National Library of Energy BETA

Sample records for idr metered greater

  1. E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho ...

  2. E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory PDF icon E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory More Documents & Publications PIA - INL Education Programs Business Enclave Manchester Software 1099 Reporting PIA, Idaho National Laboratory Integrated Safety Management Workshop Registration,

  3. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and RP-1 Agreement and Guide For Use and Utilization of the RadEye B20-ER Survey Meters The Rad Eye B20-ER is a pancake GM detector capable of measuring low levels of Alpha, Beta,...

  4. PRIVACY IMPACT ASSESSMENT: INL E-IDR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INL E-IDR (Invention Disclosure Record) PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/o2061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be

  5. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sc 620 Meters ~ 310 ~g~ 1, coOmpartment 11 ~~I . * ~~O~6 ~,~: '- N A o Soils Soil Series and Phase ~BaB FuB OrA TrB o ~ u Vegetation o 310 o o Commun;~y I fPme - L~ng e~'ne/HardwOOd %. EJ ~~:~1o,;"'a'" W~*. Monitoring wells :W~~~~ o Wa"""'" ~ :/'/ m// .y ~WWE:~~tI' s/~~ N Roads . et-Asld ~ ~~!~~ ~~~~l~idL:sndfili ~/#//};;;;>. Figure 28-1. Plant cOl1llllunities and soils associated with the Field 3-409 Set-Aside Area. 28-5 Set-Aside 28: Field 3-409

  6. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  7. Net Metering

    Broader source: Energy.gov [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  9. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On October 21, 2015, the NY Public Service Commission denied the Orange and Rockland Utility’s petition to cease offering net-metering and interconnections once the 6% net-metering cap was...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Note: In January 2016, the California Public Utilities Commission issued a ruling on its net metering successor tariff. Customers on the new net metering successor tariff will have to pay an...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: Although, this post is categorized as netmetering, the policy adopted by MS does not meet DSIRE's standards for a typical net metering policy. Net metering policy allows a customer to offset...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered systems equals 0.5% of a utility’s peak demand during 1996.* At least one-half...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA), which pertains to renewable energy systems and co...

  17. Net Metering

    Broader source: Energy.gov [DOE]

     NOTE: The program website listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  18. Net Metering

    Broader source: Energy.gov [DOE]

    North Dakota's net-metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  19. Net Metering

    Broader source: Energy.gov [DOE]

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fu...

  20. Net Metering

    Broader source: Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  1. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3 alternative options: a grid supply option, a self-supply option, and a time of use tariff. Customers with net...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted P.A. 295, requiring the Michigan Public Service Commission (MPSC) to establish a statewide net metering program for renewable energy systems. On May 26, 2009 the...

  3. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity owned and operated by customer-generators reaches 1% of an electric distribution...

  4. Net Metering

    Broader source: Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  5. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending net metering regulations to provide clarity and to comply with the statutes. Changes include...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the...

  7. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to start the net metering period at the beginning of January, April, July or October to match...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved...

  11. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  12. Palau- Net Metering

    Broader source: Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  13. Is revenue metering feasible

    SciTech Connect (OSTI)

    Taylor, N.R.

    1985-02-01

    Revenue metering for thermal systems has been in use for more than 100 years. There is an infinite variety of meters based on flow principles, but very limited choice of steam condensate meters. Progress is being made in the application of computer technology to thermal metering. Btu meters are showing substantial progress as the U.S. market increases. There is a lack of traceable standards, application guidelines and approved materials. Strongly needed are educational programs designed for the thermal metering technician. Costs of thermal measurements is, in general, out of balance with other utility type service meters.

  14. LADWP- Net Metering

    Broader source: Energy.gov [DOE]

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  15. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  16. SRP- Net Metering

    Broader source: Energy.gov [DOE]

    Note: Salt River Project (SRP) modified its existing net-metering program for residential customers in February 2015. These changes are effective with the April 2015 billing cycle.

  17. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campo Net Meter Project Michael Connolly Miskwish, MA EconomistEngineer Campo Kumeyaay Nation Location map Tribal Energy Planning Current 50 MW project Proposed 160 MW ...

  18. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  19. Idaho Power- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    In July 2013, the PUC issued an order in response to Idaho Power's application to modify its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan...

  20. Lesson Plan: Power Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Metering Project Grades: 9-12 Topic: Energy Basics Owner: ACTS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and...

  1. EWEB- Net Metering

    Broader source: Energy.gov [DOE]

    The Eugene Water and Electric Board (EWEB) offers net metering for customers with renewable energy generation systems with an installed capacity of 25 kW or less. Eligible systems use solar power,...

  2. Austin Energy- Net Metering

    Broader source: Energy.gov [DOE]

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  3. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Note: As of October 2015, the net metering program had around 700 customers. According to the Guam Daily Post, the program is expected to reach the current 1,000-customer cap in mid-2016. This cap...

  4. PSEG Long Island- Net Metering

    Broader source: Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  5. Net Metering | Open Energy Information

    Open Energy Info (EERE)

    Gas Wind Biomass Geothermal Electric Anaerobic Digestion Small Hydroelectric Tidal Energy Wave Energy No Ashland Electric - Net Metering (Oregon) Net Metering Oregon Commercial...

  6. Schlumberger Electricity Metering | Open Energy Information

    Open Energy Info (EERE)

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  7. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  8. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  9. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  10. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  11. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, Kenneth L. (Dublin, CA)

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  12. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  13. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  14. Montana Electric Cooperatives- Net Metering

    Broader source: Energy.gov [DOE]

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  15. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  16. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    commercial) as long as the base requirements are met. All net-metered facilities must be behind a customer's meter, but only a minimal amount of load located on-site is required....

  17. N. Mariana Islands- Net Metering

    Broader source: Energy.gov [DOE]

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  18. Meters Roads N Streams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Meters Roads N Streams o Openwells E3i APT Site *. TES Plants (1) E2J Other Set-Asides lEI] Hydric Soils . 370 o 370 Soils Soil Series and Phase DBaB DBaC .Pk .TrB DTrC DTrD .TuE !iii TuF 740 Compartment 52 Compartment 53 N A sc Figure 5-1. Area. Plant communities and soils associated with the Oak Hickory Forest #1 Set-Aside 5-7 Set-Aside 5: Oak-Hickory Forest 1

  19. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  20. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  1. Net Metering Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering Resources Net Metering Resources State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price,...

  2. Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200

    Gasoline and Diesel Fuel Update (EIA)

    Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46 46 53 77 90 123 171 228 2000's 234 286 288 336 310 305 318 313

  3. Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4 6 6 12 13 17 26 51 2000's 84 96 66 55 51 44 50

  4. Metering Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    Technology Corporation Jump to: navigation, search Name: Metering Technology Corporation Place: Scotts Valley, California Product: Engineering related to communicating meters....

  5. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure the ...

  6. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of retail renewable distributed generation and net metering. Details will be posted once a final order is issued. Eligibility and Availability In December 2005 the Colorado...

  7. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power, or fuel cell technologies.* A net metering facility must be...

  8. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion Fuel Cells using Renewable Fuels Program Info Sector Name State State North Carolina Program Type Net Metering Summary The North Carolina Utilities Commission...

  9. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after 12312014) are eligible. Net-metered systems must be intended primarily to offset part or all of a customer's electricity requirements. Public utilities may not limit...

  10. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  11. LLNL Predicts Wind Power with Greater Accuracy | Department of Energy

    Office of Environmental Management (EM)

    LLNL Predicts Wind Power with Greater Accuracy LLNL Predicts Wind Power with Greater Accuracy May 18, 2015 - 5:05pm Addthis A multicolored scatter plot that curves from left to right, bottom to top to show the wind power capacity factor and wind speed meters per second. The colors relate atmospheric stability conditions to reported power-output observations with black, dark blue, and lighter blue representing stable conditions; light blue, green and light green representing neutral conditions;

  12. Grays Harbor PUD- Net Metering

    Broader source: Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  13. Advanced Sub-Metering Program

    Broader source: Energy.gov [DOE]

    The program is designed to provide information about energy usage for each residences at a multi-residential buildings. Residences living in multi-residential buildings that are not sub-metered d...

  14. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  15. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable energy facilities established on military property for on-site military consumption may net meter for systems up to 2.2 megawatts (MW, AC). Aggregate Capacity Limit...

  16. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  17. Healthcare Energy Metering Guidance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  18. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  19. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  20. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  1. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  2. Insert metering plates for gas turbine nozzles

    DOE Patents [OSTI]

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  3. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use) | Department of Energy Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy. PDF icon Download the Federal Building

  4. Advanced Metering Infrastructure Security Considerations | Department of

    Energy Savers [EERE]

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. PDF icon Advanced Metering Infrastructure Security

  5. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Greater than

    Gasoline and Diesel Fuel Update (EIA)

    200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 557 824 877 1,241 1,311 1,682 1,611 1,626 2000's 2,021 3,208 3,372 3,627 3,280 3,272 2,983 2,836

  6. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Billion Cubic Feet) Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 162 224 288 361 544 565 711 1,099 2000's 1,165 1,334 1,328 1,513 1,222 1,069 1,086

  7. Logic elements for reactor period meter

    DOE Patents [OSTI]

    McDowell, William P.; Bobis, James P.

    1976-01-01

    Logic elements are provided for a reactor period meter trip circuit. For one element, first and second inputs are applied to first and second chopper comparators, respectively. The output of each comparator is O if the input applied to it is greater than or equal to a trip level associated with each input and each output is a square wave of frequency f if the input applied to it is less than the associated trip level. The outputs of the comparators are algebraically summed and applied to a bandpass filter tuned to f. For another element, the output of each comparator is applied to a bandpass filter which is tuned to f to give a sine wave of frequency f. The outputs of the filters are multiplied by an analog multiplier whose output is 0 if either input is 0 and a sine wave of frequency 2f if both inputs are a frequency f.

  8. Government Program Briefing: Smart Metering

    SciTech Connect (OSTI)

    Doris, E.; Peterson, K.

    2011-09-01

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  9. Government Program Briefing: Smart Metering

    Broader source: Energy.gov [DOE]

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  10. Mode Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Energy Analysis Find More Like This Return to Search Mode Meter Pacific Northwest National Laboratory Contact PNNL About This Technology Technology Marketing Summary Electricity grids have traditionally been monitored using systems based upon dated and slow communications and computational technologies. A large effort is underway in the electricity industry to replace those legacy systems with high-speed and accurate monitoring units call "phasor monitoring units," or PMUs.

  11. greenMeter | Open Energy Information

    Open Energy Info (EERE)

    physics engine from the gMeter app, greenMeter computes power, fuel usagecost, crude oil consumption, and carbon emission (data can be shown in US or metric units). Thanks to...

  12. Laser Power Meter Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-09-19

    Laser Power Meter integrates the digital output of a Newport 1835-C Laser Energy Meter and inserts the results into the file header of a WinSpec experimental file.

  13. Metering in Federal Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Maintenance » Metering in Federal Buildings Metering in Federal Buildings The U.S. Department of Energy is required by the Energy Policy Act of 2005 and Executive Order 13693 to establish guidelines for agencies to meter their federal buildings for energy (electricity, natural gas, and steam) and water use. To help agencies meet these metering requirements, the Federal Energy Management Program (FEMP) provides guidance materials, an implementation plan template, and a best practices

  14. El Paso Electric - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Website http:www.epelectric.comtxbusinessrollback-net-metering-approved-in-... State Texas Program Type Net Metering Summary El Paso Electric (EPE) has offered net metering to...

  15. Federal Building Metering Implementation Plan Template | Department of

    Energy Savers [EERE]

    Energy Building Metering Implementation Plan Template Federal Building Metering Implementation Plan Template Document provides a template for a federal building metering implementation plan. File metering_implementation_template.docx

  16. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  17. A Million Meter Milestone | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Million Meter Milestone A Million Meter Milestone March 4, 2011 - 2:36pm Addthis To see what installing the 1 millionth meter looked like, check out this video. Don Macdonald Don Macdonald Senior Advisor for Strategic Projects What does this mean for me? Smart meters allow consumers to take personal control and ownership of her energy usage in a way not possible before. As program manager for the Department of Energy's Recovery Act funded Smart Grid Investment Grant (SGIG) program, I've had

  18. BPA Metering Services Editing and Estimating Procedures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an unmetered condition An unmetered event will be identified through one of the following methods: 1) The Field Forms application (via Metering Services email), 2) An email...

  19. DOE Releases Federal Building Metering Guidance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management (Dec. 5, 2013), re-emphasized the requirements for installing electricity, natural gas, and steam meters and provided an additional requirement for installing water...

  20. Smart Meters on Tap for Owasso, Oklahoma

    Broader source: Energy.gov [DOE]

    Saving 10 percent of annual energy and increasing response time for electrical emergencies? Find out how smart meters can make cities smarter.

  1. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  2. Smart Meters | OpenEI Community

    Open Energy Info (EERE)

    Smart Meters Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 16 January, 2013 - 11:09 SDG&E Customers Can Connect Home Area Network Devices With Smart...

  3. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  4. June 25 Webinar to Explore Net Metering

    Broader source: Energy.gov [DOE]

    Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

  5. meter data | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 26 June, 2013 - 09:17 NREL's Energy Databus storing big energy data campus databus energy meter data NREL OpenEI Tool The Energy Databus began...

  6. Aggregate Net Metering Opportunities for Local Governments

    Broader source: Energy.gov [DOE]

    This guide summarizes the variations in state laws that determine whether or not meter aggregation is an option for local governments, explores the unique opportunities that it can extend to public...

  7. Murray City Power- Net Metering Pilot Program

    Broader source: Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  8. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  9. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Technology by sector", 2013, 2012, 2011, 2010 "AMR meters",48736538,48330822,45965762,48685043 "Residential",43728325,43455437,41451888,43913225 "Commercial",4805138,4691018,4341105,4611877 "Industrial",201873,185862,172692,159315 "Transportation",1202,125,77,626 "AMI meters",51924502,43165183,37290373,20334525 "Residential",46083727,38524639,33453548,18369908

  10. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo...

  11. Working With Your Utility to Obtain Metering Services

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the government metering requirement, the U.S. Department of Defense (DoD) metering directive, and customer metering services available from utilities.

  12. RWE Metering GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: RWE Metering GmbH Place: Germany Product: Smart metering subsidiary of Germany's second largest utility RWE AG. References: RWE Metering...

  13. Nevada Smart Meter Program Launches | Department of Energy

    Energy Savers [EERE]

    Smart Meter Program Launches Nevada Smart Meter Program Launches October 18, 2010 - 11:30am Addthis Workers began installing smart meters for NV Energy's smart meter project three weeks ago. The project is expected to create 200 jobs, according to NV Energy. | Photo courtesy of NV Energy Workers began installing smart meters for NV Energy's smart meter project three weeks ago. The project is expected to create 200 jobs, according to NV Energy. | Photo courtesy of NV Energy Paul Lester Paul

  14. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Federal Building Metering Implementation Plan Template Federal Building Energy Use Benchmarking Guidance, August 2014 Update Guidance for the ...

  15. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information...

  16. Meter Scale Plasma Source for Plasma Wakefield Experiments (Journal...

    Office of Scientific and Technical Information (OSTI)

    Meter Scale Plasma Source for Plasma Wakefield Experiments Citation Details In-Document Search Title: Meter Scale Plasma Source for Plasma Wakefield Experiments Authors:...

  17. Energy Secretary Chu Announces Five Million Smart Meters Installed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid...

  18. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    SciTech Connect (OSTI)

    2015-03-02

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  19. Extreme Adaptive Optics for the Thirty Meter Telescope (Conference...

    Office of Scientific and Technical Information (OSTI)

    Extreme Adaptive Optics for the Thirty Meter Telescope Citation Details In-Document Search Title: Extreme Adaptive Optics for the Thirty Meter Telescope You are accessing a...

  20. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  1. 2010 Assessment of Demand Response and Advanced Metering - Staff...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and ...

  2. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Sub-Metering to Drive Energy Project Approvals Through Data Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data This case study describes how...

  3. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1744297,1582760,137399,1546233,1175077,110675,105694 "Residential",1518981,1381543,121843,1352435,1029039,98707,92194 "Commercial",218762,195291,15383,188053,142132,11957,11999 "Industrial",6554,5926,173,5745,3906,11,1501 "Transportation",0,0,0,0,0,0,0 "AMI meters",338352,216201,1610285,108179,96024,85177,88231

  4. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",230418,261023,262683,318606,300790,239851,109188 "Residential",205920,231422,236070,287123,272669,223219,105408 "Commercial",22594,22467,19931,24091,21425,11089,3772 "Industrial",1904,7134,6682,7392,6696,5543,8 "Transportation",0,0,0,0,0,0,0 "AMI meters",421297,278395,174388,85163,54081,51982,46525

  5. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",232888,233270,230916,221262,139874,58993,27057 "Residential",204000,206539,204690,195920,124976,51007,24817 "Commercial",28129,26000,25582,24807,14408,7529,2220 "Industrial",759,731,644,535,490,457,20 "Transportation",0,0,0,0,0,0,0 "AMI meters",12272,3766,3408,3213,3106,2753,4 "Residential",11593,3423,3119,2951,3083,2744,3

  6. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",380098,339368,314854,246497,666915,500476,354452 "Residential",342033,307265,287712,225362,631062,480824,351548 "Commercial",26918,23326,21051,17703,35711,19592,2898 "Industrial",11147,8777,6091,3432,142,60,6 "Transportation",0,0,0,0,0,0,0 "AMI meters",2091766,1767206,1643430,1234009,400980,192860,155031

  7. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",827670,580957,431858,1696965,345864,238634,181180 "Residential",699209,481305,319842,1520278,278976,221857,167236 "Commercial",115318,90939,97104,164498,57736,15597,12701 "Industrial",13070,8699,14912,12189,9152,1178,1241 "Transportation",73,14,0,0,0,2,2 "AMI meters",12427747,10580445,10610811,4036383,2636757,363353,140042

  8. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1643794,1552727,1622740,1636242,1495425,1410712,231119 "Residential",1491944,1425970,1502253,1517327,1387937,1306346,206747 "Commercial",146263,121673,115391,115899,106007,102596,23667 "Industrial",5587,5084,5096,3016,1481,1770,705 "Transportation",0,0,0,0,0,0,0 "AMI meters",305731,242832,182651,173921,117738,17270,388

  9. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1469876,1481357,1496432,1536716,1530906,1534171,1478640 "Residential",1324280,1334604,1350835,1393474,1391016,1394732,1343996 "Commercial",141213,142227,141092,138781,138239,137617,132856 "Industrial",4383,4526,4505,4461,1651,1822,1788 "Transportation",0,0,0,0,0,0,0 "AMI meters",147008,128595,99755,36069,1784,1213,2463

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",116714,114296,113252,405728,56702,110087,20750 "Residential",105342,103234,102397,364709,52679,106326,20361 "Commercial",11207,10828,10619,40773,3989,3637,389 "Industrial",165,234,236,246,34,124,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",307904,297247,297308,100,72000,48603,0

  11. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2188,2991,4659,35987,29770,32000,3562 "Residential",1046,1722,3108,32964,27174,29415,892 "Commercial",1139,1266,1548,3022,2595,2584,2670 "Industrial",3,3,3,1,1,1,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",269876,246642,29650,0,0,0,0 "Residential",245295,230705,27695,0,0,0,0

  12. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3395748,3755977,3637527,3231398,3216922,2579337,2416630 "Residential",3139468,3455396,3325863,3024574,2953200,2378958,2351242 "Commercial",254631,298694,308099,204383,262736,199331,64901 "Industrial",1649,1886,3565,1893,986,1047,487 "Transportation",0,1,0,548,0,1,0 "AMI meters",5707660,4900737,3221462,2087870,308206,181984,44549

