Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Engines - Spark Ignition Engines - Direct Injection - Omnivorous Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Injection, Spark-Ignited Engines Direct Injection, Spark-Ignited Engines Omnivorous Engine Omnivorous Engine Setup Omnivorous Engine Setup New engine technology has made possible engines that will operate on a wide variety of fuel inputs, from gasoline to naptha to ethanol to methanol, without driver intervention. Although flexible fuel vehicles have been produced in the millions, their engines have always been optimized for gasoline operation while accepting significant performance and efficiency degradations when using the alternative fuel. This project seeks to combine in-cylinder measurement technology, and advanced controls to optimize spark timing, the quantity and timing of injected fuel, to produce an "omnivorous engine"--one that will be able to run on any liquid spark ignition fuel with optimal efficiency and low

2

Direct Injection Compressed Ignition Diesel Automotive Technology Education GATE Program  

DOE Green Energy (OSTI)

The underlying goal of this project was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome technological barriers preventing the development and production of cost-effective high-efficiency vehicles for the US. market. Further, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive technologies. Eight objectives were defined to accomplish this goal: (1) Develop an interdisciplinary internal combustion engine curriculum emphasizing direct injected combustion ignited diesel engines. (2) Encourage and promote interdisciplinary interaction of the faculty. (3) Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary curriculum. (4) Promote strong interaction with industry, develop a sense of responsibility with industry and pursue a self sustaining program. (5) Establish collaborative arrangements and network universities active in internal combustion engine study. (6) Further Enhance a First Class educational facility. (7) Establish ''off-campus'' M.S. and Ph.D. engine programs of study at various industrial sites. (8) Extend and Enhance the Graduate Experience.

Carl L. Anderson

2006-09-25T23:59:59.000Z

3

Control strategy for hydrocarbon emissions in turbocharged direct injection spark ignition engines during cold-start  

E-Print Network (OSTI)

Gasoline consumption and pollutant emissions from transportation are costly and have serious, demonstrated environmental and health impacts. Downsized, turbocharged direct-injection spark ignition (DISI) gasoline engines ...

Cedrone, Kevin David

2013-01-01T23:59:59.000Z

4

Assessing the hydrocarbon emissions in a homogeneous direct injection spark ignited engine  

E-Print Network (OSTI)

For the purpose of researching hydrocarbon (HC) emissions in a direct-injection spark ignited (DISI) engine, five experiments were performed. These experiments clarified the role of coolant temperature, injection pressure, ...

Radovanovic, Michael S

2006-01-01T23:59:59.000Z

5

FY2001 Progress Report for the Spark Ignition Direct Injection R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

SPARK IGNITION, SPARK IGNITION, DIRECT INJECTION ENGINE R&D 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and Computer Systems Management, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for the Spark Ignition Direct Injection R&D Program

6

PLIF flow visualization of methane gas jet from spark plug fuel injector in a direct injection spark ignition engine  

Science Conference Proceedings (OSTI)

A Spark Plug Fuel Injection (SPFI), which is a combination of a fuel injector and a spark plug was developed with the aim to convert any gasoline port injection spark ignition engine to gaseous fuel direct injection [1]. A direct fuel injector is combined ... Keywords: air-fuel mixing, direct fuel injection, flow visualization, gaseous fuel, laser-induced fluorescent

Taib Iskandar Mohamad; How Heoy Geok

2008-11-01T23:59:59.000Z

7

FY2002 Progress Report for Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels for Advanced Compression Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen November 2002 Fuels for Advanced CIDI Engines FY 2002 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. FUEL/LUBRICANT EFFECTS TESTING ON ENGINE PERFORMANCE . . . . . . . . . 13 A. Oil Consumption Contribution to CIDI PM Emissions during Transient Operation . . . . . . . . . . . . . . . . . . . .13

8

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine  

SciTech Connect

The objective of this research is a detailed investigation of particulate sizing and number count from a direct-injection spark-ignited (DISI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded. These varied parameters include load, air-to-fuel ratio (A/F), spark timing, injection timing, fuel rail pressure, and oil and coolant temperatures. Most conditions resulted with uni-modal type distributions usually with an increase in magnitude of particles in comparison to the baseline, with the exception of lean operation with retarded ignition timing. Further investigation revealed high sensitivity of the particle number and size distribution to changes in the engine control parameters. There was also a high sensitivity of the particle size distributions to small variations in A/F, ignition timing, and EOI. Investigations revealed the possibility of emissions oxidation in the exhaust and engine combustion instability at later EOI timings which therefore ruled out late EOI as the benchmark condition. Attempts to develop this benchmark revealed engine sensitivity to A/F and ignition timing, especially at later EOI operation

Farron, Carrie; Matthias, Nick; Foster, David E.; Andrie, Mike; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun; Zelenyuk, Alla

2011-04-12T23:59:59.000Z

9

Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends  

E-Print Network (OSTI)

The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

Kar, Kenneth

10

Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1  

DOE Green Energy (OSTI)

This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

Chan, A.K.

2000-02-23T23:59:59.000Z

11

Knock limits in spark ignited direct injected engines using gasoline/ethanol blends  

E-Print Network (OSTI)

Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

Kasseris, Emmanuel P

2011-01-01T23:59:59.000Z

12

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions  

Science Conference Proceedings (OSTI)

Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.

Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Barone, Teresa L [ORNL

2010-01-01T23:59:59.000Z

13

Effects of different fuels on a turbocharged, direct injection, spark ignition engine  

E-Print Network (OSTI)

The following pages describe the experimentation and analysis of two different fuels in GM's high compression ratio, turbocharged direct injection (TDI) engine. The focus is on a burn rate analysis for the fuels - gasoline ...

Negrete, Justin E

2010-01-01T23:59:59.000Z

14

A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition (DISI) engine.  

DOE Green Energy (OSTI)

This study was designed to evaluate a 'what if' scenario in terms of using butanol as an oxygenate in place of ethanol in an engine calibrated for gasoline operation. No changes to the stock engine calibration were performed for this study. Combustion analysis, efficiency, and emissions of pure gasoline, 10% ethanol, and 10% butanol blends in a modern direct-injection four-cylinder spark-ignition engine were analyzed. Data were taken at engine speeds of 1000 rpm up to 4000 rpm with load varying from 0 N m (idle) to 150 N m. Relatively minor differences existed between the three fuels for the combustion characteristics such as heat release rate, 50% mass fraction burned, and coefficient of variation in indicated mean effective pressure at low and medium engine loads. However at high engine loads the reduced knock resistance of the butanol blend forced the engine control unit to retard the ignition timing substantially, compared with the gasoline baseline and, even more pronounced, compared with the ethanol blend. Brake specific volumetric fuel consumption, which represented a normalized volumetric fuel flow rate, was lowest for the gasoline baseline fuel due to the higher energy density. The 10% butanol blend had a lower volumetric fuel consumption compared with the ethanol blend, as expected, based on energy density differences. The results showed little difference in regulated emissions between 10% ethanol and 10% butanol. The ethanol blend produced the highest peak specific NO{sub x} due to the high octane rating of ethanol and effective antiknock characteristics. Overall, the ability of butanol to perform equally as well as ethanol from an emissions and combustion standpoint, with a decrease in fuel consumption, initially appears promising. Further experiments are planned to explore the full operating range of the engine and the potential benefits of higher blend ratios of butanol.

Wallner, T.; Miers, S. A.; McConnell, S. (Energy Systems)

2009-05-01T23:59:59.000Z

15

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions  

Science Conference Proceedings (OSTI)

More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition.

Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul M.; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

2012-01-01T23:59:59.000Z

16

Staged direct injection diesel engine  

DOE Patents (OSTI)

A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

Baker, Quentin A. (San Antonio, TX)

1985-01-01T23:59:59.000Z

17

carbon sequestration via direct injection  

NLE Websites -- All DOE Office Websites (Extended Search)

SEQUESTRATION VIA DIRECT INJECTION SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams INTRODUCTION The build-up of carbon dioxide (CO 2 ) and other greenhouse gases in the Earth's atmosphere has caused concern about possible global climate change. As a result, international negotiations have produced the Framework Convention on Climate Change (FCCC), completed during the 1992 Earth Summit in Rio de Janeiro. The treaty, which the United States has ratified, calls for the "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system." The primary greenhouse gas is CO 2 , which is estimated to contribute to over two-thirds of any climate change. The primary source of CO

18

Modeling Injection and Ignition in Direct Injection Natural Gas Engines.  

E-Print Network (OSTI)

??With increasing concerns about the harmful effects of conventional liquid fossil fuel emissions, natural gas has become a very attractive alternative fuel to power prime… (more)

Cheng, Xu Jr.

2008-01-01T23:59:59.000Z

19

Radial lean direct injection burner  

Science Conference Proceedings (OSTI)

A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

2012-09-04T23:59:59.000Z

20

OMEGA ICF experiments and preparation for direct drive ignition on NIF  

E-Print Network (OSTI)

OMEGA ICF experiments and preparation for direct drive ignition on NIF R.L. McCrorya , R.E. Bahra) is investigating various theoretical aspects of a direct drive National Ignition Facility (NIF) ignition target equivalent to those planned for the NIF. The current experimental studies on OMEGA address the essential

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reducing cold start hydrocarbon emissions from port fuel injected spark ignition engines with improved management of hardware & controls  

E-Print Network (OSTI)

An experimental study was performed to investigate strategies for reducing cold start hydrocarbon (HC) emissions from port fuel injected (PFI) spark ignition (SI) engines with better use of existing hardware and control ...

Lang, Kevin R., 1980-

2006-01-01T23:59:59.000Z

22

A comparison between direct spark ignition and prechamber ignition in an internal combustion engine  

DOE Green Energy (OSTI)

We simulated the flow field and flame propagation near top dead center in a generic large-bore internal combustion engine using the COYOTE computer program, which is based on the full Navier-Stokes equations for a fluid mixture. The combustion chamber is a right circular cylinder, and the main charge is uniformly premixed. The calculations are axisymmetric. The results illustrate the differences in flow patterns, flame propagation, and thermal NO production between ignition with a spark plug and with a small prechamber. In the spark-ignited case, the flame propagates away from the spark plug approximately as a segment of a spherical surface, just as expected. With the prechamber, a high speed jet of hot combustion products shoots into the main chamber, quickly producing a large flame sheet that spreads along the piston face. The prechamber run consumes all of the fuel in half the time required by the spark-ignited case. The two cases produce comparable amounts of thermal NO at the end of fuel combustion.

Cloutman, L.D.

1993-12-03T23:59:59.000Z

23

Two-stage Ignition as an Indicator of Low Temperature Combustion in a Late Injection Pre-mixed Compression Ignition Control Strategy  

E-Print Network (OSTI)

Internal combustion engines have dealt with increasingly restricted emissions requirements. After-treatment devices are successful in bringing emissions into compliance, but in-cylinder combustion control can reduce their burden by reducing engine out emissions. For example, oxides of nitrogen (NOx) are diesel combustion exhaust species that are notoriously difficult to remove by after-treatment. In-cylinder conditions can be controlled for low levels of NOx, but this produces high levels of soot potentially leading to increased particulate matter (PM). The simultaneous reduction of NOx and PM can be realized through a combustion process known as low temperature combustion (LTC). In this study, the typical definition of LTC as the defeat of the inverse relationship between soot and NOx is not applicable as a return to the soot-NOx tradeoff is observed with increasing exhaust gas recirculation (EGR). It is postulated that this effect is the result of an increase in the hot ignition equivalence ratio, moving the combustion event into a slightly higher soot formation region. This is important because a simple emissions based definition of LTC is no longer helpful. In this study, the manifestation of LTC in the calculated heat release profile is investigated. The conditions classified as LTC undergo a two-stage ignition process. Two-stage ignition is characterized by an initial cool-flame reaction followed by typical hot ignition. In traditional combustion conditions, the ignition is fast enough that a cool-flame is not observed. By controlling initial conditions (pressure, temperature, and composition), the creation and duration of the cool-flame event is predictable. Further, the effect that injection timing and the exhaust gas recirculation level have on the controlling factors of the cool-flame reaction is well correlated to the duration of the cool-flame event. These two results allow the postulation that the presence of a sufficiently long cool-flame reaction indicates a combustion event that can be classified as low temperature combustion. A potential method for identifying low temperature combustion events using only the rate of heat release profile is theorized. This study employed high levels of EGR and late injection timing to realize the LTC mode of ordinary petroleum diesel fuel. Under these conditions, and based on a 90 percent reduction in nitric oxide and no increase in smoke output relative to the chosen baseline condition, a two part criteria is developed that identifies the LTC classified conditions. The criteria are as follow: the combustion event of conventional petroleum diesel fuel must show a two-stage ignition process; the first stage (cool-flame reaction) must consume at least 2 percent of the normalized fuel energy before the hot ignition commences.

Bittle, Joshua

2010-12-01T23:59:59.000Z

24

European Lean Gasoline Direct Injection Vehicle Benchmark  

DOE Green Energy (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL; Huff, Shean P [ORNL; Edwards, Kevin Dean [ORNL; Norman, Kevin M [ORNL; Prikhodko, Vitaly Y [ORNL; Thomas, John F [ORNL

2011-01-01T23:59:59.000Z

25

Controlling combustion characteristics using a slit nozzle in a direct-injection methanol engine  

SciTech Connect

A new type of fuel injection nozzle, called a `slit nozzle,` has been developed to improve poor ignitability and to stabilize combustion under low load conditions in direct-injection methanol diesel engines manufactured for medium-duty trucks. This nozzle has a single oblong vent like a slit. Engine test results indicate that the slit nozzle can improve combustion and thermal efficiency, especially at low loads and no load. This can be explained by the fact that the slit nozzle forms a more highly concentrated methanol spray around the glow-plug than do multi-hole nozzles. As a result, this nozzle improves flame propagation. 3 refs., 12 figs., 4 tabs.

Kusaka, Jin; Daisho, Yasuhiro; Saito, Takeshi; Kihara, Ryoji

1994-10-01T23:59:59.000Z

26

Ejector device for direct injection fuel jet  

SciTech Connect

Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

Upatnieks, Ansis (Livermore, CA)

2006-05-30T23:59:59.000Z

27

Asymmetric directly driven capsule implosions: Modeling and experiments-A requirement for the National Ignition Facility  

SciTech Connect

Direct-drive experiments at the University of Rochester's OMEGA laser [T. R. Boehly, R. L. McCrory, C. P. Verdon et al., Fusion Eng. Des. 44, 35 (1999)] have been performed to prototype eventual campaigns on the National Ignition Facility (NIF) [E. I. Moses and C. R. Wuest, Fusion Sci. Technol. 43, 420 (2003)] to investigate the mixing of target materials. Spherical-implosion targets with equatorial defects have been irradiated with polar direct drive, a requirement for direct-drive experiments at NIF. The physics question addressed by these results is whether simulations can match data on 0th-order hydrodynamics and implosion symmetry, the most basic implosion features, with and without the defect. The successful testing of hydrodynamic simulations leads to better designs for experiments and guides accurate planning for polar-direct-drive-ignition studies on the NIF platform.

Cobble, J. A.; Murphy, T. J.; Schmitt, M. J.; Bradley, P. A.; Krashenninikova, N. S.; Obrey, K. A.; Hsu, S. C.; Tregillis, I. L.; Magelssen, G. R.; Wysocki, F. J.; Batha, S. H. [Los Alamos National Laboratory, Mail Stop E527, Los Alamos, New Mexico 87545 (United States)

2012-12-15T23:59:59.000Z

28

Direct liquid injection of liquid petroleum gas  

SciTech Connect

A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

Lewis, D.J.; Phipps, J.R.

1984-02-14T23:59:59.000Z

29

Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions  

Science Conference Proceedings (OSTI)

A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissions is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.

He, X.; Ratcliff, M. A.; Zigler, B. T.

2012-04-19T23:59:59.000Z

30

NOx Sensor for Direct Injection Emission Control  

DOE Green Energy (OSTI)

The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.

Betteridge, William J

2006-02-28T23:59:59.000Z

31

Optical Diagnostics and Direct Injection of Liquid Fuel Sprays  

Science Conference Proceedings (OSTI)

The research described here addresses the problem of a paucity of high quality data on the full field structure of high pressure liquid fuel sprays for gasoline direct injection, GDI, engines. The paper describes the application of phase Doppler anemometry, ... Keywords: GDI, PDA, laser sheet, spray, visualisation

G. K. Hargrave; G. Wigley; J. Allen; A. Bacon

1999-12-01T23:59:59.000Z

32

A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion  

E-Print Network (OSTI)

A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre-ignition radicals, start of combustion, and eventual heat release. These mechanisms are described based on the current understanding and knowledge of the diesel engine combustion acquired through advanced laser-based diagnostics. Six zones are developed to take into account the surrounding bulk gas, liquid- and vapor-phase fuel, pre-ignition mixing, fuel-rich combustion products as well as the diffusion flame combustion products. A three-step phenomenological soot model and a nitric oxide emission model are applied based on where and when each of these reactions mainly occurs within the diesel fuel jet evolution process. The simulation is completed for a 4.5 liter, inline four-cylinder diesel engine for a range of operating conditions. Specifically, the engine possesses a compression ratio of 16.6, and has a bore and stroke of 106 and 127 mm. The results suggest that the simulation is able to accurately reproduce the fuel jet evolution and heat release process for conventional diesel engine combustion conditions. The soot and nitric oxide models are able to qualitatively predict the effects of various engine parameters on the engine-out emissions. In particular, the detailed thermodynamics and characteristics with respect to the combustion and emission formation processes are investigated for different engine speed/loads, injection pressures and timings, and EGR levels. The local thermodynamic properties and energy, mass distributions obtained from the simulation offer some fundamental insights into heterogeneous type combustion systems. The current work provides opportunities to better study and understand the diesel engine combustion and emission formation mechanisms for conventional diesel engine combustion modes. The flexible, low computational cost features of this simulation result in a convenient tool for conducting parametric studies, and benefits for engine control and diagnostics.

Xue, Xingyu 1985-

2012-12-01T23:59:59.000Z

33

Engines - Spark Ignition Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark Ignition Engines Spark Ignition Engines Thomas Wallner and omni engine Thomas Wallner and the omnivorous engine Background Today the United States import more than 60% of its crude oil and petroleum products. Transportation accounts for a major portion of these imports. Research in this field is focused on reducing the dependency on foreign oil by increasing the engine efficiency on the one hand and blending gasoline with renewable domestic fuels, such as ethanol, on the other. Argonne's Research The main focus of research is on evaluation of advanced combustion concepts and effects of fuel properties on engine efficiency, performance and emissions. The platforms used are a single-cylinder research engine as well as an automotive-size four-cylinder engine with direct fuel injection.

34

Influence of water injection on performance and emissions of a direct-injection hydrogen research engine.  

DOE Green Energy (OSTI)

The application of hydrogen (H{sub 2}) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for IC engines and hence it is widely regarded as the energy carrier of the future. Direct injection of hydrogen allows optimizing this potential as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently engine efficiency and exhaust emissions.

Nande, A. M.; Wallner, T.; Naber, J. (Energy Systems); (MIchigan Technological Univ.)

2008-10-06T23:59:59.000Z

35

Ignition Rate Measurement of Laser-Ignited Coals  

SciTech Connect

We established a novel experiment to study the ignition of pulverized coals under conditions relevant to utility boilers. Specifically, we determined the ignition mechanism of pulverized-coal particles under various conditions of particle size, coal type, and freestream oxygen concentration. We also measured the ignition rate constant of a Pittsburgh #8 high-volatile bituminous coal by direct measurement of the particle temperature at ignition, and incorporating this measurement into a mathematical model for the ignition process. The model, called Distributed Activation Energy Model of Ignition, was developed previously by our group to interpret conventional drop-tube ignition experiments, and was modified to accommodate the present study.

John C. Chen; Vinayak Kabadi

1997-10-31T23:59:59.000Z

36

Laser Ignition  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel...

37

Testing of a new aftertreatment system for lean burn direct injected gasoline engines.  

E-Print Network (OSTI)

??A gasoline direct injected engine operating under lean conditions can offer a reduction in fuel consumption and a reduction of CO2 emissions but meanwhile suffer… (more)

Thulin, Andeas

2011-01-01T23:59:59.000Z

38

Evaluation of UHT milk processed by direct steam injection and steam infusion technology.  

E-Print Network (OSTI)

??UHT direct steam injection and steam infusion are widely used; however there is no comparison of their impact on milk components. This study evaluates the… (more)

Malmgren, Bozena

2007-01-01T23:59:59.000Z

39

Premixed direct injection nozzle for highly reactive fuels  

Science Conference Proceedings (OSTI)

A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

2013-09-24T23:59:59.000Z

40

Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle  

Science Conference Proceedings (OSTI)

A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

2013-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DIRECT DRIVE FUSION ENERGY SHOCK IGNITION DESIGNS FOR SUB-MJ LASERS Andrew J. Schmitt, J. W. Bates, S. P. Obenschain, and S. T. Zalesak  

E-Print Network (OSTI)

compresses and burns the relatively cold fuel around it, leading to a release of fusion energy. In the pastDIRECT DRIVE FUSION ENERGY SHOCK IGNITION DESIGNS FOR SUB-MJ LASERS Andrew J. Schmitt, J. W. Bates 20375 R. Betti Fusion Science Center and Laboratory for Laser Energetics, University of Rochester

42

DIRECT DRIVE FUSION ENERGY SHOCK IGNITION DESIGNS FOR SUBMJ LASERS Andrew J. Schmitt, J. W. Bates, S. P. Obenschain, and S. T. Zalesak  

E-Print Network (OSTI)

compresses and burns the relatively cold fuel around it, leading to a release of fusion energy. In the pastDIRECT DRIVE FUSION ENERGY SHOCK IGNITION DESIGNS FOR SUB­MJ LASERS Andrew J. Schmitt, J. W. Bates 20375 R. Betti Fusion Science Center and Laboratory for Laser Energetics, University of Rochester

43

Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments.  

E-Print Network (OSTI)

??The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM… (more)

Pedel, Julien

2012-01-01T23:59:59.000Z

44

Laser Ignition  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Ignition Laser Ignition Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Available for thumbnail of Feynman Center (505) 665-9090 Email Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In two embodiments the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion

45

Evaluation of the environmental viability of direct injection schemes for ocean carbon sequestration  

E-Print Network (OSTI)

This thesis evaluates the expected impact of several promising schemes for ocean carbon sequestration by direct injection of CO2, and serves as an update to the assessment by Auerbach et al. (1997) and Caulfield et al. ...

Israelsson, Peter H. (Peter Hampus), 1973-

2008-01-01T23:59:59.000Z

46

Development of the High-Pressure Direct-Injection ISX G Natural Gas Engine  

DOE Green Energy (OSTI)

Fact sheet details work by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

Not Available

2004-08-01T23:59:59.000Z

47

An initial assessment of three-dimensional polar direct drive capsule asymmetries for implosions at the National Ignition Facility  

Science Conference Proceedings (OSTI)

The National Ignition Facility (NIF) provides a unique opportunity to study implosion physics with nuclear yield. The use of polar direct drive (PDD) [A. M. Cok, R. S. Craxton, and P. W. McKenty, Phys. Plasmas 15, 082705 (2008)] provides a simple platform for the experimental studies without expensive optics upgrades to NIF. To determine the optimum PDD laser pointing geometry on NIF and provide a baseline for validating inertial confinement fusion codes against experiments for symmetric and asymmetric implosions, computer simulations using the 3D radiation-hydrodynamics code hydra[M. M. Marinak, R. E. Tipton, O. L. Landen, T. J. Murphy, P. Amendt, S. W. Haan, S. P. Hatchett, C. J. Keane, R. McEachern, and R. Wallace, Phys. Plasmas 3, 2070 (1996)] were preformed. The upper hemisphere of a DT-filled CH capsule was imploded by 96 NIF beams in a PDD configuration. Asymmetries in both polar and equatorial directions around the capsule were observed, with the former dominating the latter. Analysis of the simulation results indicates that the lack of symmetry in the initial power density profile (during the first 200 ps of the implosion) is a primary cause of late-time asymmetry in the implosion as well as decreased yield. By adjusting the laser pointings, the symmetry and total neutron yield were improved. Simulations with dropped quads (four of the NIF laser system's 192 beamlines) without repointing worsen the overall symmetry by a factor of 10 (with respect to rms radial variation around the capsule) and reduce neutron yield by a factor of 2. Both of these degraded implosion characteristics are restored by azimuthal repointing of the remaining quads.

Krasheninnikova, Natalia S.; Finnegan, Sean M.; Schmitt, Mark J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-01-15T23:59:59.000Z

48

Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2  

DOE Green Energy (OSTI)

This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

2000-03-02T23:59:59.000Z

49

Exhaust gas recirculation in a homogeneous charge compression ignition engine  

DOE Patents (OSTI)

A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

2008-05-27T23:59:59.000Z

50

Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF  

E-Print Network (OSTI)

ix Figure 1.10: (a) The NIF ignition scale cone-guided FINational Ignition Facility (NIF) experiments will focus onthe injection Figure 1.10: (a) The NIF ignition scale cone-

Ma, Tammy Yee Wing

2010-01-01T23:59:59.000Z

51

Predicting and Evaluating the Effectiveness of Ocean Carbon Sequestration by Direct Injection  

Science Conference Proceedings (OSTI)

Direct injection of CO{sub 2} into the ocean is a potentially effective carbon sequestration strategy. Therefore, we want to understand the effectiveness of oceanic injection and develop the appropriate analytic framework to allow us to compare the effectiveness of this strategy with other carbon management options. Here, after a brief review of direct oceanic injection, we estimate the effectiveness of ocean carbon sequestration using one dimensional and three dimensional ocean models. We discuss a new measure of effectiveness of carbon sequestration in a leaky reservoir, which we denote sequestration potential. The sequestration potential is the fraction of global warning cost avoided by sequestration in a reservoir. We show how these measures apply to permanent sequestration and sequestration in leaky reservoirs, such as the oceans, terrestrial biosphere, and some geologic formations. Under the assumptions of a constant cost of carbon emission and a 4% discount rate, injecting 900 m deep in the ocean avoids {approx}90% of the global warming cost associated with atmospheric emission; an injection 1700 m deep would avoid > 99 % of the global warming cost. Hence, for discount rates in the range commonly used by commercial enterprises, oceanic direct injection may be nearly as economically effective as permanent sequestration at avoiding global warming costs.

Caldeira, K; Herzog, H J; Wickett, M E

2001-04-24T23:59:59.000Z

52

Evaluation of injector location and nozzle design in a direct-injection hydrogen research engine.  

DOE Green Energy (OSTI)

The favorable physical properties of hydrogen (H{sub 2}) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs.

Wallner, T.; Nande, A. M.; Naber, J.; Energy Systems; Michigan Technological Univ.

2008-06-01T23:59:59.000Z

53

Computational study of homogeneous and stratified combustion in a compressed natural gas direct injection engine  

Science Conference Proceedings (OSTI)

In recent years, the type of combustion occurred within engine cylinder plays an important role determining the performance and emissions. In the present study, the computational investigation was performed in order to compare characteristics of homogeneous ... Keywords: compressed natural gas, direct injection, exhaust emissions, homogeneous combustion, stratified combustion

S. Abdullah; W. H. Kurniawan; M. A. Al-Rawi; Y. Ali; T. I. Mohamad

2009-02-01T23:59:59.000Z

54

Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 1  

DOE Green Energy (OSTI)

The transportation sector accounts for approximately 65% of US petroleum consumption. Consumption for light-duty vehicles has stabilized in the last 10--15 years; however, consumption in the heavy-duty sector has continued to increase. For various reasons, the US must reduce its dependence on petroleum. One significant way is to substitute alternative fuels (natural gas, propane, alcohols, and others) in place of petroleum fuels in heavy-duty applications. Most alternative fuels have the additional benefit of reduced exhaust emissions relative to petroleum fuels, thus providing a cleaner environment. The best long-term technology for heavy-duty alternative fuel engines is the 4-stroke cycle, direct injected (DI) engine using a single fuel. This DI, single fuel approach maximizes the substitution of alternative fuel for diesel and retains the thermal efficiency and power density of the diesel engine. This report summarizes the results of the first year (Phase 1) of this contract. Phase 1 focused on developing a 4-stroke cycle, DI single fuel, alternative fuel technology that will duplicate or exceed diesel power density and thermal efficiency, while having exhaust emissions equal to or less than the diesel. Although the work is currently on a 3500 Series DING engine, the work is viewed as a basic technology development that can be applied to any engine. Phase 1 concentrated on DING engine component durability, exhaust emissions, and fuel handling system durability. Task 1 focused on identifying primary areas (e.g., ignition assist and gas injector systems) for future durability testing. In Task 2, eight mode-cycle-averaged NO{sub x} emissions were reduced from 11.8 gm/hp-hr (baseline conditions) to 2.5 gm/hp-hr (modified conditions) on a 3501 DING engine. In Task 3, a state-of-the-art fuel handling system was identified.

NONE

2000-03-02T23:59:59.000Z

55

Argonne TTRDC - Engines - Compression-Ignition - diesel, fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compression Ignition Engines Clean Diesel Technologies for Greener Performance Mechanical engineer Alan Kastengren examines a diesel injection nozzle used in Argonne's X-ray spray...

56

Effect of directed port air flow on liquid fuel transport in a port fuel injected spark ignition engine  

E-Print Network (OSTI)

With highly efficient modem catalysts, startup HC emissions have become a significant portion of the trip total. Liquid fuel is a major source of HC emissions during the cold start and fast idle period. Thus the control ...

Scaringe, Robert J. (Robert Joseph)

2007-01-01T23:59:59.000Z

57

Wear, durability, and lubricating oil performance of a straight vegetable oil (Karanja) blend fueled direct injection compression ignition engine  

Science Conference Proceedings (OSTI)

Depletion of fossil fuel resources and resulting associated environmental degradation has motivated search for alternative transportation fuels. Blending small quantity of Karanja oil (straight vegetable oil) with mineral diesel is one of the simplest available alternatives

Avinash Kumar Agarwal; Atul Dhar

2012-01-01T23:59:59.000Z

58

Effects of natural gas composition on ignition delay under diesel conditions  

DOE Green Energy (OSTI)

Effects of variations in natural gas composition on autoignition of natural gas under direct-injection (DI) diesel engine conditions were studied experimentally in a constant-volume combustion vessel and computationally using a chemical kinetic model. Four fuel blends were investigated: pure methane, a capacity weighted mean natural gas, a high ethane content natural gas, and a natural gas with added propane typical of peak shaving conditions. Experimentally measured ignition delays were longest for pure methane and became progressively shorter as ethane and propane concentrations increased. At conditions characteristic of a DI compression ignition natural gas engine at Top Dead Center (CR=23:1, p = 6.8 MPa, T = 1150K), measured ignition delays for the four fuels varied from 1.8 ms for the peak shaving and high ethane gases to 2.7 ms for pure methane. Numerically predicted variations in ignition delay as a function of natural gas composition agreed with these measurements.

Naber, J.D.; Siebers, D.L. [Sandia National Labs., Livermore, CA (United States); Di Julio, S.S. [California State Univ., Northridge, CA (United States). Dept. of Mechanical Engineering; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

1993-12-03T23:59:59.000Z

59

Development of Innovative Combustion Processes for a Direct-Injection Diesel Engine  

DOE Green Energy (OSTI)

In support of the Partnership for a New Generation Vehicle (PNGV) emissions and fuel economy goals, a small-bore, high-speed, direct-injection (HSDI) diesel facility in which to conduct research into the physics of the combustion process relevant to these engines has been developed. The characteristics of this facility are described, and the motivation for selecting these characteristics and their relation to high efficiency, low-emission HSDI engine technology is discussed.

