, respectively. Using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ∼10{sup 8} and ∼10{sup 12}, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±∼10 mg/cm{sup 2}.

  11. National Ignition Facility sub-system design requirements integrated timing system SSDR 1.5.3

    SciTech Connect (OSTI)

    Wiedwald, J.; Van Aersau, P.; Bliss, E.

    1996-08-26

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Integrated Timing System, WBS 1.5.3 which is part of the NIF Integrated Computer Control System (ICCS). The Integrated Timing System provides all temporally-critical hardware triggers to components and equipment in other NIF systems.

  12. What is NIF?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size of a pencil eraser. NIF became operational in March 2009. NIF is the size of a sports stadium-three football fields could fit inside. LEARN HOW NIF WORKS Built for Extremes...

  13. Damage mechanisms avoided or managed for NIF large optics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Manes, K. R.; Spaeth, M. L.; Adams, J. J.; Bowers, M. W.; Bude, J. D.; Carr, C. W.; Conder, A. D.; DiNicola, J. M. G.; Dixit, S. N.; Feigenbaum, E.; et al

    2016-02-09

    After every other failure mode has been considered, in the end, the high-performance limit of all lasers is set by optical damage. The demands of inertial confinement fusion (ICF) pushed lasers designed as ICF drivers into this limit from their very earliest days. The first ICF lasers were small, and their pulses were short. Their goal was to provide as much power to the target as possible. Typically, they faced damage due to high intensity on their optics. As requests for higher laser energy, longer pulse lengths, and better symmetry appeared, new kinds of damage also emerged, some of themmore » anticipated and others unexpected. This paper will discuss the various types of damage to large optics that had to be considered, avoided to the extent possible, or otherwise managed as the National Ignition Facility (NIF) laser was designed, fabricated, and brought into operation. Furthermore, it has been possible for NIF to meet its requirements because of the experience gained in previous ICF systems and because NIF designers have continued to be able to avoid or manage new damage situations as they have appeared.« less

  14. National Ignition Facility, subsystem design requirements beam control {ampersand} laser diagnostics SSDR 1.7

    SciTech Connect (OSTI)

    Bliss, E.

    1996-11-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Alignment subsystem (WBS 1.7.1), Beam Diagnostics (WBS 1.7.2), and the Wavefront Control subsystem (WBS 1.7. 3) of the NIF Laser System (WBS 1.3). These three subsystems are collectively referred to as the Beam Control & Laser Diagnostics Subsystem. The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 3 figs., 3 tabs.

  15. Hydrodynamic instability growth and mix experiments at the National Ignition Facility

    SciTech Connect (OSTI)

    Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.; Casey, D. T.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W. W.; Hurricane, O.; Kroll, J.; Landen, O. L.; Lindl, J. D.; Ma, T.; McNaney, J. M.; Mintz, M.; Parham, T.; Peterson, J. L.; and others

    2014-05-15

    Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ignition-relevant laser pulses, and ablation-front modulation growth was measured using x-ray radiography for a shell convergence ratio of ∼2. The measured growth was in good agreement with that predicted, thus validating simulations for the fastest growing modulations with mode numbers up to 90 in the acceleration phase. Future experiments will be focused on measurements at higher convergence, higher-mode number modulations, and growth occurring during the deceleration phase.

  16. The development and advantages of beryllium capsules for the National Ignition Facility

    SciTech Connect (OSTI)

    Wilson, D.C.; Bradley, P.A.; Hoffman, N.M.; Swenson, F.J.; Smitherman, D.P.; Chrien, R.E.; Margevicius, R.W.; Thoma, D.J.; Foreman, L.R.; Hoffer, J.K.; Goldman, S.R.; Caldwell, S.E.; Dittrich, T.R.; Haan, S.W.; Marinak, M.M.; Pollaine, S.M.; Sanchez, J.J.

    1998-05-01

    Capsules with beryllium ablators have long been considered as alternatives to plastic for the National Ignition Facility laser [J. A. Paisner {ital et al.}, Laser Focus World {bold 30}, 75 (1994)]; now the superior performance of beryllium is becoming well substantiated. Beryllium capsules have the advantages of high density, low opacity, high tensile strength, and high thermal conductivity. Three-dimensional (3-D) calculations with the HYDRA code [NTIS Document No. DE-96004569 (M. M. Marinak {ital et al.} in UCRL-LR-105821-95-3)] confirm two-dimensional (2-D) LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasmas Phys. Controlled Thermonucl. Fusion {bold 2}, 51 (1975)] results that particular beryllium capsule designs are several times less sensitive than the CH point design to instability growth from deuterium-tritium (DT) ice roughness. These capsule designs contain more ablator mass and leave some beryllium unablated at ignition. By adjusting the level of copper dopant, the unablated mass can increase or decrease, with a corresponding decrease or increase in sensitivity to perturbations. A plastic capsule with the same ablator mass as the beryllium and leaving the same unablated mass also shows this reduced perturbation sensitivity. Beryllium{close_quote}s low opacity permits the creation of 250 eV capsule designs. Its high tensile strength allows it to contain DT fuel at room temperature. Its high thermal conductivity simplifies cryogenic fielding. {copyright} {ital 1998 American Institute of Physics.}

  17. National Ignition Facility sub-system design requirements integrated safety systems SSDR 1.5.4

    SciTech Connect (OSTI)

    Reed, R.; VanArsdall, P.; Bliss, E.

    1996-09-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Integrated Safety System, which is part of the NIF Integrated Computer Control System (ICCS).

  18. National Ignition Facility sub-system design requirements automatic alignment system SSDR 1.5.5

    SciTech Connect (OSTI)

    VanArsdall, P.; Bliss, E.

    1996-09-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Automatic Alignment System, which is part of the NIF Integrated Computer Control System (ICCS).

  19. Laser irradiance scaling in polar direct drive implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Murphy, T. J.; Krasheninnikova, N. S.; Kyrala, G. A.; Bradley, P. A.; Baumgaertel, J. A.; Cobble, J. A.; Hakel, P.; Hsu, S. C.; Kline, J. L.; Montgomery, D. S.; Obrey, K. A. D.; Shah, R. C.; Tregillis, I. L.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.; Wallace, R. J.; Bhandarkar, S. D.; Fitzsimmons, P.; Hoppe, M. L.; Nikroo, A.; Hohenberger, M.; McKenty, P. W.; Rinderknecht, H. G.; Rosenberg, M. J.; Petrasso, R. D.

    2015-09-17

    Polar-direct-drive experiments conducted at the National Ignition Facility [E. I. Moses, Fusion Sci. Technol. 54, 361 (2008)] performed at laser irradiance between 1 and 2×1015 W/cm2 exhibit increased hard x-ray emission, decreased neutron yield, and reduced areal density as the irradiance is increased. Experimental x-ray images at the higher irradiances show x-ray emission at the equator, as well as degraded symmetry, that is not predicted in hydrodynamic simulations using flux-limited energy transport, but that appear when non-local electron transport together with a model to account for cross beam energy transfer (CBET) is utilized. The reduction in laser power for equatorial beams required in the simulations to reproduce the effects of CBET on the observed symmetry also reproduces the yield degradation consistent with experimental data.

  20. Recent performance results of the National Ignition Facility Beamlet demonstration project

    SciTech Connect (OSTI)

    Van Wonterghem, B.M.; Wegner, P.J.; Lawson, J.K.; Auerbach, J.M.; Henesian, M.A.; Barker, C.E.; Thompson, C.E.; Widmayer, C.C.; Caird, J.A.

    1996-08-01

    The laser driver for the National Ignition Facility will be a departure from previous inertial confinement fusion laser architecture of a master oscillator single pass power amplifier (MOPA) design. The laser will use multi-segment Nd:Glass amplifiers in a multipass cavity arrangement, which can be assembled into compact and cost effective arrays to deliver the required multi- megajoule energy to target. A single beam physics prototype, the Beamlet, has been in operation for over two years and has demonstrated the feasibility of this architecture. We present a short review of Beamlet`s performance and limitations based on beam quality both at its fundamental and frequency converted wavelengths of 1.053 and 0.351 {mu}m.

  1. Laser irradiance scaling in polar direct drive implosions on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Murphy, T. J.; Krasheninnikova, N. S.; Kyrala, G. A.; Bradley, P. A.; Baumgaertel, J. A.; Cobble, J. A.; Hakel, P.; Hsu, S. C.; Kline, J. L.; Montgomery, D. S.; et al

    2015-09-17

    Polar-direct-drive experiments conducted at the National Ignition Facility [E. I. Moses, Fusion Sci. Technol. 54, 361 (2008)] performed at laser irradiance between 1 and 2×1015 W/cm2 exhibit increased hard x-ray emission, decreased neutron yield, and reduced areal density as the irradiance is increased. Experimental x-ray images at the higher irradiances show x-ray emission at the equator, as well as degraded symmetry, that is not predicted in hydrodynamic simulations using flux-limited energy transport, but that appear when non-local electron transport together with a model to account for cross beam energy transfer (CBET) is utilized. The reduction in laser power for equatorialmore » beams required in the simulations to reproduce the effects of CBET on the observed symmetry also reproduces the yield degradation consistent with experimental data.« less

  2. HEC-DPSSL 2012 Workshop, Topics: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Deadlines TEXT SIZE Workshops About Organizing Committee Agenda Deadlines Abstract Submission Venue NIF Tour Directions Lake Tahoe Workshop Sign-up Deadlines For the NIF Tour on September 11, 2012: All Non-US citizens must sign-up before July 11, 2012 US citizens must sign-up before August 10, 2012 Abstract Submission: July 30, 2012 Workshop Sign-up: August 11, 2012

  3. Progress in the development of the MARBLE platform for studying thermonuclear burn in the presence of heterogeneous mix on OMEGA and the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Murphy, T. J.; Douglas, M. R.; Fincke, J. R.; Olson, R. E.; Cobble, J. A.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Parra-Vasquez, N. A. G.; et al

    2016-05-01

    Mix of ablator material into fuel of an ICF capsule adds non-burning material, diluting the fuel and reducing burn. The amount of the reduction is dependent in part on the morphology of the mix. A probability distribution function (PDF) burn model has been developed [6] that utilizes the average concentration of mixed materials as well as the variance in this quantity across cells provided by the BHR turbulent transport model [3] and its revisions [4] to describe the mix in terms of a PDF of concentrations of fuel and ablator material, and provides the burn rate in mixed material. Workmore » is underway to develop the MARBLE ICF platform for use on the National Ignition Facility in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. This capsule will be driven using x-ray drive on NIF, and the resulting shocks will induce turbulent mix that will result in the mixing of deuterium from the foam with the tritium gas. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. As the mix increases, the yield from reactions between the deuterium of the CD foam with tritium from the gas will increase. Lastly, the ratio of DT to DD neutrons will be compared to a variation of the PDF burn model that quantifies reactions from initially separated reactants.« less

  4. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    SciTech Connect (OSTI)

    Hall, G. N. Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L.

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  5. Science on high-energy lasers: From today to the NIF

    SciTech Connect (OSTI)

    Lee, R.W.; Petrasso, R.; Falcone, R.W.

    1995-01-01

    This document presents both a concise definition of the current capabilities of high energy lasers and a description of capabilities of the NIF (National Ignition Facility). Five scientific areas are discussed (Astrophysics, Hydrodynamics, Material Properties, Plasma Physics, Radiation Sources, and Radiative Properties). In these five areas we project a picture of the future based on investigations that are being carried on today. Even with this very conservative approach we find that the development of new higher energy lasers will make many extremely exciting areas accessible to us.

  6. 08-NIF Dedication: Zoe Lofgren

    ScienceCinema (OSTI)

    Congresswoman Zoe Lofgren

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Zoe Lofgren, of California's 16th district.

  7. 01-NIF Dedication: George Miller

    ScienceCinema (OSTI)

    George Miller

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Lab Director George Miller.

  8. 10-NIF Dedication: Ellen Tauscher

    ScienceCinema (OSTI)

    Congresswoman Ellen Tauscher

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Ellen Tauscher, of California's 10th district, which includes Livermore.

  9. 11-NIF Dedication: Dianne Feinstein

    ScienceCinema (OSTI)

    U.S. Senator Dianne Feinstein

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by U.S. Senator Dianne Feinstein of California.

  10. 09-NIF Dedication: Arnold Schwarzenegger

    ScienceCinema (OSTI)

    Governor Arnold Schwarzenegger

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by California Governor Arnold Schwarzenegger.

  11. The National Ignition Facility: inertial fusion energy applications, waste management, and environmental impacts

    SciTech Connect (OSTI)

    Kirchner, F.R.; Lazaro, M.A.; Miley, G.H.; Petra, M.

    1996-10-01

    Proposed design of NIF is reviewed from the standpoint of radioactive and hazardous materials. Detailed analyses of these factors indicated that minimal environmental impacts are expected to occur, and very low exposures are predicted for both workers and the general public.

  12. National Ignition Facility subsystem design requirements supervisory control software SSDR 1.5.2

    SciTech Connect (OSTI)

    Woodruff, J.; VanArsdall, P.; Bliss, E.

    1996-08-29

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Supervisory Control Software, WBS 1.5.2, which is part of the NIF Integrated Computer Control System (ICCS). This document responds directly to the requirements detailed in ICCS (WBS 1-5).

  13. National Ignition Facility sub-system design requirements computer system SSDR 1.5.1

    SciTech Connect (OSTI)

    Spann, J.; VanArsdall, P.; Bliss, E.

    1996-09-05

    This System Design Requirement document establishes the performance, design, development and test requirements for the Computer System, WBS 1.5.1 which is part of the NIF Integrated Computer Control System (ICCS). This document responds directly to the requirements detailed in ICCS (WBS 1.5) which is the document directly above.

  14. Direct-drive–ignition designs with mid-Z ablators

    SciTech Connect (OSTI)

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S.

    2015-03-15

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laser–plasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO{sub 2}) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laser–plasma instabilities and a similar hydrodynamic stability.

  15. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Döppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; et al

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.« less

  16. Higher velocity, high-foot implosions on the National Ignition Facility laser

    SciTech Connect (OSTI)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Döppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Kline, J. L.; Knauer, J. P.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacPhee, A. G.; Milovich, J. L.; Nikroo, A.; Pak, A. E.; Patel, P. K.; Rygg, J. R.; Ralph, J. E.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R. M.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Field, J. E.; Fittinghoff, D. N.; Frenje, J.; Gatu Johnson, M.; Grim, G. P.; Hatarik, R.; Merrill, F. E.; Nagel, S. R.; Izumi, N.; Khan, S. F.; Town, R. P. J.; Sayre, D. B.; Volegov, P.; Wilde, C. H.

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.

  17. Higher velocity, high-foot implosions on the National Ignition Facility laser

    SciTech Connect (OSTI)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Dppner, T.; Ma, T.; Park, H.-S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacPhee, A. G.; Milovich, J. L.; and others

    2015-05-15

    By increasing the velocity in high foot implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1 10{sup 15} neutrons, the total yield ??v{sup 9.4}. This increase is considerably faster than the expected dependence for implosions without alpha heating (?v{sup 5.9}) and is additional evidence that these experiments have significant alpha heating.

  18. The high-foot implosion campaign on the National Ignition Facility

    SciTech Connect (OSTI)

    Hurricane, O. A. Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Dppner, T.; Barrios Garcia, M. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kervin, P.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Milovich, J. L.; Moody, J.; Pak, A. E.; Patel, P. K.; Park, H.-S.; Remington, B. A.; Robey, H. F.; and others

    2014-05-15

    The High-Foot platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.310{sup 15}) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidence for the bootstrapping associated with alpha-particle self-heating.