  13. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",627008,613969,521331,487830,435276,317642,295425 "Residential",556807,552232,467749,440914,393533,292233,269843 "Commercial",68008,59406,51774,44378,39314,23245,24111 "Industrial",2193,2331,1808,2538,2429,2164,1471 "Transportation",0,0,0,0,0,0,0 "AMI meters",3771777,3456641,3208987,2329510,1486413,778441,56921

  14. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",33662,57269,46871,44911,41201,28512,22820 "Residential",32688,53083,44459,42324,38779,26141,21191 "Commercial",974,4186,2412,2587,2394,2350,1629 "Industrial",0,0,0,0,28,21,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",29489,30,758,9213,8713,8126,6571 "Residential",25136,0,438,8040,7727,7154,5697

  15. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",177493,168685,163567,142759,151004,146779,88220 "Residential",155125,147140,142398,122329,133724,128395,82814 "Commercial",21730,20916,20529,19850,17042,17904,5401 "Industrial",638,629,640,580,238,480,5 "Transportation",0,0,0,0,0,0,0 "AMI meters",548969,542009,536130,353867,225474,49380,0

  16. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",997408,973664,998081,1002378,973505,851285,549055 "Residential",888394,869121,894434,902092,872418,773309,493378 "Commercial",105317,101051,100648,97601,98067,75669,54444 "Industrial",3382,3492,2999,2685,3018,2305,1227 "Transportation",315,0,0,0,2,2,6 "AMI meters",381906,305272,181667,150202,19121,9954,28114

  17. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1251574,1284613,1095102,1059678,1038172,951160,382580 "Residential",1115322,1167245,990346,965867,947409,868170,371539 "Commercial",131027,113006,102278,91550,88929,81696,10751 "Industrial",4729,4362,2478,2261,1834,1294,290 "Transportation",496,0,0,0,0,0,0 "AMI meters",414513,303192,257567,211145,164837,72679,11028

  18. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",744438,722583,713567,710239,697696,559054,139256 "Residential",646196,624355,620170,615649,612354,495955,124347 "Commercial",97104,97466,93000,92968,85137,62661,14851 "Industrial",1134,762,397,1622,205,438,58 "Transportation",4,0,0,0,0,0,0 "AMI meters",150555,143163,128116,121751,74120,48847,14946

  19. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",349836,335293,320708,400083,308859,300734,53919 "Residential",303782,289091,276856,343492,264664,260503,41763 "Commercial",44125,41789,39968,52910,41425,38520,10237 "Industrial",1929,4413,3884,3681,2770,1711,1919 "Transportation",0,0,0,0,0,0,0 "AMI meters",242858,184292,108395,41781,20570,25047,5878

  20. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",532871,607590,548321,495475,529171,526410,445146 "Residential",465927,534181,484008,439680,479635,480572,422463 "Commercial",65386,71883,62353,54453,48318,44688,22493 "Industrial",1558,1526,1960,1342,1218,1150,190 "Transportation",0,0,0,0,0,0,0 "AMI meters",505780,355451,330218,211996,147835,118209,23961

  1. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",371841,357579,344263,342766,331557,283997,203389 "Residential",344167,330690,318544,316995,309010,267588,192187 "Commercial",24657,24380,24208,24551,21202,14922,9945 "Industrial",3017,2509,1511,1220,1345,1487,1257 "Transportation",0,0,0,0,0,0,0 "AMI meters",396398,220128,40063,34087,12021,3597,2

  2. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",6822,6415,5210,4499,116826,103242,101084 "Residential",6455,6075,4920,3375,101823,101363,99995 "Commercial",307,240,190,822,14701,1577,749 "Industrial",60,100,100,302,302,302,340 "Transportation",0,0,0,0,0,0,0 "AMI meters",739583,735415,669482,193415,0,0,0 "Residential",657380,654512,602750,170941,0,0,0

  3. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",611045,877019,903093,889901,875440,845154,725634 "Residential",549148,799807,823936,815476,804226,782901,659322 "Commercial",61658,76998,78818,74100,71203,62242,66226 "Industrial",239,214,339,325,11,11,0 "Transportation",0,0,0,0,0,0,86 "AMI meters",1159371,498806,912,896,1034,810,0

  4. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2815732,2753089,2717020,2634758,2605159,2389547,2327751 "Residential",2579059,2527224,2500177,2325333,2300444,2103743,2072453 "Commercial",234458,224070,215022,306584,303458,284904,253942 "Industrial",2215,1795,1821,2841,1257,900,1356 "Transportation",0,0,0,0,0,0,0 "AMI meters",71178,59601,46241,39076,35489,37270,28021

  5. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",337976,324455,314211,359361,333902,272851,189606 "Residential",292051,283561,272718,318011,299426,246630,174020 "Commercial",44463,41134,40083,38141,32779,24761,14476 "Industrial",1462,1390,1410,3209,1697,1460,1110 "Transportation",0,0,0,0,0,0,0 "AMI meters",1351082,947546,735450,334065,198442,200415,187349

  6. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1913337,1922706,1909106,1985873,1874104,1718448,363947 "Residential",1730915,1735168,1733724,1805096,1709999,1567837,333575 "Commercial",172309,176721,165245,170062,162297,149294,29352 "Industrial",10087,10817,10137,10715,1808,1317,1020 "Transportation",26,0,0,0,0,0,0 "AMI meters",245897,121264,172810,91395,66777,53561,10203

  7. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",273118,136678,116456,144254,103645,91623,24243 "Residential",237034,117623,101376,130228,90425,80463,20942 "Commercial",32633,16705,12952,12658,11393,10084,2156 "Industrial",3451,2350,2128,1368,1827,1076,1145 "Transportation",0,0,0,0,0,0,0 "AMI meters",363360,274884,153279,48308,9465,1610,0

  8. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1920471,1935078,1917474,1959937,1921343,1933413,1546006 "Residential",1696195,1709394,1698061,1736715,1705866,1728577,1372572 "Commercial",216779,219525,213325,217255,210496,199759,167190 "Industrial",7497,6159,6088,5967,4981,5077,6243 "Transportation",0,0,0,0,0,0,1 "AMI meters",357449,314812,295556,222019,160446,60909,1882

  9. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",520018,495676,489407,482732,481682,397693,347611 "Residential",448313,430824,429479,423471,417166,345119,304959 "Commercial",67155,61129,57161,56837,62129,51022,41698 "Industrial",4550,3723,2767,2424,2387,1552,954 "Transportation",0,0,0,0,0,0,0 "AMI meters",18851,18830,17593,11991,6459,3532,212

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",535042,523950,503996,484383,454089,399845,380008 "Residential",451388,444819,430631,415589,392296,349786,333774 "Commercial",69711,67398,62997,59285,52508,44771,43230 "Industrial",13943,11733,10368,9509,9285,5288,3004 "Transportation",0,0,0,0,0,0,0 "AMI meters",123139,106301,91917,70111,40182,10725,25

  11. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",53483,38201,81499,78292,96058,81992,63856 "Residential",44206,30907,72579,69795,85984,74356,59256 "Commercial",7729,5975,7473,7374,9197,7333,4305 "Industrial",1548,1319,1447,1123,877,303,295 "Transportation",0,0,0,0,0,0,0 "AMI meters",1125193,1021241,555414,20665,0,0,0 "Residential",994812,919971,542609,18237,0,0,0

  12. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",69251,61857,59512,53293,50098,48310,46505 "Residential",67647,60510,58467,47171,43959,42402,41078 "Commercial",1604,1347,1045,5910,5929,5864,5401 "Industrial",0,0,0,212,210,44,26 "Transportation",0,0,0,0,0,0,0 "AMI meters",156960,153882,100345,76125,76085,72512,75094

  13. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",38125,41827,35412,43254,27018,21054,8132 "Residential",35775,28906,23442,31700,15987,11031,7263 "Commercial",1455,10789,10095,9635,8772,8234,621 "Industrial",876,2122,1866,1909,2258,1789,236 "Transportation",19,10,9,10,1,0,12 "AMI meters",34919,11533,11610,0,0,0,0 "Residential",22109,11454,11531,0,0,0,0

  14. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",214695,229210,220279,228503,244759,216434,112719 "Residential",192195,206606,198130,207663,226923,209009,110488 "Commercial",21811,21656,21246,19675,16998,7022,2000 "Industrial",689,948,903,1165,838,403,231 "Transportation",0,0,0,0,0,0,0 "AMI meters",108505,80808,72506,46139,24384,6215,0

  15. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3052524,2515127,2328801,2223645,2164329,1701366,1534285 "Residential",2848664,2295268,2140229,2044476,2005137,1555371,1410652 "Commercial",202417,218735,187424,178662,158992,145798,123436 "Industrial",1255,1124,1148,507,199,196,196 "Transportation",188,0,0,0,1,1,1 "AMI meters",28411,23758,18785,12675,11162,10872,1553

  16. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3708639,3613936,3768269,4027965,3718103,3521887,2048869 "Residential",3322965,3255122,3396907,3656223,3322323,3250613,1878066 "Commercial",381832,355716,368487,369622,393894,268784,169438 "Industrial",3842,3098,2875,2120,1886,2490,1365 "Transportation",0,0,0,0,0,0,0 "AMI meters",869185,716349,556214,420956,285532,206150,30759

  17. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",274775,171896,165282,181060,149553,123861,41003 "Residential",225851,141249,139162,154904,129384,111817,37069 "Commercial",42282,26052,22916,23171,18971,11124,3873 "Industrial",6642,4595,3204,2985,1198,920,61 "Transportation",0,0,0,0,0,0,0 "AMI meters",85007,72431,64037,42676,25380,11406,14500

  18. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1068626,948564,727112,622965,563380,512000,277489 "Residential",976072,867682,680331,582725,525578,475653,257499 "Commercial",86314,75747,44209,37864,35575,34425,18264 "Industrial",6221,5135,2572,2376,2227,1922,1726 "Transportation",19,0,0,0,0,0,0 "AMI meters",953964,716772,506635,287441,95769,27974,16631

  19. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",385000,430870,427117,459002,392071,400426,277880 "Residential",332981,377207,376188,400471,342530,351012,244516 "Commercial",49803,51627,49838,54788,48517,48392,33162 "Industrial",2216,2036,1091,3743,1024,1022,202 "Transportation",0,0,0,0,0,0,0 "AMI meters",1082432,968785,715368,332888,124060,44245,17169

  20. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",183897,173477,180073,180305,182669,179104,91950 "Residential",168007,158650,161735,163234,167965,167090,86244 "Commercial",14848,13699,17315,15885,13539,10954,5115 "Industrial",1042,1128,1023,1186,1165,1060,591 "Transportation",0,0,0,0,0,0,0 "AMI meters",1044864,1034711,939933,900290,190480,21408,6334

  1. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",471388,470428,467346,457508,458475,451138,450668 "Residential",461380,461788,460721,409497,407884,406169,400631 "Commercial",10008,8640,6625,47728,50591,44969,50037 "Industrial",0,0,0,283,0,0,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",211,211,205,0,0,0,0 "Residential",0,0,0,0,0,0,0

  2. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1848300,1816190,1809822,1897976,1700354,1510892,963079 "Residential",1621880,1600626,1596247,1678999,1490280,1348053,862204 "Commercial",225016,213938,212061,218049,209287,161774,99865 "Industrial",1404,1626,1514,928,787,1065,1010 "Transportation",0,0,0,0,0,0,0 "AMI meters",354418,271427,230942,205017,150689,119149,49293

  3. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",162490,163750,181907,193350,89054,66943,33995 "Residential",140673,143049,159847,171557,79340,60552,31632 "Commercial",20385,19257,20260,19532,8695,5801,2011 "Industrial",1432,1444,1800,2261,1019,590,352 "Transportation",0,0,0,0,0,0,0 "AMI meters",152199,127805,102671,95155,22793,16820,0

  4. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",730599,309569,320041,45373,43870,43861,46240 "Residential",643429,276292,285239,41482,41208,41115,40438 "Commercial",85467,32375,34115,3830,2629,2711,5802 "Industrial",1703,902,687,61,33,35,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",1094256,515971,336940,0,0,0,0 "Residential",926872,450089,304126,0,0,0,0

  5. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2278989,2649814,2362245,2609078,3758758,2513848,1019510 "Residential",2073428,2396415,2160965,2378327,3560320,2294696,942621 "Commercial",178381,230398,177755,219325,186979,214217,74475 "Industrial",27180,23001,23525,11426,11459,4935,2414 "Transportation",0,0,0,0,0,0,0 "AMI meters",7840588,6880155,5658595,3337913,296252,174508,20600

  6. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",947887,931692,903266,912616,851283,791097,374299 "Residential",861955,849405,821766,814440,772961,722710,361979 "Commercial",81853,78179,77565,92519,77666,67851,12272 "Industrial",4079,4100,3935,5657,656,536,48 "Transportation",0,8,0,0,0,0,0 "AMI meters",44150,22480,35163,17080,12860,2485,1

  7. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",53266,44430,84409,81030,77963,71278,58477 "Residential",48343,39930,76274,73703,71100,65176,53306 "Commercial",4901,4481,8121,7325,6861,6100,5169 "Industrial",22,19,14,2,2,2,2 "Transportation",0,0,0,0,0,0,0 "AMI meters",271526,343769,123,0,0,0,0 "Residential",229844,294918,116,0,0,0,0

  8. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2978913,3094379,3079891,3159249,3047610,3053272,2934487 "Residential",2742598,2851174,2841255,2930873,2825185,2842167,2730183 "Commercial",234244,240960,236618,226654,220991,209453,204144 "Industrial",2071,2245,2018,1722,1434,1652,160 "Transportation",0,0,0,0,0,0,0 "AMI meters",532415,400698,306378,158244,105371,8402,0

  9. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1715708,1681481,1656936,1611285,1326509,1346041,1143057 "Residential",1525473,1494345,1474547,1436056,1177320,1203954,1014025 "Commercial",182666,182010,177498,170267,144934,137882,124770 "Industrial",7569,5126,4891,4962,4255,4205,4261 "Transportation",0,0,0,0,0,0,1 "AMI meters",133299,85171,83353,76591,54484,46121,10670

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",520857,464502,473117,474077,436376,438764,448444 "Residential",439830,394660,399243,402817,387552,389596,381604 "Commercial",78280,67228,70415,67890,47130,47431,66840 "Industrial",2747,2614,3459,3370,1694,1737,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",116,81,0,0,95,0,0 "Residential",116,81,0,0,88,0,0

  11. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",225895,210204,206764,147885,175769,139584,26178 "Residential",181206,166730,162523,114344,141179,114795,24873 "Commercial",37340,36283,37200,27897,29852,20219,1204 "Industrial",7349,7176,7041,5644,4738,4570,101 "Transportation",0,15,0,0,0,0,0 "AMI meters",84587,79675,77029,72260,10442,8609,0

  12. SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS

    SciTech Connect (OSTI)

    Nash, C.; Fondeur, F.; Peters, T.

    2013-06-21

    Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) blend and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.

  13. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  14. Training Reciprocity Achieves Greater Consistency, Saves Time...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... in reciprocity efforts. Addthis Related Articles Training Reciprocity Achieves Greater ... near the Hanford Site. More Than 200 DOE Safety and Health Trainers Gather for Exchange

  15. Hydrothermal Convection Systems with Reservoir Temperatures greater...

    Open Energy Info (EERE)

    Systems with Reservoir Temperatures greater than or equal to 90 degrees C Authors Brook, Mariner, Mabey, Swanson, Guffanti and Muffler Published Journal Assessment of...

  16. Greater Cincinnati Energy Alliance- Residential Loan Program

    Broader source: Energy.gov [DOE]

    The Greater Cincinnati Energy Alliance provides loans for single family residencies and owner occupied duplexes in Hamilton, Butler, Warren, and Clermont counties in Ohio and Boone, Kenton, and...

  17. Smart Meter Company Boosting Production, Workforce

    Office of Energy Efficiency and Renewable Energy (EERE)

    A manufacturing facility in South Carolina is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours -- and through advanced manufacturing tax credits, just increased the facility's production capability by 20 percent and created 420 jobs.

  18. Hydrogen consentration meter utilizing a diffusion tube composed of 2 1/4 C r

    DOE Patents [OSTI]

    Roy, Prodyot; Sandusky, David W.; Hartle, Robert T.

    1979-01-01

    A diffusion tube hydrogen meter for improving the sensitivity and response time for the measurement of hydrogen in liquid sodium. The improved hydrogen meter has a composite membrane composed of pure nickel sleeve fitted, for example, over a 2 1/4 Cr-1 Mo steel or niobium diffusion tube. Since the hydrogen permeation rate through 2 1/4 Cr-1 Mo steels is a factor of four higher than pure nickel, and the permeation rate of hydrogen through niobium is two orders of magnitude greater than the 2 1/4 Cr-1 Mo steel, this results in a decrease in response time and an increase in the sensitivity.

  19. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency |

    Office of Environmental Management (EM)

    Department of Energy Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005. PDF icon Download the Metering Best Practices Guide. More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition A

  20. Federal Building Metering Guidance (per U.S.C. 8253 (e), Metering of Energy Use)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Building Metering Guidance (per 42 U.S.C. § 8253(e), Metering of Energy Use) November 2014 Update United States Department of Energy Washington, DC 20585 Department of Energy |November 2014 U.S. Department of Energy 1 I. Background The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum 1 to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. § 8253(e). DOE issued

  1. Promoting greater Federal energy productivity [Final report

    SciTech Connect (OSTI)

    Hopkins, Mark; Dudich, Luther

    2003-03-05

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  2. Genesis of a three-phase subsea metering system. [Oil and gas metering systems for subsea operations

    SciTech Connect (OSTI)

    Dowty, E.L.; Hatton, G.J.; Durrett, M.G. ); Dean, T.L.; Jiskoot, R.J.J.

    1993-08-01

    Periodic well flow testing is necessary to monitor well and reservoir performance over time to optimize decisions on well production rates and new well requirements through improved reservoir models, to determine the timing of well workovers, and to identify when wells become uneconomical to produce. A dedicated test separator' conventionally is used to meter individual wells. Fluids from a well are separated into the three component phases (oil, gas, and water) in a large vessel, and the flow rate of each phase is measured on the respective outlet lines from the vessel. The same method currently is used for subsea satellite developments by providing a dedicated test pipeline' from the subsea field to carry a selected well's production to a test separator for metering on the host platform. The capital cost of these systems rises rapidly with distance. Greater distances between the wellhead and flow test system increase the cost of the test pipeline and require larger and hence more expensive slug catchers and risers. Clearly, a subsea-based well-test system could result in large capital cost savings by eliminating the need for conventional test systems. This paper tracks the development of one subsea well test system from conception to field testing on the Tartan. A platform in the North Sea. This work defines the design requirements of the system, reviews system development and fabrication, describes modifications made as a result of initial field tests, and reports the results of topside tests completed through Dec. 1990.

  3. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect (OSTI)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer???¢????????s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  4. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  5. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  6. High Performance Computing Data Center Metering Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Computing Data Center Metering Protocol Prepared for: U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program Prepared by: Thomas Wenning Michael MacDonald Oak Ridge National Laboratory September 2010 ii Introduction Data centers in general are continually using more compact and energy intensive central processing units, but the total number and size of data centers continues to increase to meet progressive computing

  7. Periodic review enhances LPG metering performance

    SciTech Connect (OSTI)

    Van Orsdol, F.G.

    1988-01-25

    Because of the loss of experienced personnel throughout the industry, the author says one must start over teaching the basics of liquid measurement. Warren Petroleum Co., a division of Chevron U.S.A. Inc., has developed a checklist review method for its metering systems, complete with enough explanation to allow the reviewer to understand why each item is important. Simultaneously, it continues with more in-depth and theoretical training in training course. This article describes the review process.

