National Library of Energy BETA

Sample records for ignition engines cxs

  1. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOE Patents [OSTI]

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  2. Fuel quantity modulation in pilot ignited engines

    DOE Patents [OSTI]

    May, Andrew

    2006-05-16

    An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.

  3. Advanced CFD Models for High Efficiency Compression Ignition Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CFD Models for High Efficiency Compression Ignition Engines Advanced CFD Models for High Efficiency Compression Ignition Engines Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion. PDF icon p-19_raja.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

  4. High Fidelity Modeling of Premixed Charge Compression Ignition Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fidelity Modeling of Premixed Charge Compression Ignition Engines High Fidelity Modeling of Premixed Charge Compression Ignition Engines Most accurate and detailed chemical kinetic models for fuels of practical interest to engine manufacturers and fuels developers are applied for high fidelity engine analysis of premixed charge compression ignition engines. PDF icon deer08_aceves.pdf More Documents & Publications Numerical Modeling of HCCI Combustion Modeling of high

  5. EBDI® - Application of a High BMEP Downsized Spark Ignited Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EBDI® - Application of a High BMEP Downsized Spark Ignited Engine EBDI® - Application of a High BMEP Downsized Spark Ignited Engine Application of a High BMEP Downsized Spark Ignited Engine PDF icon deer09_beazley.pdf More Documents & Publications Fuel-Induced System Responses The Role Unconventional Fuels May Play in Altering Exhaust Conditions from Conventional and Low Temperature Modes of Combustion Effect of Compression Ratio and Piston Geometry on RCCI load

  6. Stoichiometric Compression Ignition (SCI) Engine Concept | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Stoichiometric Compression Ignition (SCI) Engine Concept Stoichiometric Compression Ignition (SCI) Engine Concept Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_winsor.pdf More Documents & Publications An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy

  7. Low emissions compression ignited engine technology

    DOE Patents [OSTI]

    Coleman, Gerald N. (Dunlap, IL); Kilkenny, Jonathan P. (Peoria, IL); Fluga, Eric C. (Dunlap, IL); Duffy, Kevin P. (East Peoria, IL)

    2007-04-03

    A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

  8. Enhanced ignition for I. C. engines with premixed gases

    SciTech Connect (OSTI)

    Dale, J.D.; Oppenheim, A.K.

    1981-01-01

    The development of lean charge, fast burn engines depends crucially on enhanced ignition. Enhanced ignition involves not only high energies and long duration of ignition, but also a wide dispersion of its sources, so that combustion is carried out at as many sites throughout the charge as possible. Upon this premise, various ignition systems for I.C. engines, operating with premixed charge, are reviewed. The systems are grouped as follows: high energy spark plugs; plasma jet igniters; photochemical, laser, and microwave ignition concepts; torch cells; divided chamber stratified charge engines; flame jet igniters; combustion jet ignition concepts; EGR ignition system. The first three derive the power from electrical energy, the rest are powered by exothermic chemical reactions. The review emphasizes the concept of staging the processes of initiation and propagation of combustion. Relative positions of various ignition systems are expressed on the plane of relative energies (the ratio of energy consumed by the ignition system, or contained in a pre-chamber, to that of the compressed charge in the main chamber) and relative volumes (the ratio of the volume of the pre-chamber to that of the compressed charge). In principle, ignition systems for engines operating with premixed charge lie on the half-plane of relative energies below one, between 10/sup -5/ for standard spark plugs to 10/sup -1/ for divided chamber stratified charge engines, while their relative volumes extend from 0 for spark igniters to 0.2 for stratified charge engines. This suggests that proper compartmentization of the combustion process may lead to significant improvements in both pollution emissions from the cylinder and specific fuel consumption of I.C. engines.

  9. Distributed ignition method and apparatus for a combustion engine

    DOE Patents [OSTI]

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  10. Enhanced ignition for I. C. engines with premixed charge

    SciTech Connect (OSTI)

    Dale, J.D.; Oppenheim, A.K.

    1980-10-01

    The development of lean charge, fast burn engines depends crucially on enhanced ignition, since one can obtain thereby proper means for increasing the rate of burn in mixtures characterized notoriously by low normal burning speeds. Enhanced ignition involves a wide dispersion of its sources so that combustion is carried out at as many sites throughout the charge as possible. Upon this premise, various ignition systems for I.C. engines, operating with premixed charge, are reviewed. The systems are grouped within the following categories: (1) high energy spark plugs; (2) plasma jet igniters; (3) photochemical, laser, and microwave ignition concepts; (4) torch cells; (5) divided chamber stratified charge engines; (6) flame jet igniters; (7) combustion jet ignition concepts; (8) EGR ignition system. The first three derive the power from electrical energy, the rest are powered by exothermic chemical reactions at a significantly lower, practically negligible, fuel consumption. The concept of staging the processes of initiation and propagation of combustion is emphasized. Relative positions of various ignition systems are expressed on the plane of relative energies and relative volumes. In principle, ignition systems for engines operating with premixed charge lie on the half-plane of relative energies below one, between 10/sup -5/ for standard spark plugs to 10/sup -1/ for divided chamber stratified charge engines, while their relative volumes extend from 0 for spark igniters to 0.2 for stratified charge engines. This suggests that proper compartmentization of the combustion process may lead to significant improvements in both pollution emissions from the cylinder and specific fuel consumption of I.C. engines.

  11. Variable valve timing in a homogenous charge compression ignition engine

    DOE Patents [OSTI]

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  12. Methanol with dimethyl ether ignition promotor as fuel for compression ignition engines

    SciTech Connect (OSTI)

    Brook, D.L.; Cipolat, D.; Rallis, C.J.

    1984-08-01

    Reduction of the world dependence upon crude oil necessitates the use of long term alternative fuels for internal combustion engines. Alcohols appear to offer a solution as in the short term they can be manufactured from natural gas and coal, while ultimately they may be produced from agricultural products. A fair measure of success has been achieved in using alcohols in spark ignition engines. However the more widely used compression ignition engines cannot utilize unmodified pure alcohols. The current techniques for using alcohol fuels in compression ignition engines all have a number of shortcomings. This paper describes a novel technique where an ignition promotor, dimethyl ether (DME), is used to increase the cetane rating of methanol. The systems particular advantage is that the DME can be catalyzed from the methanol base fuel, in situ. This fuel system matches the performance characteristics of diesel oil fuel.

  13. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  14. High-Efficiency Clean Combustion Design for Compression Ignition Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_potter.pdf More Documents & Publications Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Sources and

  15. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    SciTech Connect (OSTI)

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  16. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  17. Stratified-charge glow plug ignition engine experiments. Topical report

    SciTech Connect (OSTI)

    Thring, R.H.; Leet, J.A.

    1991-05-01

    An investigation was conducted to study the feasibility of operating a natural gas two-stroke engine using glow plug ignition with very lean mixtures. The term Stratified-Charge Glow Plus Ignition (SCGI) was coined to describe the engine. A JLO DL 365 single-cylinder, two-stroke, diesel engine was converted first to a natural gas fueled spark-ignited engine for the baseline tests, and then to the SCGI engine. The engine was successfully run, but was found to be sensitive to various conditions such as the glow plug temperature. The engine ran very lean, to an equivalence ratio of 0.33, offering the potential of good fuel economy and low NOx emissions. Numerous photographs, diagrams, and charts are included.

  18. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOE Patents [OSTI]

    Flowers, Daniel L. (San Leandro, CA)

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  19. High load operation in a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Liechty, Michael P. (Chillicothe, IL); Hardy, William L. (Peoria, IL); Rodman, Anthony (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL)

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  20. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  1. Dynamic control of a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P. (Metamora, IL); Mehresh, Parag (Peoria, IL); Schuh, David (Peoria, IL); Kieser, Andrew J. (Morton, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL)

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  2. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect (OSTI)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business

  3. Pilot fuel ignited stratified charge rotary combustion engine and fuel injector therefor

    SciTech Connect (OSTI)

    Loyd, R. W.

    1980-02-12

    For a pilot fuel ignited stratified charge rotary, internal combustion engine, the fuel injection system and a fuel injector therefor comprises a fuel injector having plural discharge ports with at least one of the discharge ports located to emit a ''pilot'' fuel charge (relatively rich fuel-air mixture) into a passage in the engine housing, which passage communicates with the engine combustion chambers. An ignition element is located in the passage to ignite the ''pilot'' fuel (a relatively rich fuel-air mixture) flowing through the passage. At least one other discharge port of the fuel injector is in substantially direct communication with the combustion chambers of the engine to emit a main fuel charge into the latter. The ignited ''pilot'' fuelair mixture, when ignited, flashes into the combustion chambers to ignite the main, relatively lean, fuel-air mixture which is in the combustion chambers.

  4. Fast Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast Ignition Researchers Study Fast Ignition University of California at San Diego researchers participate in experiments on the Titan laser at LLNL's Jupiter Laser Facility to study fast ignition. The approach being taken by the National Ignition Facility to achieve thermonuclear ignition and burn is called the "central hot spot" scenario. This technique relies on simultaneous compression and ignition of a spherical fuel capsule in an implosion, roughly like in a diesel engine (see

  5. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    SciTech Connect (OSTI)

    Taylor, J.; Li, H.; Neill, S.

    2006-08-01

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  6. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect (OSTI)

    2011-01-31

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well-to-wheels analysis of the energy flows in a mobile vehicle system and a 2nd Law thermodynamic analysis of the engine system were also completed under this program.

  7. Homogenous charge compression ignition engine having a cylinder including a high compression space

    DOE Patents [OSTI]

    Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.

    2003-12-30

    The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.

  8. Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation

    DOE Patents [OSTI]

    Dec, John E. (Livermore, CA); Sjoberg, Carl-Magnus G. (Livermore, CA)

    2006-10-31

    A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

  9. Method for operating a spark-ignition, direct-injection internal combustion engine

    DOE Patents [OSTI]

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  10. Extending operating range of a homogeneous charge compression ignition engine via cylinder deactivation

    DOE Patents [OSTI]

    Hergart, Carl-Anders; Hardy, William L.; Duffy, Kevin P.; Liechty, Michael P.

    2008-05-27

    An HCCI engine has the ability to operate over a large load range by utilizing a lower cetane distillate diesel fuel to increase ignition delay. This permits more stable operation at high loads by avoidance of premature combustion before top dead center. During low load conditions, a portion of the engines cylinders are deactivated so that the remaining cylinders can operate at a pseudo higher load while the overall engine exhibits behavior typical of a relatively low load.

  11. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOE Patents [OSTI]

    Clarke, John M. (Chillicothe, IL)

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  12. Analysis of Homogeneous Charge Compression Ignition (HCCI) Engines for Cogeneration Applications

    SciTech Connect (OSTI)

    Aceves, S; Martinez-Frias, J; Reistad, G

    2004-04-30

    This paper presents an evaluation of the applicability of Homogeneous Charge Compression Ignition Engines (HCCI) for small-scale cogeneration (less than 1 MWe) in comparison to five previously analyzed prime movers. The five comparator prime movers include stoichiometric spark-ignited (SI) engines, lean burn SI engines, diesel engines, microturbines and fuel cells. The investigated option, HCCI engines, is a relatively new type of engine that has some fundamental differences with respect to other prime movers. Here, the prime movers are compared by calculating electric and heating efficiency, fuel consumption, nitrogen oxide (NOx) emissions and capital and fuel cost. Two cases are analyzed. In Case 1, the cogeneration facility requires combined power and heating. In Case 2, the requirement is for power and chilling. The results show that the HCCI engines closely approach the very high fuel utilization efficiency of diesel engines without the high emissions of NOx and the expensive diesel fuel. HCCI engines offer a new alternative for cogeneration that provides a unique combination of low cost, high efficiency, low emissions and flexibility in operating temperatures that can be optimally tuned for cogeneration systems. HCCI engines are the most efficient technology that meets the oncoming 2007 CARB NOx standards for cogeneration engines. The HCCI engine appears to be a good option for cogeneration systems and merits more detailed analysis and experimental demonstration.

  13. FIREBALL: Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    SciTech Connect (OSTI)

    Martin, Adam K.; Eskridge, Richard H.; Lee, Michael H.; Fimognari, Peter J.

    2006-01-20

    Thermo-nuclear fusion may be the key to a high Isp, high specific power propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the Orion concept, is described. A dense FRC plasmoid is accelerated to high velocity (in excess of 500 km/s) and is compressed into a detached liner (pulse unit). The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion burn in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by a pusher-plate, as in the classic Orion concept. However with this concept, the vehicle does not carry a magazine of autonomous pulse-units. By accelerating a second, heavier FRC, which acts as a piston, right behind the first one, the velocity required to initiate the fusion burn is greatly reduced.

  14. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM-PHASE I

    SciTech Connect (OSTI)

    Ted Bestor

    2003-03-04

    This report documents the first year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase I goals and objectives were met. We intend to proceed with the Phase II research plan, as set forth by the applicable Research Management Plan. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase I were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. Initial testing results showed: (1) Brake specific fuel consumption of natural gas was improved from standard spark ignition across the map, 1% at full load and 5% at 70% load. (2) 0% misfires for all points on micropilot ignition. Fuel savings were most likely due to this percent misfire improvement. (3) THC (Total Hydrocarbon) emissions were improved significantly at light load, 38% at 70% load. (4) VOC (Volatile Organic Compounds) emissions were improved above 80% load. (5) Coefficient of Variance for the IMEP (Indicated Mean Effective Pressure) was significantly less at lower loads, 76% less at 70%. These preliminary results will be substantiated and enhanced during Phase II of the Micropilot Ignition program.

  15. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  16. Effects of Ignition and Injection Perturbation under Lean and Dilute GDI Engine Operation

    SciTech Connect (OSTI)

    Wallner, Thomas; Kaul, Brian C; Sevik, James; Scarcelli, Riccardo; Wagner, Robert M

    2015-01-01

    Turbocharged gasoline direct injection (GDI) engines are quickly becoming more prominent in light-duty automotive applications because of their potential improvements in efficiency and fuel economy. While EGR dilute and lean operation serve as potential pathways to further improve efficiencies and emissions in GDI engines, they also pose challenges for stable engine operation. Tests were performed on a single-cylinder research engine that is representative of current automotive-style GDI engines. Baseline cases were performed under steady-state operating conditions where combustion phasing and dilution levels were varied to determine the effects on indicated efficiency and combustion stability. Sensitivity studies were then carried out by introducing binary low-high perturbation of spark timing and injection duration on a cycle-by-cycle basis under EGR dilute and lean operation to determine dominant feedback mechanisms. Ignition perturbation was phased early/late of MBT timing, and injection perturbation was set fuel rich/lean of the given air-to-fuel ratio. COVIMEP was used to define acceptable operation limits when comparing different perturbation cases. Overall sensitivity data shows COVIMEP is more sensitive to injection perturbation over ignition perturbation. This is because of the greater effect injection perturbation has on combustion phasing, ignition delay, and combustion duration.

  17. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM

    SciTech Connect (OSTI)

    Ted Bestor

    2004-06-01

    This report documents the second year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase II goals and objectives were met. We intend to proceed with the Phase III research plan, as set forth by the applicable Research Management Plan. The objective for Phase II was to further develop and optimize the micropilot ignition system for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system to demonstrate the technology's readiness for the field demonstration phase. In all, there were twelve (12) tasks defined and executed to support objectives in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase II were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. Modifications to existing engine components were kept to a minimum. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The optimized four-cylinder system data demonstrated significant progress compared to Phase I results, as well as traditional spark ignition systems. An extensive testing program at the EECL using the GMV-4 test engine demonstrated that: (1) In general, the engine operated more stable fewer misfires and partial combustion events when using the 3-hole injectors compared to the 5-hole injectors used in Phase I. (2) The engine had, in general, a wider range of operation with the 3-hole injectors. Minimum operational boost levels were approximately 5''Hg lower and the minimum pilot quantity that the engine would operate on was roughly cut in half. (3) A successful concept demonstration of engine lube oil pilot injection was performed where the minimum operational boost was reduced by another 5''Hg to a boost level of 3''Hg; this is, depending on altitude, in the range of boost levels of many blower and piston scavenged low BMEP engines. (4) Micropilot ignition compares very favorably to other ignitions systems. The performance of micropilot ignition with mechanical gas admission valves is very similar to the performance of precombustion chamber ignition with high pressure fuel injection. Compared to spark ignition with mechanical gas admission valves the lean limit of operation is extended by about 5''Hg. These laboratory results will be enhanced, demonstrated and commercialized by others, with management and support from CSU, during Phase III of the Micropilot Ignition program.

  18. New Methodologies for Analysis of Premixed Charge Compression Ignition Engines

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM -- PHASE III

    SciTech Connect (OSTI)

    Scott Chase; Daniel Olsen; Ted Bestor

    2005-03-01

    This report documents the third year's effort towards a 3-year program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. Two earlier phases of development precede this report. The objective for Phase I was to demonstrate the feasibility of retrofit micropilot ignition (RMI) systems for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system for an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Installation efforts at Window Rock were completed towards the end of the budget period, which did not leave sufficient time to complete the durability testing. These efforts are ongoing, with funding provided by El Paso Pipeline Group, and the results will be documented in a report. Commercialization of the retrofit micropilot ignition (RMI) technology is awaiting a ''market pull'', which is expected to materialize as the results of the field demonstration become known and accepted. The Implementation Team, comprised of Woodward Governor Company, Enginuity LLC, Hoerbiger Corporation of America, and DigiCon Inc., has direct experience with the technology development and implementation, and stands ready to promote and commercialize the RMI system.

  20. A University Consortium on Homogeneous Charge Compression Ignition Engine Research

    SciTech Connect (OSTI)

    Assanis, Dennis; Atreya, Arvind; Bowman, Craig; Chen, Jyh-Yuan; Cheng, Wai; Davidson, David; Dibble, Robert; Edwards, Chris; Filipi, Zoran; Golden, David; Green, William; Hanson, Ronald; Hedrick, J Karl; Heywood, John; Im, Hong; Lavoie, George; Sick, Volker; Wooldridge, Margaret

    2007-03-31

    Over the course of this four year project, the consortium team members from UM, MIT, Stanford, and Berkeley along with contributors from Sandia National Labs and LLNL, have produced a wide range of results on gasoline HCCI control and implementation. The work spanned a wide range of activities including engine experiments, fundamental chemical kinetics experiments, and an array of analytical modeling techniques and simulations. Throughout the project a collaborative approach has produced a many significant new insights into HCCI engines and their behavior while at the same time we achieved our key consortium goal: to develop workable strategies for gasoline HCCI control and implementation. The major accomplishments in each task are summarized, followed by detailed discussion.

  1. Performance and emissions characteristics of alternative fuels in spark ignition engines

    SciTech Connect (OSTI)

    Swain, M.R.; Maxwell, R.L.; Swain, M.N.; Bedsworth, K.; Adt, R.R. Jr.; Pappas, J.M.

    1984-01-01

    A formal ongoing program to characterize the performance and exhaust characteristics of automotive-type powerplants fueled by conventional and alternative fuels is reported. This report contains the information obtained during the past three years when four alternative fuels and two baseline fuels were evaluated in three engines. The four alternative fuels were a simulated gasoline made to represent coal derived gasoline, methyl aryl ethers blended at the 10% level in an unleaded gasoline, gasoline made from methanol, and a blend of Indolene plus methanol and higher alcohols. The two baseline fuels were, Indolene and Gulf unleaded regular gasoline. The engines tested were a pre-mixed carbureted SI (spark ignition) engine, a carbureted three-valve stratified-charge SI engine and a pre-mixed carbureted SI engine with a closed-loop three-way catalyst emission control system.

  2. Compression ignition engine having fuel system for non-sooting combustion and method

    DOE Patents [OSTI]

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  3. Lean-burn hydrogen spark-ignited engines: the mechanical equivalent to the fuel cell

    SciTech Connect (OSTI)

    Aceves, S.M.; Smith, J.R.

    1996-10-01

    Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios, so that NO[sub x] emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency. In this paper, a simplified engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many 1345 experimental points obtained in a recent evaluation of a hydrogen research engine. The experimental data are used to adjust the empirical constants in the heat release rate and heat transfer correlation. The adjusted engine model predicts pressure traces, indicated efficiency and NO,, emissions with good accuracy over the range of speed, equivalence ratio and manifold pressure experimentally covered.

  4. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    SciTech Connect (OSTI)

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  5. Methanol as a fuel for a lean turbocharged spark ignition engine

    SciTech Connect (OSTI)

    Pannone, G.M.; Johnson, R.T.

    1989-01-01

    Lean turbocharged operation with methanol was characterized using a single-cylinder spark, ignition engine. Efficiency, exhaust emissions, and combustion properties were measured over a range of air/fuel ratios at two naturally-aspirated and three turbocharged conditions. When compared to stoichiometric, naturally-aspirated operation, the lean turbocharged conditions improved efficiency while reducing carbon monoxide and oxides of nitrogen emissions. However, unburned fuel and aldehyde emissions increased. If used in conjunction with an oxidizing catalyst and appropriate feedback controls, lean turbocharged operation has the potential of improving efficiency and exhaust emissions performance over a stoichiometric, three-way catalyst system.

  6. Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation

    SciTech Connect (OSTI)

    Daw, C Stuart; FINNEY, Charles E A

    2011-01-01

    We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). High EGR is important for increasing fuel efficiency and implementing advanced low-emission combustion modes such as homogenous charge compression ignition (HCCI). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR. We also explain why it might be helpful to deliberately stratify the fuel in the pre-spark gas mixture. It might be possible to extend the simple approach used in this model to other chemical reaction systems with spatial inhomogeneity.

  7. Detailed Characterization of Particulates Emitted by Pre-Commercial Single-Cylinder Gasoline Compression Ignition Engine

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Reitz, Paul; Stewart, Mark L.; Imre, D.; Loeper, Paul; Adams, Cory; Andrie, Michael; Rothamer, David; Foster, David E.; Narayanaswamy, Kushal; Najt, Paul M.; Solomon, Arun S.

    2014-08-01

    Gasoline Compression Ignition (GCI) engines have the potential to achieve high fuel efficiency and to significantly reduce both NOx and particulate matter (PM) emissions by operating under dilute partially-premixed conditions. This low temperature combustion strategy is dependent upon direct-injection of gasoline during the compression stroke and potentially near top dead center (TDC). The timing and duration of the in-cylinder injections can be tailored based on speed and load to create optimized conditions that result in a stable combustion. We present the results of advanced aerosol analysis methods that have been used for detailed real-time characterization of PM emitted from a single-cylinder GCI engine operated at different speed, load, timing, and number and duration of near-TDC fuel injections. PM characterization included 28 measurements of size and composition of individual particles sampled directly from the exhaust and after mass and/or mobility classification. We use these data to calculate particle effective density, fractal dimension, dynamic shape factors in free-molecular and transition flow regimes, average diameter of primary spherules, number of spherules, and void fraction of soot agglomerates.

  8. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect (OSTI)

    Srinivasan, K. K.; Krishnan, S. R.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas???????¢????????????????air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed ???????¢????????????????relative combustion phasing???????¢???????????????). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20???????????????° to 60???????????????°BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  9. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  10. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

  11. Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels

    SciTech Connect (OSTI)

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-10-05

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (Ω pilot ∼ 0.2-0.6 and Ω overall ∼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant Ω pilot (> 0.5), increasing Ω overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Ω overall (at constant Ω pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  12. A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition (DISI) engine.

    SciTech Connect (OSTI)

    Wallner, T.; Miers, S. A.; McConnell, S.

    2009-05-01

    This study was designed to evaluate a 'what if' scenario in terms of using butanol as an oxygenate in place of ethanol in an engine calibrated for gasoline operation. No changes to the stock engine calibration were performed for this study. Combustion analysis, efficiency, and emissions of pure gasoline, 10% ethanol, and 10% butanol blends in a modern direct-injection four-cylinder spark-ignition engine were analyzed. Data were taken at engine speeds of 1000 rpm up to 4000 rpm with load varying from 0 N m (idle) to 150 N m. Relatively minor differences existed between the three fuels for the combustion characteristics such as heat release rate, 50% mass fraction burned, and coefficient of variation in indicated mean effective pressure at low and medium engine loads. However at high engine loads the reduced knock resistance of the butanol blend forced the engine control unit to retard the ignition timing substantially, compared with the gasoline baseline and, even more pronounced, compared with the ethanol blend. Brake specific volumetric fuel consumption, which represented a normalized volumetric fuel flow rate, was lowest for the gasoline baseline fuel due to the higher energy density. The 10% butanol blend had a lower volumetric fuel consumption compared with the ethanol blend, as expected, based on energy density differences. The results showed little difference in regulated emissions between 10% ethanol and 10% butanol. The ethanol blend produced the highest peak specific NO{sub x} due to the high octane rating of ethanol and effective antiknock characteristics. Overall, the ability of butanol to perform equally as well as ethanol from an emissions and combustion standpoint, with a decrease in fuel consumption, initially appears promising. Further experiments are planned to explore the full operating range of the engine and the potential benefits of higher blend ratios of butanol.

  13. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  14. Improvement of performance and emissions of a compression ignition methanol engine with dimethyl ether

    SciTech Connect (OSTI)

    Guo, J.; Chikahisa, Takemi; Murayama, Tadashi; Miyano, Masaharu

    1994-10-01

    Dimethyl ether (DME) has very good compression ignition characteristics and can be converted from methanol using a {gamma}-alumina catalyst. In this study a torch ignition chamber (TIC) head with TIC close to the center of the main combustion chamber was designed for the TIC method. The possibility of improvements in reducing the quantities of DME and emission were investigated by optimizing the TIC position, methanol injection timing, DME injection timing, and intake and exhaust throttling. It was found that the necessary amount of DME was greatly reduced when optimizing methanol and DME injection timings. 2 refs., 16 figs., 1 tab.

  15. Multi-zone modelling of partially premixed low-temperature combustion in pilot-ignited natural-gas engines

    SciTech Connect (OSTI)

    Krishnan, S. R.; Srinivasan, K. K.

    2010-06-29

    Detailed results from a multi-zone phenomenological simulation of partially premixed advanced-injection low-pilot-ignited natural-gas low-temperature combustion are presented with a focus on early injection timings (the beginning of (pilot) injection (BOI)) and very small diesel quantities (2-3 per cent of total fuel energy). Combining several aspects of diesel and spark ignition engine combustion models, the closed-cycle simulation accounted for diesel autoignition, diesel spray combustion, and natural-gas combustion by premixed turbulent flame propagation. The cylinder contents were divided into an unburned zone, several pilot fuel zones (or 'packets') that modelled diesel evaporation and ignition, a flame zone for natural-gas combustion, and a burned zone. The simulation predicted the onset of ignition, cylinder pressures, and heat release rate profiles satisfactorily over a wide range of BOIs (20-60???° before top dead centre (before TDC)) but especially well at early BOIs. Strong coupling was observed between pilot spray combustion in the packets and premixed turbulent combustion in the flame zone and, therefore, the number of ignition centres (packets) profoundly affected flame combustion. The highest local peak temperatures (greater than 2000 K) were observed in the packets, while the flame zone was much cooler (about 1650 K), indicating that pilot diesel spray combustion is probably the dominant source of engine-out emissions of nitrogen oxide (NO x). Further, the 60???° before TDC BOI yielded the lowest average peak packet temperatures (about 1720 K) compared with the 20???° before TDC BOI (about 2480 K) and 40???° before TDC BOI (about 2700 K). These trends support experimental NO x trends, which showed the lowest NO x emissions for the 60???°, 20???°, and 40???° before TDC BOIs in that order. Parametric studies showed that increasing the intake charge temperature, pilot quantity, and natural-gas equivalence ratio all led to higher peak heat release rates and hotter packets but the pilot quantity and intake temperature affected the potential for NO x formation to a greater extent.

  16. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect (OSTI)

    Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul M.; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition.

  17. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect (OSTI)

    Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition

  18. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

  19. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  20. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect (OSTI)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogens significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an analysis of test results indicates that hydrogen enhanced natural gas HCCI (versus neat natural gas HCCI at comparable stoichiometry) had the following characteristics: Substantially lower intake temperature needed for stable HCCI combustion Inconclusive impact on engine BMEP and power produced, Small reduction in the thermal efficiency of the engine, Moderate reduction in the unburned hydrocarbons in the exhaust, Slight increase in NOx emissions in the exhaust, Slight reduction in CO2 in the exhaust. Increased knocking at rich stoichiometry The major accomplishments and findings from the project can be summarized as follows: 1. A model was calibrated for accurately predicting heat release rate and peak pressures for HCCI combustion when operating on hydrogen and natural gas blends. 2. A single cylinder research engine was thoroughly mapped to compare performance and emissions for micro-pilot natural gas compression ignition, and HCCI combustion for neat natural gas versus blends of natural gas and hydrogen.