  19. Higher velocity, high-foot implosions on the National Ignition Facility laser

    SciTech Connect (OSTI)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Dppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Kline, J. L.; Knauer, J. P.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacPhee, A. G.; Milovich, J. L.; Nikroo, A.; Pak, A. E.; Patel, P. K.; Rygg, J. R.; Ralph, J. E.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R. M.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Field, J. E.; Fittinghoff, D. N.; Frenje, J.; Gatu Johnson, M.; Grim, G. P.; Hatarik, R.; Merrill, F. E.; Nagel, S. R.; Izumi, N.; Khan, S. F.; Town, R. P. J.; Sayre, D. B.; Volegov, P.; Wilde, C. H.

    2015-05-15

    By increasing the velocity in high foot implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v???. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v???) and is additional evidence that these experiments have significant alpha heating.

  20. X-ray area backlighter development at the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Barrios, M. A. Fournier, K. B.; Smith, R.; Lazicki, A.; Rygg, R.; Fratanduono, D. E.; Eggert, J.; Park, H.-S.; Huntington, C.; Bradley, D. K.; Landen, O. L.; Collins, G. W.; Regan, S. P.; Epstein, R.

    2014-11-15

    1D spectral imaging was used to characterize the K-shell emission of Z ≈ 30–35 and Z ≈ 40–42 laser-irradiated foils at the National Ignition Facility. Foils were driven with up to 60 kJ of 3ω light, reaching laser irradiances on target between 0.5 and 20 × 10{sup 15} W/cm{sup 2}. Laser-to-X-ray conversion efficiency (CE) into the He{sub α} line (plus satellite emission) of 1.0%–1.5% and 0.15%–0.2% was measured for Z ≈ 30–32 and Z ≈ 40–42, respectively. Measured CE into He{sub α} (plus satellite emission) of Br (Z = 35) compound foils (either KBr or RbBr) ranged between 0.16% and 0.29%. Measured spectra are compared with 1D non-local thermodynamic equilibrium atomic kinetic and radiation transport simulations, providing a fast and accurate predictive capability.

  1. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pak, A.; Divol, L.; Gregori, G.; Weber, S.; Atherton, J.; Bennedetti, R.; Bradley, D. K.; Callahan, D.; Dewald, E.; Doppner, T.; et al

    2013-05-20

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less

  2. Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Barrios, M. A.; Suter, L. J.; Glenn, S.; Benedetti, L. R.; Bradley, D. K.; Collins, G. W.; Hammel, B. A.; Izumi, N.; Ma, T.; Scott, H.; Smalyuk, V. A.; Regan, S. P.; Epstein, R.; Kyrala, G. A.

    2013-07-15

    Bright spots in the hot spot intensity profile of gated x-ray images of ignition-scale implosions at the National Ignition Facility [G. H. Miller et al., Opt. Eng. 443, (2004)] are observed. X-ray images of cryogenically layered deuterium-tritium (DT) and tritium-hydrogen-deuterium (THD) ice capsules, and gas filled plastic shell capsules (Symcap) were recorded along the hohlraum symmetry axis. Heterogeneous mixing of ablator material and fuel into the hot spot (i.e., hot-spot mix) by hydrodynamic instabilities causes the bright spots. Hot-spot mix increases the radiative cooling of the hot spot. Fourier analysis of the x-ray images is used to quantify the evolution of bright spots in both x- and k-space. Bright spot images were azimuthally binned to characterize bright spot location relative to known isolated defects on the capsule surface. A strong correlation is observed between bright spot location and the fill tube for both Symcap and cryogenically layered DT and THD ice targets, indicating the fill tube is a significant seed for the ablation front instability causing hot-spot mix. The fill tube is the predominant seed for Symcaps, while other capsule non-uniformities are dominant seeds for the cryogenically layered DT and THD ice targets. A comparison of the bright spot power observed for Si- and Ge-doped ablator targets shows heterogeneous mix in Symcap targets is mostly material from the doped ablator layer.

  3. NIF Status Update - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    news NIF Status Update - 2014 May Gigabar Equation-of-State Experiment Reaches Record Pressures On May 29, the NIF Team fired two gigabar (Gbar)-class equation-of-state experiments...

  4. Probing matter at extreme Gbar pressures at the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kritcher, A. L.; Doeppner, T.; Swift, D.; Hawreliak, J.; Collins, G.; Nilsen, J.; Bachmann, B.; Dewald, E.; Strozzi, D.; Felker, S.; et al

    2013-12-04

    Here we describe a platform to measure the material properties, specifically the equation of state and electron temperature, at pressures of 100 Mbar to a Gbar at the National Ignition Facility (NIF). In our experiments we launch spherically convergent shock waves into solid CH, CD, or diamond samples using a hohlraum radiation drive, in an indirect drive laser geometry. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determination of the material pressure and Hugoniot equation of state. X-ray scattering is applied to measure the electron temperature through probing of the electron velocitymore » distribution via Doppler broadening.« less

  5. NIF & PS People

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nif people NIF & PS People Meet Ruth Holden: Future Optical Engineer NIF & Photon Science Summer Scholar Ruth Holden is studying optical engineering and physics at Norfolk State University. She is among more than 900 students from universities nationwide and around the world, including 52 in the NIF & Photon Science Directorate, who are engaged in work-study employment opportunities at LLNL this summer. The LLNL student internship program is designed to allow students to engage in

  6. HEC-DPSSL 2012 Workshop: National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TEXT SIZE Workshops About Organizing Committee Agenda Deadlines Abstract Submission Venue NIF Tour Directions Lake Tahoe Workshop Sign-up Lake Tahoe The High Energy Class Diode Pumped Solid State Lasers (HEC-DPSSL) Workshop is devoted to the development of HEC-DPSSLs worldwide as an enabling technology for applications such as inertial fusion energy, particle production (electrons, protons, neutrons, ions), radiation production (x-rays, gamma rays), high-energy-density science, shock physics

  7. HEC-DPSSL 2012 Workshop, Venue: National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venue TEXT SIZE Workshops About Organizing Committee Agenda Deadlines Abstract Submission Venue NIF Tour Directions Lake Tahoe Workshop Sign-up Venue Granlibakken Conference Center 725 Granlibakken Road Tahoe City, CA 96145 1-800-543-3221 Visitors and locals alike are drawn to Lake Tahoe's natural beauty, world-class entertainment and year-round activities. Granlibakken is nestled in the trees above Lake Tahoe and steps from Tahoe City, the heart and soul of Lake Tahoe. Please contact

  8. Progress on Converting a NIF Quad to Eight, Petawatt Beams for Advanced Radiography

    SciTech Connect (OSTI)

    Crane, J K

    2009-10-19

    We are converting a quad of NIF beamlines into eight, short-pulse (1-50 ps), petawatt-class beams for advanced radiography and fast ignition experiments. This paper describes progress toward completing this project.

  9. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    SciTech Connect (OSTI)

    Kemp, G. E. Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-15

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3–5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (∼n{sub c}/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from CRETIN, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3–5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ∼100–150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (∼20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3–5 keV x-ray source on NIF.

  10. HEC-DPSSL 2012 Workshop, Agenda: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Agenda TEXT SIZE Workshops About Organizing Committee Agenda Deadlines Abstract Submission Venue NIF Tour Directions Lake Tahoe Workshop Sign-up Agenda - Click to Download Time Session Title First Name Last Name Talk Title 9/12/2012 8:00 Registration / Breakfast 9:00 Welcome Andy Bayramian 9:15 Introduction Mike Dunne 9:30 Overview session Paul Mason DiPOLE - An Efficient and Scalable HEC-DPSSL System 10:00 Marco Hornung Status of the POLARIS laser system 10:30 Mathias Siebold

  11. HEC-DPSSL 2012 Workshop, Directions: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Directions TEXT SIZE Workshops About Organizing Committee Agenda Deadlines Abstract Submission Venue NIF Tour Directions Lake Tahoe Workshop Sign-up Directions To Granilibakken Conference Center From Reno/Tahoe International Airport (approximately 1 hour, 54 miles) Take Highway 395 North on-ramp from the Airport to I-80 West/Sacramento Take Exit 185 (Truckee) toward Lake Tahoe/CA-89 S At the traffic circle take the 3rd exit onto CA-89 S Continue straight on CA-89 S Turn right on W

  12. Time-resolved Soft X-Ray Imaging (SXRI) diagnostic for use at the NIF and OMEGA lasers (version 2)

    SciTech Connect (OSTI)

    Schneider, M B; Holder, J P; James, D L; Bruns, H C; Celeste, J R; Compton, S; Costa, R L; Ellis, A D; Emig, J A; Hargrove, D; Kalantar, D H; MacGowan, B J; Power, G D; Sorce, C; Rekow, V; Widmann, K; Young, B K; Young, P E; Garcia, O F; McKenney, J; Haugh, M; Goldin, F; MacNeil, L P; Cone, K

    2006-07-21

    The soft x-ray imager (SXRI) built for the first experiments at the National Ignition Facility (NIF) has four soft x-ray channels and one hard x-ray channel. The SXRI is a snout that mounts to a four strip gated imager. This produces four soft x-ray images per strip, which can be separated in time by {approx}60psec. Each soft x-ray channel consists of a mirror plus a filter. The diagnostic was used to study x-ray burnthrough of hot hohlraum targets at the NIF and OMEGA lasers. The SXRI snout design and issues involved in selecting the desired soft x-ray channels are discussed.

  13. Time-resolved Soft X-Ray Imaging (SXRI) diagnostic for use at the NIF and OMEGA lasers

    SciTech Connect (OSTI)

    Schneider, M; Holder, J; James, D; Bruns, H; Celeste, J; Compton, S; Costa, R; Ellis, A; Emig, J; Hargrove, D; Kalantar, D; MacGowan, B; Power, G; Sorce, C; Rekow, V; Widmann, K; Young, B; Young, P; Garcia, O; McKenney, J; Haugh, M; Goldin, F; MacNeil, L; Cone, K

    2006-05-04

    The soft x-ray imager (SXRI) built for the first experiments at the National Ignition Facility (NIF) has four soft x-ray channels and one hard x-ray channel. The SXRI is a snout that mounts to a four strip gated imager. This produces four soft x-ray images per strip, which can be separated in time by {approx}60psec. Each soft x-ray channel consists of a mirror plus a filter. The diagnostic was used to study x-ray burnthrough of hot hohlraum targets at the NIF and OMEGA lasers. The SXRI snout design and issues involved in selecting the desired soft x-ray channels are discussed.

  14. Gamma Reaction History ablator areal density constraints upon correlated diagnostic modeling of National Ignition Facility implosion experiments

    SciTech Connect (OSTI)

    Cerjan, C. Sayre, D. B.; Landen, O. L.; Church, J. A.; Stoeffl, W.; Grafil, E. M.; Herrmann, H. W.; Hoffman, N. M.; Kim, Y.

    2015-03-15

    The inelastic neutron scattering induced γ-ray signal from {sup 12}C in an Inertial Confinement Fusion capsule is demonstrated to be an effective and general diagnostic for shell ablator areal density. Experimental acquisition of the time-integrated signal at 4.4 MeV using threshold detection from four gas Čerenkov cells provides a direct measurement of the {sup 12}C areal density near stagnation. Application of a three-dimensional isobaric static model of data acquired in a recent high neutron yield National Ignition Facility experimental campaign reveals two general trends: smaller remaining ablator mass at stagnation and higher shell density with increasing laser drive.

  15. Experimental demonstration of early time, hohlraum radiation symmetry tuning for indirect drive ignition experiments

    SciTech Connect (OSTI)

    Dewald, E. L.; Milovich, J.; Thomas, C.; Sorce, C.; Glenn, S.; Landen, O. L.; Kline, J.

    2011-09-15

    Early time radiation symmetry at the capsule for indirect drive ignition on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] will be inferred from the instantaneous soft x-ray re-emission pattern of a high-Z sphere replacing the ignition capsule. This technique was tested on the OMEGA laser facility [J. M. Soures, R. L. McCrory, T. Boehly et al., Laser Part. Beams 11, 317 (1991)] in near full ignition scale vacuum hohlraums using an equivalent experimental setup to the one planned for NIF. Two laser cones entering each laser entrance hole heat the hohlraums to radiation temperatures of 100 eV, mimicking the NIF ignition pulse foot drive. The experiments have demonstrated accuracies of {+-}1.5% ({+-}2%) in inferred P{sub 2}/P{sub 0} (P{sub 4}/P{sub 0}) Legendre mode incident flux asymmetry and consistency between 900 eV and 1200 eV re-emission patterns. We have also demonstrated the expected tuning capability of P{sub 2}/P{sub 0}, from positive (pole hot) to negative (waist hot), decreasing linearly with the inner/outer beams power fraction. P{sub 4}/P{sub 0} on the other hand shows very little variation with power fraction. We developed a simple analytical viewfactor model that is in good agreement with both measured P{sub 2}/P{sub 0} and P{sub 4}/P{sub 0} and their dependence on inner beam power fraction.

  16. Who Partners with NIF?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partners Who Partners with NIF? Enduring NIF partnerships include representatives from throughout government, industry, and the academic sector. Longstanding Lawrence Livermore/NIF partners include researchers from Los Alamos and Sandia national laboratories, General Atomics, and the Laboratory for Laser Energetics at the University of Rochester (LLE/UR). Other key contributors include the Massachusetts Institute of Technology (MIT), Lawrence Berkeley National Laboratory, the Atomic Weapons

  17. A technique for extending by ~103 the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGAa)

    SciTech Connect (OSTI)

    Sio, H.; Séguin, F. H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Petrasso, R. D.

    2014-11-01

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D3He-, D2-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 102 for obtaining the spectral shape, and by 103 for mean energy (ρR) measurement, corresponding to proton fluences of 108 and 109 cm-2, respectively. Finally, using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ~108 and ~1012, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±~10 mg/cm2.

  18. About NIF & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF users include scientists from the U.S. Department of Energy national laboratories, worldwide fusion energy and high energy density science research centers, academia, and other ...

  19. The Seven Wonders of NIF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seven wonders The Seven Wonders of NIF NIF is a tour de force of science and technology development. Scientists, engineers, and technicians had to overcome a daunting array of challenges in designing and constructing NIF. Working closely with industrial partners, the NIF team found solutions for NIF's optics in rapid-growth crystals, continuous-pour glass, optical coatings, and new finishing techniques that can withstand NIF's extremely high energies. The team also worked with vendors to develop

  20. NIF & PS People - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  1. X-ray flux and x-ray burnthrough experiments on reduced-scale targets at the NIF and OMEGA lasers

    SciTech Connect (OSTI)

    Schneider, M; Hinkel, D; Young, B; Holder, J; Langdon, A; Baldis, H; Bahr, R; Bower, D; Bruns, H; Campbell, K; Celeste, J; Compton, S; Constantin, C; Costa, R; Dewald, E; Dixit, S; Eckart, M; Eder, D; Edwards, M; Ellis, A; Emig, J; Froula, D; Glebov, V; Glenzer, S; Hargrove, D; Haynam, C; Heeter, R; Henesian, M; Holtmeier, G; James, D; Jancaitis, K; Kalantar, D; Kamperschroer, J

    2005-08-24

    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (Livermore, CA USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, NY USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of x-ray burnthrough and laser deposition indicate the pattern of plasma filling is very different.

  2. NIF & Photon Science Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management NIF & Photon Science Management The management team for the NIF & Photon Science Principal Directorate supports the directorate's key mission areas: Stockpile Stewardship, national security applications, NIF Discovery Science, laser-based directed energy and related laser and optical technologies, and advanced photon technologies. Directorate Programs Jeff Wisoff Principal Associate Director NIF & Photon Science Jeff Atherton Principal Deputy Principal Associate Director

  3. 03-NIF Dedication: Norm Pattiz

    ScienceCinema (OSTI)

    Norm Pattiz

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Norm Pattiz, the chairman of Lawrence Livermore National Security, which manages Lawrence Livermore National Laboratory for the U.S. Department of Energy.

  4. 06-NIF Dedication: Steven Koonin

    ScienceCinema (OSTI)

    Steven Koonin

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Steven Koonin, the undersecretary for science of the U.S. Department of Energy.