  8. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1508995,2093902,2358735,2338527,2232621,2203630,1526540 "Residential",1283786,1854282,2111101,2092893,1998214,1993991,1396097 "Commercial",217043,231143,238676,237244,228706,203914,128444 "Industrial",8104,8400,8890,8322,5694,5718,1999 "Transportation",62,77,68,68,7,7,0 "AMI

  9. New Technologies Bring New Opportunities for Meter Reader | Department of

    Office of Environmental Management (EM)

    Energy Technologies Bring New Opportunities for Meter Reader New Technologies Bring New Opportunities for Meter Reader September 22, 2011 - 2:03pm Addthis Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Liisa O'Neill Liisa O'Neill Former New Media Specialist,

  10. SCE&G - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of net metering programs offered by the IOUs. South Carolina Electric & Gas (SCE&G) designed two net-metering options for its South Carolina customers. These options are...

  11. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005. PDF icon mbpg2015.pdf More Documents & Publications Review of Orifice Plate Steam Traps Improving Steam System Performance: A Sourcebook for Industry, Second Edition

  12. Coriolis Meters for Hydrogen Dispensing Measurement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coriolis Meters for Hydrogen Dispensing Measurement Coriolis Meters for Hydrogen Dispensing Measurement This presentation by John Daly of GE Measurement and Control Solutions was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_14_daly.pdf More Documents & Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters Metering Best

  13. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ARM: Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  14. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  15. ARM: Forty Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Forty Meter Tower: video camera Citation Details In-Document Search Title: ARM: Forty Meter Tower: video camera Forty Meter Tower: video camera Authors: Scott Smith ; Martin...

  16. Method and apparatus for reading meters from a video image

    DOE Patents [OSTI]

    Lewis, Trevor J. (Irwin, PA); Ferguson, Jeffrey J. (North Huntingdon, PA)

    1997-01-01

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.

  17. De Minimis Thresholds for Federal Building Metering Appropriateness

    SciTech Connect (OSTI)

    Henderson, Jordan W.

    2015-03-31

    The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. 8253(e). DOE issued guidance in February 2006 on the installation of electric meters in Federal buildings. A recent update to the 2006 guidance accounts for more current metering practices within the Federal Government. The updated metering guidance specifies that all Federal buildings shall be considered appropriate for energy or water metering unless identified for potential exclusion. In developing the updated guidance to carry out the statue, Congress also directed DOE to (among other things) establish exclusions from the metering requirements based on the de minimis quantity of energy use of a Federal building, industrial process, or structure. This paper discusses the method used to identify de minimis values.

  18. CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Coordinating

  19. Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Million Smart Grid Meters Installed Nationwide Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide August 31, 2010 - 12:00am Addthis Columbus, OH - At an event today at Battelle headquarters in Columbus, Ohio, U.S. Energy Secretary Steven Chu announced that two million smart grid meters have been installed across the country, helping to reduce energy costs for families and businesses. As a result of funding from the Recovery Act, smart grid

  20. Energy Secretary Chu Announces Five Million Smart Meters Installed

    Energy Savers [EERE]

    Nationwide as Part of Grid Modernization Effort | Department of Energy Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort June 13, 2011 - 12:00am Addthis Washington, DC - At a White House Grid Modernization event today, U.S. Department of Energy Secretary Steven Chu announced that more than five million smart meters have been installed nationwide

  1. Two Million Smart Meters and Counting | Department of Energy

    Energy Savers [EERE]

    Million Smart Meters and Counting Two Million Smart Meters and Counting August 31, 2010 - 6:02pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this mean for me? Smart meter technology will help families and businesses cut their energy costs by reducing response time for energy disruptions and enabling consumers to better monitor their consumption. The implementation of smart grid technologies could reduce

  2. High-Performance Computing Data Center Metering Protocol | Department of

    Office of Environmental Management (EM)

    Energy High-Performance Computing Data Center Metering Protocol High-Performance Computing Data Center Metering Protocol Guide details the methods for measurement in High-Performance Computing (HPC) data center facilities and document system strategies that have been used in Department of Energy data centers to increase data center energy efficiency. PDF icon hpc_metering_protocol.pdf More Documents & Publications Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance

  3. Shallow (2-meter) temperature surveys in Colorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Colorado 2m Survey Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54 outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below. Spatial Domain: Extent: Top: 4490310.560635 m Left: 150307.008238 m Right: 433163.213617 m Bottom: 4009565.915398 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard Rick Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  4. Cost benefit analysis for the implementation of smart metering...

    Open Energy Info (EERE)

    with pilot project (Smart Grid Project) Jump to: navigation, search Project Name Cost benefit analysis for the implementation of smart metering with pilot project Country...

  5. Nevada Renewable Energy Application For Net Metering Customers...

    Open Energy Info (EERE)

    Renewable Energy Application For Net Metering Customers Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Renewable Energy Application For Net...

  6. Improvements in Shallow (Two-Meter) Temperature Measurements...

    Open Energy Info (EERE)

    Center for Geothermal Energy has been working on improvements in shallow (two-meter) temperature surveys in two areas: overcoming limitations posed by difficult ground...

  7. Insights from Smart Meters: Identifying Specific Actions, Behaviors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drive Savings in Behavior-Based Programs Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs In ...

  8. Vermont Construction and Operation of Net Metering Systems Rules...

    Open Energy Info (EERE)

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  9. Vermont Construction and Operation of Net Metering Systems Rule...

    Open Energy Info (EERE)

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  10. Smart Meters Help Balance Energy Consumption at Solar Decathlon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team Tidewater Virginia smart meter, as seen on opening day, indicates the team generated 5 kW hours of electricity in the first several hours of the competition. | Image courtesy of Lachlan Fletcher, Studio 18a The Team Tidewater Virginia smart meter, as seen on opening day, indicates the team generated

  11. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, Richard P. (Livermore, CA); Paris, Robert D. (San Ramon, CA); Feldman, Mark (Pleasanton, CA)

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  12. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  13. CBEI: Virtual Refrigerant Charge Sensing and Load Metering -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Virtual Refrigerant...

  14. Extreme Adaptive Optics for the Thirty Meter Telescope (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Extreme Adaptive Optics for the Thirty Meter Telescope Direct detection of ... instrument, the Planet Formation Imager (PFI) for TMT. It has four key science missions. ...

  15. Smart Meters Helping Oklahoma Consumers Save Hundreds During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat July 26, 2011 - ... on Good Morning America that he's saving over 320 per month compared to last ...

  16. Smart Meters and a Smarter Grid | Department of Energy

    Energy Savers [EERE]

    Smart Meters and a Smarter Grid Smart Meters and a Smarter Grid May 16, 2011 - 4:40pm Addthis Andrea Spikes Former Communicator at DOE's National Renewable Energy Laboratory Have you heard of smart meters? Do you understand them? If so, you've had a leg up on me until now. I've heard of smart meters here and there from the odd news article or website, but to me the grapevine has been more like an invisible beehive: all buzz and no honey. Where are they? Why don't I have one yet, and will I have

  17. Evaluating Behind-the-Meter Energy Storage Systems with NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Behind-the- Meter Energy Storage Systems with NREL's System Advisor Model A new model helps companies assess the performance and economic effects of integrating battery ...

  18. Cyprus Smart metering demo (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    Installation of 3000 smart meters with the required infrastructure for full functionality evaluation of the best practice approach for full roll out. References "EU Smart Grid...

  19. Greater Green River Basin Production Improvement Project

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  20. Multiphase pumps and flow meters avoid platform construction

    SciTech Connect (OSTI)

    Elde, J.

    1999-02-01

    One of the newest wrinkles in efficiency in BP`s Eastern Trough Area Project (ETAP) is the system for moving multiphase oil, water and gas fluids from the Machar satellite field to the Marnock Central Processing Facility (CPF). Using water-turbine-driven multiphase pumps and multiphase flow meters, the system moves fluid with no need for a production platform. In addition, BP has designed the installation so it reduces and controls water coning, thereby increasing recoverable reserves. Both subsea multiphase booster stations (SMUBS) and meters grew out of extensive development work and experience at Framo Engineering AS (Framo) in multiphase meters and multiphase pump systems for subsea installation. Multiphase meter development began in 1990 and the first subsea multiphase meters were installed in the East Spar Project in Australia in 1996. By September 1998, the meters had been operating successfully for more than 1 year. A single multiphase meter installed in Marathon`s West Brae Project has also successfully operated for more than 1 year. Subsea meters for ETAP were installed and began operating in July 1998.

  1. Sustainable Development Strategy for the Greater Mekong Subregion...

    Open Energy Info (EERE)

    the Greater Mekong Subregion Jump to: navigation, search Name Sustainable Development Strategy for the Greater Mekong Subregion AgencyCompany Organization AIT-UNEP Regional...

  2. Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrades: Leveraging HVAC Upgrades for Greater Impact (201) Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201) Better Buildings Residential Network Peer Exchange Call...

  3. Thirteen States Receive Energy Department Awards to Drive Greater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money Thirteen States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save...

  4. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  5. Smart Meters Offer 'Instant Gratification;' Help Houston Homeowners

    Broader source: Energy.gov (indexed) [DOE]

    Save | Department of Energy Houston resident Ruth Diorio explains to KPRC Local 2 News how much she's saved with her recently installed smart meter, which allows her to see her savings in real time. Houston resident Ruth Diorio explains to KPRC Local 2 News how much she's saved with her recently installed smart meter, which allows her to see her savings in real time. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What does this mean for me? Smart meters

  6. Federal metering data analysis needs and existing tools

    SciTech Connect (OSTI)

    Henderson, Jordan W.; Fowler, Kimberly M.

    2015-07-01

    Agencies have been working to improve their metering data collection, management, and analysis efforts over the last decade (since EPAct 2005) and will continue to address these challenges as new requirements and data needs come into place. Unfortunately there is no one-size-fits-all solution. As agencies continue to expand their capabilities to use metered consumption data to reducing resource use and improve operations, the hope is that shared knowledge will empower others to follow suit. This paper discusses the Federal metering data analysis needs and some existing tools.

  7. Stick-on Electricity Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Stick-on Electricity Meter (SEM) generates current and voltage signals at a set sample rate to enable computation of real and apparent power and to capture harmonics created by ...

  8. ARRA Program Celebrates Milestone 600,000 Smart Meter Installations

    Broader source: Energy.gov [DOE]

    On April 11, 2012, DOE Recovery Act funding recipient Sacramento Municipal Utility District (SMUD) celebrated a major milestone in the development of a regional smart grid in California: the installation of over 600,000 smart meters.

  9. Application for a Certificate of Public Good for Net Metered...

    Open Energy Info (EERE)

    Certificate of Public Good for Net Metered Power Systems that are Non-Photovoltaic Systems Up to 150 kW (AC) in Capacity Jump to: navigation, search OpenEI Reference LibraryAdd to...

  10. Insights from Smart Meters: The Potential for Peak Hour Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Potential for Peak Hour Savings from Behavior-Based Programs Insights from Smart Meters: The Potential for Peak Hour Savings from Behavior-Based Programs This report focuses on ...

  11. Secretary Chu Announces Two Million Smart Grid Meters Installed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    meters are being installed in Ohio and across the country to create a more reliable, modern electrical grid and give consumers the ability to monitor and control their energy...

  12. San Antonio City Public Service (CPS Energy)- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to customers of CPS Energy. There is no aggregate capacity limit or maximum system size. There are also no commissioning fees or facilities charges for customers.

  13. ODUSD (I&E) Facilities Energy Program Advanced Metering Policy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the U.S. Department of Defense's (DoD's) metering policy, including implementation challenges and utility partnerships.

  14. Meeting the "Applied" Accuracy Needs of Energy Metering

    Energy Savers [EERE]

    NOT worst case accuracy of meter * NOT the accuracy as a function of input value Working definition: Average accuracy a user can expect to achieve on the desired measurement that...

  15. Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat

    Broader source: Energy.gov [DOE]

    Smart meters -- just one of the advanced technologies being used to modernize the grid -- are helping Oklahoma businesses and home owners beat high electricity bills not only during these summer months, but year-round.

  16. Smart Meter Investments Yield Positive Results in Maine | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Meter Investments Yield Positive Results in Maine Smart Meter Investments Yield Positive Results in Maine February 28, 2014 - 12:06pm Addthis Since 2009, the U.S. Department of Energy (DOE) and the electricity industry have jointly invested over $7.9 billion in 99 cost-shared Smart Grid Investment Grant (SGIG) projects to modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect an unprecedented level of data on improvements in grid operations and

  17. The Need for Essential Consumer Protections: Smart Metering Proposals and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Move to Time-Based Pricing | Department of Energy Metering Proposals and the Move to Time-Based Pricing The Need for Essential Consumer Protections: Smart Metering Proposals and the Move to Time-Based Pricing There is a widespread consensus that the U.S. distribution and transmission systems for vital electricity service need to be modernized and upgraded to handle not only load growth, but the integration of renewable resources and the potential for a significant increase in

  18. Novel Application of Metering Pump on Diesel Aftertreatment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Novel Application of Metering Pump on Diesel Aftertreatment Novel Application of Metering Pump on Diesel Aftertreatment Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_liu.pdf More Documents & Publications SCR Systems for Heavy Duty Trucks: Progress Towards

  19. WINDExchange: Community-Scale 50-Meter Wind Maps

    Wind Powering America (EERE)

    Community-Scale 50-Meter Wind Maps The U.S. Department of Energy provides 50-meter (m) height, high-resolution wind resource maps for most of the states and territories of Puerto Rico and the Virgin Islands in the United States. Counties, towns, utilities, and schools use community-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites determining a potential site's economic and technical viability. Map of the updated wind resource assessment

  20. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  1. Insights from Smart Meters: Identifying Specific Actions, Behaviors, and

    Office of Environmental Management (EM)

    Characteristics That Drive Savings in Behavior-Based Programs | Department of Energy Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs In this report, we use smart meter data to analyze specific actions, behaviors, and characteristics that drive energy savings in a BB program. Specifically, we examine a

  2. A Meter-Scale Plasma Wakefield Accelerator (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: A Meter-Scale Plasma Wakefield Accelerator Citation Details In-Document Search Title: A Meter-Scale Plasma Wakefield Accelerator No abstract prepared. Authors:...

  3. Metering Best Practices. A Guide to Achieving Utility Resource Efficiency, Release 3.0

    SciTech Connect (OSTI)

    Parker, Steven A.; Hunt, W. D.; McMordie Stoughton, Kate; Boyd, Brian K.; Fowler, Kimberly M.; Koehler, Theresa M.; Sandusky, William F.; Sullivan, Greg P.; Pugh, Ray

    2015-04-05

    DOE FEMP guide for metering best practices aligned with the DOE Metering Guidance revision required by the 12/2013 Presidential Memo.

  4. KCP&L Greater Missouri Operations | Open Energy Information

    Open Energy Info (EERE)

    KCP&L Greater Missouri Operations Jump to: navigation, search Name: KCP&L Greater Missouri Operations Place: Missouri Phone Number: (660) 359-2208 Outage Hotline: (660) 359-2208...

  5. Compensated count-rate circuit for radiation survey meter

    DOE Patents [OSTI]

    Todd, Richard A. (Powell, TN)

    1981-01-01

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  6. Compensated count-rate circuit for radiation survey meter

    DOE Patents [OSTI]

    Todd, R.A.

    1980-05-12

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  7. Smart preamplifier for real-time turbine meter diagnostics

    SciTech Connect (OSTI)

    Breter, J.C.

    1995-12-31

    A new, dual-purpose device for turbine meters, which functions as a traditional signal preamplifier and accomplishes real-time performance diagnostics, is now available. This smart preamplifier (patent pending) utilizes high speed microprocessor technology to continuously monitor and analyze the rotation of a turbine meter rotor. Continuous monitoring allows the device to detect rotational anomalies that can lead to erroneous measurements as they occur. The smart preamplifier works on liquid or gas turbine meters that use a variable reluctance pickup coil for signal generation. This paper will discuss the technology and capabilities of the smart preamplifier. To simplify this discussion, it is assumed that the signal generated will be via a non-rimmed rotor. Thus, the term ``blade`` is used throughout. However, all discussions relevant to signal generation are also true for a rimmed rotor using either buttons or slots for signal generation.

  8. Advanced Metering Implementations - A Perspective from Federal Sector

    SciTech Connect (OSTI)

    Eaarni, Shankar

    2014-08-11

    Federal mandate (EPACT 2005) requires that federal buildings install advanced electrical meters-meters capable of providing data at least daily and measuring the consumption of electricity at least hourly. This work presents selected advanced metering implementations to understand some of the existing practices related to data capture and to understand how the data is being translated into information and knowledge that can be used to improve building energy and operational performance to meet federal energy reduction mandates. This study highlights case studies to represent some of the various actions that are being taken based on the data that are being collected to improve overall energy performance of these buildings. Some of these actions include- individualized tenant billing and energy forecasting, benchmarking, identifying energy conservation measures, measurement and verification.

  9. Recessed impingement insert metering plate for gas turbine nozzles

    DOE Patents [OSTI]

    Itzel, Gary Michael (218 Quail Ridge Dr., Greenville, SC 29680); Burdgick, Steven Sebastian (7006 Kevin La., Schenectady, NY 12303)

    2002-01-01

    An impingement insert sleeve is provided that is adapted to be disposed in a coolant cavity defined through a stator vane. The insert has a generally open inlet end and first and second diametrically opposed, perforated side walls. A metering plate having at least one opening defined therethrough for coolant flow is mounted to the side walls to generally transverse a longitudinal axis of the insert, and is disposed downstream from said inlet end. The metering plate improves flow distribution while reducing ballooning stresses within the insert and allowing for a more flexible insert attachment.

  10. The Need for Essential Consumer Protections: Smart metering proposals and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the move to time-based pricing. August 2010 | Department of Energy metering proposals and the move to time-based pricing. August 2010 The Need for Essential Consumer Protections: Smart metering proposals and the move to time-based pricing. August 2010 There is widespread consensus that the U.S. distribution and transmission systems for vital electricity service need to be modernized and upgraded. This modernization has been recently promoted under the rubric of the Smart Grid. The Smart Grid

  11. WINDExchange: Residential-Scale 30-Meter Wind Maps

    Wind Powering America (EERE)

    Residential-Scale 30-Meter Wind Maps The U.S. Department of Energy provides 30-meter (m) height, high-resolution wind resource maps for the United States. Businesses, farms, and homeowners use residential-scale wind resource maps to identify wind sites that may be appropriate for small-scale wind projects. A wind resource map of the United States. Go to the California wind resource map. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the Idaho wind resource map.

  12. EDD-7 Electric Charge Point Meter test results

    SciTech Connect (OSTI)

    Mersman, C.R.

    1993-09-01

    The results of tests evaluating the electric switching portion of the EDD-7 Electric Charge Point Meter (ECPM) are presented. The ECPM is a modified parking meter that allows the purchase of 120 or 240 volt electric power. The ECPM is designed to make electricity available at any vehicle parking location. The test results indicate that the ECPM operated without failure thru a series of over current and ground fault tests at three different test temperatures. The magnitude of current required to trip the over current protection circuitry varied with temperature while the performance of the ground fault interruption circuitry did not change significantly with the test temperature.