  1. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect (OSTI)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an analysis of test results indicates that hydrogen enhanced natural gas HCCI (versus neat natural gas HCCI at comparable stoichiometry) had the following characteristics: (1) Substantially lower intake temperature needed for stable HCCI combustion; (2) Inconclusive impact on engine BMEP and power produced; (3) Small reduction in the thermal efficiency of the engine; (4) Moderate reduction in the unburned hydrocarbons in the exhaust; (5) Slight increase in NOx emissions in the exhaust; (6) Slight reduction in CO2 in the exhaust; and (7) Increased knocking at rich stoichiometry. The major accomplishments and findings from the project can be summarized as follows: (1) A model was calibrated for accurately predicting heat release rate and peak pressures for HCCI combustion when operating on hydrogen and natural gas blends. (2) A single cylinder research engine was thoroughly mapped to compare performance and emissions for micro-pilot natural gas compression ignition, and HCCI combustion for neat natural gas versus blends of natural gas and hydrogen. (3) The benefits of using hydrogen to extend, up to a limit, the stable operating window for HCCI combustion of natural gas at higher intake pressures, leaner air to fuel ratios or lower inlet temperatures was documented.

  2. Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  3. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    SciTech Connect (OSTI)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions at full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.

  4. Active flow control for maximizing performance of spark ignited stratified charge engines. Final report

    SciTech Connect (OSTI)

    Fedewa, Andrew; Stuecken, Tom; Timm, Edward; Schock, Harold J.; Shih, Tom-I.P.; Koochesfahani, Manooch; Brereton, Giles

    2002-10-15

    Reducing the cycle-to-cycle variability present in stratified-charge engines is an important step in the process of increasing their efficiency. As a result of this cycle-to-cycle variability, fuel injection systems are calibrated to inject more fuel than necessary, in an attempt to ensure that the engines fire on every cycle. When the cycle-to-cycle variability is lowered, the variation of work per cycle is reduced and the lean operating limit decreases, resulting in increased fuel economy. In this study an active flow control device is used to excite the intake flow of an engine at various frequencies. The goal of this excitation is to control the way in which vortices shed off of the intake valve, thus lowering the cycle-to-cycle variability in the flow field. This method of controlling flow is investigated through the use of three engines. The results of this study show that the active flow control device did help to lower the cycle-to-cycle variability of the in-cylinder flow field; however, the reduction did not translate directly into improved engine performance.

  5. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect (OSTI)

    Matthias, Nick; Farron, Carrie; Foster, David E.; Andrie, Mike; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs) from an aerosol sample. One method is a Dekati Thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented for this project in an engine test cell built around a direct injection spark ignited (DISI) engine. The engine was designed for stoichiometric, homogeneous combustion. Direct injection is of particular interest for improved fuel efficiency but this comes with the production of a significant amount of (PM) and may therefore be subject to the proposed number based regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition. The first interesting observation is that PM number distributions, acquired using a TSI SMPS, have a large accumulation mode (30-294 nm) but a very small nuclei mode (8-30 nm). This is understood to represent a lack of condensation particles meaning that neither the exhaust conditions nor the sample handling conditions are conducive to condensation. This lack of nuclei mode does not, however, represent a lack of VOCs in the sample. It has been observed, using mass spectral analysis (limited to PM>50 nm), that PM from the DISI engine has approximately 40% organic content through varying operating conditions. This begs the question of how effective different sample handling methods are at removing these VOCs. For one specific operating condition, called Cold Start, the un-treated PM was 40% organic. The TD reduced this by 7% while the EvCh reduced it by 13%. For other operating conditions, PM treated for volatile removal actually exhibited an increase in organic fraction on the order of 5%. This addition appears to be sensitive to the gaseous hydrocarbon concentrations in the exhaust although a precise correlation has not yet been derived. It has been concluded that VOCs are tightly bound to the PM carbon core and thus are not effectively removed by either treatment method.

  6. Mechanisms of particulate matter formation in spark-ignition engines. 2: Effect of fuel, oil, and catalyst parameters

    SciTech Connect (OSTI)

    Kayes, D.; Hochgreb, S.

    1999-11-15

    A combined experimental and modeling effort was performed in order to understand how particulate matter (PM) is formed in spark-ignition (SI) internal combustion engines. Fuel type and fuel/air ratio strongly affect particle concentrations. PM emissions vary by up to 6 orders of magnitude between fuels at the same fuel/air ratio. Minimum PM concentrations are emitted at a global fuel/air ratio within 10% of stoichiometric, with the exact value depending on the particular fuel. Concentrations can increase by more than 3 orders of magnitude when the fuel/air ratio is either increased or decreased 30% from stoichiometric. Particles derived from oil consumption were found to be between 0 and 40% of the PM concentration for the oils used in the present experiments. Differences in PM emissions with and without the catalytic converter are not statistically significant. Particulate number and mass concentrations plus particle sizes are addressed in this paper, as is the correlation between PM and hydrocarbon (HC) emissions.

  7. Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines

    SciTech Connect (OSTI)

    Som, S.; Aggarwal, S.K.

    2010-06-15

    Injector flow dynamics and primary breakup processes are known to play a pivotal role in determining combustion and emissions in diesel engines. In the present study, we examine the effects of primary breakup modeling on the spray and combustion characteristics under diesel engine conditions. The commonly used KH model, which considers the aerodynamically induced breakup based on the Kelvin-Helmholtz instability, is modified to include the effects of cavitation and turbulence generated inside the injector. The KH model and the new (KH-ACT) model are extensively evaluated by performing 3-D time-dependent simulations with detailed chemistry under diesel engine conditions. Results indicate that the inclusion of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. Predictions are compared with measurements for non-evaporating and evaporating sprays, as well as with flame measurements. While both the models are able to reproduce the experimentally observed global spray and combustion characteristics, predictions using the KH-ACT model exhibit closer agreement with measurements in terms of liquid penetration, cone angle, spray axial velocity, and liquid mass distribution for non-evaporating sprays. Similarly, the KH-ACT model leads to better agreement with respect to the liquid length and vapor penetration distance for evaporating sprays, and with respect to the flame lift-off location for combusting sprays. The improved agreement is attributed to the ability of the new model to account for the effects of turbulence and cavitation generated inside the injector, which enhance the primary breakup. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. This flame structure is consistent with the Dec's model for diesel engine combustion (Dec, 1997), and well captured by a newly developed flame index based on the scalar product of CO and O{sub 2} mass fraction gradients. (author)

  8. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect (OSTI)

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  9. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    SciTech Connect (OSTI)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injection strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.

  10. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y; Sluder, Scott; Parks, II, James E; Wagner, Robert M

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  11. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    2016-01-14

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less

  12. Education Highlights: Gasoline Compression Ignition | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Education Highlights: Gasoline Compression Ignition Share Description Argonne intern Kendyl Partridge from Mississippi State University worked with Argonne mentor Steve Ciatti in studying gasoline compression ignition engines. This research will help engineers increase an engine's efficiency while reducing its environmental impact. Speakers Kendyl Partridge, Argonne National Laboratory Intern from Mississippi State University Duration 1:56 Topic Energy Energy efficiency Vehicles

  13. Probability density function treatment of turbulence/chemistry interactions during the ignition of a temperature-stratified mixture for application to HCCI engine modeling

    SciTech Connect (OSTI)

    Bisetti, Fabrizio; Chen, J.-Y.; Hawkes, Evatt R.; Chen, Jacqueline H.

    2008-12-15

    Homogeneous charge compression ignition (HCCI) engine technology promises to reduce NO{sub x} and soot emissions while achieving high thermal efficiency. Temperature and mixture stratification are regarded as effective means of controlling the start of combustion and reducing the abrupt pressure rise at high loads. Probability density function methods are currently being pursued as a viable approach to modeling the effects of turbulent mixing and mixture stratification on HCCI ignition. In this paper we present an assessment of the merits of three widely used mixing models in reproducing the moments of reactive scalars during the ignition of a lean hydrogen/air mixture ({phi}=0.1, p=41atm, and T=1070 K) under increasing temperature stratification and subject to decaying turbulence. The results from the solution of the evolution equation for a spatially homogeneous joint PDF of the reactive scalars are compared with available direct numerical simulation (DNS) data [E.R. Hawkes, R. Sankaran, P.P. Pebay, J.H. Chen, Combust. Flame 145 (1-2) (2006) 145-159]. The mixing models are found able to quantitatively reproduce the time history of the heat release rate, first and second moments of temperature, and hydroxyl radical mass fraction from the DNS results. Most importantly, the dependence of the heat release rate on the extent of the initial temperature stratification in the charge is also well captured. (author)

  14. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon; Wagner, Robert M

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  15. Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects

    SciTech Connect (OSTI)

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-12

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  16. Ignition Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Experiments The goal of many NIF experiments is to create a self-sustaining "burn" of fusion fuel (the hydrogen isotopes deuterium and tritium) that produces as much or more energy than the energy required to initiate the fusion reaction-an event called ignition. In moving closer to achieving ignition, NIF researchers are fulfilling the vision of early laser pioneers who conceived of using the x rays generated by a powerful, brief laser pulse to fuse hydrogen isotopes and

  17. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less

  18. Ignition system monitoring assembly

    SciTech Connect (OSTI)

    Brushwood, John Samuel

    2003-11-04

    An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.

  19. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    SciTech Connect (OSTI)

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

  20. Effects of Ignition Quality and Fuel Composition on Critical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

  1. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 1. Engine Load Range and Downsize Downspeed Opportunity

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2013-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to 87 AKI, up to 20 bar IMEPg (indicated mean effective pressure gross) at = 1. EGR provided thermodynamic advantages and was a key enabler for increasing engine efficiency for all fuel types. However, with E30, EGR was less useful for knock mitigation than gasoline or IB24. Torque densities with E30 with 15% EGR at = 1 operation were similar or better than a modern EURO IV calibration turbo-diesel engine. The results of the present study suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan. For example, for a midsize sedan at a 65 miles/h cruise, an estimated fuel consumption of 43.9 miles per gallon (MPG) (engine out 102 g-CO2/km) could be achieved with similar reserve power to a 2.0 L engine with 87AKI (38.6 MPG, engine out 135 g-CO2/km). Data suggest that, with midlevel alcohol gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  2. homogeneous charge compression ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    homogeneous charge compression ignition - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  3. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study has been carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from Syncrude. The findings from the search are presented and discussed in detail, conclusions reached and recommendations made.

  4. SULI Intern: Gasoline Compression Ignition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasoline Compression Ignition Share Argonne intern Kendyl Partridge from Mississippi State University worked with Argonne mentor Steve Ciatti in studying gasoline compression ignition engines. This research will help engineers increase an engine's efficiency while reducing its environmental impact. Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel

  5. Education Highlights: Gasoline Compression Ignition | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Education Highlights: Gasoline Compression Ignition Share Description Argonne intern Kendyl Partridge from Mississippi State University worked with Argonne mentor Steve Ciatti of the Energy Systems division in studying gasoline compression ignition engines. This research will help engineers increase an engine's efficiency while reducing its environmental impact. Speakers Kendyl Partridge, Argonne National Laboratory Intern from Mississippi State University Duration 1:56 Topic

  6. Emissions and fuel economy of a vehicle with a spark-ignition, direct-injection engine : Mitsubishi Legnum GDI{trademark}.

    SciTech Connect (OSTI)

    Cole, R. L.; Poola, R. B.; Sekar, R.

    1999-04-08

    A 1997 Mitsubishi Legnum station wagon with a 150-hp, 1.8-L, spark-ignition, direct-injection (SIDI) engine was tested for emissions by using the FTP-75, HWFET, SC03, and US06 test cycles and four different fuels. The purpose of the tests was to obtain fuel-economy and emissions data on SIDI vehicles and to compare the measurements obtained with those of a port-fuel-injection (PFI) vehicle. The PFI vehicle chosen for the comparison was a 1995 Dodge Neon, which meets the Partnership for a New Generation of Vehicles (PNGV) emissions goals of nonmethane hydrocarbons (NMHC) less than 0.125 g/mi, carbon monoxide (CO) less than 1.7 g/mi, nitrogen oxides (NO{sub x} ) less than 0.2 g/mi, and particulate matter (PM) less than 0.01 g/mi. The Mitsubishi was manufactured for sale in Japan and was not certified to meet current US emissions regulations. Results show that the SIDI vehicle can provide up to 24% better fuel economy than the PFI vehicle does, with correspondingly lower greenhouse gas emissions. The SIDI vehicle as designed does not meet the PNGV goals for NMHC or NO{sub x} emissions, but it does meet the goal for CO emissions. Meeting the goal for PM emissions appears to be contingent upon using low-sulfur fuel and an oxidation catalyst. One reason for the difficulty in meeting the NMHC and NO{sub x} goals is the slow (200 s) warm-up of the catalyst. Catalyst warm-up time is primarily a matter of design. The SIDI engine produces more NMHC and NO{sub x} than the PFI engine does, which puts a greater burden on the catalyst to meet the emissions goals than is the case with the PFI engine. Oxidation of NMHC is aided by unconsumed oxygen in the exhaust when the SIDI engine operates in stratified-charge mode, but the same unconsumed oxygen inhibits chemical reduction of NO{sub x} . Thus, meeting the NO{sub x} emissions goal is likely to be the greatest challenge for the SIDI engine.

  7. Advanced CFD Models for High Efficiency Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems Advanced Combustion Modeling with STAR-CD using Transient ...

  8. Laser Ignition and Diagnostic Systems Delivered by Flexible Optical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (441 KB) Technology Marketing Summary Laser-based ignition systems based on state-of-the-art optical fibers and sophisticated new delivery strategies that provide both engine...

  9. Improving the Efficiency of Spark Ignited, Stoichiometric Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Spark Ignited, Stoichiometric Natural Gas Engines Improving the Efficiency of Spark Ignited, Stoichiometric Natural Gas Engines This work focused on using camless engine technology to improve the efficiency of a natural gas engine. Late intake close timing and cylinder deactivation were utilized to meet a peak BTE > 40%. PDF icon p-09_giordano.pdf More Documents & Publications Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins,

  10. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels, executive summary

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study was carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from syncrude. The findings from the search were presented and discussed in detail in the main report (Ricardo DP.81/539). In this executive summary, the conclusions and recommendations from the main report are presented.

  11. NATIONAL IGNITION FACILITY | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL IGNITION FACILITY American Fusion News Category: National Ignition Facility Link: NATIONAL IGNITION FACILITY

  12. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0???° BTDC to 10???° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  13. Advanced ignition and propulsion technology program

    SciTech Connect (OSTI)

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  14. A historical analysis of the co-evolution of gasoline octane number and spark-ignition engines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Splitter, Derek A.; Pawlowski, Alex E.; Wagner, Robert M.

    2016-01-01

    In this work, the authors reviewed engine, vehicle, and fuel data since 1925 to examine the historical and recent coupling of compression ratio and fuel antiknock properties (i.e., octane number) in the U.S. light-duty vehicle market. The analysis identified historical timeframes, trends, and illustrated how three factors: consumer preferences, technical capabilities, and regulatory legislation, affect personal mobility. Data showed that throughout history these three factors have a complex and time sensitive interplay. Long term trends in the data were identified where interaction and evolution between all three factors was observed. Specifically, transportation efficiency per unit power (gal/ton-mi/hp) was found tomore » be a good metric to integrate technical, societal, and regulatory effects into the evolutional pathway of personal mobility. From this framework, discussions of future evolutionary changes to personal mobility are also presented.« less

  15. National Ignition Facility & Photon Science Seven WonderS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 National Ignition Facility & Photon Science Seven WonderS the seven wonders of niF While construction of the football-stadium- sized National Ignition Facility was a marvel of engineering, NIF is also a tour de force of science and technology development. To complete NIF construction and comissioning and to put NIF on the path to ignition experiments, scientists, engineers, and technicians had to overcome a daunting array of challenges. Working closely with industrial partners, the NIF

  16. Laser ignition

    DOE Patents [OSTI]

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  17. Plasma jet ignition device

    DOE Patents [OSTI]

    McIlwain, Michael E.; Grant, Jonathan F.; Golenko, Zsolt; Wittstein, Alan D.

    1985-01-15

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  18. Laser preheat enhanced ignition

    DOE Patents [OSTI]

    Early, J.W.

    1999-03-02

    A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided. 11 figs.

  19. Particle Ignition and Char Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition and Char Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  20. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  1. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  2. High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel Reactivity Controlled Compression Ignition Combustion High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion An optimized dual-fuel PCCI concept, RCCI, is proposed. PDF icon deer10_reitz.pdf More Documents & Publications Effect of Compression Ratio and Piston Geometry on RCCI load limit Optimization of Advanced Diesel Engine Combustion Strategies Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI)

  3. COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion (ICF) Program is conducting experiments at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory with the goal of igniting a propagating...

  4. Low profile thermite igniter

    SciTech Connect (OSTI)

    Halcomb, Danny L.; Mohler, Jonathan H.

    1991-03-05

    A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  5. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect (OSTI)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  6. Gas-Fired Reciprocating Engines

    Broader source: Energy.gov [DOE]

    The reciprocating, or piston-driven, engine is a widespread and well-known technology. Also called internal combustion engines, reciprocating engines require fuel, air, compression, and a combustion source to function. Depending on the ignition source, they generally fall into two categories: (1) spark-ignited engines, typically fueled by gasoline or natural gas, and (2) compression-ignited engines, typically fueled by diesel oil fuel.

  7. National Ignition Facility & Photon Science What

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility & Photon Science What is NiF? the national ignition Facility: bringing star Power to earth The National Ignition Facility (NIF) is the world's largest and...

  8. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOE Patents [OSTI]

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  9. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and Evaluation Inertial Confinement Fusion ICF Facilities National Ignition ... leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. ...

  10. Heating National Ignition Facility, Realistic Financial Planning...

    Office of Environmental Management (EM)

    National Ignition Facility, Realistic Financial Planning & Rapid Modification Lessons Learned Report Apr 2010 Heating National Ignition Facility, Realistic Financial Planning &...

  11. Hydrocarbon fouling of SCR during Premixed Charge Compression Ignition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (PCCI) combustion | Department of Energy fouling of SCR during Premixed Charge Compression Ignition (PCCI) combustion Hydrocarbon fouling of SCR during Premixed Charge Compression Ignition (PCCI) combustion Analyzed the effects of higher hydrocarbon emissions from PCCI combustion on SCR catalysts in operating a light-duty 1.9-liter GM diesel engine in both PCCI and conventional combustion modes PDF icon deer11_parks.pdf More Documents & Publications Efficient Emissions Control for

  12. Characterization of Dual-Fuel Reactivity Controlled Compression Ignition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (RCCI) Using Hydrated Ethanol and Diesel Fuel | Department of Energy Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel This study uses numerical simulations to explore the use of wet ethanol as the low-reactivity fuel and diesel as the high-reactivity fuel for RCCI operation in a heavy-duty diesel engine. PDF icon

  13. Efficiency Considerations of Diesel Premixed Charge Compression Ignition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion | Department of Energy Efficiency Considerations of Diesel Premixed Charge Compression Ignition Combustion Efficiency Considerations of Diesel Premixed Charge Compression Ignition Combustion Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-06_jacobs.pdf More Documents & Publications Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion

  14. Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The US | Department of Energy Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers double digit fuel economy benefits, much lower cost than diesel or hybrid. PDF icon deer09_whitaker.pdf More Documents & Publications E85 Optimized Engine

  15. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014 Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler. Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the

  16. National Ignition Facility | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Ignition Facility Subscribe to RSS - National Ignition Facility National Ignition Facility Image: National Ignition Facility Summary of Assessment of Prospects for Inertial Fusion Energy Read more about Summary of Assessment of Prospects for Inertial Fusion Energy National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record Read more about National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record NATIONAL IGNITION FACILITY Read more about

  17. Burner ignition system

    DOE Patents [OSTI]

    Carignan, Forest J. (Bedford, MA)

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  18. Ignition dynamics of high explosives

    SciTech Connect (OSTI)

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.; Brewster, M.Q.

    1999-04-01

    The laser ignition of the explosives HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, C{sub 4}H{sub 8}N{sub 8}O{sub 8}), {delta}-phase HMX, PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), TATB (1,3,5-triamino-2,4,6-trinitrobenzene, C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502 has been conducted with the intent to compare the relative sensitivities of those explosives and to investigate the effect of beam profile, binder addition, and porosity. It has been found that there was little difference between a gaussian beam and a top hat profile on the laser ignition of HMX. The authors observe that the addition of binder in the amounts present in PBX 9501 resulted in longer ignition delays than that of HMX. In contrast to HMX, the addition of binder to TATB in PBX 9502 shows no measurable effect. Porosity effects were considered by comparing the ignition of granular HMX and pressed HMX pellets. Porosity appears to increase ignition delay due to an increased effective absorption scale and increased convective heat loss. This porosity effect also resulted in longer ignition delays for {delta}-phase HMX than for {beta}-phase HMX. In order to simulate ignition in voids or cracks, the standard ignition experiment was modified to include a NaCl window placed at variable distances above the sample surface. When ignition experiments were performed at 29 W/cm{sup 2} and 38 W/cm{sup 2} a critical gap distance was observed of 6 {+-} 0.4 mm below which ignition was severely inhibited. This result underscores the importance of gas phase processes in ignition and illustrates that conditions can exist where simple ignition criteria such as surface temperature is inadequate.

  19. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security maintaining the nuclear weapons stockpile As the largest, highest-energy laser ever built, the National Ignition Facility (NIF) can create conditions in the ...

  20. Fusion and Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science Fusion and Ignition What is Fusion? Fusion is the process that powers the sun and the stars. Fusion describes what happens when the nuclei of light atoms overcome the electrical resistance that keeps them apart and get close enough to activate the strong nuclear force that holds them together, or "fuse." When fused, they form a bigger nucleus; two elements combine to create a different element at the level of the nucleus. Making elements fuse requires an enormous amount of heat

  1. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  2. Laser spark distribution and ignition system

    DOE Patents [OSTI]

    Woodruff, Steven (Morgantown, WV); McIntyre, Dustin L. (Morgantown, WV)

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  3. Premix charge, compression ignition combustion system optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

  4. Ignite High Tech Startups | Open Energy Information

    Open Energy Info (EERE)

    Name: Ignite High Tech Startups Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Ignite High Tech...

  5. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 National Ignition Facility & Photon Science limitless energy the Promise of Limitless energy harnessing the energy of the sun and stars to meet the earth's energy needs has been a decades-long scientific and engineering quest. While a self-sustaining fusion burn has been achieved for brief periods under experimental conditions, the amount of energy that went into creating it was greater than the amount of energy it generated. There was no energy gain, which is essential if fusion energy is

  6. Shockwave Engine: Wave Disk Engine

    SciTech Connect (OSTI)

    2010-01-14

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engines pistons to pump and powers the car. MSUs engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engines rotors causing them to turn, which generates electricity. MSUs redesigned engine would be the size of a cooking pot and contain fewer moving partsreducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  7. Homogeneous Charge Compression Ignition (HCCI) R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homogeneous Charge Compression Ignition (HCCI) R&D Homogeneous Charge Compression Ignition (HCCI) R&D 2002 DEER Conference Presentation: Lawrence Livermore National Laboratory PDF icon 2002_deer_aceves.pdf More Documents & Publications Detailed Modeling of HCCI and PCCI combustion and Multi-cylinder HCCI Engine Control Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Modeling of HCCI and PCCI Combustion Processes

  8. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  9. Stratified charge internal combustion engine

    SciTech Connect (OSTI)

    Skopil, A.O.

    1991-01-01

    This patent describes an internal combustion engine. It comprises: a main cylinder, a main piston within the main cylinder, and means for delivering a combustible charge into the main cylinder; a smaller idle cylinder, and idle piston within the idle cylinder, and means for delivering a combustible charge into the idle cylinder; an ignition passageway leading from the idle cylinder to the main cylinder; and an ignition device within the ignition passageway operable to ignite a compressed charge discharged by the idle cylinder into the ignition passageway. The passageway being positioned to discharge the ignited compressed charge from the idle cylinder into the main cylinder to ignite the compressed charge within the main cylinder.

  10. Ignition of Aluminum Particles and Clouds

    SciTech Connect (OSTI)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  11. Final Scientific and Technical Report - Practical Fiber Delivered Laser Ignition Systems for Vehicles

    SciTech Connect (OSTI)

    Yalin, Azer

    2014-03-30

    Research has characterized advanced kagome fiber optics for their use in laser ignition systems. In comparison to past fibers used in laser ignition, these fibers have the important advantage of being relatively bend-insensitivity, so that they can be bent and coiled without degradation of output energy or beam quality. The results are very promising for practical systems. For pulse durations of ~12 ns, the fibers could deliver >~10 mJ pulses before damage onset. A study of pulse duration showed that by using longer pulse duration (~20 – 30 ns), it is possible to carry even higher pulse energy (by factor of ~2-3) which also provides future opportunities to implement longer duration sources. Beam quality measurements showed nearly single-mode output from the kagome fibers (i.e. M2 close to 1) which is the optimum possible value and, combined with their high pulse energy, shows the suitability of the fibers for laser ignition. Research has also demonstrated laser ignition of an engine including reliable (100%) ignition of a single-cylinder gasoline engine using the laser ignition system with bent and coiled kagome fiber. The COV of IMEP was <2% which is favorable for stable engine operation. These research results, along with the continued reduction in cost of laser sources, support our commercial development of practical laser ignition systems.

  12. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  13. National Ignition Facility (NIF): Under Pressure: Ramp-Compression...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record American Fusion News Category: National Ignition Facility Link: National Ignition Facility (NIF):...

  14. CX-007466: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Application of High Energy Ignition and Boosting/Mixing Technology in Spark Ignition Engines CX(s) Applied: B3.6 Date: 12/15/2011 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  15. CX-007467: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Application of High Energy Ignition and Boosting/Mixing Technology in Spark Ignition Engines CX(s) Applied: B3.6 Date: 12/15/2011 Location(s): Texas Offices(s): National Energy Technology Laboratory

  16. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Engineering Standards Manual, Master Specifications Index, Drafting Manual, Design Guides, and more. IHS Standards Expert login information Collections include ANSI,...

  17. IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Moses, E

    2009-06-22

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed and has high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments to be conducted by the academic community is planned for summer 2009. This paper summarizes the design, performance, and status of NIF, experimental plans for NIC, and will present a brief discussion of the unparalleled opportunities to explore frontier basic science that will be available on the NIF.

  18. SCB thermite igniter studies

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.; Wackerbarth, D.E.; Mohler, J.H.

    1996-12-31

    The authors report on recent studies comparing the ignition threshold of temperature cycled, SCB thermite devices with units that were not submitted to temperature cycling. Aluminum/copper-oxide thermite was pressed into units at two densities, 45% of theoretical maximum density (TMD) or 47% of TMD. Half of each of the density sets underwent three thermal cycles; each cycle consisted of 2 hours at 74 C and 2 hours at {minus}54 C, with a 5 minute maximum transfer time between temperatures. The temperature cycled units were brought to ambient temperature before the threshold testing. Both the density and the thermal cycling affected the all-fire voltage. Using a 5.34 {micro}F CDU (capacitor discharge unit) firing set, the all-fire voltage for the units that were not temperature cycled increased with density from 32.99 V (45% TMD) to 39.32 V (47% TMD). The all-fire voltages for the thermally cycled units were 34.42 V (45% TMD) and 58.1 V (47% TMD). They also report on no-fire levels at ambient temperature for two component designs; the 5 minute no-fire levels were greater than 1.2 A. Units were also subjected to tests in which 1 W of RF power was injected into the bridges at 10 MHz for 5 minutes. The units survived and fired normally afterwards. Finally, units were subjected to pin-to-pin electrostatic discharge (ESD) tests. None of the units fired upon application of the ESD pulse, and all of the tested units fired normally afterwards.

  19. Progress Toward Ignition on the National Ignition Facility

    SciTech Connect (OSTI)

    Kauffman, R L

    2011-10-17

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimization. The experimental Ignition Threshold Factor (ITFX) is a measure of the progress toward ignition. ITFX is analogous to the Lawson Criterion in Magnetic Fusion. Implosions have improved by over a factor of 50 since the first cryogenic layered experiments were done in September 2010. This increase is a measure of the progress made toward the ignition goal in the past year. Optimization experiments are planned in the coming year for continued improvement in implosion performance to achieve the ignition goal. In summary, NIF has made significant progress toward ignition in the 30 months since project completion. Diagnostics and all of the supporting equipment are in place for ignition experiments. The Ignition Campaign is under way as a national collaborative effort of all the National Nuclear Security Administration (NNSA) science laboratories as well as international partners.

  20. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    SciTech Connect (OSTI)

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  1. National Ignition Facility project acquisition plan

    SciTech Connect (OSTI)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

  2. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering /science-innovation/_assets/images/icon-science.jpg Engineering National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Engineering New type of laser to help defeat threats to U.S. Navy. LANL successfully tested a new high-current electron injector, a device that can be scaled up to produce the electrons needed to build a

  3. June 11, 1999: National Ignition Facility | Department of Energy

    Energy Savers [EERE]

    1, 1999: National Ignition Facility June 11, 1999: National Ignition Facility June 11, 1999: National Ignition Facility June 11, 1999 Secretary Richardson dedicates the National Ignition Facility target chamber at DOE's Lawrence Livermore National Laboratory.