  5. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Döppner, T.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Ma, T.; Park, H. -S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P. P.; Dewald, E. L.; et al

    2015-07-28

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “highfoot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shapemore » closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 1016 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.« less

  6. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    SciTech Connect (OSTI)

    Döppner, T.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Ma, T.; Park, H. -S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P. P.; Dewald, E. L.; Dittrich, T. R.; Haan, S.; Kritcher, A. L.; MacPhee, A.; Le Pape, S.; Pak, A.; Patel, P. K.; Springer, P. T.; Salmonson, J. D.; Tommasini, R.; Benedetti, L. R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Church, J.; Dixit, S.; Edgell, D.; Edwards, M. J.; Fittinghoff, D. N.; Frenje, J.; Gatu Johnson, M.; Grim, G.; Hatarik, R.; Havre, M.; Herrmann, H.; Izumi, N.; Khan, S. F.; Kline, J. L.; Knauer, J.; Kyrala, G. A.; Landen, O. L.; Merrill, F. E.; Moody, J.; Moore, A. S.; Nikroo, A.; Ralph, J. E.; Remington, B. A.; Robey, H.; Sayre, D.; Schneider, M.; Streckert, H.; Town, R.; Turnbull, D.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-07-28

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “highfoot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 1016 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  7. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    SciTech Connect (OSTI)

    Dppner, T.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Ma, T.; Park, H. -S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P. P.; Dewald, E. L.; Dittrich, T. R.; Haan, S.; Kritcher, A. L.; MacPhee, A.; Le Pape, S.; Pak, A.; Patel, P. K.; Springer, P. T.; Salmonson, J. D.; Tommasini, R.; Benedetti, L. R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Church, J.; Dixit, S.; Edgell, D.; Edwards, M. J.; Fittinghoff, D. N.; Frenje, J.; Gatu Johnson, M.; Grim, G.; Hatarik, R.; Havre, M.; Herrmann, H.; Izumi, N.; Khan, S. F.; Kline, J. L.; Knauer, J.; Kyrala, G. A.; Landen, O. L.; Merrill, F. E.; Moody, J.; Moore, A. S.; Nikroo, A.; Ralph, J. E.; Remington, B. A.; Robey, H.; Sayre, D.; Schneider, M.; Streckert, H.; Town, R.; Turnbull, D.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-07-28

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a highfoot laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 1016 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  8. NIF & PS People - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 NIF & PS People - 2015 December NIF Featured in National Geographic 'Breakthrough' Series November Transport & Handling Teamwork: A Key to NIF Operations October Seven LLNL Researchers Named APS Fellows Early and Mid-Career Researchers Recognized September NIF Team Receives Maintenance Award Reyes, Meier Cited by Fusion Power Associates Summer Scholars Learn by Doing Valeria Santiago Morales: Future Engineer August NIF Shot Rate Improvement Team Honored July Driven to Serve Her Country

  9. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    SciTech Connect (OSTI)

    Hagmann, C. Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.; Herrmann, H. W.; Knauer, J. P.

    2015-07-15

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the {sup 198}Au/{sup 196}Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  10. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    SciTech Connect (OSTI)

    Chou, Jason

    2014-04-03

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

  11. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    ScienceCinema (OSTI)

    Chou, Jason

    2014-07-22

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

  12. NIF & Photon Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nifps_news NIF & Photon Science News × Subscribe to our News Alerts * Your Email Address: * Preferred Format: HTML Text Subscribe August 24, 2016 Tweet Spotlight on: Discovery Science A Big Week for NIF Discovery Science During the week of July 31 to Aug. 4, five groups of NIF users worked with LLNL researchers to carry out a successful NIF Discovery Science shot week. The teams conducted 13 experiments in five separate basic high energy density (HED) science experimental campaigns in five

  13. Symmetry tuning of a near one-dimensional 2-shock platform for code validation at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khan, S. F.; MacLaren, S. A.; Salmonson, J. D.; Ma, T.; Kyrala, G. A.; Pino, J. E.; Rygg, J. R.; Field, J. E.; Tommasini, R.; Ralph, J. E.; et al

    2016-04-27

    Here, we introduce a new quasi 1-D implosion experimental platform at the National Ignition Facility designed to validate physics models as well as to study various Inertial Confinement Fusion aspects such as implosion symmetry, convergence, hydrodynamic instabilities, and shock timing. The platform has been developed to maintain shell sphericity throughout the compression phase and produce a round hot core at stagnation. This platform utilizes a 2-shock 1 MJ pulse with 340 TW peak power in a near-vacuum AuHohlraum and a CH ablator capsule uniformly doped with 1% Si. We also performed several inflight radiography, symmetry capsule, and shock timing experimentsmore » in order to tune the symmetry of the capsule to near round throughout several epochs of the implosion. Finally, adjusting the relative powers of the inner and outer cones of beams has allowed us to control the drive at the poles and equator of the capsule, thus providing the mechanism to achieve a spherical capsule convergence. Details and results of the tuning experiments are described.« less

  14. NIF & PS People - 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 NIF & PS People - 2016 July Tammy Ma Cited for Plasma Physics Research NIF-MIT PhD Thesis Receives APS Award Meet Michael Sherburne: Future Electrical Engineer June NIF & PS Welcomes Summer Scholars May Félicie Albert Receives DOE Early Career Research Award NIF Technology Highlighted at Bay Area Maker Faire April Chris Barty Honored for Laser Science Work Allan Casey Named an IET Fellow March NIF Highlighted at My Brother's Keeper Event February Tammy Ma Wins Presidential Early

  15. NIF Target Shot Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    target shot metrics NIF Target Shot Metrics Exp Cap - Experimental Capability Natl Sec Appl - National Security Applications DS - Discovery Science ICF - Inertial Confinement Fusion HED - High Energy Density For internal LLNL firewall viewing - if the page is blank, please open www.google.com to flush out BCB

  16. Measurements of the Radiated Fields and Conducted Current Leakage from the Pulsed Power Systems in the National Ignition Facility at LLNL

    SciTech Connect (OSTI)

    Anderson, R A; Clancy, T J; Fulkerson, S; Petersen, D; Pendelton, D; Hulsey, S; Ullery, G; Tuck, J; Polk, M; Kamm, R; Newton, M; Moore, W B; Arnold, P; Ollis, C; Hinz, A; Robb, C; Fornes, J; Watson, J

    2003-07-31

    An important pulsed power system consideration is that they inherently generate fields and currents that can cause interference in other subsystems and diagnostics. Good pulsed power design, grounding and isolation practices can help mitigate these unwanted signals. During the laser commissioning shots for the NIF Early Light milestone at LLNL, measurements were made of the radiated field and conducted currents caused by the Power Conditioning System (PCS) modules with flash lamp load and the Plasma Electrode Pockels Cell (PEPC) driver. The measurements were made in the capacitor bay, laser bay, control room and target bay. The field measurements were made with B-dot and E-dot probes with bandwidth of about 100MHz. The current measurements were made with a clamp on probe with a bandwidth of about 20 MHz. The results of these measurements show fields and currents in the NIF Facility well below that required for interference with other subsystems. Currents on the target chamber from the pulsed power systems are well below the background noise currents.

  17. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fournier, K. B.; Brown, Jr., C. G.; Yeoman, M. F.; Fisher, J. H.; Seiler, S. W.; Hinshelwood, D.; Compton, S.; Holdener, F. R.; Kemp, G. E.; Newlander, C. D.; et al

    2016-08-10

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the NIF’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight.more » We discuss the measured accuracy of sample responses, as well as planned modifications to the XTRRA cassette.« less

  18. Conceptual Design - Polar Drive Ignition Campaign

    SciTech Connect (OSTI)

    Hansen, R

    2012-04-05

    The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain

  19. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, A. K.; Cao, D.; Michel, D. T.; Hohenberger, M.; Edgell, D. H.; Epstein, R.; Goncharov, V. N.; Hu, S. X.; Igumenshchev, I. V.; Marozas, J. A.; et al

    2016-04-20

    The angularly-resolved mass ablation rates and ablation front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify crossbeam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration was used, where the equatorial laser beams were dropped from a symmetric direct-drive configuration to suppress CBET at the pole, while allowing it to persist at the equator. The combination of low- and high-CBET conditions in the same implosion allowed the effects of CBET on the ablation rate and ablation pressure to be decoupled from the other physics effects that influence laser-coupling. Hydrodynamic simulationsmore » performed without CBET reproduced the measured ablation rate and ablation front trajectory at the pole of the target, verifying that the other laser-coupling physics effects are well-modeled when CBET effects are negligible. The simulated mass ablation rates and ablation front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall’s equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with an optimized multiplier on the CBET gain factor. These measurements were performed on both OMEGA and the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. Furthermore, the presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations due to diffraction, shortcomings of extending the 1-D Randall model to 3-D, or polarization effects, should be explored to explain the differences in observed and predicted drive.« less

  20. NIF & PS People - 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 / june NIF & PS People - 2016 June NIF & PS Welcomes Summer Scholars The NIF & Photon Science Directorate is hosting 52 undergraduate and graduate students, U.S. Naval Academy midshipmen, and ROTC cadets from across the country and Canada this summer in the directorate's annual Summer Scholar program. They are working with mentors on independent research projects ranging from high energy density physics and national security applications to optics, mathematics, and a variety of

  1. lasers. National Ignition Facility

    National Nuclear Security Administration (NNSA)

    data for NNSA's science-based Stockpile Stewardship Program in the area of high-energy-density physics, a scientific field of direct relevance to nuclear deterrence and national...

  2. The size and structure of the laser entrance hole in gas-filled hohlraums at the National Ignition Facility

    SciTech Connect (OSTI)

    Schneider, M. B. MacLaren, S. A.; Widmann, K.; Meezan, N. B.; Hammer, J. H.; Yoxall, B. E.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Hinkel, D. E.; Hsing, W. W.; Kervin, M. L.; Landen, O. L.; Lindl, J. D.; May, M. J.; and others

    2015-12-15

    At the National Ignition Facility, a thermal X-ray drive is created by laser energy from 192 beams heating the inside walls of a gold cylinder called a “hohlraum.” The x-ray drive heats and implodes a fuel capsule. The laser beams enter the hohlraum via laser entrance holes (LEHs) at each end. The LEH radius decreases as heated plasma from the LEH material blows radially inward but this is largely balanced by hot plasma from the high-intensity region in the center of the LEH pushing radially outward. The x-ray drive on the capsule is deduced by measuring the time evolution and spectra of the x-radiation coming out of the LEH and correcting for geometry and for the radius of the LEH. Previously, the LEH radius was measured using time-integrated images in an x-ray band of 3–5 keV (outside the thermal x-ray region). For gas-filled hohlraums, the measurements showed that the LEH radius is larger than that predicted by the standard High Flux radiation-hydrodynamic model by about 10%. A new platform using a truncated hohlraum (“ViewFactor hohlraum”) is described, which allows time-resolved measurements of the LEH radius at thermal x-ray energies from two views, from outside the hohlraum and from inside the hohlraum. These measurements show that the LEH radius closes during the low power part of the pulse but opens up again at peak power. The LEH radius at peak power is larger than that predicted by the models by about 15%–20% and does not change very much with time. In addition, time-resolved images in a >4 keV (non-thermal) x-ray band show a ring of hot, optically thin gold plasma just inside the optically thick LEH plasma. The structure of this plasma varies with time and with Cross Beam Energy Transfer.

  3. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gatu Johnson, M.; Frenje, J. A.; Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Farrell, M. P.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Hoppe, M.; et al

    2016-08-09

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. Here, this paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ~200 keV FWHM.

  4. Three- and two-dimensional simulations of counter-propagating shear experiments at high energy densities at the National Ignition Facility

    SciTech Connect (OSTI)

    Wang, Ping; Zhou, Ye; MacLaren, Stephan A.; Huntington, Channing M.; Raman, Kumar S.; Doss, Forrest W.; Flippo, Kirk A.

    2015-11-06

    Three- and two-dimensional numerical studies have been carried out to simulate recent counter-propagating shear flow experiments on the National Ignition Facility. A multi-physics three-dimensional, time-dependent radiation hydrodynamics simulation code is used. Using a Reynolds Averaging Navier-Stokes model, we show that the evolution of the mixing layer width obtained from the simulations agrees well with that measured from the experiments. A sensitivity study is conducted to illustrate a 3D geometrical effect that could confuse the measurement at late times, if the energy drives from the two ends of the shock tube are asymmetric. Implications for future experiments are discussed.

  5. How NIF Works

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Much Do You Spend on Energy? How Much Do You Spend on Energy? U.S.A. Energy Expenditure per person Click on a state Energy Expenditure $3724 per person in 2012 Transportation ▀▀▀▀▀ Residential ▀▀▀▀▀ Data: EIA State Energy Data System View All Maps Addthis

    works How NIF Works A weak laser pulse-about 1 billionth of a joule-is created, split, and carried on optical fibers to 48 preamplifiers that increase the pulse's energy by a factor of 10 billion, to a few joules. The

  6. 07-NIF Dedication: Jerry McNerney

    ScienceCinema (OSTI)

    Congressman Jerry McNerney

    2010-09-01

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congressman Jerry McNerney, of California's 11th district, which adjoins Livermore.

  7. The Sixth Omega Laser Facility Users Group Workshop

    SciTech Connect (OSTI)

    Petrasso, R. D.

    2014-10-01

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Sixth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual OMEGA users, and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour lUtilisation des Lasers Intenses (LULI)]; to provide an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback from the users to LLE management about ways to improve and keep the facility and future experimental campaigns at the cutting edge.

  8. The Fifth Omega Laser Facility Users Group Workshop

    SciTech Connect (OSTI)

    Petrasso, R. D.

    2015-10-01

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Fifth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual Omega users and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour l’Utilisation des Lasers Intenses (LULI)]; to provide an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback to LLE management from the users about ways to improve the facility and future experimental campaigns.

  9. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect (OSTI)

    Brunckhorst, K

    2009-04-21

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  10. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.

  11. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fissionmore » as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.« less

  12. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    SciTech Connect (OSTI)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS

  13. nif | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ... The demonstration of laboratory ignition and its use to support the... Maintaining the Stockpile Research, Development, Test, and Evaluation Test and Evaluation Research and ...

  14. Monte Carlo prompt dose calculations for the National Ingition Facility

    SciTech Connect (OSTI)

    Latkowski, J.F.; Phillips, T.W.

    1997-01-01

    During peak operation, the National Ignition Facility (NIF) will conduct as many as 600 experiments per year and attain deuterium- tritium fusion yields as high as 1200 MJ/yr. The radiation effective dose equivalent (EDE) to workers is limited to an average of 03 mSv/yr (30 mrem/yr) in occupied areas of the facility. Laboratory personnel determined located outside the facility will receive EDEs <= 0.5 mSv/yr (<= 50 mrem/yr). The total annual occupational EDE for the facility will be maintained at <= 0.1 person-Sv/yr (<= 10 person- rem/yr). To ensure that prompt EDEs meet these limits, three- dimensional Monte Carlo calculations have been completed.

  15. Mach-Zehnder Modulator performance using the Comet Laser facility...

    Office of Scientific and Technical Information (OSTI)

    for use on NIF Citation Details In-Document Search Title: Mach-Zehnder Modulator performance using the Comet Laser facility and implications for use on NIF Authors: Beeman, ...

  16. Mach-Zehnder Modulator performance using the Comet Laser facility...

    Office of Scientific and Technical Information (OSTI)

    for use on NIF Citation Details In-Document Search Title: Mach-Zehnder Modulator performance using the Comet Laser facility and implications for use on NIF You are ...

  17. Spherical strong-shock generation for shock-ignition inertial...

    Office of Scientific and Technical Information (OSTI)

    a shock-ignition target design for the National Ignition Facility. The timing of the x-ray flash from shock convergence in the center of the solid plastic target is used to infer ...

  18. Non-destructive analysis of DU content in the NIF hohlraums

    SciTech Connect (OSTI)

    Gharibyan, Narek; Moody, Ken J.; Shaughnessy, Dawn A.