  13. CBEI - Virtual Refrigerant Charge Sensing and Load Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering 2015 Building Technologies Office Peer Review Jim Braun, jbraun@purdue.edu CBEI/Purdue University Project Summary Timeline: Start date: 5/1/2014 Planned end date: 4/30/2016 Key Milestones 1. Accuracy of virtual charge sensor, 4/30/15 2. Accuracy of virtual BTU meter, 4/30/15 Budget: Total DOE $ to date: $400,000 Total future DOE $: $140,000 Target Market/Audience: Commercial buildings with either rooftop units (RTUs) or built-up air-handling

  14. How to Read Your Electric Meter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliances & Electronics » How to Read Your Electric Meter How to Read Your Electric Meter The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The basic unit of measure of electric power is the Watt. One

  15. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  16. Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease

    Energy Savers [EERE]

    Program Breaks Down Barriers for Cincinnati Contractors | Department of Energy The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease Program Breaks Down Barriers for Cincinnati Contractors Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease Program Breaks Down Barriers for Cincinnati Contractors Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease Program Breaks Down Barriers for Cincinnati Contractors, a publication of the U.S.

  17. Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201) |

    Office of Environmental Management (EM)

    Department of Energy Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201) Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201) Better Buildings Residential Network Peer Exchange Call Series: Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201), November 18, 2015, call slides and discussion summary. PDF icon Call Slides and Discussion Summary More Documents & Publications Staged Upgrades as a Strategy for Residential Energy Efficiency What Do You Want

  18. Utility-Scale Smart Meter Deployments, Plans & Proposals | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utility-Scale Smart Meter Deployments, Plans & Proposals Utility-Scale Smart Meter Deployments, Plans & Proposals The Edison Foundation's chart of plans and proposals for utility-scale smart meter deployments. PDF icon Utility-Scale Smart Meter Deployments, Plans & Proposals More Documents & Publications Government Program Briefing: Smart Metering Comments of the New America Foundation's Open Technology Initiative 2014 Smart Grid System Report (August 2014

  19. Microsoft Word - eMeter 10-11-01 Response to DOE RFI.doc

    Office of Environmental Management (EM)

    Addressing Policy and Logistical Challenges to smart grid Implementation: Response to Department of Energy RFI November 1, 2010 eMeter Strategic Consulting Background eMeter is a smart grid software company that provides smart network application platform (SNAP) software to integrate smart meters and smart grid communications networks and devices with utility IT systems. eMeter also provides smart grid application software such as meter data management (MDM) and consumer engagement software.

  20. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  1. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    SciTech Connect (OSTI)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without error bars, which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of random and systematic components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.

  2. Greater Sun Center, Florida: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Greater Sun Center, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.718086, -82.351759 Show Map Loading map... "minzoom":false,"map...

  3. Increasing Reliability of the Nation's Power Grid through Greater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing Reliability of the Nation's Power Grid through Greater Visibility March 22, 2016 - 10:15am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of ...

  4. Greater Sage-Grouse Populations and Energy Development in Wyoming...

    Open Energy Info (EERE)

    development affects greater sage-grouse populations in Wyoming. Authors Renee C. Taylor, Matthew R. Dzialak and Larry D. Hayden-Wing Published Taylor, Dzialak and...

  5. Texas: City of San Antonio Demonstrates Value of Greater Investments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Greater Investments in Clean Energy Texas: City of San Antonio Demonstrates Value ... in efficient and renewable energy and water conservation can create jobs and stimulate ...

  6. Clean Cities: Greater Lansing Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calnin has worked with the Clean Cities initiative since 2007, having supported the Detroit Area coalition as well as the Greater Lansing Area coalition. With a background that...

  7. Dead-time compensation for a logarithmic display rate meter

    DOE Patents [OSTI]

    Larson, J.A.; Krueger, F.P.

    1987-10-05

    An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events. 5 figs.

  8. Dead-time compensation for a logarithmic display rate meter

    DOE Patents [OSTI]

    Larson, John A.; Krueger, Frederick P.

    1988-09-20

    An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events.

  9. DOE prepared for Greater Sage-Grouse designation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR IMMEDIATE RELEASE March 8, 2010 Media Contacts: DOE - Brad Bugger, 208-526-0833 or Tim Jackson, 208-526-8484 S.M. Stoller Corp. - Roger Blew, 208-525-9358 Note to news directors: Photographs of sage-grouse at INL Site are available on request. DOE prepared for Greater Sage-Grouse designation Greater Sage-Grouse male displaying on INL Site lek during early spring. Click on image to enlarge On March 5, the U.S. Fish & Wildlife Service released its findings on a multi-year study of greater

  10. Non-Invasive Energy Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Energy Storage Energy Storage Energy Analysis Energy Analysis Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Non-Invasive Energy Meter Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (805 KB) Technology Marketing SummarySandia has developed an energy monitoring device that measures energy from liquid flow systems (e.g., solar systems) using a simple technique

  11. Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore | Princeton Plasma Physics Lab Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore A novel lithium evaporator for the controlled introduction of lithium into tokamaks for wall conditioning is described. The concept uses a Li granule injector with a heated in-vessel yttrium crucible to evaporate a controlled amount of

  12. Smart Meter Investments Support Rural Economy in Arkansas

    Energy Savers [EERE]

    Smart Meter Investments Support Rural Economy in Arkansas Woodruff Electric Cooperative (Woodruff) serves customers in seven eastern Arkansas counties. The proportion of residents living in poverty in those counties is more than double the national average. As a member-owned rural electric cooperative, Woodruff is connected to its customers and engaged in economic development efforts to bring more jobs and higher incomes to local communities. In order to bring the capital investment and its

  13. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  14. How to Read Residential Electric and Natural Gas Meters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha A digital electric meter on the side of a house. | Photo courtesy of ©iStockphoto/nbehmans A digital electric meter on the side of a house. | Photo courtesy of

  15. Revenue-metering device for HVDC systems. Final report

    SciTech Connect (OSTI)

    Schweitzer, E.O. III; Ando, M.; Aliaga, A.; Baker, R.; Seamans, D.

    1984-05-01

    This final report describes a digital dc revenue metering device for HVDC systems developed by Washington State University researchers under a contract with the Electric Power Research Institute. The device was installed at the Sylmar Converter Station of the Los Angeles Department of Water and Power in November 1981, and has been operating satisfactorily for over 20 months. It uses voltage and current measurements from existing voltage dividers, current transductors, and a current shunt. The energy-computation algorithms are implemented using digital signal processing principles in a single eight-bit microprocessor (Motorola MC6809). The algorithms accommodate the different characteristics of the sensors, and tolerate the unavailability of some of the sensors, with some loss in accuracy. Comparisons of the dc Revenue Meter energy measurements with the ac revenue meter measurements plus the station losses reveal a 0.1 percent difference in one pole and a one percent difference in the other pole, for a net difference of about one-half percent.

  16. Greater Ohio Ethanol LLC GO Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ohio Ethanol LLC GO Ethanol Jump to: navigation, search Name: Greater Ohio Ethanol, LLC (GO Ethanol) Place: Lima, Ohio Zip: OH 45804 Product: GO Ethanol is a pure play ethanol...

  17. Setting the Stage for Greater Renewable Energy Penetration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Setting the Stage for Greater Renewable Energy Penetration Setting the Stage for Greater Renewable Energy Penetration January 10, 2013 - 2:27pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. With the advent of supercomputing networks and advances in high-speed data processing, new opportunities to simulate and test the complicated business of integrating renewable energy into the grid will soon enable utilities to accurately

  18. NREL: News - Hybrid Buses Operate With Lower Emissions, Greater Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Hybrid Buses Operate With Lower Emissions, Greater Fuel Efficiency Golden, Colo., August 1, 2002 A recently released study by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) concludes that hybrid buses operate with lower emissions and greater fuel efficiency than conventional diesel buses. The yearlong evaluation of 10 prototype diesel hybrid-electric buses in the Metropolitan Transportation Authority's New York City Transit (NYCT) fleet of

  19. Cooperation Among Balancing Authorities Offers Greater Use of Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy with Lower Integration Costs | Department of Energy Cooperation Among Balancing Authorities Offers Greater Use of Renewable Energy with Lower Integration Costs Cooperation Among Balancing Authorities Offers Greater Use of Renewable Energy with Lower Integration Costs May 1, 2012 - 3:10pm Addthis This is an excerpt from the Second Quarter 2012 edition of the Wind Program R&D Newsletter. Since February 2010, the Variable Generation Subcommittee at the Western Electricity

  20. Thirteen States Receive Energy Department Awards to Drive Greater Energy

    Energy Savers [EERE]

    Efficiency, Save Money | Department of Energy States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money Thirteen States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money November 26, 2013 - 2:44pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on the Obama Administration's efforts to double energy productivity by 2030 and help communities save on energy bills, the Energy Department today awarded nearly $4 million to

  1. Thirteen States Receive Energy Department Awards to Drive Greater Energy

    Energy Savers [EERE]

    Efficiency, Save Money | Department of Energy Thirteen States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money Thirteen States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money November 26, 2013 - 12:00am Addthis Building on the Obama Administration's efforts to double energy productivity by 2030 and help communities save on energy bills, the Energy Department today awarded nearly $4 million to 13 states to increase statewide

  2. Training Reciprocity Achieves Greater Consistency, Saves Time and Money for

    Energy Savers [EERE]

    Idaho, Other DOE Sites | Department of Energy Training Reciprocity Achieves Greater Consistency, Saves Time and Money for Idaho, Other DOE Sites Training Reciprocity Achieves Greater Consistency, Saves Time and Money for Idaho, Other DOE Sites November 26, 2013 - 12:00pm Addthis IDAHO FALLS, Idaho - Contracting companies supporting EM's cleanup program at the Idaho site volunteered to be among the first to use a new DOE training reciprocity program designed to bring more consistency to

  3. Study: Environmental Benefits of LEDs Greater Than CFLs | Department of

    Energy Savers [EERE]

    Energy Study: Environmental Benefits of LEDs Greater Than CFLs Study: Environmental Benefits of LEDs Greater Than CFLs December 9, 2013 - 4:13pm Addthis A three-part Energy Department-funded study indicates LEDs are more environmentally friendly than compact fluorescent and incandescent lights. | Energy Department graphic A three-part Energy Department-funded study indicates LEDs are more environmentally friendly than compact fluorescent and incandescent lights. | Energy Department graphic

  4. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Environmental Management (EM)

    Tips: Smart Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and...

  5. Status of Net Metering: Assessing the Potential to Reach Program Caps

    SciTech Connect (OSTI)

    Heeter, J.; Gelman, R.; Bird, L.

    2014-09-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  6. United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters

    Broader source: Energy.gov [DOE]

    Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.

  7. Status of Net Metering: Assessing the Potential to Reach Program Caps (Poster)

    SciTech Connect (OSTI)

    Heeter, J.; Bird, L.; Gelman, R.

    2014-10-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  8. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data Solutia, Inc. has a long history with sub-metering, dating back to the construction of some of its frst manufacturing plants in the late 1950s by its then parent company, Monsanto. A progressive technology, sub-metering is the installation of metering devices to measure actual energy consumption for individual pieces of equipment or other loads. As part of its aggressive corporate sustainability goals, Solutia

  9. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing

  10. Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.

    2012-07-25

    This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

  11. The magnetic flywheel flow meter: Theoretical and experimental contributions

    SciTech Connect (OSTI)

    Buchenau, D., E-mail: d.buchenau@hzdr.de; Galindo, V.; Eckert, S. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrae 400, 01328 Dresden (Germany)

    2014-06-02

    The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962 a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

  12. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update (EIA)

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate

  13. Dr. Bill Brinkman: Working Towards Greater Energy Security | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Dr. Bill Brinkman: Working Towards Greater Energy Security September 7, 2012 Tweet Widget Google Plus One Share on Facebook International Innovation, September 2012 International Innovation, September 2012 The director of the DOE's Office of Science is profiled in International Innovation magazine and discusses how his office, as the country's single largest supporter of basic research in the physical sciences, is the prime supporter of research in fusion energy sciences.

  14. Eight Approaches to Enable Greater Energy Efficiency: A Guide for

    Office of Environmental Management (EM)

    Eight Approaches to Enable Greater Energy Efficiency: A Guide for State Government Officials Prepared by The National Council on Electricity Policy November 2009 NATIONAL COUNCIL ON ELECTRICITY POLICY MEMBER ORGANIZATIONS The National Council on Electricity Policy (National Council) is a unique venture between the National Association of Regulatory Utility Commissioners (NARUC), the National Association of State Energy Officials (NASEO), the National Conference of State Legislatures (NCSL),

  15. Greater Green River basin well-site selection

    SciTech Connect (OSTI)

    Frohne, K.H.; Boswell, R.

    1993-12-31

    Recent estimates of the natural gas resources of Cretaceous low-permeability reservoirs of the Greater Green River basin indicate that as much as 5000 trillion cubic feet (Tcf) of gas may be in place (Law and others 1989). Of this total, Law and others (1989) attributed approximately 80 percent to the Upper Cretaceous Mesaverde Group and Lewis Shale. Unfortunately, present economic conditions render the drilling of many vertical wells unprofitable. Consequently, a three-well demonstration program, jointly sponsored by the US DOE/METC and the Gas Research Institute, was designed to test the profitability of this resource using state-of-the-art directional drilling and completion techniques. DOE/METC studied the geologic and engineering characteristics of ``tight`` gas reservoirs in the eastern portion of the Greater Green River basin in order to identify specific locations that displayed the greatest potential for a successful field demonstration. This area encompasses the Rocks Springs Uplift, Wamsutter Arch, and the Washakie and Red Desert (or Great Divide) basins of southwestern Wyoming. The work was divided into three phases. Phase 1 consisted of a regional geologic reconnaissance of 14 gas-producing areas encompassing 98 separate gas fields. In Phase 2, the top four areas were analyzed in greater detail, and the area containing the most favorable conditions was selected for the identification of specific test sites. In Phase 3, target horizons were selected for each project area, and specific placement locations were selected and prioritized.

  16. Gas flow meter and method for measuring gas flow rate

    DOE Patents [OSTI]

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  17. Deployable telescope having a thin-film mirror and metering structure

    DOE Patents [OSTI]

    Krumel, Leslie J. (Cedar Crest, NM); Martin, Jeffrey W. (Albuquerque, NM)

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  18. Demand Response and Smart Metering Policy Actions Since the Energy Policy

    Energy Savers [EERE]

    Act of 2005: A Summary for State Officials | Department of Energy Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating

  19. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. Millions of smart meters have been installed across the

  20. Fuel Quality and Metering: Current Status and Future Needs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Metering: Current Status and Future Needs Fuel Quality and Metering: Current Status and Future Needs These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. PDF icon fuelquality_metering_ostw.pdf More Documents & Publications Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 BILIWG Meeting: DOE Hydrogen Quality Working Group Update

  1. The Intersection of Net Metering and Retail Choice: An Overview of Policy,

    Energy Savers [EERE]

    Practice and Issues | Department of Energy Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues In this report, the authors studied different facets of crediting mechanisms, and defined five different theoretical models describing different ways competitive suppliers and utilities provide net metering options for their customers. They then provided case studies

  2. NIST Releases Test Framework for Upgrading of Smart Meters | Department of

    Office of Environmental Management (EM)

    Energy Releases Test Framework for Upgrading of Smart Meters NIST Releases Test Framework for Upgrading of Smart Meters July 12, 2012 - 10:46am Addthis The National Institute of Standards and Technology (NIST) has released a draft set of guidelines that will help utilities test their procedures for upgrading their smart meters securely from a remote location and determine whether their procedures conform with the National Electrical Manufacturers Association (NEMA) Standard for Smart Grid

  3. Experience in the Application of Single-Beam Ultrasonic Flow Meters for Turbines

    SciTech Connect (OSTI)

    Krasilnikov, A. M.; Dmitriev, S. G.; Karyakin, V. A.

    2002-03-15

    Experience in the use of ultrasonic flow meters at the Bratskaya and Vilyuiskaya HPP is described. The article is of interest to field engineers.

  4. The Impact of Rate Design and Net Metering on the Bill Savings...

    Open Energy Info (EERE)

    Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Jump to: navigation, search Tool Summary...

  5. Nissan North America: How Sub-Metering Changed the Way a Plant Does

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business | Department of Energy North America: How Sub-Metering Changed the Way a Plant Does Business Nissan North America: How Sub-Metering Changed the Way a Plant Does Business This case study describes how Nissan North America uses sub-meters to measure a range of variables at its U.S. plants, including electricity and compressed air, and identify opportunities to reduce energy consumption. PDF icon Nissan North America: How Sub-Metering Changed the Way a Plant Does Business (June 2011)

  6. Sandia Energy - NASA's Solar Tower Test of the 1-Meter Aeroshell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA's Solar Tower Test of the 1-Meter Aeroshell Home Videos Renewable Energy Energy Facilities Partnership News Concentrating Solar Power Solar National Solar Thermal Test...

  7. Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters This Fuel Cell Technologies Office document presents a summary of information gathered on the current status and needs for high-accuracy hydrogen meters, from a 2012 Request for Information (RFI) and other sources. PDF icon Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters More Documents & Publications Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling

  8. How Would You Use a Smart Meter to Manage Your Energy Use? | Department of

    Energy Savers [EERE]

    Energy How Would You Use a Smart Meter to Manage Your Energy Use? How Would You Use a Smart Meter to Manage Your Energy Use? May 19, 2011 - 7:30am Addthis On Monday, Andrea told you about smart meters and how they can help you monitor your home's energy usage. How would you use a smart meter to manage your energy use? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy

  9. NREL Tool Finds Effective Behind-the-Meter Energy Storage Configuratio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Finds Effective Behind-the-Meter Energy Storage Configurations Small battery systems can offer attractive return on investment March 9, 2015 The Energy Department's (DOE) ...

  10. DOE Publishes New Report on the Performance of Flicker Meters | Department

    Office of Environmental Management (EM)

    of Energy New Report on the Performance of Flicker Meters DOE Publishes New Report on the Performance of Flicker Meters February 23, 2016 - 9:46am Addthis The U.S. Department of Energy (DOE) has published a report on the performance of newly commercially available flicker meters. The purpose of the study was simply to report on the availability and performance of these meters. Flicker is garnering increased attention across the lighting community, and gaining a better understanding of why

  11. Electricity Submetering on the Cheap: Stick-on Electricity Meters

    SciTech Connect (OSTI)

    Lanzisera, Steven; Lorek, Michael; Pister, Kristofer

    2014-08-17

    We demonstrate a low-cost, 21 x 12 mm prototype Stick-on Electricity Meter (SEM) to replace traditional in-circuit-breaker-panel current and voltage sensors for building submetering. A SEM sensor is installed on the external face of a circuit breaker to generate voltage and current signals. This allows for the computation of real and apparent power as well as capturing harmonics created by non-linear loads. The prototype sensor is built using commercially available components, resulting in a production cost of under $10 per SEM. With no highvoltage install work requiring an electrician, home owners or other individuals can install the system in a few minutes with no safety implications. This leads to an installed system cost that is much lower than traditional submetering technology.. Measurement results from lab characterization as well as a real-world residential dwelling installation are presented, verifying the operation of our proposed SEM sensor. The SEM sensor can resolve breaker power levels below 10W, and it can be used to provide data for non-intrusive load monitoring systems at full sample rate.

  12. Ash level meter for a fixed-bed coal gasifier

    DOE Patents [OSTI]

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  13. Smart Meter Driven Segmentation: What Your Consumption Says About You

    SciTech Connect (OSTI)

    Albert, A; Rajagopal, R

    2013-11-01

    With the rollout of smart metering infrastructure at scale, demand-response (DR) programs may now be tailored based on users' consumption patterns as mined from sensed data. For issuing DR events it is key to understand the inter-temporal consumption dynamics as to appropriately segment the user population. We propose to infer occupancy states from consumption time series data using a hidden Markov model framework. Occupancy is characterized in this model by 1) magnitude, 2) duration, and 3) variability. We show that users may be grouped according to their consumption patterns into groups that exhibit qualitatively different dynamics that may be exploited for program enrollment purposes. We investigate empirically the information that residential energy consumers' temporal energy demand patterns characterized by these three dimensions may convey about their demographic, household, and appliance stock characteristics. Our analysis shows that temporal patterns in the user's consumption data can predict with good accuracy certain user characteristics. We use this framework to argue that there is a large degree of individual predictability in user consumption at a population level.