John Dec; Paul Miles

1999-01-01T23:59:59.000Z

60

Research and development of hydrogen direct-injection internal combustion engine system  

Science Conference Proceedings (OSTI)

The research and development of hydrogen-internal combustion engine (ICE) system for heavy-duty trucks, with the goal of allowing carbon dioxide (CO2)-free operation in transportation department, has been carried out. The high-pressure hydrogen ... Keywords: NOx emission reduction, NOx storage reduction catalyst, carbon dioxide-free, direct injection, heavy-duty truck, high-pressure hydrogen injector, hydrogen, internal combustion engine

Yoshio Sato; Atsuhiro Kawamura; Tadanori Yanai; Kaname Naganuma; Kimitaka Yamane; Yasuo Takagi

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

NLE Websites -- All DOE Office Websites (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

62

Development of the High-Pressure Direct-Injected, Ultra Low-NOx Natural Gas Engine: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

Duggal, V. K.; Lyford-Pike, E. J.; Wright, J. F.; Dunn, M.; Goudie, D.; Munshi, S.

2004-05-01T23:59:59.000Z

63

The influence of bowl offset on air motion in a direct injection diesel engine  

SciTech Connect

The influence of bowl offset on motored mean flow and turbulence in a direct injection diesel engine has been examined with the aid of a multi-dimensional flow code. Results are presented for three piston geometries. The bowl geometry of each piston was the same, while the offset between the bowl and the cylinder axis was varied from 0.0 to 9.6% of the bore. The swirl ratio at intake valve closing was also varied from 2.60 to 4.27. It was found that the angular momentum of the air at TDC was decreased by less than 8% when the bowl was offset. Nevertheless, the mean (squish and swirl) flows were strongly affected by the offset. In addition, the distribution of turbulent kinetic energy (predicted by the /delta/-e model) was modified. Moderate increases (10% or less) in mass averaged turbulence intensity at TDC with offset were observed.

McKinley, T.L.; Primus, R.J

1988-01-01T23:59:59.000Z

64

Second law analysis of premixed compression ignition combustion in a diesel engine using a thermodynamic engine cycle simulation  

E-Print Network (OSTI)

A second law analysis of compression ignition engine was completed using a thermodynamic engine cycle simulation. The major components of availability destruction and transfer for an entire engine cycle were identified and the influence of mode of combustion, injection timing and EGR on availability balance was evaluated. The simulation pressure data was matched with the available experimental pressure data gathered from the tests on the Isuzu 1.7 L direct injection diesel engine. Various input parameters of the simulation were changed to represent actual engine conditions. Availability destruction due to combustion decreases with advanced injection timing and under premixed compression ignition (PCI) modes; but it is found to be insensitive to the level of EGR. Similarly, trends (or lack of trends) in the other components of availability balance were identified for variation in injection timing, EGR level and mode of combustion. Optimum strategy for efficient combustion processes was proposed based on the observed trends.

Oak, Sushil Shreekant

2008-08-01T23:59:59.000Z

65

Rich catalytic injection  

SciTech Connect

A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

Veninger, Albert (Coventry, CT)

2008-12-30T23:59:59.000Z

66

Laser preheat enhanced ignition  

DOE Patents (OSTI)

A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided.

Early, James W. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

67

An experimental study of fuel injection strategies in CAI gasoline engine  

Science Conference Proceedings (OSTI)

Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuel mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)

Hunicz, J.; Kordos, P. [Department of Combustion Engines and Transport, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

2011-01-15T23:59:59.000Z

68

Hydrocarbon emissions in a homogeneous direct-injection spark engine : gasoline and gasohol  

E-Print Network (OSTI)

In order to better understand the effects on hydrocarbon emissions of loading, engine temperature, fuel type, and injection timing, a series of experiments was performed. The effect of loading was observed by running the ...

Tharp, Ronald S

2008-01-01T23:59:59.000Z

69

Advanced ignition and propulsion technology program  

DOE Green Energy (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

Oldenborg, R.; Early, J.; Lester, C.

1998-11-01T23:59:59.000Z

70

Thermal ignition combustion system  

DOE Patents (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

71

IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM  

Science Conference Proceedings (OSTI)

This report documents a 3-year research program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system and prepare the technology for the field demonstration phase in Year 3. In all, there were twelve (12) tasks defined and executed to support objectives in a stepwise fashion. The optimized four-cylinder system data demonstrated significant progress compared to Phase I results, as well as traditional spark ignition systems. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system on an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Commercialization of the retrofit micropilot ignition technology is awaiting a ''market pull'', which is expected to materialize as the results of the field demonstration become known and accepted. The Implementation Team, comprised of Woodward Governor Company, Enginuity LLC, Hoerbiger Corporation of America, and DigiCon Inc., has direct experience with the technology development and implementation, and stands ready to promote and commercialize the retrofit micropilot ignition system.

Scott Chase; Daniel Olsen; Ted Bestor

2005-05-01T23:59:59.000Z

72

Performance and Economics of Catalytic Glow Plugs and Shields in Direct Injection Natural Gas Engines for the Next Generation Natural Gas Vehicle Program: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by TIAX and Westport to test and perform cost analysis for catalytic glow plugs and shields for direct-injection natural gas engines for the Next Generation Natural Gas Vehicle Program.

Mello, J. P.; Bezaire, D.; Sriramulu, S.; Weber, R.

2003-08-01T23:59:59.000Z

73

The effect of oxygenate molecular structure on soot production in direct-injection diesel engines.  

DOE Green Energy (OSTI)

A combined experimental and kinetic modeling study of soot formation in diesel engine combustion has been used to study the addition of oxygenated species to diesel fuel to reduce soot emissions. This work indicates that the primary role of oxygen atoms in the fuel mixture is to reduce the levels of carbon atoms available for soot formation by fixing them in the form of CO or COz. When the structure of the oxygenate leads to prompt and direct formation of CO2, the oxygenate is less effective in reducing soot production than in cases when all fuel-bound 0 atoms produce only CO. The kinetic and molecular structure principles leading to this conclusion are described.

Westbrook, Charles K. (Lawrence Livermore National Laboratory, Livermore, CA); Pitz, William J. (Lawrence Livermore National Laboratory, Livermore, CA); Mueller, Charles J.; Martin, Glen M.; Pickett, Lyle M.

2003-06-01T23:59:59.000Z

74

The National Ignition Facility and the Ignition Campaign  

E-Print Network (OSTI)

(atm-s) Indirect drive on the NIF is within a factor of 2-3 of the conditions required for ignition Callahan -- AAAS, February 14-18, 2013 82013-047661s2.ppt NIF Ignition #12;2013-047661s2.ppt Callahan -- AAAS and initiated operation of NIF as the world's premier HED science facility Story of NIF and Ignition 102013

75

Ignition of hydrogen/air mixing layer in turbulent flows  

DOE Green Energy (OSTI)

Autoignition of a scalar hydrogen/air mixing layer in homogeneous turbulence is studied using direct numerical simulation. An initial counterflow of unmixed nitrogen-diluted hydrogen and heated air is perturbed by two-dimensional homogeneous turbulence. The temperature of the heated air stream is chosen to be 1,100 K which is substantially higher than the crossover temperature at which the rates of the chain branching and termination reactions become equal. Three different turbulence intensities are tested in order to assess the effect of the characteristic flow time on the ignition delay. For each condition, a simulation without heat release is also performed. The ignition delay determined with and without heat release is shown to be almost identical up to the point of ignition for all of the turbulence intensities tested, and the predicted ignition delays agree well within a consistent error band. It is also observed that the ignition kernel always occurs where hydrogen is focused, and the peak concentration of HO{sub 2} is aligned well with the scalar dissipation rate. The dependence of the ignition delay on turbulence intensity is found to be nonmonotonic. For weak to moderate turbulence the ignition is facilitated by turbulence via enhanced mixing, while for stronger turbulence, whose timescale is substantially smaller than the ignition delay, the ignition is retarded due to excessive scalar dissipation, and hence diffusive loss, at the ignition location. However, for the wide range of initial turbulence fields studied, the variation in ignition delay due to the corresponding variation in turbulence intensity appears to be quite small.

Im, H.G.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Law, C.K. [Princeton Univ., NJ (United States). Dept. of Mechanical and Aerospace Engineering

1998-03-01T23:59:59.000Z

76

IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES  

DOE Green Energy (OSTI)

This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

Jason M. Keith

2005-02-01T23:59:59.000Z

77

Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine  

Science Conference Proceedings (OSTI)

The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

West, B.; Green, J.B. [Oak Ridge National Lab., TN (United States)

1994-07-01T23:59:59.000Z

78

Burner ignition system  

SciTech Connect

An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

Carignan, Forest J. (Bedford, MA)

1986-01-21T23:59:59.000Z

79

IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM -- PHASE III  

Science Conference Proceedings (OSTI)

This report documents the third year's effort towards a 3-year program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. Two earlier phases of development precede this report. The objective for Phase I was to demonstrate the feasibility of retrofit micropilot ignition (RMI) systems for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system for an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Installation efforts at Window Rock were completed towards the end of the budget period, which did not leave sufficient time to complete the durability testing. These efforts are ongoing, with funding provided by El Paso Pipeline Group, and the results will be documented in a report. Commercialization of the retrofit micropilot ignition (RMI) technology is awaiting a ''market pull'', which is expected to materialize as the results of the field demonstration become known and accepted. The Implementation Team, comprised of Woodward Governor Company, Enginuity LLC, Hoerbiger Corporation of America, and DigiCon Inc., has direct experience with the technology development and implementation, and stands ready to promote and commercialize the RMI system.

Scott Chase; Daniel Olsen; Ted Bestor

2005-03-01T23:59:59.000Z

80

Adaptive engine injection for emissions reduction  

DOE Patents (OSTI)

NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

2008-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Engines - Fuel Injection and Spray Research - Gasoline Sprays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline Sprays Gasoline Sprays Animated image of fuel emerging from a gasoline injector Animated image of fuel emerging from a gasoline injector (simulated environment). Some newer automobiles in the U.S. use gasoline direct injection (GDI) engines. These advanced gasoline engines inject the fuel directly into the engine cylinder rather than into the intake port. These engines can achieve higher fuel efficiency, but they depend on a precise fuel/air mixture at the spark plug to initiate ignition. This leads to more stringent requirements on spray quality and reproducibility. GDI also enables new combustion strategies for gasoline engines such as lean burn engines that use less fuel and air. Lean burn engines may achieve efficiencies near those of diesels while producing low emissions. This

82

Use of LIF image acquisition and analysis in developing a calibrated technique for in-cylinder investigation of the spatial distribution of air-to-fuel mixing in direct injection gasoline engines  

Science Conference Proceedings (OSTI)

This paper presents the role of image acquisition and analysis in the development of a new strategy for the calibration of measurements of fuel distribution in gasoline direct injection engines. Images are acquired from a motored experimental engine ... Keywords: LIF, air-to-fuel mixing, gasoline direct injection engine, image analysis, intensified image acquisition, laser-induced fluorescence

Guillaume de Sercey; Graeme Awcock; Morgan Heikal

2005-12-01T23:59:59.000Z

83

Use of LIF image acquisition and analysis in developing a calibrated technique for in-cylinder investigation of the spatial distribution of air-to-fuel mixing in direct injection gasoline engines  

Science Conference Proceedings (OSTI)

This paper presents the role of image acquisition and analysis in the development of a new strategy for the calibration of measurements of fuel distribution in gasoline direct injection engines. Images are acquired from a motored experimental engine ... Keywords: Air-to-fuel mixing, Gasoline direct injection engine, Image analysis, Intensified image acquisition, LIF, Laser-induced fluorescence

Guillaume de Sercey; Graeme Awcock; Morgan Heikal

2005-12-01T23:59:59.000Z

84

Frictionally induced ignition processes in drop and skid tests  

SciTech Connect

The standard LANL/Pantex drop and skid tests rely on subjective assessment of reaction violence to quantify the response of the charge, and completely miss nonpropagating hot-spot ignition sites. Additionally, large variations in test results have been observed, which we propose is due to a misunderstanding of the basic physical processes that lead to threshold ignition in these tests. The tests have been redesigned to provide control of these mechanisms and to permit direct observation of hot spots at the impact site, allowing us to follow the progression of the outcome as the drop height and ignition source density are varied. The results confirm that frictional interactions between high-melting-point solids are the dominant ignition mechanism, not just at the threshold, but in fact at all realistic drop heights.

Dickson, Peter [Los Alamos National Laboratory; Parker, Gary [Los Alamos National Laboratory; Novak, Alan [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

85

Ignition and Inertial Confinement Fusion at The National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

Moses, E

2009-10-01T23:59:59.000Z

86

Princeton Plasma Physics Lab - National Ignition Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

national-ignition-facility National Ignition Facility en Summary of Assessment of Prospects for Inertial Fusion Energy http:www.pppl.govnode1361

87

Ignition Analysis of a Porous Energetic Material - II. Ignition at a Closed Heated End  

Science Conference Proceedings (OSTI)

A continuation of an ignition analysis for porous energetic materials subjected to a constant energy flux is presented. In the first part (I), the analysis was developed for the case of an open-end, semi-infinite material such that gas flow, generated by thermal expansion, flowed out of the porous solid, thereby removing energy from the system. In the present study, the case of a closed end is considered, and thus the thermally-induced gas flow is now directed into the solid. In these studies, an asymptotic perturbation analysis, based on the smallness of the gas-to-solid density ratio and the largeness of the activation energy, is utilized to describe the inert and transition stages leading to thermal runaway. In both cases it is found that the effects of porosity provide a leading-order reduction in the time to ignition relative to that for the nonporous problem, arising from the reduced amount of solid material that must be heated and the difference in thermal conductivities of the solid and gaseous phases. A correction to the leading-order ignition-delay time, however, is provided by the convective flow of gas through the solid, and the sign of this correction is shown to depend on the direction of the gas flow. Thus, gas flowing out of an open-end solid was previously shown to give a positive correction to the leading-order time to ignition. Here, however, it is demonstrated that when the flow of gas is directed into the porous solid, the relative transport effects associated with the gas flow serve to preheat the material, resulting in a negative correction and hence a decrease in the ignition-delay time.

S. B. Margolis; A. M. Telengator; F. A. Williams

1999-01-10T23:59:59.000Z

88

Ignition analysis of a porous energetic material. 2. Ignition at a closed heated end  

SciTech Connect

A continuation of an ignition analysis for porous energetic materials subjected to a constant energy flux is presented. In the first part, the analysis was developed for the case of an open-end, semi-infinite material such that gas flow, generated by thermal expansion, flowed out of the porous solid, thereby removing energy from the system. In the present study, the case of a closed end is considered, and thus the thermally-induced gas flow is now directed into the solid. In these studies, an asymptotic perturbation analysis, based on the smallness of the gas-to-solid density ratio and the largeness of the activation energy, is utilized to describe the inert and transition stages leading to thermal runaway. In both cases it is found that the effects of porosity provide a leading-order reduction in the time to ignition relative to that for the nonporous problem, arising from the reduced amount of solid material that must be heated and the difference in thermal conductivities of the solid and gaseous phases. A correction to the leading-order ignition-delay time, however, is provided by the convective flow of gas through the solid, and the sign of this correction is shown to depend on the direction of the gas flow. Thus, gas flowing out of an open-end solid was previously shown to give a positive correction to the leading-order time to ignition. Here, however, it is demonstrated that when the flow of gas is directed into the porous solid, the relative transport effects associated with the gas flow serve to preheat the material, resulting in a negative correction and hence a decrease in the ignition-delay time.

Alexander M. Telegentor; Stephen B. Margolis; Forman A. Williams

1998-11-01T23:59:59.000Z

89

Rapid ignition of fluidized bed boiler  

DOE Patents (OSTI)

A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

Osborn, Liman D. (Alexandria, VA)

1976-12-14T23:59:59.000Z

90

Plasma jet ignition device  

DOE Patents (OSTI)

An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

1985-01-15T23:59:59.000Z

91

Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy  

E-Print Network (OSTI)

A versatile stroboscopic technique based on active phase-locking of a surface acoustic wave to picosecond laser pulses is used to monitor dynamic acoustoelectric effects. Time-integrated multi-channel detection is applied to probe the modulation of the emission of a quantum well for different frequencies of the surface acoustic wave. For quantum posts we resolve dynamically controlled generation of neutral and charged excitons and preferential injection of holes into localized states within the nanostructure.

Völk, S; Schülein, F J R; Truong, T A; Kim, H; Petroff, P M; Wixforth, A; Krenner, H J

2010-01-01T23:59:59.000Z

92

Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy  

E-Print Network (OSTI)

A versatile stroboscopic technique based on active phase-locking of a surface acoustic wave to picosecond laser pulses is used to monitor dynamic acoustoelectric effects. Time-integrated multi-channel detection is applied to probe the modulation of the emission of a quantum well for different frequencies of the surface acoustic wave. For quantum posts we resolve dynamically controlled generation of neutral and charged excitons and preferential injection of holes into localized states within the nanostructure.

S. Völk; F. Knall; F. J. R. Schülein; T. A. Truong; H. Kim; P. M. Petroff; A. Wixforth; H. J. Krenner

2010-11-08T23:59:59.000Z

93

Preparing for Ignition Experiments on the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF) is a 192-beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing ignition experiments for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF will produce 1.8 MJ, 500 TW of ultraviolet light ({lambda} = 351 nm) making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for the study of matter at extreme temperatures and densities for producing and developing ICF. The ignition studies will be an essential step in developing inertial fusion energy (IFE). the NIF Project is over 93% complete and scheduled for completion in 2009. Experiments using one beam have demonstrated that NIF can meet all of its performance goals. A detailed plan called the National Ignition Campaign (NIC) has been developed to begin ignition experiments in 2010. The plan includes the target physics and the equipment such as diagnostics, cryogenic target manipulator and user optics required for the ignition experiment. Target designs have been developed that calculate to ignite at energy as low as 1 MJ. Plans are under way to make NIF a national user facility for experiments on HED physics and nuclear science, including experiments relevant to the development of IFE.

Moses, E; Meier, W

2007-08-28T23:59:59.000Z

94

Methane ignition catalyzed by in situ generated palladium nanoparticles  

SciTech Connect

Catalytic ignition of methane over the surfaces of freely-suspended and in situ generated palladium nanoparticles was investigated experimentally and numerically. The experiments were conducted in a laminar flow reactor. The palladium precursor was a compound (Pd(THD){sub 2}, THD: 2,2,6,6-tetramethyl-3,5-heptanedione) dissolved in toluene and injected into the flow reactor as a fine aerosol, along with a methane-oxygen-nitrogen mixture. For experimental conditions chosen in this study, non-catalytic, homogeneous ignition was observed at a furnace temperature of {proportional_to}1123 K, whereas ignition of the same mixture with the precursor was found to be {proportional_to}973 K. In situ production of Pd/PdO nanoparticles was confirmed by scanning mobility, transmission electron microscopy and X-ray photoelectron spectroscopy analyses of particles collected at the reactor exit. The catalyst particle size distribution was log-normal. Depending on the precursor loading, the median diameter ranged from 10 to 30 nm. The mechanism behind catalytic ignition was examined using a combined gas-phase and gas-surface reaction model. Simulation results match the experiments closely and suggest that palladium nanocatalyst significantly shortens the ignition delay times of methane-air mixtures over a wide range of conditions. (author)

Shimizu, T.; Abid, A.D.; Poskrebyshev, G.; Wang, H. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Nabity, J.; Engel, J.; Yu, J. [TDA Research, Inc., 12345 W. 52nd Ave, Wheat Ridge, CO 80033 (United States); Wickham, D. [Reaction Systems, LLC, 19039 E. Plaza Drive, Suite 290, Parker, CO 80134 (United States); Van Devener, B.; Anderson, S.L. [Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (United States); Williams, S. [Air Force Research Laboratory, Mail Stop RZA, 1950 Fifth Street, WPAFB, OH 45433 (United States)

2010-03-15T23:59:59.000Z

95

Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility  

Science Conference Proceedings (OSTI)

A high-performance inertial confinement fusion capsule is compressed by multiple shock waves before it implodes. To minimize the entropy acquired by the fuel, the strength and timing of those shock waves must be accurately controlled. Ignition experiments at the National Ignition Facility (NIF) will employ surrogate targets designed to mimic ignition targets while making it possible to measure the shock velocities inside the capsule. A series of experiments on the OMEGA laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)] validated those targets and the diagnostic techniques proposed. Quartz was selected for the diagnostic window and shock-velocity measurements were demonstrated in Hohlraum targets heated to 180 eV. Cryogenic experiments using targets filled with liquid deuterium further demonstrated the entire timing technique in a Hohlraum environment. Direct-drive cryogenic targets with multiple spherical shocks were used to further validate this technique, including convergence effects at relevant pressures (velocities) and sizes. These results provide confidence that shock velocity and timing can be measured in NIF ignition targets, allowing these critical parameters to be optimized.

Boehly, T. R.; Hu, S. X.; Morozas, J. A.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14645 (United States); Munro, D.; Celliers, P. M.; Hicks, D. G.; Collins, G. W.; Robey, H. F.; Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Olson, R. E. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14645 (United States); Department of Mechanical Engineering, University of Rochester, New York 14645 (United States); Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14645 (United States); Department of Mechanical Engineering, University of Rochester, New York 14645 (United States); Department of Physics and Astronomy, University of Rochester, New York 14645 (United States)

2009-05-15T23:59:59.000Z

96

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

DOE Green Energy (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL; Curran, Scott [ORNL; Prikhodko, Vitaly Y [ORNL; Sluder, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

97

TOWARD A STANDARD IGNITION SOURCE  

E-Print Network (OSTI)

and ignited with a small propane torch. The top center ofhead is supplied with propane. In these experiments allin the pre-mixed mode with propane alone to simulate trash

Volkingburg, David R. Van

2011-01-01T23:59:59.000Z

98

Maintenance FUSION IGNITION RESEARCH EXPERIMENT  

E-Print Network (OSTI)

to refine the system details, interfaces and the requirements for remote handling. Table 1. FIRE RadialInsulation Enclosure Remote Maintenance Module FUSION IGNITION RESEARCH EXPERIMENT SYSTEM objectives and subsystem requirements in an arrangement that allows remote maintenance of in

99

Conceptual Design - Polar Drive Ignition Campaign  

SciTech Connect

The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain to be defined. In all cases, the facility modifications represent functional changes to existing systems or capabilities. The bulk of the scope yet to be identified is associated with the DPR's and MultiFM beam smoothing. Detailed development plans for these two subsystems are provided in Appendices H and I; additional discussion of subsystem requirements based on the physics of PD ignition is given in Section 3. Accordingly, LLE will work closely with LLNL to develop detailed conceptual designs for the PD-specific facility modifications, including assessments of the operational impact of implementation (e.g., changing optics for direct rather than indirect-drive illumination and swapping from a hohlraum-based ITIC to one that supports PD). Furthermore, the experimental implementation plan represents the current best understanding of the experimental campaigns required to achieve PD ignition. This plan will evolve based on the lessons learned from the National Ignition Campaign (NIC) and ongoing indirect-drive ignition experiments. The plan does not take the operational realities of the PD configuration into account; configuration planning for the proposed PD experiments is beyond the scope of this document.

Hansen, R

2012-04-05T23:59:59.000Z

100

Conceptual Design - Polar Drive Ignition Campaign  

SciTech Connect

The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain to be defined. In all cases, the facility modifications represent functional changes to existing systems or capabilities. The bulk of the scope yet to be identified is associated with the DPR's and MultiFM beam smoothing. Detailed development plans for these two subsystems are provided in Appendices H and I; additional discussion of subsystem requirements based on the physics of PD ignition is given in Section 3. Accordingly, LLE will work closely with LLNL to develop detailed conceptual designs for the PD-specific facility modifications, including assessments of the operational impact of implementation (e.g., changing optics for direct rather than indirect-drive illumination and swapping from a hohlraum-based ITIC to one that supports PD). Furthermore, the experimental implementation plan represents the current best understanding of the experimental campaigns required to achieve PD ignition. This plan will evolve based on the lessons learned from the National Ignition Campaign (NIC) and ongoing indirect-drive ignition experiments. The plan does not take the operational realities of the PD configuration into account; configuration planning for the proposed PD experiments is beyond the scope of this document.

Hansen, R

2012-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

National Ignition Facility (NIF): Under Pressure: Ramp-Compression...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record American Fusion News Category: National Ignition Facility Link: National Ignition Facility (NIF):...

102

The National Ignition Facility (NIF) A Path to Fusion Energy  

SciTech Connect

Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

Moses, E

2006-11-27T23:59:59.000Z

103

IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY  

Science Conference Proceedings (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed and has high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments to be conducted by the academic community is planned for summer 2009. This paper summarizes the design, performance, and status of NIF, experimental plans for NIC, and will present a brief discussion of the unparalleled opportunities to explore frontier basic science that will be available on the NIF.

Moses, E

2009-06-22T23:59:59.000Z

104

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

105

Relativistic Laser Plasma Research for Fast Ignition Laser Fusion  

E-Print Network (OSTI)

Reviewed are the present status and future prospects of the laser fusion research at the ILE (Institute of Laser Engineering) Osaka. The Gekko XII and Peta Watt laser system have been operated for investigating the fast ignition, the relativistic laser plasma interactions and so on. In particular, the fast ignition experiments with cone shell target have been in progress as the UK and US-Japan collaboration programs. In the experiments, the imploded high density plasmas are heated by irradiating 500 J level peta watt laser pulse. The thermal neutron yield is found to increase by three orders of magnitude by injecting the peta watt laser into the cone shell target. Transport of relativistic high density electron is the critical issue as the basic physics for understanding the dense plasma heating process. By the theory, simulation and experiment, the collective phenomena in the interactions of intense relativistic electron current with dense plasmas has been investigated to find the formation of self organized flow as the result of filamentation (Weibel) instability. Through the present understanding, the new project, FIREX-I has started recently to prove the principle of the fast ignition scheme. Keywords: fast ignition, peta watt laser, relativistic electron, weibel instability

Mima Kunioki; Tanaka Kazuo. A; Kodama Ryosuke; Johzaki Tomohiro; Nagatomo Hideo; Shiraga Hiroyuki; Miyanaga Noriaki; Azechi Hiroshi; Nakai Mitsuo; Norimatsu Takayoshi; Nagai Keiji; Sunahara Atsushi; Nishihara Katsunobu; Taguchi Toshihiro; Sakagami Hitoshi; Sentoku Yasuhiko; Ruhl Hartmut

2003-01-01T23:59:59.000Z

106

THE AUTOIGNITION OF CYCLOPENTANE IN AN IGNITION QUALITY TESTER  

Science Conference Proceedings (OSTI)

Cyclopentane, a flammable hydrocarbon, is being considered as a working fluid for waste heat recovery applications using Organic Rankine Cycles with Direct Evaporators. A postulated failure mode consisting of a pinhole leak in a heat exchanger tube raises safety concerns due to autoignition of the working fluid. The ignition delay time (IDT) of cyclopentane was measured using an Ignition Quality Test™ (IQT™) device. Hot, vitiated air was used to simulate turbine exhaust gas (TEG). Experiments were conducted in accordance with ASTM D6890 (with exception to charge pressure and temperature) to determine ignition delay of the fuel at atmospheric pressure for vitiated air (13.3% oxygen). The test matrixencompassed equivalence ratios from 0.5 to 5.0 and chamber temperatures ranging from 673 to 823 K to establish a set of ignition delay curves. IDT was observed to decrease with increasing temperature and equivalence ratio. For the cases tested, no ignition was observed at temperatures at or below 723 K or at an equivalence ratio of 0.5.

Donna Post Guillen

2012-08-01T23:59:59.000Z

107

WILDFIRE IGNITION RESISTANCE ESTIMATOR WIZARD SOFTWARE DEVELOPMENT REPORT  

SciTech Connect

This report describes the development of a software tool, entitled “WildFire Ignition Resistance Estimator Wizard” (WildFIRE Wizard, Version 2.10). This software was developed within the Wildfire Ignition Resistant Home Design (WIRHD) program, sponsored by the U. S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection & Disaster Management Division. WildFIRE Wizard is a tool that enables homeowners to take preventive actions that will reduce their home’s vulnerability to wildfire ignition sources (i.e., embers, radiant heat, and direct flame impingement) well in advance of a wildfire event. This report describes the development of the software, its operation, its technical basis and calculations, and steps taken to verify its performance.

Phillips, M.; Robinson, C.; Gupta, N.; Werth, D.

2012-10-10T23:59:59.000Z

108

Laser ablation based fuel ignition  

DOE Patents (OSTI)

There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

Early, J.W.; Lester, C.S.

1998-06-23T23:59:59.000Z

109

June 11, 1999: National Ignition Facility  

Energy.gov (U.S. Department of Energy (DOE))

June 11, 1999Secretary Richardson dedicates the National Ignition Facility target chamber at DOE's Lawrence Livermore National Laboratory.

110

Surface breakdown igniter for mercury arc devices  

DOE Patents (OSTI)

Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

Bayless, John R. (Malibu, CA)

1977-01-01T23:59:59.000Z

111

Advanced ignition options for laser ICF  

E-Print Network (OSTI)

University of Rochester and Princeton Plasma Physics Laboratory #12;FSC · With day-one hardware, the NIF can explore high-gain shock ignition - Polar Shock Ignition (uses half the NIF beams to drive the implosion: multi-FM or 2D-SSD (talk by J. Soures at this meeting) The NIF can explore advanced ignition options

112

On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term  

SciTech Connect

Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term ({approx}3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of {approx}60 may be achievable on NIF at laser drive energies around {approx}0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R&D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

Perkins, L J; Betti, R; Schurtz, G P; Craxton, R S; Dunne, A M; LaFortune, K N; Schmitt, A J; McKenty, P W; Bailey, D S; Lambert, M A; Ribeyre, X; Theobald, W R; Strozzi, D J; Harding, D R; Casner, A; Atzemi, S; Erbert, G V; Andersen, K S; Murakami, M; Comley, A J; Cook, R C; Stephens, R B

2010-04-12T23:59:59.000Z

113

Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet)  

DOE Green Energy (OSTI)

Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines.

Not Available

2012-12-01T23:59:59.000Z

114

Spent N fuel project preliminary saftey evaluation of the cold vacuum drying system -- calculations for the flammable gas ignition scenario  

DOE Green Energy (OSTI)

For a preliminary safety evaluation of the Cold Vacuum Drying System, calculations for the flammable gas ignition scenario are provided. Hydrogen buildup from uranium corrosion in the MCO followed by inadvertent injection of oxygen and the presence of an ignition source leads to hydrogen deflagration that over pressurizes and releases radioactive particulate matter to the environment. The adiabatic flame temperature, MCO pressure and source term are calculated.

Scott, D.L.