  4. engineering

    National Nuclear Security Administration (NNSA)

    an award last month for his 3D printing innovation. It could revolutionize additive manufacturing.

    Lawrence Livermore Lab engineer Bryan Moran wasn't necessarily...

  5. Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Reduction over Transient Driving Cycles | Department of Energy Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles In conventional vehicles, most engine operating points over a UDDS driving cycle stay within PCCI operation limits but PCCI in HEVs is limited because of higher loads and many

  6. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  7. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  8. Hot surface ignition system control module with accelerated igniter warm-up test program

    SciTech Connect (OSTI)

    Brown, B.T.

    1986-10-07

    This patent describes a gas burner control system which consists of: a burner; an electrical resistance igniter for igniting the burner; valve means for controlling flow of gas to the burner; and a control module, including a microcomputer, for controlling operation of the igniter and the valve means, the microcomputer being programmed to provide a preselected igniter warm-up time period for enabling the igniter to attain a temperature sufficient to ignite gas, the microcomputer being further programmed to provide a test routine including a program for providing an accelerated igniter warm-up time period which is shorter than the preselected igniter warm-up time period but sufficiently long for enabling the igniter to attain at least the minimum temperature required to ignite gas, the program in the test routine being executed in response to a unique signal effected by the control module and a test device which is external from and detachably connected to the control module.

  9. Integral low-energy thermite igniter

    DOE Patents [OSTI]

    Gibson, A.; Haws, L.D.; Mohler, J.H.

    1983-05-13

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  10. Integral low-energy thermite igniter

    SciTech Connect (OSTI)

    Gibson, Albert; Haws, Lowell D.; Mohler, Jonathan H.

    1984-08-14

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  11. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect (OSTI)

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  12. High-voltage miniature igniter development

    SciTech Connect (OSTI)

    Willkens, C.A.; Axelson, S.R.; Bateman, L.S.; Croucher, D.D.

    1996-09-01

    In 1988, Norton introduced its line of low-voltage 12- and 24-V miniature igniters made from a patented ceramic/intermetallic material. These igniters demonstrated superior strength and speed in a compact low-wattage assembly for gas-fired ignition. High-voltage igniters are being developed to complete the family of igniters for gas-fired ignition. These igniters have extremely low power requirements in the range of 50--100 W, are designed to operate at line voltages of 120 V, and are leading to designs for operation up to 230 V. These were developed using compositional and dimensional changes to the low voltage igniters. The 120 V igniter has exceeded 200,000 cycles in life testing and has been submitted for agency approval. These igniters are also undergoing field testing in various demanding gas-fired appliances. The evolution of the low-voltage igniter into the high-voltage model, as well as performance and material development issues are discussed.

  13. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw America's energy blueprint is now. The challenges we face today are the most critical in decades-from the impact of energy use on global ecosystems to the difficulties of efficiently harnessing our natural resources. Because energy is fundamental to human welfare, we must develop sustainable systems that make clean,

  14. A photographic study of fuel spray ignition in a rapid compression machine

    SciTech Connect (OSTI)

    Solomon, A.S.P.

    1986-01-01

    The process of spark ignition of fuel sprays in a rapid compression machine was analyzed using high-speed schlieren photography and pressure-time data. The combustion chamber studied simulates in a two-dimensional sense the three-dimensional arrangement of the piston bowl, injector and spark plug in a typical direct-injection stratified-charge (DISC) engine. The test hardware included a flat-seat straight-hole injector, a high-energy ignition system and an extended-electrode spark plug. The influence of amount of fuel injected, ignition dwell period (time between start of injection and start of ignition), swirl rate and direction, and spark-plug electrode-tip location on the ignition process was examined. For the test conditions studied, excessive spray penetration and fuel impingement on the walls was observed. The ignition process was observed to be governed by the delayed formation, growth and transport of a flame kernel which spreads to complete the major portion of the burn only after the injection process has been completed. The factors found to influence the evolution of the flame kernel could be possible mechanisms for the high cyclic variability and high hydrocarbon emissions observed for DISC engines of the type simulated.

  15. Diagnostics for Fast Ignition Science

    SciTech Connect (OSTI)

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  16. National Ignition Facility & Photon Science What

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 National Ignition Facility & Photon Science What is NiF? the national ignition Facility: bringing star Power to earth The National Ignition Facility (NIF) is the world's largest and highest energy laser system. NIF is an essential experimental tool supporting the stockpile stewardship program of the u.s. department of energy's National Nuclear security Administration. Construction began in 1997, and NIF became operational in march 2009. during experiments, NIF's 192 intense laser beams are

  17. Sandia Energy - Particle Ignition and Char Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the top right shows a collection of streaks from injected particles as they ignite and burn while flowing upward. Figure 1. Schematic of Sandia's optical entrained flow reactor...

  18. Engine Valve Actuation For Combustion Enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  19. Engine valve actuation for combustion enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  20. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel ...

  1. Pyrotechnic ignition studies using a gun tunnel

    SciTech Connect (OSTI)

    Evans, N.A.

    1989-01-01

    A gun tunnel is being used to investigate the ignition characteristics of center-hole iron/potassium perchlorate thermal battery discs. Details are given of the construction, operation, and data reduction method for the gun tunnel. To simulate an igniter, this system can readily produce a pulse of hot argon at maximum pressures and temperatures up to P/sub max/ = 8 MPa and T/sub max/ = 4000K, respectively, with flow times of the order of 3 msec. For a single battery disc, a segment of the ignition boundary was found to lie in the region of T/sub max/ = 1200 to 1300K and 0.7 MPa < P/sub max/ < 2.0 MPa. The results also showed two types of ignition: prompt ignition, requiring an average delivered enthalpy /ovr /Delta/H//sub ig/ = 6 cal during an average flow time /ovr /Delta/t//sub ig/ = 0.7 msec, and delayed ignition, with /ovr /Delta/H//sub ig/ = 16 cal and /ovr /Delta/t//sub ig/ = 2.4 msec. In addition, near an ignition boundary, high speed motion photography showed the ignition delay increased to 6 msec with significant spatial non-uniformity. 1 ref., 6 figs.

  2. Physics of compact ignition tokamak designs

    SciTech Connect (OSTI)

    Singer, C.E.; Ku, L.P.; Bateman, G.; Seidl, F.; Sugihara, M.

    1986-03-01

    Models for predicting plasma performance in compact ignition experiments are constructed on the basis of theoretical and empirical constraints and data from tokamak experiments. Emphasis is placed on finding transport and confinement models which reproduce results of both ohmically and auxiliary heated tokamak data. Illustrations of the application of the models to compact ignition designs are given.

  3. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach: Architecture Phas e 1 : Le an Bur n Spar k Ignite d (SI) Ke y ... n o n th e 6091 L engines Phas e 2 : Le an Bur n Technolog y wit h Exhaus t Wast e ...

  4. Rotary engine cooling system

    SciTech Connect (OSTI)

    Jones, C.

    1988-07-26

    A rotary internal combustion engine is described comprising: a rotor housing forming a trochoidal cavity therein; an insert of refractory material received in the recess, an element of a fuel injection and ignition system extending through the housing and insert bores, and the housing having cooling passages extending therethrough. The cooling passages are comprised of drilled holes.

  5. The National Ignition Facility: The Path to a Carbon-Free Energy Future

    SciTech Connect (OSTI)

    Stolz, C J

    2011-03-16

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  6. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Moses, E

    2009-10-15

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  7. Princeton Plasma Physics Lab - National Ignition Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb 2013 14:30:50 +0000 jgreenwa 1361 at http:www.pppl.gov National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record http:www.pppl.govnode248

  8. lasers. National Ignition Facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    target shot of fiscal year 2015 WASHINGTON - Last week, the National Ignition Facility (NIF) fired its 300th laser target shot in fiscal year (FY) 2015, meeting the year's goal...

  9. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 National Ignition Facility & Photon Science a new era of science a new era of experimental science laboratory experiments at the National Ignition Facility will enable researchers for the first time to study the effects on matter of extreme temperatures, pressures, and densities that exist naturally only in stars and deep inside planets. Results from this relatively new field of research, known as high-energy- density (hed) science, will mark the dawn of a new era of experimental science.

  10. Confinement scaling and ignition in tokamaks

    SciTech Connect (OSTI)

    Perkins, F.W.; Sun, Y.C.

    1985-10-01

    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10/sup 15/ cm/sup -3/, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition.

  11. Ignition methods and apparatus using microwave energy

    DOE Patents [OSTI]

    DeFreitas, Dennis Michael; Migliori, Albert

    1997-01-01

    An ignition apparatus for a combustor includes a microwave energy source that emits microwave energy into the combustor at a frequency within a resonant response of the combustor, the combustor functioning as a resonant cavity for the microwave energy so that a plasma is produced that ignites a combustible mixture therein. The plasma preferably is a non-contact plasma produced in free space within the resonant cavity spaced away from with the cavity wall structure and spaced from the microwave emitter.

  12. Loss/gain on ignition test report

    SciTech Connect (OSTI)

    Winstead, M.L.

    1996-01-10

    Document provides the results of tests done on Product Cans from the HC-21C sludge stabilization process. Tests included running a simulated Thermogravimetric Analysis, TGA, on the processed material that have received Loss On Ignition (LOI) sample results that show a gain on ignition or a high LOI and reprocessing product cans with high LOIs. Also, boat material temperatures in the furnace were tracked during the testing.

  13. Premix charge, compression ignition combustion system optimization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_gustafson.pdf More Documents & Publications Advanced Combustion Technology to Enable High Efficiency Clean Combustion Heavy-Duty HCCI Development

  14. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    SciTech Connect (OSTI)

    Blanchat, T.K.; Stamps, D.W.

    1997-05-01

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs.

  15. National Ignition Facility Configuration Management Plan

    SciTech Connect (OSTI)

    Cabral, S G; Moore, T L

    2002-10-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and approved changes are implemented according to the change requirements documents.

  16. Infrared Thermographic Study of Laser Ignition

    SciTech Connect (OSTI)

    Mohler, Jonathan H.; Chow, Charles T. S.

    1986-07-01

    Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet. The experimental apparatus used to make these observations is described. The temperature distributions recorded are shown to be in good agreement with those predicted by heat transfer theory. Heat content values calculated from the observed temperature distributions are used to calculate thermal and kinetic parameters for several samples. These values are found to be in reasonable agreement with theory.

  17. Infrared thermographic study of laser ignition

    SciTech Connect (OSTI)

    Mohler, J.H.; Chow, C.T.S.

    1986-07-21

    Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet.

  18. Compounded turbocharged rotary internal combustion engine fueled with natural gas

    SciTech Connect (OSTI)

    Jenkins, P.E.

    1992-10-15

    This patent describes a compounded engine. It comprises: a first Wankel engine having a housing with a trochoidal inner surface containing a generally triangular shaped rotor, the engine containing a fuel supply system suitable for operating the engine with natural gas as a fuel; a turbocharge compressing air for combustion by the engine, the turbocharger being driven by the exhaust gases which exit from the engine; a combustion chamber in fluid communication with the exhaust from the engine after that exhaust has passed through the turbocharger, the chamber having an ignition device suitable for igniting hydrocarbons in the engine exhaust, whereby the engine timing, and the air and fuel mixture of the engine are controlled so that when the engine exhaust reaches the combustion chamber the exhaust contains a sufficient amount of oxygen and hydrocarbons to enable ignition and combustion of the engine exhaust in the combustion chamber without the addition of fuel or air, and whereby the engine operating conditions are controlled to vary the performance of the secondary combustor; and a controllable ignition device to ignite the exhaust gases in the combustion chamber at predetermined times.

  19. Heat release analysis of engine pressure data

    SciTech Connect (OSTI)

    Gatowski, J.A.; Balles, E.N.; Chun, K.M.; Nelson, F.E.; Ekchian, J.A.; Heywood, J.B.

    1984-01-01

    In analyzing the processes inside the cylinder of an internal combustion engine, the principal diagnostic at the experimenter's disposal is a measured time history of the cylinder pressure. This paper develops, tests, and applies a heat release analysis procedure that maintains simplicity while including the effects of heat transfer, crevice flows and fuel injection. The heat release model uses a one zone description of the cylinder contents with thermodynamic properties represented by a linear approximation. Applications of the analysis to a single-cylinder spark-ignition engine, a special square cross-section visualization spark-ignition engine, and a direct-injection stratified charge engine are presented.

  20. Analytical model for fast-shock ignition

    SciTech Connect (OSTI)

    Ghasemi, S. A. Farahbod, A. H.; Sobhanian, S.

    2014-07-15

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ?4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ?0.3??micron and the shock ignitor energy weight factor about 0.25.

  1. Path to High Efficiency Gasoline Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine PDF icon deer10_johansson.pdf More Documents & Publications Partially Premixed Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Advanced Lean-Burn DI Spark Ignition Fuels Research

  2. Ignition of THKP and TKP pyrotechnic powders :

    SciTech Connect (OSTI)

    Maharrey, Sean P.; Erikson, William W; Highley, Aaron M.; Wiese-Smith, Deneille; Kay, Jeffrey J

    2014-03-01

    We have conducted Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS) experiments on igniter/actuator pyrotechnic powders to characterize the reactive processes controlling the ignition and combustion behavior of these materials. The experiments showed a complex, interactive reaction manifold involving over ten reaction pathways. A reduced dimensionality reaction manifold was developed from the detailed 10-step manifold and is being incorporated into existing predictive modeling codes to simulate the performance of pyrotechnic powders for NW component development. The results from development of the detailed reaction manifold and reduced manifold are presented. The reduced reaction manifold has been successfully used by SNL/NM modelers to predict thermal ignition events in small-scale testing, validating our approach and improving the capability of predictive models.

  3. Ignition of deuterium-tritium fuel targets

    DOE Patents [OSTI]

    Musinski, D.L.; Mruzek, M.T.

    1991-08-27

    Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

  4. Low current extended duration spark ignition system

    DOE Patents [OSTI]

    Waters, Stephen Howard; Chan, Anthony Kok-Fai

    2005-08-30

    A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.

  5. Ignition of deuterium-trtium fuel targets

    DOE Patents [OSTI]

    Musinski, Donald L. (Saline, MI); Mruzek, Michael T. (Britton, MI)

    1991-01-01

    A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.

  6. HCCI Engine Optimization and Control

    SciTech Connect (OSTI)

    Rolf D. Reitz

    2005-09-30

    The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.

  7. Engine combustion and flow diagnostics

    SciTech Connect (OSTI)

    1995-12-31

    This informative publication discusses the application of diagnostic techniques to internal combustion engines. The papers included fall into three broad categories: flow diagnostics, combustion diagnostics, and fuel spray diagnostics. Contents include: controlling combustion in a spark ignition engine by quantitative fuel distribution; a model for converting SI engine flame arrival signals into flame contours; in-cylinder diesel flame imaging compared with numerical computations; ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics; investigation of diesel sprays using diffraction-based droplet sizing; fuel distribution effects on the combustion of a direct-injection stratified-charge engine; and 2-D measurements of the liquid phase temperature in fuel sprays.

  8. Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model

    SciTech Connect (OSTI)

    Toulson, Dr. Elisa; Allen, Casey M; Miller, Dennis J; McFarlane, Joanna; Schock, Harold; Lee, Tonghun

    2011-01-01

    There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

  9. National Ignition Facility project acquisition plan revision 1

    SciTech Connect (OSTI)

    Clobes, A.R.

    1996-10-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

  10. Gas turbine igniter with ball-joint support

    SciTech Connect (OSTI)

    Steber, C.E.; Travis, R.J.; Rizzo, J.A.

    1990-02-27

    This patent describes a support for an igniter for a combustor of a gas turbine, the combustor being of a type including a casing and a liner within the casing. It comprises: a ball joint; means for supporting the ball joint disposed a substantial distance outward from the casing; a body section of the igniter affixed in the ball joint; means for permitting the ball joint, and the body section to rotate through a substantial range; an igniter tip on the body section; and a hole in the liner. The igniter tip entering through the hole and into an interior of the liner. The hole being a tight fit to the igniter tip, whereby leakage past the igniter tip through the hole is limited. The substantial range being sufficient to permit fitting the igniter tip in the hole in the presence of manufacturing tolerances, and to permit the igniter tip to track the hole in the presence of differential thermal expansion during operation.

  11. "New Results from the National Ignition Facility", Dr. John Lindl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goal of 1.8 MJ and 500 TW of ultraviolet light in 2012. The Ignition Campaign on the NIF is making steady progress toward achieving ignition. Utilizing precision...

  12. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 National Ignition Facility & Photon Science how do Lasers work? how Do Lasers work? A laser can be as small as a microscopic computer chip or as immense as the National Ignition Facility (NIF), which is three football fields wide. Clearly size has nothing to do with what makes a laser. "laser" is an acronym for light amplification by stimulated emission of radiation. If the electrons in special glasses, crystals, or gases are energized, they will emit light photons in response to

  13. Semiconductor bridge, SCB, ignition of energetic materials

    SciTech Connect (OSTI)

    Bickes, R.W.; Grubelich, M.D.; Harris, S.M.; Merson, J.A.; Tarbell, W.W.

    1997-04-01

    Sandia National Laboratories` semiconductor bridge, SCB, is now being used for the ignition or initiation of a wide variety of exeoergic materials. Applications of this new technology arose because of a need at the system level to provide light weight, small volume and low energy explosive assemblies. Conventional bridgewire devices could not meet the stringent size, weight and energy requirements of our customers. We present an overview of SCB technology and the ignition characteristics for a number of energetic materials including primary and secondary explosives, pyrotechnics, thermites and intermetallics. We provide examples of systems designed to meet the modern requirements that sophisticated systems must satisfy in today`s market environments.

  14. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  15. Transition from cool flame to thermal flame in compression ignition process

    SciTech Connect (OSTI)

    Yamada, Hiroyuki; Suzaki, Kotaro; Goto, Yuichi; Tezaki, Atsumu

    2008-07-15

    The mechanism that initiates thermal flames in compression ignition has been studied. Experimentally, a homogeneous charge compression ignition (HCCI) engine was used with DME, n-heptane, and n-decane. Arrhenius plots of the heat release rate in the HCCI experiments showed that rates of heat release with DME, n-heptane, and n-decane exhibited a certain activation energy that is identical to that of the H{sub 2}O{sub 2} decomposition reaction. The same feature was observed in diesel engine operation using ordinary diesel fuel with advanced ignition timing to make ignition occur after the end of fuel injection. These experimental results were reproduced in nondimensional simulations using kinetic mechanisms for DME, n-heptane, and n-decane, the last being developed by extending the n-heptane mechanism. Methanol addition, which suppresses low-temperature oxidation (LTO) and delays the ignition timing, had no effect on the activation energy obtained from the Arrhenius plot of heat release rate. Nevertheless, methanol addition lowered the heat release rates during the prethermal flame process. This is because H{sub 2}O{sub 2} formation during cool flame was reduced by adding methanol. The mechanism during the transition process from cool flame to thermal flame can be explained quantitatively using thermal explosion theory, in which the rate-determining reaction is H{sub 2}O{sub 2} decomposition, assuming that heat release in this period is caused by partial oxidation of DME and HCHO initiated with the reaction with OH produced though H{sub 2}O{sub 2} decomposition. (author)

  16. High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. National Ignition Facility Title II Design Plan

    SciTech Connect (OSTI)

    Kumpan, S

    1997-03-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

  18. E85 Optimized Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine E85 Optimized Engine 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ft_12_agarwal.pdf More Documents & Publications Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine

  19. Injector tip for an internal combustion engine

    DOE Patents [OSTI]

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  20. Rotary engine

    SciTech Connect (OSTI)

    Brownfield, L.A.

    1980-12-02

    The major components of this rotary engine are two equal sized rotary units, the housing containing them along with associated ignition and cooling systems. Each of the rotary units consists of a shaft, gear, two outer compressor wheels, and one center power wheel which has twice the axial thickness as the compressor wheel. All the wheels are cylindrical in shape with a lobe section comprising a 180/sup 0/ arc on the periphery of each wheel which forms an expanding and contracting volumetric chamber by means of leading and trailing lips. The lobes of the first rotary unit are situated 180/sup 0/ opposite the lobes of the second adjacent mating rotary unit, thus lobes can intermesh with its corresponding wheel.

  1. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nations energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nations future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillars DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new opportunity fuel deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as

  2. Test report for core drilling ignitability testing

    SciTech Connect (OSTI)

    Witwer, K.S.

    1996-08-08

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

  3. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security maintaining the nuclear weapons stockpile As the largest, highest-energy laser ever built, the National Ignition Facility (NIF) can create conditions in the laboratory-temperatures of 100 million degrees and pressures 100 billion times that of the earth's atmosphere-similar to those in stars and nuclear weapons. NIF is the only facility that can perform controlled, experimental studies of thermonuclear burn, the phenomenon that gives rise to the immense energy of modern nuclear weapons.

  4. Multiple laser pulse ignition method and apparatus

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    1998-01-01

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  5. Multiple laser pulse ignition method and apparatus

    DOE Patents [OSTI]

    Early, J.W.

    1998-05-26

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

  6. Laser–plasma interactions for fast ignition

    SciTech Connect (OSTI)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-04-17

    In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser- plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multidimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity, f-number and wavelength are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale fast ignition problem.

  7. Laser–plasma interactions for fast ignition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-04-17

    In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser- plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multidimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporalmore » evolution. Scaling with irradiation conditions such as laser intensity, f-number and wavelength are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale fast ignition problem.« less

  8. Ignitor with stable low-energy thermite igniting system

    DOE Patents [OSTI]

    Kelly, Michael D. (West Alexandria, OH); Munger, Alan C. (Miamisburg, OH)

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  9. Engineering Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

  10. Enabling the Next Generation of High Efficiency Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy the Next Generation of High Efficiency Engines Enabling the Next Generation of High Efficiency Engines Discusses challenges and opportunities for next generation internal combustion engines, and developments for further pushing the limits of engine efficiency and vehicle fuel economy PDF icon deer12_wagner.pdf More Documents & Publications Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine Ignition Control for HCCI Comparison of Conventional Diesel

  11. Modeling the Number of Ignitions Following an Earthquake: Developing

    Office of Environmental Management (EM)

    Prediction Limits for Overdispersed Count Data | Department of Energy the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell PDF icon Modeling the Number of

  12. Effects of Ignition Quality and Fuel Composition on Critical Equivalence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ratio | Department of Energy Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Our research shows that fuel can be blended to have a low ignition quality, which is desirable for high-efficiency advanced combustion, and with a high n-paraffin content to reduce CO and THC. PDF icon deer12_lilik.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Fuel

  13. Modeling the Number of Ignitions Following an Earthquake: Developing...

    Office of Environmental Management (EM)

    Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell PDF icon Modeling the Number of Ignitions Following an Earthquake:...

  14. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development. Citation Details In-Document Search Title: ...

  15. Radiochemical tracers as a mix diagnostic for the ignition double...

    Office of Scientific and Technical Information (OSTI)

    for the ignition double-shell capsule One of the most important challenges confronting laser-driven capsule implosion experiments will be a quantitative evaluation of the...

  16. Cosmos Ignite Innovations Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Innovations Pvt Ltd Jump to: navigation, search Name: Cosmos Ignite Innovations Pvt Ltd Place: Delhi (NCT), India Zip: 110017 Product: Company started by two Stanford and New Delhi...

  17. Modeling the Fuel Spray and Combustion Process of the Ignition Quality Tester with KIVA-3V

    SciTech Connect (OSTI)

    Bogin, G. E. Jr.; DeFilippo, A.; Chen, J. Y.; Chin, G.; Luecke, J.; Ratcliff, M. A.; Zigler, B. T.; Dean, A. M.

    2010-05-01

    Discusses the use of KIVA-3V to develop a model that reproduces ignition behavior inside the Ignition Quality Tester, which measures the ignition delay of low-volatility fuels.

  18. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    making a star 17 How to make a miniature star The idea for the National Ignition Facility (NIF) grew out of a decades-long effort to generate fusion burn and energy gain in the laboratory. Current nuclear power plants, which use the splitting of atoms (fission) to produce energy, have been pumping out electric power for more than 50 years. But achieving nuclear fusion burn and gain has not yet been demonstrated as viable for energy production. For fusion burn and gain to occur, a special fuel

  19. A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report

    SciTech Connect (OSTI)

    Stephens, Richarad Burnite; Freeman, Richard R.; Van Woekom, L. D.; Key, M.; MacKinnon, Andrew J.; Wei, Mingsheng

    2014-02-27

    The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.

  20. Stockpile Stewardship and the National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2012-01-04

    The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

  1. PBXN-9 Ignition Kinetics and Deflagration Rates

    SciTech Connect (OSTI)

    Glascoe, E; Maienschein, J; Burnham, A; Koerner, J; Hsu, P; Wemhoff, A

    2008-04-24

    The ignition kinetics and deflagration rates of PBXN-9 were measured using specially designed instruments at LLNL and compared with previous work on similar HMX based materials. Ignition kinetics were measured based on the One Dimensional Time-to-Explosion combined with ALE3D modeling. Results of these experiments indicate that PBXN-9 behaves much like other HMX based materials (i.e. LX-04, LX-07, LX-10 and PBX-9501) and the dominant factor in these experiments is the type of explosive, not the type of binder/plasticizer. In contrast, the deflagration behavior of PBXN-9 is quite different from similar high weight percent HMX based materials (i.e LX-10, LX-07 and PBX-9501). PBXN-9 burns in a laminar manner over the full pressure range studied (0-310 MPa) unlike LX-10, LX-07, and PBX-9501. The difference in deflagration behavior is attributed to the nature of the binder/plasticizer alone or in conjunction with the volume of binder present in PBXN-9.

  2. SCB ignition of pyrotechnics, thermites and intermetallics

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.; Grubelich, M.C.

    1996-09-01

    We investigated ignition of pyrotechnics, metal-fuel/metal-oxide compositions (thermites), and exothermic alloy compositions (intermetallics) using a semiconductor bridge (SCB). It was shown that these materials could be ignited at low energy levels with an appropriately designed SCB, proper loading density, and good thermal isolation. Materials tested included Al/CuO, B/BaCrO{sub 4}, TiH{sub 1.65}/KClO{sub 4}, Ti/KClO{sub 4}, Zr/BaCrO{sub 4}, Zr/CuO, Zr/Fe{sub 2}O{sub 3}, Zr/KClO{sub 4}, and 100-mesh Al/Pd. Firing set was a capacitor discharge unit with charge capacitors ranging from 3 to 20,000 {mu}F at charge voltages 5-50 V. Devices functioned a few miliseconds after onset of current pulse at input energies as low as 3 mJ. We also report on a thermite torch design.

  3. Igniter for gas discharge pipe with a flame detection system

    SciTech Connect (OSTI)

    Guerra, R.E.

    1990-03-06

    This patent describes a method of burning waste gas, using an igniter of the type having a nozzle, a main gas conduit extending to the nozzle, and an electrical spark means for creating a spark in the nozzle. It comprises: mounting the igniter to a waste gas discharge pipe with the nozzle directed across the opening of the gas discharge pipe; supplying a gaseous fuel to the main gas conduit; igniting the gaseous fuel with the electrical spark means, creating a flame for igniting the waste gas being discharged from the gas discharge pipe; providing the igniter with an auxiliary gas line extending to the vicinity of the nozzle; and supplying a second and lower volume source of waste gas to the auxiliary gas line for burning at the nozzle.

  4. Spark ignited turbulent flame kernel growth. Annual report, January--December, 1992

    SciTech Connect (OSTI)

    Santavicca, D.A.

    1994-06-01

    Cyclic combustion variations in spark-ignition engines limit the use of dilute charge strategies for achieving low NO{sub x} emissions and improved fuel economy. Results from an experimental study of the effect of incomplete fuel-air mixing (ifam) on spark-ignited flame kernel growth in turbulent propane-air mixtures are presented. The experiments were conducted in a turbulent flow system that allows for independent variation of flow parameters, ignition system parameters, and the degree of fuel-air mixing. Measurements were made at 1 atm and 300 K conditions. Five cases were studied; a premixed and four incompletely mixed cases with 6%, 13%, 24% and 33% RMS (root-mean-square) fluctuations in the fuel/air equivalence ratio. High speed laser shadowgraphy at 4,000 frames-per-second was used to record flame kernel growth following spark ignition, from which the equivalent flame kernel radius as a function of time was determined. The effect of ifam was evaluated in terms of the flame kernel growth rate, cyclic variations in the flame kernel growth, and the rate of misfire. The results show that fluctuations in local mixture strength due to ifam cause the flame kernel surface to become wrinkled and distorted; and that the amount of wrinkling increases as the degree of ifam. Ifam was also found to result in a significant increase in cyclic variations in the flame kernel growth. The average flame kernel growth rates for the premixed and the incompletely mixed cases were found to be within the experimental uncertainty except for the 33%-RMS-fluctuation case where the growth rate is significantly lower. The premixed and 6%-RMS-fluctuation cases had a 0% misfire rate. The misfire rates were 1% and 2% for the 13%-RMS-fluctuation and 24%-RMS-fluctuation cases, respectively; however, it drastically increased to 23% in the 33%-RMS-fluctuation case.