  14. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  15. Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use

    SciTech Connect (OSTI)

    McCoskey, Jacob K.

    2014-01-22

    This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 C and 60 C. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

  16. "I'd Like to Check Out Two Books, One DVD, and One Electrical Meter, Please."

    Broader source: Energy.gov [DOE]

    Yesterday I wrote about my experience using a digital electrical meter at home. Today I'll discuss what I'm doing with promoting their use in my home town.

  17. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach ...

  18. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 27, 2014 - 8:13pm Addthis The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home --...

  19. Five Million Smart Meters Installed Nationwide is Just the Beginning of

    Energy Savers [EERE]

    Smart Grid Progress | Department of Energy Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress Five Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress June 13, 2011 - 1:55pm Addthis A 21st Century Grid includes increasing the overall efficiency of our generating, transmission and distribution system to facilitate the growth of renewable energy sources. | Energy Department Image A 21st Century Grid includes increasing the

  20. Mapping Battery Activity at the Level of a Billionth of a Meter - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Mapping Battery Activity at the Level of a Billionth of a Meter Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryAn ORNL method and apparatus offer a new approach to revealing battery behavior at the nanoscale. With this invention, researchers successfully mapped lithium diffusivity and electrochemical activity, showing how the battery works at the level of a billionth of a meter. Future energy technologies will rely heavily on

  1. Application of IEEE Standard 519-1992 harmonic limits for revenue billing meters

    SciTech Connect (OSTI)

    Arseneau, R.; Heydt, G.T.; Kempker, M.J.

    1997-01-01

    This paper identifies the potential for billing inequities at harmonic generating loads due to different measuring methods implemented in revenue meters. Potential problems are almost exclusively in the commercial and industrial sectors where demand and power factor charges are common. Field data are used to illustrate that compliance with IEEE Standard 519-1992 reduces the possibility of meter reading differences thus promoting a more equitable treatment of all customers.

  2. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Environmental Management (EM)

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  3. A Methodology for the Assessment of Unconventional (Continuous) Resources with an Application to the Greater Natural Buttes Gas Field, Utah

    SciTech Connect (OSTI)

    Olea, Ricardo A.; Cook, Troy A.; Coleman, James L.

    2010-12-15

    The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of the main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes. A second approach illustrates the application of multiple-point simulation to assess a hypothetical frontier area for which there is no production information but which is regarded as being similar to Greater Natural Buttes.

  4. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect (OSTI)

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying; Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  5. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  6. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  7. Development and field evaluation of revenue metering device for HVDC Systems

    SciTech Connect (OSTI)

    Schweitzer, E.O.; Aliga, A.; Ando, M.; Baker, R.A.; Seamans, D.A.

    1985-02-01

    A prototype dc revenue metering device was developed under sponsorship of the Electrical Power Research Institute. The device was installed at the Sylmar Converter Station of the Pacific HVDC Intertie, owned by the Los Angeles Department of Water and Power (host utility) in November 1981, and has been operating satisfactorily for over two years. It uses voltage and current measurements from existing voltage dividers, current transductors, and a current shunt. The energy-computation algorithms are implemented using signal processing principles in a single eight-bit microprocessor. The algorithms accommodate the different characteristics of the sensors, and tolerate the unavailability of some of the sensors, with some loss in accuracy. Comparisons of the dc revenue meter energy measurements with the ac revenue meter measurements plus the station losses (estimated by the host utility) reveal a 0.1 percent difference in one pole and a one percent difference in the other pole, for a net difference of about one-half percent.

  8. OTRA-THS MAC to reduce Power Outage Data Collection Latency in a smart meter network

    SciTech Connect (OSTI)

    Garlapati, Shravan K; Kuruganti, Phani Teja; Buehrer, Richard M; Reed, Jeffrey H

    2014-01-01

    The deployment of advanced metering infrastructure by the electric utilities poses unique communication challenges, particularly as the number of meters per aggregator increases. During a power outage, a smart meter tries to report it instantaneously to the electric utility. In a densely populated residential/industrial locality, it is possible that a large number of smart meters simultaneously try to get access to the communication network to report the power outage. If the number of smart meters is very high of the order of tens of thousands (metropolitan areas), the power outage data flooding can lead to Random Access CHannel (RACH) congestion. Several utilities are considering the use of cellular network for smart meter communications. In 3G/4G cellular networks, RACH congestion not only leads to collisions, retransmissions and increased RACH delays, but also has the potential to disrupt the dedicated traffic flow by increasing the interference levels (3G CDMA). In order to overcome this problem, in this paper we propose a Time Hierarchical Scheme (THS) that reduces the intensity of power outage data flooding and power outage reporting delay by 6/7th, and 17/18th when compared to their respective values without THS. Also, we propose an Optimum Transmission Rate Adaptive (OTRA) MAC to optimize the latency in power outage data collection. The analysis and simulation results presented in this paper show that both the OTRA and THS features of the proposed MAC results in a Power Outage Data Collection Latency (PODCL) that is 1/10th of the 4G LTE PODCL.

  9. Improvements to the Rocky Flats Metrology Laboratories Velocity Meter Calibration System

    SciTech Connect (OSTI)

    Abercrombie, K.R.

    1992-03-12

    The Rocky Flats Standards Laboratory has undertaken a project to improve calibration of air velocity meters by reducing the uncertainty of the Velocity Meter Calibration System. The project was accomplished by analyzing the governing equation in order to determine which areas within the system contributed most to the overall system uncertainty. Then, based upon this new analysis, new components were selected to replace the components identified in the analysis. Finally, the system was re-evaluated to determine the new systematic uncertainty for the system.

  10. Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

    2011-08-17

    This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

  11. WINDExchange: Utility-Scale Land-Based 80-Meter Wind Maps

    Wind Powering America (EERE)

    Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the

  12. WINDExchange: Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource

    Wind Powering America (EERE)

    Map Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource Map Puerto Rico and U.S. Virgin Islands wind resource map. Click on the image to view a larger version. Enlarge image This Puerto Rico wind map and the U.S. Virgin Islands wind map shows the wind resource at 50 meters. Download a printable

  13. Revenue metering error caused by induced voltage from adjacent transmission lines

    SciTech Connect (OSTI)

    Hughes, M.B. )

    1992-04-01

    A large zero sequence voltage was found to have been induced onto a 138 kV line from adjacent 500 kV lines where these share the same transmission right-of-way. This zero sequence voltage distorted the 2-1/2-element revenue metering schemes used for two large industrial customer supplied directly from the affected 138 kV line. As a result, these two customers were overcharged, on average, approximately 3.5% for 15 years. This paper describes the work done to trace the origins of the zero sequence voltage, quantify the metering error, and calculate customer refunds which, in the end, totalled $4 million.

  14. Microsoft PowerPoint - 03.2010_Metering Billing MDM America.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    METERING BILLING/MDM AMERICA Back-up Generation Sources (BUGS) Prepared by Steve Pullins March 9, 2010 Metering, Billing/MDM America - San Diego, CA This material is based upon work supported by the Department of Energy under Award Number DE- Department of Energy under Award Number DE AC26-04NT41817 This presentation was prepared as an account of work sponsored by an agency of This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the

  15. Radiation dose-rate meter using an energy-sensitive counter

    DOE Patents [OSTI]

    Kopp, Manfred K. (Oak Ridge, TN)

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  16. Hanford Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Shipped Four Months Ahead of Schedule

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. The U.S. Department of Energy (DOE) at Hanford surpassed a Tri-Party Agreement Milestone by four months in shipping 1,000 cubic meters of transuranic waste off the Hanford Site in route to the Waste Isolation Pilot Plant (WIPP) in New Mexico before September 30, 2011.

  17. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data

    Broader source: Energy.gov [DOE]

    This case study describes how Solutia uses sub-meters at all of its U.S. facilities to understand how equipment is running and to identify quick and inexpensive energy efficiency solutions, like reducing the run-time for a compressed air system at its Trenton, Michican plant.

  18. Net Metering

    Broader source: Energy.gov [DOE]

    * The PSC regulates investor-owned utilities and electric cooperatives in Louisiana; it does not regulate municipal-owned utilities, and its rules thereby do not apply to municipal utilities....

  19. Net Metering

    Broader source: Energy.gov [DOE]

    Customer net excess generation (NEG) is carried forward at the utility's retail rate (i.e., as a kilowatt-hour credit) to a customer's next bill for up to 12 months. At the end of a 12-month...

  20. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On May 12, 2015 Georgia's governor signed House Bill 57 which allows residential and commercial customers to enter into third party financing deals for solar systems.

  1. Fission meter

    DOE Patents [OSTI]

    Rowland, Mark S. (Alamo, CA); Snyderman, Neal J. (Berkeley, CA)

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* At the beginning of the calendar year, a utility will purchase any...

  3. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Ongoing issues related to Minnesota's Community Solar Garden rules and program implementation are being considered in Docket No. E002/M-13-867. This entry will be updated as necessary to...

  4. State of Indiana/Greater IN Clean Cities Alternative Fuels Implementat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications State of IndianaGreater IN Clean Cities Alternative Fuels Implementation Plan State of IndianaGICC Alternative Fuels Implementation Plan North ...

  5. State of Indiana/Greater IN Clean Cities Alternative Fuels Implementat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications State of IndianaGreater IN Clean Cities Alternative Fuels Implementation Plan State of IndianaGICC Alternative Fuels Implementation Plan Utah Clean ...

  6. Are We Heading Towards a Reversal of the Trend for Ever-Greater...

    Open Energy Info (EERE)

    Mobility? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Are We Heading Towards a Reversal of the Trend for Ever-Greater Mobility? AgencyCompany Organization:...

  7. Chapter 9, Metering Cross-Cutting Protocols: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Metering Cross- Cutting Protocols Dan Mort, ADM Associates, Inc. Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 9 - 1 Chapter 9 - Table of Contents 1 Introduction ............................................................................................................................ 3 2 Metering Application and Considerations

  8. The SNL100-01 blade : carbon design studies for the Sandia 100-meter blade.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  9. Non-invasive energy meter for fixed and variable flow systems

    DOE Patents [OSTI]

    Menicucci, David F.; Black, Billy D.

    2005-11-01

    An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising: attaching a first temperature sensor for connection to an outside of the first conduit segment; attaching a second temperature sensor for connection to an outside of the second conduit segment; via a programmable control unit, receiving data from the sensors and calculating energy data therefrom; and communicating energy data from the meter; whereby the method and apparatus operate without need to temporarily disconnect or alter the first or second conduit segments. The invention operates with both variable and fixed flow systems, and is especially useful for both active and passive solar energy systems.

  10. Deployment of High Resolution Real-Time Distribution Level Metering on Maui: Preprint

    SciTech Connect (OSTI)

    Bank, J.

    2013-01-01

    In order to support the ongoing Maui Smart Grid demonstration project advanced metering has been deployed at the distribution transformer level in Maui Electric Company's Kihei Circuit on the Island of Maui. This equipment has been custom designed to provide accurately time-stamped Phasor and Power Quality data in real time. Additionally, irradiance sensors have been deployed at a few selected locations in proximity to photovoltaic (PV) installations. The received data is being used for validation of existing system models and for impact studies of future system hardware. Descriptions of the hardware and its installation, and some preliminary metering results are presented. Real-time circuit visualization applications for the data are also under development.

  11. Optical voltage and current sensors used in a revenue metering system

    SciTech Connect (OSTI)

    Cease, T.W.; Driggans, J.G. ); Weikel, S.J. )

    1991-10-01

    This paper discusses the development of an optical voltage sensor as part of an all optic or Faraday effect was used to implement a Magneto-Optic Voltage Transducer (MOVT) to measure voltage by sensing the current flow through a capacitor connected from a 161 kV transmission line to ground. The current sensor was a Magneto-Optic Current Transducer (MOCT), developed previously. The unique design of the voltage sensors using the magneto-optic effects allows the implementation of that revenue metering system using all optical sensors. This method of measuring voltage was previously unproven. The components of the all optical sensor revenue metering system, the site installation, and the data acquisition system used to monitor the system are described. Decisions leading to the design of the MOVT are discussed.

  12. Digital revenue metering algorithm: development, analysis, implementation, testing, and evaluation. Final report

    SciTech Connect (OSTI)

    Schweitzer III, E.O.; To, H.W.; Ando, M.

    1980-11-01

    A digital revenue metering algorithm is described. The algorithm has been tested in a microcomputer system using two 8-bit MC6800 microprocessors and 12-bit analog-to-digital converters. The tests show that the system meets the accuracy requirements of ANSI C12-1975. The algorithm demands modest computing requirements and low data sampling rates. The algorithm uses Walsh-functions and will operate with as few as 4 samples per 60-Hz cycle. For proper response to odd harmonic frequencies, higher sampling rates must be used. Third harmonic power can be handled with an 8-sample per cycle Walsh function. However, even harmonics are effectively suppressed by the algorithm. The developed algorithm is intended for use in digital data acquisition systems for substations where interchange metering is required.

  13. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect (OSTI)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  14. The Economic Value of PV and Net Metering to Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-05-17

    In this paper, we analyze the bill savings from PV for residential customers of the California's two largest electric utilities, under existing net metering tariffs as well as under several alternative compensation mechanisms. We find that economic value of PV to the customer is dependent on the structure of the underlying retail electricity rate and can vary quite significantly from one customer to another. In addition, we find that the value of the bill savings from PV generally declines with PV penetration level, as increased PV generation tends to offset lower-priced usage. Customers in our sample from both utilities are significantly better off with net metering than with a feed-in tariff where all PV generation is compensated at long-run avoided generation supply costs. Other compensation schemeswhich allow customers to displace their consumption with PV generation within each hour or each month, and are also based on the avoided costs, yield similar value to the customer as net metering.

  15. Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) | Department of

    Energy Savers [EERE]

    Energy Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. On February 17, 2011, DOE issued the Draft Environmental Impact Statement (EIS) for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW)

  16. DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal

    Energy Savers [EERE]

    | Department of Energy to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal July 20, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will evaluate disposal options for Greater Than Class C (GTCC) low-level radioactive waste (LLW) generated from the decommissioning of nuclear power plants, medical activities and nuclear research. DOE delivered to

  17. Model Examines Cumulative Impacts of Wind Energy Development on the Greater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sage-Grouse | Department of Energy Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse March 31, 2014 - 11:34am Addthis Photo of a sage grouse. The U.S. Department of Energy's (DOE's) Argonne National Laboratory developed a spatially explicit individual-based model for examining the cumulative impacts of wind energy development on populations and habitats of the greater

  18. Draft Environmental Impact Statement for the Disposal of Greater-Than-Class

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C Low-Level Radioactive Waste and GTCC-Like Waste | Department of Energy Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste February 18, 2011 - 12:00pm Addthis WASHINGTON - The Department of Energy (DOE) has issued a Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C

  19. EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy GTCC-like Waste | Department of Energy 5: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste Summary This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C

  20. EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and

    Office of Environmental Management (EM)

    Department of Energy GTCC-like Waste | Department of Energy 5: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste Summary This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C

  1. Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has prepared this Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (Draft...

  2. Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW) and GTCC-Like Waste (Draft EIS, DOEEIS-0375D) for public review and comment. DOE is inviting public...

  3. Eight Approaches to Enable Greater Energy Efficiency: A Guide for State

    Energy Savers [EERE]

    Government Officials. November 2009 | Department of Energy Eight Approaches to Enable Greater Energy Efficiency: A Guide for State Government Officials. November 2009 Eight Approaches to Enable Greater Energy Efficiency: A Guide for State Government Officials. November 2009 The National Council on Electricity Policy (National Council) is a unique venture between the National Association of Regulatory Utility Commissioners (NARUC), the National Association of State Energy Officials (NASEO),

  4. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  5. OVERCOMING THE METER BARRIER AND THE FORMATION OF SYSTEMS WITH TIGHTLY PACKED INNER PLANETS (STIPs)

    SciTech Connect (OSTI)

    Boley, A. C.; Morris, M. A.; Ford, E. B.

    2014-09-10

    We present a solution to the long outstanding meter barrier problem in planet formation theory. As solids spiral inward due to aerodynamic drag, they will enter disk regions that are characterized by high temperatures, densities, and pressures. High partial pressures of rock vapor can suppress solid evaporation, and promote collisions between partially molten solids, allowing rapid growth. This process should be ubiquitous in planet-forming disks, which may be evidenced by the abundant class of Systems with Tightly packed Inner Planets discovered by the NASA Kepler Mission.

  6. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  7. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment of Behind-The- Meter Energy Storage for Demand Charge Reduction J. Neubauer and M. Simpson Technical Report NREL/TP-5400-63162 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy

  8. Google's looking smarter about advanced metering than long-laboring utilities

    SciTech Connect (OSTI)

    2009-07-15

    In late May, Google announced a partnership with eight utilities in six states in the U.S. plus Canada and India to enable roughly 10 million customers to 'access detailed information on their home energy use.' What is different about the new product is that consumers can view simple graphical displays of their power usage more or less in real time from anywhere there is access to the Internet. That may ultimately turn PowerMeter into a powerful tool to manage electricity consumption on truly large scale and at very low cost.

  9. Insights from Smart Meters: The Potential for Peak Hour Savings from

    Office of Environmental Management (EM)

    Behavior-Based Programs | Department of Energy The Potential for Peak Hour Savings from Behavior-Based Programs Insights from Smart Meters: The Potential for Peak Hour Savings from Behavior-Based Programs This report focuses on one example of the value that analysis of this data can provide: insights into whether BB efficiency programs have the potential to provide peak-hour energy savings. This is important because there is increasing interest in using BB programs as a stand-alone peak

  10. Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

    1994-09-01

    This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ``unpackaged`` volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste.

  11. Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage Paul Denholm and Mark Mehos Technical Report NREL/TP-6A20-52978 November 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Enabling Greater

  12. Texas: City of San Antonio Demonstrates Value of Greater Investments in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy | Department of Energy Texas: City of San Antonio Demonstrates Value of Greater Investments in Clean Energy Texas: City of San Antonio Demonstrates Value of Greater Investments in Clean Energy August 21, 2013 - 12:00am Addthis The City of San Antonio has a sound strategy in place to ensure that their Energy Efficiency and Conservation Block Grant (EECBG) projects are successful and viable in the long term. Each project was designed to align and build on the goals and objectives

  13. PHY and MAC Layer Design of Hybrid Spread Spectrum Based Smart Meter Network

    SciTech Connect (OSTI)

    Kuruganti, Phani Teja

    2012-01-01

    The smart grid is a combined process of revitalizing the traditional power grid applications and introducing new applications to improve the efficiency of power generation, transmission and distribution. This can be achieved by leveraging advanced communication and networking technologies. Therefore the selection of the appropriate communication technology for different smart grid applications has been debated a lot in the recent past. After comparing different possible technologies, a recent research study has arrived at a conclusion that the 3G cellular technology is the right choice for distribution side smart grid applications like smart metering, advanced distribution automation and demand response management system. In this paper, we argue that the current 3G/4G cellular technologies are not an appropriate choice for smart grid distribution applications and propose a Hybrid Spread Spectrum (HSS) based Advanced Metering Infrastructure (AMI) as one of the alternatives to 3G/4G technologies. We present a preliminary PHY and MAC layer design of a HSS based AMI network and evaluate their performance using matlab and NS2 simulations. Also, we propose a time hierarchical scheme that can significantly reduce the volume of random access traffic generated during blackouts and the delay in power outage reporting.

  14. Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    Duren, Mike; Aldridge, Hal; Abercrombie, Robert K; Sheldon, Frederick T

    2013-01-01

    Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution and management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.