    2015-12-16

    The advantage of using depleted uranium (DU) hohlraums in high-yield deuterium-tritium (DT) shots at the National Ignition Facility (NIF) is addressed by Döppner, et al., in great detail [1]. This DU based hohlraum incorporates a thin layer of DU, ~7 μm thick, on the inner surface along with a thin layer of a gold coating, ~0.7 μm thick, while the outer layer is ~22 μm thick gold. A thickness measurement of the DU layer can be performed using an optical microscope where the total DU weight can be computed provided a uniform DU layer. However, the uniformity of the thickness is not constant throughout the hohlraum since CAD drawing calculations of the DU weight do not agree with the computed values from optical measurements [2]. Therefore, a non-destructive method for quantifying the DU content in hohlraums has been established by utilizing gamma-ray spectroscopy. The details of this method, along with results from several hohlraums, are presented in this report.

  19. Management Prestart Review Phase 1 for the NIF Optics Assembly Building (OAB)

    SciTech Connect (OSTI)

    Dragoo, V

    2000-10-05

    A Management Prestart Review (MPR) for the National Ignition Facility (NIF) Optics Assembly Building (OAB) was conducted from June, 2000, through October, 2000. This review was performed to determine readiness of the facility and management to transfer the facility from the construction to the commissioning and operations phase. This review process provides assurance that the appropriate line management is in place to effect the turnover. Completion and acceptance of this report constitutes a turnover of facility and equipment operational responsibility from the Beampath Infrastructure System Construction organization to the Assembly Installation and Refurbishment Operations (assembly equipment installation/activation and mechanical cleaning operations) and the Beampath Infrastructure System (BIS) Commissioning and Operations Organizations (conventional facility operations). The OAB MPR provides to the NIF Project Manager an independent, systematic assessment of: (1) Readiness of line management for the turnover to take place, (2) Completeness of the equipment and facility installation of the OAB, (3) Readiness of personnel to operate within the facility, and (4) Implementation and efficacy of key management control processes and procedures. The MPR process assures that the technical, cost, and schedule risk associated with the installation/activation of OAB special equipment, mechanical cleaning, and conventional facility operations within the OAB are evaluated and are acceptable. Specifically, the scope of the review addresses technical and operational attributes of the equipment and facility systems that have been determined to have significant project risk. This report implements the LLNL requirement that MPRs shall be conducted before all new facilities are brought into operation, Lawrence Livermore National Laboratory (LLNL) ES&H Manual (M-010), Section 2.2.5, Pre-Start Reviews. The MPR process is an essential part of the ISM work authorization and feedback

  20. FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    faqs FAQs What is the National Ignition Facility? What is NIF used for? How much did NIF cost? How does NIF advance national security? How does NIF advance basic science? How does NIF advance energy security? How much power and energy do NIF's 192 beams produce? Who uses NIF? What is ignition? When will NIF achieve ignition? Do NIF experiments present any danger to the public? How much tritium is used in NIF ignition experiments, and what are the hazards? How long will NIF be used for

  1. FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    faqs FAQs What is the National Ignition Facility? What is NIF used for? How much did NIF cost? How does NIF advance national security? How does NIF advance basic science? How does NIF advance energy security? How much power and energy do NIF's 192 beams produce? Who uses NIF? What is ignition? When will NIF achieve ignition? Do NIF experiments present any danger to the public? How much tritium is used in NIF ignition experiments, and what are the hazards? How long will NIF be used for

  2. A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report

    SciTech Connect (OSTI)

    Stephens, Richarad Burnite; Freeman, Richard R.; Van Woekom, L. D.; Key, M.; MacKinnon, Andrew J.; Wei, Mingsheng

    2014-02-27

    The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Power Balance Performance on the National Ignition Facility LaFortune, K ; Widmayer, C ; ... Ignition Facility (NIF) have demonstrated the facility's power balance capability. ...

  4. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

  5. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  6. NIF Title III engineering plan

    SciTech Connect (OSTI)

    Deis, G

    1998-06-01

    The purpose of this document is to define the work that must be accomplished by the NIF Project during Title III Engineering. This definition is intended to be sufficiently detailed to provide a framework for yearly planning, to clearly identify the specific deliverables so that the Project teams can focus on them, and to provide a common set of objectives and processes across the Project. This plan has been preceded by similar documents for Title I and Title II design and complements the Site Management Plan, the Project Control Manual, the Quality Assurance Program Plan, the RM Parsons NIF Title III Configuration Control Plan, the Integrated Project Schedule, the Preliminary Safety Analysis Report, the Configuration Management Plan, and the Transition Plan.

  7. NIF User Group Executive Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    executive board NIF User Group Executive Board Professor Don Lamb (Chair) University of Chicago Professor Farhat Beg (Vice Chair) University of California, San Diego Professor Justin Wark (Past Chair) University of Oxford Dr. Riccardo Betti University of Rochester Dr. Kirk Flippo Los Alamos National Laboratory Professor Gianluca Gregori University of Oxford Professor Michel Koenig École Polytechnique Dr. Chikang Li Massachusetts Institute of Technology Dr. Jena Meinecke Young Researcher:

  8. Final report for NIF chamber dynamics studies, final rept (May 1997), Subcontract No. B291847

    SciTech Connect (OSTI)

    Peterson, P.F.; Jin, H.; Scott, J.M.

    1997-07-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. Various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the final optics debris shields from an excessive coating (> 10 {Angstrom}) of target debris and ablated material, thereby prolonging their lifetime between change- outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. In addition to the work described briefly above, we performed extensive analysis of the target-chamber thermal response to in- chamber CO{sub 2} Cleaning and of work performed to model the behavior of silica vapor. The work completed this year has been published in several papers and a dissertation [1-6]. This report provides a summary of the work completed this year, as well as copies

  9. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

  10. Laser ignition

    DOE Patents [OSTI]

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  11. Design Calculations for NIF Convergent Ablator Experiments. ...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Design Calculations for NIF Convergent Ablator Experiments. Citation ... DOE Contract Number: DE-AC04-94AL85000 Resource Type: Journal Article Resource Relation: ...

  12. NIF-0708-14946_Koniges_Poster_final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gold foil Laser Aerogel collectors Target positioner NIF-0708-14946 This work performed ... Summary Summary NIF targets must be designed to minimize damage to optics and diagnostics ...

  13. Measurement of the NIF Gunite Shielding Composition and Implications...

    Office of Scientific and Technical Information (OSTI)

    Measurement of the NIF Gunite Shielding Composition and Implications for Neutron Activation and Worker Doses Citation Details In-Document Search Title: Measurement of the NIF ...

  14. Characterization of NIF cryogenic beryllium capsules using x...

    Office of Scientific and Technical Information (OSTI)

    Characterization of NIF cryogenic beryllium capsules using x-ray phase contrast imaging. Citation Details In-Document Search Title: Characterization of NIF cryogenic beryllium ...

  15. Target Chamber

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Who Partners with NIF? FAQs Visit Us home about how nif works beamline target chamber Target Chamber The "Grand Central Station" of the National Ignition Facility is the ...

  16. Application of spatially resolved high resolution crystal spectrometry...

    Office of Scientific and Technical Information (OSTI)

    Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented. Authors: Hill, K. ...

  17. Reconfigurable Assembly Station for Precision Manufacture of Nuclear Fusion Ignition Targets

    SciTech Connect (OSTI)

    Castro, C; Montesanti, R C; Taylor, J S; Hamza, A V; Dzenitis, E G

    2009-08-11

    This paper explores the design and testing of a reconfigurable assembly station developed for assembling the inertial confinement nuclear fusion ignition targets that will be fielded in the National Ignition Facility (NIF) laser [1]. The assembly station, referred to as the Flexible Final Assembly Machine (FlexFAM) and shown in Figure 1, is a companion system to the earlier Final Assembly Machine (FAM) [2]. Both machines consist of a manipulator system integrated with an optical coordinate measuring machine (OCMM). The manipulator system has six groups of stacked axis used to manipulate the millimeter-sized target components with submicron precision, and utilizes the same force and torque feedback sensing as the FAM. Real-time dimensional metrology is provided by the OCMM's vision system and through-the-lens (TTL) laser-based height measuring probe. The manually actuated manipulator system of the FlexFAM provides a total of thirty degrees-of-freedom to the target components being assembled predominantly in a cubic centimeter work zone.

  18. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results from this relatively new field of research, known as high-energy- density (hed) ... optical physics, radiation sources, radiative properties, and other areas of science. ...

  19. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    how do Lasers work? how Do Lasers work? A laser can be as small as a microscopic computer ... Clearly size has nothing to do with what makes a laser. "laser" is an acronym for light ...

  20. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... continued safety and reliability of the nation's nuclear deterrent. Q. How soon will we have fusion power plants? ... (ITeR) will be built in France, with the first experiments ...

  1. CHARACTERIZATION OF THE ADVANCED RADIOGRAPHIC CAPABILITY FRONT END ON NIF

    SciTech Connect (OSTI)

    Haefner, C; Heebner, J; Dawson, J; Fochs, S; Shverdin, M; Crane, J K; Kanz, V K; Halpin, J; Phan, H; Sigurdsson, R; Brewer, W; Britten, J; Brunton, G; Clark, W; Messerly, M J; Nissen, J D; Nguyen, H; Shaw, B; Hackel, R; Hermann, M; Tietbohl, G; Siders, C W; Barty, C J

    2009-07-15

    We have characterized the Advanced Radiographic Capability injection laser system and demonstrated that it meets performance requirements for upcoming National Ignition Facility fusion experiments. Pulse compression was achieved with a scaled down replica of the meter-scale grating ARC compressor and sub-ps pulse duration was demonstrated at the Joule-level.

  2. nif

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of...

  3. nif

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of intense...

  4. A New Gated X-Ray Detector for the Orion Laser Facility

    SciTech Connect (OSTI)

    Clark, David D.; Aragonez, Robert J.; Archuleta, Thomas N.; Fatherley, Valerie E.; Hsu, Albert H.; Jorgenson, H. J.; Mares, Danielle; Oertel, John A.; Oades, Kevin; Kemshall, Paul; Thomas, Philip; Young, Trevor; Pederson, Neal

    2012-08-08

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from the what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  5. Laser ignition

    DOE Patents [OSTI]

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  6. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration

    SciTech Connect (OSTI)

    Amendt, Peter Ross, J. Steven; Milovich, Jose L.; Schneider, Marilyn; Storm, Erik; Callahan, Debra A.; Hinkel, Denise; Lasinski, Barbara; Meeker, Don; Michel, Pierre; Moody, John; Strozzi, David

    2014-11-15

    Rugby-shaped gold hohlraums driven by a nominal low-adiabat laser pulse shape have been tested on the National Ignition Facility. The rugby affords a higher coupling efficiency than a comparably sized cylinder hohlraum or, alternatively, improved drive symmetry and laser beam clearances for a larger hohlraum with similar cylinder wall area and laser energy. A first (large rugby hohlraum) shot at low energy (0.75 MJ) to test laser backscatter resulted in a moderately oblate CH capsule implosion, followed by a high energy shot (1.3 MJ) that gave a highly oblate compressed core according to both time-integrated and –resolved x-ray images. These implosions used low wavelength separation (1.0 Å) between the outer and inner cones to provide an alternative platform free of significant cross-beam energy transfer for simplified hohlraum dynamics. Post-shot 2- and 3-D radiation-hydrodynamic simulations using the high-flux model [M. D. Rosen et al., High Energy Density Phys. 7, 180 (2011)], however, give nearly round implosions for both shots, in striking contrast with observations. An analytic assessment of Rayleigh-Taylor hydrodynamic instability growth on the gold–helium gas-fill interface shows the potential for significant linear growth, saturation and transition to a highly nonlinear state. Candidate seeds for instability growth include laser speckle during the early-time laser picket episode in the presence of only partial temporal beam smoothing (1-D smoothing by spectral dispersion and polarization smoothing) and intensity modulations from quad-to-quad and beam overlap. Radiation-hydrodynamic 2-D simulations adapted to include a dynamic fall-line mix model across the unstable Au-He interface show good agreement with the observed implosion symmetry for both shots using an interface-to-fall-line penetration fraction of 100%. Physically, the potential development of an instability layer in a rugby hohlraum is tantamount to an enhanced wall motion leading to

  7. Laser preheat enhanced ignition

    DOE Patents [OSTI]

    Early, J.W.

    1999-03-02

    A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided. 11 figs.

  8. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    SciTech Connect (OSTI)

    Miley, George H.

    2012-10-24

    Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.

  9. COLLOQUIUM: Progress towards fusion on NIF and Z requires new...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    towards fusion on NIF and Z requires new plasma measurement capabilities Dr. Joe Kilkenny LLNLGA Dr. Greg Rochau SNL There is significant progress towards fusion on NIF and Z ...

  10. NIF and OMEGA X-Ray Environments Summary (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    NIF and OMEGA X-Ray Environments Summary Citation Details In-Document Search Title: NIF and OMEGA X-Ray Environments Summary Abstract not provided. Authors: Fournier, K. B. 1 + ...

  11. NIF and OMEGA X-Ray Environments Summary (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    NIF and OMEGA X-Ray Environments Summary Citation Details In-Document Search Title: NIF and OMEGA X-Ray Environments Summary You are accessing a document from the Department of ...

  12. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  13. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  14. NIF & PS People - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NHL Scores Big with Sustainability NHL Scores Big with Sustainability June 10, 2016 - 3:25pm Addthis Several National Hockey League facilities now have LED lighting, saving energy and money. | Graphic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Several National Hockey League facilities now have LED lighting, saving energy and money. | Graphic by Carly Wilkins, Energy Department. National Hockey League fans and teams are saving energy and money by

  15. A Simulation Study of Fast Ignition with Ultrahigh Intensity Lasers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Simulation Study of Fast Ignition with Ultrahigh Intensity Lasers Authors: Tonge, J., May, J., Mori, B., Fiuza, F., Martins, S.F., Fonseca, R.A., Silva, L.O., Ren, C. The coupling efficiency between the ignition laser and the target core for the fast ignition concept is studied using two-dimensional particle-in-cell simulations. The details of the energy transport within the weakly collisional overdense plasma of a fast ignition target are examined by

  16. Compact Ignition Tokamak Program: status of FEDC studies

    SciTech Connect (OSTI)

    Flanagan, C.A.

    1985-01-01

    Viewgraphs on the Compact Ignition Tokamak Program comprise the report. The technical areas discussed are the mechanical configuration status, magnet analysis, stress analysis, cooling between burns, TF coil joint, and facility/device layout options. (WRF)

  17. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  18. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  19. Diagnostics Implemented on NIF - Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Diagnostic acronym Diangostic Port location Built and commisioned by Description of function Published references EMP Electromagnetic Power 102-84 LLNL EMP measures the electromagnetic frequency spectrum in the target chamber. C. G. Brown et al., "Analysis of Electromagnetic Pulse (EMP) Measurements in the National Ingition Facility's Target Bay and Chamber." International Fusion Science and Applications (IFSA) Bordeaux, France, September 12, 2011, LLNL-PROC-512731 GRH Time and

  20. Report on the B-Fields at NIF Workshop Held at LLNL October 12-13, 2015

    SciTech Connect (OSTI)

    Fournier, K. B.; Moody, J. D.