1996-06-12T23:59:59.000Z

115

Auto-ignition during instationary jet evolution of dimethyl ether (DME) in a high-pressure atmosphere  

Science Conference Proceedings (OSTI)

The auto-ignition process during transient injection of gaseous dimethyl ether (DME) in a constant high-pressure atmosphere is studied experimentally by laser-optical methods and compared with numerical calculations. With different non-intrusive measurement techniques jet properties and auto-ignition are investigated at high temporal and spatial resolution. The open jet penetrates a constant pressure oxidative atmosphere of up to 4 MPa. During the transient evolution, the fuel jet entrains air at up to 720 K. The subsequent auto-ignition of the ignitable part of the jet occurs simultaneously over a wide spatial extension. The ignition delay times are not affected by variation of the nozzle exit velocity. Thus, the low-temperature oxidation is slow compared with the shorter time scales of mixing, so that chemical kinetics is dominating the process. The typical two-stage ignition is resolved optically with high-speed shadowgraphy at a sampling rate of 10 kHz. The 2D fields of jet velocity and transient mixture fraction are measured phase-coupled with Particle Image Velocimetry (PIV) and Tracer Laser Induced Fluorescence (LIF) during the time-frame of ignition. The instationary Probability Density Functions (PDF) of mixture fraction are described very well by Beta functions within the complete area of the open jet. Additional 1D flamelet simulations of the auto-ignition process are computed with a detailed reaction mechanism for DME [S. Fischer, F. Dryer, H. Curran, Int. J. Chem. Kinet. 32 (12) (2000) 713-740; H. Curran, S. Fischer, F. Dryer, Int. J. Chem. Kinet. 32 (12) (2000) 741-759]. Calculated ignition delay times are in very good agreement with the measured mean ignition delay times of 3 ms. Supplemental flamelet simulations address the influence of DME and air temperature, pressure and strain. Underneath a critical strain rate the air temperature is identified to be the most sensitive factor on ignition delay time. (author)

Fast, G.; Kuhn, D.; Class, A.G. [Institut fuer Kern- und Energietechnik, Forschungszentrum Karlsruhe GmbH, Weberstrasse 5, D-76133 Karlsruhe (Germany); Maas, U. [Institut fuer Technische Thermodynamik, Universitat Karlsruhe (TH), Kaiserstrasse 12, D-76128 Karlsruhe (Germany)

2009-01-15T23:59:59.000Z

116

Progress Toward Ignition on the National Ignition Facility  

SciTech Connect

The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimiza

Kauffman, R L

2011-10-17T23:59:59.000Z

117

The Ignition Physics Study Group  

Science Conference Proceedings (OSTI)

In the US magnetic fusion program there have been relatively few standing committees of experts, with the mandate to review a particular sub-area on a continuing basis. Generally, ad hoc committees of experts have been assembled to advise on a particular issue. There has been a lack of broad, systematic and continuing review and analysis, combining the wisdom of experts in the field, in support of decision making. The Ignition Physics Study Group (IPSG) provides one forum for the systematic discussion of fusion science, complementing the other exchanges of information, and providing a most important continuity in this critical area. In a similar manner to the European program, this continuity of discussion and the focus provided by a national effort, Compact Ignition Tokamak (CIT), and international effort, Engineering Test Reactor (ETR), are helping to lower those barriers which previously were an impediment to rational debate.

Sheffield, J.

1987-01-01T23:59:59.000Z

118

Optimization of the process of plasma ignition of coal  

Science Conference Proceedings (OSTI)

Results are given of experimental and theoretical investigations of plasma ignition of coal as a result of its thermochemical preparation in application to the processes of firing up a boiler and stabilizing the flame combustion. The experimental test bed with a commercial-scale burner is used for determining the conditions of plasma ignition of low-reactivity high-ash anthracite depending on the concentration of coal in the air mixture and velocity of the latter. The calculations produce an equation (important from the standpoint of practical applications) for determining the energy expenditure for plasma ignition of coal depending on the basic process parameters. The tests reveal the difficulties arising in firing up a boiler with direct delivery of pulverized coal from the mill to furnace. A scheme is suggested, which enables one to reduce the energy expenditure for ignition of coal and improve the reliability of the process of firing up such a boiler. Results are given of calculation of plasma thermochemical preparation of coal under conditions of lower concentration of oxygen in the air mixture.

Peregudov, V.S. [Russian Academy of Sciences, Novosibirsk (Russian Federation)

2009-04-15T23:59:59.000Z

119

Modeling of homogeneous charge compression ignition (HCCI) of methane  

DOE Green Energy (OSTI)

The operation of piston engines on a compression ignition cycle using a lean, homogeneous charge has many potential attractive features. These include the potential for extremely low NO{sub x} and particulate emissions while maintaining high thermal efficiency and not requiring the expensive high pressure injection system of the typical modem diesel engine. Using the HCT chemical kinetics code to simulate autoignition of methane-air mixtures, we have explored the ignition timing, burn duration, NO{sub x} production, indicated efficiency and power output of an engine with a compression ratio of 15:1 at 1200 and 2400 rpm. HCT was modified to include the effects of heat transfer. This study used a single control volume reaction zone that varies as a function of crank angle. The ignition process is controlled by varying the intake equivalence ratio and varying the residual gas trapping (RGT). RGT is internal exhaust gas recirculation which recycles both heat and combustion product species. It is accomplished by varying the timing of the exhaust valve closure. Inlet manifold temperature was held constant at 330 Kelvins. Results show that there is a narrow range of operational conditions that show promise of achieving the control necessary to vary power output while keeping indicated efficiency above 50% and NO{sub x} levels below 100 ppm.

Smith, J.R.; Aceves, S.M.; Westbrook, C.; Pitz, W.

1997-05-01T23:59:59.000Z

120

History and future of spark ignition engines  

SciTech Connect

A report on the history and future of spark ignition engines for automobile propulsion is presented, with particular emphasis on their environmental impact. Topics covered include: factors affecting early decisions in favor of spark ignition engines and influencing continued reliance on spark ignition engines; the early history of automobile engines, including propulsion by steam, electricity, spark ignition, and diesel power; and contemporary alternative power sources such as the stratified charge engine and the Wankel rotary combustion engine. There appear to be no equivalents in knowledge, experience, or data with alternative engine designs to allow for the prediction that a change from spark ignition propulsion to one of the possible alternatives would be beneficial either in terms of emission reduction or performance and fuel economy. The stratified charge engine, however, appears to offer great promise for adequate emission control with good fuel economy and performance characteristics; moreover, it has the significant advantage of being an incremental change from the current spark ignition engine.

1973-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation  

DOE Patents (OSTI)

A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

Dec, John E. (Livermore, CA); Sjoberg, Carl-Magnus G. (Livermore, CA)

2006-10-31T23:59:59.000Z

122

Laser Spark Distribution and Ignition System  

Laser Spark Distribution and Ignition System Opportunity The Department of Energy’s National Energy Technology Laboratory (NETL) is seeking licensing partners ...

123

Ignitability Measurements with the Cone Calorimeter*  

Science Conference Proceedings (OSTI)

... 22. WD Weatherford, Jr and DM Sheppard, Basic studies of the mechanism of ignition of cellulosic materials. Tenth Symp. (IntI) on Combustion, pp. ...

2008-08-25T23:59:59.000Z

124

Ignition and spread of electrical wire fires  

E-Print Network (OSTI)

pilot source, placed in the center of the wire sample to initiate ignition, which heats the wire through both convection (major) and radiation (

Huang, Xinyan

2012-01-01T23:59:59.000Z

125

Modelling piloted ignition of wood and plastics  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

Blijderveen, Maarten van [TNO, Schoemakerstraat 97, 2628 VK Delft (Netherlands); University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Bramer, Eddy A. [University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Brem, Gerrit, E-mail: g.brem@utwente.nl [University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands)

2012-09-15T23:59:59.000Z

126

Groundbreaking at National Ignition Facility | National Nuclear...  

National Nuclear Security Administration (NNSA)

NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Groundbreaking at National Ignition Facility...

127

Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments  

SciTech Connect

A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys of Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.

Town, R J; Rosen, M D; Michel, P A; Divol, L; Moody, J D; Kyrala, G A; Schneider, M B; Kline, J L; Thomas, C A; Milovich, J L; Callahan, D A; Meezan, N B; Hinkel, D E; Williams, E A; Berger, R L; Edwards, M J; Suter, L J; Haan, S W; Lindl, J D; Dixit, S; Glenzer, S H; Landen, O L; Moses, E I; Scott, H A; Harte, J A; Zimmerman, G B

2010-11-22T23:59:59.000Z

128

Study on Adaptive Ignition Energy System of Two-Stroke Spark Ignition Engine  

Science Conference Proceedings (OSTI)

Kerosene is characteristic of higher flash point, poorer evaporation, higher energy density, higher use safety, higher ignition temperature, and slower combustion velocity than that of gasoline. Therefore, kerosene is widely used in the field of navigation. ... Keywords: CDI, Adaptive Ignition Energy, Spark Ignition Engine, Microcontroller Unit

Binglin Li; Minxiang Wei

2009-10-01T23:59:59.000Z

129

Tank farm deflagration rates due to various ignition sources  

SciTech Connect

This supporting document evaluates potential ignition sources, documents calculated deflagration rates in flammable gas tanks from these ignition sources, and assesses the efficacy of controls to mitigate or prevent ignition.

Powers, T.B., Westinghouse Hanford

1996-08-29T23:59:59.000Z

130

Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics  

E-Print Network (OSTI)

beams Relative size 240 ft National Ignition Facility (NIF) 1.8 MJ 192 beams NIF The National Ignition (NIF) is predicted to achieve high-gain (~40). · Direct drive targets are predicted to ignite on the NIF while it is in x-ray-drive configuration with polar direct drive (PDD). · Fully integrated fast

131

Managing transient behaviors of a dual mode spark ignition-- controlled auto ignition engine with a variable valve timing system  

E-Print Network (OSTI)

Gasoline Homogeneous Charge Compression Ignition (HCCI) engine has the potential of providing better fuel economy and emissions characteristics than current spark ignition engines. One implementation of this technology ...

Santoso, Halim G. (Halim Gustiono), 1975-

2005-01-01T23:59:59.000Z

132

Effect of NO on extinction and re-ignition of vortex-perturbed hydrogen flames.  

DOE Green Energy (OSTI)

The catalytic effect of nitric oxide (NO) on the dynamics of extinction and re-ignition of a vortex-perturbed non-premixed hydrogen-air flame is studied in a counterflow burner. A diffusion flame is established with counterflowing streams of nitrogen-diluted hydrogen at ambient temperature and air heated to a range of temperatures that brackets the auto-ignition temperature. Localized extinction is induced by impulsively driving a fuel-side toroidal vortex into the steady flame, and the recovery of the extinguished region is monitored by planar laser-induced fluorescence (PLIF) of the hydroxyl radical (OH). The dynamics of flame recovery depend on the air temperature and fuel concentration, and four different recovery modes are identified. These modes involve combinations of edge-flame propagation and the expansion of an auto-ignition kernel that forms within the extinguished region. The addition of a small amount of NO significantly alters the re-ignition process by shifting the balance between chain-termination and chain-propagation reactions to enhance auto-ignition. The ignition enhancement by this catalytic effect causes a shift in the conditions that govern the recovery modes. In addition, the effects of NO concentration and vortex strength on the flame recovery are examined. Direct numerical simulations of the flame-vortex interaction with and without NO doping show how the small amount of OH produced by NO-catalyzed reactions has a significant impact on the development of an auto-ignition kernel. This joint experimental and numerical study provides detailed insight into the interaction between transient flows and ignition processes.

Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.; Lee, Uen Do (KITECH, Cheonan, Chungnam, South Korea)

2009-01-01T23:59:59.000Z

133

Ethanol Blends and Engine Operating Strategy Effects on Light-Duty Spark-Ignition Engine Particle Emissions  

Science Conference Proceedings (OSTI)

Spark ignition (SI) engines with direct injection (DI) fueling can improve fuel economy and vehicle power beyond that of port fuel injection (PFI). Despite this distinct advantage, DI fueling often increases particle emissions such that SI exhaust may be subject to future particle emissions regulations. Challenges in controlling particle emissions arise as engines encounter varied fuel composition such as intermediate ethanol blends. Furthermore, modern engines are operated using unconventional breathing strategies with advanced cam-based variable valve actuation systems. In this study, we investigate particle emissions from a multi-cylinder DI engine operated with three different breathing strategies, fueling strategies and fuels. The breathing strategies are conventional throttled operation, early intake valve closing (EIVC) and late intake valve closing (LIVC); the fueling strategies are single injection DI (sDI), multi-injection DI (mDI), and PFI; and the fuels are emissions certification gasoline, E20 and E85. The results indicate the dominant factor influencing particle number concentration emissions for the sDI and mDI strategies is the fuel injection timing. Overly advanced injection timing results in particle formation due to fuel spray impingement on the piston, and overly retarded injection timing results in particle formation due to poor fuel and air mixing. In addition, fuel type has a significant effect on particle emissions for the DI fueling strategies. Gasoline and E20 fuels generate comparable levels of particle emissions, but E85 produces dramatically lower particle number concentration. The particle emissions for E85 are near the detection limit for the FSN instrument, and particle number emissions are one to two orders of magnitude lower for E85 relative to gasoline and E20. We found PFI fueling produces very low levels of particle emissions under all conditions and is much less sensitive to engine breathing strategy and fuel type than the DI fueling strategies. The particle number-size distributions for PFI fueling are of the same order for all of the breathing strategies and fuel types and are one to two orders lower than for the sDI fuel injection strategy with gasoline and E20. Remarkably, the particle emissions for E85 under the sDI fueling strategy are similar to particle emissions with a PFI fueling strategy. Thus by using E85, the efficiency and power advantages of DI fueling can be gained without generating high particle emissions.

Szybist, James P [ORNL; Youngquist, Adam D [ORNL; Barone, Teresa L [ORNL; Storey, John Morse [ORNL; Moore, Wayne [Delphi; Foster, Matthew [Delphi; Confer, Keith [Delphi

2011-01-01T23:59:59.000Z

134

Fuzzy Expert System to Estimate Ignition Timing for Hydrogen Car  

Science Conference Proceedings (OSTI)

This paper presents the application of fuzzy expert system technique as a basis to estimate ignition timing for subsequent tuning of a Toyota Corolla 4 cylinder, 1.8l hydrogen powered car. Ignition timing prediction is a typical problem to which decision ... Keywords: Fuzzy expert system, Hydrogen engine tuning, Hydrogen powered car, Ignition advance, Ignition timing

Tien Ho; Vishy Karri

2008-09-01T23:59:59.000Z

135

Chemical kinetic modelling of hydrocarbon ignition  

DOE Green Energy (OSTI)

Chemical kinetic modeling of hydrocarbon ignition is discussed with reference to a range of experimental configurations, including shock tubes, detonations, pulse combustors, static reactors, stirred reactors and internal combustion engines. Important conditions of temperature, pressure or other factors are examined to determine the main chemical reaction sequences responsible for chain branching and ignition, and kinetic factors which can alter the rate of ignition are identified. Hydrocarbon ignition usually involves complex interactions between physical and chemical factors, and it therefore is a suitable and often productive subject for computer simulations. In most of the studies to be discussed below, the focus of the attention is placed on the chemical features of the system. The other physical parts of each application are generally included in the form of initial or boundary conditions to the chemical kinetic parts of the problem, as appropriate for each type of application being addressed.

Westbrook, C.K.; Pitz, W.J.; Curran, H.J.; Gaffuri, P.; Marinov, N.M.

1995-08-25T23:59:59.000Z

136

Laser Spark Distribution and Ignition System  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark Distribution and Ignition System Spark Distribution and Ignition System Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implement- ing United States Patent Number 7,421,166 entitled "Laser Spark Distribution and Ignition System." Disclosed in this patent is NETL's laser spark distribution and ignition system, which reduces the high-power optical requirements normally needed for such a system by using optical fibers to deliver low-peak-energy pumping pulses to a laser amplifier or laser oscillator. Laser spark generators then produce a high-peak-power laser spark from a single low power pulse. The system has ap- plications in natural gas fueled reciprocating engines, turbine combustors, explosives, and laser induced breakdown spectroscopy diagnostic sensors.

137

Ignition methods and apparatus using microwave energy  

SciTech Connect

An ignition apparatus for a combustor includes a microwave energy source that emits microwave energy into the combustor at a frequency within a resonant response of the combustor, the combustor functioning as a resonant cavity for the microwave energy so that a plasma is produced that ignites a combustible mixture therein. The plasma preferably is a non-contact plasma produced in free space within the resonant cavity spaced away from with the cavity wall structure and spaced from the microwave emitter.

DeFreitas, Dennis Michael (Oxford, NY); Migliori, Albert (Santa Fe, NM)

1997-01-01T23:59:59.000Z

138

The National Ignition Facility: Status of Construction  

E-Print Network (OSTI)

Bruce Warner Deputy Associate Director, NIF Programs Lawrence Livermore National Laboratory October 11, 2005 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L2 27EIM/cld P LLNLLLNL P9266 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L28 27EIM/cld P LLNLLLNL National Ignition FacilityNational Ignition Facility P9292 San

139

Infrared Thermographic Study of Laser Ignition  

SciTech Connect

Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet. The experimental apparatus used to make these observations is described. The temperature distributions recorded are shown to be in good agreement with those predicted by heat transfer theory. Heat content values calculated from the observed temperature distributions are used to calculate thermal and kinetic parameters for several samples. These values are found to be in reasonable agreement with theory.

Mohler, Jonathan H.; Chow, Charles T. S.

1986-07-01T23:59:59.000Z

140

Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments  

DOE Green Energy (OSTI)

Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs.

Blanchat, T.K.; Stamps, D.W.

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Calculation of the proportion of reactive waste for hydrogen ignition scenario  

DOE Green Energy (OSTI)

This study was conducted as outlined in NHC Letter of Instruction 9751330 dated February 247 1997 and entitled {open_quotes}Analysis by Pacific Northwest National Laboratory to Support a Safety Assessment for Rotary Mode Core Sampling in Flammable Gas Watchlist Tanks{close_quotes}. As prescribed in this letter, the results of this study were provided to Los Alamos National Laboratory (LANL) to revise the safety assessment document. Sampling Hanford tanks with a rotary drill could result in a drill-bit overheating accident which could ignite flammable gases present in the tanks. According to calculations, an over-heated drill bit could not get hot enough to ignite the hydrogen directly. However, an overheated drill bit could ignite saltcake waste containing high concentrations of organics, and a local organics burn would achieve sufficient temperature to ignite flammable gas present in the waste. This report estimates one quantity required to evaluate this particular accident scenario; the fraction of reactive waste in the tank waste. Reactive waste is waste that contains sufficient organic carbon and a low enough moisture content to ignite when in contact with an over-heated drill bit. This report presents a methodology to calculate the proportion of reactive waste for the 100 series tanks, using sampling data from tank characterization studies. The tanks are ranked according to their reactive waste proportions, and confidence limits are assigned to the estimates.

Gao, Feng; Heasler, P.G.

1997-04-01T23:59:59.000Z

142

Driving high-gain shock-ignited inertial confinement fusion targets by green laser light  

Science Conference Proceedings (OSTI)

Standard direct-drive inertial confinement fusion requires UV light irradiation in order to achieve ignition at total laser energy of the order of 1 MJ. The shock-ignition approach opens up the possibility of igniting fusion targets using green light by reducing the implosion velocity and laser-driven ablation pressure. An analytical model is derived, allowing to rescale UV-driven targets to green light. Gain in the range 100-200 is obtained for total laser energy in the range 1.5-3 MJ. With respect to the original UV design, the rescaled targets are less sensitive to irradiation asymmetries and hydrodynamic instabilities, while operating in the same laser-plasma interaction regime.

Atzeni, Stefano; Marocchino, Alberto; Schiavi, Angelo [Dipartimento SBAI, Universita di Roma 'La Sapienza' and CNISM, Via A. Scarpa 14-16, I-00161 Roma (Italy)

2012-09-15T23:59:59.000Z

143

The velocity campaign for ignition on NIF  

SciTech Connect

Achieving inertial confinement fusion ignition requires a symmetric, high velocity implosion. Experiments show that we can reach 95 {+-} 5% of the required velocity by using a 420 TW, 1.6 MJ laser pulse. In addition, experiments with a depleted uranium hohlraum show an increase in capsule performance which suggests an additional 18 {+-} 5 {mu}m/ns of velocity with uranium hohlraums over gold hohlraums. Combining these two would give 99 {+-} 5% of the ignition velocity. Experiments show that we have the ability to tune symmetry using crossbeam transfer. We can control the second Legendre mode (P2) by changing the wavelength separation between the inner and outer cones of laser beams. We can control the azimuthal m = 4 asymmetry by changing the wavelength separation between the 23.5 and 30 degree beams on NIF. This paper describes our 'first pass' tuning the implosion velocity and shape on the National Ignition Facility laser [Moses et al., Phys. Plasmas, 16, 041006 (2009)].

Callahan, D. A.; Meezan, N. B.; Glenzer, S. H.; MacKinnon, A. J.; Benedetti, L. R.; Bradley, D. K.; Celeste, J. R.; Celliers, P. M.; Dixit, S. N.; Doeppner, T.; Dzentitis, E. G.; Glenn, S.; Haan, S. W.; Haynam, C. A.; Hicks, D. G.; Hinkel, D. E.; Jones, O. S.; Landen, O. L.; London, R. A.; MacPhee, A. G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-05-15T23:59:59.000Z

144

Target Visualization at the National Ignition Facility  

SciTech Connect

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

Potter, D

2011-11-21T23:59:59.000Z

145

APPLICATION OF FAULT TREE ANALYSIS TO IGNITION OF FIRE  

E-Print Network (OSTI)

ignition, but which, due to human error causing a sufficientfuel is primarily due to human error. For example, a cooke.g. planned ignition f human error comes in e.g. failure of

Teresa Ling, W.C.

2011-01-01T23:59:59.000Z

146

Precision Shock Tuning on the National Ignition Facility  

E-Print Network (OSTI)

Ignition implosions on the National Ignition Facility [ J.?D. Lindl et al. Phys. Plasmas 11 339 (2004)] are underway with the goal of compressing deuterium-tritium fuel to a sufficiently high areal density (?R) to sustain ...

Frenje, Johan A.

147

Fuel effects in homogeneous charge compression ignition (HCCI) engines  

E-Print Network (OSTI)

Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

Angelos, John P. (John Phillip)

2009-01-01T23:59:59.000Z

148

National Ignition Facility Target Chamber  

DOE Green Energy (OSTI)

On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was necessary to achieve the overall schedule. Plans had to be developed for the precise location and alignment of laser beam ports. Upon completion of the fabrication of the aluminum target chamber in a temporary structure the 130 ton sphere was moved from the temporary construction enclosure to its final location in the target building. Prior to the installation of a concrete shield and after completion of the welding of the chamber penetrations vacuum leak checking was performed to insure the vacuum integrity of target chamber. The entire spherical chamber external surface supports a 40 cm thick reinforced concrete shield after installation in the target building. The final task is a total survey of the laser ports and the contour machining of spacer plates so that laser devices attached to these ports meet the alignment criteria.

Wavrik, R W; Cox, J R; Fleming, P J

2000-10-05T23:59:59.000Z

149

On the ignition of fuel beds by firebrands  

Science Conference Proceedings (OSTI)

... The firebrand ignition apparatus consists of four butane burners and a firebrand mounting probe. The butane flowrate is ...

2006-12-12T23:59:59.000Z

150

Development of nuclear diagnostics for the National Ignition Facility ,,invited...  

E-Print Network (OSTI)

July 2006; published online 5 October 2006 The National Ignition Facility NIF will provide up to 1.8 MJ of laser energy for imploding inertial confinement fusion ICF targets. Ignited NIF targets are expected of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF

151

Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility  

SciTech Connect

Shock ignition presents a viable path to ignition and high gain on the National Ignition Facility (NIF). In this paper, we describe the development of the 1D design of 0.5 MJ class, all-deuterium and tritium (fuel and ablator) shock ignition target that should be reasonably robust to Rayleigh-Taylor fluid instabilities, mistiming, and hot electron preheat. The target assumes 'day one' NIF hardware and produces a yield of 31 MJ with reasonable allowances for laser backscatter, absorption efficiency, and polar drive power variation. The energetics of polar drive laser absorption require a beam configuration with half of the NIF quads dedicated to launching the ignitor shock, while the remaining quads drive the target compression. Hydrodynamic scaling of the target suggests that gains of 75 and yields 70 MJ may be possible.

Terry, Matthew R.; Perkins, L. John; Sepke, Scott M. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States)

2012-11-15T23:59:59.000Z

152

Injection Timing Effects on Brake Fuel Conversion Efficiency and Engine System's Respones  

E-Print Network (OSTI)

Societal concerns on combustion-based fuel consumption are ever-increasing. With respect to internal combustion engines, this translates to a need to increase brake fuel conversion efficiency (BFCE). Diesel engines are a relatively efficient internal combustion engine to consider for numerous applications, but associated actions to mitigate certain exhaust emissions have generally deteriorated engine efficiency. Conventionally, diesel engine emission control has centered on in-cylinder techniques. Although these continue to hold promise, the industry trend is presently favoring the use of after-treatment devices which create new opportunities to improve the diesel engine's brake fuel conversion efficiency. This study focuses on injection timing effects on the combustion processes, engine efficiency, and the engine system's responses. The engine in the study is a medium duty diesel engine (capable of meeting US EPA Tier III off road emission standards) equipped with common rail direct fuel injection, variable geometry turbo charging, and interfaced with a custom built engine controller. The study found that injection timing greatly affected BFCE by changing the combustion phasing. BFCE would increase up to a maximum then begin to decrease as phasing became less favorable. Combustion phasing would change from being mostly mixing controlled combustion to premixed combustion as injection timing would advance allowing more time for fuel to mix during the ignition delay. Combustion phasing, in turn, would influence many other engine parameters. As injection timing is advanced, in-cylinder temperatures and pressures amplify, and intake and exhaust manifold pressures deteriorate. Rate of heat release and rate of heat transfer increase when injection timing is advanced. Turbocharger speed falls with the advancing injection timing. Torque, however, rose to a maximum then fell off again even though engine speed and fueling rate were held constant between different injection timings. Interestingly, the coefficient of heat transfer changes from a two peak curve to a smooth one peak curve as the injection timing is advanced further. The major conclusion of the study is that injection advance both positively and negatively influences the diesel engine's response which contributes to the brake fuel conversion efficiency.

McLean, James Elliott

2011-08-01T23:59:59.000Z

153

Implosion dynamics measurements at the National Ignition Facility  

Science Conference Proceedings (OSTI)

Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 {mu}m ({approx}10%) thicker targets and laser powers at or beyond facility limits.

Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Doeppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-12-15T23:59:59.000Z

154

Premature ignition of a rocket motor.  

SciTech Connect

During preparation for a rocket sled track (RST) event, there was an unexpected ignition of the zuni rocket motor (10/9/08). Three Sandia staff and a contractor were involved in the accident; the contractor was seriously injured and made full recovery. The data recorder battery energized the low energy initiator in the rocket.

Moore, Darlene Ruth

2010-10-01T23:59:59.000Z

155

National Ignition Facility Title II Design Plan  

Science Conference Proceedings (OSTI)

This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

Kumpan, S

1997-03-01T23:59:59.000Z

156

UCRL-PRES-225531 National ignition facility  

E-Print Network (OSTI)

Title Page UCRL-PRES-225531 #12;National ignition facility #12;NIF is 705,000 #12;NIF laser system #12;NIF us 885 #12;NIF-0506-11956 Laser bay 2 #12;Switchyard 2 #12;Target chamber in the air #12 experiments on NIF have demonstrated #12;21 1 MJ shaping results: Comparison of requested vs measured 3 pulse

157

Laser Spark Distribution and Ignition System  

Disclosed in this patent is NETL’s laser spark distribution and ignition system, which reduces the high-power optical requirements normally needed for such a system by using optical fibers to deliver low-peak-energy pumping pulses to a laser amplifier ...

158

Orchestrating shots for the national ignition racility  

Science Conference Proceedings (OSTI)

The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 Megajoule, 500-Terawatt, ultra-violet laser system together with a 10-meter diameter ... Keywords: Ada95, CORBA, XML, architecture, concurrency, data driven, framework, java, model-based, multi-threaded, state machine, workflow

David G. Mathisen; Robert W. Carey

2005-11-01T23:59:59.000Z

159

Advanced aircraft ignition CRADA final report  

DOE Green Energy (OSTI)

Conventional commercial and military turbo-jet aircraft engines use capacitive discharge ignition systems to initiate fuel combustion. The fuel-rich conditions required to ensure engine re-ignition during flight yield less than optimal engine performance, which in turn reduces fuel economy and generates considerable pollution in the exhaust. Los Alamos investigated two approaches to advanced ignition: laser based and microwave based. The laser based approach is fuel ignition via laser-spark breakdown and via photo-dissociation of fuel hydrocarbons and oxygen. The microwave approach involves modeling, and if necessary redesigning, a combustor shape to form a low-Q microwave cavity, which will ensure microwave breakdown of the air/fuel mixture just ahead of the nozzle with or without a catalyst coating. This approach will also conduct radio-frequency (RF) heating of ceramic elements that have large loss tangents. Replacing conventional systems with either of these two new systems should yield combustion in leaner jet fuel/air mixtures. As a result, the aircraft would operate with (1) considerable less exhaust pollution, (2) lower engine maintenance, and (3) significantly higher fuel economy.

Early, J.W.

1997-03-01T23:59:59.000Z

160

Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition  

Science Conference Proceedings (OSTI)

Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

Azer Yalin; Bryan Willson

2008-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Groundbreaking at National Ignition Facility | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Groundbreaking at National Ignition Facility | National Nuclear Security Groundbreaking at National Ignition Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Groundbreaking at National Ignition Facility Groundbreaking at National Ignition Facility May 29, 1997 Livermore, CA Groundbreaking at National Ignition Facility

162

National Ignition Campaign (NIC) Precision Tuning Series Shock Timing Experiments  

Science Conference Proceedings (OSTI)

A series of precision shock timing experiments have been performed on NIF. These experiments continue to adjust the laser pulse shape and employ the adjusted cone fraction (CF) in the picket (1st 2 ns of the laser pulse) as determined from the re-emit experiment series. The NIF ignition laser pulse is precisely shaped and consists of a series of four impulses, which drive a corresponding series of shock waves of increasing strength to accelerate and compress the capsule ablator and fuel layer. To optimize the implosion, they tune not only the strength (or power) but also, to sub-nanosecond accuracy, the timing of the shock waves. In a well-tuned implosion, the shock waves work together to compress and heat the fuel. For the shock timing experiments, a re-entrant cone is inserted through both the hohlraum wall and the capsule ablator allowing a direct optical view of the propagating shocks in the capsule interior using the VISAR (Velocity Interferometer System for Any Reflector) diagnostic from outside the hohlraum. To emulate the DT ice of an ignition capsule, the inside of the cone and the capsule are filled with liquid deuterium.

Robey, H F; Celliers, P M

2011-07-19T23:59:59.000Z

163

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents (OSTI)

A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

Robben, Franklin A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

164

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents (OSTI)

A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

Robben, F.A.

1984-10-19T23:59:59.000Z

165

Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF  

SciTech Connect

A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different fuel injection strategies. Finally, mixture distributions for late injection obtained using quantitative PLIF are compared to predictions of computational fluid dynamics calculations. (author)

Williams, Ben; Ewart, Paul [Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Wang, Xiaowei; Stone, Richard [Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ (United Kingdom); Ma, Hongrui; Walmsley, Harold; Cracknell, Roger [Shell Global Solutions (UK), Shell Research Centre Thornton, P. O. Box 1, Chester, CH1 3SH (United Kingdom); Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan [Jaguar Cars, Engineering Centre, Abbey Road, Whitley, Coventry, CV3 4LF (United Kingdom)

2010-10-15T23:59:59.000Z

166

The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments is planned for summer 2009. This paper summarizes the design, performance, and status of NIF and plans for the NIF ignition experimental program. A brief summary of the overall NIF experimental program is also presented.

Moses, E

2009-09-17T23:59:59.000Z

167

Investigation of spark discharge processes and ignition systems for spark-ignited internal combustion engines  

E-Print Network (OSTI)

Spark ignition of the air-fuel mixture at the appropriate time is important for successful flame initiation and complete combustion thereafter without unnecessary emissions. The physical and chemical reactions taking place between the spark plug electrodes during spark delivery determine the intensity of the spark and subsequent flame initiation. The energy of spark and the duration of its delivery are dependent on the ignition system design. The characteristics of the spark plug determine the interaction of the spark with the air-fuel mixture. The compression pressure, combustion chamber temperature and mixture motion at the time of spark generation play a significant role in the flame initiation process. All of these parameters are responsible for the resulting spark discharge and flame initiation process. The objectives of this research include investigation of the different phases of spark discharge and development of a thermodynamic analysis to determine the rate of change of the spark kernel temperature with time during the initial phases of the spark discharge. The effect of spark energy delivery rate, heat transfer losses and mass entrainment on the spark kernel temperature was determined through the thermodynamic analysis. This research also includes an evaluation of the various types of conventional as well as high-energy ignition systems for lean burn engines. An experimental ignition system was constructed to determine the effect of ignition energy, spark plug electrode geometry and gas pressure on the characteristics of the spark discharge. Images of spark discharge were captured through photography using three different types of electrode geometries and also by varying the pressure and by changing the ignition energy using different condensers in the ignition system. Finally, the results of the thermodynamic analysis were compared with the results from the experiment.