  15. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    SciTech Connect (OSTI)

    Sandercock, Brett K.

    2013-05-22

    This report summarizes the results of a seven-year, DOE-funded research project, conducted by researchers from Kansas State University and the National Wind Coordinating Collaborative, to assess the effects of wind energy development in Kansas on the population and reproduction of greater prairie chickens.

  16. DOE Issues Final Environmental Impact Statement for Disposal of Greater-Than-Class C Waste

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – The U.S. Department of Energy (DOE) today issued a Final Environmental Impact Statement (EIS) that evaluates the potential environmental impacts associated with the proposed development, operation, and long-term management of one or more disposal facilities for greater-than-class C (GTCC) low-level radioactive waste (LLRW).

  17. Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Release 2.0

    SciTech Connect (OSTI)

    Sullivan, Greg; Hunt, W. D.; Pugh, Ray; Sandusky, William F.; Koehler, Theresa M.; Boyd, Brian K.

    2011-08-31

    This release is an update and expansion of the information provided in Release 1.0 of the Metering Best Practice Guide that was issued in October 2007. This release, as was the previous release, was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government's implementation of sound cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Acts of 1992 and 2005, the Energy Independence and Security Act (EISA) of 2007, and the goals that have been established in Executive Orders 13423 and 13514 - and also those practices that are inherent in sound management of Federal financial and personnel resources.

  18. Hydrology of the Greater Tongonan geothermal system, Philippines, as deduced from geochemical and isotopic data

    SciTech Connect (OSTI)

    Alvis-Isidro, R.R.; Solana, R.R.; D`amore, F.; Nuti, S.; Gonfiantini, R.

    1993-10-01

    Fluids in the Greater Tongonan geothermal system exhibit a large positive {sup 18}O shift from the Leyte meteoric water line. However, there is also a significant shift in {sup 2}H. The {delta}{sup 2}H-{delta}{sup 18}O plot shows that the geothermal fluids may be derived by the mixing of meteoric water with local magmatic water. The most enriched water in the Greater Tongonan system, in terms of {delta}{sup 18}O, {delta}{sup 2}H and Cl, is comprised of approximately 40% magmatic water. Baseline isotope results support a hydrogeochemical model in which there is increasing meteoric water dilution to the southeast, from Mahiao to Sambaloran and towards Malitbog. The Cl-{delta}{sup 18}O plot confirms that the geothermal fluid in Mahanagdong, further southeast, is distinct from that of the Mahiao-Sambaloran-Malitbog system.

  19. NREL: Climate Neutral Research Campuses - Campus-Wide Measures Have Greater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Campus-Wide Measures Have Greater Potential Pursuing climate neutrality on research campuses fits into the bigger picture of addressing the impacts of climate change and fossil-fuel depletion. International scientific bodies addressing climate change are calling for reductions of carbon emissions of 80% by 2050. Because of their size and complexity, research campuses are well positioned to take advantage of campus-wide efficient energy systems. For example, many campuses have

  20. Draft Greater Than Class C EIS Public Hearings to Come to Pasco, WA and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portland, WA May 17th and 19th. The United States Department of Energy (DOE), Office of Environmental Management (EM), is preparing an Environmental Impact Statement (EIS) for disposal of Greater-Than-Class C Low-Level Radioactive Waste (GTCC LLRW). The EIS evaluates potential alternatives involving various disposal methods for application at six federally owned sites and generic commercial sites. (See Overview Below). Upcoming Public Hearings DOE will hold hearings in the following

  1. State of Indiana/Greater IN Clean Cities Alternative Fuels Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt050_ti_flynn_2012_o.pdf More Documents & Publications State of Indiana/Greater IN Clean Cities Alternative Fuels Implementation Plan State of Indiana/GICC Alternative Fuels Implementation Plan North Central Texas Council of Governments’ North Central Texas Alternative Fuel and Advanced Technology Investments initiative

  2. State of Indiana/Greater IN Clean Cities Alternative Fuels Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt050_ti_flynn_2011_p.pdf More Documents & Publications State of Indiana/Greater IN Clean Cities Alternative Fuels Implementation Plan State of Indiana/GICC Alternative Fuels Implementation Plan Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program

  3. Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Kelner, Eric (San Antonio, TX); Owen, Thomas E. (Helotes, TX)

    2008-07-08

    A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

  4. COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE

    SciTech Connect (OSTI)

    Colarusso, Angela; Crowe, Bruce; Cochran, John R.

    2003-02-27

    Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the performance assessment, inclusion of dose calculations from collocated low-level waste in the boreholes for the individual protection requirements, further assessments of engineered barriers and conditions associated with the assurance requirements, and expansion of documentation provided for assessing the groundwater protection requirements. The Transuranic Waste Disposal Federal Review Group approved the performance assessment for Greater Confinement Disposal boreholes in 2001 and did not approve the Application of the Assurance Requirements. Remaining issues concerned with engineered barriers and the multiple aspects of the Assurance Requirements will be resolved at the time of closure of the Area 5 Radioactive Waste Management Site. This is the first completion and acceptance of a performance assessment for transuranic materials under the U.S. Department of Energy self-regulation. The Greater Confinement Disposal boreholes are only the second waste disposal configuration to meet the safety regulatory requirements of 40 CFR 191.

  5. Method to produce alumina aerogels having porosities greater than 80 percent

    DOE Patents [OSTI]

    Poco, John F.; Hrubesh, Lawrence W.

    2003-09-16

    A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.

  6. Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Fiebig, M.

    2010-10-01

    As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

  7. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs

    SciTech Connect (OSTI)

    Todd, Annika; Perry, Michael; Smith, Brian; Sullivan, Michael; Cappers, Peter; Goldman, Charles

    2014-03-25

    The rollout of smart meters in the last several years has opened up new forms of previously unavailable energy data. Many utilities are now able in real-time to capture granular, household level interval usage data at very high-frequency levels for a large proportion of their residential and small commercial customer population. This can be linked to other time and locationspecific information, providing vast, constantly growing streams of rich data (sometimes referred to by the recently popular buzz word, big data). Within the energy industry there is increasing interest in tapping into the opportunities that these data can provide. What can we do with all of these data? The richness and granularity of these data enable many types of creative and cutting-edge analytics. Technically sophisticated and rigorous statistical techniques can be used to pull interesting insights out of this highfrequency, human-focused data. We at LBNL are calling this behavior analytics. This kind of analytics has the potential to provide tremendous value to a wide range of energy programs. For example, highly disaggregated and heterogeneous information about actual energy use would allow energy efficiency (EE) and/or demand response (DR) program implementers to target specific programs to specific households; would enable evaluation, measurement and verification (EM&V) of energy efficiency programs to be performed on a much shorter time horizon than was previously possible; and would provide better insights in to the energy and peak hour savings associated with specifics types of EE and DR programs (e.g., behavior-based (BB) programs). In this series, Insights from Smart Meters, we will present concrete, illustrative examples of the type of value that insights from behavior analytics of these data can provide (as well as pointing out its limitations). We will supply several types of key findings, including: Novel results, which answer questions the industry previously was unable to answer; Proof-of-concept analytics tools that can be adapted and used by others; and Guidelines and protocols that summarize analytical best practices. This report focuses on one example of the kind of value that analysis of this data can provide: insights into whether behavior-based (BB) efficiency programs have the potential to provide peak-hour energy savings.

  8. Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2011-11-01

    At high penetration of solar generation there are a number of challenges to economically integrating this variable and uncertain resource. These include the limited coincidence between the solar resource and normal demand patterns and limited flexibility of conventional generators to accommodate variable generation resources. Of the large number of technologies that can be used to enable greater penetration of variable generators, concentrating solar power (CSP) with thermal energy storage (TES) presents a number of advantages. The use of storage enables this technology to shift energy production to periods of high demand or reduced solar output. In addition, CSP can provide substantial grid flexibility by rapidly changing output in response to the highly variable net load created by high penetration of solar (and wind) generation. In this work we examine the degree to which CSP may be complementary to PV by performing a set of simulations in the U.S. Southwest to demonstrate the general potential of CSP with TES to enable greater use of solar generation, including additional PV.

  9. Personal glucose meters for detection and quantification of a broad range of analytes

    DOE Patents [OSTI]

    Lu, Yi; Xiang, Yu

    2015-02-03

    A general methodology for the development of highly sensitive and selective sensors that can achieve portable, low-cost and quantitative detection of a broad range of targets using only a personal glucose meter (PGM) is disclosed. The method uses recognition molecules that are specific for a target agent, enzymes that can convert an enzyme substrate into glucose, and PGM. Also provided are sensors, which can include a solid support to which is attached a recognition molecule that permits detection of a target agent, wherein the recognition molecule specifically binds to the target agent in the presence of the target agent but not significantly to other agents as well as an enzyme that can catalyze the conversion of a substance into glucose, wherein the enzyme is attached directly or indirectly to the recognition molecule, and wherein in the presence of the target agent the enzyme can convert the substance into glucose. The disclosed sensors can be part of a lateral flow device. Methods of using such sensors for detecting target agents are also provided.

  10. Hydrology of the Greater Tongonan Geothermal system, Philippines and its implications to field exploitation

    SciTech Connect (OSTI)

    Seastres, J.S. Jr.; Salonga, N.D.; Saw, V.S.

    1996-12-31

    The Greater Tongonan Geothermal Field will be operating a total of 694 MWe by July 1997. The field has produced steam for the 112.5 MWe Tongonan I power plant since June 1983. With massive fluid withdrawal starting July 1996, a pre-commissioning hydrology was constructed to assess its implications to field exploitation. Pressure drawdown centered at well 106 in Mahiao was induced by fluid withdrawal at Tongonan-I production field. This drawdown will be accelerated by major steam withdrawal (734 kg/s) upon commissioning of power plants at Mahiao, Sambaloran and Malitbog sectors. To resolve this concern, fluid injection will be conducted at the periphery of Mahiao to provide recharge of reheated reinjection fluids in the reservoir. At Mahanagdong, the acidic fluid breakthrough will unlikely occur since the acidic zone north of this sector is not hydrologically well-connected to the main neutral-pH reservoir as indicated by pressure profiles.

  11. Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Morrell, D.K.; Fischer, D.K.

    1995-01-01

    This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW.

  12. Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region

    SciTech Connect (OSTI)

    Steiner, A. L.; Tawfik, A. B.; Shalaby, A.; Zakey, A. S.; Abdel Wahab, M. M.; Salah, Z.; Solmon, F.; Sillman, S.; Zaveri, Rahul A.

    2014-04-16

    An integrated chemistry-climate model (RegCM4-CHEM) simulates present-day climate, ozone and tropospheric aerosols over Egypt with a focus on Greater Cairo (GC) region. The densley populated GC region is known for its severe air quality issues driven by high levels of anthropogenic pollution in conjuction with natural sources such as dust and agricultural burning events. We find that current global emission inventories underestimate key pollutants such as nitrogen oxides and anthropogenic aerosol species. In the GC region, average-ground-based NO2 observations of 40-60 ppb are substantially higher than modeled estimates (5-10 ppb), likely due to model grid resolution, improper boundary layer representation, and poor emissions inventories. Observed ozone concentrations range from 35 ppb (winter) to 80 ppb (summer). The model reproduces the seasonal cycle fairly well, but modeled summer ozone is understimated by approximately 15 ppb and exhibits little interannual variability. For aerosols, springtime dust events dominate the seasonal aerosol cycle. The chemistry-climate model captures the springtime peak aerosol optical depth (AOD) of 0.7-1 but is slightly greater than satellite-derived AOD. Observed AOD decreases in the summer and increases again in the fall due to agricultural burning events in the Nile Delta, yet the model underestimates this fall observed AOD peak, as standard emissions inventories underestimate this burning and the resulting aerosol emissions. Our comparison of modeled gas and particulate phase atmospheric chemistry in the GC region indicates that improved emissions inventories of mobile sources and other anthropogenic activities are needed to improve air quality simulations in this region.

  13. [An improved, more reliable and more marketable version of the Automatic Metering System

    SciTech Connect (OSTI)

    Patas, J.E.

    1993-07-01

    Texas Research Institute Austin, Inc. (TRI/Austin) was tasked by Letco International to evaluate its Automatic Metering System (AMS), a proportional controller for heat tracing cable. The original objectives were focused primarily on the reliability of the AMS controller. However, from the time of the original TRI/Austin proposal, the AMS device evolved beyond the prototype level into an established market product with sufficient operational experience and data that product reliability evaluation was not a significant test objective. The goals of this effort have been to determine the relative energy usage of the AMS proportional control compared to existing thermostatic control in a realistic freeze protection installation (low temperature test), to perform an accelerated life test for self limiting heat tracing cables to determine the service life impact of AMS control vs. thermostat control, and to perform a reliability analysis of the AMS device according to the 1986 edition of MIL-HDBK-217E [1] specifications. TRI/Austin designed and constructed a test set-up for conducting the low temperature test and the accelerated life test. A conceptual diagram of the test hardware is shown in Figure 1. The control computer was programmed to monitor and collect data from both tests in parallel, using the relay box and control circuitry fabricated at TRI/Austin. Test data and control commands were transmitted to and from the computer via standard parallel and serial interfaces. The AMS controller and relay box switched the power to the test cables, the commercial freezer, and the ALT chamber.

  14. Status Report on the Passive Neutron Enrichment Meter (PNEM) for UF6 Cylinder Assay

    SciTech Connect (OSTI)

    Miller, Karen A.; Swinhoe, Martyn T.; Menlove, Howard O.; Marlow, Johnna B.

    2012-05-02

    The Passive Neutron Enrichment Meter (PNEM) is a nondestructive assay (NDA) system being developed at Los Alamos National Laboratory (LANL). It was designed to determine {sup 235}U mass and enrichment of uranium hexafluoride (UF{sub 6}) in product, feed, and tails cylinders (i.e., 30B and 48Y cylinders). These cylinders are found in the nuclear fuel cycle at uranium conversion, enrichment, and fuel fabrication facilities. The PNEM is a {sup 3}He-based neutron detection system that consists of two briefcase-sized detector pods. A photograph of the system during characterization at LANL is shown in Fig. 1. Several signatures are currently being studied to determine the most effective measurement and data reduction technique for unfolding {sup 235}U mass and enrichment. The system collects total neutron and coincidence data for both bare and cadmium-covered detector pods. The measurement concept grew out of the success of the Uranium Cylinder Assay System (UCAS), which is an operator system at Rokkasho Enrichment Plant (REP) that uses total neutron counting to determine {sup 235}U mass in UF{sub 6} cylinders. The PNEM system was designed with higher efficiency than the UCAS in order to add coincidence counting functionality for the enrichment determination. A photograph of the UCAS with a 48Y cylinder at REP is shown in Fig. 2, and the calibration measurement data for 30B product and 48Y feed and tails cylinders is shown in Fig. 3. The data was collected in a low-background environment, meaning there is very little scatter in the data. The PNEM measurement concept was first presented at the 2010 Institute of Nuclear Materials Management (INMM) Annual Meeting. The physics design and uncertainty analysis were presented at the 2010 International Atomic Energy Agency (IAEA) Safeguards Symposium, and the mechanical and electrical designs and characterization measurements were published in the ESARDA Bulletin in 2011.

  15. The hydrological model of the Mahanagdong sector, Greater Tongonan Geothermal Field, Philippines

    SciTech Connect (OSTI)

    Herras, E.B.; Licup, A.C. Jr.; Vicedo, R.O.

    1996-12-31

    The Mahanagdong sector of the Greater Tongonan Geothermal Field is committed to supply 180 MWe of steam by mid-1997. An updated hydrological model was constructed based on available geoscientific and reservoir engineering data from a total of 34 wells drilled in the area. The Mahanagdong; resource is derived from a fracture-controlled and volcano hosted geothermal system characterized by neutral to slightly alkali-chloride fluids with reservoir temperatures exceeding 295{degrees}C. A major upflow region was identified in the vicinity of MG-3D, MG-14D and MG-5D. Isochemical contours indicate outflowing fluids with temperatures of 270-275{degrees}C to the south and west. Its southwesterly flow is restricted by the intersection of the impermeable Mahanagdong Claystone near MG-10D, which delimits the southern part of the resource. Low temperature (<200{degrees}C), shallow inflows are evident at the west near MG-4D and MG-17D wells which act as a cold recharge in this sector.

  16. Analysis of ocean current meter records obtained from a 1975 deployment off the Farallon Islands, California. Final report

    SciTech Connect (OSTI)

    Crabbs, D.E.

    1983-08-01

    Two bottom current records were obtained during August and September 1975 in the Farallon Islands low-level radioactive waste disposal area off San Francisco, California. This report presents the results of the data reduction and analysis of the current meter records, and interprets the results with respect to additional data collected in 1977. An effort is made to compare the patterns of current activity in the dumpsite area for the time periods measured.

  17. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, L.; Williams, L. R.; Young, D. E.; Allan, J. D.; Coe, H.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; et al

    2015-08-28

    The composition of PM1 (particulate matter with diameter less than 1 ?m) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two High-Resolution Time-of-Flight Aerosol Mass Spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the sources of OA are distinctly different. The concentration ofmoresolid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC, measured by a soot-particle aerosol mass spectrometer) only accounts for less

  18. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    SciTech Connect (OSTI)

    Darghouth, Nam R.; Wiser, Ryan; Barbose, Galen; Mills, Andrew

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer adoption of PV (from -14% to -61%, depending on the design). Moving towards time-varying rates, on the other hand, may accelerate near- and medium-term deployment (through 2030), but is found to slow adoption in the longer term (-22% in 2050).

  19. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    SciTech Connect (OSTI)

    Sandercock, Brett K.

    2013-05-22

    Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our field studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most abandoned lek sites were located <5 km from turbines. Probability of lek persistence was significantly related to habitat and number of males. Leks had a higher probability of persistence in grasslands than agricultural fields, and increased from ~0.2 for leks of 5 males, to >0.9 for leks of 10 or more males. Large leks in grasslands should be a higher priority for conservation. Overall, wind power development had a weak effect on the annual probability of lek persistence. 3. We used molecular methods to investigate the mating behavior of prairie chickens. The prevailing view for lek-mating grouse is that females mate once to fertilize the clutch and that conspecific nest parasitism is rare. We found evidence that females mate multiple times to fertilize the clutch (8-18% of broods, 4-38% of chicks) and will parasitize nests of other females during egg-laying (~17% of nests). Variable rates of parentage were highest in the fragmented landscapes at the Smoky Hills field site, and were lower at the Flint Hills field site. Comparisons of the pre- and postconstruction periods showed that wind energy development did not affect the mating behaviors of prairie chickens. 4. We examined use of breeding habitats by radio-marked females and conducted separate analyses for nest site selection, and movements of females not attending nests or broods. The landscape was a mix of native prairie and agricultural habitats, and nest site selection was not random because females preferred to nest in grasslands. Nests tended to be closer to turbines during the postconstruction period and there was no evidence of behavioral avoidance of turbines by females during nest site selection. Movements of females not attending nests or broods showed that females crossed the site of the wind power development at higher rates during the preconstruction period (20%) than the postconstruction period (11%), and that movements away from turbines were more frequent during the postconstruction period. Thus, wind power development appears to affect movements in breeding habitats but not nest site s

  20. Insights from Smart Meters: Ramp Up, Dependability, and Short-Term Persistence of Savings from Home Energy Reports

    Broader source: Energy.gov [DOE]

    In this report, we use smart meter data to analyze the ramp-up, dependability, and short-term persistence of savings in one type of BB program: Home Energy Reports (HERs). In these programs, reports are mailed to households on a monthly, bi-monthly, or even quarterly basis. The reports provide energy tips and information about how a household's energy use compares to its neighbors. HERs typically obtain 1% to 3% annual electricity savings; several studies report that savings from mature HERs persist over multiple years while the programs are running (and decay after the reports are discontinued).

  1. Description of Model Data for SNL100-00: The Sandia 100-meter All-glass Baseline Wind Turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00-00: The Sandia 100-meter All-glass Baseline Wind Turbine Blade D. Todd Griffith, Brian R. Resor Sandia National Laboratories Wind and Water Power Technologies Department Introduction This document provides a brief description of model files that are available for the SNL100-00 blade [1]. For each file, codes used to create/read the model files are detailed (e.g. code version and date, description, etc). A summary of the blade model data is also provided from the design report [1]. A Design

  2. The SNL100-02 blade : advanced core material design studies for the Sandia 100-meter blade.

    SciTech Connect (OSTI)

    Griffith, Daniel

    2013-11-01

    A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

  3. Project Summary (2012-2015) Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change

    SciTech Connect (OSTI)

    Hinkle, Ross; Benscoter, Brian; Comas, Xavier; Sumner, David; DeAngelis, Donald

    2015-04-07

    Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regional carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.

  4. Computer usage and national energy consumption: Results from a field-metering study

    SciTech Connect (OSTI)

    Desroches, Louis-Benoit; Fuchs, Heidi; Greenblatt, Jeffery; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah; Young, Scott

    2014-12-01

    The electricity consumption of miscellaneous electronic loads (MELs) in the home has grown in recent years, and is expected to continue rising. Consumer electronics, in particular, are characterized by swift technological innovation, with varying impacts on energy use. Desktop and laptop computers make up a significant share of MELs electricity consumption, but their national energy use is difficult to estimate, given uncertainties around shifting user behavior. This report analyzes usage data from 64 computers (45 desktop, 11 laptop, and 8 unknown) collected in 2012 as part of a larger field monitoring effort of 880 households in the San Francisco Bay Area, and compares our results to recent values from the literature. We find that desktop computers are used for an average of 7.3 hours per day (median = 4.2 h/d), while laptops are used for a mean 4.8 hours per day (median = 2.1 h/d). The results for laptops are likely underestimated since they can be charged in other, unmetered outlets. Average unit annual energy consumption (AEC) for desktops is estimated to be 194 kWh/yr (median = 125 kWh/yr), and for laptops 75 kWh/yr (median = 31 kWh/yr). We estimate national annual energy consumption for desktop computers to be 20 TWh. National annual energy use for laptops is estimated to be 11 TWh, markedly higher than previous estimates, likely reflective of laptops drawing more power in On mode in addition to greater market penetration. This result for laptops, however, carries relatively higher uncertainty compared to desktops. Different study methodologies and definitions, changing usage patterns, and uncertainty about how consumers use computers must be considered when interpreting our results with respect to existing analyses. Finally, as energy consumption in On mode is predominant, we outline several energy savings opportunities: improved power management (defaulting to low-power modes after periods of inactivity as well as power scaling), matching the rated power of power supplies to computing needs, and improving the efficiency of individual components.

  5. Insights from Smart Meters. Identifying Specific Actions, Behaviors and Characteristics that drive savings in Behavior-Based Programs

    SciTech Connect (OSTI)

    Todd, Annika; Perry, Michael; Smith, Brian; Sullivan, Michael; Cappers, Peter; Goldman, Charles A.

    2014-12-01

    In this report, we use smart meter data to analyze specific actions, behaviors, and characteristics that drive energy savings in a behavior-based (BB) program. Specifically, we examine a Home Energy Report (HER) program. These programs typically obtain 1% to 3% annual savings, and recent studies have shown hourly savings of between 0.5% and 3%. But what is driving these savings? What types of households tend to be high-savers, and what behaviors are they adopting? There are several possibilities: one-time behaviors (e.g., changing thermostat settings); reoccurring habitual behaviors (e.g., turning off lights); and equipment purchase behaviors (e.g., energy efficient appliances), and these may vary across households, regions, and over time.

  6. Analysis of road pricing, metering and the priority treatment of high occupancy vehicles using system dynamics. Master's thesis

    SciTech Connect (OSTI)

    Castillo, W.

    1992-01-01

    Transportation Systems Management (TSM) employs various techniques such as road pricing, metering and the priority treatment of high occupancy vehicles (HOVs) in an effort to make more efficient use of existing transportation facilities. Efficiency is improved in terms of moving more people through the facility while simultaneously reducing the number of vehicles using the facility. This report uses a hypothetical toll facility and examines four computer modeling approaches to determine which of the approaches are valid in terms of predicting the behavior of trip makers seeking to use the facility in response to various combinations of TSM techniques. Once an approach has been determined to be valid, seven different combination of TSM techniques, or strategies, are compared to a base strategy to determine what strategy or strategies are most affective in achieving the goals of TSM.

  7. Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease Program Breaks Down Barriers for Cincinnati Contractors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Series CINCINNATI-EQUIPMENT LEASE PROGRAM Equipment Lease Program Breaks Down Barriers for Cincinnati Contractors The Greater Cincinnati Energy Alliance (GCEA), a Better Buildings Neighborhood Program partner, helped jump-start the region's home performance contracting market by removing a common barrier to entry for contractors-investing in new equipment. Since November 2010, GCEA's equipment lease program has provided contractors with access to more than $66,000 worth of equipment on a

  8. The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.

    SciTech Connect (OSTI)

    Griffith, Daniel; Richards, Phillip William

    2014-09-01

    A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) was prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.

  9. Demonstration of Decision Support Tools for Sustainable Development - An Application on Alternative Fuels in the Greater Yellowstone-Teton Region

    SciTech Connect (OSTI)

    Shropshire, D.E.; Cobb, D.A.; Worhach, P.; Jacobson, J.J.; Berrett, S.

    2000-12-30

    The Demonstration of Decision Support Tools for Sustainable Development project integrated the Bechtel/Nexant Industrial Materials Exchange Planner and the Idaho National Engineering and Environmental Laboratory System Dynamic models, demonstrating their capabilities on alternative fuel applications in the Greater Yellowstone-Teton Park system. The combined model, called the Dynamic Industrial Material Exchange, was used on selected test cases in the Greater Yellow Teton Parks region to evaluate economic, environmental, and social implications of alternative fuel applications, and identifying primary and secondary industries. The test cases included looking at compressed natural gas applications in Teton National Park and Jackson, Wyoming, and studying ethanol use in Yellowstone National Park and gateway cities in Montana. With further development, the system could be used to assist decision-makers (local government, planners, vehicle purchasers, and fuel suppliers) in selecting alternative fuels, vehicles, and developing AF infrastructures. The system could become a regional AF market assessment tool that could help decision-makers understand the behavior of the AF market and conditions in which the market would grow. Based on this high level market assessment, investors and decision-makers would become more knowledgeable of the AF market opportunity before developing detailed plans and preparing financial analysis.

  10. Potential co-disposal of greater-than-class C low-level radioactive waste with Department of Energy special case waste - greater-than-class C low-level waste management program

    SciTech Connect (OSTI)

    Allred, W.E.

    1994-09-01

    This document evaluates the feasibility of co-disposing of greater-than-Class C low-level radioactive waste (GTCC LLW) with U.S. Department of Energy (DOE) special case waste (SCW). This document: (1) Discusses and evaluates key issues concerning co-disposal of GTCC LLW with SCW. This includes examining these issues in terms of regulatory concerns, technical feasibility, and economics; (2) Examines advantages and disadvantages of such co-disposal; and (3) Makes recommendations. Research and analysis of the issues presented in this report indicate that it would be technically and economically feasible to co-dispose of GTCC LLW with DOE SCW. However, a dilemma will likely arise in the current division of regulatory responsibilities between the U.S. Nuclear Regulatory Commission and DOE (i.e., current requirement for disposal of GTCC LLW in a facility licensed by the Nuclear Regulatory Commission). DOE SCW is currently not subject to this licensing requirement.

  11. Greater-than-Class C low-level radioactive waste characterization. Appendix A-2: Timing of greater-than-Class C low-level radioactive waste from nuclear power plants

    SciTech Connect (OSTI)

    Steinke, W.F.

    1994-09-01

    Planning for the storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste. Timing, or the date the waste will require storage or disposal, is an integral aspect of that planning. The majority of GTCC LLW is generated by nuclear power plants, and the length of time a reactor remains operational directly affects the amount of GTCC waste expected from that reactor. This report uses data from existing literature to develop high, base, and low case estimates for the number of plants expected to experience (a) early shutdown, (b) 40-year operation, or (c) life extension to 60-year operation. The discussion includes possible effects of advanced light water reactor technology on future GTCC LLW generation. However, the main focus of this study is timing for shutdown of current technology reactors that are under construction or operating.

  12. Draft-O-Meter

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will learn an easy technique to measure the presence of drafts in their homes and classrooms.

  13. South Carolina- Net Metering

    Broader source: Energy.gov [DOE]

    In April of 2014 the South Carolina legislature unanimously passed S.B. 1189 to create a voluntary Distributed Energy Resource Program. In March 2015 the Public Utilities Commission approved a...

  14. Ultrasonic flow metering system

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Mauseth, Jason A. (Pocatello, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  15. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  16. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  17. Low volume flow meter

    DOE Patents [OSTI]

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  18. Power Metering Project

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    There are many devices around campus that use electricity, but it helps to have an understanding of how much power each type of device uses. With this information, you are better able to focus efforts on reducing power consumption. With basic power data collection and analysis, we can begin to answer questions like: how much money does it cost the school to leave all the computers on at night?

  19. Greater Caribbean Energy and Environment Future. Ad hoc working group report, Key Biscayne, Florida, October 26-28, 1980

    SciTech Connect (OSTI)

    Thorhaug, A.

    1980-01-01

    This report of Workshop I (presented in outline form) by the Greater Caribbean Energy and Environment Foundation begin an intensive focus on the energy problems of the Caribbean. The process by which environmental assessments by tropical experts can be successfully integrated into energy decisions is by: (1) international loan institutions requiring or strongly recommending excellent assessments; (2) engineering awareness of total effects of energy projects; (3) governmental environmental consciousness-raising with regard to natural resource value and potential inadvertent and unnecessary resource losses during energy development; and (4) media participation. Section headings in the outline are: preamble; introduction; research tasks: today and twenty years hence; needed research, demonstration and information dissemination projects to get knowledge about Caribbean energy-environment used; summary; recommendations; generalized conclusions; and background literature. (JGB)

  20. Catalog of documents produced by the Greater-Than-Class C Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Winberg, M.R.

    1995-03-01

    This catalog provides a ready reference for documents prepared by the Greater-Than-Class C Low-Level Waste (GTCC LLW) Management Program. The GTCC LLW Management Program is part of the National Low-Level Waste Management Program (NLLWMP). The NLLWMP is sponsored by the US Department of Energy (DOE) and is responsible for assisting the DOE in meeting its obligations under Public Law 99-240, The Low-Level Radioactive Waste Policy Amendments Act of 1985. This law assigns DOE the responsibility of ensuring the safe disposal of GTCC LLW in a facility licensed by the Nuclear Regulatory Commission (NRC). The NLLWMP is managed at the Idaho National Engineering Laboratory (INEL).

  1. Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment

    SciTech Connect (OSTI)

    Kirner, N.P. [Ebasco Environmental, Idaho Falls, ID (United States)

    1994-09-01

    Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m{sup 3} to 187 m{sup 3}, depending on assumptions and treatments applied to the wastes.

  2. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    SciTech Connect (OSTI)

    Guzowski, R.V.; Newman, G.

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

  3. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    SciTech Connect (OSTI)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE`s investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4).

  4. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    SciTech Connect (OSTI)

    Hulse, R.A.

    1991-08-01

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.

  5. Benchmarking for electric utilities, tree trimming benchmarking, service line installation to single family residence, and distribution revenue meter testing and repair

    SciTech Connect (OSTI)

    Harder, J.

    1994-12-31

    An American Public Power Association (APPA) task force study on benchmarking for electric utilities is presented. Benchmark studies were made of three activities: (1) Tree trimming; (2) Service line installation to single family residence; (3) Distribution revenue meter testing and repair criteria. The results of the study areas are summarized for 15 utilities. The methodologies used for data collection and analysis are discussed. 28 figs., 9 tabs.

  6. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

  7. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    SciTech Connect (OSTI)

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  8. Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

    SciTech Connect (OSTI)

    Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

    2012-03-27

    This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for fo

  9. Meteorological and air quality impacts of increased urban albedo and vegetative cover in the Greater Toronto Area, Canada

    SciTech Connect (OSTI)

    Taha, Haider; Hammer, Hillel; Akbari, Hashem

    2002-04-30

    The study described in this report is part of a project sponsored by the Toronto Atmospheric Fund, performed at the Lawrence Berkeley National Laboratory, to assess the potential role of surface property modifications on energy, meteorology, and air quality in the Greater Toronto Area (GTA), Canada. Numerical models were used to establish the possible meteorological and ozone air-quality impacts of increased urban albedo and vegetative fraction, i.e., ''cool-city'' strategies that can mitigate the urban heat island (UHI), significantly reduce urban energy consumption, and improve thermal comfort, particularly during periods of hot weather in summer. Mitigation is even more important during critical heat wave periods with possible increased heat-related hospitalization and mortality. The evidence suggests that on an annual basis cool-city strategies are beneficial, and the implementation of such measures is currently being investigated in the U.S. and Canada. We simulated possible scenari os for urban heat-island mitigation in the GTA and investigated consequent meteorological changes, and also performed limited air-quality analysis to assess related impacts. The study was based on a combination of mesoscale meteorological modeling, Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential meteorological and ozone air-quality impacts of cool-city strategies. As available air-quality and emissions data are incompatible with models currently in use at LBNL, our air-quality analysis was based on photochemical trajectory modeling. Because of questions as to the accuracy and appropriateness of this approach, in our opinion this aspect of the study can be improved in the future, and the air-quality results discussed in this report should be viewed as relatively qualitative. The MM5 meteorological model predicts a UHI in the order of 2 to 3 degrees C in locations of maxima, and about 1 degree C as a typical value over most of the urban area. Our si mulations suggest that cool-city strategies can typically reduce local urban air temperature by 0.5-1 degrees C; as more sporadic events, larger decreases (1.5 degrees C, 2.5-2.7 degrees C and 4-6 degrees C) were also simulated. With regard to ozone mixing ratios along the simulated trajectories, the effects of cool-city strategies appear to be on the order of 2 ppb, a typical decrease. The photochemical trajectory model (CIT) also simulates larger decreases (e.g., 4 to 8 ppb), but these are not taken as representative of the potential impacts in this report. A comparison with other simulations suggest very crudely that a decrease of this magnitude corresponds to significant ''equivalent'' decreases in both NOx and VOCs emissions in the region. Our preliminary results suggest that significant UHI control can be achieved with cool-cities strategies in the GTA and is therefore worth further study. We recommend that better input data and more accurate modeling schemes be used to carry out f uture studies in the same direction.

  10. Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade

    SciTech Connect (OSTI)

    David M. Wright; DOE Project Officer - Keith Bennett

    2007-07-31

    An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

  11. Case Study of the Failure of two 13.8kV Control & Metering Transformers that caused significant Equipment Damage

    SciTech Connect (OSTI)

    Dreifuerst, G R; Chew, D B; Mangonon, H L; Swyers, P W

    2011-08-25

    The degradation and failure of cast-coil epoxy windings within 13.8kV control power transformers and metering potential transformers has been shown to be dangerous to both equipment and personnel, even though best industrial design practices were followed. Accident scenes will be examined for two events at a U.S. Department of Energy laboratory. Failure modes will be explained and current design practices discussed with changes suggested to prevent a recurrence and to minimize future risk. New maintenance philosophies utilizing partial discharge testing of the transformers as a prediction of end-of-life will be examined.

  12. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  13. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  14. Geohydrologic feasibility study of the greater Green River Basin for the potential applicability of Jack W. McIntyre`s patented tool

    SciTech Connect (OSTI)

    Reed, P.D.

    1994-02-01

    Geraghty & Miller, Inc, of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented tool for the recovery of natural gas from coalbed/sand formations in the Greater Green River Basin through literature surveys.

  15. Private Companies, Federal Agencies and National Labs Join Better Buildings Challenge to Drive Greater Efficiency in U.S. Data Centers

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – As a part of the Administration’s effort to support greater energy efficiency through the Better Buildings Challenge, the Energy Department today announced the first data center owners and operators who have committed to reduce their energy use by at least 20 percent over the next decade.

  16. Gamma/neutron analysis for SNM signatures at high-data rates(greater than 107 cps) for single-pulse active interrogation

    SciTech Connect (OSTI)

    Forman L.; Dioszegi, I.; Salwen, C.

    2011-04-26

    We are developing a high data gamma/neutron spectrometer suitable for active interrogation of special nuclear materials (SNM) activated by a single burst from an intense source. We have tested the system at Naval Research Laboratory's (NRL) Mercury pulsed-power facility at distances approaching 10 meters from a depleted uranium (DU) target. We have found that the gamma-ray field in the target room 'disappears' 10 milliseconds after the x-ray flash, and that gamma ray spectroscopy will then be dominated by isomeric states/beta decay of fission products. When a polyethylene moderator is added to the DU target, a time-dependent signature of the DU is produced by thermalized neutrons. We observe this signature in gamma-spectra measured consecutively in the 0.1-1.0 ms time range. These spectra contain the Compton edge line (2.2 MeV) from capture in hydrogen, and a continuous high energy gamma-spectrum from capture or fission in minority constituents of the DU.

  17. Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site

    SciTech Connect (OSTI)

    Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H.; Price, L.L.

    1997-09-01

    This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd{sup 3} (4,580 m{sup 3}) of glass gems prior to disposal. This report documents Sandia National Laboratories` preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment.

  18. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All) Biomass Hydroelectric Municipal Solid Waste Combined Heat & Power Wind (Small) Hydroelectric (Small) Other Distributed Generation Technologies Program Info Sector Name...

  19. High resolution time interval meter

    DOE Patents [OSTI]

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  20. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the final rules, there was a typographical error related to eligible resources. RM09-10 LSA10-662(ac) corrects the error, clarifying the list of eligible technologies as IC...

  1. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    For residential and small commercial customers, net excess generation (NEG) is credited at Rocky Mountain Power's retail rate and carried forward to the next month. For larger commercial and...

  2. Portable vapor diffusion coefficient meter

    DOE Patents [OSTI]

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  3. Meter and Relay Craftsman- Journeyman

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration,Upper Great Plains Region, South Dakota Maintenance, System Protection Office ...

  4. Meter and Relay Craftsman- Journeyman

    Broader source: Energy.gov [DOE]

    Where would I be working? Western Area Power Administration Desert Southwest Region Protection and Communication Maintenance (G5300) 615 S. 43rd Avenue Phoenix, AZ 85009 Duty Location: Page, AZ...

  5. City of Brenham- Net Metering

    Broader source: Energy.gov [DOE]

    The ordinance includes a standard form interconnection application and agreement as well as standard riders. Customers must provide all equipment necessary to meet applicable safety, power quality...

  6. City of Danville- Net Metering

    Broader source: Energy.gov [DOE]

    A customer may begin operation of their renewable energy generator once the conditions of interconnection have been met. These include:

  7. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    customers who own or operate systems up to one megawatt (1 MW) in capacity that generate electricity using solar, wind, geothermal, hydro, tidal, wave, biomass, landfill gas,...

  8. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    solar energy, wind energy, ocean-thermal energy, geothermal energy, small hydropower, biogas from anaerobic digestion, or fuel cells using any of these energy sources are...

  9. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  10. Survey of DOE NDA practices for CH-Tru waste certification--illustrated with a greater than 10,000 drum NDA data base

    SciTech Connect (OSTI)

    Schultz, F.J.; Caldwell, J.T.; Smith, J.R.

    1988-01-01

    We have compiled a greater than 10,000 CH-TRU waste drum data base from seven DOE sites which have utilized such multiple NDA measurements within the past few years. Most of these nondestructive assay (NDA) technique assay result comparisons have been performed on well-characterized, segregated waste categories such as cemented sludges, combustibles, metals, graphite residues, glasses, etc., with well-known plutonium isotopic compositions. Waste segregation and categorization practices vary from one DOE site to another. Perhaps the most systematic approach has been in use for several years at the Rocky Flats Plant (RFP), operated by Rockwell International, and located near Golden, Colorado. Most of the drum assays in our data base result from assays of RFP wastes, with comparisons available between the original RFP assays and PAN assays performed independently at the Idaho National Engineering Laboratory (INEL) Solid Waste Examination Pilot Plant (SWEPP) facility. Most of the RFP assays were performed with hyperpure germanium (HPGe)-based SGS assay units. However, at least one very important waste category, processed first-stage sludges, is assayed at RFP using a sludge batch-sampling procedure, prior to filling of the waste drums. 5 refs., 5 figs.

  11. A Case Study of Urbanization Impact on Summer Precipitation in the Greater Beijing Metropolitan Area. Urban Heat Island Versus Aerosol Effects

    SciTech Connect (OSTI)

    Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Lai-Yung R.; Yang, Xiuqun

    2015-10-23

    Convection-resolving ensemble simulations using the WRF-Chem model coupled with a single-layer Urban Canopy Model (UCM) are conducted to investigate the individual and combined impacts of land use and anthropogenic pollutant emissions from urbanization on a heavy rainfall event in the Greater Beijing Metropolitan Area (GBMA) in China. The simulation with the urbanization effect included generally captures the spatial pattern and temporal variation of the rainfall event. An improvement of precipitation is found in the experiment including aerosol effect on both clouds and radiation. The expanded urban land cover and increased aerosols have an opposite effect on precipitation processes, with the latter playing a more dominant role, leading to suppressed convection and rainfall over the upstream (northwest) area, and enhanced convection and more precipitation in the downstream (southeast) region of the GBMA. In addition, the influence of aerosol indirect effect is found to overwhelm that of direct effect on precipitation in this rainfall event. Increased aerosols induce more cloud droplets with smaller size, which favors evaporative cooling and reduce updrafts and suppress convection over the upstream (northwest) region in the early stage of the rainfall event. As the rainfall system propagates southeastward, more latent heat is released due to the freezing of larger number of smaller cloud drops that are lofted above the freezing level, which is responsible for the increased updraft strength and convective invigoration over the downstream (southeast) area.

  12. Stakeholder Engagement on the Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste -12565

    SciTech Connect (OSTI)

    Gelles, Christine; Joyce, James; Edelman, Arnold

    2012-07-01

    The Department of Energy's (DOE) Office of Disposal Operations is responsible for developing a permanent disposal capability for a small volume, but highly radioactive, class of commercial low-level radioactive waste, known as Greater-Than-Class C (GTCC) low-level radioactive waste. DOE has issued a draft environmental impact statement (EIS) and will be completing a final EIS under the National Environmental Policy Act (NEPA) that evaluates a range of disposal alternatives. Like other classes of radioactive waste, proposing and evaluating disposal options for GTCC waste is highly controversial, presents local and national impacts, and generates passionate views from stakeholders. Recent national and international events, such as the cancellation of the Yucca Mountain project and the Fukushima Daiichi nuclear accident, have heighten stakeholder awareness of everything nuclear, including disposal of radioactive waste. With these challenges, the Office of Disposal Operations recognizes that informed decision-making that will result from stakeholder engagement and participation is critical to the success of the GTCC EIS project. This paper discusses the approach used by the Office of Disposal Operations to engage stakeholders on the GTCC EIS project, provides advice based on our experiences, and proffers some ideas for future engagements in today's open, always connected cyber environment. (authors)

  13. Project management plan for low-level mixed wastes and greater-than category 3 waste per Tri-Party Agreement M-91-10

    SciTech Connect (OSTI)

    BOUNINI, L.

    1999-06-17

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-Than-Category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10. The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; and (4) an acquisition plan was developed to establish the techuical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are summarized in the table below, along with the required treatment for disposal.

  14. Project management plan for low-level mixed waste and greater-than-category 3 waste per tri-party agreement M-91-10

    SciTech Connect (OSTI)

    BOUNINI, L.

    1999-05-20

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-thaw category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10, The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; (4) an acquisition plan was developed to establish the technical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are tabulated, along with the required treatment for disposal.

  15. Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the

    SciTech Connect (OSTI)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01

    Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

  16. Financial Impacts of Net-Metered PV on Utilities and Ratepayers: A Scoping Study of Two Prototypical U.S. Utilities

    Broader source: Energy.gov [DOE]

    Deployment of customer-sited photovoltaics (PV) in the United States has expanded rapidly in recent years, driven by falling PV system prices, the advent of customer financing options, and various forms of policy support at the federal, state, and local levels. With the success of these efforts, heated debates have surfaced in a number of U.S. states about the impacts of customer-sited PV on utility shareholders and ratepayers. Researchers performed an analysis using a financial model to quantify the financial impacts of customer-sited PV on utility shareholders and ratepayers and to assess the magnitude of these impacts under alternative utility conditions. They found that customer-sited PV generally reduces utility collected revenues greater than reductions in costs, leading to a revenue erosion effect and lost future earnings opportunities. They also found that average retail rates increase as utility costs are spread over a relatively smaller sales base. These results were analyzed under various assumptions about utility operating and regulatory environments, and these impacts can vary greatly depending upon the specific circumstances of the utility. Based on this analysis, this report highlights potential implications for policymakers and identifies key issues warranting further analysis.

  17. Testimony of Mark Whitney Principal Deputy Assistant Secretary for Environmental Management Before the Subcommittee on Environment and the Economy House Energy and Commerce Committee Disposal of Low-Level Radioactive Waste and Greater-Than-Class C Waste

    Broader source: Energy.gov [DOE]

    Testimony of Mark Whitney Principal Deputy Assistant Secretary for Environmental Management Before the Subcommittee on Environment and the Economy House Energy and Commerce Committee Disposal of Low-Level Radioactive Waste and Greater-Than-Class C Waste October 28, 2015

  18. Greater Boston Area | Open Energy Information

    Open Energy Info (EERE)

    ":"","visitedicon":"" Cambridge Energy Alliance CleanTech Boston Consortium for Energy Efficiency Mass Energy Consumers Alliance Massachusetts Hydrogen Coalition New England...

  19. Greater Cincinnati Energy Alliance- Residential Loan Programs

    Broader source: Energy.gov [DOE]

    Homewoners can review what energy efficiency upgrades are available and apply for either a 6.99% Whole Home loan  (which requires a Whole Home Energy Assessment) or a 9.99% Improvement Specific...

  20. Community Action Partnership of the Greater Dayton Area … Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009, OAS-RA-11-18

    Office of Environmental Management (EM)

    Community Action Partnership of the Greater Dayton Area - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009 OAS-RA-11-18 September 2011 Department of Energy Washington, DC 20585 September 29, 2011 MEMORANDUM FOR THE ACTING ASSISTANT SECRETARY FOR ENERGY EFFICIENCY AND RENEWABLE ENERGY FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Examination Report on "Community

  1. On the possibility of the generation of high harmonics with photon energies greater than 10 keV upon interaction of intense mid-IR radiation with neutral gases

    SciTech Connect (OSTI)

    Emelina, A S; Emelin, M Yu; Ryabikin, M Yu

    2014-05-30

    Based on the analytical quantum-mechanical description in the framework of the modified strong-field approximation, we have investigated high harmonic generation of mid-IR laser radiation in neutral gases taking into account the depletion of bound atomic levels of the working medium and the electron magnetic drift in a high-intensity laser field. The possibility is shown to generate high-order harmonics with photon energies greater than 10 keV under irradiation of helium atoms by intense femtosecond laser pulses with a centre wavelength of 8 – 10.6 μm. (interaction of radiation with matter)

  2. Technical survey of DOE programs and facilities applicable to the co-storage of commercial greater-than-Class C Low-Level Radioactive Waste and DOE special Case Waste

    SciTech Connect (OSTI)

    Allred, W.E.

    1995-01-01

    This report presents information on those US Department of Energy (DOE) management programs and facilities, existing and planned, that are potentially capable of storing DOE Special Case Waste (SCW) until a disposal capability is available. Major emphasis is given to the possibility of storing commercial greater-than-Class C low-level radioactive waste (GTCC LLW) together with DOE SCW, as well as with other waste types. In addition to this primary issue, the report gives an in-depth background on SCW and GTCC LLW, and discusses their similarities. Institutional issues concerning these waste types are not addressed in this report.

  3. The 800-meter sample toroidal field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ship at the port of Charleston, S.C., on May 28, 2014 for its voyage to La Spezia, Italy. ... S.C. and then on to La Spezia, Italy, where the European conductor winding ...

  4. pH Meter probe assembly

    DOE Patents [OSTI]

    Hale, C.J.

    1983-11-15

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

  5. Progress Energy - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Tribal Government Agricultural Institutional Savings Category Solar...

  6. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  7. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, Fulvio (Rome, IT); Cohen, Samuel A. (Hopewell, NJ); Bennett, Timothy (Princeton, NJ); Timberlake, John R. (Allentown, NJ)

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  8. pH Meter probe assembly

    DOE Patents [OSTI]

    Hale, Charles J. (San Jose, CA)

    1983-01-01

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.

  9. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    "Commercial",32,20,16,5 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Wind",,,, "Capacity (MW)",0.117,0.28,0.213,0.191 "Residential",0.054,0.12,0.053,0.032 ...

  10. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    "Commercial",15,11,10,7 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Wind",,,, "Capacity (MW)",0.003,0.002,0.002,0.2 "Residential",0.001,0,0,0 ...

  11. Widget:GoalMeter | Open Energy Information

    Open Energy Info (EERE)

    some numeric goal. Parameters Parameter Type Required? Example Description goal Integer Y 100 Total goal value httplink String Y groups.google.comgroupopenei URL to which the...

  12. Pressure balanced drag turbine mass flow meter

    DOE Patents [OSTI]

    Dacus, Michael W. (Gilbert, AR); Cole, Jack H. (Fayetteville, AR)

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  13. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",0.51,0.27,0.17,0.01 "Residential",0.362,0.157,0.1,0.005 "Commercial",0.129,0.082,0.041,0.008 "Industrial",0.019,0.028,0.028,0.002 "Transportation",0,0,0,0 "Customers",90,62,39,5 "Residential",68,44,27,3 "Commercial",19,14,8,1 "Industrial",3,4,4,1 "Transportation",0,0,0,0

  14. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",433.54,252.66,126.57,120.74 "Residential",189.267,150.958,76.948,66.022 "Commercial",207.56,78.694,32.17,41.447 "Industrial",36.713,23.005,17.453,13.273 "Transportation",0,0,0,0 "Customers",33298,24277,11328,8443 "Residential",31245,23282,10753,8082 "Commercial",1865,861,495,309

  15. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1978.416,1536.71,1129.19,790.74 "Residential",1053.345,734.319,529.795,362.404 "Commercial",625.514,524.977,307.782,214.282 "Industrial",299.557,277.413,291.565,214.033 "Transportation",0,0,0,0 "Customers",232747,158940,115139,85835 "Residential",222803,150663,108722,80994

  16. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",204.622,166.4,129.78,53.43 "Residential",96.632,70.855,51.233,40.162 "Commercial",106.739,94.033,77.232,11.868 "Industrial",1.251,1.504,1.313,1.374 "Transportation",0,0,0,0 "Customers",20815,16377,12491,9635 "Residential",18362,14098,10622,8386 "Commercial",2431,2259,1851,1163

  17. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",64.026,37.39,30.61,3.98 "Residential",25.608,16.666,13.336,1.465 "Commercial",35.816,19.387,15.931,1.371 "Industrial",2.602,1.345,1.345,1.145 "Transportation",0,0,0,0 "Customers",4461,3092,2471,278 "Residential",3923,2643,2107,247 "Commercial",522,437,353,22 "Industrial",16,12,11,9

  18. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",22.224,19.05,14.1,8.52 "Residential",8.361,6.918,5.043,3.523 "Commercial",11.858,10.184,7.13,4.533 "Industrial",2.005,1.932,1.926,0.465 "Transportation",0,0,0,0 "Customers",1617,1246,919,783 "Residential",1372,1049,780,651 "Commercial",231,189,133,112 "Industrial",14,8,6,20

  19. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",7.664,5.44,3.55,1.71 "Residential",4.141,2.841,1.829,0.94 "Commercial",3.523,2.603,1.72,0.765 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",1124,638,418,276 "Residential",1049,586,389,256 "Commercial",75,52,29,20 "Industrial",0,0,0,0 "Transportation",0,0,0,0

  20. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",59.797,43.82,31.65,20.13 "Residential",27.648,20.99,17.278,11.39 "Commercial",31.865,22.754,14.283,8.709 "Industrial",0.284,0.06,0.06,0 "Transportation",0,0,0,0 "Customers",6656,5239,3862,2699 "Residential",5175,4167,3263,2369 "Commercial",1477,1070,597,330 "Industrial",4,2,2,0

  1. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",9.614,7.94,4.8,2.74 "Residential",2.929,2.066,2.692,2.107 "Commercial",5.058,4.468,1.78,0.62 "Industrial",1.627,1.413,0.311,0 "Transportation",0,0,0,0 "Customers",690,556,342,193 "Residential",509,398,249,144 "Commercial",165,145,89,49 "Industrial",16,13,4,0 "Transportation",0,0,0,0

  2. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",220.565,121.11,55.38,28.85 "Residential",173.15,84.817,32.328,13.906 "Commercial",47.415,36.298,23.044,14.939 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",40511,22264,9785,4302 "Residential",39008,21007,9129,3905 "Commercial",1503,1257,656,397 "Industrial",0,0,0,0

  3. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",2.836,2.22,1.57,0.31 "Residential",1.37,1.016,0.594,0.212 "Commercial",1.466,1.186,0.94,0.106 "Industrial",0,0.001,0.032,0.001 "Transportation",0,0,0,0 "Customers",428,349,207,76 "Residential",331,265,180,66 "Commercial",97,83,24,9 "Industrial",0,1,3,1 "Transportation",0,0,0,0

  4. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",5.167,4.35,2.74,1.05 "Residential",2.88,2.626,1.808,0.75 "Commercial",2.157,1.725,0.938,0.301 "Industrial",0.13,0,0,0 "Transportation",0,0,0,0 "Customers",716,682,506,233 "Residential",535,544,414,210 "Commercial",178,138,92,23 "Industrial",3,0,0,0 "Transportation",0,0,0,0

  5. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",3.331,2.19,1.32,0.56 "Residential",2.223,1.127,0.716,0.366 "Commercial",1.082,1.06,0.602,0.168 "Industrial",0.026,0.01,0,0.005 "Transportation",0,0,0,0 "Customers",551,335,238,131 "Residential",454,260,180,90 "Commercial",95,74,58,40 "Industrial",2,1,0,1 "Transportation",0,0,0,0

  6. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",5.998,1.77,0.65,9.43 "Residential",2.885,0.794,0.268,9.289 "Commercial",2.91,0.947,0.373,0.116 "Industrial",0.203,0.036,0,0 "Transportation",0,0,0,0 "Customers",534,148,79,65 "Residential",388,111,59,49 "Commercial",136,35,20,16 "Industrial",10,2,0,0 "Transportation",0,0,0,0

  7. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1.36,0.92,0.61,0 "Residential",0.576,0.324,0.206,0.004 "Commercial",0.784,0.588,0.405,0 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",164,106,76,2 "Residential",124,75,49,2 "Commercial",40,31,27,0 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Wind",,,,

  8. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",2.838,1.37,1.14,0.51 "Residential",1.842,0.534,0.397,0.23 "Commercial",0.996,0.83,0.733,0.282 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",330,254,208,122 "Residential",284,221,180,100 "Commercial",46,33,28,22 "Industrial",0,0,0,0 "Transportation",0,0,0,0

  9. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",51.156,23.19,8.44,6.25 "Residential",48.69,21.418,7.73,5.521 "Commercial",2.466,1.755,0.697,0.716 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",9569,3899,1287,1656 "Residential",9111,3835,1245,1512 "Commercial",458,64,42,144 "Industrial",0,0,0,0 "Transportation",0,0,0,0

  10. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",7.74,5.04,5.95,2.57 "Residential",5.696,3.558,4.263,1.907 "Commercial",2.018,1.464,1.687,0.655 "Industrial",0.026,0.026,0,0 "Transportation",0,0,0,0 "Customers",1344,967,683,446 "Residential",1210,850,584,379 "Commercial",133,116,99,67 "Industrial",1,1,0,0 "Transportation",0,0,0,0

  11. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",105.226,65.82,36.92,11.06 "Residential",36.071,22.582,11.629,5.159 "Commercial",66.138,42.245,24.284,5.891 "Industrial",3.017,1,1,0 "Transportation",0,0,0,0 "Customers",6596,4146,2456,1155 "Residential",6066,3734,2236,1051 "Commercial",526,411,219,104 "Industrial",4,1,1,0

  12. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",278.065,123.77,59.72,43.84 "Residential",54.325,25.025,13.334,18.958 "Commercial",203.506,86.325,38.241,23.26 "Industrial",20.234,12.398,8.133,1.617 "Transportation",0,0,0,0 "Customers",11468,6109,3886,2829 "Residential",9742,4884,2997,2142 "Commercial",1581,1104,793,662

  13. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",11.493,8.69,5.54,3.42 "Residential",6.351,4.86,3.581,2.837 "Commercial",4.63,3.724,1.913,0.54 "Industrial",0.512,0.103,0.047,0.033 "Transportation",0,0,0,0 "Customers",1299,996,769,383 "Residential",1032,807,624,331 "Commercial",254,184,142,48 "Industrial",13,5,3,4

  14. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",11.21,8.87,4.07,8.13 "Residential",4.99,3.851,2.302,5.203 "Commercial",5.74,4.484,1.505,2.774 "Industrial",0.48,0.52,0.25,0.114 "Transportation",0,0,0,0 "Customers",1172,970,613,608 "Residential",877,723,487,489 "Commercial",279,230,117,107 "Industrial",16,17,9,12

  15. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",6.077,0.04,0.03,0 "Residential",1.077,0.036,0.024,0 "Commercial",2,0,0,0 "Industrial",3,0,0,0 "Transportation",0,0,0,0 "Customers",50,5,4,0 "Residential",24,5,4,0 "Commercial",22,0,0,0 "Industrial",4,0,0,0 "Transportation",0,0,0,0 "Wind",,,, "Capacity

  16. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",42.797,14.7,4.31,1.21 "Residential",21.508,6.129,1.602,0.786 "Commercial",21.115,8.547,2.693,0.424 "Industrial",0.174,0.03,0,0 "Transportation",0,0,0,0 "Customers",2930,1260,512,200 "Residential",1929,834,345,167 "Commercial",994,425,167,33 "Industrial",7,1,0,0

  17. Pressure balanced drag turbine mass flow meter

    DOE Patents [OSTI]

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  18. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",17.151,10.78,5.73,3.45 "Residential",7.328,3.823,2.643,2.567 "Commercial",9.073,6.551,3.031,...

  19. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",11.378,9.9,6.55,3.68 "Residential",6.68,5.179,3.987,2.776 "Commercial",4.596,4.582,2.468...

  20. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",3.361,2,1.43,1.97 "Residential",1.205,0.633,0.574,0.535 "Commercial",2.156,1.37,0.85...