    2015-12-13

    A national ICF laboratory workshop on requirements for a magnetized target capability on NIF was held by NIF at LLNL on October 12 and 13, attended by experts from LLNL, SNL, LLE, LANL, GA, and NRL. Advocates for indirect drive (LLNL), magnetic (Z) drive (SNL), polar direct drive (LLE), and basic science needing applied B (many institutions) presented and discussed requirements for the magnetized target capabilities they would like to see. 30T capability was most frequently requested. A phased operation increasing the field in steps experimentally can be envisioned. The NIF management will take the inputs from the scientific community represented at the workshop and recommend pulse-powered magnet parameters for NIF that best meet the collective user requests. In parallel, LLNL will continue investigating magnets for future generations that might be powered by compact laser-B-field generators (Moody, Fujioka, Santos, Woolsey, Pollock). The NIF facility engineers will start to analyze compatibility of the recommended pulsed magnet parameters (size, field, rise time, materials) with NIF chamber constraints, diagnostic access, and final optics protection against debris in FY16. The objective of this assessment will be to develop a schedule for achieving an initial Bfield capability. Based on an initial assessment, room temperature magnetized gas capsules will be fielded on NIF first. Magnetized cryo-ice-layered targets will take longer (more compatibility issues). Magnetized wetted foam DT targets (Olson) may have somewhat fewer compatibility issues making them a more likely choice for the first cryo-ice-layered target fielded with applied Bz.

  1. Low profile thermite igniter

    DOE Patents [OSTI]

    Halcomb, Danny L.; Mohler, Jonathan H.

    1991-03-05

    A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  2. COLLOQUIUM: NIF An Unexpected Journey or Lessons Learned to Secure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Edward Michael Campbell Sandia National Laboratory Developing the mission, science, ... Wednesday Colloquium, January 7, 2015, Dr. E.W. Campbell, "NIF...An Enexpected Joutney or ...

  3. Characterization of NIF cryogenic beryllium capsules using x...

    Office of Scientific and Technical Information (OSTI)

    capsules using x-ray phase contrast imaging. Citation Details In-Document Search Title: Characterization of NIF cryogenic beryllium capsules using x-ray phase contrast imaging. ...

  4. Laser fusion experiment yields record energy at NIF | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  5. Press Kit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kit Press Kit These fact sheets discuss various National Ignition Facility-related topics in a printer-friendly PDF format: What is NIF What is NIF? The National Ignition Facility (NIF) uses the world's largest laser to compress and heat BB-sized capsules of fusion fuel with the goal of thermonuclear ignition. NIF experiments produce temperatures and densities similar to those in stars and nuclear weapons. Download the PDF NIF at a Glance NIF at a Glance Experiments conducted on NIF are making

  6. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  7. UCRL-ID-120738 L-20072-1 NIF System-Design Requirements for

    Office of Scientific and Technical Information (OSTI)

    NIF System-Design Requirements for Nuclear-Weapons Physics Experiments Theodore S. ... NIF System-Design Requirements for Nuclear-Weapons Physics Experiments April 1995 ...

  8. NIF Functional Requirements and Primary Criteria Rev. 1.8 September...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: NIF Functional Requirements and Primary Criteria Rev. 1.8 September 2006 Citation Details In-Document Search Title: NIF Functional Requirements and Primary ...

  9. Scaled Eagle Nebula Experiments on NIF (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Scaled Eagle Nebula Experiments on NIF Citation Details In-Document Search Title: Scaled Eagle Nebula Experiments on NIF You are accessing a document from the Department of ...

  10. Final optics protection in laser inertial fusion with cryogenic...

    Office of Scientific and Technical Information (OSTI)

    facilities such as the National Ignition Facility (NIF) or Laser MegaJoule (LMJ). ... In the case of NIF, the droplets would be injected only when needed just before a high ...

  11. NIF Full Proposal Instructions_Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF Discovery Science: Full Proposal Instructions 5/16/16 (rev.) 1 Please prepare your full proposal according to the following instructions. Append biographical sketches (CVs) for the Principal Investigator (PI) and no more than 5 additional key team members to the end of this proposal. Submission Deadlines: Save the entire document as a single file in pdf format, and submit via the Web submission tool before 11:59 p.m. on September 1, 2016, PDT. I. COVER SHEET: (1 page) 1) Please provide the

  12. Thermal Issues Associated with the Lighting Systems, Electronics Racks, and Pre-Amplifier Modules in the National Ignition System

    SciTech Connect (OSTI)

    A. C. Owen; J. D. Bernardin; K. L. Lam

    1998-08-01

    This report summarizes an investigation of the thermal issues related to the National Ignition Facility. The influence of heat sources such as lighting fixtures, electronics racks, and pre-amplifier modules (PAMs) on the operational performance of the laser guide beam tubes and optical alignment hardware in the NE laser bays were investigated with experiments and numerical models. In particular, empirical heat transfer data was used to establish representative and meaningful boundary conditions and also serve as bench marks for computational fluid dynamics (CFD) models. Numerical models, constructed with a commercial CFD code, were developed to investigate the extent of thermal plumes and radiation heat transfer from the heat sources. From these studies, several design modifications were recommended including reducing the size of all fluorescent lights in the NIF laser bays to single 32 W bulb fixtures, maintaining minimum separation distances between light fixtures/electronics racks and beam transport hardware, adding motion sensors in areas of the laser bay to control light fixture operation during maintenance procedures, properly cooling all electronics racks with air-water heat exchangers with heat losses greater than 25 W/rack to the M1 laser bay, ensuring that the electronics racks are not overcooked and thus maintain their surface temperatures to within a few degrees centigrade of the mean air temperature, and insulating the electronic bays and optical support structures on the PAMs.

  13. Ignition system monitoring assembly

    DOE Patents [OSTI]

    Brushwood, John Samuel

    2003-11-04

    An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.

  14. Fusion and Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ignition Fusion and Ignition What is Fusion? Fusion is the process that powers the sun and the stars. Fusion describes what happens when the nuclei of light atoms overcome the electrical resistance that keeps them apart and get close enough to activate the strong nuclear force that holds them together, or "fuse." When fused, they form a bigger nucleus; two elements combine to create a different element at the level of the nucleus. Making elements fuse requires an enormous amount of

  15. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014 Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler. Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the

  16. Use of Lubricants in the NIF

    SciTech Connect (OSTI)

    Gourdin, W; Biltoft, P

    2006-07-06

    There are two principal concerns that govern the use of lubricants in NIF: (1) Airborne molecular contaminants (AMCs)--AMCs are known to seriously degrade the performance of sol-gel coated optics. AMCs are produced by the slow outgassing of residues (non-volatile residues or ''NVRs'') of high molecular weight compounds left on surfaces. Lubricants, particularly hydrocarbon lubricants, are a primary source of such NVRs. (2) Particulates--Particulates that accumulate on optical surfaces can cause permanent physical damage when exposed to high energy density laser light. Lubricant residues exposed to high energy density light will pyrolyze or decompose and produce carbon particulates. The NIF Approved Materials Database lists several lubricants that have been tested for use in NIF environments. Many of these lubricants were tested according to MELs 99-006 (oven outgassing test) or 99-007 (vacuum outgassing test). In these tests, the change in percent transmission of light through a sol-gel coated optic placed next to the sample under evaluation is used as the diagnostic. Samples that cause less than 0.1% change in optical transmission are deemed suitable for use inside beam enclosures. This testing, however, addresses only the concern associated with AMCs. To assess the issue of particle generation, a flashlamp or ''aerosol'' test is used. In this test a sample with residues is subjected to intense light from the main amplifier flashlamps. The number density of particles per unit volume is measure after each flash. A measurement of an average of fewer than 1000 particles >0.5{micro}m in diameter produced per square foot of exposed surface per flash for each of the last ten flashes in a series of 60 flashes of light is deemed to be acceptable for polymers. A measurement of an average of fewer than 100 particles >0.5{micro}m in diameter produced per square foot of exposed surface per flash for each of the last ten flashes in a series of 60 flashes of light is deemed to

  17. HIGH-MODE RAYLEIGH-TAYLOR GROWTH IN NIF IGNITION CAPSULES (Conference...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: Second International Conference on High Energy Density Physics (ICHED2009), Austin, TX, United States, May 19 - May 22, 2009 Research ...

  18. National Ignition Facility Reaches Milestone Early | National...

    National Nuclear Security Administration (NNSA)

    Reaches Milestone Early | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  19. Workshops: National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops, Focus Groups and Important Documents Workshops, Focus Groups and Important Documents Workshops, Focus Groups and Important Documents Rolling out the Energy Department Quadrennial Technology Review Report: Public Release of the DOE Quadrennial Technology Review with Secretary Steven Chu, OSTP Director John Holdren, and Under Secretary Steven Koonin Tuesday, September 27, 2011 - 1:00pm ET American Association for the Advancement of Science (AAAS) 1200 New York Ave NW, Washington, DC

  20. National Ignition Facility project execution plan

    SciTech Connect (OSTI)

    Paisner, J., LLNL

    1997-08-01

    This project execution plan covers: Justification of Mission Need; Project Description; Management Roles and Responsibilities; Project Execution; Method of Accomplishment.

  1. NATIONAL IGNITION FACILITY | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASCAR Green Gets First Place in Daytona 500 NASCAR Green Gets First Place in Daytona 500 February 21, 2014 - 10:20am Addthis At this year's Daytona 500, four fuel cell generators will power some of the broadcast cameras and spotlights, demonstrating how the technology could help NASCAR save money on fuel costs. This technology was beta-tested during the IMSA Rolex 24 race weekend last month. | Photo courtesy of P.T. Jones, Oak Ridge National Lab. At this year's Daytona 500, four fuel cell

  2. The Role of the Federal Project Director: Lessons from the National

    Energy Savers [EERE]

    Ignition Facility | Department of Energy The Role of the Federal Project Director: Lessons from the National Ignition Facility The Role of the Federal Project Director: Lessons from the National Ignition Facility The National Ignition Facility (NIF) Facility is home of the world's largest laser. With 192 laser beams that can deliver more than 60 times the energy of any previous laser system, NIF represents a significant step in enabling the study of high-energy density science, and should

  3. Blue and Green Light? Wavelength Scaling for NIF

    SciTech Connect (OSTI)

    Suter, L; Miller, M; Moody, J; Kruer, W

    2003-08-21

    Use of the National Ignition Facility to also output frequency-doubled (.53{micro}m) laser light would allow significantly more energy to be delivered to targets as well as significantly greater bandwidth for beam smoothing. This green light option could provide access to new ICF target designs and a wider range of plasma conditions for other applications. The wavelength scaling of the interaction physics is a key issue in assessing this green light option. Wavelength scaling theory based on the collisionless plasma approximation is explored, and some limitations associated with plasma collisionality are examined. Important features of the wavelength scaling are tested using the current data base, which is growing. It appears that, with modest restrictions, .53{micro}m light couples with targets as well as .35{micro}m light does. A more quantitative understanding of the beneficial effects of SSD on the interaction physics is needed for both .53{micro}m and .35{micro}m light.

  4. OMEGA: A NEW COLD X-RAY SIMULATION FACILITY FOR THE EVALUATION OF OPTICAL COATINGS

    SciTech Connect (OSTI)

    Fisher, J H; Newlander, C D; Fournier, K B; Beutler, D E; Coverdale, C A; May, M J; Tobin, M; Davis, J F; Shiekh, D

    2007-04-27

    We report on recent progress for the development of a new cold X-ray optical test capability using the Omega Facility located at the Laboratory for Laser Energetics (LLE) at the University of Rochester. These tests were done on the 30 kJ OMEGA laser at the Laboratory for Laser Energetics (LLE) at the University of Rochester, Rochester, NY. We conducted a six-shot series called OMEGA II on 14 July 2006 in one eight-hour day (supported by the Defense Threat Reduction Agency). The initial testing was performed using simple protected gold optical coatings on fused silica substrates. PUFFTFT analyses were completed and the specimen's thermal lateral stress and transverse stress conditions were calculated and interpreted. No major anomalies were detected. Comparison of the pre- and posttest reflective measurements coupled with the TFCALC analyses proved invaluable in guiding the analyses and interpreting the observed damage. The Omega facility is a high quality facility for performing evaluation of optical coatings and coupons and provides experience for the development of future National Ignition Facility (NIF) testing.

  5. Senate Armed Services Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... One of our most important projects is the National Ignition Facility (NIF) at the Lawrence ... Using advanced laser and computer technologies, the NIF will be capable of simulating the ...

  6. Burner ignition system

    DOE Patents [OSTI]

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  7. Staff Research Physicist (X-Ray Spectroscopy) | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of X-ray spectrometers for high energy density plasma at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL, Livermore, California). In...

  8. 2014 TUNL REU PROJECTS 1. Commissioning the Enge Spectrometer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Ignition Facility (NIF) at Lawrence Livermore National Laboratory for measuring important parameters of the Deuterium-Tritium (DT) Inertial Confinement Fusion (ICF) plasma. ...

  9. Multimedia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo Gallery Video Gallery home Multimedia Experience the sights and sounds of the National Ignition Facility and learn more about NIF & Photon Science in our multimedia ...

  10. Short-Pulse Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Short-Pulse Lasers NIF Petawatt Laser Is on Track to Completion The National Ignition Facility's Advanced Radiographic Capability (ARC), a petawatt-class laser with peak power ...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... of Environmental Management-Consolidated Business Center Office of Groundwater and Soil ... Ignition Facility (NIF) included a family of high-sensitivity scintillator...

  12. EIS-0236-S1: Supplemental Environmental Impact Statement | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    impacts of continuing to construct and of operating the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California, with respect ...

  13. EIS-0236-S1: Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is issuing this Record of Decision (ROD) for the National Ignition Facility (NIF), a key component of DOE's science-based stewardship of the nation's nuclear weapons stockpile. ...

  14. Particle Splitting for Monte-Carlo Simulation of the National...

    Office of Scientific and Technical Information (OSTI)

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is scheduled for completion in 2009. Thereafter, experiments will commence in which capsules of ...

  15. Women @ Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    control and analyze a broad variety of experiments at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), the largest and most energetic laser...

  16. Ignition dynamics of high explosives

    SciTech Connect (OSTI)

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.; Brewster, M.Q.

    1999-04-01

    The laser ignition of the explosives HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, C{sub 4}H{sub 8}N{sub 8}O{sub 8}), {delta}-phase HMX, PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), TATB (1,3,5-triamino-2,4,6-trinitrobenzene, C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502 has been conducted with the intent to compare the relative sensitivities of those explosives and to investigate the effect of beam profile, binder addition, and porosity. It has been found that there was little difference between a gaussian beam and a top hat profile on the laser ignition of HMX. The authors observe that the addition of binder in the amounts present in PBX 9501 resulted in longer ignition delays than that of HMX. In contrast to HMX, the addition of binder to TATB in PBX 9502 shows no measurable effect. Porosity effects were considered by comparing the ignition of granular HMX and pressed HMX pellets. Porosity appears to increase ignition delay due to an increased effective absorption scale and increased convective heat loss. This porosity effect also resulted in longer ignition delays for {delta}-phase HMX than for {beta}-phase HMX. In order to simulate ignition in voids or cracks, the standard ignition experiment was modified to include a NaCl window placed at variable distances above the sample surface. When ignition experiments were performed at 29 W/cm{sup 2} and 38 W/cm{sup 2} a critical gap distance was observed of 6 {+-} 0.4 mm below which ignition was severely inhibited. This result underscores the importance of gas phase processes in ignition and illustrates that conditions can exist where simple ignition criteria such as surface temperature is inadequate.

  17. Particle Ignition and Char Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... reactivity of lignin residues that remain after biomass is processed and on quantifying the residue's ignition delay and char combustion rates during oxy-fuel combustion of coal. ...

  18. Alignment of an x-Ray Imager Line of Sight in the National Ignition...

    Office of Scientific and Technical Information (OSTI)

    Conference: Alignment of an x-Ray Imager Line of Sight in the National Ignition Facility ... Citation Details In-Document Search Title: Alignment of an x-Ray Imager Line of Sight in ...

  19. Radiation Hardening of Gated X-ray Imagers for the National Ignition...

    Office of Scientific and Technical Information (OSTI)

    Radiation Hardening of Gated X-ray Imagers for the National Ignition Facility Citation Details In-Document Search Title: Radiation Hardening of Gated X-ray Imagers for the National ...