  5. Gas engines provide cogeneration service for Fantoni MDF plant

    SciTech Connect (OSTI)

    Chellini, R.

    1996-12-01

    A large MDF (medium density fiberboard) plant recently started industrial production at the headquarters of Fantoni, in Osoppo (UDINE) Italy. Providing electric power and thermal energy to the process is a cogeneration plant based on four large spark-ignited gas engines. The new Osoppo MDF plant processes 800 m{sup 3} of finished boards per day in a manufacturing line that combines the most advanced technologies available from several European equipment manufacturers. The cogeneration plant features four type 12VA32G spark-ignited gas engines from Fincantieri`s Diesel Engine Division, driving 50Hz, 6.3 kV, 5400 kVA Ansaldo generators at 750 r/min. The turbocharged and intercooled engines are a spark-ignited version of the company`s A32 diesel. They feature 12 Vee-arranged cylinders with 320 mm bore and 390 mm stroke. 5 figs.

  6. Method and system for controlled combustion engines

    DOE Patents [OSTI]

    Oppenheim, A. K. (Berkeley, CA)

    1990-01-01

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  7. Catalytic igniters and their use to ignite lean hydrogen-air mixtures

    DOE Patents [OSTI]

    McLean, William J. (Oakland, CA); Thorne, Lawrence R. (Livermore, CA); Volponi, Joanne V. (Livermore, CA)

    1988-01-01

    A catalytic igniter which can ignite a hydrogen-air mixture as lean as 5.5% hydrogen with induction times ranging from 20 s to 400 s, under conditions which may be present during a loss-of-liquid-coolant accident at a light water nuclear reactor comprises (a) a perforate catalytically active substrate, such as a platinum coated ceramic honeycomb or wire mesh screen, through which heated gases produced by oxidation of the mixture can freely flow and (b) a plurality of thin platinum wires mounted in a thermally conductive manner on the substrate and positioned thereon so as to be able to receive heat from the substrate and the heated gases while also in contact with unoxidized gases.

  8. Stratified cross combustion engine

    SciTech Connect (OSTI)

    Rhoads, J.L.

    1981-06-23

    A piston engine is provided in which adjacent cylinder pairs share a common combustion chamber and the pistons are mounted to reciprocate substantially in phase, one of the pistons in each piston pair receiving a rich mixture which is ignited by a sparkplug in that cylinder, with the other cylinder in the cylinder pair being passive in its preferred form, and receiving through a separate intake valve either pure air or a leaner mixture into which the combusted richer mixture pours, insuring that the greatest combustion possible resulting in the greatest percentage of carbon dioxide formation as opposed to carbon monoxide is created.

  9. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  10. Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System

    SciTech Connect (OSTI)

    Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

    2011-03-18

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

  11. Pre-ignition laser ablation of nanocomposite energetic materials

    SciTech Connect (OSTI)

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L.

    2013-06-07

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 Multiplication-Sign 10{sup 4} to 1.7 Multiplication-Sign 10{sup 7} K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO{sub 2} lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO{sub 3}) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO{sub 3} at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  12. Consider the DME alternative for diesel engines

    SciTech Connect (OSTI)

    Fleisch, T.H.; Meurer, P.C.

    1996-07-01

    Engine tests demonstrate that dimethyl ether (DME, CH{sub 3}OCH{sub 3}) can provide an alternative approach toward efficient, ultra-clean and quiet compression ignition (CI) engines. From a combustion point of view, DME is an attractive alternative fuel for CI engines, primarily for commercial applications in urban areas, where ultra-low emissions will be required in the future. DME can resolve the classical diesel emission problem of smoke emissions, which are completely eliminated. With a properly developed DME injection and combustion system, NO{sub x} emissions can be reduced to 40% of Euro II or U.S. 1998 limits, and can meet the future ULEV standards of California. Simultaneously, the combustion noise is reduced by as much as 15 dB(A) below diesel levels. In addition, the classical diesel advantages such as high thermal efficiency, compression ignition, engine robustness, etc., are retained.

  13. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang; Akli, Kramer U.; Beg, Farhat N.; Sentoku, Yasuhiko; Schumacher, Douglass W.; Wei, Mingsheng

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional central hot spot (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density target as well as large and erratic spread of the electron beam with increasing short pulse duration. We have demonstrated, using newly available higher contrast lasers, an improved energy coupling, painting a promising picture for FI feasibility. Our detailed experiments and analyses of fast electron transport dependence on target material have shown that it is feasible to collimate fast electron beam by self-generated resistive magnetic fields in engineered targets with a rather simple geometry. Stable and collimated electron beam with spot size as small as 50-?m after >100-?m propagation distance (an angular divergence angle of 20!) in solid density plasma targets has been demonstrated with FI-relevant (10-ps, >1-kJ) laser pulses Such collimated beam would meet the required heating beam size for FI. Our new experimental platforms developed for the OMEGA laser (i.e., i) high resolution 8 keV backlighter platform for cone-in-shell implosion and ii) the 8 keV imaging with Cu-doped shell targets for detailed transport characterization) have enabled us to experimentally confirm fuel assembly from cone-in-shell implosion with record-high areal density. We have also made the first direct measurement of fast electron transport and spatial energy deposition in integrated FI experiments enabling the first experiment-based benchmarking of integrated simulation codes. Executing this program required a large team. It was managed as a collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser at the University of Texas, Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing simulations codes developed by the National Nuclear Security Administration ICF program. One important aspect of this program was the involvement and training of young scientists including postdoctoral fellows and graduate students. This project generated an impressive forty articles in high quality journals including nine (two under review) in Physical Review Letters during the three years of this grant and five graduate students completed their doctoral dissertations.

  14. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

  15. Hydrogen-assisted catalytic ignition characteristics of different fuels

    SciTech Connect (OSTI)

    Zhong, Bei-Jing; Yang, Fan; Yang, Qing-Tao

    2010-10-15

    Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

  16. Ignitability testing for core drilling system. Final report

    SciTech Connect (OSTI)

    Cashdollar, K.L.; Furno, A.; Green, G.M.; Thomas, R.A.; Witwer, K.S.

    1995-06-15

    As part of a study of the hazards of the inspection of nuclear waste material stored at the Hanford, WA site, the Department of Energy (DOE) and Westinghouse Hanford Company (WHC) have developed a core drilling system to sample the material in large waste storage tanks. In support of this work, the US Bureau of Mines has studied the probability of ignition while core drilling into simulated salt cake that was permeated with a flammable gas mixture. No ignitions were observed while core drilling into the saltcake with or without a purge gas and no ignitions were observed while drilling into a steel plate.

  17. E85 Optimized Engine

    SciTech Connect (OSTI)

    Stanley Bower

    2011-12-31

    A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) ??EcoBoost? engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

  18. DIESEL OXIDATION CATALYST CONTROL OF HYDROCARBON AEROSOLS FROM REACTIVITY CONTROLLED COMPRESSION IGNITION COMBUSTION

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E; Barone, Teresa L; Curran, Scott; Cho, Kukwon; Lewis Sr, Samuel Arthur; Storey, John Morse; Wagner, Robert M

    2011-01-01

    Reactivity Controlled Compression Ignition (RCCI) is a novel combustion process that utilizes two fuels with different reactivity to stage and control combustion and enable homogeneous combustion. The technique has been proven experimentally in previous work with diesel and gasoline fuels; low NOx emissions and high efficiencies were observed from RCCI in comparison to conventional combustion. In previous studies on a multi-cylinder engine, particulate matter (PM) emission measurements from RCCI suggested that hydrocarbons were a major component of the PM mass. Further studies were conducted on this multi-cylinder engine platform to characterize the PM emissions in more detail and understand the effect of a diesel oxidation catalyst (DOC) on the hydrocarbon-dominated PM emissions. Results from the study show that the DOC can effectively reduce the hydrocarbon emissions as well as the overall PM from RCCI combustion. The bimodal size distribution of PM from RCCI is altered by the DOC which reduces the smaller mode 10 nm size particles.

  19. Past experiences with automotive external combustion engines

    SciTech Connect (OSTI)

    Amann, C.A.

    1999-07-01

    GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

  20. Modeling the Number of Ignitions Following an Earthquake: Developing...

    Office of Environmental Management (EM)

    the likelihood of various fire scenarios. The first component of the approach is a statistical model to predict the number of ignitions for a new earthquake event. This model is...

  1. The National Ignition Facility (NIF) - September 23, 2010 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    NIF03.23.10(1).pdf More Documents & Publications The National Ignition Facility (NIF) - September 23, 2010 EIS-0236-S1: Supplemental Environmental Impact Statement EIS-0236-S1:...

  2. The National Ignition Facility (NIF) - September 23, 2010 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    NIF03.23.10.pdf More Documents & Publications The National Ignition Facility (NIF) - September 23, 2010 EIS-0236-S1: Supplemental Environmental Impact Statement EIS-0236-S1:...

  3. Compact Ignition Tokamak Program: status of FEDC studies

    SciTech Connect (OSTI)

    Flanagan, C.A.

    1985-01-01

    Viewgraphs on the Compact Ignition Tokamak Program comprise the report. The technical areas discussed are the mechanical configuration status, magnet analysis, stress analysis, cooling between burns, TF coil joint, and facility/device layout options. (WRF)

  4. Gasoline Compression Ignition - Start of Injection Timing Sweep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us For more information, contact Greg Cunningham at (630) 252-8232 or media@anl.gov. Gasoline Compression Ignition - Start of Injection Timing Sweep (VERIFI) Share Topic...

  5. Special Feature: Energy - The Spark that Ignited DOE Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy - The Spark that Ignited DOE Supercomputing Special Feature: Energy - The Spark that Ignited DOE Supercomputing Scientific Computing for Energy Independence and a Clean Energy Future September 16, 2013 Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 1280px-OREGONSODD-EVENPLANREDUCEDTHELINESATGASSTATIONSDURINGTHEFUELCRISISINTHEFALLANDWINTEROF1973-74....-NARA-555498.jpg Oregon's odd-even plan reduced the lines at gas stations during the fuel crisis in the fall and winter of 1973-74. This

  6. Ignition technique for an in situ oil shale retort

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO)

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  7. Ignition and burn of a small magnetized fuel target

    SciTech Connect (OSTI)

    Kirkpatrick, Ronald C.

    2012-06-01

    The crucial step for inertial confinement fusion (ICF) is ignition, which leads to sufficiently high gain to enable design of a power producing system. Thus far, this step has not been demonstrated. Magnetized targets may provide an alternative path to ignition. In addition, the 1-D calculations presented here suggest that this approach may provide the gain and other characteristics needed for a practical fusion reactor.

  8. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms:

    Office of Scientific and Technical Information (OSTI)

    Tools for Physics-Based Model Development. (Technical Report) | SciTech Connect Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development. We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock

  9. Energetics Measurements of Silver Halfraum Targets at the National Ignition

    Office of Scientific and Technical Information (OSTI)

    Facility (Journal Article) | SciTech Connect Journal Article: Energetics Measurements of Silver Halfraum Targets at the National Ignition Facility Citation Details In-Document Search Title: Energetics Measurements of Silver Halfraum Targets at the National Ignition Facility Authors: May, M J ; Fournier, K B ; Brown, C G ; Dunlop, W H ; Kane, J O ; Mirkarimi, P B ; Moody, J ; Patterson, R ; Schneider, M ; Widmann, K Publication Date: 2013-09-09 OSTI Identifier: 1229821 Report Number(s):

  10. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms:

    Office of Scientific and Technical Information (OSTI)

    Tools for Physics-Based Model Development. (Technical Report) | SciTech Connect Technical Report: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office

  11. Heating National Ignition Facility, Realistic Financial Planning & Rapid

    Broader source: Energy.gov (indexed) [DOE]

    Modification Lessons Learned Report Apr 2010 | Department of Energy 628 National Ignition Facility Realistic Financial Planning Rapid Modification are Essential Lessons Learned Report Apr 2010.pdf More Documents & Publications EIS-0236-S1: Record of Decision EIS-0236-S1: Supplemental Environmental Impact Statement DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic

  12. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms:

    Office of Scientific and Technical Information (OSTI)

    Tools for Physics-Based Model Development. (Technical Report) | SciTech Connect Technical Report: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development. We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties

  13. Delivering Innovations That Create Jobs: National Lab Ignites Business for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Entrepreneurs | Department of Energy Delivering Innovations That Create Jobs: National Lab Ignites Business for Entrepreneurs Delivering Innovations That Create Jobs: National Lab Ignites Business for Entrepreneurs November 17, 2011 - 1:59pm Addthis DEP Shape Memory Therapeutics, Inc. is working to treat aneurysms with exclusively licensed LLNL-developed polymer materials that "remember" their shape. LLNL is a leader in the development of shape memory polymers, for use in medical

  14. Electrically heated particulate filter enhanced ignition strategy

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  15. Rotary engine and method

    SciTech Connect (OSTI)

    Overman, K.

    1991-12-17

    This paper describes a rotary engine. It comprises: an engine block, the block defining an internal rotor cavity, a rotor, the rotor eccentrically positioned within the cavity, the block defining a combustion chamber, the combustion chamber positioned exteriorly of the rotor cavity and in fluid communication therewith, a pair of pistons, the pistons affixed to each other and slidably mounted within the rotor, an air inlet valve, the inlet valve positioned at one side of the combustion chamber, a dual acting outlet valve, the outlet valve comprising a top and a bottom rest, the outlet valve positioned at the other side of the combustion chamber, the combustion chamber defining both an outlet valve ceiling port and an outlet valve floor port, means to ignite fuel, the fuel ignition means located within the combustion chamber between the inlet and outlet valves, the block defining an exhaust port, the exhaust port spaced circumferentially from the combustion chamber and in fluid communication with the rotor cavity, the block defining an inlet port, and the inlet port circumfrentially spaced from the outlet port and in fluid communication with the rotor cavity.

  16. Rotary reciprical combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-20

    This patent describes a rotary-reciprocal combustion engine having a cycle which includes the four strokes of intake, compression, expansion and exhaustion, the engine. It comprises: a housing formed with a peripheral wall with side walls, a rotor in the housing, the inner surface of the peripheral inner wall being cylindrical; a shaft; mounted in the center of the housing, passing through the rotor's hub and extending through the side walls of the housing, the hub having means to allow the rotor to reciprocate on the shaft while the shaft is rotating with the rotor; a reciprocal and rotary guide having means to guide the rotary and reciprocal motions of the rotor while keeping the rotor's piston in continuous sealing contact with the cylinder chamber walls and varying the volume of the cylinder chambers enabling a compression of a gaseous mixture to take place after aspirating a gaseous mixture; an ignition system having means for igniting compressed gaseous mixture and expansion of the cylinder chambers due to pressure of the combustion products.

  17. National Ignition Facility Comes to Life

    SciTech Connect (OSTI)

    Moses, E

    2003-09-01

    First conceived of nearly 15 years ago, the National Ignition Facility (NIF) is up and running and successful beyond almost everyone's expectations. During commissioning of the first four laser beams, the laser system met design specifications for everything from beam quality to energy output. NIF will eventually have 192 laser beams. Yet with just 2% of its final beam configuration complete, NIF has already produced the highest energy laser shots in the world. In July, laser shots in the infrared wavelength using four beams produced a total of 26.5 kilojoules of energy per beam, not only meeting NIF's design energy requirement of 20 kilojoules per beam but also exceeding the energy of any other infrared laser beamline. In another campaign, NIF produced over 11.4 kilojoules of energy when the infrared light was converted to green light. An earlier performance campaign of laser light that had been frequency converted from infrared to ultraviolet really proved NIF's mettle. Over 10.4 kilojoules of ultraviolet energy were produced in about 4 billionths of a second. If all 192 beamlines were to operate at these levels, over 2 megajoules of energy would result. That much energy for the pulse duration of several nanoseconds is about 500 trillion watts of power, more than 500 times the US peak generating power.

  18. Air separation membranes : an alternative to EGR in large bore natural gas engines.

    SciTech Connect (OSTI)

    Biruduganti, M.; Gupta, S.; Bihari, B.; McConnell, S.; Sekar, R.; Energy Systems

    2010-08-01

    Air separation membranes (ASMs) could potentially replace exhaust gas recirculation (EGR) technology in engines due to the proven benefits in NOx reduction but without the drawbacks of EGR. Previous investigations of nitrogen-enriched air (NEA) combustion using nitrogen bottles showed up to 70% NOx reduction with modest 2% nitrogen enrichment. The investigation in this paper was performed with an ASM capable of delivering at least 3.5% NEA to a single-cylinder spark-ignited natural gas engine. Low temperature combustion is one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. In this study, a comparative assessment is made between natural gas combustion in standard air and 2% NEA. Enrichment beyond this level degraded engine performance in terms of power density, brake thermal efficiency (BTE), and unburned hydrocarbon emissions for a given equivalence ratio. The ignition timing was optimized to yield maximum brake torque for standard air and NEA. Subsequently, conventional spark ignition was replaced by laser ignition (LI) to extend lean ignition limit. Both ignition systems were studied under a wide operating range from {Psi} :1.0 to the lean misfire limit. It was observed that with 2% NEA, for a similar fuel quantity, the equivalence ratio {Psi} increases by 0.1 relative to standard air conditions. Analysis showed that lean burn operation along with NEA and alternative ignition source, such as LI, could pave the pathway for realizing lower NO{sub x} emissions with a slight penalty in BTE.

  19. Internal combustion engine

    DOE Patents [OSTI]

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  20. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    SciTech Connect (OSTI)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D.; McCrory, R. L.

    2014-05-15

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6??10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  1. Relative performance of rotary and piston engines on synthetic coal-derived gasoline

    SciTech Connect (OSTI)

    Kappos, C.; Rajan, S.

    1989-01-01

    The paper compares the overall power and emissions features and in-cylinder combustion characteristics of a two-rotor Wankel engine and those of a four-cylinder piston engine, with particular reference to thermal efficiency, oxides of nitrogen, unburnt hydrocarbons, exhaust temperature, ignition delay and combustion interval. The study provides insight into the similarities and differences in the mechanisms of pollutant formation and combustion characteristics of rotary and piston engines, while operating on a synthetic coal-derived gasoline. In particular, the shorter ignition delay and longer combustion interval of the rotary engine indicates its suitability for use with lower quality fuels.

  2. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Temperature Combustion in a Light-Duty Diesel Engine Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine Six different fuels were investigated to study the influence of fuel properties on engine out emissions and performance of low temperature premixed compression ignition combustion light-duty HSDI engines PDF icon deer10_tatur.pdf More Documents & Publications An Experimental Investigation of Low Octane Gasoline in Diesel Engines Use of Low

  3. Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications This poster offers a comparison of high-pressure direct injection (HPDI) of natural gas engines with pilot diesel ignition with diesel engines used in heavy-duty diesel engine applications PDF icon deer09_munshi.pdf More Documents & Publications State of the Art and Future

  4. Injector spray characterization of methanol in reciprocating engines

    SciTech Connect (OSTI)

    Dodge, L.; Naegeli, D.

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  5. Fuel burner having a intermittent pilot with pre-ignition testing

    SciTech Connect (OSTI)

    Peterson, S.M.

    1991-07-30

    This patent describes improvement in a fuel burner having a main burner and a pilot burner for lighting the main burner, an electrically-powered igniter for lighting the pilot burner, a source of electric energy, an igniter power supply receiving a demand signal and supplying power to the igniter responsive to the demand signal, a pilot sensor adjacent to the pilot burner and supplying a pilot signal responsive to presence of a pilot flame, and a main burner valve controlling flow of fuel to the main burner and opening responsive to the pilot signal. The improvement comprises: a pilot burner valve controlling flow of fuel to the pilot burner and opening responsive to a pilot valve control signal; igniter sensing means in sensing relation to the igniter for providing an igniter signal responsive to operation of the igniter; and pilot valve control means receiving the igniter signal, for providing the pilot valve control signal responsive to the igniter signal.

  6. Enabling High Efficiency Ethanol Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_12_wagner.pdf More Documents & Publications Ignition Control for HCCI High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines Expanding Robust HCCI Operation (Delphi CRADA)

  7. 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 29-September 2, 2004 Coronado, California The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: Diesel Efficiency and Emissions Policy Session 7: Combustion and Homogeneous Charge Compression Ignition Regimes Session 1: Emerging Diesel Technologies Session 8A: Diesel Engine

  8. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  9. Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug

    SciTech Connect (OSTI)

    McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

    2008-04-01

    To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

  10. Using indium tin oxide material to implement the imaging of microwave plasma ignition process

    SciTech Connect (OSTI)

    Wang, Qiang; Hou, Lingyun; Zhang, Guixin Zhang, Boya; Liu, Cheng; Wang, Zhi; Huang, Jian

    2014-02-17

    In this paper, a method is introduced to get global observation of microwave plasma ignition process at high pressure. A microwave resonator was designed with an indium tin oxide coated glass at bottom. Microwave plasma ignition was implemented in methane and air mixture at 10 bars by a 2?ms-3?kW-2.45?GHz microwave pulse, and the high speed images of the ignition process were obtained. The images visually proved that microwave plasma ignition could lead to a multi-point ignition. The system may also be applied to obtain Schlieren images, which is commonly used to observe the development of flame kernel in an ignition process.

  11. Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives

    SciTech Connect (OSTI)

    Kade H. Poper; Eric S. Collins; Michelle L. Pantoya; Michael Daniels

    2014-10-01

    Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter.

  12. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A. (Los Alamos, NM)

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  13. Methane ignition catalyzed by in situ generated palladium nanoparticles

    SciTech Connect (OSTI)

    Shimizu, T.; Abid, A.D.; Poskrebyshev, G.; Wang, H. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Nabity, J.; Engel, J.; Yu, J. [TDA Research, Inc., 12345 W. 52nd Ave, Wheat Ridge, CO 80033 (United States); Wickham, D. [Reaction Systems, LLC, 19039 E. Plaza Drive, Suite 290, Parker, CO 80134 (United States); Van Devener, B.; Anderson, S.L. [Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (United States); Williams, S. [Air Force Research Laboratory, Mail Stop RZA, 1950 Fifth Street, WPAFB, OH 45433 (United States)

    2010-03-15

    Catalytic ignition of methane over the surfaces of freely-suspended and in situ generated palladium nanoparticles was investigated experimentally and numerically. The experiments were conducted in a laminar flow reactor. The palladium precursor was a compound (Pd(THD){sub 2}, THD: 2,2,6,6-tetramethyl-3,5-heptanedione) dissolved in toluene and injected into the flow reactor as a fine aerosol, along with a methane-oxygen-nitrogen mixture. For experimental conditions chosen in this study, non-catalytic, homogeneous ignition was observed at a furnace temperature of {proportional_to}1123 K, whereas ignition of the same mixture with the precursor was found to be {proportional_to}973 K. In situ production of Pd/PdO nanoparticles was confirmed by scanning mobility, transmission electron microscopy and X-ray photoelectron spectroscopy analyses of particles collected at the reactor exit. The catalyst particle size distribution was log-normal. Depending on the precursor loading, the median diameter ranged from 10 to 30 nm. The mechanism behind catalytic ignition was examined using a combined gas-phase and gas-surface reaction model. Simulation results match the experiments closely and suggest that palladium nanocatalyst significantly shortens the ignition delay times of methane-air mixtures over a wide range of conditions. (author)

  14. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    SciTech Connect (OSTI)

    Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  15. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Parks, II, James E; Wagner, Robert M

    2013-01-01

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  16. Data Analysis, Pre-Ignition Assessment, and Post-Ignition Modeling of the Large-Scale Annular Cookoff Tests

    SciTech Connect (OSTI)

    G. Terrones; F.J. Souto; R.F. Shea; M.W.Burkett; E.S. Idar

    2005-09-30

    In order to understand the implications that cookoff of plastic-bonded explosive-9501 could have on safety assessments, we analyzed the available data from the large-scale annular cookoff (LSAC) assembly series of experiments. In addition, we examined recent data regarding hypotheses about pre-ignition that may be relevant to post-ignition behavior. Based on the post-ignition data from Shot 6, which had the most complete set of data, we developed an approximate equation of state (EOS) for the gaseous products of deflagration. Implementation of this EOS into the multimaterial hydrodynamics computer program PAGOSA yielded good agreement with the inner-liner collapse sequence for Shot 6 and with other data, such as velocity interferometer system for any reflector and resistance wires. A metric to establish the degree of symmetry based on the concept of time of arrival to pin locations was used to compare numerical simulations with experimental data. Several simulations were performed to elucidate the mode of ignition in the LSAC and to determine the possible compression levels that the metal assembly could have been subjected to during post-ignition.

  17. WILDFIRE IGNITION RESISTANCE ESTIMATOR WIZARD SOFTWARE DEVELOPMENT REPORT

    SciTech Connect (OSTI)

    Phillips, M.; Robinson, C.; Gupta, N.; Werth, D.

    2012-10-10

    This report describes the development of a software tool, entitled WildFire Ignition Resistance Estimator Wizard (WildFIRE Wizard, Version 2.10). This software was developed within the Wildfire Ignition Resistant Home Design (WIRHD) program, sponsored by the U. S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection & Disaster Management Division. WildFIRE Wizard is a tool that enables homeowners to take preventive actions that will reduce their homes vulnerability to wildfire ignition sources (i.e., embers, radiant heat, and direct flame impingement) well in advance of a wildfire event. This report describes the development of the software, its operation, its technical basis and calculations, and steps taken to verify its performance.

  18. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; et al

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infermore » the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  19. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    SciTech Connect (OSTI)

    Dennis N. Assanis; Arvind Atreya; Jyh-Yuan Chen; Wai K. Cheng; Robert W. Dibble; Chris Edwards; Zoran S. Filipi; Christian Gerdes; Hong Im; George A. Lavoie; Margaret S. Wooldridge

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were: ? Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines. ? Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions. ? Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  20. On-Road Development of John Deere 6081 Natural Gas Engine: Final Technical Report, July 1999 - January 2001

    SciTech Connect (OSTI)

    McCaw, D. L.; Horrell, W. A.

    2001-09-24

    Report that discusses John Deere's field development of a heavy-duty natural gas engine. As part of the field development project, Waste Management of Orange County, California refitted four existing trash packers with John Deere's prototype spark ignited 280-hp 8.1 L CNG engines. This report describes the project and also contains information about engine performance, emissions, and driveability.

  1. National Ignition Facility & Photon Science HOW NIF WORKS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 National Ignition Facility & Photon Science HOW NIF WORKS beam me up: how niF works In the National Ignition Facility (NIF), 192 laser beams travel a long path, about 1,500 meters, from their birth at the master oscillator-a device that generates the single pulse that seeds the entire NIF laser system-to the center of the target chamber. As the beams move through NIF's amplifiers, their energy increases exponentially. From beginning to end, the beams' total energy grows from one- billionth

  2. National Ignition Facility & Photon Science NIF Fun Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 National Ignition Facility & Photon Science NIF Fun Facts niF Fun Facts The National Ignition Facility (NIF), became operational in march 2009. Planning began in the early 1990s, and ground was broken for the facility on may 29, 1997-12 years to the day before NIF's dedication. Construction Construction of the main NIF building, known as the "conventional facility," was completed in 2001. * Building height: 10 stories * Building width: 3 football fields * Cubic meters of soil

  3. Correlating cookoff violence with pre-ignition damage.

    SciTech Connect (OSTI)

    Wente, William Baker; Hobbs, Michael L.; Kaneshige, Michael Jiro

    2010-03-01

    Predicting the response of energetic materials during accidents, such as fire, is important for high consequence safety analysis. We hypothesize that responses of ener-getic materials before and after ignition depend on factors that cause thermal and chemi-cal damage. We have previously correlated violence from PETN to the extent of decom-position at ignition, determined as the time when the maximum Damkoehler number ex-ceeds a threshold value. We seek to understand if our method of violence correlation ap-plies universally to other explosive starting with RDX.

  4. Ignition feedback regenerative free electron laser (FEL) amplifier

    DOE Patents [OSTI]

    Kim, Kwang-Je (Burr Ridge, IL); Zholents, Alexander (Walnut Creek, CA); Zolotorev, Max (Oakland, CA)

    2001-01-01

    An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

  5. Features of a point design for fast ignition

    SciTech Connect (OSTI)

    Tabak, M; Clark, D; Town, R J; Key, M H; Amendt, P; Ho, D; Meeker, D J; Shay, H D; Lasinski, B F; Kemp, A; Divol, L; Mackinnon, A J; Patel, P; Strozzi, D; Grote, D P

    2009-10-26

    Fast Ignition is an inertial fusion scheme in which fuel is first assembled and then heated to the ignition temperature with an external heating source. In this note we consider cone and shell implosions where the energy supplied by short pulse lasers is transported to the fuel by electrons. We describe possible failure modes for this scheme and how to overcome them. In particular, we describe two sources of cone tip failure, an axis jet driven from the compressed fuel mass and hard photon preheat leaking through the implosion shell, and laser prepulse that can change the position of laser absorption and the angular distribution of the emitted electrons.