Khare, Yogesh Jayant

2000-01-01T23:59:59.000Z

168

Test report for core drilling ignitability testing  

DOE Green Energy (OSTI)

Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

Witwer, K.S.

1996-08-08T23:59:59.000Z

169

Laser-plasma interactions for fast ignition  

E-Print Network (OSTI)

In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multi-dimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the compa...

Kemp, A J; Debayle, A; Johzaki, T; Mori, W B; Patel, P K; Sentoku, Y; Silva, L O

2013-01-01T23:59:59.000Z

170

Two stroke homogenous charge compression ignition engine with pulsed air supplier  

DOE Patents (OSTI)

A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

Clarke, John M. (Chillicothe, IL)

2003-08-05T23:59:59.000Z

171

Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF  

SciTech Connect

The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

Ma, T

2010-04-21T23:59:59.000Z

172

Design and reality for NIF ignition targets  

SciTech Connect

Advances in ICF experiments and modeling have led to improved understanding of the growth of instabilities during capsule implosion and the effects on capsule performance. This has led to more refined specifications on the characteristics of igniting capsules, all of which have solid D-T fuel layers. These specifications involve a trade-off between the interior ice surface structure, outer capsule surface structure, and time-dependent drive asymmetry.

Bernat, T.P.

1996-05-31T23:59:59.000Z

173

Multiple laser pulse ignition method and apparatus  

DOE Patents (OSTI)

Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

Early, J.W.

1998-05-26T23:59:59.000Z

174

Multiple laser pulse ignition method and apparatus  

DOE Patents (OSTI)

Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

Early, James W. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

175

GREET InclGREET Includes More Thanudes More Than 50 Long-Term Veh50 Long-Term Vehicle/Fuel Systemsicle/Fuel Systems  

E-Print Network (OSTI)

Flared Gas Conv. & Reform. Gasoline Conv. & Reform. Gasoline Conv. & Reform. Gasoline Conv. & Reform-ignition enginesDirect-injection, spark-ignition engines · Direct-injection, compression ignition enginesDirect-injection, compression ignition engines · Grid-independent hybrid electric vehiclesGrid-independent hybrid electric

Argonne National Laboratory

176

Summary of the first neutron image data collected at the National Ignition Facility  

Science Conference Proceedings (OSTI)

A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of the data collected and measurements made to date. Data form directly driven, DT filled microballoons, as well as, indirectly driven, cryogenically layered ignition experiments are presented. The data presented show that the primary cores from directly driven implosions are approximately twice as large, 64 {+-} 3 {mu}m, as indirect cores 25 {+-} 4 and 29 {+-} 4 {mu}m and more asymmetric, P2/P0 = 47% vs. -14% and 7%. Further, comparison with the size and shape of X-ray image data on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion.

Grim, G P; Archuleta, T N; Aragonez, R J; Atkinson, D P; Batha, S H; Barrios, M A; Bower, D E; Bradley, D K; Buckles, R A; Clark, D D; Clark, D J; Cradick, J R; Danly, C; Drury, O B; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Glenn, S M; Hsu, A H; Izumi, N; Jaramillo, S A; Kyrala, G A; Pape, S L; Loomis, E N; Mares, D; Martinson, D D; Ma, T; MacKinnon, A J; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Polk, P J; Schmidt, D W; Tommasini, T; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Dzenitis, J M; Felker, B; Fittinghoff, D N; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Kauffman, M I; Lutz, S S; Malone, R M; Traille, A

2011-11-01T23:59:59.000Z

177

A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow  

Science Conference Proceedings (OSTI)

Combined experimental and numerical studies of the transient response of ignition to strained flows require a well-characterized ignition trigger. Laser deposition of a small radical pool provides a reliable method for initiating ignition of mixtures that are near the ignition limit. Two-dimensional direct numerical simulations are used to quantify the sensitivity of ignition kernel formation and subsequent edge-flame propagation to the oxidizer temperature and the initial width and amplitude of O-atom deposition used to trigger ignition in an axisymmetric counterflow of heated air versus ambient hydrogen/nitrogen. The ignition delay and super-equilibrium OH concentration in the nascent ignition kernel are highly sensitive to variations in these initial conditions. The ignition delay decreases as the amplitude of the initial O-atom deposition increases. The spatial distribution and the magnitude of the OH overshoot are governed by multi-dimensional effects. The degree of OH overshoot near the burner centerline increases as the diameter of the initial O-atom deposition region decreases. This result is attributed to preferential diffusion of hydrogen in the highly curved leading portion of the edge flame that is established following thermal runaway. The edge-flame speed and OH overshoot at the leading edge of the edge flame are relatively insensitive to variations in the initial conditions of the ignition. The steady edge-flame speed is approximately twice the corresponding laminar flame speed. The rate at which the edge flame approaches its steady state is insensitive to the initial conditions and depends solely on the diffusion time scale at the edge flame. The edge flame is curved toward the heated oxidizer stream as a result of differences in the chemical kinetics between the leading edge and the trailing diffusion flame. The structure of the highly diluted diffusion flame considered in this study corresponds to Linan's 'premixed flame regime' in which only the oxidizer leaks through the reaction zone such that the flame is located at fuel lean rather than stoichiometric mixture fraction conditions. (author)

Yoo, Chun Sang; Chen, Jacqueline H. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969 (United States); Frank, Jonathan H.

2009-01-15T23:59:59.000Z

178

A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow  

Science Conference Proceedings (OSTI)

Combined experimental and numerical studies of the transient response of ignition to strained flows require a well-characterized ignition trigger. Laser deposition of a small radical pool provides a reliable method for initiating ignition of mixtures that are near the ignition limit. Two-dimensional direct numerical simulations are used to quantify the sensitivity of ignition kernel formation and subsequent edge-flame propagation to the oxidizer temperature and the initial width and amplitude of O-atom deposition used to trigger ignition in an axisymmetric counterflow of heated air versus ambient hydrogen/nitrogen. The ignition delay and super-equilibrium OH concentration in the nascent ignition kernel are highly sensitive to variations in these initial conditions. The ignition delay decreases as the amplitude of the initial O-atom deposition increases. The spatial distribution and the magnitude of the OH overshoot are governed by multi-dimensional effects. The degree of OH overshoot near the burner centerline increases as the diameter of the initial O-atom deposition region decreases. This result is attributed to preferential diffusion of hydrogen in the highly curved leading portion of the edge flame that is established following thermal runaway. The edge-flame speed and OH overshoot at the leading edge of the edge flame are relatively insensitive to variations in the initial conditions of the ignition. The steady edge-flame speed is approximately twice the corresponding laminar flame speed. The rate at which the edge flame approaches its steady state is insensitive to the initial conditions and depends solely on the diffusion time scale at the edge flame. The edge flame is curved toward the heated oxidizer stream as a result of differences in the chemical kinetics between the leading edge and the trailing diffusion flame. The structure of the highly diluted diffusion flame considered in this study corresponds to Linan's 'premixed flame regime' in which only the oxidizer leaks through the reaction zone such that the flame is located at fuel lean rather than stoichiometric mixture fraction conditions. (author)

Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969 (United States)

2008-11-15T23:59:59.000Z

179

A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow.  

SciTech Connect

Combined experimental and numerical studies of the transient response of ignition to strained flows require a well-characterized ignition trigger. Laser deposition of a small radical pool provides a reliable method for initiating ignition of mixtures that are near the ignition limit. Two-dimensional direct numerical simulations are used to quantify the sensitivity of ignition kernel formation and subsequent edge-flame propagation to the oxidizer temperature and the initial width and amplitude of O-atom deposition used to trigger ignition in an axisymmetric counterflow of heated air versus ambient hydrogen/nitrogen. The ignition delay and super-equilibrium OH concentration in the nascent ignition kernel are highly sensitive to variations in these initial conditions. The ignition delay decreases as the amplitude of the initial O-atom deposition increases. The spatial distribution and the magnitude of the OH overshoot are governed by multi-dimensional effects. The degree of OH overshoot near the burner centerline increases as the diameter of the initial O-atom deposition region decreases. This result is attributed to preferential diffusion of hydrogen in the highly curved leading portion of the edge flame that is established following thermal runaway. The edge-flame speed and OH overshoot at the leading edge of the edge flame are relatively insensitive to variations in the initial conditions of the ignition. The steady edge-flame speed is approximately twice the corresponding laminar flame speed. The rate at which the edge flame approaches its steady state is insensitive to the initial conditions and depends solely on the diffusion time scale at the edge flame. The edge flame is curved toward the heated oxidizer stream as a result of differences in the chemical kinetics between the leading edge and the trailing diffusion flame. The structure of the highly diluted diffusion flame considered in this study corresponds to Linan's 'premixed flame regime' in which only the oxidizer leaks through the reaction zone such that the flame is located at fuel lean rather than stoichiometric mixture fraction conditions.

Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.

2008-08-01T23:59:59.000Z

180

Capsule performance optimization in the National Ignition Campaign  

Science Conference Proceedings (OSTI)

A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

Landen, O. L.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Michel, P.; Milovich, J.; Munro, D. H.; Robey, H. F.; Spears, B. K.; Thomas, C. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2010-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Modeling the Number of Ignitions Following an Earthquake: Developing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell Intended Use: Deliverable to SB-TS:...

182

Edward Moses to lead Fusion Ignition Science and Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 For immediate release: 10012013 | NR-13-10-01 Edward Moses to lead Fusion Ignition Science and Applications research effort -- Jeff Wisoff appointed acting principal associate...

183

Ignition of an overheated, underdense, fusioning tokamak plasma  

SciTech Connect

Methods of igniting an overheated but underdense D-T plasma core with a cold plasma blanket are investigated using a simple two-zone model with a variety of transport scaling laws, and also using a one-dimensional transport code. The power consumption of neutral-beam injectors required to produce ignition can be reduced significantly if the underdense core plasma is heated to temperatures much higher than the final equilibrium ignition values, followed by fueling from a cold plasma blanket. It is also found that the allowed impurity concentration in the initial hot core can be greater than normally permitted for ignition provided that the blanket is free from impurities.

Singer, C.E.; Jassby, D.L.; Hovey, J.

1979-08-01T23:59:59.000Z

184

Predicting Ignition Delay for Gas Turbine Fuel Flexibility  

NLE Websites -- All DOE Office Websites (Extended Search)

Predicting Ignition Delay for Gas Turbine Fuel Flexibility 15 m * Low emission combustion systems have been carefully optimized for natural gas * Future fuel diversity (including...

185

Project: Reduced Ignition and Flame Spread with Nano ...  

Science Conference Proceedings (OSTI)

... to ignition, time to extinction, and time to smoke ... of innovative technologies to develop cost-effective fire ... [6] Förster resonance energy transfer (FRET ...

2013-12-12T23:59:59.000Z

186

PF Coil System Comparisons for a Compact Ignition Device  

Science Conference Proceedings (OSTI)

The Compact Ignition Tokamak Program / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

R.D. Pillsbury; Jr.; J.H. Schultz; R.J. Thome

187

On the Piloted Ignition of Solid Fuels in Spacecraft Environments  

E-Print Network (OSTI)

importance of the heat transfer processes in the ignition ofa measure of the heat transfer processes involved. Aninsight on the heat and mass transfer processes involved in

Fereres-Rapoport, Sonya M.

2011-01-01T23:59:59.000Z

188

NIF achieves record laser energy in pursuit of fusion ignition...  

National Nuclear Security Administration (NNSA)

achieves record laser energy in pursuit of fusion ignition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

189

Modeling the Fuel Spray and Combustion Process of the Ignition Quality Tester with KIVA-3V  

DOE Green Energy (OSTI)

Discusses the use of KIVA-3V to develop a model that reproduces ignition behavior inside the Ignition Quality Tester, which measures the ignition delay of low-volatility fuels.

Bogin, G. E. Jr.; DeFilippo, A.; Chen, J. Y.; Chin, G.; Luecke, J.; Ratcliff, M. A.; Zigler, B. T.; Dean, A. M.

2010-05-01T23:59:59.000Z

190

Low emissions compression ignited engine technology  

DOE Patents (OSTI)

A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

Coleman, Gerald N. (Dunlap, IL); Kilkenny, Jonathan P. (Peoria, IL); Fluga, Eric C. (Dunlap, IL); Duffy, Kevin P. (East Peoria, IL)

2007-04-03T23:59:59.000Z

191

Shock Timing Techniques for Ignition Capsules on the NIF  

Science Conference Proceedings (OSTI)

Results from a series of shock trajectory measurements in planar liquid deuterium targets will set the pulse shape they use for ignition capsules at the National Ignition Facility. They discuss outstanding issues for this concept, in particular, ideas for certifying that the drive on a planar sample is the same as on a spherical capsule.

Munro, D H; Haan, S W; Collins, G W; Celliers, P M

2003-09-02T23:59:59.000Z

192

Planning for the National Ignition Campaign on NIF Presentation to  

E-Print Network (OSTI)

Planning for the National Ignition Campaign on NIF Presentation to Fusion Power Associates Annual Meeting Dec 3-4, 2008 Lawrence Livermore National Laboratory John Lindl NIF Programs Chief Scientist a clearly defined path forward to achievement of ignition on NIF ·An extensive scientific data base forms

193

National Ignition Facility & Photon Science - Bringing Star Power to Earth  

NLE Websites -- All DOE Office Websites (Extended Search)

NIF Go NIF Go LLNL Logo Lawrence Livermore National Laboratory LLNL Home NIF Home LIFE Home Jobs Site Map Contact News Press Releases In the News Status Update Media Assistance About Us National Ignition Facility About NIF How NIF Works The Seven Wonders of NIF Building NIF An Engineering Marvel NIFFY Early Light Collaborators Status Visiting NIF Missions National Security Energy for the Future Understanding the Universe People The People of NIF Awards NIF Professor Sabbatical Opportunities NIF Online Store Programs National Ignition Campaign How to Make a Star (ICF) Target Physics Target Fabrication Cryogenic Target System Diagnostics Participants Photon Science & Applications Advanced Optics Advanced Radiography Directed Energy Fusion Energy Inertial Fusion Energy How IFE Works Science at the Extremes

194

Shock timing on the National Ignition Facility: the first precision tuning series  

Science Conference Proceedings (OSTI)

Ignition implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT) layered capsule implosions by measurement of fuel areal density (rR), which show the highest fuel compression (rR {approx} 1.0 g/cm{sup 2}) measured to date.

Robey, H F; Celliers, P M; Kline, J L; Mackinnon, A J

2011-10-27T23:59:59.000Z

195

Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model  

SciTech Connect

There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

Toulson, Dr. Elisa [Michigan State University, East Lansing; Allen, Casey M [Michigan State University, East Lansing; Miller, Dennis J [Michigan State University, East Lansing; McFarlane, Joanna [ORNL; Schock, Harold [Michigan State University, East Lansing; Lee, Tonghun [Michigan State University, East Lansing

2011-01-01T23:59:59.000Z

196

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

197

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

This invention is comprised of an improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1992-12-31T23:59:59.000Z

198

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1993-12-21T23:59:59.000Z

199

Stockpile Stewardship and the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

Moses, E

2012-01-04T23:59:59.000Z

200

National Ignition Facility project acquisition plan  

SciTech Connect

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PBXN-9 Ignition Kinetics and Deflagration Rates  

SciTech Connect

The ignition kinetics and deflagration rates of PBXN-9 were measured using specially designed instruments at LLNL and compared with previous work on similar HMX based materials. Ignition kinetics were measured based on the One Dimensional Time-to-Explosion combined with ALE3D modeling. Results of these experiments indicate that PBXN-9 behaves much like other HMX based materials (i.e. LX-04, LX-07, LX-10 and PBX-9501) and the dominant factor in these experiments is the type of explosive, not the type of binder/plasticizer. In contrast, the deflagration behavior of PBXN-9 is quite different from similar high weight percent HMX based materials (i.e LX-10, LX-07 and PBX-9501). PBXN-9 burns in a laminar manner over the full pressure range studied (0-310 MPa) unlike LX-10, LX-07, and PBX-9501. The difference in deflagration behavior is attributed to the nature of the binder/plasticizer alone or in conjunction with the volume of binder present in PBXN-9.

Glascoe, E; Maienschein, J; Burnham, A; Koerner, J; Hsu, P; Wemhoff, A

2008-04-24T23:59:59.000Z

202

High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback  

DOE Green Energy (OSTI)

This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when they are opened. As a result of this effort, we have devised a new design and have filed for a patent on a method of control which is believed to overcome this problem. The engine we have been working with originally had a single camshaft which controlled both the intake and exhaust valves. Single cycle lift and timing control was demonstrated with this system. (3) Large eddy simulations and KIVA based simulations were used in conjunction with flow visualizations in an optical engine to study fuel air mixing. During this effort we have devised a metric for quantifying fuel distribution and it is described in several of our papers. (4) A control system has been developed to enable us to test the benefits of the various technologies. This system used is based on Opal-RT hardware and is being used in a current DOE sponsored program.

Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

2007-12-31T23:59:59.000Z

203

Catalytic igniters and their use to ignite lean hydrogen-air mixtures  

DOE Patents (OSTI)

This disclosure describes a catalytic igniter which can ignite a hydrogen-air mixture as lean as 5.5% hydrogen with induction times ranging from 20 s to 400 s, under conditions which may be present during a loss-of-liquid-coolant accident at a light water nuclear reactor. It is comprised of (1) a perforate catalytically active substrate, such as a platinum coated ceramic honeycomb or wire mesh screen, through which heated gases produced by oxidation of the mixture can freely flow and (2) a plurality of thin platinum wires mounted in a thermally conductive manner on the substrate and positioned thereon so as to be able to receive heat from the substrate and the heated gases while also in contact with unoxidized gases.

McLean, W.J.; Thorne, L.R.; Volponi, J.V.

1986-06-10T23:59:59.000Z

204

Fluidized bed injection assembly for coal gasification  

DOE Patents (OSTI)

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

205

Laser-induced spark ignition fundamental and applications  

SciTech Connect

Laser ignition has become an active research topic in recent years because it has the potential to replace the conventional electric spark plugs in engines that are required to operate under much higher compression ratios, faster compression rates, and much leaner fuel-to-air ratios than gas engines today. It is anticipated that the igniter in these engines will face with pressures as high as 50MPa and temperatures as high as 4000 K. Using the conventional ignition system, the required voltage and energy must be greatly increased (voltages in excess of 40 kV) to reliably ignite the air and fuel mixture under these conditions. Increasing the voltage and energy does not always improve ignitability but it does create greater reliability problem. The objective of this paper is to review past work to identify some fundamental issues underlying the physics of the laser spark ignition process and research needs in order to bring the laser ignition concept into the realm of reality.

Tran, P.X.

2006-05-01T23:59:59.000Z

206

Fast Camera Imaging of Hall Thruster Ignition  

SciTech Connect

Hall thrusters provide efficient space propulsion by electrostatic acceleration of ions. Rotating electron clouds in the thruster overcome the space charge limitations of other methods. Images of the thruster startup, taken with a fast camera, reveal a bright ionization period which settles into steady state operation over 50 ?s. The cathode introduces azimuthal asymmetry, which persists for about 30 ?s into the ignition. Plasma thrusters are used on satellites for repositioning, orbit correction and drag compensation. The advantage of plasma thrusters over conventional chemical thrusters is that the exhaust energies are not limited by chemical energy to about an electron volt. For xenon Hall thrusters, the ion exhaust velocity can be 15-20 km/s, compared to 5 km/s for a typical chemical thruster

C.L. Ellison, Y. Raitses and N.J. Fisch

2011-02-24T23:59:59.000Z

207

Director of the National Ignition Facility, Lawrence Livermore National  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of the National Ignition Facility, Lawrence Livermore National Director of the National Ignition Facility, Lawrence Livermore National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Edward Moses Director of the National Ignition Facility, Lawrence Livermore National Laboratory

208

Hydrogen-assisted catalytic ignition characteristics of different fuels  

SciTech Connect

Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

Zhong, Bei-Jing; Yang, Fan [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Yang, Qing-Tao [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); China Aerodynamics Research and Development Center, Mianyang 621000 (China)

2010-10-15T23:59:59.000Z

209

Slit injection device  

DOE Patents (OSTI)

A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

Alger, Terry W. (Livermore, CA); Schlitt, Leland G. (Livermore, CA); Bradley, Laird P. (Livermore, CA)

1976-06-15T23:59:59.000Z

210

Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load  

Science Conference Proceedings (OSTI)

It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

2012-01-01T23:59:59.000Z

211

Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects  

DOE Green Energy (OSTI)

A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

2001-03-12T23:59:59.000Z

212

Geothermal injection monitoring project  

DOE Green Energy (OSTI)

Background information is provided on the geothermal brine injection problem and each of the project tasks is outlined in detail. These tasks are: evaluation of methods of monitoring the movement of injected fluid, preparation for an eventual field experiment, and a review of groundwater regulations and injection programs. (MHR)

Younker, L.

1981-04-01T23:59:59.000Z

213

Beam injection into RHIC  

SciTech Connect

During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

1997-07-01T23:59:59.000Z

214

National Ignition Facility and Managing Location, Component, and State  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

Foxworthy, C; Fung, T; Beeler, R; Li, J; Dugorepec, J; Chang, C

2011-07-25T23:59:59.000Z

215

Study Reveals Fuel Injection Timing Impact on Particle Number...  

NLE Websites -- All DOE Office Websites (Extended Search)

In an ongoing quest to meet ever-more-rigorous fuel economy and emissions requirements, vehicle manufacturers are increasingly turning to gasoline direct injection (GDI) coupled...

216

Relativistic electron beam transport for fast ignition relevant scenarios  

E-Print Network (OSTI)

A crucial issue surrounding the feasibility of fast ignition, an alternative inertial confinement fusion scheme, is the ability to efficiently couple energy from an incident short-pulse laser to a high-density, pre-compressed ...

Cottrill, Larissa A

2009-01-01T23:59:59.000Z

217

NETL: NETL - Media Backgrounder: Laser spark ignition for lean...  

NLE Websites -- All DOE Office Websites (Extended Search)

ratios and three timing conditions were compared. The NETL research provides the first lean-burn natural gas engine data using a laser-spark ignition source and the first...

218

Compact Ignition Tokamak Program: issues to be resolved by January  

SciTech Connect

This Compact Ignition Tokamak Program report addresses unresolved issues concerning: concept configuration; design space characterization; facility/device layouts; auxiliary system development; cost; R and D; and alternate sites. (JDB)

Flanagan, C.A.

1985-01-01T23:59:59.000Z

219

National Ignition Facility makes history with record 500 terawatt...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Ignition Facility makes history with record 500 terawatt shot Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov Printer-friendly The preamplifiers of the National...

220

Ignition technique for an in situ oil shale retort  

DOE Patents (OSTI)

A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

Cha, Chang Y. (Golden, CO)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment  

Science Conference Proceedings (OSTI)

Based on available experimental results and theory, a scenario is presented to achieve ohmic ignition in a spheromak by slow ({approximately} 10 sec.) helicity injection using power from the Mirror Fusion Test Facility (MFTF) substation. Some of the other parts needed (vacuum vessel, coils, power supplies, pumps, shielded building space) might also be obtained from MFTF or other salvage, as well as some components needed for intermediate experiments for additional verification of the concept (especially confinement scaling). The proposed ignition experiment would serve as proof-of-principle for the spheromak DT fusion reactor design published by Hagenson and Krakowski, with a nuclear island cost about ten times less than a tokamak of comparable power. Designs at even higher power density and lower cost might be possible using Christofilos` concept of a liquid lithium blanket. Since all structures would be protected from neutrons by the lithium blanket and the tritium inventory can be reduced by continuous removal from the liquid blanket, environmental and safety characteristics appear to be favorable.

Fowler, T.K.

1993-09-28T23:59:59.000Z

222

Target Diagnostics Supports NIF's Path to Ignition  

SciTech Connect

The physics requirements derived from the National Ignition Facility (NIF) experimental campaigns are leading to a wide variety of target diagnostics. Software development for the control and analysis of these diagnostics is included in the NIF Integrated Computer Control System, Diagnostic Control System and Data Visualization. These projects implement the configuration, controls, data analysis and visual representation of most of these diagnostics. To date, over 40 target diagnostics have been developed to support NIF experiments. In 2011 diagnostics were developed or enhanced to measure Ignition performance in a high neutron yield environment. Performance is optimized around four key variables: Adiabat (a) which is the strength and timing of four shocks delivered to the target, Velocity (V) of the imploding target, Mix (M) is the uniformity of the burn, and the Shape (S) of the imploding Deuterium Tritium (DT) hot spot. The diagnostics used to measure each of these parameters is shown in figure 1. Adiabat is measured using the Velocity Interferometer System for Any Reflector (VISAR) diagnostic consisting of three streak cameras. To provide for more accurate adiabat measurements the VISAR streak cameras were enhanced in FY11 with a ten comb fiducial signal controller to allow for post shot correction of the streak camera sweep non-linearity. Mix is measured by the Neutron Time of Flight (NTOF) and Radiochemical Analysis of Gaseous Samples (RAGS) diagnostics. To accommodate high neutron yield shots, NTOF diagnostic controls are being modified to use Mach Zehnder interferometer signals to allow the digitizers to be moved from near the target chamber to the neutron shielded diagnostic mezzanine. In December 2011 the first phase of RAGS diagnostic commissioning will be completed. This diagnostic will analyze the tracers that are added to NIF target capsules that undergo nuclear reactions during the shot. These gases are collected and purified for nuclear counting by the RAGS system. Three new instrument controllers were developed and commissioned to support this diagnostic. A residual-gas analyzer (RGA) instrument measures the gas content at various points in the system. The Digital Gamma Spectrometer instrument measures the radiological spectrum of the decaying gas isotopes. A final instrument controller was developed to interface to a PLC based Gas collection system. In order to support the implosion velocity measurements an additional Gated X-ray Detector (GXD) diagnostic was tested and commissioned. This third GXD views the target through a slit contained in its snout and allows the other GXD diagnostics to be used for measuring the shape on the same shot. In order to measure the implosion shape in a high neutron environment, Actide Readout In A Neutron Environment (ARIANE) and Neutron Imaging (NI) diagnostics were commissioned. The controls for ARIANE, a fixed port gated x-ray imager, contain a neutron shielded camera and micro channel plate pulser with its neutron sensitive electronics located in the diagnostic mezzanine. The NI diagnostic is composed of two Spectral Instruments SI-1000 cameras located 20M from the target and provides neutron images of the DT hot spot for high yield shots. The development and commissioning of these new or enhanced diagnostics in FY11 have provided meaningful insight that facilitates the optimization of the four key Ignition variables. In FY12 they will be adding three new diagnostics and enhancing four existing diagnostics in support of the continuing optimization series of campaigns.

Shelton, R

2011-12-07T23:59:59.000Z

223

Predicting Ignition Delay for Gas Turbine Fuel Flexibility  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Delay for Ignition Delay for Gas Turbine Fuel Flexibility 15 μm * Low emission combustion systems have been carefully optimized for natural gas * Future fuel diversity (including H2 containing fuels) may generate auto-ignition damage * Existing theories vary in predicting propensity for auto-ignition damage * Theory A vs Theory B shows factor of 100 difference-which is right? * UC Irvine improved and validated design tools for ignition delay allow designers to evaluate the risk for auto-ignition in advanced combustion systems with future fuels * Models are available to engine OEM's to shorten design cycle time and save $$ UC Irvine Scott Samuelsen / Vince McDonell #112 1000/T (1/K) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 τ [O 2 ] 0.5 [F] 0.25 (sec(mol/cm 3 ) 0.75 ) 10 -10 10 -9 10 -8 10 -7 10 -6 10 -5

224

Shock-Tube Study of Methane Ignition with NO2 and N2O  

E-Print Network (OSTI)

NOx produced during combustion can persist in the exhaust gases of a gas turbine engine in quantities significant to induce regulatory concerns. There has been much research which has led to important insights into NOx chemistry. One method of NOx reduction is exhaust gas recirculation. In exhaust gas recirculation, a portion of the exhaust gases that exit are redirected to the inlet air stream that enters the combustion chamber, along with fuel. Due to the presence of NOx in the exhaust gases which are subsequently introduced into the burner, knowledge of the effects of NOx on combustion is advantageous. Contrary to general NOx research, little has been conducted to investigate the sensitizing effects of NO2 and N2O addition to methane/oxygen combustion. Experiments were made with dilute and real fuel air mixtures of CH4/O2/Ar with the addition of NO2 and N2O. The real fuel air concentrations were made with the addition of NO2 only. The equivalence ratios of mixtures made were 0.5, 1 and 2. The experimental pressure range was 1 - 44 atm and the temperature range tested was 1177 – 2095 K. The additives NO2 and N2O were added in concentrations from 831 ppm to 3539 ppm. The results of the mixtures with NO2 have a reduction in ignition delay time across the pressure ranges tested, and the mixtures with N2O show a similar trend. At 1.3 atm, the NO2 831 ppm mixture shows a 65% reduction and shows a 75% reduction at 30 atm. The NO2 mixtures showed a higher decrease in ignition time than the N2O mixtures. The real fuel air mixture also showed a reduction. Sensitivity Analyses were performed. The two most dominant reactions in the NO2 mixtures are the reaction O+H2 = O+OH and the reaction CH3+NO2 = CH3O+NO. The presence of this second reaction is the means by which NO2 decreases ignition delay time, which is indicated in the experimental results. The reaction produces CH3O which is reactive and can participate in chain propagating reactions, speeding up ignition. The two dominant reactions for the N2O mixture are the reaction O+H2 = O+OH and, interestingly, the other dominant reaction is the reverse of the initiation reaction in the N2O-mechanism: O+N2+M = N2O+M. The reverse of this reaction is the direct oxidation of nitrous oxide. The O produced in this reaction can then speed up ignition by partaking in propagation reactions, which was experimentally observed.

Pemelton, John

2011-08-01T23:59:59.000Z

225

Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection  

DOE Green Energy (OSTI)

A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

2010-12-03T23:59:59.000Z

226

Improving the performance and fuel consumption of dual chamber stratified charge spark ignition engines  

DOE Green Energy (OSTI)

A combined experimental and theoretical investigation of the nature of the combustion processes in a dual chamber stratified charge spark ignition engine is described. This work concentrated on understanding the mixing process in the main chamber gases. A specially constructed single cylinder engine was used to both conduct experiments to study mixing effects and to obtain experimental data for the validation of the computer model which was constructed in the theoretical portion of the study. The test procedures are described. Studies were conducted on the effect of fuel injection timing on performance and emissions using the combination of orifice size and prechamber to main chamber flow rate ratio which gave the best overall compromise between emissions and performance. In general, fuel injection gave slightly higher oxides of nitrogen, but considerably lower hydrocarbon and carbon monoxide emissions than the carbureted form of the engine. Experiments with engine intake port redesign to promote swirl mixing indicated a substantial increase in the power output from the engine and, that an equivalent power levels, the nitric oxide emissions are approximately 30% lower with swirl in the main chamber than without swirl. The development of a computer simulation of the combustion process showed that a one-dimensional combustion model can be used to accurately predict trends in engine operation conditions and nitric oxide emissions even though the actual flame in the engine is not completely one-dimensional, and that a simple model for mixing of the main chamber and prechamber intake gases at the start of compression proved adequate to explain the effects of swirl, ignition timing, overall fuel air ratio, volumetric efficiency, and variations in prechamber air fuel ratio and fuel rate percentage on engine power and nitric oxide emissions. (LCL)

Sorenson, S.C.; Pan, S.S.; Bruckbauer, J.J.; Gehrke, G.R.