  20. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility floorplan Facility Floorplan

  1. The NIF X-ray Spectrometer (NXS) calibration campaign at Omega...

    Office of Scientific and Technical Information (OSTI)

    The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Citation Details In-Document Search Title: The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Authors: ...

  2. The NIF X-ray Spectrometer (NXS) calibration campaign at Omega...

    Office of Scientific and Technical Information (OSTI)

    The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Citation Details In-Document Search Title: The NIF X-ray Spectrometer (NXS) calibration campaign at Omega You are ...

  3. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect (OSTI)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  4. Ignite High Tech Startups | Open Energy Information

    Open Energy Info (EERE)

    Name: Ignite High Tech Startups Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Ignite High Tech...

  5. Plasma jet ignition device

    DOE Patents [OSTI]

    McIlwain, Michael E.; Grant, Jonathan F.; Golenko, Zsolt; Wittstein, Alan D.

    1985-01-15

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  6. Design for manufacturability evaluation: Composite NIF Pockel Cell body

    SciTech Connect (OSTI)

    Jensen, W.A.; Spellman, G.P.

    1994-04-01

    A survey of composite materials and processes for the NIF Optical Switch Body is described. Mechanical and physical criterion set upon the part are used as guidelines for the selection of materials and processes for manufacturing. Benefits, costs, and risks associated with selected processes, as well as a recommendation for prototype fabrication is presented.

  7. Ignition of Aluminum Particles and Clouds

    SciTech Connect (OSTI)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  8. SCB thermite igniter studies

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.; Wackerbarth, D.E.; Mohler, J.H.

    1996-12-31

    The authors report on recent studies comparing the ignition threshold of temperature cycled, SCB thermite devices with units that were not submitted to temperature cycling. Aluminum/copper-oxide thermite was pressed into units at two densities, 45% of theoretical maximum density (TMD) or 47% of TMD. Half of each of the density sets underwent three thermal cycles; each cycle consisted of 2 hours at 74 C and 2 hours at {minus}54 C, with a 5 minute maximum transfer time between temperatures. The temperature cycled units were brought to ambient temperature before the threshold testing. Both the density and the thermal cycling affected the all-fire voltage. Using a 5.34 {micro}F CDU (capacitor discharge unit) firing set, the all-fire voltage for the units that were not temperature cycled increased with density from 32.99 V (45% TMD) to 39.32 V (47% TMD). The all-fire voltages for the thermally cycled units were 34.42 V (45% TMD) and 58.1 V (47% TMD). They also report on no-fire levels at ambient temperature for two component designs; the 5 minute no-fire levels were greater than 1.2 A. Units were also subjected to tests in which 1 W of RF power was injected into the bridges at 10 MHz for 5 minutes. The units survived and fired normally afterwards. Finally, units were subjected to pin-to-pin electrostatic discharge (ESD) tests. None of the units fired upon application of the ESD pulse, and all of the tested units fired normally afterwards.

  9. Simulation: Gasoline Compression Ignition

    SciTech Connect (OSTI)

    2015-04-13

    The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.

  10. Enhanced Model for Fast Ignition

    SciTech Connect (OSTI)

    Mason, Rodney J.

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation's energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, "implicitness and fluid modeling," can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  11. Cryogenic target system for hydrogen layering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parham, T.; Kozioziemski, B.; Atkinson, D.; Baisden, P.; Bertolini, L.; Boehm, K; Chernov, A.; Coffee, K.; Coffield, F.; Dylla-Spears, R.; et al

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less

  12. NREL Ignites New Renewable Fuels Heating Plant - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignites New Renewable Fuels Heating Plant Innovative DOE Contract Helps Lab Reduce Fuel Use, Carbon Emissions November 20, 2008 Golden, Colo. - With the spark from a high intensity road flare, engineers at the U.S. Department of Energy's National Renewable Energy Laboratory lit its new, smoke-free Renewable Fuels Heating Plant today. The $3.3 million project is the Laboratory's latest step toward operating as a net-zero energy facility. The RFHP will heat NREL's South Table Mountain Campus

  13. COLLOQUIUM: Progress towards fusion on NIF and Z requires new plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurement capabilities | Princeton Plasma Physics Lab June 3, 2015, 3:00pm to 4:30pm Colloquia MBG Auditorium COLLOQUIUM: Progress towards fusion on NIF and Z requires new plasma measurement capabilities Dr. Joe Kilkenny LLNL/GA Dr. Greg Rochau SNL There is significant progress towards fusion on NIF and Z with alpha particle heating on NIF and modest neutron yields on Z. However future progress requires advances in measurement capabilities. Examples of high speed xray imaging, optical

  14. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    SciTech Connect (OSTI)

    Rosenberg, M. J. Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C.; and others

    2014-12-15

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.

  15. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  16. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  17. NIF Functional Requirements and Primary Criteria Rev. 1.8 September...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: NIF Functional Requirements and Primary ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  18. Surface breakdown igniter for mercury arc devices

    DOE Patents [OSTI]

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  19. Hot surface ignition system control module with accelerated igniter warm-up test program

    SciTech Connect (OSTI)

    Brown, B.T.

    1986-10-07

    This patent describes a gas burner control system which consists of: a burner; an electrical resistance igniter for igniting the burner; valve means for controlling flow of gas to the burner; and a control module, including a microcomputer, for controlling operation of the igniter and the valve means, the microcomputer being programmed to provide a preselected igniter warm-up time period for enabling the igniter to attain a temperature sufficient to ignite gas, the microcomputer being further programmed to provide a test routine including a program for providing an accelerated igniter warm-up time period which is shorter than the preselected igniter warm-up time period but sufficiently long for enabling the igniter to attain at least the minimum temperature required to ignite gas, the program in the test routine being executed in response to a unique signal effected by the control module and a test device which is external from and detachably connected to the control module.

  20. Integral low-energy thermite igniter

    DOE Patents [OSTI]

    Gibson, A.; Haws, L.D.; Mohler, J.H.

    1983-05-13

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  1. Integral low-energy thermite igniter

    DOE Patents [OSTI]

    Gibson, Albert; Haws, Lowell D.; Mohler, Jonathan H.

    1984-08-14

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  2. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOE Patents [OSTI]

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  3. Simulations of laser-plasma interactions in targets for the National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility and beyond | Argonne Leadership Computing Facility NIF Hohlraum. This artist's rendering shows a NIF target pellet inside a hohlraum capsule with laser beams entering through openings on either end. The beams compress and heat the target to the necessary conditions for nuclear fusion to occur. Ignition experiments on NIF will be the culmination of more than 30 years of inertial confinement fusion research and development, opening the door to exploration of previously

  4. Igniter and actuator output testing

    SciTech Connect (OSTI)

    Evans, N.A.

    1988-01-01

    Closed system mechanical work output measurements were made for five types of thermal battery igniters and one type of valve actuator. Each unit was fired into a high-precision fit piston/cylinder arrangement, and the work output was determined from measuring the rise of a known weight. The results showed that work output for an individual igniter type varied over a considerable range while the mean work output values of the various igniter types appeared to depend principally on the type of closure disc and the details of the charge mix. The large variability in igniter output was the principal inducement to build a second apparatus, with approximately 10 times the capacity of the first, to investigate the output actuators. Compared with igniters, the actuator work output was appropriately in scale, but the variability was considerably reduced (R=1.5), and was attributed to increase in scale. Motion picture photography at 8000 to 9000 frames per second was used to determine the motion of the rising weight and the associated output pressure, which exhibited three distinct phases. Initially, the average acceleration of the weight was of the order of 100 g during the first half-millisecond of weight rise and corresponded to average pressures of 15,000 to 37,000 psi, depending principally on the mass of the weight. This was followed by a significant weight rise at a constant pressure of approximately 150 to 450 psi. Finally, the weight decelerated to rest under gravity to reach the maximum recorded height. 2 refs., 9 figs., 2 tabs.

  5. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect (OSTI)

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  6. Kevin Fournier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kevin fournier Kevin Fournier Kevin Fournier Director, NIF User Office National Ignition Facility Kevin Fournier is the NIF User Office director. In this role, he is responsible for developing and implementing the strategy for support of the NIF user community, including generation of the integrated NIF facility use plan and experiment schedule, solicitation and evaluation of proposed experiments, management of experiment review and approval, and development and maintenance of user

  7. High-voltage miniature igniter development

    SciTech Connect (OSTI)

    Willkens, C.A.; Axelson, S.R.; Bateman, L.S.; Croucher, D.D.

    1996-09-01

    In 1988, Norton introduced its line of low-voltage 12- and 24-V miniature igniters made from a patented ceramic/intermetallic material. These igniters demonstrated superior strength and speed in a compact low-wattage assembly for gas-fired ignition. High-voltage igniters are being developed to complete the family of igniters for gas-fired ignition. These igniters have extremely low power requirements in the range of 50--100 W, are designed to operate at line voltages of 120 V, and are leading to designs for operation up to 230 V. These were developed using compositional and dimensional changes to the low voltage igniters. The 120 V igniter has exceeded 200,000 cycles in life testing and has been submitted for agency approval. These igniters are also undergoing field testing in various demanding gas-fired appliances. The evolution of the low-voltage igniter into the high-voltage model, as well as performance and material development issues are discussed.

  8. Particle Ignition and Char Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition and Char Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  9. Diagnostics for Fast Ignition Science

    SciTech Connect (OSTI)

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  10. Fast ignition of inertial confinement fusion targets

    SciTech Connect (OSTI)

    Gus'kov, S. Yu.

    2013-01-15

    Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

  11. Igniter containing titanium hydride and potassium perchlorate

    DOE Patents [OSTI]

    Dietzel, Russel W.; Leslie, William B.

    1976-01-01

    An explosive device is described which employs a particular titanium hydride-potassium perchlorate composition directly ignitible by an electrical bridgewire.

  12. Mutual colliding impact fast ignition

    SciTech Connect (OSTI)

    Winterberg, Friedwardt

    2014-09-15

    It is proposed to apply the well established colliding beam technology of high energy physics to the fast hot spot ignition of a highly compressed DT (deuterium-tritium) target igniting a larger D (deuterium) burn, by accelerating a small amount of solid deuterium, and likewise a small amount of tritium, making a head-on collision in the center of the target, projecting them through conical ducts situated at the opposite side of the target and converging in its center. In their head-on collision, the relative collision velocity is 5/3 times larger compared to the collision velocity of a stationary target. The two pieces have for this reason to be accelerated to a smaller velocity than would otherwise be needed to reach upon impact the same temperature. Since the velocity distribution of the two head-on colliding projectiles is with its two velocity peaks non-Maxwellian, the maximum cross section velocity product turns out to be substantially larger than the maximum if averaged over a Maxwellian. The D and T projectiles would have to be accelerated with two sabots driven by powerful particle or laser beams, permitting a rather large acceleration length. With the substantially larger cross section-velocity product by virtue of the non-Maxwellian velocity distribution, a further advantage is that the head-on collision produces a large magnetic field by the thermomagnetic Nernst effect, enhancing propagating burn. With this concept, the ignition of the neutron-less hydrogen-boron (HB{sup 11}) reaction might even be possible in a heterogeneous assembly of the hydrogen and the boron to reduce the bremsstrahlung-losses, resembling the heterogeneous assembly in a graphite-natural uranium reactor, there to reduce the neutron losses.

  13. NIF-0096141-OA Prop Simulations of NEL PBRS Measurements

    SciTech Connect (OSTI)

    Widmayer, C; Manes, K

    2003-02-21

    Portable Back Reflection Sensor, PBRS, (NEL only) and Quad Back Reflection Sensor, QBRS, time delay reflectometer traces are among the most useful diagnostics of NIF laser status available. NEL PBRS measurements show several signals reaching the detector for each shot. The time delay between signals suggests that the largest of these is due to energy at the spatial filter pinhole planes leaking into adjacent pinholes and traveling back upstream to the PBRS. Prop simulations agree with current PBRS measurements to within 50%. This suggests that pinhole leakage is the dominant source of energy at the PBRS. However, the simulations predict that the energy leakage is proportional to beam output energy, while the PBRS measurements increase more slowly (''saturate''). Further refinement of the model or the measurement may be necessary to resolve this discrepancy.

  14. In-flight observations of low-mode ρR asymmetries in NIF implosions

    SciTech Connect (OSTI)

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Rygg, J. R.; Kritcher, A.; Rosenberg, M. J.; Rinderknecht, H. G.; Hicks, D. G.; Friedrich, S.; Bionta, R.; Meezan, N. B.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Berzak Hopkins, L.; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dewald, E. L.; Dixit, S.; Doppner, T.; Edwards, M. J.; Gatu Johnson, M.; Glenn, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moses, E.; Nagel, S. R.; Nikroo, A.; Parham, T.; Pak, A.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Robey, H. F.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Yeamans, C.; Zacharias, R.

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%, which are interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.

  15. In-flight observations of low-mode ρR asymmetries in NIF implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Rygg, J. R.; Kritcher, A.; Rosenberg, M. J.; Rinderknecht, H. G.; Hicks, D. G.; Friedrich, S.; Bionta, R.; et al

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%, which aremore » interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  16. Simulations of Laser-Plasma Interactions in Targets for the National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility and Beyond | Argonne Leadership Computing Facility Laser-Plasma Interactions in Targets for the National Ignition Facility and Beyond PI Name: Denise Hinkel PI Email: hinkel1@llnl.gov Institution: Lawrence Livermore National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 63,000,000 Year: 2012 Research Domain: Physics In the 2010-2012 timeframe, Lawrence Livermore National Laboratory is tasked with achieving ignition at the National Ignition Facility (NIF).

  17. Turbocharged Spark Ignited Direct Injection - A Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI ...

  18. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ignition Drive Cycle Fuel Economy and Emissions Estimates Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates Vehicle ...

  19. High Fidelity Modeling of Premixed Charge Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fidelity Modeling of Premixed Charge Compression Ignition Engines High Fidelity Modeling of Premixed Charge Compression Ignition Engines Most accurate and detailed chemical kinetic ...

  20. Effects of Ignition Quality and Fuel Composition on Critical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Our research shows ...

  1. ICF Facilities | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Facilities Nike mirror array and lens array ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser

  2. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies.

    SciTech Connect (OSTI)

    Bailey, James E.; Chandler, Gordon Andrew; Vesey, Roger Alan; Hanson, David Lester; Olson, Craig Lee; Nash, Thomas J.; Matzen, Maurice Keith; Ruiz, Carlos L.; Porter, John Larry, Jr.; Cuneo, Michael Edward; Varnum, William S.; Bennett, Guy R.; Cooper, Gary Wayne; Schroen, Diana Grace; Slutz, Stephen A.; MacFarlane, Joseph John; Leeper, Ramon Joe; Golovkin, I. E.; Mehlhorn, Thomas Alan; Mancini, Roberto Claudio

    2003-07-01

    Inertial confinement fusion capsule implosions absorbing up to 35 kJ of x-rays from a {approx}220 eV dynamic hohlraum on the Z accelerator at Sandia National Laboratories have produced thermonuclear D-D neutron yields of (2.6 {+-} 1.3) x 10{sup 10}. Argon spectra confirm a hot fuel with Te {approx} 1 keV and n{sub e} {approx} (1-2) x 10{sup 23} cm{sup -3}. Higher performance implosions will require radiation symmetry control improvements. Capsule implosions in a {approx}70 eV double-Z-pinch-driven secondary hohlraum have been radiographed by 6.7 keV x-rays produced by the Z-beamlet laser (ZBL), demonstrating a drive symmetry of about 3% and control of P{sub 2} radiation asymmetries to {+-}2%. Hemispherical capsule implosions have also been radiographed in Z in preparation for future experiments in fast ignition physics. Z-pinch-driven inertial fusion energy concepts are being developed. The refurbished Z machine (ZR) will begin providing scaling information on capsule and Z-pinch in 2006. The addition of a short pulse capability to ZBL will enable research into fast ignition physics in the combination of ZR and ZBL-petawatt. ZR could provide a test bed to study NIF-relevant double-shell ignition concepts using dynamic hohlraums and advanced symmetry control techniques in the double-pinch hohlraum backlit by ZBL.