  6. Optimization of the process of plasma ignition of coal

    SciTech Connect (OSTI)

    Peregudov, V.S.

    2009-04-15

    Results are given of experimental and theoretical investigations of plasma ignition of coal as a result of its thermochemical preparation in application to the processes of firing up a boiler and stabilizing the flame combustion. The experimental test bed with a commercial-scale burner is used for determining the conditions of plasma ignition of low-reactivity high-ash anthracite depending on the concentration of coal in the air mixture and velocity of the latter. The calculations produce an equation (important from the standpoint of practical applications) for determining the energy expenditure for plasma ignition of coal depending on the basic process parameters. The tests reveal the difficulties arising in firing up a boiler with direct delivery of pulverized coal from the mill to furnace. A scheme is suggested, which enables one to reduce the energy expenditure for ignition of coal and improve the reliability of the process of firing up such a boiler. Results are given of calculation of plasma thermochemical preparation of coal under conditions of lower concentration of oxygen in the air mixture.

  7. Safety analysis of optically ignited explosive and pyrotechnic devices

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.; Holswade, S.

    1994-05-01

    The future of optical ordnance depends on the acceptance, validation and verification of the stated safety enhancement claims of optical ordnance over existing electrical explosive devices (EED`s). Sandia has been pursuing the development of optical ordnance, with the primary motivation of this effort being the enhancement of explosive safety by specifically reducing the potential of premature detonation that can occur with low energy electrically ignited explosive devices. By using semiconductor laser diodes for igniting these devices, safety improvements can be made without being detrimental to current system concerns since the inputs required for these devices are similar to electrical systems. Laser Diode Ignition (LDI) of the energetic material provides the opportunity to remove the bridgewire and electrically conductive pins from the charge cavity, creating a Faraday cage and thus isolating the explosive or pyrotechnic materials from stray electrical ignition sources. Recent results from our continued study of safety enhancements are presented. The areas of investigation which are presented include: (1) unintended optical source analysis, specifically lightning insensitivity, (2) electromagnetic radiation (EMR) and electrostatic discharge (ESD) insensitivity analysis, and (3) powder safety.

  8. CO/sub 2/-laser ignition of DAPP targets

    SciTech Connect (OSTI)

    Brannon, P.J.

    1981-07-01

    A pulse derived by shuttering a CO/sub 2/ laser operating in the cw mode has been used to ignite a diallyl phthalate pyrotechnic (DAPP) material. Data from this work along with some data taken earlier, while operating the laser in the pulse mode, are presented. When operating in the cw mode, a pulse is mechanically chopped out of the beam and focussed onto the DAPP material. It was found that the shuttered cw mode of operation gives a more reproducible pulse and a more accurate determination of the incident energy than the pulse mode does. The pulse widths for threshold ignition (50% ignitions) at different power levels have been determined for 254 and 127 mm-focal-length lenses which were used to focus the beam on the target. It was also found that targets could be penetrated without ignition of the DAPP material. A 2.54 mm-thick DAPP target is penetrated by the laser beam if the energy per unit area exceeds 29 +1 J/mm/sup 2/. Based on this study, recommendations are given for improving the present test procedures used for DAPP material.

  9. Drying low rank coal and retarding spontaneous ignition

    SciTech Connect (OSTI)

    Bixel, J.C.; Bellow, E.J.; Heaney, W.F.; Facinelli, S.H.

    1989-05-09

    A method is described of producing a dried particulate coal fuel having a reduced tendency to ignite spontaneously comprising spraying and intimately mixing the dried coal with an aqueous emulsion of a material selected from the group consisting of foots oils, petrolatum filtrate, and hydrocracker recycle oil.

  10. Director of the National Ignition Facility, Lawrence Livermore National

    National Nuclear Security Administration (NNSA)

    Laboratory | National Nuclear Security Administration the National Ignition Facility, Lawrence Livermore National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional

  11. Direct-driveignition designs with mid-Z ablators

    SciTech Connect (OSTI)

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S.

    2015-03-15

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laserplasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO{sub 2}) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laserplasma instabilities and a similar hydrodynamic stability.

  12. Low emission internal combustion engine

    DOE Patents [OSTI]

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  13. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  14. Internal combustion rotary engine

    SciTech Connect (OSTI)

    Chen, S.P.

    1993-08-24

    An internal combustion rotary engine is described comprising: an internal combustion chamber wherein a combustible fuel-air mixture is ignited for producing a driving gas flow; a central rotor having an outer surface in which at least one group of curved channels circumferentially-and-axially extending without radially extending through the central rotor; and at least one annular rotor each enclosing the central rotor having an inner surface in which a corresponding number of curved channels circumferentially-and-axially extending without radially extending through the annular rotor; when the curved channels in the central rotor communicate with the curved channels in the annular rotor, the driving gas flow circumferentially-and-axially passing between the outer surface of the central rotor and the inner surface of the annular rotor for rotating the central rotor and the annular rotor in opposite directions.

  15. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    SciTech Connect (OSTI)

    Seshadri, Vikram; Kaisare, Niket S.

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  16. Annual Report FY2014 Alternative Fuels DISI Engine Research.

    SciTech Connect (OSTI)

    Sjoberg, Carl-Magnus G.

    2015-01-01

    Due to concerns about future petroleum supply and accelerating climate change, increased engine efficiency and alternative fuels are of interest. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Lean operation is studied since it can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, focus is on techniques that can overcome these challenges. Specifically, fuel stratification can be used to ensure ignition and completeness of combustion, but may lead to soot and NOx emissions challenges. Advanced ignition system and intake air preheating both promote ignition stability. Controlled end-gas autoignition can be used maintain high combustion efficiency for ultra-lean well-mixed conditions. However, the response of both combustion and exhaust emission to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the combustion-control strategies of the engine must adopt to the fuel being utilized.

  17. Final report for miniature laser ignited bellows motor

    SciTech Connect (OSTI)

    Renfro, S.L.

    1994-02-18

    A miniature optically ignited actuation device has been demonstrated using a laser diode as an ignition source. This pyrotechnic driven motor provides between 4 and 6 lbs of linear force across a 0.090 inch diameter surface. The physical envelope of the device is 1/2 inch long and 1/8 inch diameter. This unique application of optical energy can be used as a mechanical link in optical arming systems or other applications where low shock actuation is desired and space is limited. An analysis was performed to determine pyrotechnic materials suitable to actuate a bellows device constructed of aluminum or stainless steel. The aluminum bellows was chosen for further development and several candidate pyrotechnics were evaluated. The velocity profile and delivered force were quantified using an non-intrusive optical motion sensor.

  18. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the worlds largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  19. Nuclear diagnostics for the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Murphy, Thomas J.; Barnes, Cris W.; Berggren, R. R.; Bradley, P.; Caldwell, S. E.; Chrien, R. E.; Faulkner, J. R.; Gobby, P. L.; Hoffman, N.; Jimerson, J. L.

    2001-01-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, will provide unprecedented opportunities for the use of nuclear diagnostics in inertial confinement fusion experiments. The completed facility will provide 2 MJ of laser energy for driving targets, compared to the approximately 40 kJ that was available on Nova and the approximately 30 kJ available on Omega. Ignited NIF targets are anticipated to produce up to 10{sup 19} DT neutrons. In addition to a basic set of nuclear diagnostics based on previous experience, these higher NIF yields are expected to allow innovative nuclear diagnostic techniques to be utilized, such as neutron imaging, recoil proton techniques, and gamma-ray-based reaction history measurements.

  20. Laser Spark Distribution and Ignition System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Laser Spark Distribution and Ignition System A method of creating sparks in lean fuel/air mixtures without expensive,short-lifetime spark plugs National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication Laser Spark Distribution and

  1. Groundbreaking at National Ignition Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration at National Ignition Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our

  2. Advanced stratified charge rotary aircraft engine design study

    SciTech Connect (OSTI)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise and installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  3. The National Ignition Facility: Studying the Stars in the Laboratory

    SciTech Connect (OSTI)

    Boyd, R

    2008-09-17

    The National Ignition Facility, to be completed in 2009, will be the highest energy laser ever built. The high temperatures and densities it will produce will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as in nuclear astrophysics, X-ray astronomy, hydrodynamics, and planetary science. The National Ignition Facility, NIF (1), located at Lawrence Livermore National Lab, (LLNL) is expected to produce inertial confinement fusion (ICF) by delivering sufficient laser energy to compress and heat a millimeter-radius pellet of DT sufficiently to produce fusion to {sup 4}He+neutron and 17.6 MeV per reaction. NIF will be completed by March, 2009, at which time a National Ignition Campaign (2), NIC, a series of experiments to optimize the ICF parameters, will begin. Although NIF is a research facility, a successful NIC would have implications for future energy sources. In addition to the goal of ICF, NIF will support programs in stockpile stewardship. However, the conditions that NIF creates will simulate those inside stars and planets sufficiently closely to provide compelling motivation for experiments in basic high-energy-density (HED) science especially, for the first time, in nuclear astrophysics.

  4. The third-generation turbocharged engine for the Audi 5000 CS and 5000 CS Quattro

    SciTech Connect (OSTI)

    Stock, D.

    1986-01-01

    In September 1985 the new Audi 5000 CS Quattro was introduced to the American market. This luxurious high performance touring sedan has been equipped with a more advanced turbocharged engine with intercooler and electronic engine management giving improved performance, excellent torque, faster response and better fuel economy. The basic engine is the tried-and-tested Audi 5-cylinder unit. The turbocharged engine's ancillary systems, the electronic ignition control and fuel injection have all been newly developed, carefully optimized and well matched in the special demands of a turbocharged engine. The ignition system controls the engine and fuel injection and delivers analog and digital signals to the car's instrument panel display. The system also has an integrated self-diagnostic function.

  5. Rotary engine with dual spark plugs and fuel injectors

    SciTech Connect (OSTI)

    Abraham, J.; Bracco, F.V.

    1991-06-11

    This patent describes a stratified charge rotary combustion engine having a housing having a running surface surrounding a working chamber, the running surface having a two-lobed profile, the lobes forming a junction in a top-dead-center region of the housing, a rotor mounted for rotation in the working chamber, a fuel injection and ignition system placed in the top-dead center region. It includes a pilot fuel injector fuel into the working chamber; a first spark plug located upstream of the pilot fuel injector for igniting fuel injected by the pilot fuel injector, the pilot fuel injector and the first spark plug being located on a downstream side of the junction; a main fuel injector for injecting fuel into the working chamber, the ignited pilot fuel acting to ignite fuel injected by the main injector; and a second spark plug located upstream of the main fuel injector and located upstream of the junction for igniting fuel/air mixture in the working chamber.

  6. mhtml:file://H:\CATX\APPROVED-CXS\EERE FOA 1201 - Rankine Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eaton Corporation STATE: WI PROJECT TITLE : Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0001201 DE-EE0007286 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: B3.6 Small-scale research and

  7. Overview of Sonex Combustion Systems (SCS) for DI Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sonex Combustion Systems (SCS) for DI Engines Overview of Sonex Combustion Systems (SCS) for DI Engines The SCS system has undergone computational and experimental verification and allows for controlled auto-ignition of low-cetane fuels. PDF icon deer08_pouring.pdf More Documents & Publications Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Clean Technology for Diesel Expansion High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Eng

  8. HD Applications of Significantly Downsized SI Engines Using Alcohol DI for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Knock Avoidance | Department of Energy Applications of Significantly Downsized SI Engines Using Alcohol DI for Knock Avoidance HD Applications of Significantly Downsized SI Engines Using Alcohol DI for Knock Avoidance Direct injection of a second fuel (ethanol or methanol) is explored as a means of avoiding knock in turbocharged, high-compression ratio spark-ignited engines that could replace diesels in certain vocational applications. PDF icon deer08_blumberg.pdf More Documents &

  9. Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine

    Office of Scientific and Technical Information (OSTI)

    Equipped with Variable Valve Timing (Conference) | SciTech Connect Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing Citation Details In-Document Search Title: Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable

  10. Develop the dual fuel conversion system for high output, medium speed diesel engines. Final report

    SciTech Connect (OSTI)

    1998-07-16

    The original plan for the project involved design modifications to an existing system to enhance its performance and increase the limit of power that was achieved by the original design and to apply the higher performance product to the full sized engine and test its performance. The new system would also be applied to a different engine model. The specific work would include the redesign of gas injectors, piston configurations and two types of igniters, engine instrumentation, monitoring and testing.

  11. Enabling High Efficiency Ethanol Engines

    SciTech Connect (OSTI)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  12. A geophysical shock and air blast simulator at the National Ignition...

    Office of Scientific and Technical Information (OSTI)

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a...

  13. Reliability Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is ...

  14. The ePLAS Code for Ignition Studies

    SciTech Connect (OSTI)

    Mason, Rodney J

    2012-09-20

    Inertial Confinement Fusion (ICF) presents unique opportunities for the extraction of clean energy from Fusion. Intense lasers and particle beams can create and interact with such plasmas, potentially yielding sufficient energy to satisfy all our national needs. However, few models are available to help aid the scientific community in the study and optimization of such interactions. This project enhanced and disseminated the computer code ePLAS for the early understanding and control of Ignition in ICF. ePLAS is a unique simulation code that tracks the transport of laser light to a target, the absorption of that light resulting in the generation and transport of hot electrons, and the heating and flow dynamics of the background plasma. It uses an implicit electromagnetic field-solving method to greatly reduce computing demands, so that useful target interaction studies can often be completed in 15 minutes on a portable 2.1 GHz PC. The code permits the rapid scoping of calculations for the optimization of laser target interactions aimed at fusion. Recent efforts have initiated the use of analytic equations of state (EOS), K-alpha image rendering graphics, allocatable memory for source-free usage, and adaption to the latest Mac and Linux Operating Systems. The speed and utility of ePLAS are unequaled in the ICF simulation community. This project evaluated the effects of its new EOSs on target heating, compared fluid and particle models for the ions, initiated the simultaneous use of both ion models in the code, and studied long time scale 500 ps hot electron deposition for shock ignition. ePLAS has been granted EAR99 export control status, permitting export without a license to most foreign countries. Beta-test versions of ePLAS have been granted to several Universities and Commercial users. The net Project was aimed at achieving early success in the laboratory ignition of thermonuclear targets and the mastery of controlled fusion power for the nation.

  15. SI Engine Trends: A Historical Analysis with Future Projections

    SciTech Connect (OSTI)

    Pawlowski, Alexander; Splitter, Derek A

    2015-01-01

    It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.

  16. Numerical routines for predicting ignition in pyrotechnic devices

    SciTech Connect (OSTI)

    Pierce, K.G.

    1986-06-01

    Two numerical models of the thermal processes leading to ignition in a pyrotechnic device have been developed. These models are based on finite difference approximations to the heat diffusion equation, with temperature-dependent thermal properties, in a single spatial coordinate. The derivation of the finite difference equations is discussed and the methods employed at boundaries and interfaces are given. The sources of the thermal-properties data are identified and how these data are used is explained. The program structure is explained and example runs of the programs are given.

  17. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  18. Lawrence Livermore National Laboratory is home to the National Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is home to the National Ignition Facility (NIF), which began full operations in March 2009. NIF's 192 powerful laser beams, housed in a 10-story building the size of 3 football fields, can deliver nearly 2 million joules of ultraviolet laser energy in billionth-of-a- second pulses to the target chamber center. When NIF's laser beams focus all of their energy on a target the size of a pencil eraser, they briefly produce extraordinary temperature and pressure conditions within the target. The

  19. Ethane ignition and oxidation behind reflected shock waves

    SciTech Connect (OSTI)

    de Vries, Jaap; Hall, Joel M.; Simmons, Stefanie L.; Kalitan, Danielle M.; Petersen, Eric L.; Rickard, Matthew J.A.

    2007-07-15

    Several diluted C{sub 2}H{sub 6}/O{sub 2}/Ar mixtures of varying concentrations and equivalence ratios (0.5<{phi}<2.0) were studied at temperatures between 1218 and 1860 K and at pressures between 0.57 and 3.0 atm using a shock tube. The argon dilution ranged from 91 to 98% by volume. Reaction progress was monitored using chemiluminescence emission from OH{sup *} and CH{sup *} at 307 and 431 nm, respectively. The dependence of ignition delay time on temperature, activation energy, and reactant concentrations is given in a master correlation of all the experimental data. The overall activation energy was found to be 39.6 kcal/mol over the range of conditions studied. For the first time in a shock-tube C{sub 2}H{sub 6} oxidation study, detailed species profile data and quantitative OH{sup *} time histories were documented, in addition to ignition delay times, and compared against modern detailed mechanisms. Because of the comprehensive scope of the present study and the high precision of the experimental data, several conclusions can be drawn that could not have been reached from earlier studies. Although there is some discrepancy among previous ethane oxidation data, the present work clearly shows the convergence of ignition delay time measurements to those herein and the remarkable accuracy of current kinetics models over most of the parameter space explored, despite the variation in the literature data. However, two areas shown to still need more measurements and better modeling are those of higher pressures and fuel-rich ethane-air mixtures. After appropriate OH{sup *} and CH{sup *} submechanisms are added, two modern chemical kinetics mechanisms containing high-temperature ethane chemistry are compared to the data to gauge the current state of C{sub 2}H{sub 6} oxidation modeling over the conditions of this study. The reproduction of the OH{sup *} and CH{sup *} profiles, together with {tau}{sub ign} predictions by these models, are compared against the profiles and ignition times found in the experimental data. The models are then used to identify some key reactions in ethane oxidation and CH formation under the conditions of this study. (author)

  20. The First Experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Landen, O L; Glenzer, S; Froula, D; Dewald, E; Suter, L J; Schneider, M; Hinkel, D; Fernandez, J; Kline, J; Goldman, S; Braun, D; Celliers, P; Moon, S; Robey, H; Lanier, N; Glendinning, G; Blue, B; Wilde, B; Jones, O; Schein, J; Divol, L; Kalantar, D; Campbell, K; Holder, J; MacDonald, J; Niemann, C; Mackinnon, A; Collins, R; Bradley, D; Eggert, J; Hicks, D; Gregori, G; Kirkwood, R; Young, B; Foster, J; Hansen, F; Perry, T; Munro, D; Baldis, H; Grim, G; Heeter, R; Hegelich, B; Montgomery, D; Rochau, G; Olson, R; Turner, R; Workman, J; Berger, R; Cohen, B; Kruer, W; Langdon, B; Langer, S; Meezan, N; Rose, H; Still, B; Williams, E; Dodd, E; Edwards, J; Monteil, M; Stevenson, M; Thomas, B; Coker, R; Magelssen, G; Rosen, P; Stry, P; Woods, D; Weber, S; Alvarez, S; Armstrong, G; Bahr, R; Bourgade, J; Bower, D; Celeste, J; Chrisp, M; Compton, S; Cox, J; Constantin, C; Costa, R; Duncan, J; Ellis, A; Emig, J; Gautier, C; Greenwood, A; Griffith, R; Holdner, F; Holtmeier, G; Hargrove, D; James, T; Kamperschroer, J; Kimbrough, J; Landon, M; Lee, D; Malone, R; May, M; Montelongo, S; Moody, J; Ng, E; Nikitin, A; Pellinen, D; Piston, K; Poole, M; Rekow, V; Rhodes, M; Shepherd, R; Shiromizu, S; Voloshin, D; Warrick, A; Watts, P; Weber, F; Young, P; Arnold, P; Atherton, L J; Bardsley, G; Bonanno, R; Borger, T; Bowers, M; Bryant, R; Buckman, S; Burkhart, S; Cooper, F; Dixit, S; Erbert, G; Eder, D; Ehrlich, B; Felker, B; Fornes, J; Frieders, G; Gardner, S; Gates, C; Gonzalez, M; Grace, S; Hall, T; Haynam, C; Heestand, G; Henesian, M; Hermann, M; Hermes, G; Huber, S; Jancaitis, K; Johnson, S; Kauffman, B; Kelleher, T; Kohut, T; Koniges, A E; Labiak, T; Latray, D; Lee, A; Lund, D; Mahavandi, S; Manes, K R; Marshall, C; McBride, J; McCarville, T; McGrew, L; Menapace, J; Mertens, E; Munro, D; Murray, J; Neumann, J; Newton, M; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rinnert, R; Riordan, B; Ross, G; Robert, V; Tobin, M; Sailors, S; Saunders, R; Schmitt, M; Shaw, M; Singh, M; Spaeth, M; Stephens, A; Tietbohl, G; Tuck, J; Van Wonterghem, B; Vidal, R; Wegner, P; Whitman, P; Williams, K; Winward, K; Work, K

    2005-11-11

    A first set of laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and x-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options.

  1. Gas-filled hohlraum experiments at the national ignition facility.

    SciTech Connect (OSTI)

    Fernndez, J. C.; Gautier, D. C.; Goldman, S. R.; Grimm, B. M.; Hegelich, B. M.; Kline, J. L.; Montgomery, D. S.; Lanier, N. E.; Rose, H. A.; Schmidt, D. M.; Swift, D. C.; Workman, J. B.; Alvarez, Sharon; Bower, Dan.; Braun, Dave.; Campbell, K.; DeWald, E.; Glenzer, S.; Holder, J.; Kamperschroer, J. H.; Kimbrough, Joe; Kirkwood, Robert; Landen, O. L.; Mccarville, Tom; Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M; Watts, Phil; Young, Ben-li 194154; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  2. Proceedings of the 1996 spring technical conference of the ASME Internal Combustion Engine Division. Volume 2: Engine design and engine systems; ICE-Volume 26-2

    SciTech Connect (OSTI)

    Uzkan, T.

    1996-12-31

    Although the cost of the petroleum crude has not increased much within the last decade, the drive to develop internal combustion engines is still continuing. The basic motivation of this drive is to reduce both emissions and costs. Recent developments in computer chip production and information management technology have opened up new applications in engine controls and monitoring. The development of new information is continuing at a rapid pace. Some of these research and development results were presented at the 1996 Spring Technical Conference of the ASME Internal Combustion Engine Division in Youngstown, Ohio, April 21--24, 1996. The papers presented covered various aspects of the design, development, and application of compression ignition and spark ignition engines. The conference was held at the Holiday Inn Metroplex Complex and hosted by Altronic Incorporated of Girard, Ohio. The written papers submitted to the conference have been published in three conference volumes. Volume 2 includes the papers on the topics of engine design, engine systems, and engine user experience.

  3. Improving combustion stability in a bi-fuel engine

    SciTech Connect (OSTI)

    1995-06-01

    This article describes how a new strategy for ignition timing control can reduce NOx emissions from engines using CNG and gasoline. Until a proper fueling infrastructure is established, a certain fraction of vehicles powered by compressed natural gas (CNG) must have bi-fuel capability. A bi-fuel engine, enjoying the longer range of gasoline and the cleaner emissions of CNG, can overcome the problem of having few CNG fueling stations. However, bi-fuel engines must be optimized to run on both fuels since low CNG volumetric efficiency causes power losses compared to gasoline.

  4. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman; Allen J. Adriani

    2004-01-01

    For the period of the 8th reporting period high-impact control technologies were identified during the meeting at Cooper in Oklahoma City. The technologies that were identified will be tested on the Ajax DP-115 engine and are capable of being widely utilized by the E&P industry. Two major areas where engine controls and ignition systems, but still included were other alternatives to reduce emissions. The most exhilarating item for this quarter was when Ajax engine was delivered to the test bed at the NGML.

  5. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Opportunities » Engineering Institute Engineering Institute Engineering dynamics that include flight, vibration isolation for precision manufacturing, earthquake engineering, blast loading, signal processing, and experimental model analysis. Contact Leader, LANL Charles Farrar Email Leader, UCSD Michael Todd Email LANL Program Administrator Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email Collaboration for conducting mission-driven,

  6. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    SciTech Connect (OSTI)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  7. Stirling engines

    SciTech Connect (OSTI)

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  8. Characterization of in situ oil shale retorts prior to ignition

    DOE Patents [OSTI]

    Turner, Thomas F. (Laramie, WY); Moore, Dennis F. (Laramie, WY)

    1984-01-01

    Method and system for characterizing a vertical modified in situ oil shale retort prior to ignition of the retort. The retort is formed by mining a void at the bottom of a proposed retort in an oil shale deposit. The deposit is then sequentially blasted into the void to form a plurality of layers of rubble. A plurality of units each including a tracer gas cannister are installed at the upper level of each rubble layer prior to blasting to form the next layer. Each of the units includes a receiver that is responsive to a coded electromagnetic (EM) signal to release gas from the associated cannister into the rubble. Coded EM signals are transmitted to the receivers to selectively release gas from the cannisters. The released gas flows through the retort to an outlet line connected to the floor of the retort. The time of arrival of the gas at a detector unit in the outlet line relative to the time of release of gas from the cannisters is monitored. This information enables the retort to be characterized prior to ignition.

  9. Progress in Fast Ignition Studies with Electrons and Protons

    SciTech Connect (OSTI)

    MacKinnon, A. J.; Chen, H.; Hey, D.; Key, M. H.; MacPhee, A. G.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, S.; Higginson, D.; King, J. A.; Ma, T.; Wei, M. S.; Chen, C. D.; Chowdhury, E.; Link, A.

    2009-09-10

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) concept for initiating burn in a fusion capsule. In order to investigate critical aspects needed for a FI point design, experiments were performed to study 1) laser-to-electrons or protons conversion issues and 2) laser-cone interactions including prepulse effects. A large suite of diagnostics was utilized to study these important parameters. Using cone--wire surrogate targets it is found that pre-pulse levels on medium scale lasers such as Titan at Lawrence Livermore National Laboratory produce long scale length plasmas that strongly effect coupling of the laser to FI relevant electrons inside cones. The cone wall thickness also affects coupling to the wire. Conversion efficiency to protons has also been measured and modeled as a function of target thickness, material. Conclusions from the proton and electron source experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed. In conclusion, a program of study will be presented based on understanding the fundamental physics of the electron or proton source relevant to FI.

  10. Finite Mach number spherical shock wave, application to shock ignition

    SciTech Connect (OSTI)

    Vallet, A.; Ribeyre, X.; Tikhonchuk, V.

    2013-08-15

    A converging and diverging spherical shock wave with a finite initial Mach number M{sub s0} is described by using a perturbative approach over a small parameter M{sub s}{sup ?2}. The zeroth order solution is the Guderley's self-similar solution. The first order correction to this solution accounts for the effects of the shock strength. Whereas it was constant in the Guderley's asymptotic solution, the amplification factor of the finite amplitude shock ?(t)?dU{sub s}/dR{sub s} now varies in time. The coefficients present in its series form are iteratively calculated so that the solution does not undergo any singular behavior apart from the position of the shock. The analytical form of the corrected solution in the vicinity of singular points provides a better physical understanding of the finite shock Mach number effects. The correction affects mainly the flow density and the pressure after the shock rebound. In application to the shock ignition scheme, it is shown that the ignition criterion is modified by more than 20% if the fuel pressure prior to the final shock is taken into account. A good agreement is obtained with hydrodynamic simulations using a Lagrangian code.

  11. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-08-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  12. Target diagnostic system for the national ignition facility (invited)

    SciTech Connect (OSTI)

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.; Fehl, D.L.; Hebron, D.E.; Moats, A.R.; Noack, D.D.; Porter, J.L.; Ruggles, L.E.; Ruiz, C.L.; Torres, J.A.; Cable, M.D.; Bell, P.M.; Clower, C.A.; Hammel, B.A.; Kalantar, D.H.; Karpenko, V.P.; Kauffman, R.L.; Kilkenny, J.D.; Lee, F.D.; Lerche, R.A.; MacGowan, B.J.; Moran, M.J.; Nelson, M.B.; Olson, W.; Orzechowski, T.J.; Phillips, T.W.; Ress, D.; Tietbohl, G.L.; Trebes, J.E.; Bartlett, R.J.; Berggren, R.; Caldwell, S.E.; Chrien, R.E.; Failor, B.H.; Fernandez, J.C.; Hauer, A.; Idzorek, G.; Hockaday, R.G.; Murphy, T.J.; Oertel, J.; Watt, R.; Wilke, M.; Bradley, D.K.; Knauer, J.; Petrasso, R.D.; Li, C.K.

    1997-01-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x ray, gamma ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating in the high radiation, electromagnetic pulse, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests. {copyright} {ital 1997 American Institute of Physics.}

  13. Ignition and extinction phenomena in helium micro hollow cathode discharges

    SciTech Connect (OSTI)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R.; Overzet, L. J.