1979-09-01T23:59:59.000Z

227

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

228

Geysers injection modeling  

DOE Green Energy (OSTI)

Our research is concerned with mathematical modeling techniques for engineering design and optimization of water injection in vapor-dominated systems. The emphasis in the project has been on the understanding of physical processes and mechanisms during injection, applications to field problems, and on transfer of numerical simulation capabilities to the geothermal community. This overview summarizes recent work on modeling injection interference in the Southeast Geysers, and on improving the description of two-phase flow processes in heterogeneous media.

Pruess, K.

1994-04-01T23:59:59.000Z

229

Underground Injection Control (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

230

High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines  

SciTech Connect

This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well-to-wheels analysis of the energy flows in a mobile vehicle system and a 2nd Law thermodynamic analysis of the engine system were also completed under this program.

None

2011-01-31T23:59:59.000Z

231

Miniaturized flow injection analysis system  

DOE Patents (OSTI)

A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

Folta, James A. (Livermore, CA)

1997-01-01T23:59:59.000Z

232

Miniaturized flow injection analysis system  

DOE Patents (OSTI)

A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

Folta, J.A.

1997-07-01T23:59:59.000Z

233

Spark Ignited Turbulent Flame Kernel Growth  

DOE Green Energy (OSTI)

An experimental study of the effects of spark power and of incomplete fuel-air mixing on spark-ignited flame kernel growth was conducted in turbulent propane-air mixtures at 1 atm, 300K conditions. The results showed that increased spark power resulted in an increased growth rate, where the effect of short duration breakdown sparks was found to persist for times of the order of milliseconds. The effectiveness of increased spark power was found to be less at high turbulence and high dilution conditions. Increased spark power had a greater effect on the 0-5 mm burn time than on the 5-13 mm burn time, in part because of the effect of breakdown energy on the initial size of the flame kernel. And finally, when spark power was increased by shortening the spark duration while keeping the effective energy the same there was a significant increase in the misfire rate, however when the spark power was further increased by increasing the breakdown energy the misfire rate dropped to zero. The results also showed that fluctuations in local mixture strength due to incomplete fuel-air mixing cause the flame kernel surface to become wrinkled and distorted; and that the amount of wrinkling increases as the degree of incomplete fuel-air mixing increases. Incomplete fuel-air mixing was also found to result in a significant increase in cyclic variations in the flame kernel growth. The average flame kernel growth rates for the premixed and the incompletely mixed cases were found to be within the experimental uncertainty except for the 33%-RMS-fluctuation case where the growth rate was significantly lower. The premixed and 6%-RMS-fluctuation cases had a 0% misfire rate. The misfire rates were 1% and 2% for the 13%-RMS-fluctuation and 24%-RMS-fluctuation cases, respectively; however, it drastically increased to 23% in the 33%-RMS-fluctuation case.

Santavicca, D.A.

1995-06-01T23:59:59.000Z

234

Evaluating the ignition sensitivity of thermal battery heat pellets  

DOE Green Energy (OSTI)

Thermal batteries are activated by the ignition of heat pellets. If the heat pellets are not sensitive enough to the ignition stimulus, the thermal battery will not activate, resulting in a dud. Thus, to assure reliable thermal batteries, it is important to demonstrate that the pellets have satisfactory ignition sensitivity by testing a number of specimens. There are a number of statistical methods for evaluating the sensitivity of a device to some stimulus. Generally, these methods are applicable to the situation in which a single test is destructive to the specimen being tested, independent of the outcome of the test. In the case of thermal battery heat pellets, however, tests that result in a nonresponse do not totally degrade the specimen. This peculiarity provides opportunities to efficiently evaluate the ignition sensitivity of heat pellets. In this paper, a simple strategy for evaluating heat pellet ignition sensitivity (including experimental design and data analysis) is described. The relatively good asymptotic and small-sample efficiencies of this strategy are demonstrated.

Thomas, E.V.

1993-09-01T23:59:59.000Z

235

Data Analysis, Pre-Ignition Assessment, and Post-Ignition Modeling of the Large-Scale Annular Cookoff Tests  

SciTech Connect

In order to understand the implications that cookoff of plastic-bonded explosive-9501 could have on safety assessments, we analyzed the available data from the large-scale annular cookoff (LSAC) assembly series of experiments. In addition, we examined recent data regarding hypotheses about pre-ignition that may be relevant to post-ignition behavior. Based on the post-ignition data from Shot 6, which had the most complete set of data, we developed an approximate equation of state (EOS) for the gaseous products of deflagration. Implementation of this EOS into the multimaterial hydrodynamics computer program PAGOSA yielded good agreement with the inner-liner collapse sequence for Shot 6 and with other data, such as velocity interferometer system for any reflector and resistance wires. A metric to establish the degree of symmetry based on the concept of time of arrival to pin locations was used to compare numerical simulations with experimental data. Several simulations were performed to elucidate the mode of ignition in the LSAC and to determine the possible compression levels that the metal assembly could have been subjected to during post-ignition.

G. Terrones; F.J. Souto; R.F. Shea; M.W.Burkett; E.S. Idar

2005-09-30T23:59:59.000Z

236

Shock timing on the National Ignition Facility: First Experiments  

Science Conference Proceedings (OSTI)

An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

Celliers, P M; Robey, H F; Boehly, T R; Alger, E; Azevedo, S; Berzins, L V; Bhandarkar, S D; Bowers, M W; Brereton, S J; Callahan, D; Castro, C; Chandrasekaran, H; Choate, C; Clark, D; Coffee, K R; Datte, P S; Dewald, E L; DiNicola, P; Dixit, S; Doeppner, T; Dzenitis, E; Edwards, M J; Eggert, J H; Fair, J; Farley, D R; Frieders, G; Gibson, C R; Giraldez, E; Haan, S; Haid, B; Hamza, A V; Haynam, C; Hicks, D G; Holunga, D M; Horner, J B; Jancaitis, K; Jones, O S; Kalantar, D; Kline, J L; Krauter, K G; Kroll, J J; LaFortune, K N; Pape, S L; Malsbury, T; Maypoles, E R; Milovich, J L; Moody, J D; Moreno, K; Munro, D H; Nikroo, A; Olson, R E; Parham, T; Pollaine, S; Radousky, H B; Ross, G F; Sater, J; Schneider, M B; Shaw, M; Smith, R F; Thomas, C A; Throop, A; Town, R J; Trummer, D; Van Wonterghem, B M; Walters, C F; Widmann, K; Widmayer, C; Young, B K; Atherton, L J; Collins, G W; Landen, O L; Lindl, J D; MacGowan, B J; Meyerhofer, D D; Moses, E I

2011-10-24T23:59:59.000Z

237

Flash Ignition and Initiation of Explosives-Nanotubes Mixture  

DOE Green Energy (OSTI)

The recent astounding discoveries of ignition in single-walled carbon nanotubes (SWNTs) after exposure to an ordinary photographic flash, (1) other formulations of carbons containing noble metals, (2) and polyaniline nanofibers (3) prompted us to explore a possible further instigation of explosive materials. Here, we report that an ignition and initiation process, further leading to actual detonation, does occur for explosives in lax contact with carbon nanotubes that are prone to opto-thermal activity via a conventional flashbulb. Optical ignition and initiation of explosives could thus far only be accomplished through lasers, (4) with specific characteristic of high power, pulse length, wavelength, and a small target area that greatly inhibit their applications. Our results have the implication that explosives with opto-thermally active SWNTs formulations are new ideal candidates for remote optical triggering of safety apparatus such as the firing of bolts on space shuttles rockets and aircraft exit doors, and for controlled burning of explosives as actuators.

Manaa, M R; Mitchell, A R; Garza, R G; Pagoria, P F; Watkins, B E

2005-05-25T23:59:59.000Z

238

Closed-loop, variable-valve-timing control of a controlled-auto-ignition engine  

E-Print Network (OSTI)

The objective of this study was to develop a closed-loop controller for use on a Controlled-Auto- Ignition (CAI) / Spark-Ignition (SI) mixed mode engine equipped with a variable-valve-timing (VVT) mechanism. The controller ...

Matthews, Jeffrey A., 1970-

2004-01-01T23:59:59.000Z

239

Yet Another Fault Injection Technique : by Forward Body Biasing Injection  

E-Print Network (OSTI)

expensive fault injection tech- niques, like clock or voltage glitches, are well taken into accountYet Another Fault Injection Technique : by Forward Body Biasing Injection K. TOBICH1,2, P. MAURINE1 Injection, Electromag- netic Attacks, RSA, Chinese Remainder Theorem 1 Introduction Fault injection

240

Reactive burn models and ignition & growth concept  

SciTech Connect

Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition and Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogeneized burn rate needs to account for three mesoscale physical effects (i) the density of burnt hot spots, which depends on the lead shock strength; (ii) the growth of the burn fronts triggered by hot spots, which depends on the local deflagration speed; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent hot spots. These effects can be combined and the burn model defined by specifying the reaction progress variable {lambda}(t) as a function of a dimensionless reaction length {tau}{sub hs}(t)/{ell}{sub hs}, rather than by xpecifying an explicit burn rate. The length scale {ell}{sub hs} is the average distance between hot spots, which is proportional to [N{sub hs}(P{sub s})]{sup -1/3}, where N{sub hs} is the number density of hot spots activated by the lead shock. The reaction length {tau}{sub hs}(t) = {line_integral}{sub 0}{sup t} D(P(t'))dt' is the distance the burn front propagates from a single hot spot, where D is the deflagration speed and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. They have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

Menikoff, Ralph S [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ignition feedback regenerative free electron laser (FEL) amplifier  

Science Conference Proceedings (OSTI)

An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

Kim, Kwang-Je (Burr Ridge, IL); Zholents, Alexander (Walnut Creek, CA); Zolotorev, Max (Oakland, CA)

2001-01-01T23:59:59.000Z

242

Fuel injection device and method  

DOE Patents (OSTI)

A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

Carlson, Larry W. (Oswego, IL)

1986-01-01T23:59:59.000Z

243

Fuel injection device and method  

DOE Patents (OSTI)

A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

Carlson, L.W.

1983-12-21T23:59:59.000Z

244

THE RHIC INJECTION SYSTEM.  

SciTech Connect

The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

1999-03-29T23:59:59.000Z

245

Preparation for Ignition Experiments on the NIF Fusion Power Associates Annual Meeting  

E-Print Network (OSTI)

Preparation for Ignition Experiments on the NIF Fusion Power Associates Annual Meeting December 4-5, 2007 John Lindl NIF and Photon Science Directorate Chief Scientist Lawrence Livermore National chance for ignition in early NIF operations · The initial ignition experiments only scratch the surface

246

Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry  

E-Print Network (OSTI)

Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron.1088/0029-5515/53/4/043014 Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry J at the National Ignition Facility (NIF) provides essential information about the implosion performance. From

247

Inertial Confinement Fusion Ignition and High Yield Campaign  

E-Print Network (OSTI)

November 21, 2003 #12;2 Statements to FESAC IFE panel 10/28/03 · Ignition is a major goal for NNSA supports OFES's mission and OFES use of NNSA's ICF facilities is accepted · Defense Programs reserves right: Provide mission need report for the proposed OMEGA Extended Performance project. · October 2002: NNSA

248

On Operational Power Reactor Regime and Ignited Spherical Tokamaks  

E-Print Network (OSTI)

, 2003 version of the "cold" magnetic "Fusion without ignition" in the next 35 years, the talk.-Pitersburg, St.-Pitersburg, RF % Insutute of Nuclear Fusion, RRC "Kurchatov Ins.", Moscow, RF & Vyoptics, Inc for magnetic fusion, OPRR requires a low recycling and wall-stabilized high- plasma. Because of the small

Zakharov, Leonid E.

249

National Ignition Facility faces an uncertain future David Kramer  

E-Print Network (OSTI)

at the National Ignition Facility to achieve a self-sustaining fusion reaction fell short. Now NIF stands to lose that were specified for NIF when the massive laser facility was ap- proved for construction in 1996. President Obama's fiscal year 2014 budget request calls for the end of NIF support for experiments proposed

250

CO/sub 2/-laser ignition of DAPP targets  

Science Conference Proceedings (OSTI)

A pulse derived by shuttering a CO/sub 2/ laser operating in the cw mode has been used to ignite a diallyl phthalate pyrotechnic (DAPP) material. Data from this work along with some data taken earlier, while operating the laser in the pulse mode, are presented. When operating in the cw mode, a pulse is mechanically chopped out of the beam and focussed onto the DAPP material. It was found that the shuttered cw mode of operation gives a more reproducible pulse and a more accurate determination of the incident energy than the pulse mode does. The pulse widths for threshold ignition (50% ignitions) at different power levels have been determined for 254 and 127 mm-focal-length lenses which were used to focus the beam on the target. It was also found that targets could be penetrated without ignition of the DAPP material. A 2.54 mm-thick DAPP target is penetrated by the laser beam if the energy per unit area exceeds 29 +1 J/mm/sup 2/. Based on this study, recommendations are given for improving the present test procedures used for DAPP material.

Brannon, P.J.

1981-07-01T23:59:59.000Z

251

Carbon dioxide emission during forest fires ignited by lightning  

E-Print Network (OSTI)

In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

Magdalena Pelc; Radoslaw Osuch

2009-03-31T23:59:59.000Z

252

Prediction of ignition of glass-metal mixture  

SciTech Connect

The integral fast reactor concept developed by Argonne National Laboratory includes on-site processing and recycling of discharged core and blanket fuel materials. The process will be demonstrated using the fuel cycle facility (FCF) located at ANL's Idaho facility. One of the processing steps is the casting of metal-fuel alloy slugs. Although alternate techniques are being developed, the current reference calls for casting the metal into quartz molds. During the slug demolding process, however, some of the fuel alloy remains attached to the quartz and becomes waste. Other finely divided particles of alloy from this operation also become mixed with the glass-fuel waste. This waste material is temporarily stored in cylindrical cans filled with argon gas to prevent oxidation and pyrophoric ignition. However, this mixture may come into contact with air as result of an accident and ignite. The ignition of the mixture depends significantly on the heat transfer characteristics of the waste can, which loses heat to the environment by natural convection and radiation. Heat is generated in the fuel by self-heating due both to its plutonium content and residual fission products and by heating due to oxidation. If the heat generation rate is higher than the heat loss rate, the system may experience a breakaway oxidation reaction, which is termed ignition.

Parlatan, Y. (Massachusetts Inst. of Technology, Cambridge (United States)); Charak, I. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

253

Railplug Ignition System for Enhanced Engine Performance and Reduced Maintenance  

SciTech Connect

This Final Technical Report discusses the progress that was made on the experimental and numerical tasks over the duration of this project. The primary objectives of the project were to (1) develop an improved understanding of the spark ignition process, and (2) develop the railplug as an improved ignitor for large bore stationary natural gas engines. We performed fundamental experiments on the physical processes occurring during spark ignition and used the results from these experiments to aid our development of the most complete model of the spark ignition process ever devised. The elements in this model include (1) the dynamic response of the ignition circuit, (2) a chemical kinetics mechanism that is suitable for the reactions that occur in the plasma, (3) conventional flame propagation kinetics, and (4) a multi-dimensional formulation so that bulk flow through the spark gap can be incorporated. This model (i.e., a Fortran code that can be used as a subroutine within an engine modeling code such as KIVA) can be obtained from Prof. Ron Matthews at rdmatt{at}mail.utexas.edu or Prof. DK Ezekoye at dezekoye{at}mail.utexas.edu. Fundamental experiments, engine experiments, and modeling tasks were used to help develop the railplug as a new ignitor for large bore natural gas engines. As the result of these studies, we developed a railplug that could extend the Lean Stability Limit (LSL) of an engine operating at full load on natural gas from {phi} = 0.59 for operation on spark plugs down to {phi} = 0.53 using railplugs with the same delivered energy (0.7 J). However, this delivered energy would rapidly wear out the spark plug. For a conventional delivered energy (<0.05 J), the LSL is {phi} = 0.63 for a spark plug. Further, using a permanent magnet to aid the plasma movement, the LSL was extended to {phi} = 0.54 for a railplug with a delivered energy of only 0.15 J/shot, a typical discharge energy for commercial capacitive discharge ignition systems. Here, it should be noted that railplugs and the associated ignition circuit should not cost much more than a conventional spark ignition system. Additionally, it is believed that the railplug performance can be further improved via continued research and development.

DK Ezekoye; Matt Hall; Ron Matthews

2005-08-01T23:59:59.000Z

254

Experimental and Kinetic Modeling Study of Extinction and Ignition of Methyl Decanoate in Laminar Nonpremixed Flows  

DOE Green Energy (OSTI)

Methyl decanoate is a large methyl ester that can be used as a surrogate for biodiesel. In this experimental and computational study, the combustion of methyl decanoate is investigated in nonpremixed, nonuniform flows. Experiments are performed employing the counterflow configuration with a fuel stream made up of vaporized methyl decanoate and nitrogen, and an oxidizer stream of air. The mass fraction of fuel in the fuel stream is measured as a function of the strain rate at extinction, and critical conditions of ignition are measured in terms of the temperature of the oxidizer stream as a function of the strain rate. It is not possible to use a fully detailed mechanism for methyl decanoate to simulate the counterflow flames because the number of species and reactions is too large to employ with current flame codes and computer resources. Therefore a skeletal mechanism was deduced from a detailed mechanism of 8555 elementary reactions and 3036 species using 'directed relation graph' method. This skeletal mechanism has only 713 elementary reactions and 125 species. Critical conditions of ignition were calculated using this skeletal mechanism and are found to agree well with experimental data. The predicted strain rate at extinction is found to be lower than the measurements. In general, the methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

Seshadri, K; Lu, T; Herbinet, O; Humer, S; Niemann, U; Pitz, W J; Law, C K

2008-01-09T23:59:59.000Z

255

Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel  

Science Conference Proceedings (OSTI)

This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

2010-11-15T23:59:59.000Z

256

Optimization of Injection Scheduling in  

E-Print Network (OSTI)

- of wells,and (2) allocating a total speci6cd injection rate among chosen injectors. The alloca- tion is defined as the fieldwide break- through lindex, B. Injection is optimized by choosing injection wells questions: (1) Which wells should be made injectors? (2) How should the total nquired injection rate

Stanford University

257

Direct-Drive Inertial Fusion Research at the University of Rochester's Laboratory for Laser Energetics: A Review  

SciTech Connect

This paper reviews the status of direct-drive inertial confinement fusion (ICF) research at the University of Rochester's Laboratory for Laser Energetics (LLE). LLE's goal is to demonstrate direct-drive ignition on the National Ignition Facility (NIF) by 2014. Baseline "all-DT" NIF direct-drive ignition target designs have been developed that have a predicted gain of 45 (1-D) at a NIF drive energy of ~1.6 MJ. Significantly higher gains are calculated for targets that include a DT-wicked foam ablator. This paper also reviews the results of both warm fuel and initial cryogenic-fuel spherical target implosion experiments carried out on the OMEGA UV laser. The results of these experiments and design calculations increase confidence that the NIF direct-drive ICF ignition goal will be achieved.

McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.; Skupsky, S.; Bahr, R.E.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Collins, T.J.B.; Delettrez, J.A.; Donaldson, W.R.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Jaanimagi, P.A.; Keck, R.L.; Kelly, J.H.; Kessler, T.J.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Lund, L.D.; Marozas, J.A.; McKenty, P.W.; Marshall, F.J.; Morse, S.F.B.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Regan, S.P.; Roberts, S.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Thorp, K.A.; Yaakobi, B.; Zuegel, J.D.

2010-04-16T23:59:59.000Z

258

Partial fuel stratification to control HCCI heat release rates : fuel composition and other factors affecting pre-ignition reactions of two-stage ignition fuels.  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock.

Dec, John E.; Sjoberg, Carl-Magnus G.; Cannella, William (Chevron USA Inc.); Yang, Yi; Dronniou, Nicolas

2010-11-01T23:59:59.000Z

259

Modeling of high energy laser ignition of energetic materials  

SciTech Connect

We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers the effect of irradiating a steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultrashort (femto- and picosecond) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine, triaminotrinitrobenzene, and octahydrotetranitrotetrazine are compared to experimental results. The experimental and numerical results are in good agreement.

Lee, Kyung-cheol; Kim, Ki-hong; Yoh, Jack J. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of)

2008-04-15T23:59:59.000Z

260

Inertial Confinement Fusion and the National Ignition Facility (NIF)  

SciTech Connect

Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

Ross, P.

2012-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Inertial fusion target development for ignition and energy  

SciTech Connect

The target needs of the next ICF experiments that will lead toward ignition and energy are different from those of today`s experiments. The future experiments on OMEGA Upgrade, GEKKO XII Upgrade, the National Ignition Facility and Megajoule will need large, precise, cryogenic targets. Development is needed on a number of aspects of these targets, including shell fabrication, characterization, cryogenic layering and target handling. However, coordinated R and D programs are in place and work is in process to carry out the needed development. It is vital to the success of inertial fusion that this work be sustained. Coordinated effort, like the National Cryogenic Target Program in the USA, will help make the development activities as efficient and effective as possible, and should be encouraged.

Schultz, K.R. [General Atomics, San Diego, CA (United States); Norimatsu, T. [Osaka Univ. (Japan). Inst. of Laser Engineering

1994-12-01T23:59:59.000Z

262

RAILPLUG IGNITION SYSTEM FOR ENHANCED ENGINE PERFORMANCE AND REDUCED MAINTENANCE  

DOE Green Energy (OSTI)

During the first year of this project, three experimental subtasks and four modeling subtasks were scheduled to begin. Five of these 7 subtasks were scheduled for completion by the end of the first year. Both experimental tasks were completed on schedule. No experimental data were scheduled for the first year. The four modeling tasks are progressing well. However, two of the numerical tasks have been delayed somewhat. A simplified plasma kinetics mechanism was developed and tested against a detailed model. The agreement was quite good. A simplified kinetics mechanism for flame propagation was also developed and validated via comparisons against an elementary kinetics mechanism. Again, the agreement was quite good. The 2D spark ignition process model was exercised to ensure stability but the 3D version was not completed. Excellent progress was made on the ignition circuit model, but it is not yet finished. The delays in these two subtasks are not expected to impact the schedule for the overall project.

Ron Matthews

2003-08-20T23:59:59.000Z

263

Analysis of ignition of a porous energetic material  

SciTech Connect

A theory of ignition is presented to analyze the effect of porosity on the time to ignition of a semi-infinite porous energetic solid subjected to a constant energy flux. An asymptotic perturbation analysis, based on the smallness of the gas-to-solid density ratio and the largeness of the activation energy, is utilized to describe the inert and transition stages leading to thermal runaway. As in the classical study of a nonporous solid, the transition stage consists of three spatial regions in the limit of large activation energy: a thin reactive-diffusive layer adjacent to the exposed surface of the material where chemical effects are first felt, a somewhat thicker transient-diffusive zone, and finally an inert region where the temperature field is still governed solely by conductive heat transfer. Solutions in each region are constructed at each order with respect to the density-ratio parameter and matched to one another using asymptotic matching principles. It is found that the effects of porosity provide a leading-order reduction in the time to ignition relative to that for the nonporous problem, arising from the reduced amount of solid material that must be heated and the difference in thermal conductivities of the solid and gaseous phases. A positive correction to the leading-order ignition-delay time, however, is provided by the convective flow of gas out of the solid, which stems from the effects of thermal expansion and removes energy from the system. The latter phenomenon is absent from the corresponding calculation for the nonporous problem and produces a number of modifications at the next order in the analysis arising from the relative transport effects associated with the gas flow.

Telengator, A.M.; Williams, F.A. [Univ. of California, San Diego, La Jolla, CA (United States). Dept. of Applied Mechanics and Engineering Sciences; Margolis, S.B. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

1998-04-01T23:59:59.000Z

264

National Ignition Facility Project Completion and Control System Status  

SciTech Connect

The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

Van Arsdall, P J; Azevedo, S G; Beeler, R G; Bryant, R M; Carey, R W; Demaret, R D; Fisher, J M; Frazier, T M; Lagin, L J; Ludwigsen, A P; Marshall, C D; Mathisen, D G; Reed, R K

2009-10-02T23:59:59.000Z

265

Completion report: Raft River Geothermal Injection Well Six (RRGI-6)  

DOE Green Energy (OSTI)

Raft River Geothermal Injection Well Six (RRGI-6) is an intermediate-depth injection well designed to accept injection water in the 600 to 1000 m (2000 to 3500 ft) depth range. It has one barefoot leg, and it was drilled so that additional legs can be added later; if there are problems with intermediate-depth injection, one or more additional legs could be directionally drilled from the current well bore. Included are the reports of daily drilling records of drill bits, casings, and loggings, and descriptions of cementing, coring, and containment.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

266

Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology  

SciTech Connect

The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400°F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A Pd–Cu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

Swanson, Michael; Henderson, Ann

2012-04-01T23:59:59.000Z

267

Pressurized feed-injection spray-forming apparatus  

SciTech Connect

A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.

Berry, Ray A. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); McHugh, Kevin M. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

268

The Radiochemical Analysis of Gaseous Samples (RAGS) Apparatus for Nuclear Diagnostics at the National Ignition Facility  

SciTech Connect

The RAGS (Radiochemical Analysis of Gaseous Samples) diagnostic apparatus was recently installed at the National Ignition Facility. Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of {sup 135}Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched {sup 124}Xe and {sup 126}Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

Shaughnessy, D A; Velsko, C A; Jedlovec, D R; Yeamans, C B; Moody, K J; Tereshatov, E; Stoeffl, W; Riddle, A

2012-05-11T23:59:59.000Z

269

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

270

Parametric combustion modeling for ethanol-gasoline fuelled spark ignition engines.  

E-Print Network (OSTI)

?? Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines due to continued growth in renewable fuels as part of a growing… (more)

Yeliana

2011-01-01T23:59:59.000Z

271

Influence of the molecular structure of biofuels on combustion in a compression ignition engine.  

E-Print Network (OSTI)

??This thesis presents an experimental study on the influence of the molecular structure of potential biofuels on combustion in a compression ignition engine. The molecular… (more)

Schönborn, A.

2009-01-01T23:59:59.000Z

272

Plasma ignition schemes for the SNS radio-frequency driven H- source  

E-Print Network (OSTI)

on the Spallation Neutron Source (SNS) Project,” EPAC ‘98,ignition schemes for the SNS radio-frequency driven H -the Spallation Neutron Source (SNS) is a cesiated, radio-

2001-01-01T23:59:59.000Z

273

Comparative study of heavy-duty engine operation with diesel fuel and ignition-improved methanol  

Science Conference Proceedings (OSTI)

Methanol can be made suitable for compression ignition engines by ignition-improving additives. The ignition improver demand can be minimized by increasing the compression ratio. The technical suitability of this fuel can be regarded as proven, since most of the problems connected with its use have been solved. Its economic viability, however, has still to be doubted. From an environmental point of view, ignition-improved methanol deserves great interest due to the total absence of soot in the exhaust and the considerably reduced NO/sub x/ emission.

Hardenberg, H.O.

1987-01-01T23:59:59.000Z

274

Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology  

DOE Green Energy (OSTI)

The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

Hessel, R P; Aceves, S M; Flowers, D L

2006-03-06T23:59:59.000Z

275

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network (OSTI)

the injection well to^ production wells along high conductivity fractures. A powerful method for investigat- ing fields typically choose a configuration for injection wells after a number of development wells have of cooler injected fluids at producing wells. The goal of the current #12;- 10 - work is to provide

Stanford University

276

The ePLAS Code for Ignition Studies  

SciTech Connect

Inertial Confinement Fusion (ICF) presents unique opportunities for the extraction of clean energy from Fusion. Intense lasers and particle beams can create and interact with such plasmas, potentially yielding sufficient energy to satisfy all our national needs. However, few models are available to help aid the scientific community in the study and optimization of such interactions. This project enhanced and disseminated the computer code ePLAS for the early understanding and control of Ignition in ICF. ePLAS is a unique simulation code that tracks the transport of laser light to a target, the absorption of that light resulting in the generation and transport of hot electrons, and the heating and flow dynamics of the background plasma. It uses an implicit electromagnetic field-solving method to greatly reduce computing demands, so that useful target interaction studies can often be completed in 15 minutes on a portable 2.1 GHz PC. The code permits the rapid scoping of calculations for the optimization of laser target interactions aimed at fusion. Recent efforts have initiated the use of analytic equations of state (EOS), K-alpha image rendering graphics, allocatable memory for source-free usage, and adaption to the latest Mac and Linux Operating Systems. The speed and utility of ePLAS are unequaled in the ICF simulation community. This project evaluated the effects of its new EOSs on target heating, compared fluid and particle models for the ions, initiated the simultaneous use of both ion models in the code, and studied long time scale 500 ps hot electron deposition for shock ignition. ePLAS has been granted EAR99 export control status, permitting export without a license to most foreign countries. Beta-test versions of ePLAS have been granted to several Universities and Commercial users. The net Project was aimed at achieving early success in the laboratory ignition of thermonuclear targets and the mastery of controlled fusion power for the nation.

Mason, Rodney J

2012-09-20T23:59:59.000Z

277

RAILPLUG IGNITION SYSTEM FOR ENHANCED ENGINE PERFORMANCE AND REDUCED MAINTENANCE  

DOE Green Energy (OSTI)

During the first 18 months of this project, four experimental subtasks were to have begun but only one of these was to have been completed. Additionally, five modeling subtasks were scheduled to begin, four of which were to have been completed. We are on schedule for all but one of these subtasks. All four experimental tasks are progressing on schedule. Initial durability tests were completed. The conclusions drawn from this first round of durability tests are being used to design the next set of tests. Initial baseline engine data were acquired and showed that the engine selected for this task behaves as hoped. However, the dyno controller is inadequate. The engine will be moved to another dyno during the near future. The modeling tasks are also progressing well. A model for the dynamic response of the ignition circuit was developed and validated. Two technical papers resulting from this model were submitted for publication. Development of a model for the railplug ignition process was begun but was not scheduled for completion. Progress on this task consisted of two subtasks. First, a railplug circuit model was also developed and validated. Second, a model was developed for the physics that govern railplug performance. This initial model incorporated only the effects of the Lorentz force on arc movement. From this model, it is concluded that thermal expansion is important to the performance of railplugs. Thermal expansion, and other physical effects, will be added to the model in the near future. We delayed the development of a 3D model for the ignition process, until near the end of the project because of the computational time requirements. We can learn most of the important lessons from the 2D model. Delay of this subtask will not affect the timely completion of the project.

Ron Matthews

2003-09-19T23:59:59.000Z

278

The First Experiments on the National Ignition Facility  

Science Conference Proceedings (OSTI)

A first set of laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and x-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options.