  3. Physics of compact ignition tokamak designs

    SciTech Connect (OSTI)

    Singer, C.E.; Ku, L.P.; Bateman, G.; Seidl, F.; Sugihara, M.

    1986-03-01

    Models for predicting plasma performance in compact ignition experiments are constructed on the basis of theoretical and empirical constraints and data from tokamak experiments. Emphasis is placed on finding transport and confinement models which reproduce results of both ohmically and auxiliary heated tokamak data. Illustrations of the application of the models to compact ignition designs are given.

  4. Advanced ignition and propulsion technology program

    SciTech Connect (OSTI)

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  5. Heat transfer characteristics of igniter output plumes

    SciTech Connect (OSTI)

    Evans, N.A.; Durand, N.A.

    1989-01-01

    Seven types of pyrotechnic igniters were each mounted at one end of a closed cylindrical bore hole representative of the center hole in a thermal battery. Measurements of local bore wall temperature, T/sub w/, using commercially available, fast response (10 /mu/sec) sheathed chromel-constantan thermocouples allowed calculation of local heat transfer rates, q, and wall heat flows, Q. The principal charge constituents of all these igniters were titanium and potassium perchlorate, while three types also contained barium styphnate as an ignition sensitizer. Igniter closure disc materials included glass-ceramic, glass, metal (plain, scored, with and without capture cone), and kapton/RTV. All igniters produced the lowest values of T/sub w/ and q at the beginning of the bore, and, except for the igniter with the kapton/RTV closure disc, these quantities increased with distance along the bore. For igniters containing only titanium/potassium perchlorate, the rates of increase of Q along the bore length, compared with those for T/sub w/ and q, were generally lower and more variable. The inclusion of barium styphnate produced rates of change in Q that were essentially constant to the end of the bore. The highest overall average wall temperatures were achieved by two igniter types with metal closure discs and no capture cone. No clear correlation was established between peak bore pressure and maximum wall temperature. 3 refs., 8 figs., 1 tab.

  6. Pyrotechnic ignition studies using a gun tunnel

    SciTech Connect (OSTI)

    Evans, N.A.

    1989-01-01

    A gun tunnel is being used to investigate the ignition characteristics of center-hole iron/potassium perchlorate thermal battery discs. Details are given of the construction, operation, and data reduction method for the gun tunnel. To simulate an igniter, this system can readily produce a pulse of hot argon at maximum pressures and temperatures up to P/sub max/ = 8 MPa and T/sub max/ = 4000K, respectively, with flow times of the order of 3 msec. For a single battery disc, a segment of the ignition boundary was found to lie in the region of T/sub max/ = 1200 to 1300K and 0.7 MPa < P/sub max/ < 2.0 MPa. The results also showed two types of ignition: prompt ignition, requiring an average delivered enthalpy /ovr /Delta/H//sub ig/ = 6 cal during an average flow time /ovr /Delta/t//sub ig/ = 0.7 msec, and delayed ignition, with /ovr /Delta/H//sub ig/ = 16 cal and /ovr /Delta/t//sub ig/ = 2.4 msec. In addition, near an ignition boundary, high speed motion photography showed the ignition delay increased to 6 msec with significant spatial non-uniformity. 1 ref., 6 figs.

  7. NIF and Omega Laser Ramp-Compression EOS on Tantalum (Conference...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: NIF and Omega Laser Ramp-Compression EOS on Tantalum Authors: Eggert, J ; Smith, R ; Braun, D ; Patterson, R ; Celliers, P ; Collins, G ; ...

  8. National Inventors Day Celebrates Our Inventors | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSA) National Ignition Facility Glass amplifiers in Laser Bay 2 at the National Ignition Facility. The construction of the 192-beam 1.8 MJ UV NIF, the world's most energetic laser, was completed in March 2009. Current experiments are focusing on using the NIF laser and other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and SSP experiments. By the end of FY 2012, the

  9. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    SciTech Connect (OSTI)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  10. Construction safety program for the National Ignition Facility, Appendix B

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    This Appendix contains material from the LLNL Health and Safety Manual as listed below. For sections not included in this list, please refer to the Manual itself. The areas covered are: asbestos, lead, fire prevention, lockout, and tag program confined space traffic safety.

  11. Construction safety program for the National Ignition Facility, Appendix A

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  12. HEC-DPSSL 2012 Workshop, Topics: National Ignition Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Session Topics High Power Diode Arrays Laser Gain Media Laser Damage Resistance Thermal ModelingResults GainParasitics ModelingResults Laser Propagation Modeling ...

  13. DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications EIS-0236-S1: Supplemental Environmental Impact Statement EIS-0236-S1: Draft Supplemental Programmatic Environmental Impact Statement EIS-0236-S1: ...

  14. Premix charge, compression ignition combustion system optimization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_gustafson.pdf (1.47 MB) More Documents & Publications Advanced Combustion Technology to Enable High Efficiency Clean Combustion Heavy-Duty HCCI Development

  15. Confinement scaling and ignition in tokamaks

    SciTech Connect (OSTI)

    Perkins, F.W.; Sun, Y.C.

    1985-10-01

    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10/sup 15/ cm/sup -3/, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition.

  16. Loss/gain on ignition test report

    SciTech Connect (OSTI)

    Winstead, M.L.

    1996-01-10

    Document provides the results of tests done on Product Cans from the HC-21C sludge stabilization process. Tests included running a simulated Thermogravimetric Analysis, TGA, on the processed material that have received Loss On Ignition (LOI) sample results that show a gain on ignition or a high LOI and reprocessing product cans with high LOIs. Also, boat material temperatures in the furnace were tracked during the testing.

  17. Ignition methods and apparatus using microwave energy

    DOE Patents [OSTI]

    DeFreitas, Dennis M.; Darling, Timothy W.; Migliori, Albert; Rees, Daniel E.

    1997-01-01

    An ignition apparatus for a combustor includes a microwave energy source that emits microwave energy into the combustor at a frequency within a resonant response of the combustor, the combustor functioning as a resonant cavity for the microwave energy so that a plasma is produced that ignites a combustible mixture therein. The plasma preferably is a non-contact plasma produced in free space within the resonant cavity spaced away from with the cavity wall structure and spaced from the microwave emitter.

  18. Infrared Thermographic Study of Laser Ignition

    SciTech Connect (OSTI)

    Mohler, Jonathan H.; Chow, Charles T. S.

    1986-07-01

    Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet. The experimental apparatus used to make these observations is described. The temperature distributions recorded are shown to be in good agreement with those predicted by heat transfer theory. Heat content values calculated from the observed temperature distributions are used to calculate thermal and kinetic parameters for several samples. These values are found to be in reasonable agreement with theory.

  19. Infrared thermographic study of laser ignition

    SciTech Connect (OSTI)

    Mohler, J.H.; Chow, C.T.S.

    1986-07-21

    Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet.

  20. Measurement of the NIF Gunite Shielding Composition and Implications...

    Office of Scientific and Technical Information (OSTI)

    doses rates during operation and for the eventual facility decommissioning are discussed. ... Subject: 70 PLASMA PHYSICS AND FUSION; CONCRETES; DECOMMISSIONING; DOSE RATES; MASS ...

  1. LLE 2008 annual report, October 2007 - September 2008

    SciTech Connect (OSTI)

    2009-01-31

    The research program at the University of Rochester’s Laboratory for Laser Energetics (LLE) focuses on inertial confinement fusion (ICF) research supporting the goal of achieving ignition on the National Ignition Facility (NIF). This program includes the full use of the OMEGA EP Laser System. Within the National Ignition Campaign (NIC), LLE is the lead laboratory for the validation of the performance of cryogenic target implosions, essential to all forms of ICF ignition. LLE has taken responsibility for a number of critical elements within the Integrated Experimental Teams (IET’s) supporting the demonstration of indirect-drive ignition on the NIF and is the lead laboratory for the validation of the polardrive approach to ignition on the NIF. LLE is also developing, testing, and building a number of diagnostics to be deployed on the NIF for the NIC.

  2. Women @ Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    part to addressing them." Pascale Di Nicola works at the National Ignition Facility (NIF) and is in charge of a working group for pointing performance and is a core member of...

  3. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  4. design a high-resolution diagnostic system for the National Ignition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF, by contrast, is developing a technique called inertial confinement fusion that is quite different. NIF fires 192 high-power lasers at tiny pellets of fuel to compress the ...

  5. Analytical model for fast-shock ignition

    SciTech Connect (OSTI)

    Ghasemi, S. A. Farahbod, A. H.; Sobhanian, S.

    2014-07-15

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25.

  6. Experimental Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental capabilities Experimental Capabilities The National Ignition Facility is the premier high energy density science facility in the world, with laser energies 10 times greater than any other high-energy inertial confinement fusion (ICF) laser system. A major focus of NIF is a national effort to demonstrate ignition and thermonuclear burn in the laboratory. NIF also conducts a variety of experiments to study matter at the extremes, including studies of material properties,

  7. Ignition of THKP and TKP pyrotechnic powders :

    SciTech Connect (OSTI)

    Maharrey, Sean P.; Erikson, William W; Highley, Aaron M.; Wiese-Smith, Deneille; Kay, Jeffrey J

    2014-03-01

    We have conducted Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS) experiments on igniter/actuator pyrotechnic powders to characterize the reactive processes controlling the ignition and combustion behavior of these materials. The experiments showed a complex, interactive reaction manifold involving over ten reaction pathways. A reduced dimensionality reaction manifold was developed from the detailed 10-step manifold and is being incorporated into existing predictive modeling codes to simulate the performance of pyrotechnic powders for NW component development. The results from development of the detailed reaction manifold and reduced manifold are presented. The reduced reaction manifold has been successfully used by SNL/NM modelers to predict thermal ignition events in small-scale testing, validating our approach and improving the capability of predictive models.

  8. Ignition of deuterium-trtium fuel targets

    DOE Patents [OSTI]

    Musinski, Donald L.; Mruzek, Michael T.

    1991-01-01

    A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.

  9. Ignition of deuterium-tritium fuel targets

    DOE Patents [OSTI]

    Musinski, D.L.; Mruzek, M.T.

    1991-08-27

    Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

  10. Low current extended duration spark ignition system

    DOE Patents [OSTI]

    Waters, Stephen Howard; Chan, Anthony Kok-Fai

    2005-08-30

    A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.

  11. Gas turbine igniter with ball-joint support

    SciTech Connect (OSTI)

    Steber, C.E.; Travis, R.J.; Rizzo, J.A.

    1990-02-27

    This patent describes a support for an igniter for a combustor of a gas turbine, the combustor being of a type including a casing and a liner within the casing. It comprises: a ball joint; means for supporting the ball joint disposed a substantial distance outward from the casing; a body section of the igniter affixed in the ball joint; means for permitting the ball joint, and the body section to rotate through a substantial range; an igniter tip on the body section; and a hole in the liner. The igniter tip entering through the hole and into an interior of the liner. The hole being a tight fit to the igniter tip, whereby leakage past the igniter tip through the hole is limited. The substantial range being sufficient to permit fitting the igniter tip in the hole in the presence of manufacturing tolerances, and to permit the igniter tip to track the hole in the presence of differential thermal expansion during operation.

  12. Spherical strong-shock generation for shock-ignition inertial...

    Office of Scientific and Technical Information (OSTI)

    Spherical strong-shock generation for shock-ignition inertial fusion Citation Details In-Document Search Title: Spherical strong-shock generation for shock-ignition inertial fusion ...

  13. Semiconductor bridge, SCB, ignition of energetic materials

    SciTech Connect (OSTI)

    Bickes, R.W.; Grubelich, M.D.; Harris, S.M.; Merson, J.A.; Tarbell, W.W.

    1997-04-01

    Sandia National Laboratories` semiconductor bridge, SCB, is now being used for the ignition or initiation of a wide variety of exeoergic materials. Applications of this new technology arose because of a need at the system level to provide light weight, small volume and low energy explosive assemblies. Conventional bridgewire devices could not meet the stringent size, weight and energy requirements of our customers. We present an overview of SCB technology and the ignition characteristics for a number of energetic materials including primary and secondary explosives, pyrotechnics, thermites and intermetallics. We provide examples of systems designed to meet the modern requirements that sophisticated systems must satisfy in today`s market environments.

  14. The near vacuum hohlraum campaign at the NIF: A new approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N.; Turnbull, D.; Mackinnon, A. J.; Ho, D.; Ross, J. S.; Khan, S.; Pak, A.; et al

    2016-05-25

    Here, the near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out tomore » examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30 implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.« less

  15. Optimization of the alignment sensitivity and energy stability of the NIF regenerative amplifier cavity/011

    SciTech Connect (OSTI)

    Hopps, N. W., Atomic Weapons Research Establishment, Aldermaston, Great Britain

    1998-06-24

    The work to improve the energy stability of the regenerative amplifier (`regen`) for the National Ignition Facility is described. This includes a fast feed-forward system, designed to regulate the output energy of the regen by monitoring how quickly a pulse builds up over many round trips. Shot-to-shot energy fluctuations of all elements prior to (and including) the regen may be compensated for in this way, at the expense of a loss of approximately 50%. Also included is a detailed study into the alignment sensitivity of the regen cavity, with the goal of quantifying the effect of misalignment on the output energy. This is done by calculating the displacement of the eigenmode by augmenting the cavity ABCD matrix with the misalignment matrix elements, E, F. In this way, cavity misalignment issues due to thermal loading of the gain medium are investigated. Alternative cavity designs, which reduce the alignment sensitivity and therefore the energy drift over periods of continuous operation, are considered. Alterations to the amplifier head design are also considered.

  16. design a high-resolution diagnostic system for the National Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility | Princeton Plasma Physics Lab design a high-resolution diagnostic system for the National Ignition Facility By John Greenwald November 16, 2015 Tweet Widget Google Plus One Share on Facebook Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study OMEGA EP laser-produced plasmas. (Photo by Elle Starkman/Office of Communications) Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study OMEGA EP laser-produced plasmas.

  17. Methanol with dimethyl ether ignition promotor as fuel for compression ignition engines

    SciTech Connect (OSTI)

    Brook, D.L.; Cipolat, D.; Rallis, C.J.

    1984-08-01

    Reduction of the world dependence upon crude oil necessitates the use of long term alternative fuels for internal combustion engines. Alcohols appear to offer a solution as in the short term they can be manufactured from natural gas and coal, while ultimately they may be produced from agricultural products. A fair measure of success has been achieved in using alcohols in spark ignition engines. However the more widely used compression ignition engines cannot utilize unmodified pure alcohols. The current techniques for using alcohol fuels in compression ignition engines all have a number of shortcomings. This paper describes a novel technique where an ignition promotor, dimethyl ether (DME), is used to increase the cetane rating of methanol. The systems particular advantage is that the DME can be catalyzed from the methanol base fuel, in situ. This fuel system matches the performance characteristics of diesel oil fuel.

  18. Deep Dive Topic: Approach to ignition

    SciTech Connect (OSTI)

    Hurricane, O. A.; Kline, J. L.; Meezan, N.; Mackinnon, A.

    2015-07-14

    The current high-foot and related implosions have adequate CR and implosion velocity to ignite, but require improved finesse particularly in, but not limited to, implosion symmetry. This is being pursued. The challenge of controlling drive symmetry is also motivating lower convergence ratio designs. These require higher velocity implosions and are also being pursued.

  19. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    SciTech Connect (OSTI)

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  20. Photo of the Week: Repurposing the Xbox | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Both! The National Ignition Facility (NIF) is a large research device located at Lawrence Livermore National Laboratory. The NIF uses powerful lasers to heat and compress hydrogen fuel to the point where nuclear fusion reactions take place. It is currently the largest and most energetic inertial confinement fusion device in the world. Researchers use the NIF to ensure the safety of nuclear weapons, explore the potential of fusion as a safe energy source, and understand how the

  1. Joe Kilkenny

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    joe kilkenny Joe Kilkenny Joe Kilkenny Chief NIF Experimentalist for Measurements National Ignition Facility Joe Kilkenny, vice president for high energy density physics at General Atomics, currently is assigned to the NIF diagnostic program as the chief NIF experimentalist for measurements. He has made major contributions to experimental inertial confinement fusion (ICF) for more than 35 years. He has some 200 refereed publications on ICF. Dr. Kilkenny was an academic at Imperial College,

  2. The NifA-RpoN regulon of Mesorhizobium loti strain R7A and its symbiotic activation by a novel Lacl/GalR-family regulator

    SciTech Connect (OSTI)

    Sullivan, John T.; Brown, Steven D; Ronson, Professor Clive William

    2013-01-01

    Mesorhizobium loti is the microsymbiont of Lotus species, including the model legume L. japonicus. M. loti differs from other rhizobia in that it contains two copies of the key nitrogen fixation regulatory gene nifA, nifA1 and nifA2, both of which are located on the symbiosis island ICEMlSymR7A. M. loti R7A also contains two rpoN genes, rpoN1 located on the chromosome outside of ICEMlSymR7A and rpoN2 that is located on ICEMlSymR7A. The aims of the current work were to establish how nifA expression was activated in M. loti and to characterise the NifA-RpoN regulon. The nifA2 and rpoN2 genes were essential for nitrogen fixation whereas nifA1 and rpoN1 were dispensable. Expression of nifA2 was activated, possibly in response to an inositol derivative, by a novel regulator of the LacI/GalR family encoded by the fixV gene located upstream of nifA2. Other than the well-characterized nif/fix genes, most NifA2-regulated genes were not required for nitrogen fixation although they were strongly expressed in nodules. The NifA-regulated nifZ and fixU genes, along with nifQ which was not NifA-regulated, were required in M. loti for a fully effective symbiosis although they are not present in some other rhizobia. The NifA-regulated gene msi158 that encodes a porin was also required for a fully effective symbiosis. Several metabolic genes that lacked NifA-regulated promoters were strongly expressed in nodules in a NifA2-dependent manner but again mutants did not have an overt symbiotic phenotype. In summary, many genes encoded on ICEMlSymR7A were strongly expressed in nodules but not free-living rhizobia, but were not essential for symbiotic nitrogen fixation. It seems likely that some of these genes have functional homologues elsewhere in the genome and that bacteroid metabolism may be sufficiently plastic to adapt to loss of certain enzymatic functions.

  3. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  4. Rapid ignition of fluidized bed boiler

    DOE Patents [OSTI]

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  5. Test report for core drilling ignitability testing

    SciTech Connect (OSTI)

    Witwer, K.S.

    1996-08-08

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

  6. Enhanced ignition for I. C. engines with premixed gases

    SciTech Connect (OSTI)

    Dale, J.D.; Oppenheim, A.K.

    1981-01-01

    The development of lean charge, fast burn engines depends crucially on enhanced ignition. Enhanced ignition involves not only high energies and long duration of ignition, but also a wide dispersion of its sources, so that combustion is carried out at as many sites throughout the charge as possible. Upon this premise, various ignition systems for I.C. engines, operating with premixed charge, are reviewed. The systems are grouped as follows: high energy spark plugs; plasma jet igniters; photochemical, laser, and microwave ignition concepts; torch cells; divided chamber stratified charge engines; flame jet igniters; combustion jet ignition concepts; EGR ignition system. The first three derive the power from electrical energy, the rest are powered by exothermic chemical reactions. The review emphasizes the concept of staging the processes of initiation and propagation of combustion. Relative positions of various ignition systems are expressed on the plane of relative energies (the ratio of energy consumed by the ignition system, or contained in a pre-chamber, to that of the compressed charge in the main chamber) and relative volumes (the ratio of the volume of the pre-chamber to that of the compressed charge). In principle, ignition systems for engines operating with premixed charge lie on the half-plane of relative energies below one, between 10/sup -5/ for standard spark plugs to 10/sup -1/ for divided chamber stratified charge engines, while their relative volumes extend from 0 for spark igniters to 0.2 for stratified charge engines. This suggests that proper compartmentization of the combustion process may lead to significant improvements in both pollution emissions from the cylinder and specific fuel consumption of I.C. engines.

  7. Multiple laser pulse ignition method and apparatus

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    1998-01-01

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  8. Multiple laser pulse ignition method and apparatus

    DOE Patents [OSTI]

    Early, J.W.

    1998-05-26

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

  9. System studies of compact ignition tokamaks

    SciTech Connect (OSTI)

    Galambos, J.D.; Blackfield, D.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Selcow, E.

    1987-08-01

    The new Tokamak Systems Code, used to investigate Compact Ignition Tokamaks (CITs), can simultaneously vary many parameters, satisfy many constraints, and minimize or maximize a figure of merit. It is useful in comparing different CIT design configurations over wide regions of parameter space and determining a desired design point for more detailed physics and engineering analysis, as well as for performing sensitivity studies for physics or engineering issues. Operational windows in major radius (R) and toroidal field (B) space for fixed ignition margin are calculated for the Ignifed and Inconel candidate CITs. The minimum R bounds are predominantly physics limited, and the maximum R portions of the windows are engineering limited. For a modified Kaye-Goldston plasma-energy-confinement scaling, the minimum size is 1.15 m for the Ignifed device and 1.25 m for the Inconel device. With the Ignition Technical Oversight Committee (ITOC) physics guidance of B/sup 2/a/q and I/sub p/ >10 MA, the Ignifed and Base-line Inconel devices have a minimum size of 1.2 and 1.25 m and a toroidal field of 11 and 10.4 T, respectively. Sensitivity studies show Ignifed to be more sensitive to coil temperature changes than the Inconel device, whereas the Inconel device is more sensitive to stress perturbations.

  10. Ignition threshold for non-Maxwellian plasmas

    SciTech Connect (OSTI)

    Hay, Michael J.; Fisch, Nathaniel J.

    2015-11-15

    An optically thin p-{sup 11}B plasma loses more energy to bremsstrahlung than it gains from fusion reactions, unless the ion temperature can be elevated above the electron temperature. In thermal plasmas, the temperature differences required are possible in small Coulomb logarithm regimes, characterized by high density and low temperature. Ignition could be reached more easily if the fusion reactivity can be improved with nonthermal ion distributions. To establish an upper bound for the potential utility of a nonthermal distribution, we consider a monoenergetic beam with particle energy selected to maximize the beam-thermal reactivity. Comparing deuterium-tritium (DT) and p-{sup 11}B, the minimum Lawson criteria and minimum ρR required for inertial confinement fusion (ICF) volume ignition are calculated with and without the nonthermal feature. It turns out that channeling fusion alpha energy to maintain such a beam facilitates ignition at lower densities and ρR, improves reactivity at constant pressure, and could be used to remove helium ash. On the other hand, the reactivity gains that could be realized in DT plasmas are significant, the excess electron density in p-{sup 11}B plasmas increases the recirculated power cost to maintain a nonthermal feature and thereby constrains its utility to ash removal.

  11. Magnetic booster fast ignition macron accelerator

    SciTech Connect (OSTI)

    Winterberg, F.

    2006-11-15

    A new fast ignition scheme was recently proposed where the ignition is done by the impact of a small solid projectile accelerated to velocities in excess of 10{sup 8} cm/s, with the acceleration done in two steps: first, by laser ablation of a flyer plate, and second by injecting the flyer plate into a conical duct. The two principal difficulties of this scheme are as follows: first, the required large mass ratio for the laser ablation rocket propelled flyer plate, and second, the Rayleigh-Taylor instability of the flyer plate during its implosive compression in the conical duct. To overcome these difficulties, it is suggested to accelerate a projectile by a magnetic fusion booster stage, made up of a dense, wall-confined magnetized plasma brought to thermonuclear temperatures. After ignition, this plasma undergoes a thermonuclear excursion greatly increasing its pressure, resulting in the explosion of a weakened segment of the wall, with the segment becoming a fast moving projectile. The maximum velocity this projectile can reach is the velocity of sound of the booster stage plasma, which at a temperature of 10{sup 8} K is of the order 10{sup 8} cm/s.

  12. Laser–plasma interactions for fast ignition

    SciTech Connect (OSTI)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-04-17

    In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser- plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multidimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity, f-number and wavelength are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale fast ignition problem.

  13. Laser spark distribution and ignition system

    DOE Patents [OSTI]

    Woodruff, Steven; McIntyre, Dustin L.

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  14. Laser–plasma interactions for fast ignition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-04-17

    In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser- plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multidimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporalmore » evolution. Scaling with irradiation conditions such as laser intensity, f-number and wavelength are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale fast ignition problem.« less

  15. Ignitor with stable low-energy thermite igniting system

    DOE Patents [OSTI]

    Kelly, Michael D.; Munger, Alan C.

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  16. Stoichiometric Compression Ignition (SCI) Engine Concept | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Stoichiometric Compression Ignition (SCI) Engine Concept Stoichiometric Compression Ignition (SCI) Engine Concept Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_winsor.pdf (369.5 KB) More Documents & Publications An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy

  17. High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel Reactivity Controlled Compression Ignition Combustion High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion An optimized dual-fuel PCCI concept, RCCI, is proposed. deer10_reitz.pdf (960.46 KB) More Documents & Publications Effect of Compression Ratio and Piston Geometry on RCCI load limit Optimization of Advanced Diesel Engine Combustion Strategies Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI)

  18. Cosmos Ignite Innovations Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Innovations Pvt Ltd Jump to: navigation, search Name: Cosmos Ignite Innovations Pvt Ltd Place: Delhi (NCT), India Zip: 110017 Product: Company started by two Stanford and New Delhi...

  19. Advanced CFD Models for High Efficiency Compression Ignition Engines

    Broader source: Energy.gov [DOE]

    Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion.

  20. Modeling the Number of Ignitions Following an Earthquake: Developing...

    Office of Environmental Management (EM)

    Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell PDF icon Modeling the Number of Ignitions Following an Earthquake:...

  1. Zone heated inlet ignited diesel particulate filter regeneration...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Zone heated inlet ignited diesel particulate filter ... An exhaust system that processes exhaust generated by an engine is provided. The system ...

  2. Radiochemical tracers as a mix diagnostic for the ignition double...

    Office of Scientific and Technical Information (OSTI)

    for the ignition double-shell capsule One of the most important challenges confronting laser-driven capsule implosion experiments will be a quantitative evaluation of the...

  3. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms...

    Office of Scientific and Technical Information (OSTI)

    for Physics-Based Model Development. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based ...

  4. Heavy Alcohols as a Fuel Blending Agent for Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Avoidance Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel BiodieselFuelManagementBestPracticesReport.pdf

  5. Laser Spark Distribution and Ignition System - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Laser Spark Distribution and Ignition System A method ... Contact NETL About This Technology Publications: PDF Document Publication Laser Spark ...

  6. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles In conventional vehicles, most engine operating points ...

  7. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  8. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  9. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  10. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang; Akli, Kramer U.; Beg, Farhat N.; Sentoku, Yasuhiko; Schumacher, Douglass W.; Wei, Mingsheng

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  11. Modeling the Fuel Spray and Combustion Process of the Ignition Quality Tester with KIVA-3V

    SciTech Connect (OSTI)

    Bogin, G. E. Jr.; DeFilippo, A.; Chen, J. Y.; Chin, G.; Luecke, J.; Ratcliff, M. A.; Zigler, B. T.; Dean, A. M.

    2010-05-01

    Discusses the use of KIVA-3V to develop a model that reproduces ignition behavior inside the Ignition Quality Tester, which measures the ignition delay of low-volatility fuels.

  12. Design, installation, commissioning and operation of a beamlet monitor in the negative ion beam test stand at NIFS

    SciTech Connect (OSTI)

    Antoni, V.; Agostinetti, P.; Brombin, M.; Cervaro, V.; Delogu, R.; Fasolo, D.; Franchin, L.; Ghiraldelli, R.; Molon, F.; Pasqualotto, R.; Serianni, G. Tollin, M.; Veltri, P.; De Muri, M.; Ikeda, K.; Kisaki, M.; Nakano, H.; Takeiri, Y.; Tsumori, K.; Muraro, A.

    2015-04-08

    In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with the aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.

  13. Generalized Lawson Criteria for Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Tipton, Robert E.

    2015-08-27

    The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented which allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.

  14. Enhanced ignition for I. C. engines with premixed charge

    SciTech Connect (OSTI)

    Dale, J.D.; Oppenheim, A.K.

    1980-10-01

    The development of lean charge, fast burn engines depends crucially on enhanced ignition, since one can obtain thereby proper means for increasing the rate of burn in mixtures characterized notoriously by low normal burning speeds. Enhanced ignition involves a wide dispersion of its sources so that combustion is carried out at as many sites throughout the charge as possible. Upon this premise, various ignition systems for I.C. engines, operating with premixed charge, are reviewed. The systems are grouped within the following categories: (1) high energy spark plugs; (2) plasma jet igniters; (3) photochemical, laser, and microwave ignition concepts; (4) torch cells; (5) divided chamber stratified charge engines; (6) flame jet igniters; (7) combustion jet ignition concepts; (8) EGR ignition system. The first three derive the power from electrical energy, the rest are powered by exothermic chemical reactions at a significantly lower, practically negligible, fuel consumption. The concept of staging the processes of initiation and propagation of combustion is emphasized. Relative positions of various ignition systems are expressed on the plane of relative energies and relative volumes. In principle, ignition systems for engines operating with premixed charge lie on the half-plane of relative energies below one, between 10/sup -5/ for standard spark plugs to 10/sup -1/ for divided chamber stratified charge engines, while their relative volumes extend from 0 for spark igniters to 0.2 for stratified charge engines. This suggests that proper compartmentization of the combustion process may lead to significant improvements in both pollution emissions from the cylinder and specific fuel consumption of I.C. engines.

  15. Low emissions compression ignited engine technology

    DOE Patents [OSTI]

    Coleman, Gerald N.; Kilkenny, Jonathan P.; Fluga, Eric C.; Duffy, Kevin P.

    2007-04-03

    A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

  16. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  17. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  18. Geek-Up[10.08.10]-- Laser Systems, Soybean Root Hair Experiments and the Electron Freeway

    Broader source: Energy.gov [DOE]

    The National Ignition Facility (NIF) completes its first integrated ignition experiment – using a 192-beam laser system, Pacific Northwest Lab scientists study soybean root hairs and their response to changing climate conditions, and scientists at the Environmental Molecular Science Laboratory (EMSL) develop an electron roadmap -- all in this week's Geek-Up.

  19. Recent progress on the Compact Ignition Tokamak (CIT)

    SciTech Connect (OSTI)

    Ignat, D.W.

    1987-01-01

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule.

  20. PBXN-9 Ignition Kinetics and Deflagration Rates

    SciTech Connect (OSTI)

    Glascoe, E; Maienschein, J; Burnham, A; Koerner, J; Hsu, P; Wemhoff, A

    2008-04-24

    The ignition kinetics and deflagration rates of PBXN-9 were measured using specially designed instruments at LLNL and compared with previous work on similar HMX based materials. Ignition kinetics were measured based on the One Dimensional Time-to-Explosion combined with ALE3D modeling. Results of these experiments indicate that PBXN-9 behaves much like other HMX based materials (i.e. LX-04, LX-07, LX-10 and PBX-9501) and the dominant factor in these experiments is the type of explosive, not the type of binder/plasticizer. In contrast, the deflagration behavior of PBXN-9 is quite different from similar high weight percent HMX based materials (i.e LX-10, LX-07 and PBX-9501). PBXN-9 burns in a laminar manner over the full pressure range studied (0-310 MPa) unlike LX-10, LX-07, and PBX-9501. The difference in deflagration behavior is attributed to the nature of the binder/plasticizer alone or in conjunction with the volume of binder present in PBXN-9.