    2013-12-28

    Micro hollow cathode discharges (MHCD) were produced using 250??m thick dielectric layer of alumina sandwiched between two nickel electrodes of 8??m thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2??s long current peak as high as 24?mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400?Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few ?s relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.

  14. The turbocharged and intercooled 2. 3 liter engine for the Volvo 760

    SciTech Connect (OSTI)

    Andersson, J.; Bengtsson, A.; Eriksson, S.

    1984-01-01

    In 1981 Volvo launched the 2.1l turbocharged engine for the 240 model. Since then, the market interest for turbocharged engines has increased rapidly and along with this the demand for more efficient engines. The use of intercooler and micro-computer controlled fuel- and ignition systems in passenger car applications made it possible to develop a second generation of turbocharged engines with the capability to meet these demands. This paper describes the 2.3l turbocharged engine and its development for the US-version of the 1984 760 model.

  15. Supersonic combustion engine and method of combustion initiation and distribution

    SciTech Connect (OSTI)

    Stickler, D.B.; Ballantyne, A.; Kyuman Jeong.

    1993-06-29

    A supersonic combustion ramjet engine having a combustor with a combustion zone intended to channel gas flow at relatively high speed therethrough, the engine comprising: means for substantially continuously supplying fuel into the combustion zone; and means for substantially instantaneously igniting a volume of fuel in the combustion zone for providing a spatially controlled combustion distribution, the igniting means having means for providing a diffuse discharge of energy into the volume, the volume extending across a substantially complete cross-sectional area of the combustion zone, the means for discharging energy being capable of generating free radicals within the volume of reactive fuel in the combustion zone such that fuel in the volume can initiate a controlled relatively rapid combustion of fuel in the combustion zone whereby combustion distribution in relatively high speed gas flows through the combustion zone can be initiated and controlled without dependence upon a flame holder or relatively high local static temperature in the combustion zone.

  16. Modeling and cold start in alcohol-fueled engines

    SciTech Connect (OSTI)

    Markel, A.J.; Bailey, B.K.

    1998-05-01

    Neat alcohol fuels offer several benefits over conventional gasoline in automotive applications. However, their low vapor pressure and high heat of vaporization make it difficult to produce a flammable vapor composition from a neat alcohol fuel during a start under cold ambient conditions. Various methods have been introduced to compensate for this deficiency. In this study, the authors applied computer modeling and simulation to evaluate the potential of four cold-start technologies for engines fueled by near-neat alcohol. The four technologies were a rich combustor device, a partial oxidation reactor, a catalytic reformer, and an enhanced ignition system. The authors ranked the competing technologies by their ability to meet two primary criteria for cold starting an engine at {minus}25 deg C and also by several secondary parameters related to commercialization. Their analysis results suggest that of the four technologies evaluated, the enhanced ignition system is the best option for further development.

  17. Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine

    Broader source: Energy.gov [DOE]

    Determine operating conditions to achieve HECC operation, understand limitations of HECC operation, and determine sensitivies to operating parameter variations

  18. Vehicle Technologies Office Merit Review 2015: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  19. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  20. Heavy Alcohols as a Fuel Blending Agent for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Blends of Phytol and diesel (by volume) were compared against baseline diesel experiments and simulations

  1. Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  2. Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Adaptive engine injection for emissions reduction

    DOE Patents [OSTI]

    Reitz, Rolf D. : Sun, Yong

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  5. High efficiency stoichiometric internal combustion engine system

    DOE Patents [OSTI]

    Winsor, Richard Edward (Waterloo, IA); Chase, Scott Allen (Cedar Falls, IA)

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  6. Pulsed jet combustion generator for premixed charge engines

    DOE Patents [OSTI]

    Oppenheim, A. K.; Stewart, H. E.; Hom, K.

    1990-01-01

    A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

  7. Pulsed jet combustion generator for non-premixed charge engines

    DOE Patents [OSTI]

    Oppenheim, A. K.; Stewart, H. E.

    1990-01-01

    A device for introducing fuel into the head space of cylinder of non-premixed charge (diesel) engines is disclosed, which distributes fuel in atomized form in a plume, whose fluid dynamic properties are such that the compression heated air in the cylinder head space is entrained into the interior of the plume where it is mixed with and ignites the fuel in the plume interior, to thereby control combustion, particularly by use of a multiplicity of individually controllable devices per cylinder.

  8. Application of charge stratification, lean burn combustion systems and anti-knock control devices in small two-stroke cycle gasoline engines

    SciTech Connect (OSTI)

    Kuentscher, V.

    1986-01-01

    For essentially reducing the specific fuel consumption in two-stroke cycle engines and the concentration of hydrocarbons (HC) in the exhaust gas, the normal engine was equipped with a new ram tuned fuel injection system. By the application of charge stratification, lean burn combustion, different ignition systems and a special anti-knock device, considerable fuel consumption and HC emission reductions were obtained.

  9. Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Barone, Teresa L

    2010-01-01

    Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.

  10. Axial flow rotary engine

    SciTech Connect (OSTI)

    Loran, W.; Robinson, M.A.

    1989-07-18

    This paper describes an internal combustion engine. It comprises: a housing having an intake port at one end thereof and an exhaust port at the other end thereof; a compression chamber in the housing near the one end; compressor means in the compression chamber; a compressor transfer port opening through the downstream outlet wall; an expansion chamber in the housing near the other end thereof to receive combusted gases; work means in the expansion chamber driven by expanding, combusted gases; means rotating the compressor outlet wall at the same rotational drive speed as the expander inlet wall; an expansion chamber inlet port opening extending through the upstream inlet wall; a cylindrical combustion chamber block rotatable in the housing intermediate the compression chamber and the expansion chamber; at least two combustion chambers in the block; means rotating the block at a reduced speed relative to the speed of rotation of the compressor outlet wall and the expander inlet wall; means for igniting the charge of compressed gas during the intermediate portion of each revolution of the combustion chamber block. The combustion chambers being substantially hemispherical; the speed of rotation of the compressor outlet wall is in the same ratio to the speed of rotation of the combustion chamber block as the number of combustion chambers in the block is to the number of combustion chambers less one.

  11. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    SciTech Connect (OSTI)

    Sjöberg, Carl-Magnus G.

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness of combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.

  12. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-30

    To establish Department of Energy (DOE) value engineering policy that establishs and maintains cost-effective value procedures and processes.

  13. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  14. Validating hydrodynamic growth in National Ignition Facility implosions

    SciTech Connect (OSTI)

    Peterson, J. L. Casey, D. T.; Hurricane, O. A.; Raman, K. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    We present new hydrodynamic growth experiments at the National Ignition Facility, which extend previous measurements up to Legendre mode 160 and convergence ratio 4, continuing the growth factor dispersion curve comparison of the low foot and high foot pulses reported by Casey et al. [Phys. Rev. E 90, 011102(R) (2014)]. We show that the high foot pulse has lower growth factor and lower growth rate than the low foot pulse. Using novel on-capsule fiducial markers, we observe that mode 160 inverts sign (changes phase) for the high foot pulse, evidence of amplitude oscillations during the Richtmyer-Meshkov phase of a spherically convergent system. Post-shot simulations are consistent with the experimental measurements for all but the shortest wavelength perturbations, reinforcing the validity of radiation hydrodynamic simulations of ablation front growth in inertial confinement fusion capsules.

  15. Shock-ignition relevant experiments with planar targets on OMEGA

    SciTech Connect (OSTI)

    Hohenberger, M.; Hu, S. X.; Anderson, K. S.; Boehly, T. R.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Yaakobi, B.; Theobald, W.; Lafon, M.; Nora, R.; Fusion Science Center, University of Rochester, Rochester, New York 14623 ; Betti, R.; Meyerhofer, D. D.; Fusion Science Center, University of Rochester, Rochester, New York 14623; Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 ; Casner, A.; Fratanduono, D. E.; Ribeyre, X.; Schurtz, G.

    2014-02-15

    We report on laser-driven, strong-shock generation and hot-electron production in planar targets in the presence of a pre-plasma at shock-ignition (SI) relevant laser and pre-plasma conditions. 2-D simulations reproduce the shock dynamics well, indicating ablator shocks of up to 75 Mbar have been generated. We observe hot-electron temperatures of ?70?keV at intensities of 1.4??10{sup 15}?W/cm{sup 2} with multiple overlapping beams driving the two-plasmon decay instability. When extrapolated to SI-relevant intensities of ?10{sup 16}?W/cm{sup 2}, the hot electron temperature will likely exceed 100?keV, suggesting that tightly focused beams without overlap are better suited for launching the ignitor shock.

  16. A simplified model of TiH1.65/KClO4 pyrotechnic ignition.

    SciTech Connect (OSTI)

    Chen, Ken Shuang

    2009-04-01

    A simplified model was developed and is presented in this report for simulating thermal transport coupled with chemical reactions that lead to the pyrotechnic ignition of TiH1.65/KClO4 powder. The model takes into account Joule heating via a bridgewire, thermal contact resistance at the wire/powder interface, convective heat loss to the surroundings, and heat released from the TiH1.65- and KClO4-decomposition and TiO2-oxidation reactions. Chemical kinetic sub-models were put forth to describe the chemical reaction rate(s) and quantify the resultant heat release. The simplified model predicts pyrotechnic ignition when heat from the pyrotechnic reactions is accounted for. Effects of six key parameters on ignition were examined. It was found that the two reaction-rate parameters and the thermal contact resistance significantly affect the dynamic ignition process whereas the convective heat transfer coefficient essentially has no effect on the ignition time. Effects of the initial/ambient temperature and electrical current load through the wire are as expected. Ignition time increases as the initial/ambient temperature is lowered or the wire current load is reduced. Lastly, critical needs such as experiments to determine reaction-rate and other model-input parameters and to measure temperature profiles, time to ignition and burn-rate data for model validation as well as efforts in incorporating reaction-rate dependency on pressure are pointed out.

  17. Engineered Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Engineered Materials Materials design, fabrication, assembly, and characterization for national security needs. Contact Us Group Leader Ross Muenchausen Email Deputy Group Leader Dominic Peterson Email Group Office (505)-667-6887 We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly, characterization, and field support. We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly,

  18. Polar-direct-drive experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; et al

    2015-05-11

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore » geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D₂ gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹⁴ to 1.2 10¹⁵W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

  19. Polar-direct-drive experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Froula, D. H.; and others

    2015-05-15

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drivespecific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D{sub 2} gas were imploded with total drive energies ranging from ?500 to 750?kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8??10{sup 14} to 1.2??10{sup 15?}W/cm{sup 2}. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  20. Efficient Emissions Control for Multi-Mode Lean DI Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace031_parks_2011_o.pdf More Documents & Publications Hydrocarbon fouling of SCR during Premixed Charge Compression Ignition (PCCI) combustion High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Efficient Emissions Control for Multi-Mode Lean DI Engines

  1. Heavy Alcohols as a Fuel Blending Agent for Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications HD Applications of Significantly Downsized SI Engines Using Alcohol DI for Knock Avoidance Characterization of Dual-Fuel Reactivity Controlled ...

  2. Ion beam requirements for fast ignition of inertial fusion targets...

    Office of Scientific and Technical Information (OSTI)

    Laser Engineering, Osaka University, Osaka (Japan) Publication Date: 2015-01-15 OSTI Identifier: 22408006 Resource Type: Journal Article Resource Relation: Journal Name: Physics ...

  3. Turbocharged Spark Ignited Direct Injection - A Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E85 Optimized Engine Two-Stage Variable Compression Ratio (VCR) System to Increase Efficiency in Gasoline Powertrains Cold-Start Performance and Emissions Behavior of Alcohol Fuels ...

  4. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines ...

  5. Improving the Efficiency of Spark Ignited, Stoichiometric Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Compact, electro-hydraulic, variable valve actuation system providing variable lift, ...

  6. High-Efficiency Clean Combustion Design for Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Sources and Mitigation of CO and UHC Emissions in Low-temperature Diesel Combustion Regimes:...

  7. THE ODTX SYSTEM FOR THERMAL IGNITION AND THERMAL SAFETY STUDY OF ENERGETIC MATERIALS

    SciTech Connect (OSTI)

    Hsu, P C; Hust, G; Howard, M; Maienschein, J L

    2010-03-03

    Understanding the response of energetic material to thermal event is very important for the storage and handling of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) can precisely measure times to explosion and minimum ignition temperatures of energetic materials at elevated temperatures. These measurements provide insight into the relative ease of thermal ignition and allow for the determination of kinetic parameters. The ODTX system can potentialy be a good tool to measure violence of the thermal ignition by monitoring the size of anvil cavity. Recent ODTX experimental data on various energetic materials (solid and liquids) are reported in this paper.

  8. Ion beam requirements for fast ignition of inertial fusion targets (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Ion beam requirements for fast ignition of inertial fusion targets Citation Details In-Document Search Title: Ion beam requirements for fast ignition of inertial fusion targets Ion beam requirements for fast ignition are investigated by numerical simulation taking into account new effects, such as ion beam divergence, not included before. We assume that ions are generated by the TNSA scheme in a curved foil placed inside a re-entrant cone and focused on the cone

  9. A low cost igniter utilizing an SCB and titanium sub-hydride potassium perchlorate pyrotechnic

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.; Grubelich, M.C.; Hartman, J.K.; McCampbell, C.B.; Churchill, J.K.

    1993-12-31

    A conventional NSI (NASA standard initiator) normally employs a hot-wire ignition element to ignite ZPP (zirconium potassium perchlorate). With minor modifications to the interior of a header similar to an NSI device to accommodate an SCB (semiconductor bridge), a low cost initiator was obtained. In addition, the ZPP was replaced with THKP (titanium subhydride potassium perchlorate) to obtain increased overall gas production and reduced static-charge sensitivity. This paper reports on the all-fire and no-fire levels obtained and on a dual mix device that uses THKP as the igniter mix and a thermite as the output mix.

  10. Method and apparatus for igniting an in situ oil shale retort

    DOE Patents [OSTI]

    Burton, Robert S. (Grand Junction, CO); Rundberg, Sten I. (Debeque, CO); Vaughn, James V. (Debeque, CO); Williams, Thomas P. (Debeque, CO); Benson, Gregory C. (Grand Junction, CO)

    1981-01-01

    A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.

  11. Effect of ignition conditions on upward flame spread on a composite material in a corner configuration

    SciTech Connect (OSTI)

    Ohlemiller, T.; Cleary, T.; Shields, J.

    1996-12-31

    This paper focuses on the issue of fire growth on composite materials beyond the region immediately subjected to an ignition source. Suppression of this growth is one of the key issues in realizing the safe usage of composite structural materials. A vinyl ester/glass composite was tested in the form of a 90{degrees} comer configuration with an inert ceiling segment 2.44 m above the top of the fire source. The igniter was a propane burner, either 23 or 38 cm in width with power output varied from 30 to 150 Kw. Upward flame spread rate and heat release rate were measured mainly for a brominated vinyl ester resin but limited results were also obtained for a non-flame retarded vinyl ester and a similar composite coated with an intumescent paint. Rapid fire growth beyond the igniter region was seen for the largest igniter power case; the intumescent coating successfully prevented fire growth for this case.

  12. X-ray area backlighter development at the National Ignition Facility...

    Office of Scientific and Technical Information (OSTI)

    the National Ignition Facility (invited) 1D spectral imaging was used to characterize the K-shell emission of Z 30-35 and Z 40-42 laser-irradiated foils at the National...

  13. Qualitative assessment of the ignition of highly flammable fuels by primary explosives

    SciTech Connect (OSTI)

    Elischer, P.P.; De Yong, L.

    1983-06-01

    An assessment of the ignition of fuel/air mixtures and of fabrics soaked with different fuels (ethanol, n-hexane and diethyl ether) by primary explosives has been carried out.

  14. X-ray area backlighter development at the National Ignition Facility...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: X-ray area backlighter development at the National Ignition Facility (NIF) Citation Details In-Document Search Title: X-ray area backlighter development at the...

  15. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOE Patents [OSTI]

    Benson, David A. (Albuquerque, NM); Bickes, Jr., Robert W. (Albuquerque, NM); Blewer, Robert S. (Albuquerque, NM)

    1990-01-01

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose.

  16. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOE Patents [OSTI]

    Benson, D.A.; Bickes, R.W. Jr.; Blewer, R.S.

    1990-12-11

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose. 2 figs.

  17. The Role of the Federal Project Director: Lessons from the National Ignition Facility

    Broader source: Energy.gov [DOE]

    The National Ignition Facility (NIF) Facility is home of the world’s largest laser.  With 192 laser beams that can deliver more than 60 times the energy of any previous laser system, NIF represents...

  18. "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore National Laboratory | Princeton Plasma Physics Lab November 7, 2012, 4:15pm Colloquia MBG Auditorium "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence Livermore National Laboratory Since completion of the NIF construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been qualified. NIF reached its design goal of 1.8 MJ and 500 TW of ultraviolet light in 2012. The Ignition Campaign

  19. Utilizing the Rapid Ignition Region of HCCI to Attain > 60% BTE |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rapid Ignition Region of HCCI to Attain > 60% BTE Utilizing the Rapid Ignition Region of HCCI to Attain > 60% BTE HCCI is inherently able to produce such rapid combustion (10 … 100µs) that it is effectively constant volume combustion. Constant volume combustion offers significant opportunity for dramatically improving ICRE BTE. However, to be used with conventional ICRE slider-crank kinematics, HCCI must transformed to a moderated mode of combustion that is far

  20. Spherical strong-shock generation for shock-ignition inertial fusion

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Spherical strong-shock generation for shock-ignition inertial fusion Citation Details In-Document Search Title: Spherical strong-shock generation for shock-ignition inertial fusion Recent experiments on the Laboratory for Laser Energetics' OMEGA laser have been carried out to produce strong shocks in solid spherical targets with direct laser illumination. The shocks are launched at pressures of several hundred Mbars and reach Gbar upon convergence. The

  1. General Engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or

  2. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Engineering Institute Multidisciplinary engineering research that integrates advanced modeling and simulations, novel sensing systems and new developments in information technology. May 14, 2013 Los Alamos Research Park Los Alamos Research Park, the home of Engineering Institute Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505)

  3. Multiple vane rotary internal combustion engine

    SciTech Connect (OSTI)

    Pangman, E.L.

    1994-01-11

    A three-piece housing enclosing a cavity has rotatably mounted therein a rotor having a plurality of slots, each slot supporting a vane. Each vane has a retention end guided in its revolution around the rotor by an internal, non-circular vane retention track. Two adjacent vanes define opposite sides of a combustion chamber, while the housing and the portion of the rotor between the adjacent vanes form the remaining surfaces of the combustion chamber. Each combustion chamber is rotated past an intake port, a diagonal plasma bleed-over groove, and an exhaust port to accomplish the phases of a combustion cycle. Fuel ignition is provided to more than one combustion chamber at a time by expanding gases passing through a plasma bleed-over groove and being formed into a vortex that ignites and churns the charge in a succeeding combustion chamber. Exhaust gases remaining after primary evacuation are removed by a secondary evacuation system utilizing a venturi creating negative pressure which evacuates the combustion chamber. Lubrication is circulated through the engine without the use of a lubricant pump. The centrifugal force of the rotating rotor causes the lubricant therein to be pressurized thereby drawing additional lubricant into the closed system and forcing lubricant within the engine to be circulated. 9 figs.

  4. Development of the next generation medium-duty natural gas engine

    SciTech Connect (OSTI)

    Podnar, D.J.; Kubesh, J.T.

    2000-02-28

    This report summarizes the work done under this subcontract in the areas of System Design, System Fabrication, and Experimental Program. The report contains the details of the engine development process for achieving throttleless stratified charge spark ignition (SI) engine operation as well as advanced turbocharging strategies. Engine test results showing the potential of the direct-injection stratified charge combustion strategy for increasing part-load engine efficiency on a John Deere 8.1-liter natural gas engine are also included in this report. In addition, steady state and step transient engine data are presented that quantify the performance of a variable geometry turbocharger (VGT) as well as a modified waste-gated turbocharger on the engine. The benefits of the technologies investigated during this project will be realized in the form of increased drive-cycle efficiency to diesel-like levels, while retaining the low emissions characteristics of a lean-burn natural gas engine.

  5. Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operation Operations Engineering, (J4200) 5555...

  6. Rotary engine

    SciTech Connect (OSTI)

    Leas, A. M.; Leas, L. E.

    1985-02-12

    Disclosed are an engine system suitable for use with methyl alcohol and hydrogen and a rotary engine particularly suited for use in the engine system. The rotary engine comprises a stator housing having a plurality of radially directed chamber dividers, a principal rotor, a plurality of subordinate rotors each having an involute gear in its periphery mounted on the principal rotor, and means for rotating the subordinate rotors so that their involute gears accept the radially directed dividers as the subordinate rotors move past them.

  7. Ignition properties of n-butane and iso-butane in a rapid compression machine

    SciTech Connect (OSTI)

    Gersen, S.; Darmeveil, J.H.; Mokhov, A.V.; Levinsky, H.B.

    2010-02-15

    Autoignition delay times of n-butane and iso-butane have been measured in a Rapid Compression Machine in the temperature range 660-1010 K, at pressures varying from 14 to 36 bar and at equivalence ratios {phi} = 1.0 and {phi} = 0.5. Both butane isomers exhibit a negative-temperature-coefficient (NTC) region and, at low temperatures, two-stage ignition. At temperatures below {proportional_to}900 K, the delay times for iso-butane are longer than those for the normal isomer, while above this temperature both butanes give essentially the same results. At temperatures above {proportional_to}720 K the delay times of the lean mixtures are twice those for stoichiometric compositions; at T < 720 K, the equivalence ratio is seen to have little influence on the ignition behavior. Increasing the pressure from 15 bar to 30 bar decreases the amplitude of the NTC region, and reduces the ignition delay time for both isomers by roughly a factor of 3. In the region in which two-stage ignition is observed, 680-825 K, the duration of the first ignition stage decreases sharply in the range 680-770 K, but is essentially flat above 770 K. Good quantitative agreement is found between the measurements and calculations for n-butane using a comprehensive model for butane ignition, including both delay times in the two-stage region, with substantial differences being observed for iso-butane, particularly in the NTC region. (author)

  8. 33rd International Symposium on Combustion Hottel Lecture Applications of Quantitative Laser Sensors to Kinetics, Propulsion and Practical Combustion Systems Ronald K. Hanson Department of Mechanical Engineering Stanford University, Stanford CA, 94305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Combustion Science Stanford University Contribution R. K. Hanson and D. F. Davidson Department of Mechanical Engineering Stanford University 1 * Butanol Studies * Ignition Delay Times * Species Time-Histories * Reaction Rate Constants * Methyl Ester Studies * Ignition Delay Times Long-Term Objectives * Generate high-quality fundamental kinetics database using shock tube/laser absorption methods Leading to: * Improved detailed mechanisms for next-generation fuels First Targets: * Isomers of

  9. Combustor assembly in a gas turbine engine

    DOE Patents [OSTI]

    Wiebe, David J; Fox, Timothy A

    2013-02-19

    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  10. NREL Ignites New Renewable Fuels Heating Plant - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Golden, Colo. - With the spark from a high intensity road flare, engineers at the U.S. Department of Energy's National Renewable Energy Laboratory lit its new, smoke-free Renewable ...

  11. Nuclear imaging of the fuel assembly in ignition experiments

    SciTech Connect (OSTI)

    Grim, G. P.; Guler, N.; Merrill, F. E.; Morgan, G. L.; Danly, C. R.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Clark, D. S.; Hinkel, D. E.; Jones, O. S.; Raman, K. S.; Izumi, N.; Fittinghoff, D. N.; Drury, O. B.; Alger, E. T.; Arnold, P. A.; Ashabranner, R. C.; Atherton, L. J.; Barrios, M. A.; Batha, S.; Bell, P. M.; Benedetti, L. R.; Berger, R. L.; Bernstein, L. A.; Berzins, L. V.; Betti, R.; Bhandarkar, S. D.; Bionta, R. M.; Bleuel, D. L.; Boehly, T. R.; Bond, E. J.; Bowers, M. W.; Bradley, D. K.; Brunton, G. K.; Buckles, R. A.; Burkhart, S. C.; Burr, R. F.; Caggiano, J. A.; Callahan, D. A.; Casey, D. T.; Castro, C.; Celliers, P. M.; Cerjan, C. J.; Chandler, G. A.; Choate, C.; Cohen, S. J.; Collins, G. W.; Cooper, G. W.; Cox, J. R.; Cradick, J. R.; Datte, P. S.; Dewald, E. L.; Di Nicola, P.; Di Nicola, J. M.; Divol, L.; Dixit, S. N.; Dylla-Spears, R.; Dzenitis, E. G.; Eckart, M. J.; Eder, D. C.; Edgell, D. H.; Edwards, M. J.; Eggert, J. H.; Ehrlich, R. B.; Erbert, G. V.; Fair, J.; Farley, D. R.; Felker, B.; Fortner, R. J.; Frenje, J. A.; Frieders, G.; Friedrich, S.; Gatu-Johnson, M.; Gibson, C. R.; Giraldez, E.; Glebov, V. Y.; Glenn, S. M.; Glenzer, S. H.; Gururangan, G.; Haan, S. W.; Hahn, K. D.; Hammel, B. A.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Haynam, C.; Hermann, M. R.; Herrmann, H. W.; Hicks, D. G.; Holder, J. P.; Holunga, D. M.; Horner, J. B.; Hsing, W. W.; Huang, H.; Jackson, M. C.; Jancaitis, K. S.; Kalantar, D. H.; Kauffman, R. L.; Kauffman, M. I.; Khan, S. F.; Kilkenny, J. D.; Kimbrough, J. R.; Kirkwood, R.; Kline, J. L.; Knauer, J. P.; Knittel, K. M.; Koch, J. A.; Kohut, T. R.; Kozioziemski, B. J.; Krauter, K.; Krauter, G. W.; Kritcher, A. L.; Kroll, J.; Kyrala, G. A.; Fortune, K. N. La; LaCaille, G.; Lagin, L. J.; Land, T. A.; Landen, O. L.; Larson, D. W.; Latray, D. A.; Leeper, R. J.; Lewis, T. L.; LePape, S.; Lindl, J. D.; Lowe-Webb, R. R.; Ma, T.; MacGowan, B. J.; MacKinnon, A. J.; MacPhee, A. G.; Malone, R. M.; Malsbury, T. N.; Mapoles, E.; Marshall, C. D.; Mathisen, D. G.; McKenty, P.; McNaney, J. M.; Meezan, N. B.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. S.; Moran, M. J.; Moreno, K.; Moses, E. I.; Munro, D. H.; Nathan, B. R.; Nelson, A. J.; Nikroo, A.; Olson, R. E.; Orth, C.; Pak, A. E.; Palma, E. S.; Parham, T. G.; Patel, P. K.; Patterson, R. W.; Petrasso, R. D.; Prasad, R.; Ralph, J. E.; Regan, S. P.; Rinderknecht, H.; Robey, H. F.; Ross, G. F.; Ruiz, C. L.; Se?guin, F. H.; Salmonson, J. D.; Sangster, T. C.; Sater, J. D.; Saunders, R. L.; Schneider, M. B.; Schneider, D. H.; Shaw, M. J.; Simanovskaia, N.; Spears, B. K.; Springer, P. T.; Stoeckl, C.; Stoeffl, W.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P.; Traille, A. J.; Wonterghem, B. Van; Wallace, R. J.; Weaver, S.; Weber, S. V.; Wegner, P. J.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wood, R. D.; Young, B. K.; Zacharias, R. A.; Zylstra, A.

    2013-01-01

    First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuteriumtritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.

  12. Method for fabricating an ignitable heterogeneous stratified metal structure

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Weihs, T.

    1996-08-20

    A multilayer structure has a selectable: (1) propagating reaction front velocity V; (2) reaction initiation temperature attained by application of external energy; and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.

  13. Preliminary hazards analysis for the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.J.

    1993-10-01

    This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

  14. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Effect of pilot injection on combustion in a turbocharged D.I. diesel engine

    SciTech Connect (OSTI)

    Ishida, Masahiro; Chen, Z.L.; Luo, G.F.; Ueki, Hironobu

    1994-09-01

    For reducing the exhaust emissions and improving the ignition characteristics, the effect of pilot injection was investigated experimentally in a turbocharged direct injection diesel engine. The pilot injection quantity was varied by changing the seat diameter of the Doge plunger installed in the newly developed pilot injector while the separation period between the beginning of pilot injection and that of main injection was fixed at a short interval in the present experiment. The pilot injection effect on combustion was compared with the case of normal injection in two fuel oils with the cetane indexes of 53 and 40-respectively. The pilot injection showed some significant effects on improving the ignition characteristics and fuel consumption as follows: (1) The pilot ignition delay and the main ignition delay were about half of the ignition delay of the normal injection respectively. (2) The lower fuel consumption and NOx could be attained by the pilot injection at the retarded injection timing, especially under the lower load condition. (3) The trade-off relationship between the specific fuel consumption and NOx was significantly improved by the pilot injection. (4) In the present short pilot-main interval, a small amount of pilot quantity was recommended to reduce NOx and fuel consumption without deteriorating smoke density. 12 refs., 16 figs., 1 tab.

  16. Zone heated inlet ignited diesel particulate filter regeneration

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2012-06-26

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that is disposed downstream of the engine and that filters particulates from the exhaust; and a grid that includes electrically resistive material that is segmented by non-conductive material into a plurality of zones and wherein the grid is applied to an exterior upstream surface of the PF.

  17. Study of autoignition in a premixed charge, internal combustion engine using comprehensive chemical kinetics: experiments and predictions

    SciTech Connect (OSTI)

    Dimpelfeld, P.M.

    1985-01-01

    A model is developed to predict autoignition in a premixed charge engine. Experimental data are obtained with spark ignition and premixed charge compression ignition. Seven fuels are examined: methane, ethane, propane, n-butane, methanol, ethylene, and propylene. Binary fuel mixtures are also examined, as are the effects of engine speed, equivalence ratio, load, and compression ratio. An initial temperature correction must be used to accurately predict the observed time of autoignition. Analysis of spark-ignited data show that the fuels fall into two groups, depending on the temperature correction ranging from 35 K to 80 K: methane, propane, n-butane, and methanol. Three fuels fall into the group with a temperature correction ranging from 110K and 140K: ethane, ethylene, and propylene. The rate of pressure rise during compression ignition is controlled by varying the fuel-air equivalence ratio. The effects of compression ratio and load on the rate and load on the rate of pressure rise are also examined. The predicted rates of temperature rise during compression ignition are compared to the observed rates of temperature rise.

  18. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  19. Characteristics of isopentanol as a fuel for HCCI engines.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Dec, John E.; Yang, Yi; Dronniou, Nicolas

    2010-05-01

    Long chain alcohols possess major advantages over the currently used ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. The rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols cost effectively. These higher alcohols could significantly expand the biofuel content and potentially substitute ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for HCCI engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. Results are presented in comparison with gasoline or ethanol data previously reported. For a given combustion phasing, isopentanol requires lower intake temperatures than gasoline or ethanol at all tested speeds, indicating a higher HCCI reactivity. Similar to ethanol but unlike gasoline, isopentanol does not show two-stage ignition even at very low engine speed (350 rpm) or with considerable intake pressure boost (200 kPa abs.). However, isopentanol does show considerable intermediate temperature heat release (ITHR) that is comparable to gasoline. Our previous work has found that ITHR is critical for maintaining combustion stability at the retarded combustion phasings required to achieve high loads without knock. The stronger ITHR causes the combustion phasing of isopentanol to be less sensitive to intake temperature variations than ethanol. With the capability to retard combustion phasing, a maximum IMEP{sub g} of 5.4 and 11.6 bar was achieved with isopentanol at 100 and 200 kPa intake pressure, respectively. These loads are even slightly higher than those achieved with gasoline. The ITHR of isopentanol depends on operating conditions and is enhanced by simultaneously increasing pressures and reducing temperatures. However, increasing the temperature seems to have little effect on ITHR at atmospheric pressure, but it does promote hot ignition. Finally, the dependence of ignition timing on equivalence ratio, here called {phi}-sensitivity, is measured at atmospheric intake pressure, showing that the ignition of isopentanol is nearly insensitive to equivalence ratio when thermal effects are removed. This suggests that partial fuel stratification, which has been found effective to control the HRR with two-stage ignition fuels, may not work well with isopentanol at these conditions. Overall, these results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  20. Formative time of breakdown modeled for the ignition of air and n-butane mixtures using effective ionization coefficients

    SciTech Connect (OSTI)

    Kudryavtsev, A. A.; Popugaev, S. D.; Demidov, V. I.; Adams, S. F.; Jiao, C. Q.

    2008-12-15

    It is shown that simulations of ignition by electric arc discharge in n-butane and air mixtures have interesting features, which deviate from results obtained by simple extension of calculations based on methanelike fuels. In particular, it is demonstrated that lowering the temperature of the n-butane-air mixture before ignition under certain conditions will actually decrease the ignition stage time as well as the required electric field.

  1. Field test comparison of natural gas engine exhaust valves

    SciTech Connect (OSTI)

    Bicknell, W.B.; Hay, S.C.; Shade, W.N.; Statler, G.R.

    1996-12-31

    As part of a product improvement program, an extensive spark-ignited, turbocharged, natural gas engine exhaust valve test program was conducted using laboratory and field engines. Program objectives were to identify a valve and seat insert combination that increased mean time between overhauls (MTBO) while reducing the risk of premature valve cracking and failure. Following a thorough design review, a large number of valve and seat insert configurations were tested in a popular 900 RPM, 166 BHP (0.123 Mw) per cylinder industrial gas engine series. Material, head geometry, seat angle and other parameters were compared. Careful in-place measurements and post-test inspections compared various configurations and identified optimal exhaust valving for deployment in new units and upgrades of existing engines.

  2. Thermoacoustic engines

    SciTech Connect (OSTI)

    Swift, G.W.

    1988-10-01

    Thermoacoustic engines, or acoustic heat engines, are energy-conversion devices that achieve simplicity and concomitant reliability by use of acoustic technology. Their efficiency can be a substantial fraction of Carnot's efficiency. In thermoacoustic prime movers, heat flow from a high-temperature source to a low-temperature sink generates acoustic power (which may be converted to electric power using a transducer). In thermoacoustic heat pumps and refrigerators, acoustic power is used to pump heat from a low-temperature source to a high-temperature sink. This review teaches the fundamentals of thermoacoustic engines, by analysis, intuition, and example.

  3. Development of Advanced Small Hydrogen Engines

    SciTech Connect (OSTI)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  4. Harmonic engine

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  5. Civil Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  6. Civil Engineer

    Broader source: Energy.gov [DOE]

    This announcement is open to Recent Graduates who have graduated within the last two years with a bachelor's degree in Civil Engineering and meet the requirements listed under the Qualifications...

  7. General Engineer

    Broader source: Energy.gov [DOE]

    The Department of Energy Office of Fossil Energy, Office of Petroleum Reserves (OPR), Planning and Engineering Office (DOE-FE) provides long-range planning for the Petroleum Reserves (PR) Program;...

  8. Combustion Engine

    Broader source: Energy.gov [DOE]

    Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

  9. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect (OSTI)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  10. Reliability Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is often fragmented, does not cover the full system lifecycle * Reliability needs to be addressed in design, development, and operational life * Reliability analysis should integrate information from components and systems Integrate proven reliability methods with world-class statistical science * Use methods and tools

  11. microbial engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microbial engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  12. Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  13. Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  14. Rotating Liner Engine: Improving Efficiency of Heavy Duty Diesels by Significant Friction Reduction, and Extending the Life of Heavy Duty Engines.

    SciTech Connect (OSTI)

    Dardalis, Dimitrios

    2013-12-31

    This report describes the work on converting a 4 cylinder Cummins ISB engine into a single cylinder Rotating Liner Engine functioning prototype that can be used to measure the friction benefits of rotating the cylinder liner in a high pressure compression ignition engine. A similar baseline engine was also prepared, and preliminary testing was done. Even though the fabrication of the single cylinder prototype was behind schedule due to machine shop delays, the fundamental soundness of the design elements are proven, and the engine has successfully functioned. However, the testing approach of the two engines, as envisioned by the original proposal, proved impossible due to torsional vibration resonance caused by the single active piston. A new approach for proper testing has been proposed,

  15. n-Butane: Ignition delay measurements at high pressure and detailed chemical kinetic simulations

    SciTech Connect (OSTI)

    Healy, D.; Curran, H.J.; Donato, N.S.; Aul, C.J.; Petersen, E.L.; Zinner, C.M.; Bourque, G.

    2010-08-15

    Ignition delay time measurements were recorded at equivalence ratios of 0.3, 0.5, 1, and 2 for n-butane at pressures of approximately 1, 10, 20, 30 and 45 atm at temperatures from 690 to 1430 K in both a rapid compression machine and in a shock tube. A detailed chemical kinetic model consisting of 1328 reactions involving 230 species was constructed and used to validate the delay times. Moreover, this mechanism has been used to simulate previously published ignition delay times at atmospheric and higher pressure. Arrhenius-type ignition delay correlations were developed for temperatures greater than 1025 K which relate ignition delay time to temperature and concentration of the mixture. Furthermore, a detailed sensitivity analysis and a reaction pathway analysis were performed to give further insight to the chemistry at various conditions. When compared to existing data from the literature, the model performs quite well, and in several instances the conditions of earlier experiments were duplicated in the laboratory with overall good agreement. To the authors' knowledge, the present paper presents the most comprehensive set of ignition delay time experiments and kinetic model validation for n-butane oxidation in air. (author)

  16. Large eddy simulation of forced ignition of an annular bluff-body burner

    SciTech Connect (OSTI)

    Subramanian, V.; Domingo, P.; Vervisch, L.

    2010-03-15

    The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Time histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)

  17. Experimental and Computational Study of Nonpremixed Ignition of Dimethyl Ether in Counterflow

    SciTech Connect (OSTI)

    Zheng, X L; Lu, T F; Law, C K; Westbrook, C K

    2003-12-19

    The ignition temperature of nitrogen-diluted dimethyl ether (DME) by heated air in counterflow was experimentally determined for DME concentration from 5.9 to 30%, system pressure from 1.5 to 3.0 atmospheres, and pressure-weighted strain rate from 110 to 170/s. These experimental data were compared with two mechanisms that were respectively available in 1998 and 2003, with the latter being a substantially updated version of the former. The comparison showed that while the 1998-mechanism uniformly over-predicted the ignition temperature, the 2003-mechanism yielded surprisingly close agreement for all experimental data. Sensitivity analysis for the near-ignition state based on both mechanisms identified the deficiencies of the 1998-mechanism, particularly the specifics of the low-temperature cool flame chemistry in effecting ignition at higher temperatures, as the fuel stream is being progressively heated from its cold boundary to the high-temperature ignition region around the hot-stream boundary. The 2003-mechanism, consisting of 79 species and 398 elementary reactions, was then systematically simplified by using the directed relation graph method to a skeletal mechanism of 49 species and 251 elementary reactions, which in turn was further simplified by using computational singular perturbation method and quasi-steady-state species assumption to a reduced mechanism consisting of 33 species and 28 lumped reactions. It was demonstrated that both the skeletal and reduced mechanisms mimicked the performance of the detailed mechanism with high accuracy.

  18. Auto-ignition during instationary jet evolution of dimethyl ether (DME) in a high-pressure atmosphere

    SciTech Connect (OSTI)

    Fast, G.; Kuhn, D.; Class, A.G.; Maas, U.

    2009-01-15

    The auto-ignition process during transient injection of gaseous dimethyl ether (DME) in a constant high-pressure atmosphere is studied experimentally by laser-optical methods and compared with numerical calculations. With different non-intrusive measurement techniques jet properties and auto-ignition are investigated at high temporal and spatial resolution. The open jet penetrates a constant pressure oxidative atmosphere of up to 4 MPa. During the transient evolution, the fuel jet entrains air at up to 720 K. The subsequent auto-ignition of the ignitable part of the jet occurs simultaneously over a wide spatial extension. The ignition delay times are not affected by variation of the nozzle exit velocity. Thus, the low-temperature oxidation is slow compared with the shorter time scales of mixing, so that chemical kinetics is dominating the process. The typical two-stage ignition is resolved optically with high-speed shadowgraphy at a sampling rate of 10 kHz. The 2D fields of jet velocity and transient mixture fraction are measured phase-coupled with Particle Image Velocimetry (PIV) and Tracer Laser Induced Fluorescence (LIF) during the time-frame of ignition. The instationary Probability Density Functions (PDF) of mixture fraction are described very well by Beta functions within the complete area of the open jet. Additional 1D flamelet simulations of the auto-ignition process are computed with a detailed reaction mechanism for DME [S. Fischer, F. Dryer, H. Curran, Int. J. Chem. Kinet. 32 (12) (2000) 713-740; H. Curran, S. Fischer, F. Dryer, Int. J. Chem. Kinet. 32 (12) (2000) 741-759]. Calculated ignition delay times are in very good agreement with the measured mean ignition delay times of 3 ms. Supplemental flamelet simulations address the influence of DME and air temperature, pressure and strain. Underneath a critical strain rate the air temperature is identified to be the most sensitive factor on ignition delay time. (author)

  19. Apparatus and method for igniting an in situ oil shale retort

    DOE Patents [OSTI]

    Chambers, Carlon C. (Grand Junction, CO)

    1981-01-01

    A method and apparatus for conducting such method are disclosed for igniting a fragmented permeable mass of formation particles in an in situ oil shale retort. The method is conducted by forming a hole through unfragmented formation to the fragmented mass. An oxygen-containing gas is introduced into the hole. A fuel is introduced into a portion of the hole spaced apart from the fragmented mass. The fuel and oxygen-containing gas mix forming a combustible mixture which is ignited for establishing a combustion zone in a portion of the hole spaced apart from the fragmented mass. The hot gas generated in the combustion zone is conducted from the hole into the fragmented mass for heating a portion of the fragmented mass above an ignition temperature of oil shale.

  20. A study of the ignition processes in a center-hole-fired thermal battery

    SciTech Connect (OSTI)

    Guidotti, R.A.; Reinhardt, F.W.

    1998-04-01

    The ignition processes that take place during activation of a 16 cell, center hole fired thermal battery were examined by monitoring the voltage of each cell during activation. The average rise time of each cell to a voltage of 1.125 V was determined for the LiSi/LiCl-LiBr-LiF/FeS{sub 2} electrochemical system. The effects of heat pellet composition, center hole diameter, and the load on the activation parameters were examined for three different igniters. A large variability in individual cell performance was evident along with cell reversal, depending on the location of the cell in the stack. It was not possible to draw detailed statistical information of the relative ignition sequence due to the intrinsic large scatter in the data.

  1. Modeling and Experimental Investigation of Methylcyclohexane Ignition in a Rapid Compression Machine

    SciTech Connect (OSTI)

    Pitz, W J; Naik, C V; Mhaold?in, T N; Curran, H J; Orme, J P; Simmie, J M; Westbrook, C K

    2005-10-13

    A new mechanism for the oxidation of methylcyclohexane has been developed. The mechanism combined a newly-developed low temperature mechanism with a previously developed high temperature mechanism. Predictions from the chemical kinetic model have been compared to experimentally measured ignition delay times from a rapid compression machine. Predicted ignition delay times using the initial estimates of the methylcyclohexyl peroxy radical isomerization rate constants were much longer than those measured at low temperatures. The initial estimates of isomerization rate constants were modified based on the experimental findings of Gulati and Walker that indicate a much slower rate of isomerization. Predictions using the modified rate constants for isomerizations yielded faster ignition at lower temperatures that greatly improved the agreement between model predictions and the experimental data. These findings point to much slower isomerization rates for methylcyclohexyl peroxy radicals than previously expected.

  2. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    SciTech Connect (OSTI)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-15

    A recent low gas-fill density (0.6?mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6?mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  3. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect (OSTI)

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation

  4. Rotary engine

    SciTech Connect (OSTI)

    Meyman, U.

    1987-02-03

    A rotary engine is described comprising: two covers spaced from one another; rotors located between the covers and rotating and planetating in different phases; the rotors interengaging to form working chambers therebetween; means to supply fluid to the working chambers and means to exhaust fluid from the working chambers during the operating cycle of the engine; gearing for synchronizing rotation and planetation of the rotors and each including first and second gears arranged so that one of the gears is connected with the rotors while the other of the gears is connected with an immovable part of the engine and the gears engage with one another; carriers interconnecting the rotors and planetating in the same phase with the planetation of the rotors for synchronizing the rotation and planetation of the rotors; shafts arranged to support the carriers during their planetations; and elements for connecting the covers with one another.

  5. Report from the Integrated Modeling Panel at the Workshop on the Science of Ignition on NIF

    SciTech Connect (OSTI)

    Marinak, M; Lamb, D

    2012-07-03

    This section deals with multiphysics radiation hydrodynamics codes used to design and simulate targets in the ignition campaign. These topics encompass all the physical processes they model, and include consideration of any approximations necessary due to finite computer resources. The section focuses on what developments would have the highest impact on reducing uncertainties in modeling most relevant to experimental observations. It considers how the ICF codes should be employed in the ignition campaign. This includes a consideration of how the experiments can be best structured to test the physical models the codes employ.

  6. Neutron time-of-flight and emission time diagnostics for the National Ignition Facility

    SciTech Connect (OSTI)

    Murphy, T. J.; Jimerson, J. L.; Berggren, R. R.; Faulkner, J. R.; Oertel, J. A.; Walsh, P. J.

    2001-01-01

    Current plans call for a system of current mode neutron detectors for the National Ignition Facility for extending the range of neutron yields below that of the neutron activation system, for ion-temperature measurements over a wide yield range, and for determining the average neutron emission time. The system will need to operate over a yield range of 10{sup 6} for the lowest-yield experiments to 10{sup 19} for high-yield ignited targets. The requirements will be satisfied using several detectors located at different distances from the target. This article presents a conceptual design for the NIF nToF system.

  7. Semiconductor bridge, SCB, ignition studies of Al/CuO thermite

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.; Wackerbarth, D.E.; Mohler, J.H.

    1997-04-01

    The authors briefly summarize semiconductor bridge operation and review their ignition studies of Al/CuO thermite as a function of the capacitor discharge unit (CDU) firing set capacitance, charge holder material and morphology of the CuO. Ignition thresholds were obtained using a brass charge holder and a non-conducting fiber-glass-epoxy composite material, G10. At - 18 C and a charge voltage of 50V, the capacitance thresholds were 30.1 {mu}F and 2.0 {mu}F respectively. They also present new data on electrostatic discharge (ESD) and radio frequency (RF) vulnerability tests.

  8. Stratified charge combustion system and method for gaseous fuel internal combustion engines

    SciTech Connect (OSTI)

    Rhoades, W.A. Jr.

    1986-03-11

    This patent describes a stratified charge combustion system for use in a gaseous fuel internal combustion engine. This system consists of: (a) a combustion chamber; (b) an ignition; (c) a gaseous fuel injection valve assembly in communication with the combustion chamber and in spaced relationship from the ignition source with a portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The fuel valve assembly defines an entry port for the entrance of gaseous fuel, the entry port is recessed outside of a fixed inside surface. (d) means for pressuring the gaseous fuel prior to injection; and (e) a curved transitional surface extending from the entry port toward the portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The curved transitional surface curves away from the direction of the entry port. The curved transitional surface has a curvature for the particular direction and configuration of the entry port. The particular configuration of the portion of the inside surfaces extends between the injection valve assembly and the ignition source. The particular arrangment of the fuel injection valve assembly in the combustion chamber, and for the particular pressure of the gaseous fuel is to produce the Coanda Effect in the injected gaseous fuel flow after it passes through the entry port and follows the curved transitional surface under the Coanda Effect. As the curved transitional surface curves away from the direction of the entry port, a flow is produced of the gaseous fuel that clings to and follows the particular configuration of the inside surfaces to the ignition source.

  9. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  10. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect (OSTI)

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in. deep that showed significant grain refinement and homogeneous microstructures favorable to increased fracture toughness and fatigue performance. The final tasks of the project demonstrated that the FSP concept can be applied to a relevant part geometry by fabricating diesel piston crowns with FSP regions applied selectively to the edge of the bowl rim. This area of the piston typically suffers from conditions at high PCP that cause severe thermal fatigue issues. It is expected that, given the data from coupon testing, the durability of pistons modified by FSP will allow much higher fatigue lifetime and potentially also greater resistance to elevated stress-level effects on fatigue.

  11. Future prospects for compression ignition fuel in California : fuel-related implications of possible pathways to mitigation of public health threats.

    SciTech Connect (OSTI)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-04-08

    This paper documents methods and results of an investigation of the options for and year 2010 consequences of possible new limitations on the use of diesel fuel in California, USA. California's Air Resources Board will undertake a risk management process to determine steps necessary to protect the health and safety of the public from carcinogenic species resident on diesel combustion exhaust particles. Environmental activist groups continue to call for the elimination of diesel fuel in California and other populous states. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Thus, two ''mid-course'' strategies now appear feasible: (1) Increased penetration of natural gas, LPG, and possibly lower alcohols into the transportation fuels market, to the extent that some Cl applications would revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on more detailed investigation of exhaust products of individual diesel fuel constituents.

  12. Prospects for high-gain, high yield National Ignition Facility targets driven by 2(omega) (green) light

    SciTech Connect (OSTI)

    Suter, L J; Glenzer, S; Haan, S; Hammel, B; Manes, K; Meezan, N; Moody, J; Spaeth, M; Divol, L; Oades, K; Stevenson, M

    2003-12-16

    The National Ignition Facility (NIF), operating at green (2{omega}) light, has the potential to drive ignition targets with significantly more energy than the 1.8 MJ it will produce with its baseline, blue (3{omega}) operations. This results in a greatly increased 'target design space', providing a number of exciting opportunities for fusion research. These include the prospect of ignition experiments with capsules absorbing energies in the vicinity of 1 MJ. This significant increase in capsule absorbed energy over the original designs at {approx}150 kJ could allow high-gain, high yield experiments on NIF. This paper reports the progress made exploring 2{omega} for NIF ignition, including potential 2{omega} laser performance, 2{omega} ignition target designs and 2{omega} Laser Plasma Interaction (LPI) studies.

  13. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    SciTech Connect (OSTI)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.

    2013-07-15

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20100 T (potentially attainable using present experimental methods) that compress to greater than 4 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ?50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.

  14. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    SciTech Connect (OSTI)

    Heywood, John; Jo, Young Suk; Lewis, Raymond; Bromberg, Leslie; Heywood, John

    2015-10-31

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.

  15. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  16. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  17. Coal-water slurry fuel internal combustion engine and method for operating same

    DOE Patents [OSTI]

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  18. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Hohenberger, M. Stoeckl, C.; Albert, F.; Palmer, N. E.; Dppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K.; Lee, J. J.

    2014-11-15

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostica multichannel, hard x-ray spectrometer operating in the 20500 keV rangehas been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ?300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U K{sub ?}). The detectors impulse response function was measured in situ on NIF short-pulse (?90 ps) experiments, and in off-line tests.

  19. Harmonic engine

    DOE Patents [OSTI]

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  20. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-01-07

    To establish Department of Energy (DOE) value engineering policy that meets the requirements of Public Law 104-106, Section 4306 as codified by 41 United States Code 432. Canceled by DOE N 251.94. Does not cancel other directives.

  1. Diesel engine performance and emissions using different fuel/additive combinations

    SciTech Connect (OSTI)

    Sutton, D.L.; Rush, M.W.; Richards, P.

    1988-01-01

    It is probable that diesel fuel quality in Europe will fall as the need to blend conversion components into the diesel pool increases. In particular diesel ignition quality and stability could decrease and carbon residue and aromatic content increase. This paper discusses the effects of worsening fuel quality on combustion, injection characteristics and emissions and the efficacy of appropriate additives in overcoming these effects. Both direct injection and indirect injection engines were used in the investigations.

  2. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  3. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  4. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  5. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  6. Combustor assembly in a gas turbine engine

    DOE Patents [OSTI]

    Wiebe, David J; Fox, Timothy A

    2015-04-28

    A combustor assembly in a gas turbine engine includes a combustor device, a fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner surrounded by the flow sleeve. The fuel injection system provides fuel to be mixed with the pressurized air and ignited in the liner to create combustion products. The intermediate duct is disposed between the liner and the transition duct so as to define a path for the combustion products to flow from the liner to the transition duct. The intermediate duct is associated with the liner such that movement may occur therebetween, and the intermediate duct is associated with the transition duct such that movement may occur therebetween. The flow sleeve includes structure that defines an axial stop for limiting axial movement of the intermediate duct.

  7. Process and apparatus for igniting a burner in an inert atmosphere

    DOE Patents [OSTI]

    Coolidge, Dennis W. (Katy, TX); Rinker, Franklin G. (Perrysburg, OH)

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  8. Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF

    SciTech Connect (OSTI)

    Ma, T

    2010-04-21

    The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

  9. Prompt laser ignition and transition to detonation in a secondary explosive

    SciTech Connect (OSTI)

    Setchell, R.E.; Trott, W.M.

    1994-05-01

    A two-stage approach to achieving detonation in a secondary explosive was developed in previous studies in which ignition resulted from low-energy hot wires or from laser diodes. In the current study, this approach was examined in some detail for the case of ignition by a pulsed, solid-state (rod) laser. An initial series of experiments used Nd/glass, ND/YAG, and Ti/sapphire lasers to investigate the ignition of graphite-doped HMX in highly confined optical fixtures that incorporated a fast piezoelectric pressure transducer. Experimental parameters included the laser power history and the explosive column length. The results of these experiments guided a second series of experiments in which the ignition column explosive was terminated by a thin rupture disc in contact with a transition column of low density HMX or some other material. The transition column was terminated with a piezoelectric time-of-arrival detector for determining overall function times. Parameters investigated included different laser sources, rupture disc thicknesses, and the transition column explosive characteristics. Overall function times less than 50 microseconds were obtained, and trends established by the various parameter studies indicate that further reductions in function time can be achieved.

  10. Prompt laser ignition and transition to detonation in a secondary explosive

    SciTech Connect (OSTI)

    Setchell, R.E.; Trott, W.M.

    1995-05-01

    A two-stage approach to achieving detonation in a secondary explosive was developed in previous studies in which ignition resulted from low-energy hot wires or from laser diodes. In the current study, this approach was examined in some detail for the case of ignition by a pulsed, solid-state (rod) laser. An initial series of experiments used Nd/glass, Nd/YAG, and Ti/sapphire lasers to investigate the ignition of graphite-doped HMX in highly confined optical fixtures that incorporated a fast piezoelectric pressure transducer. Experimental parameters included the laser power history and the explosive column length. The results of these experiments guided a second series of experiments in which the ignition column explosive was terminated by a thin rupture disc in contact with a transition column of low-density HMX or some other material. The transition column was terminated with a piezoelectric time-of-arrival detector for determining overall function times. Parameters investigated included different laser sources, rupture disc thicknesses, and the transition column explosive characteristics. Overall function times less than 50 microseconds were obtained, and trends established by the various parameter studies indicate that further reductions in function time can be achieved.

  11. Combustion characterization of methylal in reciprocating engines

    SciTech Connect (OSTI)

    Dodge, L.; Naegeli, D.

    1994-06-01

    Methylal, CH{sub 3}OCH{sub 2}OCH{sub 3}, also known as dimethoxy-methane, is unique among oxygenates in that it has a low autoignition temperature, no carbon-carbon bonds, and is soluble in middle distillate fuels. Because of these properties, methylal has been shown to be a favorable fuel additive for reducing smoke in diesel engines. Recent measurements of ignition delay times indicate that methylal has a cetane number in the range of 45-50, which is compatible with diesel fuels. Engine tests have shown that adding methylal to diesel fuel significantly reduces smoke emissions. Gaseous emissions and combustion efficiencies obtained with methylal/diesel fuel blends remain essentially the same as those measured using neat diesel fuel. Lubricity measurements of methylal/diesel fuel blends with a ball on cylinder lubrication evaluator (BOCLE) show that methylal improves the lubricity of diesel fuel. Even though additions of methylal lower the fuel viscosity, the results of the BOCLE tests indicate that the methylal/diesel fuel blends cause less pump wear than neat diesel fuel. The one drawback is that methylal has a low boiling point (42{degrees}C) and a relatively high vapor pressure. As a result, it lowers the flash point of diesel fuel and causes a potential fuel tank flammability hazard. One solution to this increased volatility is to make polyoxymethylenes with the general formula of CH{sub 3}O(CH{sub 2}O){sub x}CH{sub 3} where x > 2. The molecules are similar to methylal, but have higher molecular weights and thus higher viscosities and substantially lower vapor pressures. Therefore, their flash points will be compatible with regular diesel fuel. The polyoxymethylenes are expected to have combustion properties similar to methylal. It is theorized that by analogy with hydrocarbons, the ignition quality (i.e., cetane number) of the polyoxymethylenes will be better than that of methylal.

  12. Rotary engine

    SciTech Connect (OSTI)

    Fawcett, S.L.

    1987-03-03

    In an internal combustion engine, external heat engine, heat pump, gaseous expander, pump or gas compressor, the combustion is described including means forming a cylindrical working chamber having intake and exhaust port means for gases, and two pistons having an arcuate length within the range of 90/sup 0/ to 120/sup 0/ of the cylindrical portion of the working chamber to move toward and away from each other for compression and expansion of gases by rotation on separate concentrically-arranged shafts. A seal means is carried by the walls of the cylindrical working chamber at each of spaced apart locations to continuously form a gas sealing relation with both of the pistons while the pistons rotate toward and away from each other in the cylindrical working chamber.

  13. Rotary engine

    SciTech Connect (OSTI)

    Larson, T. G.

    1985-10-22

    The rotary engine has a circumferential main chamber and at least one smaller combustion chamber spaced from the main chamber. The rotor includes a plurality of radially-projecting sealing members in spaced relationship thereabout for maintaining a fluid-sealed condition along a single fixed transverse strip area on the interior surface of the main chamber. A single radially-oriented axially-parallel piston vane is also carried by the rotor and moves through the fixed strip area of the main chamber at each revolution of the rotor. Plural passages for intake, compression, expansion, and exhaust are ported into the main chamber at locations proximate to the fixed strip area. Valve means in the passages selectively open and close the same for a cycle of engine operation involving intake, compression, burning, and exhaust.

  14. Advanced Reciprocating Engine Systems

    Broader source: Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  15. Flex Fuel Optimized SI and HCCI Engine

    SciTech Connect (OSTI)

    Zhu, Guoming; Schock, Harold; Yang, Xiaojian; Huisjen, Andrew; Stuecken, Tom; Moran, Kevin; Zhen, Ron; Zhang, Shupeng

    2013-09-30

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight engine cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combust

  16. Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Experimental demonstration of early time, hohlraum radiation symmetry tuning for indirect drive ignition experiments

    SciTech Connect (OSTI)

    Dewald, E. L.; Milovich, J.; Thomas, C.; Sorce, C.; Glenn, S.; Landen, O. L.; Kline, J.

    2011-09-15

    Early time radiation symmetry at the capsule for indirect drive ignition on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] will be inferred from the instantaneous soft x-ray re-emission pattern of a high-Z sphere replacing the ignition capsule. This technique was tested on the OMEGA laser facility [J. M. Soures, R. L. McCrory, T. Boehly et al., Laser Part. Beams 11, 317 (1991)] in near full ignition scale vacuum hohlraums using an equivalent experimental setup to the one planned for NIF. Two laser cones entering each laser entrance hole heat the hohlraums to radiation temperatures of 100 eV, mimicking the NIF ignition pulse foot drive. The experiments have demonstrated accuracies of {+-}1.5% ({+-}2%) in inferred P{sub 2}/P{sub 0} (P{sub 4}/P{sub 0}) Legendre mode incident flux asymmetry and consistency between 900 eV and 1200 eV re-emission patterns. We have also demonstrated the expected tuning capability of P{sub 2}/P{sub 0}, from positive (pole hot) to negative (waist hot), decreasing linearly with the inner/outer beams power fraction. P{sub 4}/P{sub 0} on the other hand shows very little variation with power fraction. We developed a simple analytical viewfactor model that is in good agreement with both measured P{sub 2}/P{sub 0} and P{sub 4}/P{sub 0} and their dependence on inner beam power fraction.

  18. Rotary engine

    SciTech Connect (OSTI)

    Fawcett, S.L.

    1988-02-09

    In an internal combustion engine, external heat engine, heat pump, gaseous expander, pump or gas compressor, the combination is described including means forming a cylindrical working chamber communicating with intake and exhaust port means for gases, two pistons having an arcuate length within the range of 90/sup 0/ to 120/sup 0/ of the cylindrical surface of the working chamber. The pistons are movable toward and away from each other for compression and expansion of gases in the working chamber while separately rotating concentrically-arranged shafts, a drive shaft, three sets of gearing for connecting the pistons to the drive shaft, a first set of the gearing drivingly coupled to a first of the separate concentric shafts, a second set of the gearing drivingly coupled to a second of the concentric shaft, and a third set of the gearing comprising non-circular gears. The drive shaft is secured to one gear of each of the first, second and third gear sets of gearing for rotating the drive shaft with a substantially constant velocity and torque output throughout the several phases of the working cycle of the engine, compressor or pump.

  19. General Engineer (Marine & Hydrokinetic Engineer) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineer) General Engineer (Marine & Hydrokinetic Engineer) Submitted by admin on Sat, 2016-01-16 00:16 Job Summary Organization Name Department Of Energy Agency SubElement...

  20. HCCI in a Variable Compression Ratio Engine: Effects of Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Variable Compression Ratio Engine: Effects of Engine Variables HCCI in a Variable Compression Ratio Engine: Effects of Engine Variables 2004 Diesel Engine Emissions Reduction ...

  1. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  2. Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine

    DOE Patents [OSTI]

    Roth, Gregory T; Husted, Harry L; Sellnau, Mark C

    2015-04-07

    A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.

  3. Review of alternate automotive engine fuel economy. Final report January-October 78

    SciTech Connect (OSTI)

    Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

    1980-11-01

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

  4. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  5. Three-way catalyst technology for off-road equipment powered by gasoline and LPG engines. Final report

    SciTech Connect (OSTI)

    White, J.J.; Ingalls, M.N.; Carroll, J.N.; Chan, L.M.

    1999-04-01

    Research was done to demonstrate the feasibility of using closed-loop three-way catalyst (TWC) technology in off-road large spark-ignited (LSI) engine applications to meet California State Implementation Plan (SIP) emission reduction goals. Available technology was investigated for applicability to engines in this category. Appropriate test cycles were recommended, and five representative engines were selected and baseline emission tested. Total feasible emission reductions were calculated. The retail price equivalent (RPE) for the recommended emission control technology was determined, and cost-effectiveness was calculated. Emission standards necessary to meet SIP goals were recommended.

  6. Stirling engine

    SciTech Connect (OSTI)

    Bolger, S.R.

    1992-03-17

    This patent describes an engine. It comprises at least two variable volume compartments joined by a porous medium regenerator; heat exchangers in heat exchange relationships with the variable volume compartments; a fixed quantity of gas in the compartments; a piston in each of the compartments; means to control the pistons to vary the volumes of the gas transferring between the compartments in the form of overlapping quadrilateral waveforms to compress the gas in both compartments through the same cycle pressure ratio during a cycle compression step, to shift the gas between compartments and to expand the gas in both compartments through the same cycle pressure ratio during a cycle expansion step.

  7. Engineers Constructors

    Office of Legacy Management (LM)

    Engineers - Constructors ~ /:~ ( ' r,.... I!~\ l.,_",z;(J;' Bechtel National, Inc. Oak Ridge Office Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge. Tennessee Mail Address: P. O. B01l 350. Oak Ridge. TN 37830 bce-. R. Barber C. t1iller E. Wal ker C. Knoke G. Phillips G. Scott L. Blevins K. Harer DOE File No. 030-04G Professional Land Surveying 1404 Second Street Santa Fe, New Mexico 87501 Attn: Mr. Robert Benavides Reference: Purchase Contract l4501-01j04-PC-19 Bayo Canyon Survey Dear

  8. Pre-ignition confinement and deflagration violence in LX-10 and PBX 9501

    SciTech Connect (OSTI)

    Tringe, J. W. Glascoe, E. A.; McClelland, M. A.; Greenwood, D.; Chambers, R. D.; Springer, H. K.; Levie, H. W.

    2014-08-07

    In thermal explosions of the nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)-based explosives LX-10 and PBX-9501, the pre-ignition spatial and temporal heating profile defines the ignition location. The ignition location then determines the extent of inertial confinement and the violence of the resulting deflagration. In this work, we present results of experiments in which ?23?g cylinders of LX-10 and PBX 9501 in thin-walled aluminum confinement vessels were subjected to identical heating profiles but which presented starkly different energy release signatures. Post-explosion LX-10 containment vessels were completely fragmented, while the PBX 9501 vessels were merely ruptured. Flash x-ray radiography images show that the initiation location for the LX-10 is a few mm farther from the end caps of the vessel relative to the initiation location of PBX 9501. This difference increases deflagration confinement for LX-10 at the time of ignition and extends the pressurization time during which the deflagration front propagates in the explosive. The variation in the initiation location, in turn, is determined by the thermal boundary conditions, which differ for these two explosives because of the larger coefficient of thermal expansion and greater thermal stability of the Viton binder in LX-10 relative to the estane and bis(2,2-dinitropropyl) acetal/formal binder of the PBX 9501. The thermal profile and initiation location were modeled for LX-10 using the hydrodynamics and structures code ALE3D; results indicate temperatures in the vicinity of the ignition location in excess of 274?C near the time of ignition. The conductive burn rates for these two explosives, as determined by flash x-ray radiography, are comparable in the range 0.10.2?mm/?s, somewhat faster than rates observed by strand burner experiments for explosives in the temperature range 150180?C and pressures up to 100?MPa. The thinnest-wall aluminum containment vessels presented here rupture at lower pressures, in the range 10?MPa, suggesting that moderately higher temperatures and pressures are present near the deflagration front. For these explosives, however the most important property for determining deflagration violence is the degree of inertial confinement.

  9. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect (OSTI)

    Ciatti, S. A.; Subramanian, S.

    2011-09-01

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  10. Ignition of a combustible gas mixture by a high-current electric discharge in a closed volume

    SciTech Connect (OSTI)

    Berezhetskaya, N. K.; Gritsinin, S. I.; Kop'ev, V. A.; Kossyi, I. A.; Kuleshov, P. S.; Popov, N. A.; Starik, A. M.; Tarasova, N. M.

    2009-06-15

    Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH{sub 4}: O{sub 2} gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.

  11. The effect of diluent gases on ignition delay times in the shock tube and in the rapid compression machine

    SciTech Connect (OSTI)

    Wuermel, J.; Silke, E.J.; Curran, H.J.; O Conaire, M.S.; Simmie, J.M.

    2007-10-15

    The diluent gas used in the preparation of test fuel/oxygen mixtures is inert and does not take part in the chemical reaction. However, it does have an effect on the measured ignition delay time both in rapid compression machines and in shock tubes - argon decelerates ignition in the RCM, but accelerates it in the shock tube under some conditions. This opposite effect is due to the times scales involved in these experimental devices. Typical ignition delay times in the RCM are in the region of 1-200 ms, while those in the shock tube are much shorter (10-1000 {mu}s). Comparative RCM experiments and simulations for helium, argon, xenon, and nitrogen have shown extreme heat loss in the postcompression period, particularly for helium. Autoignition measurements of 2,3-dimethylpentane have highlighted a direct dependency of ignition delay time on the type of diluent used, where longer ignition delay time were recorded with argon. This increased ignition delay time is due to the extreme cooling of argon in the postcompression period. This observation was strengthened by comparative experiments with helium and argon, where the diluent effect was even stronger for helium, caused by its higher thermal conductivity. In the shock tube, the diluent effect is opposite to that in the RCM. For dilute mixtures of isooctane, calculations have predicted that mixtures with argon will ignite faster than those with nitrogen, based on the relative heat capacities of the two diluent gases. Overall, we conclude that the choice of diluent gases in experimental devices must be made with care, as ignition delay times can depend strongly on the type of diluent gas used. (author)

  12. Critical radius for sustained propagation of spark-ignited spherical flames

    SciTech Connect (OSTI)

    Kelley, Andrew P.; Jomaas, Grunde; Law, Chung K.

    2009-05-15

    An experimental study was performed to determine the requirements for sustained propagation of spark-ignited hydrogen-air and butane-air flames at atmospheric and elevated pressures. Results show that sustained propagation is always possible for mixtures whose Lewis number is less than unity, as long as a flame can be initially established. However, for mixtures whose Lewis number is greater than unity, sustained propagation depends on whether the initially ignited flame can attain a minimum radius. This minimum radius was determined for mixtures of different equivalence ratios and pressures, and was found to agree moderately well with the theoretically predicted critical radius beyond which there is no solution for the adiabatic, quasi-steady propagation of the spherical flame. The essential roles of pressure, detailed chemistry, and the need to use local values in the quantitative evaluation of the flame response parameters are emphasized. (author)

  13. SHOCK INITIATION EXPERIMENTS ON THE TATB BASED EXPLOSIVE RX-03-GO WITH IGNITION AND GROWTH MODELING

    SciTech Connect (OSTI)

    Vandersall, K S; Garcia, F; Tarver, C M

    2009-06-23

    Shock initiation experiments on the TATB based explosive RX-03-GO (92.5% TATB, 7.5% Cytop A by weight) were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and calculate Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive sample with manganin piezoresistive pressure gauge packages placed between sample slices. The RX-03-GO formulation utilized is similar to that of LX-17 (92.5% TATB, 7.5% Kel-f by weight) with the notable differences of a new binder material and TATB that has been dissolved and recrystallized in order to improve the purity and morphology. The shock sensitivity will be compared with that of prior data on LX-17 and other TATB formulations. Ignition and Growth modeling parameters were obtained with a reasonable fit to the experimental data.

  14. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  15. Summary of the first neutron image data collected at the National Ignition Facility

    SciTech Connect (OSTI)

    Grim, G P; Archuleta, T N; Aragonez, R J; Atkinson, D P; Batha, S H; Barrios, M A; Bower, D E; Bradley, D K; Buckles, R A; Clark, D D; Clark, D J; Cradick, J R; Danly, C; Drury, O B; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Glenn, S M; Hsu, A H; Izumi, N; Jaramillo, S A; Kyrala, G A; Pape, S L; Loomis, E N; Mares, D; Martinson, D D; Ma, T; MacKinnon, A J; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Polk, P J; Schmidt, D W; Tommasini, T; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Dzenitis, J M; Felker, B; Fittinghoff, D N; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Kauffman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-11-01

    A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of the data collected and measurements made to date. Data form directly driven, DT filled microballoons, as well as, indirectly driven, cryogenically layered ignition experiments are presented. The data presented show that the primary cores from directly driven implosions are approximately twice as large, 64 {+-} 3 {mu}m, as indirect cores 25 {+-} 4 and 29 {+-} 4 {mu}m and more asymmetric, P2/P0 = 47% vs. -14% and 7%. Further, comparison with the size and shape of X-ray image data on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion.

  16. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect (OSTI)

    Szybist, James P; Szymkowicz, Patrick G.; Northrop, William F

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

  17. HEC-DPSSL 2012 Workshop, NIF Tour: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science NIF Tour TEXT SIZE Workshops About Organizing Committee Agenda Deadlines Abstract Submission Venue NIF Tour Directions Lake Tahoe Workshop Sign-up NIF Tour Non-US Citizen Deadline: July 11, 2012 US Citizen Deadline: August 10, 2012 Lawrence Livermore National Laboratory is home to the National Ignition Facility (NIF). NIF is a national resource — a unique experimental facility addressing compelling national security, energy, and science missions. NIF's 192 powerful laser beams,

  18. Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data

    Office of Environmental Management (EM)

    LA-UR-11-01857 Approved for public release; distribution I unlimited. Title: Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell Intended Use: Deliverable to SB-TS: Safety Basis Technical Services Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the

  19. An experimental study of the combustion characteristics in SCCI and CAI based on direct-injection gasoline engine

    SciTech Connect (OSTI)

    Lee, C.H.; Lee, K.H.

    2007-08-15

    Emissions remain a critical issue affecting engine design and operation, while energy conservation is becoming increasingly important. One approach to favorably address these issues is to achieve homogeneous charge combustion and stratified charge combustion at lower peak temperatures with a variable compression ratio, a variable intake temperature and a trapped rate of the EGR using NVO (negative valve overlap). This experiment was attempted to investigate the origins of these lower temperature auto-ignition phenomena with SCCI and CAI using gasoline fuel. In case of SCCI, the combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition (SCCI) engine according to intake temperature and compression ratio was examined. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing on the CAI combustion area. In addition, the effect of injection timing on combustion factors such as the start of combustion, its duration and its heat release rate was also investigated. (author)

  20. Control method for turbocharged diesel engines having exhaust gas recirculation

    DOE Patents [OSTI]

    Kolmanovsky, Ilya V. (Ypsilanti, MI); Jankovic, Mrdjan J (Birmingham, MI); Jankovic, Miroslava (Birmingham, MI)

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  1. Isobutane ignition delay time measurements at high pressure and detailed chemical kinetic simulations

    SciTech Connect (OSTI)

    Healy, D.; Curran, H.J.; Donato, N.S.; Aul, C.J.; Petersen, E.L.; Zinner, C.M.; Bourque, G.

    2010-08-15

    Rapid compression machine and shock-tube ignition experiments were performed for real fuel/air isobutane mixtures at equivalence ratios of 0.3, 0.5, 1, and 2. The wide range of experimental conditions included temperatures from 590 to 1567 K at pressures of approximately 1, 10, 20, and 30 atm. These data represent the most comprehensive set of experiments currently available for isobutane oxidation and further accentuate the complementary attributes of the two techniques toward high-pressure oxidation experiments over a wide range of temperatures. The experimental results were used to validate a detailed chemical kinetic model composed of 1328 reactions involving 230 species. This mechanism has been successfully used to simulate previously published ignition delay times as well. A thorough sensitivity analysis was performed to gain further insight to the chemical processes occurring at various conditions. Additionally, useful ignition delay time correlations were developed for temperatures greater than 1025 K. Comparisons are also made with available isobutane data from the literature, as well as with 100% n-butane and 50-50% n-butane-isobutane mixtures in air that were presented by the authors in recent studies. In general, the kinetic model shows excellent agreement with the data over the wide range of conditions of the present study. (author)

  2. The development of laser ignited deflagration-to-detonation transition (DDT) detonators and pyrotechnic actuators

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.

    1994-05-01

    The use of laser ignited explosive components has been recognized as a safety enhancement over existing electrical explosive devices (EEDs). Sandia has been pursuing the development of optical ordnance for many years with recent emphasis on developing optical deflagration-to-detonation (DDT) detonators and pyrotechnic actuators. These low energy optical ordnance devices can be ignited with either a semiconductor diode laser, laser diode arrays or a solid state rod laser. By using a semiconductor laser diode, the safety improvement can be made without sacrificing performance since the input energy required for the laser diode and the explosive output are similar to existing electrical systems. The use of higher powered laser diode arrays or rod lasers may have advantages in fast DDT applications or lossy optical environments such as long fiber applications and applications with numerous optical connectors. Recent results from our continued study of optical ignition of explosive and pyrotechnic materials are presented. These areas of investigation can be separated into three different margin categories: (1) the margin relative to intended inputs ( i.e. powder performance as a function of laser input variation), (2) the margin relative to anticipated environments (i.e. powder performance as a function of thermal environment variation), and (3) the margin relative to unintended environments (i.e. responses to abnormal environments or safety).

  3. The development of laser ignited deflagration-to-detonation transition (DDT) detonators and pyrotechnic actuators

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.; Harlan, J.G.

    1993-11-01

    The use of laser ignited explosive components has been recognized as a safety enhancement over existing electrical explosive devices (EEDs). Sandia has been pursuing the development of optical ordnance for many years with recent emphasis on developing optical deflagration-to-detonation (DDT) detonators and pyrotechnic actuators. These low energy optical ordnance devices can be ignited with either a semiconductor diode laser, laser diode arrays or a solid state rod laser. By using a semiconductor laser diode, the safety improvement can be made without sacrificing performance since the input energy required for the laser diode and the explosive output are similar to existing electrical systems. The use of higher powered laser diode arrays or rod lasers may have advantages in fast DDT applications or lossy optical environments such as long fiber applications and applications with numerous optical connectors. Recent results from our continued study of optical ignition of explosive and pyrotechnic materials are presented. These areas of investigation can be separated into three different margin categories: (1) the margin relative to intended inputs (i.e. powder performance as a function of laser input variation), (2) the margin relative to anticipated environments (i.e. powder performance as a function of thermal environment variation), and (3) the margin relative to unintended environments (i.e. responses to abnormal environments or safety).

  4. Chemical kinetic analysis of hydrogen-air ignition and reaction times

    SciTech Connect (OSTI)

    Rogers, R.C.; Schexnayder, C.J. Jr.

    1981-07-01

    An anaytical study of hydrogen air kinetics was performed. Calculations were made over a range of pressure from 0.2 to 4.0 atm, temperatures from 850 to 2000 K, and mixture equivalence ratios from 0.2 to 2.0. The finite rate chemistry model included 60 reactions in 20 species of the H2-O2-N2 system. The calculations also included an assessment of how small amounts of the chemicals H2O, NOx, H2O2, and O3 in the initial mixture affect ignition and reaction times, and how the variation of the third body efficiency of H2O relative of N2 in certain key reactions may affect reaction time. The results indicate that for mixture equivalence ratios between 0.5 and 1.7, ignition times are nearly constant however, the presence of H2O and NO can have significant effects on ignition times, depending on the mixture temperature. Reaction time is dominantly influenced by pressure but is nearly independent of initial temperature, equivalence ratio, and the addition of chemicals. Effects of kinetics on reaction at supersonic combustor conditions are discussed.

  5. Summary of the First Neutron Image Data Collected at the National Ignition Facility

    SciTech Connect (OSTI)

    Grim, G P; Aragonez, R J; Batha, S H; Clark, D D; Clark, D J; Clark, D J; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T.-S. F; Wilde, C H; Wilke, M D; Wilson, D C; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Fittinghoff, D N; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M

    2011-11-01

    A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of the data collected and measurements made to date. Data form directly driven, DT filled microballoons, as well as, indirectly driven, cryogenically layered ignition experiments are presented. The data presented show that the primary cores from directly driven implosions are approximately twice as large, 64 +/- 3 um, as indirect cores (25 +/- 4 and 29 +/- 4 um and more asymmetric, P2/P0 = 47% vs. -14% and -7%. Further, comparison with the size and shape of X-ray image data from on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion. This work was performed for the U.S. Department of Energy, National Nuclear Security Administration and by the National Ignition Campaign partners; Lawrence Livermore National Laboratory (LLNL), University of Rochester -Laboratory for Laser Energetics (LLE), General Atomics(GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL). Other contributors include Lawrence Berkeley National Laboratory (LBNL), Massachusetts Institute of Technology (MIT), Atomic Weapons Establishment (AWE), England, and Commissariat `a l Energie Atomique (CEA), France.

  6. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  7. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  8. Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancement in...

  9. Metabolic Engineering X Conference

    SciTech Connect (OSTI)

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  10. Rotary engine

    SciTech Connect (OSTI)

    Smith, T.A.

    1992-01-28

    This patent describes an improved rotary engine. It comprises an annular master cylinder composed of a cylindrical housing, a continuous hollow outer concentric shaft, an outward end housing and an inward end housing; means to form a dynamically balanced disc piston assembly extending from the the outward end housing to the the inward end housing thereby dividing the the annular master cylinder into at least three separate gas tight cylinders formed by rotating discs, each cylinder having at least two pistons independently rotatable therein; means to isolate the unexpanded gases from any exit path into the housing of the piston controlling means; and wherein one of the pistons in each cylinder is connected directly to the the continuous outer concentric shaft to form a first piston assembly, the other of the pistons in each cylinder is connected to the discs which are connected to the end of an inner concentric shaft to form a second piston assembly, means for controlling the piston action by a common eccentric shaft such that as the pistons rotate they expand and reduce the distance between them thereby changing the volume between the pistons within each of the cylinders.

  11. Increased Engine Efficiency via Advancements in Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Efficiency via Advancements in Engine Combustion Systems Increased Engine Efficiency via Advancements in Engine Combustion Systems Presentation given at the 16th Directions...

  12. Sandia Energy - HCCI/SCCI Engine Fundamentals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive HCCISCCI Engine Fundamentals HCCISCCI Engine...

  13. Sandia Energy - HCCI/SCCI Engine Fundamentals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty HCCISCCI Engine Fundamentals HCCISCCI Engine...

  14. Internal combustion engine with sustained power stroke

    SciTech Connect (OSTI)

    McNair, R.J.

    1980-09-09

    A four stroke cycle internal combustion engine is presented having a sustained power stroke which results from a delayed mixing of a stratified charge. Use of delayed mixing of an overall stoichiometric air-fuel mixture results in formation of a low amount of the oxides of nitrogen. Delayed mixing of the stratified charge is achieved by placement of at least one Helmholtz resonator cavity in the head or closed end of each combustion chamber. The Helmholtz resonator cavity communicates with the top end of the main combustion chamber via a narrow slot. On the intake stroke of each engine cylinder, the main chamber is filled with a slightly fuel rich gaseous charge while the companion Helmholtz resonator cavity is filled with air. During the compression stroke some of the rich air-fuel mixture is forced into the resonator cavity via the communicating slot. At or near tdc, the air-fuel mixture in the main chamber is ignited. As the flame front progresses across the chamber a rapid increase in pressure serves not only to power the piston, but also to initiate a resonant reaction in the Helmholtz resonator cavity which results in a transfer of the unburned gases therein into the main combustion chamber. This both sustains the power stroke and at the same time lowers the peak flame temperature in the main chamber.

  15. Ignition of ethane, propane, and butane in counterflow jets of cold fuel versus hot air under variable pressures

    SciTech Connect (OSTI)

    Fotache, C.G.; Wang, H.; Law, C.K.

    1999-06-01

    This study investigates experimentally the nonpremixed ignition of ethane, propane, n-butane, and isobutane in a configuration of opposed fuel versus heated air jets. For each of these fuels the authors explore the effects of inert dilution, system pressure, and flow strain rate, for fuel concentrations ranging between 3--100% by volume, pressures between 0.2 and 8 atm, and strain rates of 100--600 s{sup {minus}1}. Qualitatively, these fuels share a number of characteristics. First, flame ignition typically occurs after an interval of mild oxidation, characterized by minimal heat release, fuel conversion, and weak light emission. The temperature extent of this regime decreases with increasing the fuel concentration, the ambient pressure, or the flow residence time. Second, the response to strain rate, pressure, and fuel concentration is similar for all investigated fuels, in that the ignition temperatures monotonically decrease with increasing fuel content, decreasing flow strain, and increasing ambient pressure. The C{sub 4} alkanes, however, exhibit three distinct p-T ignition regimes, similar to the homogeneous explosion limits. Finally, at 1 atm, 100% fuel, and a fixed flow strain rate the ignition temperature increases in the order of ethane < propane < n-butane < i-butane. Numerical simulation was conducted for ethane ignition using detailed reaction kinetics and transport descriptions. The modeling results suggest that ignition for all fuels studied at pressures below 5 atm is initiated by fuel oxidation following the high-temperature mechanism of radical chain branching and with little contribution by low-to-intermediate temperature chemistry.

  16. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    SciTech Connect (OSTI)

    Fansler, Todd D.; Reuss, D. L.; Sick, V.; Dahms, R. N.

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of the spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NOx and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.

  17. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fansler, Todd D.; Reuss, D. L.; Sick, V.; Dahms, R. N.

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of themore » spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NOx and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.« less

  18. Hybrid vehicle system studies and optimized hydrogen engine design

    SciTech Connect (OSTI)

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  19. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    SciTech Connect (OSTI)

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional central hot spot (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directlyonly effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung and x-ray line radiation from K-shell fluorescence. Integrated experiments, which combine target compression with short-pulse laser heating, yield additional information on target heating efficiency. This indirect way of studying the underlying behavior of the electrons must be validated with computational modeling to understand the physics and improve the design. This program execution required a large, well-organized team and it was managed by a joint Collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). The Collaboration was formed 8 years ago to understand the physics issues of the Fast Ignition concept, building on the strengths of each partner. GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). Since RHED physics is pursued vigorously in many countries, international researchers have been an important part of our efforts to make progress. The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser (TPW) at UT Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing supercomputer codes developed by the NNSA ICF program. This Consortium brought together all the componentsresources, facilities, and personnelnecessary to accomplish its aggressive goals. The ACE Program has been strongly collaborative, taking advantage of the expertise of the participating institutions to provide a research effort

  20. Catalytic combustion in internal combustion engines: A possible explanation for the Woschni effect in thermally-insulated diesel engines. Interim report

    SciTech Connect (OSTI)

    Jones, R.L.

    1996-11-15

    This report describes research undertaken to determine if catalytic combustion effects occur with the use of zirconia (ZrO{sub 2}) thermal barrier coatings (TBCs), or other coatings, in diesel engines, and if so, whether these effects have significant impact upon engine combustion, fuel economy, or pollutant emissions. A simple furnace system was used to identify catalytic combustion effects in the ignition and combustion of propane/air mixtures over catalyst-doped m-ZrO{sub 2} spheres. Three classes of catalysts were examined: zirconia-stabilizing oxides (CeO{sub 2}, Y{sub 2}O{sub 3}, MgO), transition metal oxides (Co{sub 3}O{sub 4}, Cr{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}), and noble metals (Pt). Each class exhibited characteristic combustion effects, with the ignition temperature increasing, e.g., from approximately 2000 deg C for Pt to 5500 deg C for the stabilizing oxides. The results suggest that the Woschni effect, a controversial phenomenon wherein thermal-insulating measures are postulated to actually increase heat transfer from the diesel combustion chamber, may be only a manifestation of catalytic combustion. Previous research on catalytic combustion in internal combustion engines is briefly reviewed and discussed. An earlier version of this report is to be published in J. Surface and Coatings Technology as `Catalytic Combustion Effects on m-ZrO{sub 2} Doped with Various Metal Nitrates.`