Landen, O L; Glenzer, S; Froula, D; Dewald, E; Suter, L J; Schneider, M; Hinkel, D; Fernandez, J; Kline, J; Goldman, S; Braun, D; Celliers, P; Moon, S; Robey, H; Lanier, N; Glendinning, G; Blue, B; Wilde, B; Jones, O; Schein, J; Divol, L; Kalantar, D; Campbell, K; Holder, J; MacDonald, J; Niemann, C; Mackinnon, A; Collins, R; Bradley, D; Eggert, J; Hicks, D; Gregori, G; Kirkwood, R; Young, B; Foster, J; Hansen, F; Perry, T; Munro, D; Baldis, H; Grim, G; Heeter, R; Hegelich, B; Montgomery, D; Rochau, G; Olson, R; Turner, R; Workman, J; Berger, R; Cohen, B; Kruer, W; Langdon, B; Langer, S; Meezan, N; Rose, H; Still, B; Williams, E; Dodd, E; Edwards, J; Monteil, M; Stevenson, M; Thomas, B; Coker, R; Magelssen, G; Rosen, P; Stry, P; Woods, D; Weber, S; Alvarez, S; Armstrong, G; Bahr, R; Bourgade, J; Bower, D; Celeste, J; Chrisp, M; Compton, S; Cox, J; Constantin, C; Costa, R; Duncan, J; Ellis, A; Emig, J; Gautier, C; Greenwood, A; Griffith, R; Holdner, F; Holtmeier, G; Hargrove, D; James, T; Kamperschroer, J; Kimbrough, J; Landon, M; Lee, D; Malone, R; May, M; Montelongo, S; Moody, J; Ng, E; Nikitin, A; Pellinen, D; Piston, K; Poole, M; Rekow, V; Rhodes, M; Shepherd, R; Shiromizu, S; Voloshin, D; Warrick, A; Watts, P; Weber, F; Young, P; Arnold, P; Atherton, L J; Bardsley, G; Bonanno, R; Borger, T; Bowers, M; Bryant, R; Buckman, S; Burkhart, S; Cooper, F; Dixit, S; Erbert, G; Eder, D; Ehrlich, B; Felker, B; Fornes, J; Frieders, G; Gardner, S; Gates, C; Gonzalez, M; Grace, S; Hall, T; Haynam, C; Heestand, G; Henesian, M; Hermann, M; Hermes, G; Huber, S; Jancaitis, K; Johnson, S; Kauffman, B; Kelleher, T; Kohut, T; Koniges, A E; Labiak, T; Latray, D; Lee, A; Lund, D; Mahavandi, S; Manes, K R; Marshall, C; McBride, J; McCarville, T; McGrew, L; Menapace, J; Mertens, E; Munro, D; Murray, J; Neumann, J; Newton, M; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rinnert, R; Riordan, B; Ross, G; Robert, V; Tobin, M; Sailors, S; Saunders, R; Schmitt, M; Shaw, M; Singh, M; Spaeth, M; Stephens, A; Tietbohl, G; Tuck, J; Van Wonterghem, B; Vidal, R; Wegner, P; Whitman, P; Williams, K; Winward, K; Work, K

2005-11-11T23:59:59.000Z

279

Indirect Drive Warm-Loaded Ignition Target Design  

SciTech Connect

This document summarizes the Indirect Drive Warm-Loaded Ignition Target design. These targets either use a fill tube or the capsule is strong enough to withstand the room temperature pressure of the DT fuel. Only features that affect the design of the NIF Cryogenic Target System (NCTS) are presented. The design presented is the current thinking and may evolve further. The NCTS should be designed to accommodate a range of targets and target scales, as described here. The interface location between the target and the NCTS cryostat is at the target base / gripper joint, the tamping gas gland/gland joint, and the electrical plug/receptacle joint.

Bernat, T P; Gibson, C R

2004-09-03T23:59:59.000Z

280

The Role of Viscosity in TATB Hot Spot Ignition  

SciTech Connect

The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

Fried, L E; Zepeda-Ruis, L; Howard, W M; Najjar, F; Reaugh, J E

2011-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

THE CONCEPT OF ISOCHORIC CENTRAL SPARK IGNITION AND ITS FUEL GAIN IN INERTIAL FUSION  

E-Print Network (OSTI)

1 THE CONCEPT OF ISOCHORIC CENTRAL SPARK IGNITION AND ITS FUEL GAIN IN INERTIAL FUSION of the best methods in inertial confinement fusion (ICF) is the concept of central spark ignition, consisting of two distinct regions named as hot and cold regions and formed by hydro-dynamical implosion of fuel

Paris-Sud XI, Université de

282

Multi-Scale Modeling of Nano Aluminum Particle Ignition and Combustion  

E-Print Network (OSTI)

NEEM MURI Multi-Scale Modeling of Nano Aluminum Particle Ignition and Combustion Multi-Scale Modeling of Nano Aluminum Particle Ignition and Combustion Puneesh Puri and Vigor Yang The Pennsylvania Aluminum Particle Combustion · Aluminum oxide cap formed under the effect of surface tension · Oxidized

Yang, Vigor

283

Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere  

E-Print Network (OSTI)

Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere JOEL DAOU Dpto, Spain. E-mail: daou@tupi.dmt.upm.es Ignition and combustion of an initially spherical pocket of fuel, the results provide a good appreciation of the dynamics of the combustion process. For example, it is found

Heil, Matthias

284

LES of an ignition sequence in a gas turbine M. Boileau a,, G. Staffelbach a  

E-Print Network (OSTI)

LES of an ignition sequence in a gas turbine engine M. Boileau a,, G. Staffelbach a , B. CuenotTurbomeca (SAFRAN group), Bordes, France Abstract Being able to ignite or reignite a gas turbine engine in a cold including 18 burners. This geometry corresponds to a real gas turbine chamber. Massively parallel computing

285

Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.  

SciTech Connect

The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

Quarles, Stephen, L.; Sindelar, Melissa

2011-12-13T23:59:59.000Z

286

Prospectus of ignition enhancement in a two-stroke SI engine  

DOE Green Energy (OSTI)

Conventional two-stroke spark-ignition (SI) engines have difficulty meeting the ignition requirements of lean fuel-air mixtures and high compression ratios, due to their breaker operated, magneto-coil ignition systems. In the present work, a breakerless, high-energy electronic ignition system was developed and tested with and without a platinum-tipped electrode spark plug. The high-energy ignition system showed an improved lean-burn capability at high compression ratios relative to the conventional ignition system. At a high compression ratio of 9:1 with lean fuel-air mixtures, the maximum percentage improvement in the brake thermal efficiency was about 16.5% at 2.7 kW and 3000 rpm. Cylinder peak pressures-were higher ignition delay was lower, and combustion duration was shorter at both normal and high compression ratios. Combustion stability as measured by the coefficient of variation in peak cylinder pressure was also considerably improved with the high-energy ignition system.

Manivannan, P.V.; Ramesh, A. [Indian Inst. of Tech., New Delhi (India); Poola, R.B. [Argonne National Lab., IL (United States); Dhinadgar, S.J. [Tata Engineering & Locomotive Co., New Delhi (India)

1995-12-01T23:59:59.000Z

287

Analytic criteria for shock ignition of fusion reactions in a central hot spot  

Science Conference Proceedings (OSTI)

Shock ignition is an inertial confinement fusion scheme where the ignition conditions are achieved in two steps. First, the DT shell is compressed at a low implosion velocity creating a central core at a low temperature and a high density. Then, a strong spherical converging shock is launched before the fuel stagnation time. It increases the central pressure and ignites the core. It is shown in this paper that this latter phase can be described analytically by using a self-similar solution to the equations of ideal hydrodynamics. A high and uniformly distributed pressure in the hot spot can be created thus providing favorable conditions for ignition. Analytic ignition criteria are obtained that relate the areal density of the compressed core with the shock velocity. The conclusions of the analytical model are confirmed in full hydrodynamic simulations.

Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.; Lafon, M.; Le Bel, E. [Centre Lasers Intenses et Applications, Universite Bordeaux 1-CEA-CNRS, Talence 33405 (France)

2011-10-15T23:59:59.000Z

288

The Neutron Imaging System Fielded at the National Ignition Facility  

SciTech Connect

A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

2012-08-01T23:59:59.000Z

289

Power conditioning development for the National Ignition Facility  

DOE Green Energy (OSTI)

The National Ignition Facility (NIF) is a high energy glass laser system and target chamber that will be used for research in inertial confinement fusion. The 192 beams of the NIF laser system are pumped by over 8600 Xenon flashlamps. The power conditioning system for NIF must deliver nearly 300 MJ of energy to the flashlamps in a cost effective and reliable manner. The present system design has over 200 capacitive energy storage modules that store approximately 1.7 MJ each and deliver that energy through a single switch assembly to 20 parallel sets of two series flashlamps. Although there are many possible system designs, few will meet the aggressive cost goals necessary to make the system affordable. Sandia National Laboratory (SNL) and Lawrence Livermore National Laboratory (LLNL) are developing the system and component technologies that will be required to build the power conditioning system for the National Ignition Facility. This paper will describe the ongoing development activities for the NIF power conditioning system.

Newton, M.A.; Larson, D.W. [Lawrence Livermore National Lab., CA (United States); Wilson, J.M.; Harjes, H.C.; Savage, M.E. [Sandia National Labs., Albuquerque, NM (United States); Anderson, R.L. [American Controls, Inc., San Diego, CA (United States)

1996-10-01T23:59:59.000Z

290

Characterization of in situ oil shale retorts prior to ignition  

DOE Patents (OSTI)

Method and system for characterizing a vertical modified in situ oil shale retort prior to ignition of the retort. The retort is formed by mining a void at the bottom of a proposed retort in an oil shale deposit. The deposit is then sequentially blasted into the void to form a plurality of layers of rubble. A plurality of units each including a tracer gas cannister are installed at the upper level of each rubble layer prior to blasting to form the next layer. Each of the units includes a receiver that is responsive to a coded electromagnetic (EM) signal to release gas from the associated cannister into the rubble. Coded EM signals are transmitted to the receivers to selectively release gas from the cannisters. The released gas flows through the retort to an outlet line connected to the floor of the retort. The time of arrival of the gas at a detector unit in the outlet line relative to the time of release of gas from the cannisters is monitored. This information enables the retort to be characterized prior to ignition.

Turner, Thomas F. (Laramie, WY); Moore, Dennis F. (Laramie, WY)

1984-01-01T23:59:59.000Z

291

Exploring the Fast Ignition Approach to Fusion Energy  

DOE Green Energy (OSTI)

Probably the most famous equation in physics is Einstein's E=mc{sup 2}, which was contained within his fifth and final paper that was published in 1905. It is this relationship between energy ( E) and mass ( m) that the fusion process exploits to generate energy. When two isotopes of hydrogen (normally Deuterium and Tritium (DT)) fuse they form helium and a neutron. In this process some of the mass of the hydrogen is converted into energy. In the fast ignition approach to fusion a large driver (such as the NIF laser) is used to compress the DT fuel to extremely high densities and then is ''sparked'' by a high intensity, short-pulse laser. The short-pulse laser energy is converted to an electron beam, which then deposits its energy in the DT fuel. The energy of the electrons in this beam is so large that the electron's mass is increased according to Einstein theory of relativity. Understanding the transport of this relativistic electron beam is critical to the success of fast ignition and is the subject of this poster.

Town, R J; Chung, H; Cottrill, L A; Foord, M; Hatchett, S P; Key, M H; Langdon, A B; Lasinski, B F; Lund, S; Mackinnon, A J; McCandless, B C; Patel, P K; Sharp, W L; Snavely, R A; Still, C H; Tabak, M

2005-04-18T23:59:59.000Z

292

Visualization of Target Inspection data at the National Ignition Facility  

SciTech Connect

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

Potter, D; Antipa, N

2012-02-16T23:59:59.000Z

293

Optimization of injection scheduling in geothermal fields  

DOE Green Energy (OSTI)

This study discusses the application of algorithms developed in Operations Research to the optimization of brine reinjection in geothermal fields. The injection optimization problem is broken into two sub-problems: (1) choosing a configuration of injectors from an existing set of wells, and (2) allocating a total specified injection rate among chosen injectors. The allocation problem is solved first. The reservoir is idealized as a network of channels or arcs directly connecting each pair of wells in the field. Each arc in the network is considered to have some potential for thermal breakthrough. This potential is quantified by an arc-specific break-through index, b/sub ij/, based on user-specified parameters from tracer tests, field geometry, and operating considerations. The sum of b/sub ij/-values for all arcs is defined as the fieldwide breakthrough index, B. Injection is optimized by choosing injection wells and rates so as to minimize B subject to constraints on the number of injectors and the total amount of fluid to be produced and reinjected. The study presents four computer programs which employ linear or quadratic programming to solve the allocation problem. In addition, a program is presented which solves the injector configuration problem by a combination of enumeration and quadratic programming. The use of the various programs is demonstrated with reference both to hypothetical data and an actual data set from the Wairakei Geothermal Field in New Zealand.

Lovekin, J.

1987-05-01T23:59:59.000Z

294

Optimization of Injection Scheduling in Geothermal Fields  

DOE Green Energy (OSTI)

This study discusses the application of algorithms developed in Operations Research to the optimization of brine reinjection in geothermal fields. The injection optimization problem is broken into two sub-problems: (1) choosing a configuration of injectors from an existing set of wells, and (2) allocating a total specified injection rate among chosen injectors. The allocation problem is solved first. The reservoir is idealized as a network of channels or arcs directly connecting each pair of wells in the field. Each arc in the network is considered to have some potential for thermal breakthrough. This potential is quantified by an arc-specific breakthrough index, b{sub ij}, based on user-specified parameters from tracer tests, field geometry, and operating considerations. The sum of b{sub ij}-values for all arcs is defined as the fieldwide breakthrough index, B. Injection is optimized by choosing injection wells and rates so as to minimize B subject to constraints on the number of injectors and the total amount of fluid to be produced and reinjected. The use of the various methods is demonstrated with reference both to hypothetical data and an actual data set from the Wairakei Geothermal Field in New Zealand.

Lovekin, James; Horne, Roland N.

1989-03-21T23:59:59.000Z

295

Particle beam injection system  

SciTech Connect

This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

Jassby, Daniel L. (Princeton, NJ); Kulsrud, Russell M. (Princeton, NJ)

1977-01-01T23:59:59.000Z

296

Engine ignition signal diagnosis with Wavelet Packet Transform and Multi-class Least Squares Support Vector Machines  

Science Conference Proceedings (OSTI)

Engine ignition pattern analysis is one of the trouble-diagnosis methods for automotive gasoline engines. Based on the waveform of the ignition pattern, the mechanic guesses what may be the potential malfunctioning parts of an engine with his/her experience ... Keywords: Automotive engine ignition pattern diagnosis, Multi-class Least Squares Support Vector Machines, Pattern classification, Wavelet Packet Transform

C. M. Vong; P. K. Wong

2011-07-01T23:59:59.000Z

297

"Basic Research Directions Workshop on User Science at the National Ignition Facility"  

E-Print Network (OSTI)

#12;Strong NIF shot demand reflects scientific opportunities discussed in recent federal reports 2Keane--CIS Technical Review, April 13-15, 2011NIF-0311-21167.ppt The importance of access to NNSA facilities is emphasized in these reports- NIF is developing processes and infrastructure to support

298

BASIC RESEARCH DIRECTIONS for User Science at the National Ignition Facility  

E-Print Network (OSTI)

(K.O.H.). XAS data were measured at the Stanford Synchro- tron Radiation Laboratory (SSRL), which is supported by the Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular

Stewart, Sarah T.

299

Direct Laser Synthesis of Functional Coatings  

DOE Green Energy (OSTI)

The direct laser synthesis of functional coatings employs the irradiation of materials with short intensive laser pulses in a reactive atmosphere. The material is heated and plasma is ignited in the reactive atmosphere. This leads to an intensive interaction of the material with the reactive species and a coating is directly formed on the materials surface. By that functional coatings can be easily produced a fast way on steel, aluminium, and silicon by irradiation in nitrogen, methane, or even hydrogen. The influence of the processing parameters to the properties of the functional coatings will be presented for titanium nitride coating produced on titanium with the free electron laser.

P. Schaaf; Michelle D. Shinn; E. Carpene; J. Kaspar

2005-06-01T23:59:59.000Z

300

Lean direct injection diffusion tip and related method  

SciTech Connect

A nozzle for a gas turbine combustor includes a first radially outer tube defining a first passage having an inlet and an outlet, the inlet adapted to supply air to a reaction zone of the combustor. A center body is located within the first radially outer tube, the center body including a second radially intermediate tube for supplying fuel to the reaction zone and a third radially inner tube for supplying air to the reaction zone. The second intermediate tube has a first outlet end closed by a first end wall that is formed with a plurality of substantially parallel, axially-oriented air outlet passages for the additional air in the third radially inner tube, each air outlet passage having a respective plurality of associated fuel outlet passages in the first end wall for the fuel in the second radially intermediate tube. The respective plurality of associated fuel outlet passages have non-parallel center axes that intersect a center axis of the respective air outlet passage to locally mix fuel and air exiting said center body.

Varatharajan, Balachandar (Cincinnati, OH); Ziminsky, Willy S. (Simpsonville, SC); Lipinski, John (Simpsonville, SC); Kraemer, Gilbert O. (Greer, SC); Yilmaz, Ertan (Niskayuna, NY); Lacy, Benjamin (Greer, SC)

2012-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Underground Injection Control Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

302

Underground Injection Control Rule (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

303

Injectivity Test | Open Energy Information  

Open Energy Info (EERE)

Injectivity Test Injectivity Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Injectivity Test Details Activities (7) Areas (6) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Permeability of the well Thermal: Dictionary.png Injectivity Test: A well testing technique conducted upon completion of a well. Water is pumped into the well at a constant rate until a stable pressure is reached then the pump is turned off and the rate at which pressure decreases is measured. The pressure measurements are graphed and well permeability can

304

Common Rail Injection System Development  

DOE Green Energy (OSTI)

The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

Electro-Motive,

2005-12-30T23:59:59.000Z

305

HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS  

DOE Green Energy (OSTI)

Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

Leishear, R

2010-05-02T23:59:59.000Z

306

RAILPLUG IGNITION SYSTEM FOR ENHANCED ENGINE PERFORMANCE AND REDUCED MAINTENANCE  

DOE Green Energy (OSTI)

During the first 6 months of this project, four subtasks were scheduled. Two of these commenced earlier than originally proposed. The experimental task, development of new railplug designs, was completed on schedule. The three numerical subtasks were not completed on schedule. However, this is not expected to affect the capability to complete the overall project on schedule. Because we are early in the project, no results or conclusions were generated. Our progress included development of new railplug geometries, to be tested during the second 6 months of the project, and development of an initial 3D model. Progress was also made in development of the appropriate chemical kinetics and generation of a model for the ignition circuit.

Ron Matthews

2003-05-29T23:59:59.000Z

307

Energy recovery by water injection  

DOE Green Energy (OSTI)

Several analytical and numerical studies that address injection and thermal breakthrough in fractured geothermal reservoirs are described. The results show that excellent thermal sweeps can be achieved in fractured reservoirs, and that premature cold water breakthrough can be avoided if the injection wells are appropriately located.

Witherspoon, P.A.; Bodvarsson, G.S.; Pruess, K.; Tsang, C.F.

1982-07-01T23:59:59.000Z

308

Report on ignitability testing of flammable gasses in a core sampling drill string  

DOE Green Energy (OSTI)

This document describes the results from testing performed at the Pittsburgh Research Center to determine the effects of an ignition of flammable gasses contained in a core sampling drill string. Testing showed that 1) An ignition of stoichiometric hydrogen and air in a vented 30 or 55 ft length of drill string will not force 28`` or more of water out the bottom of the drill string, and 2) An ignition of this same gas mixture will not rupture a vented or completely sealed drill string.

Witwer, K.S., Westinghouse Hanford

1996-12-01T23:59:59.000Z

309

Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)  

DOE Green Energy (OSTI)

The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

Taylor, J.; Li, H.; Neill, S.

2006-08-01T23:59:59.000Z

310

Injection, injectivity and injectability in geothermal operations: problems and possible solutions. Phase I. Definition of the problems  

DOE Green Energy (OSTI)

The following topics are covered: thermodynamic instability of brine, injectivity loss during regular production and injection operations, injectivity loss caused by measures other than regular operations, heat mining and associated reservoir problems in reinjection, pressure maintenance through imported make-up water, suggested solutions to injection problems, and suggested solutions to injection problems: remedial and stimulation measures. (MHR)

Vetter, O.J.; Crichlow, H.B.

1979-02-14T23:59:59.000Z

311

NEUTRAL-BEAM INJECTION  

SciTech Connect

The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in their physics and their technology, or in any case they are considered to be adequately covered by these other authors.

Kunkel, W.B.

1980-06-01T23:59:59.000Z

312

JGI - Directions  

NLE Websites -- All DOE Office Websites (Extended Search)

Map to JGI Directions from Directions from key local start points, public transit Home > About Us > Map to JGI UC logo DOE logo Contact Us Credits Disclaimer Access...

313

Experimental validation of a diagnostic technique for tuning the fourth shock timing on National Ignition Facility  

Science Conference Proceedings (OSTI)

Capsule implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] will be driven with a carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The Hohlraum conditions present during the first three shocks allow for a very accurate and direct diagnosis of the strength and timing of each individual shock by velocity interferometry. Experimental validation of this diagnostic technique on the OMEGA Laser Facility [Boehly et al., Opt. Commun. 133, 495 (1997)] has been reported in [Boehly et al., Phys. Plasmas 16, 056302 (2009)]. The Hohlraum environment present during the launch and propagation of the final shock, by contrast, is much more severe and will not permit diagnosis by the same technique. A new, closely related technique has been proposed for measuring and tuning the strength and timing of the fourth shock. Experiments to test this technique under NIF-relevant conditions have also been performed on OMEGA. The result of these experiments and a comparison to numerical simulations is presented, validating this concept.

Robey, H. F.; Celliers, P. M.; Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boehly, T. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, Rochester, New York 14645 (United States); Olson, R. E. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Nikroo, A. [General Atomics, San Diego, California 92186 (United States)

2010-01-15T23:59:59.000Z

314

2011 Status of the Automatic Alignment System for the National Ignition Facility  

SciTech Connect

Automated alignment for the National Ignition Facility (NIF) is accomplished using a large-scale parallel control system that directs 192 laser beams along the 300-m optical path. The beams are then focused down to a 50-micron spot in the middle of the target chamber. The entire process is completed in less than 50 minutes. The alignment system commands 9,000 stepping motors for highly accurate adjustment of mirrors and other optics. 41 control loops per beamline perform parallel processing services running on a LINUX cluster to analyze high-resolution images of the beams and their references. This paper describes the status the NIF automatic alignment system and the challenges encountered as NIF development has transitioned from building the laser, to becoming a research project supporting a 24 hour, 7 day laser facility. NIF is now a continuously operated system where performance monitoring is increasingly more critical for operation, maintenance, and commissioning tasks. Equipment wear and the effects of high energy neutrons from fusion experiments are issues which alter alignment efficiency and accuracy. New sensors needing automatic alignment assistance are common. System modifications to improve efficiency and accuracy are prevalent. Handling these evolving alignment and maintenance needs while minimizing the impact on NIF experiment schedule is expected to be an on-going challenge for the planned 30 year operational life of NIF.

Wilhelmsen, K; Awwal, A; Burkhart, S; McGuigan, D; Kamm, V M; Leach, R; Lowe-Webb, R; Wilson, R

2011-07-19T23:59:59.000Z

315

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments  

Science Conference Proceedings (OSTI)

A detailed simulation-based model of the June 2011 National Ignition Campaign cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. Although by design the model is able to reproduce the 1D in-flight implosion parameters and low-mode asymmetries, it is not able to accurately predict the measured and inferred stagnation properties and levels of mix. In particular, the measured yields were 15%-40% of the calculated yields, and the inferred stagnation pressure is about 3 times lower than simulated.

Jones, O. S.; Cerjan, C. J.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Springer, P. T.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Callahan, D. A.; Caggiano, J. A.; Celliers, P. M.; Clark, D. S.; Dixit, S. M.; Doppner, T.; Dylla-Spears, R. J.; Dzentitis, E. G.; Farley, D. R.; Glenn, S. M. [Lawrence Livermore National Laboratory, 7000 East Avenue, L-399, Livermore, California 94551 (United States); and others

2012-05-15T23:59:59.000Z

316

Stokes injected Raman capillary waveguide amplifier  

DOE Patents (OSTI)

A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

Kurnit, Norman A. (Santa Fe, NM)

1980-01-01T23:59:59.000Z

317

Injection nozzle for a turbomachine  

Science Conference Proceedings (OSTI)

A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

2012-09-11T23:59:59.000Z

318

-OGP 04 (1) -Predicting Injectivity Decline  

E-Print Network (OSTI)

- OGP 04 (1) - Predicting Injectivity Decline in Water Injection Wells by Upscaling On-Site Core, resulting in injectivity decline of injection wells. Particles such as biomass, corrosion products, silt on permeability. These data were then processed, upscaled to model injection wells and, finally, history matched

Abu-Khamsin, Sidqi

319

NIF achieves record laser energy in pursuit of fusion ignition | National  

NLE Websites -- All DOE Office Websites (Extended Search)

achieves record laser energy in pursuit of fusion ignition | National achieves record laser energy in pursuit of fusion ignition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NIF achieves record laser energy in pursuit ... NIF achieves record laser energy in pursuit of fusion ignition Posted By Office of Public Affairs NNSA Blog The NNSA's National Ignition Facility (NIF) surpassed a critical

320

Analytical and numerical models of uranium ignition assisted by hydride formation  

DOE Green Energy (OSTI)

Analytical and numerical models of uranium ignition assisted by the oxidation of uranium hydride are described. The models were developed to demonstrate that ignition of large uranium ingots could not occur as a result of possible hydride formation during storage. The thermodynamics-based analytical model predicted an overall 17 C temperature rise of the ingot due to hydride oxidation upon opening of the storage can in air. The numerical model predicted locally higher temperature increases at the surface; the transient temperature increase quickly dissipated. The numerical model was further used to determine conditions for which hydride oxidation does lead to ignition of uranium metal. Room temperature ignition only occurs for high hydride fractions in the nominally oxide reaction product and high specific surface areas of the uranium metal.

Totemeier, T.C.; Hayes, S.L. [Argonne National Lab., Idaho Falls, ID (United States). Engineering Div.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

STUDIES OF WALL FLAME QUENCHING AND HYDROCARBON EMISSIONS IN A MODEL SPARK IGNITION ENGINE  

E-Print Network (OSTI)

spark ignition . Particle velocity at a flame front Profileof apparent flame front approaching a position at a side warolled-up votex and CH4-air flame; equivalence ratio 0.6,

Ishikawa, Nobuhiko

2011-01-01T23:59:59.000Z

322

The national ignition facility: early operational experience with a large Ada control system  

Science Conference Proceedings (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-Megajoule, 500-Terawatt laser being built by the Department of Energy and the National ...

Robert W. Carey; Paul J. Van Arsdall; John P. Woodruff

2002-12-01T23:59:59.000Z

323

Method and apparatus for igniting an in situ oil shale retort  

DOE Patents (OSTI)

A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.

Burton, Robert S. (Grand Junction, CO); Rundberg, Sten I. (Debeque, CO); Vaughn, James V. (Debeque, CO); Williams, Thomas P. (Debeque, CO); Benson, Gregory C. (Grand Junction, CO)

1981-01-01T23:59:59.000Z

324

Tungsten bridge for the low energy ignition of explosive and energetic materials  

DOE Patents (OSTI)

A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose.

Benson, David A. (Albuquerque, NM); Bickes, Jr., Robert W. (Albuquerque, NM); Blewer, Robert S. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

325

Tungsten bridge for the low energy ignition of explosive and energetic materials  

DOE Patents (OSTI)

A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose. 2 figs.

Benson, D.A.; Bickes, R.W. Jr.; Blewer, R.S.

1990-12-11T23:59:59.000Z

326

Extension of the high load limit in the Homogeneous Charge Compression Ignition engine  

E-Print Network (OSTI)

The Homogeneous Charge Compression Ignition (HCCI) engine offers diesel-like efficiency with very low soot and NOx emissions. In a HCCI engine, a premixed charge of air, fuel and burned gas is compressed to achieve ...

Scaringe, Robert J. (Robert Joseph)

2009-01-01T23:59:59.000Z

327

Application of neural network for air-fuel ratio identification in spark ignition engine  

Science Conference Proceedings (OSTI)

In the present work, Recurrent Neural Network (RNN) is used for Air-Fuel Ratio (AFR) identification in Spark Ignition (SI) engine. AFR identification is difficult due to nonlinear and dynamic behaviour of SI engines. Delays present in the engine ... Keywords: AFR sensors, RNNs, air-fuel ratio control, air-fuel ratio sensors, engine modelling, recurrent neural networks, simulation, spark ignition engines, virtual sensors

Samir Saraswati; Satish Chand

2008-10-01T23:59:59.000Z

328

Fire Events Database and Generic Ignition Frequency Model for U.S. Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report contains a revision of the EPRI Fire Events Database for U.S. Nuclear Power Plants last published in EPRI Report 1000894 in October 2000. This report also contains a revision of the generic fire ignition frequency models that were published in NSAC-178L, "Fire Events Database of U.S. Nuclear Power Plants" (January 1993) and EPRI TR-105929, "Fire Ignition Frequency Model at Shutdown for U.S. Nuclear Power Plants" (December 1995).

2001-11-09T23:59:59.000Z

329

Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions  

Science Conference Proceedings (OSTI)

Ignition delay times were measured for gas-phase jet fuel (Jet-A and JP-8) in air behind reflected shock waves in a heated high-pressure shock tube. Initial reflected shock conditions were as follows: temperatures of 715-1229 K, pressures of 17-51 atm, equivalence ratios of 0.5 and 1, and oxygen concentrations of 10 and 21% in synthetic air. Ignition delay times were measured using sidewall pressure and OH* emission at 306 nm. Longer ignition delay times at low temperatures (715-850 K) were accessed by utilizing driver-gas tailoring methods. Also presented is a review of previous ignition delay time measurements of kerosene-based fuels and recent work on surrogate fuel and kinetic mechanism development. To our knowledge, we report the first gas-phase shock tube ignition delay time data for JP-8, and our measurements for Jet-A are for a broader range of conditions than previously available. Our results have very low scatter and are in excellent agreement with the limited previous shock tube data for Jet-A. Although JP-8 and Jet-A have slightly different compositions, their ignition delay times are very similar. A simple 1/P dependence was found for ignition delay times from 874 to 1220 K for the pressure range studied for both fuels. Ignition delay time variations with equivalence ratio and oxygen concentration were also investigated. The new experimental results were compared with predictions of several kinetic mechanisms, using different jet fuel surrogate mixtures. (author)

Vasu, Subith S.; Davidson, David F.; Hanson, Ronald K. [Mechanical Engineering Department, Stanford University, Stanford, CA 94305 (United States)

2008-01-15T23:59:59.000Z

330

Development of an injection augmentation program at the Dixie Valley,  

Open Energy Info (EERE)

an injection augmentation program at the Dixie Valley, an injection augmentation program at the Dixie Valley, Nevada geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of an injection augmentation program at the Dixie Valley, Nevada geothermal field Abstract Evaporative cooling at geothermal power plants generally reduces reservoir pressures even if all available geothermal liquids are reinjected. Controlled programs of injecting non geothermal waters directly into reservoirs have been tested or implemented at only four fields, three of them being vapor dominated. At the liquid-dominated Dixie Valley geothermal field an unsuccessful search for a large volume source of warm,chemically desirable fluid for augmentation was conducted.After determining water

331

Cryogenic thermonuclear fuel implosions on the National Ignition Facility  

Science Conference Proceedings (OSTI)

The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 {mu}m diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 {+-} 3) {mu}m, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 {+-} 0.09) g cm{sup -2} result in fuel densities approaching 600 g cm{sup -3}. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 {+-} 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 10{sup 15} that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7.5{+-}0.1) Multiplication-Sign 10{sup 14} which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 {+-} 30) ps. These indirect-drive implosions result in the highest areal densities and neutron yields achieved on laser facilities to date. This achievement is the result of the first hohlraum and capsule tuning experiments where the stagnation pressures have been systematically increased by more than a factor of 10 by fielding low-entropy implosions through the control of radiation symmetry, small hot electron production, and proper shock timing. The stagnation pressure is above 100 Gbars resulting in high Lawson-type confinement parameters of P{tau} Asymptotically-Equal-To 10 atm s. Comparisons with radiation-hydrodynamic simulations indicate that the pressure is within a factor of three required for reaching ignition and high yield. This will be the focus of future higher-velocity implosions that will employ additional optimizations of hohlraum, capsule and laser pulse shape conditions.

Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.; Alger, E. T.; Berger, R. L.; Bernstein, L. A.; Bleuel, D. L.; Bradley, D. K.; Burkhart, S. C.; Burr, R.; Caggiano, J. A.; Castro, C.; Choate, C.; Clark, D. S.; Celliers, P.; Cerjan, C. J.; Collins, G. W.; Dewald, E. L.; DiNicola, P.; DiNicola, J. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-05-15T23:59:59.000Z

332

HIGH-RESOLUTION SIMULATIONS OF CONVECTION PRECEDING IGNITION IN TYPE Ia SUPERNOVAE USING ADAPTIVE MESH REFINEMENT  

E-Print Network (OSTI)

We extend our previous three-dimensional, full-star simulations of the final hours of convection preceding ignition in Type Ia supernovae to higher resolution using the adaptive mesh refinement capability of our low Mach number code, MAESTRO. We report the statistics of the ignition of the first flame at an effective 4.34 km resolution and general flow field properties at an effective 2.17 km resolution. We find that off-center ignition is likely, with radius of 50 km most favored and a likely range of 40–75 km. This is consistent with our previous coarser (8.68 km resolution) simulations, implying that we have achieved sufficient resolution in our determination of likely ignition radii. The dynamics of the last few hot spots preceding ignition suggest that a multiple ignition scenario is not likely. With improved resolution, we can more clearly see the general flow pattern in the convective region, characterized by a strong outward plume with a lower speed recirculation. We show that the convective core is turbulent with a Kolmogorov spectrum and has a lower turbulent intensity and larger integral length scale than previously thought (on the order of 16 km s?1 and 200 km, respectively), and we discuss the potential consequences for the first flames. Key words: convection – hydrodynamics – methods: numerical – nuclear reactions, nucleosynthesis, abundances – supernovae: general – white dwarfs Online-only material: color figures 1.

A. Nonaka; A. J. Aspden; M. Zingale; A. S. Almgren; J. B. Bell; S. E. Woosley

2012-01-01T23:59:59.000Z

333

Capsule implosion optimization during the indirect-drive National Ignition Campaign  

Science Conference Proceedings (OSTI)

Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.

Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2011-05-15T23:59:59.000Z

334

Massachusetts Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

335

Injecting Carbon Dioxide into Unconventional Storage Reservoirs...  

NLE Websites -- All DOE Office Websites (Extended Search)

will also be investigated with a targeted CO 2 injection test into a depleted shale gas well. Different reservoir models will be used before, during, and after injection...

336

Imaging VISAR diagnostic for the National Ignition Facility (NIF)  

Science Conference Proceedings (OSTI)

The National Ignition Facility (NIF) requires diagnostics to analyze high-energy density physics experiments. A VISAR (Velocity Interferometry System for Any Reflector) diagnostic has been designed to measure shock velocities, shock breakout times, and shock emission of targets with sizes from 1 to 5 mm. An 8-inch-diameter fused silica triplet lens collects light at f/3 inside the 30-foot-diameter vacuum chamber. The optical relay sends the image out an equatorial port, through a 2-inch-thick vacuum window, and into two interferometers. A 60-kW VISAR probe laser operates at 659.5 nm with variable pulse width. Special coatings on the mirrors and cutoff filters are used to reject the NIF drive laser wavelengths and to pass a band of wavelengths for VISAR, passive shock breakout light, or thermal imaging light (bypassing the interferometers). The first triplet can be no closer than 500 mm from the target chamber center and is protected from debris by a blast window that is replaced after every event. The front end of the optical relay can be temporarily removed from the equatorial port, allowing other experimenters to use that port. A unique resolution pattern has been designed to validate the VISAR diagnostic before each use. All optical lenses are on kinematic mounts so that the pointing accuracy of the optical axis can be checked. Seven CCD cameras monitor the diagnostic alignment.

Malone, R M; Bower, J R; Bradley, D K; Capelle, G A; Celeste, J R; Celliers, P M; Collins, G W; Eckart, M J; Eggert, J H; Frogget, B C; Guyton, R L; Hicks, D G; Kaufman, M I; MacGowan, B J; Montelongo, S; Ng, E W; Robinson, R B; Tunnell, T W; Watts, P W; Zapata, P G

2004-08-30T23:59:59.000Z

337

Frequency converter development for the National Ignition Facility  

SciTech Connect

The design of the National Ignition Facility (NIF) incorporates a type I/type II third harmonic generator to convert the 1.053-{micro}m fundamental wavelength of the laser amplifier to a wavelength of 0.351 {micro}m for target irradiation. To understand and control the tolerances in the converter design, we have developed a comprehensive error budget that accounts for effects that are known to influence conversion efficiency, including variations in amplitude and phase of the incident laser pulse, temporal bandwidth of the incident laser pulse, crystal surface figure and bulk non-uniformities, angular alignment errors, Fresnel losses, polarization errors and crystal temperature variations. The error budget provides specifications for the detailed design of the NIF final optics assembly (FOA) and the fabrication of optical components. Validation is accomplished through both modeling and measurement, including full-scale Beamlet tests of a 37-cm aperture frequency converter in a NIF prototype final optics cell. The prototype cell incorporates full-perimeter clamping to support the crystals, and resides in a vacuum environment as per the NIF design.

Auerbach, J M; Barker, C E; Burkhart, S C; Couture, S A; DeYoreo, J J; Hackel, L A; Hibbard, R L; Liou, L W; Norton, M A; Wegner, P J; Whitman, P A

1998-10-30T23:59:59.000Z

338

Ignition and Growth Modeling of LX-17 Hockey Puck Experiments  

Science Conference Proceedings (OSTI)

Detonating solid plastic bonded explosives (PBX) formulated with the insensitive molecule triaminotrinitrobenzene (TATB) exhibit measurable reaction zone lengths, curved shock fronts, and regions of failing chemical reaction at abrupt changes in the charge geometry. A recent set of ''hockey puck'' experiments measured the breakout times of diverging detonation waves in ambient temperature LX-17 (92.5 % TATB plus 7.5% Kel-F binder) and the breakout times at the lower surfaces of 15 mm thick LX-17 discs placed below the detonator-booster plane. The LX-17 detonation waves in these discs grow outward from the initial wave leaving regions of unreacted or partially reacted TATB in the corners of these charges. This new experimental data is accurately simulated for the first time using the Ignition and Growth reactive flow model for LX-17, which is normalized to a great deal of detonation reaction zone, failure diameter and diverging detonation data. A pressure cubed dependence for the main growth of reaction rate yields excellent agreement with experiment, while a pressure squared rate diverges too quickly and a pressure quadrupled rate diverges too slowly in the LX-17 below the booster equatorial plane.

Tarver, C M

2004-04-19T23:59:59.000Z

339

Formative time of breakdown modeled for the ignition of air and n-butane mixtures using effective ionization coefficients  

Science Conference Proceedings (OSTI)

It is shown that simulations of ignition by electric arc discharge in n-butane and air mixtures have interesting features, which deviate from results obtained by simple extension of calculations based on methanelike fuels. In particular, it is demonstrated that lowering the temperature of the n-butane-air mixture before ignition under certain conditions will actually decrease the ignition stage time as well as the required electric field.

Kudryavtsev, A. A.; Popugaev, S. D. [St. Petersburg State University, St. Petersburg 198904 (Russian Federation); Demidov, V. I. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Adams, S. F. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Jiao, C. Q. [ISSI Inc., Dayton, Ohio 45440-3638 (United States)

2008-12-15T23:59:59.000Z

340

The energy injection and losses in the Monte Carlo simulations of a diffusive shock  

E-Print Network (OSTI)

Although diffusive shock acceleration (DSA) could be simulated by some well-established models, the assumption of the injection rate from the thermal particles to the superthermal population is still a contentious problem. But in the self-consistent Monte Carlo simulations, because of the prescribed scattering law instead of the assumption of the injected function, hence particle injection rate is intrinsically defined by the prescribed scattering law. We expect to examine the correlation of the energy injection with the prescribed multiple scattering angular distributions. According to the Rankine-Hugoniot conditions, the energy injection and the losses in the simulation system can directly decide the shock energy spectrum slope. By the simulations performed with multiple scattering law in the dynamical Monte Carlo model, the energy injection and energy loss functions are obtained. As results, the case applying anisotropic scattering law produce a small energy injection and large energy losses leading to a s...

Wang, Xin

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Radiochemical Analysis of Gaseous Samples (RAGS) apparatus for nuclear diagnostics at the National Ignition Facility (invited)  

SciTech Connect

The Radiochemical Analysis of Gaseous Samples (RAGS) diagnostic apparatus was recently installed at the National Ignition Facility (NIF). Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of {sup 135}Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched {sup 124}Xe and {sup 126}Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

Shaughnessy, D. A.; Velsko, C. A.; Jedlovec, D. R.; Yeamans, C. B.; Moody, K. J.; Tereshatov, E.; Stoeffl, W.; Riddle, A. [Lawrence Livermore National Laboratory, PO Box 808, L-236, Livermore, California 94551 (United States)

2012-10-15T23:59:59.000Z

342

Radiochemistry: A versatile diagnostic for the NIF ignition campaign  

Science Conference Proceedings (OSTI)

The purpose of this paper is to provide quick, clear, concise information about radiochemical diagnostics for the NIF program. Radiochemistry is perhaps the most versatile, flexible and dynamic of all nuclear diagnostics because it provides quantitative data on multiple capsule performance parameters such as mix, asymmetry of implosion, shell and fuel {rho}R, yield, neutron spectral information, high energy neutron information, fill tube jets, charged particle stopping, and the fission yield of the hohlraum by employing a variety of nuclear reactions on materials either present naturally in the capsule or specifically doped into the capsule. The choice and location of the doped material, together with the specific nuclear reaction used to produce a measurable product nuclide or ratio of nuclides, provides significant diagnostic information on the performance of the capsule during the experiment. The nature of the experiment, design of the capsule including fuel(s), and desired diagnostic information would dictate the radiochemical dopants used on any given shot--not all reactions would be possible nor monitored on any given experiment. Some of this diagnostic information is obtainable with other diagnostics, for example, the neutron yield is measured using Cu-activation pucks or nTOF. The unique niche of radiochemistry, for which few other measurements are currently planned, is the quantification of ablator/fuel mix. This diagnostic can supply complementary information on ablator {rho}R, asymmetry and unique information on mix--three of the four important concerns of the ignition campaign. This paper will not discuss the additional nuclear chemistry and physics possible by utilizing radiochemistry collection and similar nuclear reactions.

Stoyer, M A; Cerjan, C J; Moody, K J; Hoffman, R D; Bernstein, L A; Shaughnessy, D A

2008-06-17T23:59:59.000Z

343

Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments  

DOE Green Energy (OSTI)

The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.

Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

2011-09-15T23:59:59.000Z

344

Mitigation of direct containment heating and hydrogen combustion events in ice condenser plants  

DOE Green Energy (OSTI)

Using Sequoyah as a representative plant, calculations have been performed with a developmental version of the CONTAIN computer code to assess the effectiveness of various possible improvements to ice condenser containments in mitigating severe accident scenarios involving direct containment heating (DCH) and/or hydrogen combustion. Mitigation strategies considered included backup power for igniters and/or air return fans, augmented igniter systems, containment venting, containment inerting, subatmospheric containment operation, reduced ice condenser bypass, and primary system depressurization. Various combinations of these improvements were also considered. Only inerting the containment or primary system depressurization combined with backup power supplies for the igniter systems resulted in large decreases in the peak pressures calculated to result from DCH events. Potential hydrogen detonation threats were also assessed; providing backup power for both the igniter systems and the air return fans would significantly reduce the potential for detonations but might not totally eliminate it. Sensitivity studies using the NUREG-1150 PRA methodology indicated that primary system depressurization combined with backup power for both igniters and fans could reduce the contribution to the mean risk potential of the class of events considered by about a factor of three. 7 refs., 6 figs., 6 tabs.

Williams, D.C.; Gregory, J.J. (Sandia National Labs., Albuquerque, NM (USA))

1990-10-01T23:59:59.000Z

345

n-Butane: Ignition delay measurements at high pressure and detailed chemical kinetic simulations  

Science Conference Proceedings (OSTI)

Ignition delay time measurements were recorded at equivalence ratios of 0.3, 0.5, 1, and 2 for n-butane at pressures of approximately 1, 10, 20, 30 and 45 atm at temperatures from 690 to 1430 K in both a rapid compression machine and in a shock tube. A detailed chemical kinetic model consisting of 1328 reactions involving 230 species was constructed and used to validate the delay times. Moreover, this mechanism has been used to simulate previously published ignition delay times at atmospheric and higher pressure. Arrhenius-type ignition delay correlations were developed for temperatures greater than 1025 K which relate ignition delay time to temperature and concentration of the mixture. Furthermore, a detailed sensitivity analysis and a reaction pathway analysis were performed to give further insight to the chemistry at various conditions. When compared to existing data from the literature, the model performs quite well, and in several instances the conditions of earlier experiments were duplicated in the laboratory with overall good agreement. To the authors' knowledge, the present paper presents the most comprehensive set of ignition delay time experiments and kinetic model validation for n-butane oxidation in air. (author)

Healy, D.; Curran, H.J. [Combustion Chemistry Centre, School of Chemistry, NUI Galway (Ireland); Donato, N.S.; Aul, C.J.; Petersen, E.L. [Department of Mechanical Engineering, Texas A and M University, College Station, TX (United States); Zinner, C.M. [Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL (United States); Bourque, G. [Rolls-Royce Canada Limited, 9500 Cote de Liesse, Lachine, Quebec, H8T 1A2 (Canada)

2010-08-15T23:59:59.000Z

346

Predicting the rate by which suspended solids plug geothermal injection wells  

DOE Green Energy (OSTI)

Standard membrane filtration tests were used to evaluate injection at the Salton Sea Geothermal Field, Southern California. Results indicate that direct injection into reservoir zones with primary porosity is not feasible unless 1 ..mu..m or larger particulates formed during or after the energy conversion process are removed. (JGB)

Owens, L.B.; Kasameyer, P.W.; Netherton, R.; Thorson, L.

1978-01-09T23:59:59.000Z

347

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network (OSTI)

.A. Hsieh 1e$ Pressure Buildup Monitoring of the Krafla Geothermal Field, . . . . . . . . 1'1 Xceland - 0 Initial Chemical and Reservoir Conditions at Lo6 Azufres Wellhead Power Plant Startup - P. Kruger, LSGP-TR-92 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

Stanford University

348

JGI - Directions  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions Address DOE Joint Genome Institute 2800 Mitchell Drive Walnut Creek, CA 94598 From Oakland Airport Follow Airport exit signs onto AIRPORT DR. Turn RIGHT onto HEGENBERGER...

349

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement Volume II: Response to Public Comments (January 2 DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement Volume II: Response to Public Comments (January 2 DOE issued the Draft SEIS for public review and comment by mailings to stakeholders and by announcements in the Federal Register (FR) on November 5, 1999, (64 FR 60430) (Attachment 4 of Volume I) and on November 12, 1999 (64 FR 61635) correcting a document title (Attachment 5 of Volume I). On

350

Apparatus and method for igniting an in situ oil shale retort  

DOE Patents (OSTI)

A method and apparatus for conducting such method are disclosed for igniting a fragmented permeable mass of formation particles in an in situ oil shale retort. The method is conducted by forming a hole through unfragmented formation to the fragmented mass. An oxygen-containing gas is introduced into the hole. A fuel is introduced into a portion of the hole spaced apart from the fragmented mass. The fuel and oxygen-containing gas mix forming a combustible mixture which is ignited for establishing a combustion zone in a portion of the hole spaced apart from the fragmented mass. The hot gas generated in the combustion zone is conducted from the hole into the fragmented mass for heating a portion of the fragmented mass above an ignition temperature of oil shale.

Chambers, Carlon C. (Grand Junction, CO)

1981-01-01T23:59:59.000Z

351

Special Feature: Energy - The Spark that Ignited DOE Supercomputing  

NLE Websites -- All DOE Office Websites (Extended Search)

of civilization. Every time you add firewood to a dying fire, you are converting biomass (wood) into energy (heat) through a process called direct combustion. For thousands of...

352

Project: Reduced Ignition of Building Components in Wildland ...  

Science Conference Proceedings (OSTI)

... firebrand showers and provide direct flame contact ... Photo credit: NIST NIST's Firebrand Generator generates burning ... 100 Bureau Drive, M/S 8662 ...

2012-12-27T23:59:59.000Z

353

Current drive, anticurrent drive, and balanced injection  

SciTech Connect

In lower hybrid (LH) discharges, the number of suprathermal electrons is limited by the upper bound on the current density from the q = 1 condition, which is caused by the onset of the m = 1 MHD instability. The stored energy of suprathermal electrons, measured in terms of a poloidal beta, scales with plasma current as I/sub p//sup -1/. Potentially, these bounds represent very restrictive conditions for heating in larger machines. Consequently, it seems necessary to perform experiments where the electrons are driven in both directions, parallel and antiparallel to the magnetic field, i.e., bidirectional scenarios like anticurrent drive or balanced injection. Data from PLT relevant to these ideas are discussed. 6 refs., 4 figs.

von Goeler, S.; Stevens, J.; Beiersdorfer, P.; Bell, R.; Bernabei, S.; Bitter, M.; Cavallo, A.; Chu, T.K.; Fishman, H.; Hill, K.

1987-08-01T23:59:59.000Z

354

Waste heat steams ahead with injection technology  

Science Conference Proceedings (OSTI)

Owners of Commercial-Industrial-Institutional buildings whose thermal usage is too variable to implement cogeneration are looking to a gasturbine steam-injection technology, called the Cheng Cycle, to reduce their energy costs. The Cheng Cycle uses industrial components-a gas-turbine generating set, a waste-heat recovery steam generator and system controls-in a thermodynamically optimized mode. In the process, steam produced from waste heat can be used for space or process heating or to increase the electrical output of a gas turbine. The process was patented in 1974 by Dr. Dah Yu Cheng, of the University of Santa Clara, Santa Clara, Calif. When a plant's thermal needs fall because of production or temperature changes, unused steam is directed back to the turbine to increase electrical output. As thermal requirements rise, the process is reversed and needed steam is channeled to plant uses.

Shepherd, S.; Koloseus, C.

1985-03-01T23:59:59.000Z

355

An approach for modeling the valve train system to control the homogeneous combustion in a compression ignition engine  

Science Conference Proceedings (OSTI)

This paper presents an approach for modeling the valve train system to obtain a homogeneous charge compression ignition (HCCI) engine from a gasoline engine. The HCCI engines use different indirect strategies to control the start of the combustion. The ... Keywords: exhaust gas recirculation, homogeneous charge compression ignition, variable valve timing

Radu Cosgarea; Corneliu Cofaru; Mihai Aleonte; Maria Luminita Scutaru; Liviu Jelenschi; Gabriel Sandu

2011-04-01T23:59:59.000Z

356

The National Ignition Facility: The Path to a Carbon-Free Energy Future  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

Stolz, C J

2011-03-16T23:59:59.000Z

357

Report from the Integrated Modeling Panel at the Workshop on the Science of Ignition on NIF  

Science Conference Proceedings (OSTI)

This section deals with multiphysics radiation hydrodynamics codes used to design and simulate targets in the ignition campaign. These topics encompass all the physical processes they model, and include consideration of any approximations necessary due to finite computer resources. The section focuses on what developments would have the highest impact on reducing uncertainties in modeling most relevant to experimental observations. It considers how the ICF codes should be employed in the ignition campaign. This includes a consideration of how the experiments can be best structured to test the physical models the codes employ.

Marinak, M; Lamb, D

2012-07-03T23:59:59.000Z

358

Injection of Zero Valent Iron into an Unconfined Aquifer Using Shear-Thinning Fluids  

Science Conference Proceedings (OSTI)

Approximately 190 kg of two micron-diameter zero-valent iron (ZVI) particles were injected into a test zone in the top two meters of an unconfined aquifer within a trichloroethene (TCE) source area. A shear-thinning fluid was used to enhance ZVI delivery in the subsurface to a radial distance of up to four meters from a single injection well. The ZVI particles were mixed in-line with the injection water, shear-thinning fluid, and a low concentration of surfactant. ZVI was observed at each of the seven monitoring wells within the targeted radius of influence during injection. Additionally, all wells within the targeted zone showed low TCE concentrations and primarily dechlorination products present 44 days after injection. These results suggest that ZVI can be directly injected into an aquifer with shear-thinning fluids and extends the applicability of ZVI to situations where other emplacement methods may not be viable.

Truex, Michael J.; Vermeul, Vincent R.; Mendoza, Donaldo P.; Fritz, Brad G.; Mackley, Rob D.; Oostrom, Martinus; Wietsma, Thomas W.; Macbeth, Tamzen

2011-02-18T23:59:59.000Z

359

Grid orientation effects in the simulation of cold water injection into depleted vapor zones  

DOE Green Energy (OSTI)

A considerable body of field experience with injection has been accumulated at Larderello, Italy and The Geysers, California; the results have been mixed. There are well documented cases where injection has increased flow rates of nearby wells. Return of injected fluid as steam from production wells has been observed directly through chemical and isotopic changes of produced fluids (Giovannoni et al., 1981; Nuti et al., 1981). In other cases injection has caused thermal interference and has degraded the temperature and pressure of production wells. Water injection into depleted vapor zones gives rise to complex two-phase fluid flow and heat transfer processes with phase change. These are further complicated by the fractured-porous nature of the reservoir rocks. An optimization of injection design and operating practice is desirable; this requires realistic and robust mathematical modeling capabilities.

Pruess, K.

1991-01-01T23:59:59.000Z

360

A particle numerical model for wall film dynamics in port-injected engines  

DOE Green Energy (OSTI)

To help predict hydrocarbon emissions during cold-start conditions the authors are developing a numerical model for the dynamics and vaporization of the liquid wall films formed in port-injected spark-ignition engines and incorporating this model in the KIVA-3 code for complex geometries. This paper summarizes the current status of the project and presents illustrative example calculations. The dynamics of the wall film is influenced by interactions with the impinging spray, the wall, and the gas flow near the wall. The spray influences the film through mass, tangential momentum, and energy addition. The wall affects the film through the no-slip boundary condition and heat transfer. The gas alters film dynamics through tangential stresses and heat and mass transfer in the gas boundary layers above the films. New wall functions are given to predict transport in the boundary layers above the vaporizing films. It is assumed the films are sufficiently thin that film flow is laminar and that liquid inertial forces are negligible. Because liquid Prandtl numbers are typically about then, unsteady heating of the film should be important and is accounted for by the model. The thin film approximation breaks down near sharp corners, where an inertial separation criterion is used. A particle numerical method is used for the wall film. This has the advantages of compatibility with the KIVA-3 spray model and of very accurate calculation of convective transport of the film. The authors have incorporated the wall film model into KIVA-3, and the resulting combined model can be used to simulate the coupled port and cylinder flows in modern spark-ignition engines. They give examples by comparing computed fuel distributions with closed- and open-valve injection during the intake and compression strokes of a generic two-valve engine.

O`Rourke, P.J.; Amsden, A.A.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

An environmental analysis of injection molding  

E-Print Network (OSTI)

This thesis investigates injection molding from an environmental standpoint, yielding a system-level environmental analysis of the process. There are three main objectives: analyze the energy consumption trends in injection ...

Thiriez, Alexandre

2006-01-01T23:59:59.000Z

362

Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion  

DOE Green Energy (OSTI)

Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots ({approx}100 {micro}m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with {rho}r {approx} 2 g/cm{sup 2} for a small demo/pilot plant producing {approx}40 MJ of fusion yield per target, and (2) a large target with {rho}r {approx} 10 g/cm{sup 2} producing {approx}1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q {approx} 26) ion sources for short ({approx}5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of {approx}10 MG fields to provide steep focusing angles close-in to the target (built-in as part of each target); (4) beam space charge-neutralization during both drift compression and final focus to target. Except for (1) and (2), these critical issues may be explored on existing heavy-ion storage ring accelerator facilities.

Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

1998-04-01T23:59:59.000Z

363

Experience with Zinc Injection in European PWRs  

Science Conference Proceedings (OSTI)

Zinc injection is an effective technique for lowering shutdown dose rates in pressurized water reactors (PWRs). This report compiles information about zinc injection experience at Siemens PWRs and compares the results with the use of zinc injection at U.S. PWRs. The plant data confirm that even low concentrations of zinc in the reactor water can indeed lower shutdown dose rates, but plants should make a concerted effort to inject zinc on a continuous basis to achieve the best results.

2002-11-01T23:59:59.000Z

364

National Ignition Facility monthly status report-January 2000  

SciTech Connect

The Project provides for the design, procurement, construction, assembly, installation, and acceptance testing of the National Ignition Facility (NIF), an experimental inertial confinement fusion facility intended to achieve controlled thermonuclear fusion in the laboratory by imploding a small capsule containing a mixture of the hydrogen isotopes deuterium and tritium. The NIF will be constructed at the Lawrence Livermore National Laboratory (LLNL), Livermore, California as determined by the Record of Decision made on December 19, 1996, as a part of the Stockpile Stewardship and Management Programmatic Environmental Impact Statement. Safety: On January 13, 2000, a worker received a back injury when a 42-in.-diameter duct fell during installation. He was taken by helicopter to the hospital and released on January 16, 2000. All work in the area was suspended, and the construction contractors went through a thorough safety review before work was started. A DOE occurrence report was filed. An independent LLNL Incident Analysis Team is reviewing the cause of the accident and will report out on March 1. A Project management review team is reviewing construction line management and safety support and will also report out on March 1. Several changes in work planning and site management have been incorporated to increase site safety. Technical Status: The general status of the technologies underlying the NIF Project remains satisfactory. The issues currently being addressed are (1) cleanliness for installation, assembly, and activation of the laser system by Systems Engineering; (2) laser glass--a second pilot run at one of the two commercial suppliers is ongoing; and (3) operational costs associated with final optics assembly (FOA) optics components--methods are being developed to mitigate 3 {omega}damage and resolve beam rotation issues. Schedule: The completion of the Title II design of laser equipment is now approximately 80% complete. The Beampath Infrastructure System is on the critical schedule path. The procurement strategy is being evaluated by commercial construction management and Architectural/Engineering (A/E) contractors with a report presented to a panel of independent experts, the Beampath Infrastructure System Implementation Review Committee Advisory Group who wrote a set of recommendations for proceeding with this critical path activity. In January, a briefing was given to DOE Oakland (OAK) Field Manager who then arranged briefings for the DOE OAK Procurement organization with the LLNL Procurement organization to review the proposed procurement strategies. The next step is to review the strategy with DOE Headquarters (HQ) procurement. The construction status of the Conventional Facilities at the end of January is 83% complete and is projected to finish within budget and on schedule. Cost: The NIF Project Total Project Cost (TPC) is $1.2B. The Project has obligated 73% of the TPC funds. The remaining contingency is $21.8M. Because of schedule delays and projected increases in the design, construction management, assembly, and installation of the system infrastructure, cost growth of the TPC is anticipated and will remain a major concern until the budget rebaseline process is completed.

Moses, E

2000-01-31T23:59:59.000Z

365

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

366

Ignition of Isomers of Pentane: An Experimental and Kinetic Modeling Study  

DOE Green Energy (OSTI)

Hydrocarbon ignition is an important element in many practical combustion systems, including internal combustion engines, detonations, pulse combustors, and flame initiation. The rapid compression machine (RCM) is used frequently to study the kinetics of hydrocarbon autoignition [e.g., 1-7], since the reactive gas temperatures and time histories are similar to those seen in automotive engines during Diesel ignition and end gas autoignition leading to engine knock in spark-ignition engines. The RCM provides a rich environment for study of the theory of hydrocarbon oxidation, including degenerate chain branching, alkylperoxy radical isomerization and effects of thermal feedback [8]. The literature of hydrocarbon oxidation studies in the RCM has been summarized recently [9,10], and many classes of fuels have been studied. Detailed kinetic modeling is another tool available to study hydrocarbon oxidation in the RCM [4,11]. The aim of the present work is to determine experimentally the influence of variations in fuel molecular structure on autoignition, and to use a kinetic model to understand the reasons for those variations. This study is unique in that while other studies have addressed variations in pressure and equivalence ratio on ignition [11], this work addresses effects of variations in fuel molecular structure for all of the isomers of a single fuel formula, pentane, in a RCM. The three isomers of pentane possess many of the structural elements that determine such autoignition characteristics as octane number and variability in cool flame production, so this study will benefit our efforts to describe these effects.

Ribaucour, M; Minetti, R; Sochet, L R; Curran, H J; Pitz, W J; Westbrook, C K

2000-01-11T23:59:59.000Z

367

Process and apparatus for igniting a burner in an inert atmosphere  

DOE Patents (OSTI)

According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

Coolidge, Dennis W. (Katy, TX); Rinker, Franklin G. (Perrysburg, OH)

1994-01-01T23:59:59.000Z

368

The Development of Indirect Drive ICF and the Countdown to Ignition Experiments on the NIF  

E-Print Network (OSTI)

The Development of Indirect Drive ICF and the Countdown to Ignition Experiments on the NIF Maxwell Prize Address APS Division of Plasma Physics Meeting November 15, 2007 John Lindl NIF and Photon Science.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 #12;The NIF

369

NNSA Defense Programs Inertial Confinement Fusion Ignition and High Yield Campaign  

E-Print Network (OSTI)

and the NIF Project #12;2 Outline · National Nuclear Security Administration · ICF Campaign and Stewardship overview · NIF Use Plan ­ Defense Science Board review (Ignition 2010) · Recent progress ­ NIF, OMEGA, Z Confinement Fusion Acting Director Dr. Richard K. Thorpe NA-161 Office of the NIF Project Acting Director

370

Optimal Control of the Solid Fuel Ignition Model with H1-Cost  

Science Conference Proceedings (OSTI)

Optimal control problems for the stationary as well as the time-dependent solid fuel ignition model are investigated. Existence of optimal controls is proved, and optimality systems are derived. The analysis is based on a closedness lemma for the exponential ... Keywords: control of exponential nonlinearity, explosion phenomena, optimal control, optimality conditions

Kazufumi Ito; Karl Kunisch

2001-05-01T23:59:59.000Z

371

The ignitability potential of uranium {open_quotes}roaster oxide{close_quotes}  

SciTech Connect

The oxidation of uranium to form Uranium `roaster oxide` was investigated with respect to concerns of unreacted metal remaining in the roaster oxide matrix. It was found that ignition of unreacted uranium chips in the roaster oxide as synthesized is unlikely under normal storage conditions.

Stakebake, J.L.

1994-11-01T23:59:59.000Z

372

Enhanced model and fuzzy strategy of air to fuel ratio control for spark ignition engines  

Science Conference Proceedings (OSTI)

Various mathematical models for the air to fuel ratio and control for spark ignition (SI) engines have been proposed to satisfy technical specifications. This paper reveals an improvement of the mean value model (MVEM) and a simple yet effective nonlinear ... Keywords: Air-fuel ratio, FOPDDT, Fuzzy control, Internal combustion, Nonlinear control

Anurak Jansri; Pitikhate Sooraksa

2012-09-01T23:59:59.000Z

373

The Edward teller medal lecture: High intensity lasers and the road to ignition  

SciTech Connect

There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement. {copyright} {ital 1997 American Institute of Physics.}

Key, M.H. [Lawrence Livermore National Laboratory, Livermore, California94551 (United States)

1997-04-01T23:59:59.000Z

374

The Edward Teller medal lecture: High intensity lasers and the road to ignition  

SciTech Connect

There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

Key, M. H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

1997-04-15T23:59:59.000Z

375

Edward Teller medal lecture: high intensity lasers and the road to ignition  

SciTech Connect

There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

Key, M.H.

1997-06-02T23:59:59.000Z

376

Detailed Analysis and Control Issues of Homogeneous Charge Compression Ignition (HCCI)  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work.

Aceves, Salvador M.; Flowers, Daniel L.; Martinez-Frias, Joel; Espinosa-Loza, Francisco; Dibble, Robert

2002-08-25T23:59:59.000Z

377

An experimental investigation of the ignition properties of hydrogen and carbon monoxide  

E-Print Network (OSTI)

for syngas turbine applications S.M. Walton *, X. He, B.T. Zigler, M.S. Wooldridge Department of Mechanical of simulated syngas mixtures of hydrogen (H2), carbon monoxide (CO), oxygen (O2), nitrogen (N2), and carbon. Keywords: Carbon monoxide; Hydrogen; Syngas; Ignition; Rapid compression facility 1. Introduction Syngas

Wooldridge, Margaret S.

378

Nuclear diagnostics for the National Ignition Facility ,,invited... Thomas J. Murphy,a)  

E-Print Network (OSTI)

Nuclear diagnostics for the National Ignition Facility ,,invited... Thomas J. Murphy,a) Cris W unprecedented opportunities for the use of nuclear diagnostics in inertial confinement fusion experiments to produce up to 1019 DT neutrons. In addition to a basic set of nuclear diagnostics based on previous

379

Injectivity Testing for Vapour Dominated Feed Zones  

DOE Green Energy (OSTI)

Wells with vapor dominated feed zones yield abnormal pressure data. This is caused by the condensation of vapor during water injection. A revised injectivity test procedure currently applied by PNOC at the Leyte Geothermal Power Project has improved the injectivity test results.

Clotworthy, A.W.; Hingoyon, C.S.

1995-01-01T23:59:59.000Z

380

Active flow control for maximizing performance of spark ignited stratified charge engines. Final report  

DOE Green Energy (OSTI)

Reducing the cycle-to-cycle variability present in stratified-charge engines is an important step in the process of increasing their efficiency. As a result of this cycle-to-cycle variability, fuel injection systems are calibrated to inject more fuel than necessary, in an attempt to ensure that the engines fire on every cycle. When the cycle-to-cycle variability is lowered, the variation of work per cycle is reduced and the lean operating limit decreases, resulting in increased fuel economy. In this study an active flow control device is used to excite the intake flow of an engine at various frequencies. The goal of this excitation is to control the way in which vortices shed off of the intake valve, thus lowering the cycle-to-cycle variability in the flow field. This method of controlling flow is investigated through the use of three engines. The results of this study show that the active flow control device did help to lower the cycle-to-cycle variability of the in-cylinder flow field; however, the reduction did not translate directly into improved engine performance.

Fedewa, Andrew; Stuecken, Tom; Timm, Edward; Schock, Harold J.; Shih, Tom-I.P.; Koochesfahani, Manooch; Brereton, Giles

2002-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ignition of a deuterium micro-detonation with a gigavolt super marx generator  

E-Print Network (OSTI)

The Centurion-Halite experiment demonstrated the feasibility of igniting a deuterium-tritium micro-explosion with an energy of not more than a few megajoule, and the Mike test, the feasibility of a pure deuterium explosion with an energy of more than 10^6 megajoule. In both cases the ignition energy was supplied by a fission bomb explosive. While an energy of a few megajoule, to be released in the time required of less than 10^-9 sec, can be supplied by lasers and intense particle beams, this is not enough to ignite a pure deuterium explosion. Because the deuterium-tritium reaction depends on the availability of lithium, the non-fusion ignition of a pure deuterium fusion reaction would be highly desirable. It is shown that this goal can conceivably be reached with a "Super Marx Generator", where a large number of "ordinary" Marx generators charge (magnetically insulated) fast high voltage capacitors of a second stage Marx generator, called a "Super Marx Generator", ultimately reaching gigavolt potentials with an energy output of 100 megajoule. An intense 10^7 Ampere-GeV proton beam drawn from a "Super Marx Generator" can ignite a deuterium thermonuclear detonation wave in a compressed deuterium cylinder, where the strong magnetic field of the proton beam entraps the charged fusion reaction products inside the cylinder. In solving the stand-off problem, the stiffness of a GeV proton beam permits to place the deuterium target at a comparatively large distance from the wall of a cavity confining the deuterium micro-explosion.

Friedwardt Winterberg

2008-12-01T23:59:59.000Z

382

INJECTIVE COGENERATORS AMONG OPERATOR BIMODULES  

E-Print Network (OSTI)

Abstract. Given C ?-algebras A and B acting cyclically on Hilbert spaces H and K, respectively, we characterize completely isometric A, B-bimodule maps from B(K, H) into operator A, B-bimodules. We determine cogenerators in some classes of operator bimodules. For an injective cogenerator X in a suitable category of operator A, B-bimodules we show: if A, regarded as a C ?-subalgebra of A?(X) (adjointable left multipliers on X), is equal to its relative double commutant in A?(X), then A must be a W ?-algebra. 1.

Bojan Magajna

2005-01-01T23:59:59.000Z

383

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

384

Operational experience during the LHC injection tests  

E-Print Network (OSTI)

Following the LHC injection tests of 2008. two injection tests took place in October and November 2009 as preparation for the LHC restart on November 20, 2009. During these injection tests beam was injected through the TI 2 transfer line into sector 23 of ring 1 and through TI 8 into the sectors 78, 67 and 56 of ring 2. The beam time was dedicated to injection steering, optics measurements and debugging of all the systems involved. Because many potential problems were sorted out in advance, these tests contributed to the rapid progress after the restart. This paper describes the experiences and issues encountered during these tests as well as related measurement results.

Fuchsberger, K; Arduini, G; Assmann, R; Bailey, R; Bruning, O; Goddard, B; Kain, V; Lamont, M; MacPherson, A; Meddahi, M; Papotti, G; Pojer, M; Ponce, L; Redaelli, S; Solfaroli Camillocci, M; Venturini Delsolaro, W; Wenninger, J

2010-01-01T23:59:59.000Z

385

Allergy Injection Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Allergy Injection Policy Allergy Injection Policy Allergy Injection Policy Millions of Americans suffer from perennial and seasonal allergic rhinitis. Allergy immunotherapy is an effective way to reduce or eliminate the symptoms of allergic rhinitis by desensitizing the patient to the allergen(s) by giving escalating doses of an extract via regular injections. Receiving weekly injections at a private physician's office is time consuming, reduces productivity, and can quickly deplete an employee's earned leave. FOH offers the convenience of receiving allergy injections at the OHC as a physician-prescribed service, reducing time away from work for many federal employees. Allergy Injection Policy.pdf More Documents & Publications Physician Treatment Order Handicapped Parking Guidance

386

Spark ignited turbulent flame kernel growth. Annual report, January--December 1991  

DOE Green Energy (OSTI)

An experimental study of the effect of spark power on the growth rate of spark-ignited flame kernels was conducted in a turbulent flow system at 1 atm, 300 K conditions. All measurements were made with premixed, propane-air at a fuel/air equivalence ratio of 0.93, with 0%, 8% or 14% dilution. Two flow conditions were studied: a low turbulence intensity case with a mean velocity of 1.25 m/sec and a turbulence intensity of 0.33 m/sec, and a high turbulence intensity case with a mean velocity of 1.04 m/sec and a turbulence intensity of 0.88 m/sec. The growth of the spark-ignited flame kernel was recorded over a time interval from 83 {mu}sec to 20 msec following the start of ignition using high speed laser shadowgraphy. In order to evaluate the effect of ignition spark power, tests were conducted with a long duration (ca 4 msec) inductive discharge ignition system with an average spark power of ca 14 watts and two short duration (ca 100 nsec) breakdown ignition systems with average spark powers of ca 6 {times} 10{sup 4} and ca 6 {times} 10{sup 5} watts. The results showed that increased spark power resulted in an increased growth rate, where the effect of short duration breakdown sparks was found to persist for times of the order of milliseconds. The effectiveness of increased spark power was found to be less at high turbulence and high dilution conditions. Increased spark power had a greater effect on the 0--5 mm burn time than on the 5--13 mm burn time, in part because of the effect of breakdown energy on the initial size of the flame kernel. And finally, when spark power was increased by shortening the spark duration while keeping the effective energy the same there was a significant increase in the misfire rate, however when the spark power was further increased by increasing the breakdown energy the misfire rate dropped to zero.

Santavicca, D.A.

1994-06-01T23:59:59.000Z

387

Reservoir response to injection in the Southeast Geysers  

DOE Green Energy (OSTI)

A 20 megawatt (MW) increase in steam flow potential resulted within five months of the start-up of new injection wells in the Southeast Geysers. Flow rate increases were observed in 25 wells offset to the injectors, C-11 and 956A-1. This increased flowrate was sustained during nine months of continuous injection with no measurable decrease in offset well temperature until C-11 was shut-in due to wellbore bridging. The responding steam wells are located in an area of reduced reservoir steam pressure known as the Low Pressure Area (LPA). The cause of the flowrate increases was twofold (1) an increase in static reservoir pressure and (2) a decrease in interwell communication. Thermodynamic and microseismic evidence suggests that most of the water is boiling near the injector and migrating to offset wells located ''down'' the static pressure gradient. However, wells showing the largest increase in steam flowrate are not located at the heart of the pressure sink. This indicates that localized fracture distribution controls the preferred path of fluid migration from the injection well. A decrease in non-condensible gas concentrations was also observed in certain wells producing injection derived steam within the LPA. The LPA project has proven that steam suppliers can work together and benefit economically from joint efforts with the goal of optimizing the use of heat from The Geysers reservoir. The sharing of costs and information led directly to the success of the project and introduces a new era of increased cooperation at The Geysers.

Enedy, Steve; Enedy, Kathy; Maney, John

1991-01-01T23:59:59.000Z

388

Design of a viable homogeneous-charge compression-ignition (HCCI) engine : a computational study with detailed chemical kinetics  

E-Print Network (OSTI)

The homogeneous-charge compression-ignition (HCCI) engine is a novel engine technology with the potential to substantially lower emissions from automotive sources. HCCI engines use lean-premixed combustion to achieve good ...

Yelvington, Paul E., 1977-

2005-01-01T23:59:59.000Z

389

Investigations into the ignition behaviors of pulverized coals and coal blends in a drop tube furnace using flame monitoring techniques  

E-Print Network (OSTI)

fur- naces can simulate more closely the combustion conditions in industrial pulverized coal, Pan WP. Studying the mechanisms of ignition of coal particles by TG-DTA. Thermochim Acta 1996

Yan, Yong

390

On fuel selection in controlled auto-ignition engines : the link between intake conditions, chemical kinetics, and stratification  

E-Print Network (OSTI)

The objective of this research is to examine the impact fuel selection can have on the high-load limit in a stratified Compression Auto-Ignition (CAI) engine. This was accomplished by first studying the validity of the ...

Maria, Amir Gamal

2012-01-01T23:59:59.000Z

391

Resistivity measurements before and after injection Test 5 at Raft River  

Open Energy Info (EERE)

measurements before and after injection Test 5 at Raft River measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Details Activities (2) Areas (1) Regions (0) Abstract: Resistivity measurements were made prior to, and after an injection test at Raft River KGRA, Idaho. The objectives of the resistivity measurements were to determine if measureable changes could be observed and whether they could be used to infer the direction of fluid flow. Most of the apparent resistivity changes observed after the injection phase of Test 5 are smaller than the estimated standard deviation of the measurements. However, the contour map of the changes suggest an anomalous trend to the

392

Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma  

SciTech Connect

We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

Liu, Wei [Los Alamos National Laboratory; Hsu, Scott [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

393

The National Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Facility Data Requirements Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL SC08 BOF: Computing with Massive and Persistent Data LLNL-PRES-408909. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344 2 Target chamber One Terabyte of data to be downloaded in ~50 Minutes for each shot. 5 Full Aperture Backscatter Diagnostic Instrument Manipulator (DIM) Diagnostic Instrument Manipulator (DIM) X-ray imager Streaked x-ray detector VISAR Velocity Measurements Static x-ray imager FFLEX Hard x-ray spectrometer Near Backscatter Imager DANTE Soft x-ray temperature Diagnostic Alignment System Cross Timing System Each Diagnostic Produces Data that Requires Analysis 6 Tools are being built to manage and integrate:

394

A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS  

SciTech Connect

Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

Leishear, R.

2013-03-28T23:59:59.000Z

395

Prompt Beta Spectroscopy as a Diagnostic for Mix in Ignited NIF Capsules  

E-Print Network (OSTI)

The National Ignition Facility (NIF) technology is designed to drive deuterium-tritium (DT) internal confinement fusion (ICF) targets to ignition using indirect radiation from laser beam energy captured in a hohlraum. Hydrodynamical instabilities at interfaces in the ICF capsule leading to mix between the DT fue l and the ablator shell material are of fundamental physical interest and can affect the performance characteristics of the capsule. In this Letter we describe new radiochemical diagnostics for mix processes in ICF capsules with plastic or Be (0.9%Cu) ablator shells. Reactions of high-energy tritons with shell material produce high-energy $\\beta$-emitters. We show that mix between the DT fuel and the shell material enhances high-energy prompt beta emission from these reactions by more than an order of magnitude over that expected in the absence of mix.

A. C. Hayes; G. Jungman; J. C. Solem; P. A. Bradley; R. S. Rundberg

2004-08-12T23:59:59.000Z

396

Deliberate ignition of hydrogen-air-steam mixtures under conditions of rapidly condensing steam  

DOE Green Energy (OSTI)

A series of experiments was conducted to determine hydrogen combustion behavior under conditions of rapidly condensing steam caused by water sprays. Experiments were conducted in the Surtsey facility under conditions that were nearly prototypical of those that would be expected in a severe accident in the CE System 80+ containment. Mixtures were initially nonflammable owing to dilution by steam. The mixtures were ignited by thermal glow plugs when they became flammable after sufficient steam was removed by condensation caused by water sprays. No detonations or accelerated flame propagation was observed in the Surtsey facility. The combustion mode observed for prototypical mixtures was characterized by multiple deflagrations with relatively small pressure rises. The thermal glow plugs were effective in burning hydrogen safely by igniting the gases as the mixtures became marginally flammable.

Blanchat, T.; Stamps, D.

1995-01-01T23:59:59.000Z

397

Critical radius for sustained propagation of spark-ignited spherical flames  

Science Conference Proceedings (OSTI)

An experimental study was performed to determine the requirements for sustained propagation of spark-ignited hydrogen-air and butane-air flames at atmospheric and elevated pressures. Results show that sustained propagation is always possible for mixtures whose Lewis number is less than unity, as long as a flame can be initially established. However, for mixtures whose Lewis number is greater than unity, sustained propagation depends on whether the initially ignited flame can attain a minimum radius. This minimum radius was determined for mixtures of different equivalence ratios and pressures, and was found to agree moderately well with the theoretically predicted critical radius beyond which there is no solution for the adiabatic, quasi-steady propagation of the spherical flame. The essential roles of pressure, detailed chemistry, and the need to use local values in the quantitative evaluation of the flame response parameters are emphasized. (author)

Kelley, Andrew P.; Jomaas, Grunde; Law, Chung K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

2009-05-15T23:59:59.000Z

398

Ignition properties of n-butane and iso-butane in a rapid compression machine  

Science Conference Proceedings (OSTI)

Autoignition delay times of n-butane and iso-butane have been measured in a Rapid Compression Machine in the temperature range 660-1010 K, at pressures varying from 14 to 36 bar and at equivalence ratios {phi} = 1.0 and {phi} = 0.5. Both butane isomers exhibit a negative-temperature-coefficient (NTC) region and, at low temperatures, two-stage ignition. At temperatures below {proportional_to}900 K, the delay times for iso-butane are longer than those for the normal isomer, while above this temperature both butanes give essentially the same results. At temperatures above {proportional_to}720 K the delay times of the lean mixtures are twice those for stoichiometric compositions; at T butane using a comprehensive model for butane ignition, including both delay times in the two-stage region, with substantial differences being observed for iso-butane, particularly in the NTC region. (author)

Gersen, S.; Darmeveil, J.H. [Gasunie Engineering and Technology, P.O. Box 19, 9700 MA Groningen (Netherlands); Mokhov, A.V. [Laboratory for Fuel and Combustion Science, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Levinsky, H.B. [Gasunie Engineering and Technology, P.O. Box 19, 9700 MA Groningen (Netherlands); Laboratory for Fuel and Combustion Science, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

2010-02-15T23:59:59.000Z

399

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

Science Conference Proceedings (OSTI)

The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

2009-01-07T23:59:59.000Z

400

Underground Injection Control Permits and Registrations (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Underground Injection Control Permits and Registrations (Texas) Underground Injection Control Permits and Registrations (Texas) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Fuel Distributor Savings Category Buying & Making Electricity Program Info State Texas Program Type Environmental Regulations Safety and Operational Guidelines Provider Texas Commission on Environmental Quality Chapter 27 of the Texas Water Code (the Injection Well Act) defines an "injection well" as "an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or some other

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

LIFAC Sorbent Injection Desulfurization Demonstration Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the flue gas in a separate activation reactor, which increases SO 2 removal. An electrostatic precipitator downstream from the point of injection captures the reaction...

402

NSLS-II INJECTION STRAIGHT DIAGNOSTICS  

Science Conference Proceedings (OSTI)

The ultra-bright light source being developed by the NSLS-II project will utilize top-up injection and fine tuning of the injection process is mandatory. In this paper we present the diagnostics installed in the injection straight. Its use for commissioning and tuning of the injection cycle is also described. The NSLS-II storage ring will utilize a 9.3 meter long injection straight section shown in Fig. 1. Injection will be preformed with two septa (one pulsed, one DC) and four kickers. The stored beam will be shifted towards the pulsed septum up to IS mm and the nominal distance between centers of the injected and the bumped beam is 9.5mm. The NSLS-II beam position monitors will have turn-by-turn and first-turn capabilities and will be used for the commissioning and tuning the injection process. However, there are three additional BPMs and two beam intercepting OTR screens (flags) installed in the injection straight.

Pinayev, I.; Blednykh, A.; Ferreira, M.; Fliller, R.; Kosciuk, B.; Shaftan, T.V.; Wang, G.

2011-03-28T23:59:59.000Z

403

Geothermal: Sponsored by OSTI -- Injection through fractures  

Office of Scientific and Technical Information (OSTI)

Injection through fractures Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

404

Blast Furnace Granulated Coal Injection System Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880,...

405

Powder Injection Molding - Available Technologies - PNNL  

Summary. Presented here is a novel and innovative means of powder injection molding (PIM) of reactive refractory metals, such as titanium and its ...

406

Energy-efficient control in injection molding.  

E-Print Network (OSTI)

??xviii, 209 leaves : ill. ; 30 cm HKUST Call Number: Thesis CENG 2008 Yao As an energy-intensive process, in injection molding, energy cost is… (more)

Yao, Ke

2008-01-01T23:59:59.000Z

407

Impact of key design parameters on neutron wall load in an ignited tokamak  

SciTech Connect

A study was performed to determine the impact of key design parameters on neutron wall load in an ignited deuterium-tritium (D-T) tokamak. Systems effects of parameter variations were determined using the Fusion Engineering Design Center (FEDC) Systems Code. Poloidal variations in neutron wall load were determined using the Monte Carlo Code for Neutron and Photon Transport (MCNP). The marked impact of key design parameters is quantitatively shown.

Reiersen, W.T.

1983-01-01T23:59:59.000Z

408

Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi-zone modeling has been applied to investigate combustion chamber design with respect to increasing efficiency and reducing emissions in HCCI engines.

Flowers, D L

2002-06-07T23:59:59.000Z

409

Extents of alkane combustion during rapid compression leading to single and two stage ignition  

DOE Green Energy (OSTI)

Extents of reactant consumption have been measured during the course of spontaneous ignition following rapid compression of N-pentane and N-heptane and also of PRF 60 (N-heptane = i-octane, 2.2.4 trimethylpentane) in stoichiometric mixtures with air. Compressed gas temperatures of 720-750 K and 845-875 K were studied at reactant densities of 131 mol m{sup minus 3}. At the lower gas temperature there was no evidence of reactant consumption during the course of the compression stroke. Two-stage ignition occurred at these temperatures, but only modest proportions of n-pentane were consumed during the first stage (< 15%) whereas about 40% of proportions of n- heptane reacted under the same conditions. At the higher compressed gas temperature the oxidation of n-pentane began only after the piston had stopped, whereas more than 30% of the n-heptane had already been consumed in the final stage of the compression stroke. The behavior of the PRF 60 mixture differed somewhat from that of N- pentane despite the similarly of the research octane numbers. Although there was a preferential oxidation of n-heptane at T{sub c} = 850K, which persisted throughout the early development of spontaneous ignition during the post-compression period, oxidation of both components of the PRF 60 mixture began before the piston had stopped. Numerical simulations of the spontaneous ignition under conditions resembling those of the rapid compression experiments show that the predicted reactivity from detailed kinetics are consistent with the observed features. Insights into the kinetic interactions that give rise to the relative reactivities of the primary reference fuel components are established

Cox, A.; Griffiths, J.F.; Mohamed, C. [Leeds Univ. (United Kingdom). School of Chemistry; Curran, H.; Pitz, W.J.; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

1996-02-01T23:59:59.000Z

410

National Ignition Facility computational fluid dynamics modeling and light fixture case studies  

SciTech Connect

This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

1998-02-01T23:59:59.000Z

411

Spark ignited turbulent flame kernel growth. Annual report, January--December, 1992  

DOE Green Energy (OSTI)

Cyclic combustion variations in spark-ignition engines limit the use of dilute charge strategies for achieving low NO{sub x} emissions and improved fuel economy. Results from an experimental study of the effect of incomplete fuel-air mixing (ifam) on spark-ignited flame kernel growth in turbulent propane-air mixtures are presented. The experiments were conducted in a turbulent flow system that allows for independent variation of flow parameters, ignition system parameters, and the degree of fuel-air mixing. Measurements were made at 1 atm and 300 K conditions. Five cases were studied; a premixed and four incompletely mixed cases with 6%, 13%, 24% and 33% RMS (root-mean-square) fluctuations in the fuel/air equivalence ratio. High speed laser shadowgraphy at 4,000 frames-per-second was used to record flame kernel growth following spark ignition, from which the equivalent flame kernel radius as a function of time was determined. The effect of ifam was evaluated in terms of the flame kernel growth rate, cyclic variations in the flame kernel growth, and the rate of misfire. The results show that fluctuations in local mixture strength due to ifam cause the flame kernel surface to become wrinkled and distorted; and that the amount of wrinkling increases as the degree of ifam. Ifam was also found to result in a significant increase in cyclic variations in the flame kernel growth. The average flame kernel growth rates for the premixed and the incompletely mixed cases were found to be within the experimental uncertainty except for the 33%-RMS-fluctuation case where the growth rate is significantly lower. The premixed and 6%-RMS-fluctuation cases had a 0% misfire rate. The misfire rates were 1% and 2% for the 13%-RMS-fluctuation and 24%-RMS-fluctuation cases, respectively; however, it drastically increased to 23% in the 33%-RMS-fluctuation case.

Santavicca, D.A.

1994-06-01T23:59:59.000Z

412

Extending operating range of a homogeneous charge compression ignition engine via cylinder deactivation  

DOE Patents (OSTI)

An HCCI engine has the ability to operate over a large load range by utilizing a lower cetane distillate diesel fuel to increase ignition delay. This permits more stable operation at high loads by avoidance of premature combustion before top dead center. During low load conditions, a portion of the engines cylinders are deactivated so that the remaining cylinders can operate at a pseudo higher load while the overall engine exhibits behavior typical of a relatively low load.

Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL); Duffy, Kevin P. (Metamora, IL); Liechty, Michael P. (Chillicothe, IL)

2008-05-27T23:59:59.000Z

413

Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine: Experimental and Numerical Results  

E-Print Network (OSTI)

60% ethanol-in-water, the required intake temperatures arethe effect of water addition on required intake temperature,required intake temperature for 4 different water-in-ethanol

Mack, John Hunter; Flowers, Daniel L; Aceves, Salvador M; Dibble, Robert W

2007-01-01T23:59:59.000Z

414

Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine: Experimental and Numerical Results  

E-Print Network (OSTI)

The energy balance of corn ethanol revisited, Transaction ofnet energy balanceof corn ethanol, USDA Economic Researchall stages of ethanol production from corn, as a percent of

Mack, John Hunter; Flowers, Daniel L; Aceves, Salvador M; Dibble, Robert W

2007-01-01T23:59:59.000Z

415

Isobutane ignition delay time measurements at high pressure and detailed chemical kinetic simulations  

SciTech Connect

Rapid compression machine and shock-tube ignition experiments were performed for real fuel/air isobutane mixtures at equivalence ratios of 0.3, 0.5, 1, and 2. The wide range of experimental conditions included temperatures from 590 to 1567 K at pressures of approximately 1, 10, 20, and 30 atm. These data represent the most comprehensive set of experiments currently available for isobutane oxidation and further accentuate the complementary attributes of the two techniques toward high-pressure oxidation experiments over a wide range of temperatures. The experimental results were used to validate a detailed chemical kinetic model composed of 1328 reactions involving 230 species. This mechanism has been successfully used to simulate previously published ignition delay times as well. A thorough sensitivity analysis was performed to gain further insight to the chemical processes occurring at various conditions. Additionally, useful ignition delay time correlations were developed for temperatures greater than 1025 K. Comparisons are also made with available isobutane data from the literature, as well as with 100% n-butane and 50-50% n-butane-isobutane mixtures in air that were presented by the authors in recent studies. In general, the kinetic model shows excellent agreement with the data over the wide range of conditions of the present study. (author)

Healy, D.; Curran, H.J. [Combustion Chemistry Centre, School of Chemistry, NUI Galway (Ireland); Donato, N.S.; Aul, C.J.; Petersen, E.L. [Department of Mechanical Engineering, Texas A and M University, College Station, TX (United States); Zinner, C.M. [Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL (United States); Bourque, G. [Rolls-Royce Canada Limited, 9500 Cote de Liesse, Lachine, Quebec (Canada)

2010-08-15T23:59:59.000Z

416

BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES  

DOE Patents (OSTI)

This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

Treshow, M.

1963-04-30T23:59:59.000Z

417

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at five plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Detroit Edison's Monroe Power Plant. In addition to tests identified for the four main sites, parametric testing at Missouri Basin Power Project's Laramie River Station Unit 3 has been scheduled and made possible through additional costshare participation targeted by team members specifically for tests at Holcomb or a similar plant. This is the fifth quarterly report for this project. Long-term testing was completed at Meramec during this reporting period. Preliminary results from parametric, baseline and long-term testing at Meramec are included in this report. Planning information for the other three sites is also included. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

Sharon Sjostrom

2005-02-02T23:59:59.000Z

418

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

419

Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends  

E-Print Network (OSTI)

Increases in demand, lower emission standards, and reduced fuel supplies have fueled the recent effort to find new and better fuels to power the necessary equipment for society’s needs. Often, the fuels chosen for research are renewable fuels derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis and ignition behavior characteristics, combustion modeling, emissions modeling, small scale combustion experiments, pilot scale commercial combustion experiments, and cost analysis of the fuel usage for both feedlot biomass and dairy biomass. This paper focuses on fuel property analysis and pyrolysis and ignition characteristics of feedlot biomass. Deliverables include a proximate and ultimate analysis, pyrolysis kinetics values, and ignition temperatures of four types of feedlot biomass (low ash raw manure [LARM], low ash partially composted manure [LAPC], high ash raw manure [HARM], and high ash partially composted manure [HAPC]) as well as blends of each biomass with Texas lignite coal (TXL). Activation energy results for pure samples of each fuel using the single reaction model rigorous solution were as follows: 45 kJ/mol (LARM), 43 kJ/mol (LAPC), 38 kJ/mol (HARM), 36 kJ/mol (HAPC), and 22 kJ/mol (TXL). Using the distributed activation energy model the activation energies were 169 kJ/mol (LARM), 175 kJ/mol (LAPC), 172 kJ/mol (HARM), 173 kJ/mol (HAPC), and 225 kJ/mol (TXL). Ignition temperature results for pure samples of each of the fuels were as follows: 734 K (LARM), 745 K (LAPC), 727 (HARM), 744 K (HAPC), and 592 K (TXL). There was little difference observed between the ignition temperatures of the 50% blends of coal with biomass and the pure samples of coal as observed by the following results: 606 K (LARM), 571 K (LAPC), 595 K (HARM), and 582 K (HAPC).

Martin, Brandon Ray

2006-12-01T23:59:59.000Z

420

Injection Molding of Plastics from Agricultural Materials  

SciTech Connect

The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

Bhattacharya, M.; Ruan, R.

2001-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "ignition direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ultra low injection angle fuel holes in a combustor fuel nozzle  

Science Conference Proceedings (OSTI)

A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

York, William David

2012-10-23T23:59:59.000Z

422

A simulation study to verify Stone's simultaneous water and gas injection performance in a 5-spot pattern  

E-Print Network (OSTI)

Water alternating gas (WAG) injection is a proven technique to enhance oil recovery. It has been successfully implemented in the field since 1957 with recovery increase in the range of 5-10% of oil-initially-in-place (OIIP). In 2004, Herbert L. Stone presented a simultaneous water and gas injection technique. Gas is injected near the bottom of the reservoir and water is injected directly on top at high rates to prevent upward channeling of the gas. Stone's mathematical model indicated the new technique can increase vertical sweep efficiency by 3-4 folds over WAG. In this study, a commercial reservoir simulator was used to predict the performance of Stone's technique and compare it to WAG and other EOR injection strategies. Two sets of relative permeability data were considered. Multiple combinations of total injection rates (water plus gas) and water/gas ratios as well as injection schedules were investigated to find the optimum design parameters for an 80 acre 5-spot pattern unit. Results show that injecting water above gas may result in better oil recovery than WAG injection though not as indicated by Stone. Increase in oil recovery with SSWAG injection is a function of the gas critical saturation. The more gas is trapped in the formation, the higher oil recovery is obtained. This is probably due to the fact that areal sweep efficiency is a more dominant factor in a 5-spot pattern. Periodic shut-off of the water injector has little effect on oil recovery. Water/gas injection ratio optimization may result in a slight increase in oil recovery. SSWAG injection results in a steady injection pressure and less fluctuation in gas production rate compared to WAG injection.

Barnawi, Mazen Taher

2008-05-01T23:59:59.000Z

423

Fuels Performance Technologies: Milestone FY06 9.1 -- Using IQT measurements, develop simplified kinetic expressions for ignition of fuels that could be used in HCCI engine models  

DOE Green Energy (OSTI)

Discusses the development of a new fuel characterization, based on simplified kinetic expression, to quantify ignition quality for low-temperature combustion vehicle applications.

Taylor, J. D.

2006-11-01T23:59:59.000Z

424

In-Cylinder Reaction Chemistry and Kinetics During Negative Valve Overlap Fuel Injection Under Low-Oxygen Conditions  

DOE Green Energy (OSTI)

Fuel injection into the negative valve overlap (NVO) period is a common method for controlling combustion phasing in homogeneous charge compression ignition (HCCI) as well as other forms of advanced combustion. During this event, at least a portion of the fuel hydrocarbons can be converted to products containing significant levels of H2 and CO, as well as other short chain hydrocarbons by means of thermal cracking, water-gas shift, and partial oxidation reactions, depending on the availability of oxygen and the time-temperature-pressure history. The resulting products alter the autoignition properties of the combined fuel mixture for HCCI. Fuel-rich chemistry in a partial oxidation environment is also relevant to other high efficiency engine concepts (e.g., the dedicated EGR (D-EGR) concept from SWRI). In this study, we used a unique 6-stroke engine cycle to experimentally investigate the chemistry of a range of fuels injected during NVO under low oxygen conditions. Fuels investigated included iso-octane, iso-butanol, ethanol, and methanol. Products from NVO chemistry were highly dependent on fuel type and injection timing, with iso-octane producing less than 1.5% hydrogen and methanol producing more than 8%. We compare the experimental trends with CHEMKIN (single zone, 0-D model) predictions using multiple kinetic mechanisms available in the current literature. Our primary conclusion is that the kinetic mechanisms investigated are unable to accurately predict the magnitude and trends of major species we observed.

Kalaskar, Vickey B [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Splitter, Derek A [ORNL] [ORNL; Pihl, Josh A [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

2013-01-01T23:59:59.000Z

425

Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone  

Science Conference Proceedings (OSTI)

The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted