Powered by Deep Web Technologies
Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Efficiency of TTAC's ORTEC IDM  

Science Conference Proceedings (OSTI)

ORNL's Technical Testing and Analysis Center (TTAC) acquired a High Purity Germanium Detector (HPGe) from ORTEC - a variant called an Interchangeable Detection Module (IDM). This detector has excellent energy resolution as well as high intrinsic efficiency. The purpose of this report is to detail the determination of the efficiency curve of the IDM, so future measurements can quantify the (otherwise unknown) activity of sources. Without such a curve, the activity cannot be directly reported by use of the IDM alone - a separate device such as an ion chamber would be required. This builds upon the capability of TTAC. The method for determining the energy-dependent intrinsic efficiency is laid-out in this report. It's noteworthy that this basic technique can be applied to any spectroscopic radiation detector, independent of the specific type (e.g. NaI, CzT, ClYC).

Livesay, Jake [ORNL; Combs, Jason C [ORNL; Margrave, Timothy E [ORNL; Miller, Ian J [ORNL

2012-08-01T23:59:59.000Z

2

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

3

Forecast Energy | Open Energy Information  

Open Energy Info (EERE)

Forecast Energy Forecast Energy Jump to: navigation, search Name Forecast Energy Address 2320 Marinship Way, Suite 300 Place Sausalito, California Zip 94965 Sector Services Product Intelligent Monitoring and Forecasting Services Year founded 2010 Number of employees 11-50 Company Type For profit Website http://www.forecastenergy.net Coordinates 37.865647°, -122.496315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.865647,"lon":-122.496315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Solar Energy Market Forecast | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Market Forecast Solar Energy Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Solar Topics: Market analysis, Technology characterizations Resource Type: Publications Website: giffords.house.gov/DOE%20Perspective%20on%20Solar%20Market%20Evolution References: Solar Energy Market Forecast[1] Summary " Energy markets / forecasts DOE Solar America Initiative overview Capital market investments in solar Solar photovoltaic (PV) sector overview PV prices and costs PV market evolution Market evolution considerations Balance of system costs Silicon 'normalization' Solar system value drivers Solar market forecast Additional resources"

5

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast

6

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation by Susan H. Holte In this paper, the Office of Integrated Analysis and Forecasting (OIAF) of the Energy Information Administration (EIA) evaluates the projections published in the Annual Energy Outlook (AEO), (1) by comparing the projections from the Annual Energy Outlook 1982 through the Annual Energy Outlook 2001 with actual historical values. A set of major consumption, production, net import, price, economic, and carbon dioxide emissions variables are included in the evaluation, updating similar papers from previous years. These evaluations also present the reasons and rationales for significant differences. The Office of Integrated Analysis and Forecasting has been providing an

7

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sánchez The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors,

8

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sanchez by Esmeralda Sanchez Errata -(7/14/04) The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors, expressed as the percentage difference between the Reference Case projection and actual historic value, shown for every AEO and for each year in the forecast horizon (for a given variable). The historical data are typically taken from the Annual Energy Review (AER). The last column of Table 1 provides a summary of the most recent average absolute forecast errors. The calculation of the forecast error is shown in more detail in Tables 2 through 18. Because data for coal prices to electric generating plants were not available from the AER, data from the Monthly Energy Review (MER), July 2003 were used.

9

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption, Actual vs. Forecasts Table 5. Total Coal Consumption, Actual vs. Forecasts Table 6. Total Electricity Sales, Actual vs. Forecasts Table 7. Crude Oil Production, Actual vs. Forecasts Table 8. Natural Gas Production, Actual vs. Forecasts Table 9. Coal Production, Actual vs. Forecasts Table 10. Net Petroleum Imports, Actual vs. Forecasts Table 11. Net Natural Gas Imports, Actual vs. Forecasts Table 12. Net Coal Exports, Actual vs. Forecasts Table 13. World Oil Prices, Actual vs. Forecasts Table 14. Natural Gas Wellhead Prices, Actual vs. Forecasts Table 15. Coal Prices to Electric Utilities, Actual vs. Forecasts

10

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Title of Paper Annual Energy Outlook Forecast Evaluation Title of Paper Annual Energy Outlook Forecast Evaluation by Susan H. Holte OIAF has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Natural gas has generally been the fuel with the least accurate forecasts of consumption, production, and prices. Natural gas was the last fossil fuel to be deregulated following the strong regulation of energy markets in the 1970s and early 1980s. Even after deregulation, the behavior

11

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

12

Energy conservation and official UK energy forecasts  

SciTech Connect

Behind the latest United Kingdom (UK) official forecasts of energy demand are implicit assumptions about future energy-price elasticities. Mr. Pearce examines the basis of the forecasts and finds that the long-term energy-price elasticities that they imply are two or three times too low. The official forecasts substantially understate the responsiveness of demand to energy price rises. If more-realistic price elasticities were assumed, the official forecasts would imply a zero primary energy-demand growth to 2000. This raises the interesting possibility of a low energy future being brought about entirely by market forces. 15 references, 3 tables.

Pearce, D.

1980-09-01T23:59:59.000Z

13

Evaluation of errors in national energy forecasts.  

E-Print Network (OSTI)

??Energy forecasts are widely used by the U.S. government, politicians, think tanks, and utility companies. While short-term forecasts were reasonably accurate, medium and long-range forecasts (more)

Sakva, Denys

2005-01-01T23:59:59.000Z

14

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

15

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast. Miguel Garcia

16

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: * Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the

17

Annual Energy Outlook Forecast Evaluation-Table 1  

Annual Energy Outlook 2012 (EIA)

Annual Energy Outlook Forecast Evaluation > Table 1 Annual Energy Outlook Forecast Evaluation Table 1. Comparison of Absolute Percent Errors for AEO Forecast Evaluation, 1996 to...

18

Building Energy Software Tools Directory: Energy Usage Forecasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Alphabetically Tools by Platform PC Mac UNIX Internet Tools by Country Related Links Energy Usage Forecasts Energy Usage Forecasts Quick and easy web-based tool that provides...

19

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation Analysis Papers > Annual Energy Outlook Forecast Evaluation Release Date: February 2005 Next Release Date: February 2006 Printer-friendly version Annual Energy Outlook Forecast Evaluation* Table 1.Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Printer Friendly Version Average Absolute Percent Error Variable AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 AEO82 to AEO2003 AEO82 to AEO2004 Consumption Total Energy Consumption 1.9 2.0 2.1 2.1 2.1 2.1 Total Petroleum Consumption 2.9 3.0 3.1 3.1 3.0 2.9 Total Natural Gas Consumption 7.3 7.1 7.1 6.7 6.4 6.5 Total Coal Consumption 3.1 3.3 3.5 3.6 3.7 3.8 Total Electricity Sales 1.9 2.0 2.3 2.3 2.3 2.4 Production Crude Oil Production 4.5 4.5 4.5 4.5 4.6 4.7

20

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Evaluation Evaluation Annual Energy Outlook Forecast Evaluation by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the impacts were not incorporated in the AEO projections until their enactment or effective dates in accordance with EIA's requirement to remain policy neutral and include only current laws and regulations in the AEO reference case projections.

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Forecasting for energy and chemical decision analysis  

SciTech Connect

This paper focuses on uncertainty and bias in forecasts used for major energy and chemical investment decisions. Probability methods for characterizing uncertainty in the forecast are reviewed. Sources of forecasting bias are classified based on the results of relevant psychology research. Examples are drawn from the energy and chemical industry to illustrate the value of explicit characterization of uncertainty and reduction of bias in forecasts.

Cazalet, E.G.

1984-08-01T23:59:59.000Z

22

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

23

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

24

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

25

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

26

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy Commission staff. Staff contributors to the current forecast are: Project Management and Technical Direction

27

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

H Tables H Tables Appendix H Comparisons With Other Forecasts, and Performance of Past IEO Forecasts for 1990, 1995, and 2000 Forecast Comparisons Three organizations provide forecasts comparable with those in the International Energy Outlook 2005 (IEO2005). The International Energy Agency (IEA) provides “business as usual” projections to the year 2030 in its World Energy Outlook 2004; Petroleum Economics, Ltd. (PEL) publishes world energy forecasts to 2025; and Petroleum Industry Research Associates (PIRA) provides projections to 2015. For this comparison, 2002 is used as the base year for all the forecasts, and the comparisons extend to 2025. Although IEA’s forecast extends to 2030, it does not publish a projection for 2025. In addition to forecasts from other organizations, the IEO2005 projections are also compared with those in last year’s report (IEO2004). Because 2002 data were not available when IEO2004 forecasts were prepared, the growth rates from IEO2004 are computed from 2001.

28

Wind Energy Forecasting Technology Update: 2004  

Science Conference Proceedings (OSTI)

This report describes the status of wind energy forecasting technology for predicting wind speed and energy generation of wind energy facilities short-term (minutes to hours), intermediate-term (hours to days), and long-term (months to years) average wind speed and energy generation. The information should be useful to companies that are evaluating or planning to incorporate wind energy forecasting into their operations.

2005-04-26T23:59:59.000Z

29

Building Energy Software Tools Directory: Energy Usage Forecasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Usage Forecasts Energy Usage Forecasts Energy Usage Forecasts Quick and easy web-based tool that provides free 14-day ahead energy usage forecasts based on the degree day forecasts for 1,200 stations in the U.S. and Canada. The user enters the daily non-weather base load and the usage per degree day weather factor; the tool applies the degree day forecast and displays the total energy usage forecast. Helpful FAQs explain the process and describe various options for the calculation of the base load and weather factor. Historical degree day reports and 14-day ahead degree day forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature, load calculation, energy simulation Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700.

30

energy data + forecasting | OpenEI Community  

Open Energy Info (EERE)

energy data + forecasting energy data + forecasting Home FRED Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in formulating policies and energy plans based on easy to use forecasting tools, visualizations, sankey diagrams, and open data. The platform will live on OpenEI and this community was established to initiate discussion around continuous development of this tool, integrating it with new datasets, and connecting with the community of users who will want to contribute data to the tool and use the tool for planning purposes. Links: FRED beta demo energy data + forecasting Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2084382122

31

Annual Energy Outlook Forecast Evaluation 2005  

Gasoline and Diesel Fuel Update (EIA)

Forecast Evaluation 2005 Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 * Then Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies used. The projections are business-as-usual trend projections, given known technology, technological and demographic trends, and current laws and regulations. Thus, they provide a policy-neutral reference case that can be used to analyze policy initiatives. EIA does not propose or advocate future legislative and regulatory changes. All laws are assumed to remain as currently enacted; however, the impacts of emerging regulatory changes, when defined, are reflected.

32

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Download Adobe Acrobat Reader Printer friendly version on our site are provided in Adobe Acrobat Spreadsheets are provided in Excel Actual vs. Forecasts Formats Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF Table 12. World Oil Prices Excel, PDF Table 13. Natural Gas Wellhead Prices

33

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) MS Excel Viewer PDF (Acrobat Reader required Download Acrobat Reader ) Adobe Acrobat Reader Logo Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF

34

Mathematical and computer modelling reports: Modeling and forecasting energy markets with the intermediate future forecasting system  

Science Conference Proceedings (OSTI)

This paper describes the Intermediate Future Forecasting System (IFFS), which is the model used to forecast integrated energy markets by the U.S. Energy Information Administration. The model contains representations of supply and demand for all of the ...

Frederic H. Murphy; John J. Conti; Susan H. Shaw; Reginald Sanders

1989-09-01T23:59:59.000Z

35

Annual Energy Outlook Forecast Evaluation 2004  

Gasoline and Diesel Fuel Update (EIA)

2004 2004 * The Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) has produced annual evaluations of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and replacing the historical year of data with the most recent. The forecast evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute percent errors for several of the major variables for AEO82 through AEO2004. (There is no report titled Annual Energy Outlook 1988 due to a change in the naming convention of the AEOs.) The average absolute percent error is the simple mean of the absolute values of the percentage difference between the Reference Case projection and the

36

Annual Energy Outlook 2001 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Economic Growth World Oil Prices Total Energy Consumption Residential and Commercial Sectors Industrial Sector Transportation Sector Electricity Natural Gas Petroleum Coal Three other organizations—Standard & Poor’s DRI (DRI), the WEFA Group (WEFA), and the Gas Research Institute (GRI) [95]—also produce comprehensive energy projections with a time horizon similar to that of AEO2001. The most recent projections from those organizations (DRI, Spring/Summer 2000; WEFA, 1st Quarter 2000; GRI, January 2000), as well as other forecasts that concentrate on petroleum, natural gas, and international oil markets, are compared here with the AEO2001 projections. Economic Growth Differences in long-run economic forecasts can be traced primarily to

37

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B.B. Blevins Executive Director DISCLAIMER This report was prepared by a California has developed longterm forecasts of transportation energy demand as well as projected ranges

38

Price and Load Forecasting in Volatile Energy Markets  

Science Conference Proceedings (OSTI)

With daily news stories about wildly fluctuating electricity prices and soaring natural gas prices, forecasters' responsibilities are expanding, visibility is increasing, and pressure exists to produce more frequent forecasts and more kinds of forecasts. The proceedings of EPRI's 13th Forecasting Symposium, held November 13-15 in Nashville, Tennessee, address current forecasting issues and developments, as well as explain the role that forecasters have played in recent events in energy markets.

2001-12-05T23:59:59.000Z

39

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST forecast is the combined product of the hard work and expertise of numerous staff members in the Demand prepared the residential sector forecast. Mohsen Abrishami prepared the commercial sector forecast. Lynn

40

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) PDF (Acrobat Reader required) Table 2. Total Energy Consumption HTML, Excel, PDF Table 3. Total Petroleum Consumption HTML, Excel, PDF Table 4. Total Natural Gas Consumption HTML, Excel, PDF Table 5. Total Coal Consumption HTML, Excel, PDF Table 6. Total Electricity Sales HTML, Excel, PDF Table 7. Crude Oil Production HTML, Excel, PDF Table 8. Natural Gas Production HTML, Excel, PDF Table 9. Coal Production HTML, Excel, PDF Table 10. Net Petroleum Imports HTML, Excel, PDF Table 11. Net Natural Gas Imports HTML, Excel, PDF Table 12. Net Coal Exports HTML, Excel, PDF Table 13. World Oil Prices HTML, Excel, PDF

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Annual Energy Outlook Forecast Evaluation - Table 1. Forecast Evaluations:  

Gasoline and Diesel Fuel Update (EIA)

Average Absolute Percent Errors from AEO Forecast Evaluations: Average Absolute Percent Errors from AEO Forecast Evaluations: 1996 to 2000 Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Variable 1996 Evaluation: AEO82 to AEO93 1997 Evaluation: AEO82 to AEO97 1998 Evaluation: AEO82 to AEO98 1999 Evaluation: AEO82 to AEO99 2000 Evaluation: AEO82 to AEO2000 Consumption Total Energy Consumption 1.8 1.6 1.7 1.7 1.8 Total Petroleum Consumption 3.2 2.8 2.9 2.8 2.9 Total Natural Gas Consumption 6.0 5.8 5.7 5.6 5.6 Total Coal Consumption 2.9 2.7 3.0 3.2 3.3 Total Electricity Sales 1.8 1.6 1.7 1.8 2.0 Production Crude Oil Production 5.1 4.2 4.3 4.5 4.5

42

PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022  

E-Print Network (OSTI)

PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA or adequacy of the information in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast forecast. Bryan Alcorn and Mehrzad Soltani Nia prepared the industrial forecast. Miguel Garcia- Cerrutti

43

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 57 percent from 2002 to 2025. Much of the growth in worldwide energy use in the IEO2005 reference case forecast is expected in the countries with emerging economies. Figure 1. World Marketed Energy Consumptiion by Region, 1970-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2005 (IEO2005) reference case, world marketed energy consumption is projected to increase on average by 2.0 percent per year over the 23-year forecast horizon from 2002 to 2025—slightly lower than the 2.2-percent average annual growth rate from 1970 to 2002. Worldwide, total energy use is projected to grow from 412 quadrillion British thermal units (Btu) in 2002 to 553 quadrillion Btu in

44

OpenEI Community - energy data + forecasting  

Open Energy Info (EERE)

FRED FRED http://en.openei.org/community/group/fred Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in formulating policies and energy plans based on easy to use forecasting tools, visualizations, sankey diagrams, and open data. The platform will live on OpenEI and this community was established to initiate discussion around continuous development of this tool, integrating it with new datasets, and connecting with the community of users who will want to contribute data to the tool and use the tool for planning purposes. energy data + forecasting Fri, 22 Jun 2012 15:30:20 +0000 Dbrodt 34

45

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series  

E-Print Network (OSTI)

in this report. #12;i ABSTRACT These electricity demand forms and instructions ask load-serving entities and Instructions for Electricity Demand Forecasts. California Energy Commission, Electricity Supply Analysis.................................................................................................................................7 Form 1 Historic and Forecast Electricity Demand

Abdel-Aal, Radwan E.

46

Annual Energy Outlook 1998 Forecasts  

Gasoline and Diesel Fuel Update (EIA)

EIA Administrator's Press Briefing on the Annual Energy Outlook 1998 (AEO98) Annual Energy Outlook 1998 - Errata as of 3698 Data from the AEO98 Assumptions to the AEO98 (Nat'Gas...

47

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End-Use Sector Energy Consumption by End-Use Sector In the IEO2005 projections, end-use energy consumption in the residential, commercial, industrial, and transportation sectors varies widely among regions and from country to country. One way of looking at the future of world energy markets is to consider trends in energy consumption at the end-use sector level. With the exception of the transportation sector, which is almost universally dominated by petroleum products at present, the mix of energy use in the residential, commercial, and industrial sectors can vary widely from country to country, depending on a combination of regional factors, such as the availability of energy resources, the level of economic development, and political, social, and demographic factors. This chapter outlines the International Energy Outlook 2005 (IEO2005) forecast for regional energy consumption by end-use sector.

48

Wind Energy Forecasting Technology Update: 2006  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25 and reached almost 60,000 MW worldwide during 2005. As wind capacity continues to grow and large regional concentrations of wind generation emerge, utilities and regional transmission organizations will increasingly need accurate same-day and next-day forecasts of wind energy generation to dispatch system generation and transmission resource and anticipate rapid changes of wind generation.

2006-12-05T23:59:59.000Z

49

Wind Energy Forecasting Technology Update: 2005  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25 and reached almost 60,000 MW worldwide during 2005. As wind capacity continues to grow and large regional concentrations of wind generation emerge, utilities and regional transmission organizations will increasingly need accurate same-day and next-day forecasts of wind energy generation to dispatch system generation and transmission resource and anticipate rapid changes of wind generation. The project objective is to summarize the results o...

2006-03-31T23:59:59.000Z

50

NREL: Energy Analysis - Energy Forecasting and Modeling Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Forecasting and Modeling Energy Forecasting and Modeling The following includes summary bios of staff expertise and interests in analysis relating to energy economics, energy system planning, risk and uncertainty modeling, and energy infrastructure planning. Team Lead: Nate Blair Administrative Support: Geraly Amador Clayton Barrows Greg Brinkman Brian W Bush Stuart Cohen Carolyn Davidson Paul Denholm Victor Diakov Aron Dobos Easan Drury Kelly Eurek Janine Freeman Marissa Hummon Jennie Jorganson Jordan Macknick Trieu Mai David Mulcahy David Palchak Ben Sigrin Daniel Steinberg Patrick Sullivan Aaron Townsend Laura Vimmerstedt Andrew Weekley Owen Zinaman Photo of Clayton Barrows. Clayton Barrows Postdoctoral Researcher Areas of expertise Power system modeling Primary research interests Power and energy systems

51

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks  

E-Print Network (OSTI)

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu in power output is a major concern and forecasting is, therefore, a top priority. We propose a sensing infrastructure to enable sensing of solar irradiance with application to solar array output forecasting

Cerpa, Alberto E.

52

Annual Energy Outlook 1998 Forecasts - Preface  

Gasoline and Diesel Fuel Update (EIA)

1998 With Projections to 2020 1998 With Projections to 2020 Annual Energy Outlook 1999 Report will be Available on December 9, 1998 Preface The Annual Energy Outlook 1998 (AEO98) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA's National Energy Modeling System (NEMS). The report begins with an “Overview” summarizing the AEO98 reference case. The next section, “Legislation and Regulations,” describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. “Issues in Focus” discusses three current energy issues—electricity restructuring, renewable portfolio standards, and carbon emissions. It is followed by the analysis

53

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti (john.conti@eia.doe.gov, 202-586-2222), Director, Office of Integrated Analysis and Forecasting. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: World Energy and Economic Outlook Linda Doman (linda.doman@eia.doe.gov, 202-586-1041) Macroeconomic Assumptions Nasir Khilji (nasir.khilji@eia.doe.gov, 202-586-1294) Energy Consumption by End-Use Sector Residential Energy Use John Cymbalsky (john.cymbalsky@eia.doe.gov, 202-586-4815) Commercial Energy Use Erin Boedecker (erin.boedecker@eia.doe.gov, 202-586-4791)

54

ANL Wind Power Forecasting and Electricity Markets | Open Energy  

Open Energy Info (EERE)

ANL Wind Power Forecasting and Electricity Markets ANL Wind Power Forecasting and Electricity Markets Jump to: navigation, search Logo: Wind Power Forecasting and Electricity Markets Name Wind Power Forecasting and Electricity Markets Agency/Company /Organization Argonne National Laboratory Partner Institute for Systems and Computer Engineering of Porto (INESC Porto) in Portugal, Midwest Independent System Operator and Horizon Wind Energy LLC, funded by U.S. Department of Energy Sector Energy Focus Area Wind Topics Pathways analysis, Technology characterizations Resource Type Software/modeling tools Website http://www.dis.anl.gov/project References Argonne National Laboratory: Wind Power Forecasting and Electricity Markets[1] Abstract To improve wind power forecasting and its use in power system and electricity market operations Argonne National Laboratory has assembled a team of experts in wind power forecasting, electricity market modeling, wind farm development, and power system operations.

55

Building Energy Software Tools Directory: Degree Day Forecasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Forecasts Forecasts Degree Day Forecasts example chart Quick and easy web-based tool that provides free 14-day ahead degree day forecasts for 1,200 stations in the U.S. and Canada. Degree Day Forecasts charts show this year, last year and three-year average. Historical degree day charts and energy usage forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700. Expertise Required No special expertise required. Simple to use. Users Over 1,000 weekly users. Audience Anyone who needs degree day forecasts (next 14 days) for the U.S. and Canada. Input Select a weather station (1,200 available) and balance point temperature. Output Charts show (1) degree day (heating and cooling) forecasts for the next 14

56

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

of future contributions from various emerging transportation fuels and technologies is unknown. PotentiallyCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B. B. Blevins Executive Director DISCLAIMER This report was prepared by a California

57

Climate Variability over the Tropical Indian Ocean Sector in the NSIPP Seasonal Forecast System  

Science Conference Proceedings (OSTI)

Prospects for forecasting Indian dipole mode (IDM) events with lead times of a season or more are examined using the NASA Seasonal-to-Interannual Prediction Project (NSIPP) coupled-model forecast system. The mean climatology of the system over ...

Roxana C. Wajsowicz

2004-12-01T23:59:59.000Z

58

Today's Forecast: Improved Wind Predictions | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical for making energy sources -- including wind and solar --...

59

Mid-range energy-forecasting system: structure, forecasts, and critique  

SciTech Connect

The Mid-Range Energy Forecasting System (MEFS) is a large-scale, interdisciplinary model of the US energy system maintained by the US Department of Energy. MEFS provides long-run regional forecasts of delivered prices for electricity, coal, gasoline, residual, distillate, and natural gas. A number of sets of MEFS forecasts are usually issued, each set corresponding to a different scenario. Because it forecasts prices and since these forecasts are regularly disseminated, MEFS is of considerable practical interest. A critical guide of the model's output for potential users is provided in this paper. The model's logic is described, the latest forecasts from MEFS are presented, and the reasonableness of both the forecasts and the methodology are critically evaluated. The manner in which MEFS interfaces with the Oil Market Simulation Model, which forecasts crude oil price, is also discussed. The evaluation concludes that while there are serious problems with MEFS, selective use can prove very helpful. 17 references, 1 figure, 2 tables.

DeSouza, G.

1980-01-01T23:59:59.000Z

60

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Natural gas is the fastest growing primary energy source in the IEO2005 forecast. Consumption of natural gas is projected to increase by nearly 70 percent between 2002 and 2025, with the most robust growth in demand expected among the emerging economies. Figure 34. World Natural Gas Consumption, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center on 202-586-8800. Figure Data Figure 35. Natural Gas Consumption by Region, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 36. Increase in Natural Gas Consumption by Region and Country, 2002-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center  

E-Print Network (OSTI)

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

Washington at Seattle, University of

62

Annual Energy Outlook with Projections to 2025-Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2004 with Projections to 2025 Forecast Comparisons Index (click to jump links) Economic Growth World Oil Prices Total Energy Consumption Electricity Natural Gas Petroleum Coal The AEO2004 forecast period extends through 2025. One other organization—Global Insight, Incorporated (GII)—produces a comprehensive energy projection with a similar time horizon. Several others provide forecasts that address one or more aspects of energy markets over different time horizons. Recent projections from GII and others are compared here with the AEO2004 projections. Economic Growth Printer Friendly Version Average annual percentage growth Forecast 2002-2008 2002-2013 2002-2025 AEO2003 3.2 3.3 3.1 AEO2004 Reference 3.3 3.2 3.0

63

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Electricity consumption nearly doubles in the IEO2005 projection period. The emerging economies of Asia are expected to lead the increase in world electricity use. Figure 58. World Net Electricity Consumption, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 59. World Net Electricity Consumption by Region, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data The International Energy Outlook 2005 (IEO2005) reference case projects that world net electricity consumption will nearly double over the next two decades.10 Over the forecast period, world electricity demand is projected to grow at an average rate of 2.6 percent per year, from 14,275 billion

64

Today's Forecast: Improved Wind Predictions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. These forecasts also play an important role in reducing the cost of renewable energy by allowing electricity grid operators to make timely decisions on what reserve generation they need to operate their systems.

65

Today's Forecast: Improved Wind Predictions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. These forecasts also play an important role in reducing the cost of renewable energy by allowing electricity grid operators to make timely decisions on what reserve generation they need to operate their systems.

66

Energy forecasting: the troubled past of looking the future  

SciTech Connect

Energy forecasts have hardly been distinguished by their accuracy. Why forecasts go awry, and the impact these prominent tools have, is explored. A brief review of the record is given. Because of their allure, their popularity in he media, and their usefulness as tools in political battles, forecasts have played a significant role so far. The danger is that they represent and enhance a fix 'em up, tinkering approach, to the detriment of more efficient free-market policies.

Kutler, E.

1986-01-01T23:59:59.000Z

67

Wind forecasting objectives for utility schedulers and energy traders  

DOE Green Energy (OSTI)

The wind energy industry and electricity producers can benefit in a number of ways from increased wind forecast accuracy. Higher confidence in the reliability of wind forecasts can help persuade an electric utility to increase the penetration of wind energy into its operating system and to augment the capacity value of wind electric generation. Reliable forecasts can also assist daily energy traders employed by utilities in marketing the available and anticipated wind energy to power pools and other energy users. As the number of utilities with wind energy experience grows, and wind energy penetration levels increase, the need for reliable wind forecasts will likely grow as well. This period of wind energy growth also coincides with advances in computer weather prediction technology that could lead to more accurate wind forecasts. Thus, it is important to identify the type of forecast information needed by utility schedulers and energy traders. This step will help develop approaches to the challenge of wind forecasting that will result in useful products being supplied to utilities or other energy generating entities. This paper presents the objectives, approach, and current findings of a US Department of Energy National Renewable Energy Laboratory (DOE/NREL) initiative to develop useful wind forecasting tools for utilities involved with wind energy generation. The focus of this initiative thus far has been to learn about the needs of prospective utility users. NREL representatives conducted a series of onsite interviews with key utility staff, usually schedulers and research planners, at seven US utilities. The purpose was to ascertain information on actual scheduling and trading procedures, and how utilities could integrate wind forecasting into these activities.

Schwartz, M.N. [National Renewable Energy Lab., Golden, CO (United States); Bailey, B.H. [AWS Scientific, Inc., Albany, NY (United States)

1998-05-01T23:59:59.000Z

68

Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) | Open  

Open Energy Info (EERE)

Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Agency/Company /Organization: Energy Sector Management Assistance Program of the World Bank Sector: Energy Focus Area: Non-renewable Energy Topics: Baseline projection, Co-benefits assessment, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Simple Website: www.esmap.org/esmap/EFFECT Cost: Free Equivalent URI: www.esmap.org/esmap/EFFECT Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Screenshot

70

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 1. Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Table 1. Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Average Absolute Percent Error Variable AEO82 to AEO98 AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 AEO82 to AEO2003 Consumption Total Energy Consumption 1.7 1.7 1.8 1.9 1.9 2.1 Total Petroleum Consumption 2.9 2.8 2.9 3.0 2.9 2.9 Total Natural Gas Consumption 5.7 5.6 5.6 5.5 5.5 6.5 Total Coal Consumption 3.0 3.2 3.3 3.5 3.6 3.7 Total Electricity Sales 1.7 1.8 1.9 2.4 2.5 2.4 Production Crude Oil Production 4.3 4.5 4.5 4.5 4.5 4.7 Natural Gas Production 4.8 4.7 4.6 4.6 4.4 4.4 Coal Production 3.6 3.6 3.5 3.7 3.6 3.8 Imports and Exports Net Petroleum Imports 9.5 8.8 8.4 7.9 7.4 7.5 Net Natural Gas Imports 16.7 16.0 15.9 15.8 15.8 15.4

71

Cost forecasts: Euyropean International High-Energy Physics facilities - Million Swiss Francs at 1966 prices  

E-Print Network (OSTI)

Cost forecasts: Euyropean International High-Energy Physics facilities - Million Swiss Francs at 1966 prices

ECFA meeting

1966-01-01T23:59:59.000Z

72

Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)  

DOE Green Energy (OSTI)

Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

Lantz, E.; Hand, M.

2010-05-01T23:59:59.000Z

73

The Value of Seasonal Climate Forecasts in Managing Energy Resources  

Science Conference Proceedings (OSTI)

Research and interviews with officials of the United States energy industry and a systems analysis of decision making in a natural gas utility lead to the conclusion that seasonal climate forecasts would only have limited value in fine tuning the ...

Edith Brown Weiss

1982-04-01T23:59:59.000Z

74

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

75

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

76

Annual Energy Outlook with Projections to 2025 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2005 Forecast Comparisons Table 32. Forecasts of annual average economic growth, 2003-2025 Printer Friendly Version Average annual percentage growth Forecast 2003-2009 2003-2014 2003-2025 AEO2004 3.5 3.2 3.0 AEO2005 Reference 3.4 3.3 3.1 Low growth 2.9 2.8 2.5 High growth 4.1 3.9 3.6 GII 3.4 3.2 3.1 OMB 3.6 NA NA CBO 3.5 3.1 NA OEF 3.5 3.5 NA Only one other organization—Global Insight, Incorporated (GII)—produces a comprehensive energy projection with a time horizon similar to that of AEO2005. Other organizations address one or more aspects of the energy markets. The most recent projection from GII, as well as other forecasts that concentrate on economic growth, international oil prices, energy

77

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets IEO2005 projects that world crude oil prices in real 2003 dollars will decline from their current level by 2010, then rise gradually through 2025. In the International Energy Outlook 2005 (IEO2005) reference case, world demand for crude oil grows from 78 million barrels per day in 2002 to 103 million barrels per day in 2015 and to just over 119 million barrels per day in 2025. Much of the growth in oil consumption is projected for the emerging Asian nations, where strong economic growth results in a robust increase in oil demand. Emerging Asia (including China and India) accounts for 45 percent of the total world increase in oil use over the forecast period in the IEO2005 reference case. The projected increase in world oil demand would require an increment to world production capability of more than 42 million barrels per day relative to the 2002 crude oil production capacity of 80.0 million barrels per day. Producers in the Organization of Petroleum Exporting Countries (OPEC) are expected to be the major source of production increases. In addition, non-OPEC supply is expected to remain highly competitive, with major increments to supply coming from offshore resources, especially in the Caspian Basin, Latin America, and deepwater West Africa. The estimates of incremental production are based on current proved reserves and a country-by-country assessment of ultimately recoverable petroleum. In the IEO2005 oil price cases, the substantial investment capital required to produce the incremental volumes is assumed to exist, and the investors are expected to receive at least a 10-percent return on investment.

78

Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model  

E-Print Network (OSTI)

An important determinant of our energy future is the rate at which energy conservation technologies, once developed, are put into use. At Synergic Resources Corporation, we have adapted and applied a methodology to forecast the use of conservation technologies. This paper briefly discusses the observed patterns of the diffusion of new' technologies and the determinants (both sociological and economic) which have been proposed to explain the variation in the diffusion rates. Existing market penetration models are reviewed and their capability to forecast the use of conservation technologies is assessed using a set of criteria developed for this purpose. The reasoning behind the choice of criteria is discussed. The criteria includes the range of hypothesized influences to market penetration that are incorporated into the models and the applicability of the available parameter estimates. The attributes of our methodology and forecasting model choice (a behavioral lag equation developed by Mathtech, Inc.), are displayed using a list of the judgment criteria. This method was used to forecast the use of electricity conservation technologies in industries located in the Pacific Northwest for the Bonneville Power Administration.

Lang, K.

1982-01-01T23:59:59.000Z

79

Short-Term Energy Outlook Model Documentation: Macro Bridge Procedure to Update Regional Macroeconomic Forecasts with National Macroeconomic Forecasts  

Reports and Publications (EIA)

The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.

Information Center

2010-06-01T23:59:59.000Z

80

United States energy supply and demand forecasts 1979-1995  

SciTech Connect

Forecasts of U.S. energy supply and demand by fuel type and economic sector, as well as historical background information, are presented. Discussion and results pertaining to the development of current and projected marginal energy costs, and their comparison with market prices, are also presented.

Walton, H.L.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Integrated DWPF Melter System (IDMS) campaign report: Hanford Waste Vitrification Plan (HWVP) process demonstration  

Science Conference Proceedings (OSTI)

Vitrification facilities are being developed worldwide to convert high-level nuclear waste to a durable glass form for permanent disposal. Facilities in the United States include the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the West Valley Demonstration Project (WVDP) at West Valley, NY. At each of these sites, highly radioactive defense waste will be vitrified to a stable borosilicate glass. The DWPF and WVDP are near physical completion while the HWVP is in the design phase. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. Because of the similarities of the DWPF and HWVP processes, the IDMS facility has also been used to characterize the processing behavior of a reference NCAW simulant. The demonstration was undertaken specifically to determine material balances, to characterize the evolution of offgas products (especially hydrogen), to determine the effects of noble metals, and to obtain general HWVP design data. The campaign was conducted from November, 1991 to February, 1992.

Hutson, N.D.

1992-08-10T23:59:59.000Z

82

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 ..............................................................................3 Residential Forecast Comparison ..............................................................................................5 Nonresidential Forecast Comparisons

83

California Wind Energy Forecasting System Development and Testing Phase 2: 12-Month Testing  

Science Conference Proceedings (OSTI)

This report describes results from the second phase of the California Wind Energy Forecasting System Development and Testing Project.

2003-07-22T23:59:59.000Z

84

California Regional Wind Energy Forecasting System Development, Vol. 3  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 MW in place at the end of 2005. The main drivers are the state's 20 percent Renewable Portfolio Standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources. As wind is an intermittent generation resource and weather changes can cause large and rapid changes in output, system operators will need accurate and robust wind energy forecasting ...

2006-11-15T23:59:59.000Z

85

Hydrogen generation during IDMS demonstrations of the Late Washing and Nitric Acid flowsheets  

DOE Green Energy (OSTI)

Recently, Late Washing (LW) and Nitric Acid (NA) flowsheets, developed respectively for the DWPF at Savannah River Technology Center SPC and CPC, were demonstrated in the one-fifth scale DWPF pilot facilities, PHEF and IDMS. Using the LW flowsheet, four runs in the PHEF produced enough PHA for two runs in the IDMS (denoted by PX4 and PX5). One of the objectives of these IDMS runs was to obtain peak hydrogen generation rates and compare them to the peak hydrogen generation rate design basis obtained from a previous IDMS run, based on the HAN and Formic Acid (HAN-FA) flowsheets.

Ritter, J.A.

1992-10-19T23:59:59.000Z

86

Emerging challenges in wind energy forecasting for Australia  

E-Print Network (OSTI)

Growing concern about climate change has led to significant interest in renewable energy resources such as wind energy. However, such non-storable energy sources present a significant issue how to maintain continuity of supply in the event of possible disturbances to power production. For example, in the case of wind energy, such disturbances can result from extreme weather events due to frontal systems or rapidly evolving low pressure systems. Such events cannot be avoided, but if they can be accurately forecast, their impact can be minimized by ensuring that alternative sources are available to make up any power shortfalls. Thus as wind energy makes up an ever greater component of our energy supply, there is greater interest in developing models to produce accurate, local scale, wind-focused forecasts for wind farm sites that push the boundaries of current weather prediction techniques. In this article we present a case study focusing on the Woolnorth wind farm on the northwest tip of Tasmania, to highlight some of the key challenges that will be involved in developing such forecasts.

Merlinde J. Kay; Nicholas Cutler; Adam Micolich; Iain Macgill; Hugh Outhred Centre For Energy; Environmental Markets; South Wales

2008-01-01T23:59:59.000Z

87

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions In the coming decades, responses to environmental issues could affect patterns of energy use around the world. Actions to limit greenhouse gas emissions could alter the level and composition of energy-related carbon dioxide emissions by energy source. Figure 67. World Carbon Dioxide Emissions by Region, 2002-2025 (Gigawatts). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Carbon dioxide is one of the most prevalent greenhouse gases in the atmosphere. Anthropogenic (human-caused) emissions of carbon dioxide result primarily from the combustion of fossil fuels for energy, and as a result world energy use has emerged at the center of the climate change debate. In the International Energy Outlook 2005 (IEO2005) reference case, world

88

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

I: System for the Analysis of Global Energy Markets (SAGE) I: System for the Analysis of Global Energy Markets (SAGE) The projections of world energy consumption appearing in this year’s International Energy Outlook (IEO) are based on the Energy Information Administration’s (EIA’s) international energy modeling tool, System for the Analysis of Global Energy markets (SAGE). SAGE is an integrated set of regional models that provide a technology-rich basis for estimating regional energy consumption. For each region, reference case estimates of 42 end-use energy service demands (e.g., car, commercial truck, and heavy truck road travel; residential lighting; steam heat requirements in the paper industry) are developed on the basis of economic and demographic projections. Projections of energy consumption to meet the energy demands are estimated on the basis of each region’s existing energy use patterns, the existing stock of energy-using equipment, and the characteristics of available new technologies, as well as new sources of primary energy supply.

89

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network (OSTI)

Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model developed for industrial energy analysis at the Pacific Northwest National Laboratory. Although the results are mixed, generally ITEMS show greater penetration of energy efficient technologies and thus lower energy use, even though the business as usual forecasts for ITEMS uses a higher discount rate than NEMS uses.

Roop, J. M.; Dahowski, R. T

2000-04-01T23:59:59.000Z

90

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

G: Key Assumptions for the IEO2005 Kyoto Protocol Case G: Key Assumptions for the IEO2005 Kyoto Protocol Case Energy-Related Emissions of Greenhouse Gases The System for the Analysis of Global energy Markets (SAGE)—the model used by the Energy Information Administration (EIA) to prepare the International Energy Outlook 2005 (IEO2005) mid-term projections—does not include non-energy-related emissions of greenhouse gases, which are estimated at about 15 to 20 percent of total greenhouse gas emissions, based on inventories submitted to the United Nations Framework Convention on Climate Change (UNFCCC). SAGE models global energy supply and demand and, therefore, does not address agricultural and other non-energy-related emissions. EIA implicitly assumes that percentage reductions of non-energy-related emissions and their associated abatement costs will be similar to those for energy-related emissions. Non-energy-related greenhouse gas emissions are likely to grow faster than energy-related emissions; however, the marginal abatement costs for non-energy-related greenhouse gas emissions are not known and cannot be estimated reliably. In SAGE, each region’s emissions reduction goal under the Kyoto Protocol is based only on the corresponding estimate of that region’s energy-related carbon dioxide emissions, as determined by EIA data. It is assumed that the required reductions will also be proportionately less than if all gases were included.

91

Annual Energy Outlook 2006 with Projections to 2030 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2006 with Projections to 2030 Only GII produces a comprehensive energy projection with a time horizon similar to that of AEO2006. Other organizations address one or more aspects of the energy markets. The most recent projection from GII, as well as others that concentrate on economic growth, international oil prices, energy consumption, electricity, natural gas, petroleum, and coal, are compared here with the AEO2006 projections. Economic Growth In the AEO2006 reference case, the projected growth in real GDP, based on 2000 chain-weighted dollars, is 3.0 percent per year from 2004 to 2030 (Table 19). For the period from 2004 to 2025, real GDP growth in the AEO2006 reference case is similar to the average annual growth projected in AEO2005. The AEO2006 projections of economic growth are based on the August short-term forecast of GII, extended by EIA through 2030 and modified to reflect EIA’s view on energy prices, demand, and production.

92

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

The International Energy Outlook 2005 (IEO2005) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2025. U.S. projections appearing in IEO2005 are consistent with those published in EIA's Annual Energy Outlook 2005 (AEO2005), which was prepared using the National Energy Modeling System (NEMS). The International Energy Outlook 2005 (IEO2005) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2025. U.S. projections appearing in IEO2005 are consistent with those published in EIA's Annual Energy Outlook 2005 (AEO2005), which was prepared using the National Energy Modeling System (NEMS). Table of Contents Projection Tables Reference Case High Economic Growth Case Low Economic Growth Case Reference Case Projections by End-Use Sector and Region Projections of Oil Production Capacity and Oil Production in Three Cases Projections of Nuclear Generating Capacity Highlights World Energy and Economic Outlook Outlook for World Energy Consumption World Economic Outlook Alternative Growth Cases

93

Review of Wind Energy Forecasting Methods for Modeling Ramping Events  

DOE Green Energy (OSTI)

Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

2011-03-28T23:59:59.000Z

94

Weather forecast-based optimization of integrated energy systems.  

SciTech Connect

In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

2009-03-01T23:59:59.000Z

95

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate electricity and industrial sector fuel markets in emerging Asia. Figure 50. World Coal Consumption by Region, 1970-2025 (Billion Short Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 51. Coal Share of World Energy Consumption by Sector, 2002, 2015, and 2025 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 52. World Recoverable Coal Reserves. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2005 (IEO2005) reference case, world

96

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface This report presents international energy projections through 2025, prepared by the Energy Information Administration, including outlooks for major energy fuels and associated carbon dioxide emissions. The International Energy Outlook 2005 (IEO2005) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2025. U.S. projections appearing in IEO2005 are consistent with those published in EIA’s Annual Energy Outlook 2005 (AEO2005), which was prepared using the National Energy Modeling System (NEMS). Although the IEO typically uses the same reference case as the AEO, IEO2005 has adopted the October futures case from AEO2005 as its reference case for the United States. The October futures case, which has an assumption of higher world oil prices than the AEO2005 reference case, now appears to be a more likely projection. The reference case prices will be reconsidered for the next AEO. Based on information available as of July 2005, the AEO2006 reference case will likely reflect world oil prices higher than those in the IEO2005 reference case.

97

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Projections by End-Use Sector and Region Tables (2002-2025) Projections by End-Use Sector and Region Tables (2002-2025) Formats Reference Case Projections by End-Use Sector and Region Data Tables (1 to 15 complete) Excel PDF Table Title Table D1 Delivered Energy Consumption in the United States by End-Use Sector and Fuel Excel PDF Table D2 Delivered Energy Consumption in Canada by End-Use Sector and Fuel Excel PDF Table D3 Delivered Energy Consumption in Mexico by End-Use Sector and Fuel Excel PDF Table D4 Delivered Energy Consumption in Western Europe by End-Use Sector and Fuel Excel PDF Table D5 Delivered Energy Consumption in Japan by End-Use Sector and Fuel Excel PDF Table D6 Delivered Energy Consumption in Australia/New Zealand by End-Use Sector and Fuel Excel PDF Table D7 Delivered Energy Consumption in the Former Soviet Union by End-Use Sector and Fuel

98

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Projection Tables (1990-2025) Projection Tables (1990-2025) Formats All Reference Case Data Projection Tables (1 to 14 complete) Excel PDF Table Title Table A1 World Total Primary Energy Consumption by Region, Reference Case Excel PDF Table A2 World Total Energy Consumption by Region and Fuel, Reference Case Excel PDF Table A3 World Gross Domestic Product (GDP) by Region, Reference Case Excel PDF Table A4 World Oil Consumption by Region, Reference Case Excel PDF Table A5 World Natural Gas Consumption by Region, Reference Case Excel PDF Table A6 World Coal Consumption by Region, Reference Case Excel PDF Table A7 World Nuclear Energy Consumption by Region, Reference Case Excel PDF Table A8 World Consumption of Hydroelectricity and Other Renewable Energy by Region, Reference Case Excel PDF Table A9 World Net Electricity Consumption by Region, Reference Case

99

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Regional Definitions in the International Energy Outlook 2005 Regional Definitions in the International Energy Outlook 2005 Regular readers of the International Energy Outlook (IEO) will notice that, in this edition, the names used to describe country groupings have been changed. Although the organization of countries within the three major groupings has not changed, the nomenclature used in previous editions to describe the groups— namely, industrialized, EE/FSU, and developing— had become somewhat dated and did not accurately reflect the countries within them. Some analysts have argued that several of the countries in the “developing” group (South Korea and China, for instance) could fairly be called “industrialized” today. IEO2005 World Regions Map. Need help, contact the National Energy Information Center at 202-586-8800.

100

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Low Economic Growth Case Projection Tables (1990-2025) Low Economic Growth Case Projection Tables (1990-2025) Formats Low Economic Growth Case Data Projection Tables (1 to 13 complete) Excel PDF Table Title Table C1 World Total Primary Energy Consumption by Region, Low Economic Growth Case Excel PDF Table C2 World Total Energy Consumption by Region and Fuel, Low Economic Growth Case Excel PDF Table C3 World Gross Domestic Product (GDP) by Region, Low Economic Growth Case Excel PDF Table C4 World Oil Consumption by Region, Low Economic Growth Case Excel PDF Table C5 World Natural Cas Consumption by Region, Low Economic Growth Case Excel PDF Table C6 World Coal Consumption by Region, Low Economic Growth Case Excel PDF Table C7 World Nuclear Energy Consumption by Region, Low Economic Growth Case Excel PDF Table C8 World Consumption of Hydroelectricity and Other Renewable Energy by Region, Low Economic Growth Case

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

High Economic Growth Case Projection Tables (1990-2025) High Economic Growth Case Projection Tables (1990-2025) Formats High Economic Growth Case Data Projection Tables (1 to 13 complete) Excel PDF Table Title Table B1 World Total Primary Energy Consumption by Region, High Economic Growth Case Excel PDF Table B2 World Total Energy Consumption by Region and Fuel, High Economic Growth Case Excel PDF Table B3 World Gross Domestic Product (GDP) by Region, High Economic Growth Case Excel PDF Table B4 World Oil Consumption by Region, High Economic Growth Case Excel PDF Table B5 World Natural Cas Consumption by Region, High Economic Growth Case Excel PDF Table B6 World Coal Consumption by Region, High Economic Growth Case Excel PDF Table B7 World Nuclear Energy Consumption by Region, High Economic Growth Case Excel PDF Table B8 World Consumption of Hydroelectricity and Other Renewable Energy by Region, High Economic Growth Case

102

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network (OSTI)

the entire forecast period, primarily because both weather-adjusted peak and electricity consumption were forecast. Keywords Electricity demand, electricity consumption, demand forecast, weather normalization, annual peak demand, natural gas demand, self-generation, conservation, California Solar Initiative. #12

103

EIA - The National Energy Modeling System: An Overview 2003-Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The National Energy Modeling System: An Overview 2003 Industrial Demand Module Figure 7. Industrial Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Economic Subsectors Within the IDM Table. Need help, contact the National Energy Information Center at 202-586-8800. Industrial Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Fuel Consuming Activities for the Energy-Intensive Manufacturing Subsectors Table. Need help, contact the National Energy Information Center at 202-586-8800. The industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing

104

Forecasts of intercity passenger demand and energy use through 2000  

SciTech Connect

The development of national travel demand and energy-use forecasts for automobile and common-carrier intercity travel through the year 2000. The forecasts are driven by the POINTS (Passenger Oriented Intercity Network Travel Simulation) model, a model direct-demand model which accounts for competition among modes and destinations. Developed and used to model SMSA-to-SMSA business and nonbusiness travel, POINTS is an improvement over earlier direct demand models because it includes an explicit representation of cities' relative accessibilities and a utility maximizing behavorial multimodal travel function. Within POINTS, pathbuilding algorithms are used to determine city-pair travel times and costs by mode, including intramodal transfer times. Other input data include projections of SMSA population, public and private sector employment, and hotel and other retail receipts. Outputs include forecasts of SMSA-to-SMSA person trips and person-miles of travel by mode. For the national forecasts, these are expanded to represent all intercity travel (trips greater than 100 miles, one way) for two fuel-price cases. Under both cases rising fuel prices, accompanied by substantial reductions in model-energy intensities, result in moderate growth in total intercity passenger travel. Total intercity passenger travel is predicted to grow at approximately one percent per year, slightly fster than population growth, while air travel grows almost twice as fast as population. The net effect of moderate travel growth and substantial reduction in model energy intensities is a reduction of approximately 50 percent in fuel consumption by the intercity passenger travel market.

Kaplan, M.P.; Vyas, A.D.; Millar, M.; Gur, Y.

1982-01-01T23:59:59.000Z

105

Perils of Long-Range Energy Forecasting: Reflections on Looking Far Ahead  

E-Print Network (OSTI)

! #12;PERILS OF LONG-RANGE ENERGY FORCASTING 255 Fig. 1. Forecasts of the U.S. primary energy notable forecasts of the U.S. primary energy consumption in the year 2000 that were released between have been around energy matters for some time--is the goal of U.S. energy independence charted

Smil, Vaclav

106

Forecasting next-day price of electricity in the Spanish energy market using artificial neural networks  

Science Conference Proceedings (OSTI)

In this paper, next-day hourly forecasts are calculated for the energy price in the electricity production market of Spain. The methodology used to achieve these forecasts is based on artificial neural networks, which have been used successfully in recent ... Keywords: ART network, Backpropagation network, Box-Jenkins, Electricity market, Neural networks, Time series forecasting

Ral Pino; Jos Parreno; Alberto Gomez; Paolo Priore

2008-02-01T23:59:59.000Z

107

Univariate modeling and forecasting of monthly energy demand time series using abductive and neural networks  

Science Conference Proceedings (OSTI)

Neural networks have been widely used for short-term, and to a lesser degree medium and long-term, demand forecasting. In the majority of cases for the latter two applications, multivariate modeling was adopted, where the demand time series is related ... Keywords: Abductive networks, Energy demand, Medium-term load forecasting, Neural networks, Time series forecasting, Univariate time series analysis

R. E. Abdel-Aal

2008-05-01T23:59:59.000Z

108

Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields  

E-Print Network (OSTI)

pricing. Although it is known that probabilistic forecasts (which give a distribution over possible futureLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields Matt Wytock and J. Zico Kolter Abstract-- Short-term forecasting is a ubiquitous practice

Kolter, J. Zico

109

Energy forecasts: searching for truth amidst the numbers  

SciTech Connect

High and volatile fuel prices coupled with erratic fuel availability have made reliable fuel forecasting vitally important for the nation's energy industry. The costs of error or missed opportunities are now enormous for management, stockholders, bondholders, gas and electricity ratepayers, and, of course, utility regulators. Fuel market forecasts affect a host of management decisions ranging from tactical fuel planning (e.g., how much oil, coal, and, eventually, gas to purchase on the spot market over the next 3 months) to strategic power system planning (e.g., what generating mix is optimal for the 1990s) and oil and gas exploration and production (EandP) planning (e.g., what portfolio of gas prospects should be developed this decade in the lower 48 states). Often hundreds of millions and sometimes billions of dollars are at stake in areas as diverse as: Industrial energy marketing, Fuel procurement planning, Fuel mix and fuel ownership strategy, Corporate business strategy planning, Company RandD planning, Oil and gas EandP budget planning, Electricity load forecasting, Electricity capacity planning and operations.

1984-01-01T23:59:59.000Z

110

U.S. Regional Energy Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

LBNL-57955 U.S. Regional Energy Demand Forecasts Using NEMS and GIS Jesse A. Cohen, Jennifer L Efficiency and Renewable Energy, Office of Planning, Budget, and Analysis of the U.S. Department of Energy-57955 U.S. Regional Energy Demand Forecasts Using NEMS and GIS Prepared for the Office of Planning

111

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

J: Regional Definitions J: Regional Definitions Figure J1. Map of the Six Basic Country Groupings. Need help, contact the National Energy Information Center at 202-586-8800. The six basic country groupings used in this report (Figure J1) are defined as follows: Mature Market Economies (15 percent of the 2005 world population): North America—United States, Canada, and Mexico; Western Europe—Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom; Mature Market Asia—Japan, Australia, and New Zealand. Transitional Economies (6 percent of the 2005 world population): Eastern Europe (EE)—Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Hungary, Macedonia, Poland, Romania, Serbia and Montenegro,

112

California Wind Energy Forecasting System Development and Testing, Phase 1: Initial Testing  

Science Conference Proceedings (OSTI)

Wind energy forecasting uses sophisticated numerical weather forecasting and wind plant power generation models to predict the hourly energy generation of a wind power plant up to 48 hours in advance. As a result, it has great potential to address the needs of the California Independent System Operator (ISO) and the wind plant operators, as well as power marketers and buyers and utility system dispatch personnel. This report gives the results of 28 days of testing of wind energy forecasting at a Californ...

2003-01-31T23:59:59.000Z

113

Three Essays on Energy Economics and Forecasting  

E-Print Network (OSTI)

This dissertation contains three independent essays relating energy economics. The first essay investigates price asymmetry of diesel in South Korea by using the error correction model. Analyzing weekly market prices in the pass-through of crude oil, this model shows asymmetric price response does not exist at the upstream market but at the downstream market. Since time-variant residuals are found by the specified models for both weekly and daily retail prices at the downstream level, these models are implemented by a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) process. The estimated results reveal that retail prices increase fast in the rise of crude oil prices but decrease slowly in the fall of those. Surprisingly, retail prices rarely respond to changes of crude oil prices for the first five days. Based on collusive behaviors of retailers, this price asymmetry in Korea diesel market is explained. The second essay aims to evaluate the new incentive system for biodiesel in South Korea, which keeps the blend mandate but abolishes tax credits for government revenues. To estimate changed welfare from the new policy, a multivariate stochastic simulation method is applied into time-series data for the last five years. From the simulation results, the new biodiesel policy will lead government revenues to increases with the abolishment of tax credit. However, increased prices of blended diesel will cause to decrease demands of both biodiesel and blended diesel, so consumer and producer surplus in the transport fuel market will decrease. In the third essay, the Regression - Seasonal Autoregressive Integrated Moving Average (REGSARIMA) model is employed to predict the impact of air temperature on daily peak load demand in Houston. Compared with ARIMA and Seasonal Model, a REGARIMA model provides the more accurate prediction for daily peak load demand for the short term. The estimated results reveal air temperature in the Houston areas causes an increase in electricity consumption for cooling but to save that for heating. Since the daily peak electricity consumption is significantly affected by hot air temperature, this study makes a conclusion that it is necessary to establish policies to reduce urban heat island phenomena in Houston.

Shin, Yoon Sung

2011-12-01T23:59:59.000Z

114

Texas Wind Energy Forecasting System Development and Testing, Phase 1: Initial Testing  

Science Conference Proceedings (OSTI)

This report describes initial results from the Texas Wind Energy Forecasting System Development and Testing Project at a 75-MW wind project in west Texas.

2003-12-31T23:59:59.000Z

115

Context-aware parameter estimation for forecast models in the energy domain  

Science Conference Proceedings (OSTI)

Continuous balancing of energy demand and supply is a fundamental prerequisite for the stability and efficiency of energy grids. This balancing task requires accurate forecasts of future electricity consumption and production at any point in time. For ... Keywords: energy, forecasting, maintenance, parameter estimation

Lars Dannecker; Robert Schulze; Matthias Bhm; Wolfgang Lehner; Gregor Hackenbroich

2011-07-01T23:59:59.000Z

116

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching  

E-Print Network (OSTI)

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at a wind energy site and fits a conditional predictive model for each regime. Geographically dispersed was applied to 2-hour-ahead forecasts of hourly average wind speed near the Stateline wind energy center

Genton, Marc G.

117

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

118

Implementation of a Corporate Energy Accounting and Forecasting Model  

E-Print Network (OSTI)

The development and implementation of a Frito-Lay computer based energy consumption reporting and modeling program is discussed. The system has been designed to relate actual plant energy consumption to a standard consumption which incorporates the effects of weather, product mix, specific equipment types, and other plant factors. The model also provides energy consumption forecasts based on projected production, equipment improvements, and fuels mix. Development of the model began in August 1979 and was preceded by two years of complete auditing of all areas in two manufacturing plants plus specific processing lines in other plants to determine typical energy usage. Extensive analyses of the data resulted in the formulation of standards for the various pieces of equipment which are used as energy performance 'yardsticks'. Monthly reports permit equitable comparisons of plant energy consumption and isolation of those plants with the lowest efficiencies. The financial impact of increasing energy consumption, of the projected energy use for new plants or plant expansions, and of the effect of process changes on overall energy consumption can be also evaluated.

Kympton, H. W.; Bowman, B. M.

1981-01-01T23:59:59.000Z

119

Beyond "Partly Sunny": A Better Solar Forecast | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beyond "Partly Sunny": A Better Solar Forecast Beyond "Partly Sunny": A Better Solar Forecast Beyond "Partly Sunny": A Better Solar Forecast December 7, 2012 - 10:00am Addthis The Energy Department is investing in better solar forecasting techniques to improve the reliability and stability of solar power plants during periods of cloud coverage. | Photo by Dennis Schroeder/NREL. The Energy Department is investing in better solar forecasting techniques to improve the reliability and stability of solar power plants during periods of cloud coverage. | Photo by Dennis Schroeder/NREL. Minh Le Minh Le Program Manager, Solar Program What Do These Projects Do? The Energy Department is investing $8 million in two cutting-edge projects to increase the accuracy of solar forecasting at sub-hourly,

120

Free World energy survey: historical overview and long-term forecast  

SciTech Connect

This report gives a historical overview of international energy markets from the 1950s to date, and an analysis of future energy prices, economic growth, and potential supply instabilities. Forecasts of energy demand by region and fuel type are provided.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will tak  

E-Print Network (OSTI)

is familiar with solar energy issues, we hope that you will take a few moments to answer this short survey on your needs for information on solar energy resources and forecasting. This survey is conducted with the California Solar Energy Collaborative (CSEC) and the California Solar Initiative (CSI) our objective

Islam, M. Saif

122

Texas Wind Energy Forecasting System Development and Testing: Phase 2: 12-Month Testing  

Science Conference Proceedings (OSTI)

Wind energy forecasting systems are expected to support system operation in cases where wind generation contributes more than a few percent of total generating capacity. This report presents final results from the Texas Wind Energy Forecasting System Development and Testing Project at a 75-MW wind project in west Texas.

2004-09-30T23:59:59.000Z

123

Annual Energy Outlook Forecast Evaluation - Tables 2-18  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Consumption: AEO Forecasts, Actual Values, and Total Energy Consumption: AEO Forecasts, Actual Values, and Absolute and Percent Errors, 1985-1999 Publication 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Average Absolute Error (Quadrillion Btu) AEO82 79.1 79.6 79.9 80.8 82.0 83.3 1.8 AEO83 78.0 79.5 81.0 82.4 83.8 84.6 89.5 1.2 AEO84 78.5 79.4 81.2 83.1 85.0 86.4 93.5 1.5 AEO85 77.6 78.5 79.8 81.2 82.6 83.3 84.2 85.2 85.9 86.7 87.7 1.3 AEO86 77.0 78.8 79.8 80.6 81.5 82.9 84.0 84.8 85.7 86.5 87.9 88.4 87.8 88.7 3.6 AEO87 78.9 80.0 81.9 82.8 83.9 85.3 86.4 87.5 88.4 1.5 AEO89 82.2 83.7 84.5 85.4 86.4 87.3 88.2 89.2 90.8 91.4 90.9 91.7 1.8

124

Economic Impacts of Advanced Weather Forecasting on Energy ...  

E-Print Network (OSTI)

Mar 5, 2010 ... Abstract: We analyze the impacts of adopting advanced weather forecasting systems at different levels of the decision-making hierarchy of the...

125

Energy Forecasting in Volatile Times - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

The U.S. Energy Information Administration (EIA) collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking ...

126

Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy  

DOE Green Energy (OSTI)

The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

2011-10-01T23:59:59.000Z

127

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST  

E-Print Network (OSTI)

Policy Report, over the entire forecast period, primarily because both weather-adjusted peak and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather normalization, annual peak demand, natural gas demand, self-generation, California Solar Initiative. #12;ii #12

128

Comparison of Energy Information Administration and Bonneville Power Administration load forecasts  

SciTech Connect

Comparisons of the modeling methodologies underlying the project Independence Evaluation System (PIES) and the Bonneville Power Administration forecasts are discussed in this paper. This Technical Memorandum is presented in order to reconcile apparent inconsistencies between the forecasts. These represent different purposes for the modeling effort as well as different forecasts. Nonetheless, both are appropriate within the context that they are intended. The BPA forecasts are site-specific, detailed, micro-level, yearly forecasts of the demand for electricity. PIES develops regional, macro forecasts and does not contain estimates of the timing of the completion of plants within the period of the forecast. The BPA forecast is intended to be utilized in analyzing a sub-regional capacity expansion program. PIES is a regional energy market-clearing, non-normative model which allows different scenarios to be compared by changing input variables. Clearly, both forecasts are dependent upon the accuracy of the assumptions and input variables included. However, the differing levels of aggregation and objectives require different types of input variables.

Reed, H.J.

1978-06-01T23:59:59.000Z

129

High Horizontal and Vertical Resolution Limited-Area Model: Near-Surface and Wind Energy Forecast Applications  

Science Conference Proceedings (OSTI)

As harvesting of wind energy grows, so does the need for improved forecasts from the surface to the top of wind turbines. To improve mesoscale forecasts of wind, temperature, and dewpoint temperature in this layer, two different approaches are ...

Natacha B. Bernier; Stphane Blair

2012-06-01T23:59:59.000Z

130

Energy Forecast, ForskEL (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Forecast, ForskEL (Smart Grid Project) Forecast, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Energy Forecast, ForskEL Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

European Union Wind Energy Forecasting Model Development and Testing: U.S. Department of Energy -- EPRI Wind Turbine Verification Pr ogram  

Science Conference Proceedings (OSTI)

Wind forecasting can increase the strategic and market values of wind power from large wind facilities. This report summarizes the results of the European Union (EU) wind energy forecasting project and performance testing of the EU wind forecasting model. The testing compared forecast and observed wind speed and generation data from U.S. wind facilities.

1999-12-15T23:59:59.000Z

132

Assessing the Impact of Different Satellite Retrieval Methods on Forecast Available Potential Energy  

Science Conference Proceedings (OSTI)

The isentropic form for available potential energy (APE) is used to analyze the impact of the inclusion of satellite temperature retrieval data on forecasts made with the NASA Goddard Laboratory for Atmospheres (GLA) fourth order model. Two ...

Linda M. Whittaker; Lyle H. Horn

1990-01-01T23:59:59.000Z

133

DND: a model for forecasting electrical energy usage by water-resource subregion  

SciTech Connect

A forecast methodology was derived from principles of econometrics using exogenous variables, i.e., cost of electricity, consumer income, and price elasticity as indicators of growth for each consuming sector: residential, commercial, and industrial. The model was calibrated using forecast data submitted to the Department of Energy (DOE) by the nine Regional Electric Reliability Councils. Estimates on electrical energy usage by specific water-resource subregion were obtained by normalizing forecasted total electrical energy usage by state into per capita usage. The usage factor and data on forecasted population were applied for each water resource subregion. The results derived using the model are self-consistent and in good agreement with DOE Energy Information Administration projections. The differences that exist are largely the result of assumptions regarding specific aggregations and assignment of regional-system reliability and load factors. 8 references, 2 figures, 13 tables.

Sonnichsen, J.C. Jr.

1980-02-01T23:59:59.000Z

134

Consensus forecast of U. S. energy supply and demand to the year 2000  

DOE Green Energy (OSTI)

Methods used in forecasting energy supply and demand are described, and recent forecasts are reviewed briefly. Forecasts to the year 2000 are displayed in tables and graphs and are used to prepare consensus forecasts for each form of fuel and energy supply. Fuel demand and energy use by consuming sector are tabulated for 1972 and 1975 for the various fuel forms. The distribution of energy consumption by use sector, as projected for the years 1985 and 2000 in the ERDA-48 planning report (Scenario V), is normalized to match the consensus energy supply forecasts. The results are tabulated listing future demand for each fuel and energy form by each major energy-use category. Recent estimates of U.S. energy resources are also reviewed briefly and are presented in tables for each fuel and energy form. The outlook for fossil fuel resources to the year 2040, as developed by the Institute for Energy Analysis at the Oak Ridge Associated Universities, is also presented.

Lane, J.A.

1976-02-01T23:59:59.000Z

135

On-line economic optimization of energy systems using weather forecast information.  

Science Conference Proceedings (OSTI)

We establish an on-line optimization framework to exploit weather forecast information in the operation of energy systems. We argue that anticipating the weather conditions can lead to more proactive and cost-effective operations. The framework is based on the solution of a stochastic dynamic real-time optimization (D-RTO) problem incorporating forecasts generated from a state-of-the-art weather prediction model. The necessary uncertainty information is extracted from the weather model using an ensemble approach. The accuracy of the forecast trends and uncertainty bounds are validated using real meteorological data. We present a numerical simulation study in a building system to demonstrate the developments.

Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

2009-01-01T23:59:59.000Z

136

3TIER Environmental Forecast Group Inc 3TIER | Open Energy Information  

Open Energy Info (EERE)

TIER Environmental Forecast Group Inc 3TIER TIER Environmental Forecast Group Inc 3TIER Jump to: navigation, search Name 3TIER Environmental Forecast Group Inc (3TIER) Place Seattle, Washington Zip 98121 Sector Renewable Energy Product Seattle-based, renewable energy assessment and forecasting company. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Modeling and Analysis Papers - Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Evaluation > Table 1 Evaluation > Table 1 Table 1. Comparison of Absolute Percent Errors for AEO Forecast Evaluation, 1996 to 2002 Average Absolute Percent Error Variable AEO82 to AEO97 AEO82 to AEO98 AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 Consumption Total Energy Consumption 1.6 1.7 1.7 1.8 1.9 1.9 Total Petroleum Consumption 2.8 2.9 2.8 2.9 3.0 2.9 Total Natural Gas Consumption 5.8 5.7 5.6 5.6 5.5 5.5 Total Coal Consumption 2.7 3.0 3.2 3.3 3.5 3.6 Total Electricity Sales 1.6 1.7 1.8 1.9 2.4 2.5 Production Crude Oil Production 4.2 4.3 4.5 4.5 4.5 4.5 Natural Gas Production 5.0 4.8 4.7 4.6 4.6 4.4 Coal Production 3.7 3.6 3.6 3.5 3.7 3.6 Imports and Exports Net Petroleum Imports 10.1 9.5 8.8 8.4 7.9 7.4 Net Natural Gas Imports 17.4 16.7 16.0 15.9 15.8 15.8 Net Coal Exports

138

U.S. Department of Energy Workshop Report: Solar Resources and Forecasting  

DOE Green Energy (OSTI)

This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

Stoffel, T.

2012-06-01T23:59:59.000Z

139

Final Report on California Regional Wind Energy Forecasting Project:Application of NARAC Wind Prediction System  

DOE Green Energy (OSTI)

Wind power is the fastest growing renewable energy technology and electric power source (AWEA, 2004a). This renewable energy has demonstrated its readiness to become a more significant contributor to the electricity supply in the western U.S. and help ease the power shortage (AWEA, 2000). The practical exercise of this alternative energy supply also showed its function in stabilizing electricity prices and reducing the emissions of pollution and greenhouse gases from other natural gas-fired power plants. According to the U.S. Department of Energy (DOE), the world's winds could theoretically supply the equivalent of 5800 quadrillion BTUs of energy each year, which is 15 times current world energy demand (AWEA, 2004b). Archer and Jacobson (2005) also reported an estimation of the global wind energy potential with the magnitude near half of DOE's quote. Wind energy has been widely used in Europe; it currently supplies 20% and 6% of Denmark's and Germany's electric power, respectively, while less than 1% of U.S. electricity is generated from wind (AWEA, 2004a). The production of wind energy in California ({approx}1.2% of total power) is slightly higher than the national average (CEC & EPRI, 2003). With the recently enacted Renewable Portfolio Standards calling for 20% of renewables in California's power generation mix by 2010, the growth of wind energy would become an important resource on the electricity network. Based on recent wind energy research (Roulston et al., 2003), accurate weather forecasting has been recognized as an important factor to further improve the wind energy forecast for effective power management. To this end, UC-Davis (UCD) and LLNL proposed a joint effort through the use of UCD's wind tunnel facility and LLNL's real-time weather forecasting capability to develop an improved regional wind energy forecasting system. The current effort of UC-Davis is aimed at developing a database of wind turbine power curves as a function of wind speed and direction, using its wind tunnel facility at the windmill farm at the Altamont Pass. The main objective of LLNL's involvement is to provide UC-Davis with improved wind forecasts to drive the parameterization scheme of turbine power curves developed from the wind tunnel facility. Another objective of LLNL's effort is to support the windmill farm operation with real-time wind forecasts for the effective energy management. The forecast skill in capturing the situation to meet the cut-in and cutout speed of given turbines would help reduce the operation cost in low and strong wind scenarios, respectively. The main focus of this report is to evaluate the wind forecast errors of LLNL's three-dimensional real-time weather forecast model at the location with the complex terrain. The assessment of weather forecast accuracy would help quantify the source of wind energy forecast errors from the atmospheric forecast model and/or wind-tunnel module for further improvement in the wind energy forecasting system.

Chin, H S

2005-07-26T23:59:59.000Z

140

European Wind Energy Conference -Brussels, Belgium, April 2008 Data mining for wind power forecasting  

E-Print Network (OSTI)

European Wind Energy Conference - Brussels, Belgium, April 2008 Data mining for wind power-term forecasting of wind energy produc- tion up to 2-3 days ahead is recognized as a major contribution the improvement of predic- tion systems performance is recognised as one of the priorities in wind energy research

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MPC for Wind Power Gradients --Utilizing Forecasts, Rotor Inertia, and Central Energy Storage  

E-Print Network (OSTI)

MPC for Wind Power Gradients -- Utilizing Forecasts, Rotor Inertia, and Central Energy Storage iterations. We demonstrate our method in simulations with various wind scenarios and prices for energy. INTRODUCTION Today, wind power is the most important renewable energy source. For the years to come, many

142

Forecasting multi-appliance usage for smart home energy management  

Science Conference Proceedings (OSTI)

We address the problem of forecasting the usage of multiple electrical appliances by domestic users, with the aim of providing suggestions about the best time to run appliances in order to reduce carbon emissions and save money (assuming time-of-use ...

Ngoc Cuong Truong, James McInerney, Long Tran-Thanh, Enrico Costanza, Sarvapali D. Ramchurn

2013-08-01T23:59:59.000Z

143

Annual Energy Outlook 2001-Appendix G: Major Assumptions for the Forecasts  

Gasoline and Diesel Fuel Update (EIA)

Forecasts Forecasts Summary of the AEO2001 Cases/ Scenarios - Appendix Table G1 bullet1.gif (843 bytes) Model Results (Formats - PDF, ZIP) - Appendix Tables - Reference Case - 1998 to 2020 bullet1.gif (843 bytes) Download Report - Entire AEO2001 (PDF) - AEO2001 by Chapters (PDF) bullet1.gif (843 bytes) Acronyms bullet1.gif (843 bytes) Contacts Related Links bullet1.gif (843 bytes) Assumptions to the AEO2001 bullet1.gif (843 bytes) Supplemental Data to the AEO2001 (Only available on the Web) - Regional and more detailed AEO 2001 Reference Case Results - 1998, 2000 to 2020 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) Forecast Homepage bullet1.gif (843 bytes) EIA Homepage Appendix G Major Assumptions for the Forecasts Component Modules Major Assumptions for the Annual Energy Outlook 2001

144

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind Generation by a Dynamic  

E-Print Network (OSTI)

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind forecasting. I. INTRODUCTION HE actual large-scale integration of wind energy in several European countries enhance the position of wind energy compared to other dispatchable forms of generation. Predicting

Paris-Sud XI, Université de

145

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network (OSTI)

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

146

Summary Short?Term Energy Outlook Supplement: Energy Price Volatility and Forecast Uncertainty 1  

E-Print Network (OSTI)

It is often noted that energy prices are quite volatile, reflecting market participants adjustments to new information from physical energy markets and/or markets in energyrelated financial derivatives. Price volatility is an indication of the level of uncertainty, or risk, in the market. This paper describes how markets price risk and how the marketclearing process for risk transfer can be used to generate price bands around observed futures prices for crude oil, natural gas, and other commodities. These bands provide a quantitative measure of uncertainty regarding the range in which markets expect prices to trade. The Energy Information Administrations (EIA) monthly Short-Term Energy Outlook (STEO) publishes base case projections for a variety of energy prices that go out 12 to 24 months (every January the STEO forecast is extended through December of the following year). EIA has recognized that all price forecasts are highly uncertain and has described the uncertainty by identifying the market factors that may significantly move prices away from their expected paths, such as economic growth, Organization of Petroleum Exporting Countries (OPEC) behavior, geo-political events, and hurricanes.

unknown authors

2009-01-01T23:59:59.000Z

147

Integrated DWPF Melter System (IDMS) campaign report: The first two noble metals operations  

DOE Green Energy (OSTI)

The Integrated DWPF Melter System (IDMS) is designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas systems. The facility is the first pilot-scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to characterize the processing of noble metals (Pd, Rh, Ru, and Ag) on a large scale, the IDMS will be operated batchstyle for at least nine feed preparation cycles. The first two of these operations are complete. The major observation to date occurred during the second run when significant amounts of hydrogen were evolved during the feed preparation cycle. The runs were conducted between June 7, 1990 and March 8, 1991. This time period included nearly six months of ``fix-up`` time when forced air purges were installed on the SRAT MFT and other feed preparation vessels to allow continued noble metals experimentation.

Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D.H.; Ritter, J.A.

1991-06-06T23:59:59.000Z

148

NREL: Power Technologies Energy Data Book - Chapter 4. Forecasts...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

149

Energy estimator for weather forecasts dynamic power management of wireless sensor networks  

Science Conference Proceedings (OSTI)

Emerging Wireless Sensor Networks (WSN) consist of spatially distributed autonomous sensors. Although an embedded battery has limited autonomy, most WSNs outperform this drawback by harvesting ambient energy from the environment. Nevertheless, this external ... Keywords: design tools, dynamic power management, weather forecasts, wireless sensor networks

Nicolas Ferry; Sylvain Ducloyer; Nathalie Julien; Dominique Jutel

2011-09-01T23:59:59.000Z

150

Optimized renewable energy forecasting in local distribution networks  

Science Conference Proceedings (OSTI)

The integration of renewable energy sources (RES) into local energy distribution networks becomes increasingly important. Renewable energy highly depends on weather conditions, making it difficult to maintain stability in such networks. To still enable ...

Robert Ulbricht; Ulrike Fischer; Wolfgang Lehner; Hilko Donker

2013-03-01T23:59:59.000Z

151

Properties of energy-price forecasts for scheduling  

Science Conference Proceedings (OSTI)

Wholesale electricity markets are becoming ubiquitous, offering consumers access to competitively-priced energy. The cost of energy is often correlated with its environmental impact; for example, environmentally sustainable forms of energy might benefit ...

Georgiana Ifrim; Barry O'Sullivan; Helmut Simonis

2012-10-01T23:59:59.000Z

152

Test application of a semi-objective approach to wind forecasting for wind energy applications  

SciTech Connect

The test application of the semi-objective (S-O) wind forecasting technique at three locations is described. The forecasting sites are described as well as site-specific forecasting procedures. Verification of the S-O wind forecasts is presented, and the observed verification results are interpreted. Comparisons are made between S-O wind forecasting accuracy and that of two previous forecasting efforts that used subjective wind forecasts and model output statistics. (LEW)

Wegley, H.L.; Formica, W.J.

1983-07-01T23:59:59.000Z

153

The Incremental Benefits of the Nearest Neighbor Forecast of U.S. Energy Commodity Prices  

E-Print Network (OSTI)

This thesis compares the simple Autoregressive (AR) model against the k- Nearest Neighbor (k-NN) model to make a point forecast of five energy commodity prices. Those commodities are natural gas, heating oil, gasoline, ethanol, and crude oil. The data for the commodities are monthly and, for each commodity, two-thirds of the data are used for an in-sample forecast, and the remaining one-third of the data are used to perform an out-of-sample forecast. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are used to compare the two forecasts. The results showed that one method is superior by one measure but inferior by another. Although the differences of the two models are minimal, it is up to a decision maker as to which model to choose. The Diebold-Mariano (DM) test was performed to test the relative accuracy of the models. For all five commodities, the results failed to reject the null hypothesis indicating that both models are equally accurate.

Kudoyan, Olga

2010-12-01T23:59:59.000Z

154

California Regional Wind Energy Forecasting System Development, Volume 2:  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 MW in place at the end of 2005. The main drivers are the state's 20 percent renewable portfolio standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources.

2006-11-15T23:59:59.000Z

155

Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009  

Reports and Publications (EIA)

Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

Information Center

2009-08-11T23:59:59.000Z

156

Growth Diagnostics for Dark Energy models and EUCLID forecast  

E-Print Network (OSTI)

In this work we introduce a new set of parameters $(r_{g}, s_{g})$ involving the linear growth of matter perturbation that can distinguish and constrain different dark energy models very efficiently. Interestingly, for $\\Lambda$CDM model these parameters take exact value $(1,1)$ at all red shifts whereas for models different from $\\Lambda$CDM, they follow different trajectories in the $(r_{g}, s_{g})$ phase plane. By considering the parametrization for the dark energy equation of state ($w$) and for the linear growth rate ($f_{g}$), we show that different dark energy behaviours with similar evolution of the linear density contrast, can produce distinguishable trajectories in the $(r_{g}, s_{g})$ phase plane. Moreover, one can put stringent constraint on these phase plane using future measurements like EUCLID ruling out some of the dark energy behaviours.

Sampurnanand; Anjan A. Sen

2013-01-06T23:59:59.000Z

157

Forecast Correlation Coefficient Matrix of Stock Returns in Portfolio Analysis  

E-Print Network (OSTI)

Unadjusted Forecasts . . . . . . . . . . . . . . . .Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . .Unadjusted Forecasts . . . . . . . . . . . . . . . . . . .

Zhao, Feng

2013-01-01T23:59:59.000Z

158

Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration  

SciTech Connect

The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

1992-09-01T23:59:59.000Z

159

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS  

E-Print Network (OSTI)

on the fluctuating wind and solar resources an indispensable necessity. Any efficient imple- mentation of wind-alone photovoltaic or wind energy systems, control systems in buildings, control of solar thermal power plants time constants. For example, an operation of a PV-diesel system needs information in the very short

Heinemann, Detlev

160

CALIFORNIA ENERGY COMMISSION0 Annual Update to the Forecasted  

E-Print Network (OSTI)

CHP (onsite and wholesale) in California ­ accounts for the AB 32 mandates, RPS, and CPUC CHP Existing Renewable Generation In-State Renewable Energy · For all RPS-eligible generators, staff averaged the 2006-2011 QFER reported generation · In-state RPS-eligible with COD after 1/1/2011 and prior to 12

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007 INTEGRATED Table of Contents General Instructions for Demand Forecast Submittals.............................................................................. 4 Protocols for Submitted Demand Forecasts

162

NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS  

E-Print Network (OSTI)

· NATIONAL AND GLOBAL FORECASTS · WEST VIRGINIA PROFILES AND FORECASTS · ENERGY · HEALTHCARE Industry Insight: West Virginia Fiscal Forecast 34 CHAPTER 4: WEST ViRGiNiA'S 35 COUNTiES AND MSAs West Forecast Summary 2 CHAPTER 1: THE UNiTED STATES ECONOMY Figure 1.1: United States Real GDP Growth 3 Figure

Mohaghegh, Shahab

163

ORNL integrated forecasting system  

SciTech Connect

This paper describes the integrated system for forecasting electric energy and load. In the system, service area models of electrical energy (kWh) and load distribution (minimum and maximum loads and load duration curve) are linked to a state-level model of electrical energy (kWh). Thus, the service area forecasts are conditional upon the state-level forecasts. Such a linkage reduces considerably the data requirements for modeling service area electricity demand.

Rizy, C.G.

1983-01-01T23:59:59.000Z

164

On model selection forecasting, Dark Energy and modified gravity  

E-Print Network (OSTI)

The Fisher matrix approach (Fisher 1935) allows one to calculate in advance how well a given experiment will be able to estimate model parameters, and has been an invaluable tool in experimental design. In the same spirit, we present here a method to predict how well a given experiment can distinguish between different models, regardless of their parameters. From a Bayesian viewpoint, this involves computation of the Bayesian evidence. In this paper, we generalise the Fisher matrix approach from the context of parameter fitting to that of model testing, and show how the expected evidence can be computed under the same simplifying assumption of a gaussian likelihood as the Fisher matrix approach for parameter estimation. With this `Laplace approximation' all that is needed to compute the expected evidence is the Fisher matrix itself. We illustrate the method with a study of how well upcoming and planned experiments should perform at distinguishing between Dark Energy models and modified gravity theories. In particular we consider the combination of 3D weak lensing, for which planned and proposed wide-field multi-band imaging surveys will provide suitable data, and probes of the expansion history of the Universe, such as proposed supernova and baryonic acoustic oscillations surveys. We find that proposed large-scale weak lensing surveys from space should be able readily to distinguish General Relativity from modified gravity models.

A. F. Heavens; T. D. Kitching; L. Verde

2007-03-08T23:59:59.000Z

165

Forecast Technical Document Forecast Types  

E-Print Network (OSTI)

Forecast Technical Document Forecast Types A document describing how different forecast types are implemented in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Forecast Types Background Different `types' of forecast are possible for a specified area

166

forecast | OpenEI  

Open Energy Info (EERE)

Browse Upload data GDR Community Login | Sign Up Search Facebook icon Twitter icon forecast Dataset Summary Description The EIA's annual energy outlook (AEO) contains yearly...

167

Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era  

Science Conference Proceedings (OSTI)

Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

Edwards, J.D. [Univ. of Colorado, Boulder, CO (United States)

1997-08-01T23:59:59.000Z

168

STAFF FORECAST OF 2007 PEAK STAFFREPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION STAFF FORECAST OF 2007 PEAK DEMAND STAFFREPORT June 2006 CEC-400.................................................................................. 9 Sources of Forecast Error....................................................................... .................11 Tables Table 1: Revised versus September 2005 Peak Demand Forecast ......................... 2

169

World Petroleum Supply/Demand Forecast - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... surplus supply over demand for spring and summer quarters compared with some other forecasters such as Oil Market Intelligence, ...

170

RACORO Forecasting  

NLE Websites -- All DOE Office Websites (Extended Search)

Weather Briefings Observed Weather Cloud forecasting models BUFKIT forecast soundings + guidance from Norman NWS enhanced pages and discussions NAM-WRF updated...

171

Dynamic filter weights neural network model integrated with differential evolution for day-ahead price forecasting in energy market  

Science Conference Proceedings (OSTI)

In this paper a new dynamic model for forecasting electricity prices from 1 to 24h in advance is proposed. The model is a dynamic filter weight Adaline using a sliding mode weight adaptation technique. The filter weights for this neuron constitute of ... Keywords: Differential evolution, Dynamic filter weights neuron, Energy market, Local linear wavelet neural network, Sliding mode control

S. Chakravarty; P. K. Dash

2011-09-01T23:59:59.000Z

172

Convergence and Disposal of Energy and Moisture on the Antarctic Polar Cap from ECMWF Reanalyses and Forecasts  

Science Conference Proceedings (OSTI)

Diagnostics of energy and moisture transport and disposal over the Antarctic polar cap (70S to the pole) and ice sheet are extracted from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis archive over the 197993 period. ...

Christophe Genthon; Gerhard Krinner

1998-07-01T23:59:59.000Z

173

A review of agent-based models for forecasting the deployment of distributed generation in energy systems  

Science Conference Proceedings (OSTI)

Agent-based models are seeing increasing use in the study of distributed generation (DG) deployment. Researchers and decision makers involved in the implementation of DG have been lacking a concise overview of why they should consider using agent-based ... Keywords: agent-based modeling, consumer behavior, distributed generation, energy forecasting, product deployment

Jason G. Veneman; M. A. Oey; L. J. Kortmann; F. M. Brazier; L. J. de Vries

2011-06-01T23:59:59.000Z

174

PRIOR FLARING AS A COMPLEMENT TO FREE MAGNETIC ENERGY FOR FORECASTING SOLAR ERUPTIONS  

Science Conference Proceedings (OSTI)

From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1300 sunspot active regions across the 30 Degree-Sign radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days; (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions; and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field.

Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F. [ZP13 MSFC/NASA, Huntsville, AL 35812 (United States); Khazanov, Igor [CSPAR, Cramer Hall/NSSTC, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

2012-09-20T23:59:59.000Z

175

Short-Range Direct and Diffuse Irradiance Forecasts for Solar Energy Applications Based on Aerosol Chemical Transport and Numerical Weather Modeling  

Science Conference Proceedings (OSTI)

This study examines 23-day solar irradiance forecasts with respect to their application in solar energy industries, such as yield prediction for the integration of the strongly fluctuating solar energy into the electricity grid. During cloud-...

Hanne Breitkreuz; Marion Schroedter-Homscheidt; Thomas Holzer-Popp; Stefan Dech

2009-09-01T23:59:59.000Z

176

Survey and forecast of marketplace supply and demand for energy- efficient lighting products  

SciTech Connect

The rapid growth in demand for energy-efficient lighting products has led to supply shortages for certain products. To understand the near-term (1- to 5-year) market for energy-efficient lighting products, a selected set of utilities and lighting product manufacturers were surveyed in early 1991. Two major U. S. government programs, EPA's Green Lights and DOE's Federal Relighting Initiative, were also examined to assess their effect on product demand. Lighting product manufacturers predicted significant growth through 1995. Lamp manufacturers indicated that compact fluorescent lamp shipments tripled between 1988 and 1991, and predicted that shipments would again triple, rising from 25 million units in 1991 to 72 million units in 1995. Ballast manufacturers predicted that demand for power-factorcorrected ballasts (both magnetic and electronic) would grow from 59.4 million units in 1991 to 71.1 million units in 1995. Electronic ballasts were predicted to grow from 11% of ballast demand in 1991 to 40% in 1995. Manufacturers projected that electronic ballast supply shortages would continue until late 1992. Lamp and ballast producers indicated that they had difficulty in determining what additional supply requirements might result due to demand created by utility programs. Using forecasts from 27 surveyed utilities and assumptions regarding the growth of U. S. utility lighting DSM programs, low, median, and high forecasts were developed for utility expenditures for lighting incentives through 1994. The projected median figure for 1992 was $316 million, while for 1994, the projected median figure was $547 million. The allocation of incentive dollars to various products and the number of units needed to meet utility-stimulated demand were also projected. To provide a better connection between future supply and demand, a common database is needed that captures detailed DSM program information including incentive dollars and unit-volume mix by product type.

Gough, A. (Lighting Research Inst., New York, NY (United States)); Blevins, R. (Plexus Research, Inc., Donegal, PA (United States))

1992-12-01T23:59:59.000Z

177

Forecasting Forecast Skill  

Science Conference Proceedings (OSTI)

We have shown that it is possible to predict the skill of numerical weather forecastsa quantity which is variable from day to day and region to region. This has been accomplished using as predictor the dispersion (measured by the average ...

Eugenia Kalnay; Amnon Dalcher

1987-02-01T23:59:59.000Z

178

Forecast Combinations  

E-Print Network (OSTI)

Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this chapter we analyze theoretically the factors that determine the advantages from combining forecasts (for example, the degree of correlation between forecast errors and the relative size of the individual models forecast error variances). Although the reasons for the success of simple combination schemes are poorly understood, we discuss several possibilities related to model misspecification, instability (non-stationarities) and estimation error in situations where thenumbersofmodelsislargerelativetothe available sample size. We discuss the role of combinations under asymmetric loss and consider combinations of point, interval and probability forecasts. Key words: Forecast combinations; pooling and trimming; shrinkage methods; model misspecification, diversification gains

Allan Timmermann; Jel Codes C

2006-01-01T23:59:59.000Z

179

SunShot Initiative: Forecasting and Influencing Technological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Forecasting and Influencing Technological Progress in Solar Energy to someone by E-mail Share SunShot Initiative: Forecasting and Influencing Technological Progress in Solar Energy...

180

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast  

E-Print Network (OSTI)

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand................................................................................................................................. 1 Demand Forecast Methodology.................................................................................................. 3 New Demand Forecasting Model for the Sixth Plan

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Forecasting overview  

E-Print Network (OSTI)

Forecasting is required in many situations: deciding whether to build another power generation plant in the next five years requires forecasts of future demand; scheduling staff in a call centre next week requires forecasts of call volume; stocking an inventory requires forecasts of stock requirements. Forecasts can be required several years in advance (for the case of capital investments), or only a few minutes beforehand (for telecommunication routing). Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. Some things are easier to forecast than others. The time of the sunrise tomorrow morning can be forecast very precisely. On the other hand, currency exchange rates are very difficult to forecast with any accuracy. The predictability of an event or a quantity depends on how well we understand the factors that contribute to it, and how much unexplained variability is involved. Forecasting situations vary widely in their time horizons, factors determining actual outcomes, types of data patterns, and many other aspects. Forecasting methods can be very simple such as using the most recent observation as a forecast (which is called the nave method), or highly complex such as neural nets and econometric systems of simultaneous equations. The

Rob J Hyndman

2009-01-01T23:59:59.000Z

182

Wind Speeds at Heights Crucial for Wind Energy: Measurements and Verification of Forecasts  

Science Conference Proceedings (OSTI)

Wind speed measurements from one year from meteorological towers and wind turbines at heights between 20 and 250 m for various European sites are analyzed and are compared with operational short-term forecasts of the global ECMWF model. The ...

Susanne Drechsel; Georg J. Mayr; Jakob W. Messner; Reto Stauffer

2012-09-01T23:59:59.000Z

183

Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations  

SciTech Connect

The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the flying brick technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

2010-01-01T23:59:59.000Z

184

Exploiting Domain Knowledge to Forecast Heating Oil Consumption  

Science Conference Proceedings (OSTI)

The GasDay laboratory at Marquette University provides forecasts of energy consumption. One such service is the Heating Oil Forecaster

George F. Corliss; Tsuginosuke Sakauchi; Steven R. Vitullo; Ronald H. Brown

2011-01-01T23:59:59.000Z

185

Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations  

SciTech Connect

The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system breaking points, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

2010-09-01T23:59:59.000Z

187

Solar forecasting review  

E-Print Network (OSTI)

of Solar Forecasting . . . . . . . . . 2.4.1 Solarbudget at the foundation of satellite based forecastingWeather Research and Forecasting (WRF) Model 7.1 Global

Inman, Richard Headen

2012-01-01T23:59:59.000Z

188

FINAL STAFF FORECAST OF 2008 PEAK DEMAND  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION FINAL STAFF FORECAST OF 2008 PEAK DEMAND STAFFREPORT June 2007 CEC-200 of the information in this paper. #12;Abstract This document describes staff's final forecast of 2008 peak demand demand forecasts for the respective territories of the state's three investor-owned utilities (IOUs

189

STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 report, Staff Forecast: Retail Electricity Prices, 2005 to 2018, was prepared with contributions from the technical assistance provided by Greg Broeking of R.W. Beck, Inc. in preparing retail price forecasts

190

NFI Forecasts Methodology NFI Forecasts Methodology  

E-Print Network (OSTI)

NFI Forecasts Methodology NFI Forecasts Methodology Overview Issued by: National Forest Inventory.brewer@forestry.gsi.gov.uk Website: www.forestry.gov.uk/inventory 1 NFI Softwood Forecasts Methodology Overview #12;NFI Forecasts ........................................................................................................4 Rationale behind the new approach to the GB Private sector production forecast ........4 Volume

191

Forecast Technical Document Restocking in the Forecast  

E-Print Network (OSTI)

Forecast Technical Document Restocking in the Forecast A document describing how restocking of felled areas is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley in the forecast Background During the period of a production forecast it is assumed that, as forest sub

192

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS FORECAST IMPROVEMENTS  

E-Print Network (OSTI)

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS BRISBANE FORECAST IMPROVEMENTS The Bureau of Meteorology is progressively upgrading its forecast system to provide more detailed forecasts across Australia. From October 2013 new and improved 7 day forecasts will be introduced for Brisbane, Gold Coast

Greenslade, Diana

193

An evaluation of market penetration forecasting methodologies for new residential and commercial energy technologies  

SciTech Connect

Forecasting market penetration is an essential step in the development and assessment of new technologies. This report reviews several methodologies that are available for market penetration forecasting. The primary objective of this report is to help entrepreneurs understand these methodologies and aid in the selection of one or more of them for application to a particular new technology. This report also illustrates the application of these methodologies, using examples of new technologies, such as the heat pump, drawn from the residential and commercial sector. The report concludes with a brief discussion of some considerations in selecting a forecasting methodology for a particular situation. It must be emphasized that the objective of this report is not to construct a specific market penetration model for new technologies but only to provide a comparative evaluation of methodologies that would be useful to an entrepreneur who is unfamiliar with the range of techniques available. The specific methodologies considered in this report are as follows: subjective estimation methods, market surveys, historical analogy models, time series models, econometric models, diffusion models, economic cost models, and discrete choice models. In addition to these individual methodologies, which range from the very simple to the very complex, two combination approaches are also briefly discussed: (1) the economic cost model combined with the diffusion model and (2) the discrete choice model combined with the diffusion model. This discussion of combination methodologies is not meant to be exhaustive. Rather, it is intended merely to show that many methodologies often can complement each other. A combination of two or more different approaches may be better than a single methodology alone.

Raju, P.S.; Teotia, A.P.S.

1985-05-01T23:59:59.000Z

194

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

Environmental Forecast Group Inc (3TIER) + , Energy Company + , Renewable Energy + , Seattle-based + , renewable energy assessment and forecasting company. + , Seattle + ,...

195

Another Approach to Forecasting Forecast Skill  

Science Conference Proceedings (OSTI)

The skill of a medium-range numerical forecast can fluctuate widely from day to day. Providing an a priori estimate of the skill of the forecast is therefore important. Existing approaches include Monte Carlo Forecasting and Lagged Average ...

W. Y. Chen

1989-02-01T23:59:59.000Z

196

Department of Energy award DE-SC0004164 Climate and National Security: Securing Better Forecasts  

SciTech Connect

The Climate and National Security: Securing Better Forecasts symposium was attended by senior policy makers and distinguished scientists. The juxtaposition of these communities was creative and fruitful. They acknowledged they were speaking past each other. Scientists were urged to tell policy makers about even improbable outcomes while articulating clearly the uncertainties around the outcomes. As one policy maker put it, we are accustomed to making these types of decisions. These points were captured clearly in an article that appeared on the New York Times website and can be found with other conference materials most easily on our website, www.scripps.ucsd.edu/cens/. The symposium, generously supported by the NOAA/JIMO, benefitted the public by promoting scientifically informed decision making and by the transmission of objective information regarding climate change and national security.

Reno Harnish

2011-08-16T23:59:59.000Z

197

Short and Long-Term Perspectives: The Impact on Low-Income Consumers of Forecasted Energy Price Increases in 2008 and A Cap & Trade Carbon Policy in 2030  

SciTech Connect

The Department of Energy's Energy Information Administration (EIA) recently released its short-term forecast for residential energy prices for the winter of 2007-2008. The forecast indicates increases in costs for low-income consumers in the year ahead, particularly for those using fuel oil to heat their homes. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation's low-income households by primary heating fuel type, nationally and by Census Region. The report provides an update of bill estimates provided in a previous study, "The Impact Of Forecasted Energy Price Increases On Low-Income Consumers" (Eisenberg, 2005). The statistics are intended for use by policymakers in the Department of Energy's Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2008 fiscal year. In addition to providing expenditure forecasts for the year immediately ahead, this analysis uses a similar methodology to give policy makers some insight into one of the major policy debates that will impact low-income energy expenditures well into the middle decades of this century and beyond. There is now considerable discussion of employing a cap-and-trade mechanism to first limit and then reduce U.S. emissions of carbon into the atmosphere in order to combat the long-range threat of human-induced climate change. The Energy Information Administration has provided an analysis of projected energy prices in the years 2020 and 2030 for one such cap-and-trade carbon reduction proposal that, when integrated with the RECS 2001 database, provides estimates of how low-income households will be impacted over the long term by such a carbon reduction policy.

Eisenberg, Joel Fred [ORNL

2008-01-01T23:59:59.000Z

198

Improving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Department of Computer Science  

E-Print Network (OSTI)

] and electricity forms 38% of total energy usage in the US [2]. Adoption of energy- efficient measures in buildings electricity usage and facility improvements with an eye on reducing their energy footprint and power usage costs. Energy analysis modeling of buildings is either based on steady state or dynamic conditions

Prasanna, Viktor K.

199

Vapnik's learning theory applied to energy consumption forecasts in residential buildings  

Science Conference Proceedings (OSTI)

For the purpose of energy conservation, we present in this paper an introduction to the use of support vector (SV) learning machines used as a data mining tool applied to buildings energy consumption data from a measurement campaign. Experiments using ... Keywords: data mining, energy conservation, energy efficiency, predictive modelling, statistical learning theory

Florence Lai; Frederic Magoules; Fred Lherminier

2008-10-01T23:59:59.000Z

200

The Forecast Gap: Linking Forwards and Forecasts  

Science Conference Proceedings (OSTI)

This report addresses a common problem in price forecasting: What to do when confronted with a persistent gap between results obtained from a structural forecast model and actual forward or spot prices? The report examines examples taken from natural gas and electric power forecasts and presents a novel approach to closing this forecast gap. Inspection reveals that the ratio of actual prices to forecast prices often exhibits stochastic movements that resemble those of commodity price movements. By usin...

2008-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Load forecasting framework of electricity consumptions for an Intelligent Energy Management System in the user-side  

Science Conference Proceedings (OSTI)

This work presents an electricity consumption-forecasting framework configured automatically and based on an Adaptative Neural Network Inference System (ANFIS). This framework is aimed to be implemented in industrial plants, such as automotive factories, ... Keywords: ANFIS, Forecasting, Genetic algorithm, Intelligent EMS, Modelling

Juan J. Crdenas; Luis Romeral; Antonio Garcia; Fabio Andrade

2012-04-01T23:59:59.000Z

202

Forecast Prices  

Gasoline and Diesel Fuel Update (EIA)

Notes: Notes: Prices have already recovered from the spike, but are expected to remain elevated over year-ago levels because of the higher crude oil prices. There is a lot of uncertainty in the market as to where crude oil prices will be next winter, but our current forecast has them declining about $2.50 per barrel (6 cents per gallon) from today's levels by next October. U.S. average residential heating oil prices peaked at almost $1.50 as a result of the problems in the Northeast this past winter. The current forecast has them peaking at $1.08 next winter, but we will be revisiting the outlook in more detail next fall and presenting our findings at the annual Winter Fuels Conference. Similarly, diesel prices are also expected to fall. The current outlook projects retail diesel prices dropping about 14 cents per gallon

203

California Regional Wind Energy Forecasting System Development, Volume 1: Executive Summary  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 megawatts (MW) in place at the end of 2005. The main drivers are the state's 20 Renewable Portfolio Standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources. As wind is an intermittent generation resource and weather changes can cause large and rapid changes in output, system operators will need accurate and robust wind energy forecasti...

2006-11-14T23:59:59.000Z

204

California Regional Wind Energy Forecasting System Development, Volume 4: California Wind Generation Research Dataset (CARD)  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 megawatts in place at the end of 2005. The main drivers are the state's 20 percent renewable portfolio standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources. As wind is an intermittent generation resource and weather changes can cause large and rapid changes in output, system operators will need accurate and robust wind energy forec...

2006-11-13T23:59:59.000Z

205

To forecast short-term load in electric power system based on FNN  

Science Conference Proceedings (OSTI)

Electric power system load forecasting plays an important part in the Energy Management System (EMS), which has a great effect on the operating, controlling and planning of power system. Accurate load forecasting, especially short-term load forecasting, ...

Yueli Hu; Huijie Ji; Xiaolong Song

2009-08-01T23:59:59.000Z

206

Energy consumption forecasting in process industry using support vector machines and particle swarm optimization  

Science Conference Proceedings (OSTI)

In this paper, Support Vector Machines (SVMs) are applied in predicting energy consumption in the first phase of oil refining at a particular oil refinery. During cross-validation process of the SVM training Particle Swarm Optimization (PSO) algorithm ... Keywords: energy prediction, particle swarm optimization (PSO), support vector machines (SVM)

Milena R. Petkovi?; Milan R. Rapai?; Boris B. Jakovljevi?

2009-09-01T23:59:59.000Z

207

Forecasting in Meteorology  

Science Conference Proceedings (OSTI)

Public weather forecasting heralded the beginning of modern meteorology less than 150 years ago. Since then, meteorology has been largely a forecasting discipline. Thus, forecasting could have easily been used to test and develop hypotheses, ...

C. S. Ramage

1993-10-01T23:59:59.000Z

208

Forecasting the Wind to Reach Significant Penetration Levels of Wind Energy  

Science Conference Proceedings (OSTI)

Advances in atmospheric science are critical to increased deployment of variable renewable energy (VRE) sources. For VRE sources, such as wind and solar, to reach high penetration levels in the nation's electric grid, electric system operators and VRE ...

Melinda Marquis; Jim Wilczak; Mark Ahlstrom; Justin Sharp; Andrew Stern; J. Charles Smith; Stan Calvert

2011-09-01T23:59:59.000Z

209

Using a Stochastic Kinetic Energy Backscatter Scheme to Improve MOGREPS Probabilistic Forecast Skill  

Science Conference Proceedings (OSTI)

An improved stochastic kinetic energy backscatter scheme, version 2 (SKEB2) has been developed for the Met Office Global and Regional Ensemble Prediction System (MOGREPS). Wind increments at each model time step are derived from a streamfunction ...

Warren J. Tennant; Glenn J. Shutts; Alberto Arribas; Simon A. Thompson

2011-04-01T23:59:59.000Z

210

Multiseason Lead Forecast of the North Atlantic Power Dissipation Index (PDI) and Accumulated Cyclone Energy (ACE)  

Science Conference Proceedings (OSTI)

By considering the intensity, duration, and frequency of tropical cyclones, the power dissipation index (PDI) and accumulated cyclone energy (ACE) are concise metrics routinely used to assess tropical storm activity. This study focuses on the ...

Gabriele Villarini; Gabriel A. Vecchi

2013-06-01T23:59:59.000Z

211

Revised 1997 Retail Electricity Price Forecast Principal Author: Ben Arikawa  

E-Print Network (OSTI)

Revised 1997 Retail Electricity Price Forecast March 1998 Principal Author: Ben Arikawa Electricity Energy Commission until adopted at a public meeting. #12;Revised 1997 Retail Price Forecast, December ELECTRICITY PRICE FORECAST Introduction The Electricity Analysis Office of the California Energy Commission

212

Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging  

Science Conference Proceedings (OSTI)

Probabilistic forecasts of wind vectors are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Unlike other common forecasting ...

J. McLean Sloughter; Tilmann Gneiting; Adrian E. Raftery

2013-06-01T23:59:59.000Z

213

Appendix A: Fuel Price Forecast Introduction..................................................................................................................................... 1  

E-Print Network (OSTI)

Appendix A: Fuel Price Forecast Introduction................................................................................................................................. 3 Price Forecasts............................................................................................................................... 12 Oil Price Forecast Range

214

STEO Current/Previous Forecast Comparisons: U.S. Energy Supply and ...  

U.S. Energy Information Administration (EIA)

413 74; 1,476 2,200; 499 80; 1,546 2,117; 479 77; 1,545 4,257; 3,711 4,326; 4,218 -12.8%; ... Short-Term Energy Outlook (http://www.eia/doe.gov/emeu/steo/pub/contents ...

215

Survey and Forecast of Marketplace Supply and Demand for Energy-Efficient Lighting Products  

Science Conference Proceedings (OSTI)

Utility incentive programs have placed significant demands on the suppliers of certain types of energy-efficient lighting products--particularly compact fluorescent lamps and electronic ballasts. Two major federal programs may soon place even greater demands on the lighting industry. This report assesses the program-induced demand for efficient lighting products and their likely near-term supply.

1992-12-01T23:59:59.000Z

216

Energy consumption and expenditure projections by population group on the basis on the annual energy outlook 2000 forecast.  

SciTech Connect

The changes in the patterns of energy use and expenditures by population group are analyzed by using the 1993 and 1997 Residential Energy Consumption Surveys. Historically, these patterns have differed among non-Hispanic White households, non-Hispanic Black households, and Hispanic households. Patterns of energy use and expenditures are influenced by geographic and metropolitan location, the composition of housing stock, economic and demographic status, and the composition of energy use by end-use category. As a consequence, as energy-related factors change across groups, patterns of energy use and expenditures also change. Over time, with changes in the composition of these factors by population group and their variable influences on energy use, the impact on energy use and expenditures has varied across these population groups.

Poyer, D. A.; Decision and Information Sciences

2001-05-31T23:59:59.000Z

217

Short-Term Energy Outlook - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Previous STEO Forecasts: Changes in Forecast from Last Month; STEO Archives; Other EIA Forecasts: Annual Energy Outlook; International Energy Outlook; Thank ...

218

Energy consumption and expenditure projections by income quintile on the basis of the Annual Energy Outlook 1997 forecast  

SciTech Connect

This report presents an analysis of the relative impacts of the base-case scenario used in the Annual Energy Outlook 1997, published by the US Department of Energy, Energy Information Administration, on income quintile groups. Projected energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1993 to 2015 are reported. Projected consumption of electricity, natural gas, distillate fuel, and liquefied petroleum gas over this period is also reported for each income group. 33 figs., 11 tabs.

Poyer, D.A.; Allison, T.

1998-03-01T23:59:59.000Z

219

Forecasts, Meteorology Services, Environmental Sciences Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Forecasts Short Term Forecast Suffolk County Northern Nassau Southern Nassau Area Forecast Discussion - OKX Area Forecast Discussion - NYS Area Forecast Discussion Mount Holly Area...

220

Making Forecasts and Weather Normalization Work Together  

Science Conference Proceedings (OSTI)

Electric utility industry restructuring has changed the consistency between weather-normalized sales and energy forecasts. This Technology Review discusses the feasibility of integrating weather normalization and forecasting processes, and addresses whether the conflicting goal of obtaining greater consistency and accuracy with fewer staff resources can be met with more integrated approaches.

2000-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Efficient forecasting for hierarchical time series  

Science Conference Proceedings (OSTI)

Forecasting is used as the basis for business planning in many application areas such as energy, sales and traffic management. Time series data used in these areas is often hierarchically organized and thus, aggregated along the hierarchy levels based ... Keywords: forecasting, hierarchies, optimization, time series

Lars Dannecker; Robert Lorenz; Philipp Rsch; Wolfgang Lehner; Gregor Hackenbroich

2013-10-01T23:59:59.000Z

222

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts  

E-Print Network (OSTI)

bid is computed by exploiting the forecast energy price for the day ahead market, the historical windOptimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts Antonio statistics at the plant site and the day-ahead wind speed forecasts provided by a meteorological service. We

Giannitrapani, Antonello

223

Data Sources - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Production Forecast: Energy Information Administration, Short-Term Integrated Forecasting System, December 2000; and Model GASCAP94 C102500.

224

NatioNal aNd Global Forecasts West VirGiNia ProFiles aNd Forecasts  

E-Print Network (OSTI)

· NatioNal aNd Global Forecasts · West VirGiNia ProFiles aNd Forecasts · eNerGy · Healt;#12;Copyright ©2012 by WVU Research Corporation Unless otherwise noted, data used for this forecast is from IHS Population 2 GlOBAl OUTlOOk 3 Current Trends 3 Forecast 6 UNITED STATES OUTlOOk 9 Global and United States

Mohaghegh, Shahab

225

Assumptions to Annual Energy Outlook - Energy Information ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

226

Verifying Forecasts Spatially  

Science Conference Proceedings (OSTI)

Numerous new methods have been proposed for using spatial information to better quantify and diagnose forecast performance when forecasts and observations are both available on the same grid. The majority of the new spatial verification methods can be ...

Eric Gilleland; David A. Ahijevych; Barbara G. Brown; Elizabeth E. Ebert

2010-10-01T23:59:59.000Z

227

Forecasting of Supercooled Clouds  

Science Conference Proceedings (OSTI)

Using parameterizations of cloud microphysics, a technique to forecast supercooled cloud events is suggested. This technique can be coupled on the mesoscale with a prognostic equation for cloud water to improve aircraft icing forecasts. The ...

Andr Tremblay; Anna Glazer; Wanda Szyrmer; George Isaac; Isztar Zawadzki

1995-07-01T23:59:59.000Z

228

Forecast Technical Document Volume Increment  

E-Print Network (OSTI)

Forecast Technical Document Volume Increment Forecasts A document describing how volume increment is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Volume increment forecasts Background A volume increment forecast is a fundamental output of the forecast

229

Time Series and Forecasting  

Science Conference Proceedings (OSTI)

Time Series and Forecasting. Leigh, Stefan and Perlman, S. (1991). "An Index for Comovement of Time Sequences With ...

230

1993 Solid Waste Reference Forecast Summary  

SciTech Connect

This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

1993-08-01T23:59:59.000Z

231

Critical Operating Constraint Forecasting (COCF)  

Science Conference Proceedings (OSTI)

This document represents the progress report and Task 1 letter report of the California Institute for Energy and Environment (CIEE) contract funded by the California Energy Commission (CEC), Critical Operating Constraint Forecasting (COCF) for California Independent System Operator (CAISO) Planning Phase. Task 1 was to accomplish the following items: Collect data from CAISO to set up the WECC power flow base case representing the CAISO system in the summer of 2006 Run TRACE for maximizing California Impo...

2006-06-30T23:59:59.000Z

232

Weather Forecasting for Utility Companies For energy and utility companies, expected local weather conditions during the next day or two are  

E-Print Network (OSTI)

SUBJECT: Revised Short-term Electricity Loads and Forecast 2008-2017 As part of the Mid-term Assessment-term electricity loads and forecast 2008-2017- boise 2012 .docx #12;6/28/2012 1 REVISED SHORT-TERM ELECTRICITY and as input to the Resource Adequacy analysis, we have prepared an update to the regional load forecast

233

Geothermal: Sponsored by OSTI -- Consensus forecast of U. S....  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Consensus forecast of U. S. energy supply and demand to the year 2000 Geothermal Technologies Legacy Collection...

234

The Joy of Stochastic Forecasting: An Overview of the Stochastic...  

NLE Websites -- All DOE Office Websites (Extended Search)

especially when clustered with loads in locally controlled buildings scale microgrids. He also leads forecasting work using the National Energy Modeling System (NEMS) and...

235

Western Area Power Administration Starting Forecast Month: Sierra...  

NLE Websites -- All DOE Office Websites (Extended Search)

Starting Forecast Month: Sierra Nevada Region Through Values at Load Center (Tracy Substation) Reg & Res CVP Maximum Capability CVP Energy Generation Peak Project Use Demand...

236

Exploiting Weather Forecast Information in the Operation of ...  

E-Print Network (OSTI)

Mar 4, 2009 ... On-Line Economic Optimization of Energy Systems Using Weather Forecast Information. Victor M Zavala (vzavala ***at*** mcs.anl.gov)

237

The Strategy of Professional Forecasting  

E-Print Network (OSTI)

This paper develops and compares two theories of strategic behavior of professional forecasters. The first theory posits that forecasters compete in a forecasting contest with pre-specified rules. In equilibrium of a winner-take-all contest, forecasts are excessively differentiated. According to the alternative reputational cheap talk theory, forecasters aim at convincing the market that they are well informed. The market evaluates their forecasting talent on the basis of the forecasts and the realized state. If the market expects forecaster honesty, forecasts are shaded toward the prior mean. With correct market expectations, equilibrium forecasts are imprecise but not shaded.

Marco Ottaviani; Peter Norman Srensen

2003-01-01T23:59:59.000Z

238

ENSEMBLE RE-FORECASTING : IMPROVING MEDIUM-RANGE FORECAST SKILL  

E-Print Network (OSTI)

5.5 ENSEMBLE RE-FORECASTING : IMPROVING MEDIUM-RANGE FORECAST SKILL USING RETROSPECTIVE FORECASTS, Colorado 1. INTRODUCTION Improving weather forecasts is a primary goal of the U.S. National Oceanic predictions has been to improve the accuracy of the numerical forecast models. Much effort has been expended

Hamill, Tom

239

Business forecasting methods  

E-Print Network (OSTI)

Forecasting is a common statistical task in business, where it helps inform decisions about scheduling of production, transportation and personnel, and provides a guide to long-term strategic planning. However, business forecasting is often done poorly and is frequently confused with planning and goals. They are three different things. Forecasting is about predicting the future as accurately as possible, given all the information available including historical data and knowledge of any future events that might impact the forecasts. Goals are what you would like to happen. Goals should be linked to forecasts and plans, but this does not always occur. Too often, goals are set without any plan for how to achieve them, and no forecasts for whether they are realistic. Planning is a response to forecasts and goals. Planning involves determining the appropriate actions that are required to make your forecasts match your goals. Forecasting should be an integral part of the decision-making activities of management, as it can play an important role in many areas of a company. Modern organizations require short-, medium- and long-term forecasts, depending on the specific application.

Rob J Hyndman

2009-01-01T23:59:59.000Z

240

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

against the risk of energy price fluctuations. In theory,The poor track record of energy price forecasting models hasof information about future energy prices, including most

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The addition of a US Rare Earth Element (REE) supply-demand model improves the characterization and scope of the United States Department of Energy's effort to forecast US REE Supply and Demand  

E-Print Network (OSTI)

This paper presents the development of a new US Rare Earth Element (REE) Supply-Demand Model for the explicit forecast of US REE supply and demand in the 2010 to 2025 time period. In the 2010 Department of Energy (DOE) ...

Mancco, Richard

2012-01-01T23:59:59.000Z

242

Recently released EIA report presents international forecasting data  

Science Conference Proceedings (OSTI)

This report presents information from the Energy Information Administration (EIA). Articles are included on international energy forecasting data, data on the use of home appliances, gasoline prices, household energy use, and EIA information products and dissemination avenues.

NONE

1995-05-01T23:59:59.000Z

243

Probabilistic Forecasts from the National Digital Forecast Database  

Science Conference Proceedings (OSTI)

The Bayesian processor of forecast (BPF) is developed for a continuous predictand. Its purpose is to process a deterministic forecast (a point estimate of the predictand) into a probabilistic forecast (a distribution function, a density function, ...

Roman Krzysztofowicz; W. Britt Evans

2008-04-01T23:59:59.000Z

244

Seasonal tropical cyclone forecasts  

E-Print Network (OSTI)

Seasonal forecasts of tropical cyclone activity in various regions have been developed since the first attempts in the early 1980s by Neville

Suzana J. Camargo; Anthony G. Barnston; Philip J. Klotzbach; Christopher W. Landsea

2007-01-01T23:59:59.000Z

245

Solar forecasting review  

E-Print Network (OSTI)

2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

Inman, Richard Headen

2012-01-01T23:59:59.000Z

246

Solar forecasting review  

E-Print Network (OSTI)

Online 24-h solar power forecasting based on weather typeweather observations at blue hill massachusetts, Solarof weather patterns on the intensity of solar irradiance;

Inman, Richard Headen

2012-01-01T23:59:59.000Z

247

Issues in midterm analysis and forecasting, 1996  

SciTech Connect

This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

NONE

1996-08-01T23:59:59.000Z

248

Global and Local Skill Forecasts  

Science Conference Proceedings (OSTI)

A skill forecast gives the probability distribution for the error in a forecast. Statistically, Well-founded skill forecasting methods have so far only been applied within the context of simple models. In this paper, the growth of analysis errors ...

P. L. Houtekamer

1993-06-01T23:59:59.000Z

249

Arnold Schwarzenegger INTEGRATED FORECAST AND  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN; the former with primary contributions in the areas of climate and hydrologic forecasting and the latter Service (NWS) California Nevada River Forecast Center (CNRFC), the California Department of Water

250

Does the term structure forecast  

E-Print Network (OSTI)

provides more accurate forecasts of real consumption growth14. Harvey, C.R. (1989): \\Forecasts of economic growth fromC.R. (1993): \\Term structure forecasts economic growth", Fi-

Berardi, Andrea; Torous, Walter

2002-01-01T23:59:59.000Z

251

Distortion Representation of Forecast Errors  

Science Conference Proceedings (OSTI)

Forecast error is decomposed into three components, termed displacement error, amplitude error, mid residual error, respectively. Displacement error measures how much of the forecast error can be accounted for by moving the forecast to best fit ...

Ross N. Hoffman; Zheng Liu; Jean-Francois Louis; Christopher Grassoti

1995-09-01T23:59:59.000Z

252

Composite forecasting in commodity systems  

E-Print Network (OSTI)

Paper No. COMPOSI1E FORECASTING IN CO/Yt.flDITI SYSTfu\\1S1980 .i CfIAPTER COMPOSITE FORECASTING IN COMMOOITY SYSTEMS*to utilizeeconometric .modelsfor forecasting ! ,urposes. The

Johnson, Stanley R; Rausser, Gordon C.

1980-01-01T23:59:59.000Z

253

EIA - Annual Energy Outlook 2011 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Home > Forecasts & Analysis > Annual Energy Outlook 2011 : Annual Energy Outlook 2011 with Projections to 2035

254

Short-Term Energy Outlook - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

255

Delaware - State Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

256

Georgia - State Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

257

Short term wind power forecasting using time series neural networks  

Science Conference Proceedings (OSTI)

Forecasting wind power energy is very important issue in a liberalized market and the prediction tools can make wind energy be competitive in these kinds of markets. This paper will study an application of time-series and neural network for predicting ... Keywords: neural networks, time series, wind power forecasting

Mohammadsaleh Zakerinia; Seyed Farid Ghaderi

2011-04-01T23:59:59.000Z

258

Coefficients for Debiasing Forecasts  

Science Conference Proceedings (OSTI)

Skill-score decompositions can be used to analyze the effects of bias on forecasting skill. However, since bias terms are typically squared, and bias is measured in skill-score units rather than in units of the forecasts, such decompositions only ...

Thomas R. Stewart; Patricia Reagan-Cirincione

1991-08-01T23:59:59.000Z

259

Evaluating Point Forecasts  

E-Print Network (OSTI)

Typically, point forecasting methods are compared and assessed by means of an error measure or scoring function, such as the absolute error or the squared error. The individual scores are then averaged over forecast cases, to result in a summary measure of the predictive performance, such as the mean absolute error or the (root) mean squared error. I demonstrate that this common practice can lead to grossly misguided inferences, unless the scoring function and the forecasting task are carefully matched. Effective point forecasting requires that the scoring function be specified ex ante, or that the forecaster receives a directive in the form of a statistical functional, such as the mean or a quantile of the predictive distribution. If the scoring function is specified ex ante, the forecaster can issue the optimal point forecast, namely, the Bayes rule. If the forecaster receives a directive in the form of a functional, it is critical that the scoring function be consistent for it, in the sense that the expect...

Gneiting, Tilmann

2009-01-01T23:59:59.000Z

260

Forecasters Objectives and Strategies ?  

E-Print Network (OSTI)

This chapter develops a unified modeling framework for analyzing the strategic behavior of forecasters. The theoretical model encompasses reputational objectives, competition for the best accuracy, and bias. Also drawing from the extensive literature on analysts, we review the empirical evidence on strategic forecasting and illustrate how our model can be structurally estimated.

Ivn Marinovic; Marco Ottaviani; Peter Norman Srensen

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A New Verification Score for Public Forecasts  

Science Conference Proceedings (OSTI)

CREF, a new verification score for public forecasts, is introduced. This verification score rewards a forecaster who forecasts a rare event accurately. CREF was used to verify local forecasts at the Weather Service Forecast Office (WSFO) in ...

Dean P. Gulezian

1981-02-01T23:59:59.000Z

262

EIA revises up forecast for U.S. 2013 crude oil production by...  

U.S. Energy Information Administration (EIA) Indexed Site

EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day The forecast for U.S. crude oil production keeps going higher. The U.S. Energy Information...

263

An Inner-Shelf Wave Forecasting System for the U.S. Pacific Northwest  

Science Conference Proceedings (OSTI)

An operational inner-shelf wave forecasting system was implemented for the Oregon and southwest Washington coast in the U.S. Pacific Northwest (PNW). High-resolution wave forecasts are useful for navigational planning, identifying wave energy ...

Gabriel Garca-Medina; H. Tuba zkan-Haller; Peter Ruggiero; Jeffrey Oskamp

2013-06-01T23:59:59.000Z

264

Light truck forecasts  

SciTech Connect

The recent dramatic increase in the number of light trucks (109% between 1963 and 1974) has prompted concern about the energy consequences of the growing popularity of the light truck. An estimate of the future number of light trucks is considered to be a reasonable first step in assessing the energy impact of these vehicles. The monograph contains forecasts based on two models and six scenarios. The coefficients for the models have been derived by ordinary least squares regression of national level time series data. The first model is a two stage model. The first stage estimates the number of light trucks and cars (together), and the second stage applies a share's submodel to determine the number of light trucks. The second model is a simultaneous equation model. The two models track one another remarkably well, within about 2%. The scenarios were chosen to be consistent with those used in the Lindsey-Kaufman study Projection of Light Truck Population to Year 2025. Except in the case of the most dismal economic scenario, the number of light trucks is expected to increase from the 1974 level of 0.09 light truck per person to about 0.12 light truck per person in 1995.

Liepins, G.E.

1979-09-01T23:59:59.000Z

265

APPLICATION OF PROBABILISTIC FORECASTS: DECISION MAKING WITH FORECAST UNCERTAINTY  

E-Print Network (OSTI)

1 APPLICATION OF PROBABILISTIC FORECASTS: DECISION MAKING WITH FORECAST UNCERTAINTY Rick Katz.isse.ucar.edu/HP_rick/dmuu.pdf #12;2 QUOTES ON USE OF PROBABILITY FORECASTS · Lao Tzu (Chinese Philosopher) "He who knows does and Value of Probability Forecasts (4) Cost-Loss Decision-Making Model (5) Simulation Example (6) Economic

Katz, Richard

266

Voluntary Green Power Market Forecast through 2015  

NLE Websites -- All DOE Office Websites (Extended Search)

158 158 May 2010 Voluntary Green Power Market Forecast through 2015 Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates, Inc. Jenny Sumner and Claire Kreycik National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-48158 May 2010 Voluntary Green Power Market Forecast through 2015 Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates, Inc. Jenny Sumner and Claire Kreycik National Renewable Energy Laboratory

267

Why are survey forecasts superior to model forecasts?  

E-Print Network (OSTI)

We investigate two characteristics of survey forecasts that are shown to contribute to their superiority over purely model-based forecasts. These are that the consensus forecasts incorporate the effects of perceived changes in the long-run outlook, as well as embodying departures from the path toward the long-run expectation. Both characteristics on average tend to enhance forecast accuracy. At the level of the individual forecasts, there is scant evidence that the second characteristic enhances forecast accuracy, and the average accuracy of the individual forecasts can be improved by applying a mechanical correction.

Michael P. Clements; Michael P. Clements

2010-01-01T23:59:59.000Z

268

Coarse Graining the Vorticity Equation in the ECMWF Integrated Forecasting System: The Search for Kinetic Energy Backscatter  

Science Conference Proceedings (OSTI)

Stochastic kinetic energy backscatter parameterization schemes are now widely used in ensemble prediction systems to account for random error associated with excessive dissipation and unrepresented energy backscatter in numerical weather ...

G. J. Shutts

2013-04-01T23:59:59.000Z

269

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network (OSTI)

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

270

LOAD FORECASTING Eugene A. Feinberg  

E-Print Network (OSTI)

's electricity price forecasting model, produces forecast of gas demand consistent with electric load. #12Gas demand Council's Market Price of Electricity Forecast Natural GasDemand Electric Load Aggregating Natural between the natural gas and electricity and new uses of natural gas emerge. T natural gas forecasts

Feinberg, Eugene A.

271

Short-Term Wind Speed Forecasting for Power System Operations  

E-Print Network (OSTI)

Global large scale penetration of wind energy is accompanied by significant challenges due to the intermittent and unstable nature of wind. High quality short-term wind speed forecasting is critical to reliable and secure power system operations. This paper gives an overview of the current status of worldwide wind power developments and future trends, and reviews some statistical short-term wind speed forecasting models, including traditional time series models and advanced space-time statistical models. It also discusses the evaluation of forecast accuracy, in particular the need for realistic loss functions. New challenges in wind speed forecasting regarding ramp events and offshore wind farms are also presented.

Xinxin Zhu; Marc G. Genton

2011-01-01T23:59:59.000Z

272

Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint  

Science Conference Proceedings (OSTI)

Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

273

Issues in midterm analysis and forecasting 1998  

SciTech Connect

Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

NONE

1998-07-01T23:59:59.000Z

274

DOE/EIA-0202(85/4Q) Short-Term Washington, D C Energy Information ...  

U.S. Energy Information Administration (EIA)

forecasting system, analyzes previous forecast errors, and provides detailed analyses of current issues that affect EIA's short-term energy forecasts.

275

Wind Speed Forecasting for Power System Operation  

E-Print Network (OSTI)

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system operation in terms of the efficiency of the system. The goal of this dissertation is to develop advanced statistical wind speed predictive models to reduce the uncertainties in wind, especially the short-term future wind speed. Moreover, a criterion is proposed to evaluate the performance of models. Cost reduction in power system operation, as proposed, is more realistic than prevalent criteria, such as, root mean square error (RMSE) and absolute mean error (MAE). Two advanced space-time statistical models are introduced for short-term wind speed forecasting. One is a modified regime-switching, space-time wind speed fore- casting model, which allows the forecast regimes to vary according to the dominant wind direction and seasons. Thus, it avoids a subjective choice of regimes. The other one is a novel model that incorporates a new variable, geostrophic wind, which has strong influence on the surface wind, into one of the advanced space-time statistical forecasting models. This model is motivated by the lack of improvement in forecast accuracy when using air pressure and temperature directly. Using geostrophic wind in the model is not only critical, it also has a meaningful geophysical interpretation. The importance of model evaluation is emphasized in the dissertation as well. Rather than using RMSE or MAE, the performance of both wind forecasting models mentioned above are assessed by economic benefits with real wind farm data from Pacific Northwest of the U.S and West Texas. Wind forecasts are incorporated into power system economic dispatch models, and the power system operation cost is used as a loss measure for the performance of the forecasting models. From another perspective, the new criterion leads to cost-effective scheduling of system-wide wind generation with potential economic benefits arising from the system-wide generation of cost savings and ancillary services cost savings. As an illustration, the integrated forecasts and economic dispatch framework are applied to the Electric Reliability Council of Texas (ERCOT) equivalent 24- bus system. Compared with persistence and autoregressive models, the first model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars. For the second model, numerical simulations suggest that the overall generation cost can be reduced by up to 6.6% using look-ahead dispatch coupled with spatio-temporal wind forecast as compared with dispatch with persistent wind forecast model.

Zhu, Xinxin

2013-08-01T23:59:59.000Z

276

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network (OSTI)

energy policy initiatives (EIA 1990). Utilities rely on end-use forecasting models in order to assess market trends

Johnson, F.X.

2010-01-01T23:59:59.000Z

277

Developing electricity forecast web tool for Kosovo market  

Science Conference Proceedings (OSTI)

In this paper is presented a web tool for electricity forecast for Kosovo market for the upcoming ten years. The input data i.e. electricity generation capacities, demand and consume are taken from the document "Kosovo Energy Strategy 2009-2018" compiled ... Keywords: .NET, database, electricity forecast, internet, simulation, web

Blerim Rexha; Arben Ahmeti; Lule Ahmedi; Vjollca Komoni

2011-02-01T23:59:59.000Z

278

Enhancements to ANNSTLF, EPRI's Short Term Load Forecaster  

Science Conference Proceedings (OSTI)

Reliable hourly load forecasts are important to electric utilities, power marketers, energy service providers, and independent system operators. To meet this need, EPRI's Artificial Neural Net Short Term Load Forecaster (ANNSTLF), which is already implemented at more than thirty-five utilities, was recently enhanced for greater accuracy and user friendliness.

1997-12-08T23:59:59.000Z

279

Factors Driving Prices & Forecast  

Gasoline and Diesel Fuel Update (EIA)

This spread is a function of the balance between demand and fresh supply (production and net imports). Finally I will discuss the current forecast for distillate prices this winter...

280

Modeling and Forecasting Aurora  

Science Conference Proceedings (OSTI)

Modeling the physical processes needed for forecasting space-weather events requires multiscale modeling. This article discusses several modelsresearchers use to treat the various auroral processes that influence space weather.

Dirk Lummerzheim

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Valuing Climate Forecast Information  

Science Conference Proceedings (OSTI)

The article describes research opportunities associated with evaluating the characteristics of climate forecasts in settings where sequential decisions are made. Illustrative results are provided for corn production in east central Illinois. ...

Steven T. Sonka; James W. Mjelde; Peter J. Lamb; Steven E. Hollinger; Bruce L. Dixon

1987-09-01T23:59:59.000Z

282

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

283

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

284

Environment - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

285

Electricity - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

286

Electricity Monthly Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

287

Indonesia - Analysis - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

288

Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

289

Multivariate Forecast Evaluation And Rationality Testing  

E-Print Network (OSTI)

10621088. MULTIVARIATE FORECASTS Chaudhuri, P. (1996): OnKingdom. MULTIVARIATE FORECASTS Kirchgssner, G. , and U. K.2005): Estimation and Testing of Forecast Rationality under

Komunjer, Ivana; OWYANG, MICHAEL

2007-01-01T23:59:59.000Z

290

Forecasting in the Presence of Level Shifts  

E-Print Network (OSTI)

accuracy. Journal of Forecasting 19 : 537-560. Hamilton JD.430. Harvey AC. 1989. Forecasting, structural time seriesMH, Timmermann A. 1994. Forecasting stock returns: An

Smith, Aaron

2004-01-01T23:59:59.000Z

291

A new feature selection algorithm and composite neural network for electricity price forecasting  

Science Conference Proceedings (OSTI)

In a competitive electricity market, the forecasting of energy prices is an important activity for all the market participants either for developing bidding strategies or for making investment decisions. In this paper, a new forecast strategy is proposed ... Keywords: Composite neural network, Price forecast, Two stage feature selection technique

Farshid Keynia

2012-12-01T23:59:59.000Z

292

Short-Term Load Forecasting by Feed-Forward Neural Networks Saied S. Sharif1  

E-Print Network (OSTI)

1 Sixth Northwest Conservation & Electric Power Plan Draft Wholesale Power Price Forecasts Maury Price Forecasts 4. Updated load-resource balance by zones\\ regions · Energy · Capacity 5. Impact. Updated transmission links between the modeled load-resource zones 3. Updated demand forecasts for each

Taylor, James H.

293

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

294

Forecasting Electricity Demand by Time Series Models  

Science Conference Proceedings (OSTI)

Electricity demand is one of the most important variables required for estimating the amount of additional capacity required to ensure a sufficient supply of energy. Demand and technological losses forecasts can be used to control the generation and distribution of electricity more efficiently. The aim of this paper is to utilize time series model

E. Stoimenova; K. Prodanova; R. Prodanova

2007-01-01T23:59:59.000Z

295

Revised Draft Forecast of Electricity Demand  

E-Print Network (OSTI)

. Forecasts of higher electricity and natural gas prices will fundamentally challenge energy intensive. These include the reduced growth in natural gas supplies in spite of significant drilling activity and #12;DRAFT the medium-high case, while paper and allied products has been below the medium-low. Future natural gas

296

FROM ANALYSTS ' EARNINGS FORECASTS  

E-Print Network (OSTI)

We examine the accuracy and bias of intrinsic equity prices estimated from three accounting-based valuation models using analysts earnings forecasts over a four-year horizon. The models are: (a) the earnings capitalization model, (b) the residual income model without a terminal value, and (c) the residual income model with a terminal value that assumes residual income will grow beyond the horizon at a constant rate determined from the expected residual income growth rate over the forecast horizon. Our analysis is based on valuation errors that are calculated by comparing estimated prices to actual prices. We contribute to the literature by examining whether: (i) the analysts earnings forecasts convey information about value beyond that conveyed by current earnings, book value and dividends, (ii) the use of firm specific growth rates in terminal value calculations results in more unbiased and accurate valuations than the use of constant growth rates, and (iii) different models perform better under different ex-ante conditions. We find that analysts earnings forecasts convey information about value beyond that conveyed by current earnings, book values and dividends. Each of the models that we used has valuation errors that decline monotonically as the horizon increases implying that earnings forecasts at each horizon convey new value relevant information. We cannot find a clear advantage to using firm specific growth rates instead of a constant rate of 4 % across all sample

Theodore Sougiannis; Takashi Yaekura

2000-01-01T23:59:59.000Z

297

Operational forecasting based on a modified Weather Research and Forecasting model  

DOE Green Energy (OSTI)

Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

Lundquist, J; Glascoe, L; Obrecht, J

2010-03-18T23:59:59.000Z

298

Short-Termed Integrated Forecasting System: 1993 Model documentation report  

Science Conference Proceedings (OSTI)

The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the US Energy Department (DOE) developed the STIFS model to generate short-term (up to 8 quarters), monthly forecasts of US supplies, demands, imports exports, stocks, and prices of various forms of energy. The models that constitute STIFS generate forecasts for a wide range of possible scenarios, including the following ones done routinely on a quarterly basis: A base (mid) world oil price and medium economic growth. A low world oil price and high economic growth. A high world oil price and low economic growth. This report is written for persons who want to know how short-term energy markets forecasts are produced by EIA. The report is intended as a reference document for model analysts, users, and the public.

Not Available

1993-05-01T23:59:59.000Z

299

Consensus Coal Production Forecast for  

E-Print Network (OSTI)

Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

Mohaghegh, Shahab

300

Forecast Technical Document Technical Glossary  

E-Print Network (OSTI)

Forecast Technical Document Technical Glossary A document defining some of the terms used in the 2011 Production Forecast technical documentation. Tom Jenkins Robert Matthews Ewan Mackie Lesley in the Forecast documentation. In some cases, the terms and the descriptions are "industry standard", in others

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Forecast Technical Document Tree Species  

E-Print Network (OSTI)

Forecast Technical Document Tree Species A document listing the tree species included in the 2011 Production Forecast Tom Jenkins Justin Gilbert Ewan Mackie Robert Matthews #12;PF2011 ­ List of tree species The following is the list of species used within the Forecast System. Species are ordered alphabetically

302

3, 21452173, 2006 Probabilistic forecast  

E-Print Network (OSTI)

HESSD 3, 2145­2173, 2006 Probabilistic forecast verification F. Laio and S. Tamea Title Page for probabilistic forecasts of continuous hydrological variables F. Laio and S. Tamea DITIC ­ Department­2173, 2006 Probabilistic forecast verification F. Laio and S. Tamea Title Page Abstract Introduction

Paris-Sud XI, Université de

303

4, 189212, 2007 Forecast and  

E-Print Network (OSTI)

OSD 4, 189­212, 2007 Forecast and analysis assessment through skill scores M. Tonani et al. Title Science Forecast and analysis assessment through skill scores M. Tonani 1 , N. Pinardi 2 , C. Fratianni 1 Forecast and analysis assessment through skill scores M. Tonani et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

304

FINANCIAL FORECASTING USING GENETIC ALGORITHMS  

E-Print Network (OSTI)

predecessors to forecast stock prices and manage portfolios for approximately 3 years.) We examineFINANCIAL FORECASTING USING GENETIC ALGORITHMS SAM MAHFOUD and GANESH MANI LBS Capital Management entitled Genetic Algorithms for Inductive Learning). Time-series forecasting is a special type

Boetticher, Gary D.

305

RECS 1997 - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

306

Nuclear & Uranium - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

307

Petroleum & Other Liquids - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

308

Markets & Finance - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

309

Natural Gas - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

310

Countries - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & Finance.

311

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

312

Forecast of auroral activity  

Science Conference Proceedings (OSTI)

A new technique is developed to predict auroral activity based on a sample of over 9000 auroral sites identified in global auroral images obtained by an ultraviolet imager on the NASA Polar satellite during a 6-month period. Four attributes of auroral activity sites are utilized in forecasting

A. T. Y. Lui

2004-01-01T23:59:59.000Z

313

LBL-34044 UC-1600 RESIDENTIAL SECTOR END-USE FORECASTING WITH...  

NLE Websites -- All DOE Office Websites (Extended Search)

primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast...

314

Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States  

E-Print Network (OSTI)

MOS),NumericalWeatherPrediction(NWP),SolarForecastingofnumericalweatherpredictionforintra?daysolarsolarenergyapplicationsbasedonaerosolchemicaltransportand numericalweather

Mathiesen, Patrick; Kleissl, Jan

2011-01-01T23:59:59.000Z

315

Short term wind speed forecasting with evolved neural networks  

Science Conference Proceedings (OSTI)

Concerns about climate change, energy security and the volatility of the price of fossil fuels has led to an increased demand for renewable energy. With wind turbines being one of the most mature renewable energy technologies available, the global use ... Keywords: forecasting, renewable energy, wind-speed

David Corne; Alan Reynolds; Stuart Galloway; Edward Owens; Andrew Peacock

2013-07-01T23:59:59.000Z

316

Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures  

E-Print Network (OSTI)

Forecasting Dangerous Inmate Misconduct: An Applications ofidentify with useful forecasting skill the very few inmatescontribute substantially to forecasting skill necessarily

Berk, Richard; Kriegler, Brian; Baek, Jong-Ho

2005-01-01T23:59:59.000Z

317

Information and Inference in Econometrics: Estimation, Testing and Forecasting  

E-Print Network (OSTI)

Application: Forecasting Equity Premium . . . . . . . . . .2.6.1 Forecasting4 Forecasting Using Supervised Factor Models 4.1

Tu, Yundong

2012-01-01T23:59:59.000Z

318

Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures  

E-Print Network (OSTI)

Forecasting Dangerous Inmate Misconduct: An Applications ofidentify with useful forecasting skill the very few inmatescontribute substantially to forecasting skill necessarily

Richard A. Berk; Brian Kriegler; Jong-Ho Baek

2011-01-01T23:59:59.000Z

319

Building-level occupancy data to improve ARIMA-based electricity use forecasts  

Science Conference Proceedings (OSTI)

The energy use of an office building is likely to correlate with the number of occupants, and thus knowing occupancy levels should improve energy use forecasts. To gather data related to total building occupancy, wireless sensors were installed in a ... Keywords: energy forecast, occupancy, office buildings, sensors

Guy R. Newsham; Benjamin J. Birt

2010-11-01T23:59:59.000Z

320

Technical and economic analysis of energy efficiency of Chinese room air conditioners  

E-Print Network (OSTI)

the impact on national energy consumption by adoption of thecase forecast of national energy consumption assumes thatcase forecast of national energy consumption assumes the

Fridley, David G.; Rosenquist, Gregory; Jiang, Lin; Li, Aixian; Xin, Dingguo; Cheng, Jianhong

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Management Earnings Forecasts and Value of Analyst Forecast Revisions  

E-Print Network (OSTI)

Prior studies evaluate the relative importance of the sources of value that financial analysts bring to the market based on the price impact of forecast revisions over the event time. We find that management earnings forecasts influence the timing and precision of analyst forecasts. More importantly, evidence suggests that prior studies finding of weaker (stronger) stock-price responses to forecast revisions in the period immediately after (before) the prior-quarter earnings announcement is likely to be the artifact of a temporal pattern of management earnings forecasts over the event time. To the extent that management earnings forecasts are public disclosures, our results suggest that the relative importance of analysts ' information discovery role documented in prior studies is likely to be overstated.

Yongtae Kim; Minsup Song

2013-01-01T23:59:59.000Z

322

MSSM Forecast for the LHC  

E-Print Network (OSTI)

We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of $M_Z$ is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on $e^+e^-$ data) is considered, the preferred region (for $\\mu>0$) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-$\\mu$ possibilities.

Maria Eugenia Cabrera; Alberto Casas; Roberto Ruiz de Austri

2009-11-24T23:59:59.000Z

323

Chapter 11 Forecasting breaks and forecasting during breaks  

E-Print Network (OSTI)

Success in accurately forecasting breaks requires that they are predictable from relevant information available at the forecast origin using an appropriate model form, which can be selected and estimated before the break. To clarify the roles of these six necessary conditions, we distinguish between the information set for normal forces and the one for break drivers, then outline sources of potential information. Relevant non-linear, dynamic models facing multiple breaks can have more candidate variables than observations, so we discuss automatic model selection. As a failure to accurately forecast breaks remains likely, we augment our strategy by modelling breaks during their progress, and consider robust forecasting devices.

Jennifer L. Castle; Nicholas W. P. Fawcett; David F. Hendry

2011-01-01T23:59:59.000Z

324

Pages that link to "Apps for Energy Challenge Participant" |...  

Open Energy Info (EERE)

Energy Forecaster ( links) Energy Monitoring Made Simple (EMMS) ( links) Energy Usage Analytics ( links) Exploring Background Energy Usage ( links)...

325

Forecast Technical Document Growing Stock Volume  

E-Print Network (OSTI)

Forecast Technical Document Growing Stock Volume Forecasts A document describing how growing stock (`standing') volume is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Growing stock volume forecasts Background A forecast of standing volume (or

326

Medium-term Electricity Price Forecasting Shahab Shariat Torbaghan, Member, IEEE, Amir Motamedi, Member, IEEE, Hamidreza Zareipour, Senior  

E-Print Network (OSTI)

is expected peak loads. Though we have found that the Council's draft energy forecast is a plausible and industrial operations substitute technology (the ICE effect) for labor. Regarding the peak load forecast is fundamental to a forecast and deviations from historical norms should be fully explored. If load factors

327

Forecasting Uncertain Hotel Room Demand  

E-Print Network (OSTI)

Economic systems are characterized by increasing uncertainty in their dynamics. This increasing uncertainty is likely to incur bad decisions that can be costly in financial terms. This makes forecasting of uncertain economic variables an instrumental activity in any organization. This paper takes the hotel industry as a practical application of forecasting using the Holt-Winters method. The problem here is to forecast the uncertain demand for rooms at a hotel for each arrival day. Forecasting is part of hotel revenue management system whose objective is to maximize the revenue by making decisions regarding when to make rooms available for customers and at what price. The forecast approach discussed in this paper is based on quantitative models and does not incorporate management expertise. Even though, forecast results are found to be satisfactory for certain days, this is not the case for other arrival days. It is believed that human judgment is important when dealing with ...

Mihir Rajopadhye Mounir; Mounir Ben Ghaliay; Paul P. Wang; Timothy Baker; Craig V. Eister

2001-01-01T23:59:59.000Z

328

Forecasting technology costs via the Learning Curve - Myth or Magic?  

E-Print Network (OSTI)

is generally considered to be traditional fossil fuel power stations, hence making a further assumption that such a value for cost can be forecasted). In situations where niche markets exist (for example solar PV electricity for remote areas or hand held... Solar PV provides a good example of the use and dangers of using experience curves to forecast future costs of an energy technology. It is a good example since solar PV modules are generally accessed by an international market allowing for worldwide...

Alberth, Stephan

329

Aviation forecasting and systems analyses  

SciTech Connect

The 9 papers in this report deal with the following areas: method of allocating airport runway slots; method for forecasting general aviation activity; air traffic control network-planning model based on second-order Markov chains; analyzing ticket-choice decisions of air travelers; assessing the safety and risk of air traffic control systems: risk estimation from rare events; forecasts of aviation fuel consumption in Virginia; estimating the market share of international air carriers; forecasts of passenger and air-cargo activity at Logan International Airport; and forecasting method for general aviation aircraft and their activity.

Geisinger, K.E.; Brander, J.R.G.; Wilson, F.R.; Kohn, H.M.; Polhemus, N.W.

1980-01-01T23:59:59.000Z

330

Studies of inflation and forecasting.  

E-Print Network (OSTI)

??This dissertation contains five research papers in the area of applied econometrics. The two broad themes of the research are inflation and forecasting. The first (more)

Bermingham, Colin

2011-01-01T23:59:59.000Z

331

UWIG Forecasting Workshop -- Albany (Presentation)  

SciTech Connect

This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

Lew, D.

2011-04-01T23:59:59.000Z

332

SHORT-TERM - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Analysis and Forecasting Division (202/586-5382). Macroeconomic Forecast: Energy Product Prices: ... scenario, it is assumed that, after the first

333

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

334

On the Prediction of Forecast Skill  

Science Conference Proceedings (OSTI)

Using 10-day forecast 500 mb height data from the last 7 yr, the potential to predict the skill of numerical weather forecasts is discussed. Four possible predictor sets are described. The first, giving the consistency between adjacent forecasts, ...

T. N. Palmer; S. Tibaldi

1988-12-01T23:59:59.000Z

335

Equitable Skill Scores for Categorical Forecasts  

Science Conference Proceedings (OSTI)

Many skill scores used to evaluate categorical forecasts of discrete variables are inequitable, in the sense that constant forecasts of some events lead to better scores than constant forecasts of other events. Inequitable skill scores may ...

Lev S. Gandin; Allan H. Murphy

1992-02-01T23:59:59.000Z

336

What Is the True Value of Forecasts?  

Science Conference Proceedings (OSTI)

Understanding the economic value of weather and climate forecasts is of tremendous practical importance. Traditional models that have attempted to gauge forecast value have focused on a best-case scenario, in which forecast users are assumed to ...

Antony Millner

2009-10-01T23:59:59.000Z

337

Lagged Ensembles, Forecast Configuration, and Seasonal Predictions  

Science Conference Proceedings (OSTI)

An analysis of lagged ensemble seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), is presented. The focus of the analysis is on the construction of lagged ensemble forecasts ...

Mingyue Chen; Wanqiu Wang; Arun Kumar

2013-10-01T23:59:59.000Z

338

Whither the Weather Analysis and Forecasting Process?  

Science Conference Proceedings (OSTI)

An argument is made that if human forecasters are to continue to maintain a skill advantage over steadily improving model and guidance forecasts, then ways have to be found to prevent the deterioration of forecaster skills through disuse. The ...

Lance F. Bosart

2003-06-01T23:59:59.000Z

339

Lagged Ensembles, Forecast Configuration, and Seasonal Predictions  

Science Conference Proceedings (OSTI)

An analysis of lagged ensemble seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) is presented. The focus of the analysis is on the construction of lagged ensemble forecasts ...

Mingyue Chen; Wanqiu Wang; Arun Kumar

340

Improving Forecast Communication: Linguistic and Cultural Considerations  

Science Conference Proceedings (OSTI)

One goal of weather and climate forecasting is to inform decision making. Effective communication of forecasts to various sectors of the public is essential for meeting that goal, yet studies repeatedly show that forecasts are not well understood ...

Karen Pennesi

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Ensemble Cloud Model Applications to Forecasting Thunderstorms  

Science Conference Proceedings (OSTI)

A cloud model ensemble forecasting approach is developed to create forecasts that describe the range and distribution of thunderstorm lifetimes that may be expected to occur on a particular day. Such forecasts are crucial for anticipating severe ...

Kimberly L. Elmore; David J. Stensrud; Kenneth C. Crawford

2002-04-01T23:59:59.000Z

342

Probabilistic Verification of Monthly Temperature Forecasts  

Science Conference Proceedings (OSTI)

Monthly forecasting bridges the gap between medium-range weather forecasting and seasonal predictions. While such forecasts in the prediction range of 14 weeks are vital to many applications in the context of weather and climate risk management, ...

Andreas P. Weigel; Daniel Baggenstos; Mark A. Liniger; Frdric Vitart; Christof Appenzeller

2008-12-01T23:59:59.000Z

343

A Forecast for the California Labor Market  

E-Print Network (OSTI)

issue for the state. A Forecast for the California Laborto Go? The UCLA Anderson Forecast for the Nation andAngeles: UCLA Anderson Forecast: Nation 1.1 1.9. Dhawan,

Mitchell, Daniel J. B.

2001-01-01T23:59:59.000Z

344

Operational Forecaster Uncertainty Needs and Future Roles  

Science Conference Proceedings (OSTI)

Key results of a comprehensive survey of U.S. National Weather Service operational forecast managers concerning the assessment and communication of forecast uncertainty are presented and discussed. The survey results revealed that forecasters are ...

David R. Novak; David R. Bright; Michael J. Brennan

2008-12-01T23:59:59.000Z

345

Calibration of Probabilistic Forecasts of Binary Events  

Science Conference Proceedings (OSTI)

Probabilistic forecasts of atmospheric variables are often given as relative frequencies obtained from ensembles of deterministic forecasts. The detrimental effects of imperfect models and initial conditions on the quality of such forecasts can ...

Cristina Primo; Christopher A. T. Ferro; Ian T. Jolliffe; David B. Stephenson

2009-03-01T23:59:59.000Z

346

CORPORATE GOVERNANCE AND MANAGEMENT EARNINGS FORECAST  

E-Print Network (OSTI)

1 CORPORATE GOVERNANCE AND MANAGEMENT EARNINGS FORECAST QUALITY: EVIDENCE FROM FRENCH IPOS Anis attributes, ownership retained, auditor quality, and underwriter reputation and management earnings forecast quality measured by management earnings forecast accuracy and bias. Using 117 French IPOs, we find

Paris-Sud XI, Université de

347

Forecasting women's apparel sales using mathematical  

E-Print Network (OSTI)

Forecasting women's apparel sales using mathematical modeling Celia Frank and Ashish Garg, USA Les Sztandera Philadelphia University, Philadelphia, PA, USA Keywords Apparel, Forecasting average (MA), auto- regression (AR), or combinations of them are used for forecasting sales. Since

Raheja, Amar

348

Diagnosing Forecast Errors in Tropical Cyclone Motion  

Science Conference Proceedings (OSTI)

This paper reports on the development of a diagnostic approach that can be used to examine the sources of numerical model forecast error that contribute to degraded tropical cyclone (TC) motion forecasts. Tropical cyclone motion forecasts depend ...

Thomas J. Galarneau Jr.; Christopher A. Davis

2013-02-01T23:59:59.000Z

349

Forecasting Electric Vehicle Costs with Experience Curves  

E-Print Network (OSTI)

April, 5. R 2~1. Dino. "Forecasting the Price Evolution of 1ElectromcProducts," Ioumal of Forecasting, oL4, No I, 1985.costs and a set of forecasting tools that can be refined as

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

350

Calibration of Probabilistic Quantitative Precipitation Forecasts  

Science Conference Proceedings (OSTI)

From 1 August 1990 to 31 July 1995, the Weather Service Forecast Office in Pittsburgh prepared 6159 probabilistic quantitative precipitation forecasts. Forecasts were made twice a day for 24-h periods beginning at 0000 and 1200 UTC for two river ...

Roman Krzysztofowicz; Ashley A. Sigrest

1999-06-01T23:59:59.000Z

351

Evaluating Probabilistic Forecasts Using Information Theory  

Science Conference Proceedings (OSTI)

The problem of assessing the quality of an operational forecasting system that produces probabilistic forecasts is addressed using information theory. A measure of the quality of the forecasting scheme, based on the amount of a data compression ...

Mark S. Roulston; Leonard A. Smith

2002-06-01T23:59:59.000Z

352

Virtual Floe Ice Drift Forecast Model Intercomparison  

Science Conference Proceedings (OSTI)

Both sea ice forecast models and methods to measure their skill are needed for operational sea ice forecasting. Two simple sea ice models are described and tested here. Four different measures of skill are also tested. The forecasts from the ...

Robert W. Grumbine

1998-09-01T23:59:59.000Z

353

Evaluating Density Forecasts: Forecast Combinations, Model Mixtures, Calibration and Sharpness  

E-Print Network (OSTI)

In a recent article Gneiting, Balabdaoui and Raftery (JRSSB, 2007) propose the criterion of sharpness for the evaluation of predictive distributions or density forecasts. They motivate their proposal by an example in which standard evaluation procedures based on probability integral transforms cannot distinguish between the ideal forecast and several competing forecasts. In this paper we show that their example has some unrealistic features from the perspective of the time-series forecasting literature, hence it is an insecure foundation for their argument that existing calibration procedures are inadequate in practice. We present an alternative, more realistic example in which relevant statistical methods, including information-based methods, provide the required discrimination between competing forecasts. We conclude that there is no need for a subsidiary criterion of sharpness.

James Mitchell; Kenneth F. Wallis

2008-01-01T23:59:59.000Z

354

The evolution of consensus in macroeconomic forecasting  

E-Print Network (OSTI)

When professional forecasters repeatedly forecast macroeconomic variables, their forecasts may converge over time towards a consensus. The evolution of consensus is analyzed with Blue Chip data under a parametric polynomial decay function that permits flexibility in the decay path. For the most part, this specification fits the data. We test whether forecast differences decay to zero at the same point in time for a panel of forecasters, and discuss possible explanations for this, along with its implications for studies using panels of forecasters.

Allan W. Gregory; James Yetman; Jel Codes C E; Robert Eggert; Fred Joutz

2004-01-01T23:59:59.000Z

355

Advances in Volatility Modeling for Energy Markets: Methods for Reproducing Volatility Clustering, Fat Tails, Smiles, and Smirks in Energy Price Forecasts  

Science Conference Proceedings (OSTI)

This report describes research sponsored by the Electric Power Research Institute (EPRI) to develop a new model of energy price volatility. For many years, EPRI has worked with a flexible and tractable volatility model that successfully captures the term "structure of volatility," including the properties commonly referred to as "mean reversion" and "seasonality." However, that model does not capture random volatility, evidenced by volatility clustering, nor does it capture skewness and excess kurtosis i...

2011-12-30T23:59:59.000Z

356

Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint  

DOE Green Energy (OSTI)

Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

2012-09-01T23:59:59.000Z

357

Electricity price forecasting in a grid environment.  

E-Print Network (OSTI)

??Accurate electricity price forecasting is critical to market participants in wholesale electricity markets. Market participants rely on price forecasts to decide their bidding strategies, allocate (more)

Li, Guang, 1974-

2007-01-01T23:59:59.000Z

358

Improving Forecasting: A plea for historical retrospectives  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Forecasting: A plea for historical retrospectives Title Improving Forecasting: A plea for historical retrospectives Publication Type Journal Article Year of Publication...

359

Background pollution forecast over bulgaria  

Science Conference Proceedings (OSTI)

Both, the current level of air pollution studies and social needs in the country, are in a stage mature enough for creating Bulgarian Chemical Weather Forecasting and Information System The system is foreseen to provide in real time forecast of the spatial/temporal ...

D. Syrakov; K. Ganev; M. Prodanova; N. Miloshev; G. Jordanov; E. Katragkou; D. Melas; A. Poupkou; K. Markakis

2009-06-01T23:59:59.000Z

360

Frequency Dependence in Forecast Skill  

Science Conference Proceedings (OSTI)

A method is proposed to calculate measures of forecast skill for high, medium and low temporal frequency variations in the atmosphere. This method is applied to a series of 128 consecutive 1 to 10-day forecasts produced at NMC with their ...

H. M. van Den Dool; Suranjana Saha

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

362

A survey on wind power ramp forecasting.  

DOE Green Energy (OSTI)

The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

2011-02-23T23:59:59.000Z

363

Sixth Northwest Conservation and Electric Power Plan Appendix D: Wholesale Electricity Price Forecast  

E-Print Network (OSTI)

Forecast Introduction................................................................... 16 The Base Case Forecast..................................................................... 16 Base Case Price Forecast

364

Solar forecasting review  

E-Print Network (OSTI)

ASME Journal of Solar Energy Engineering (in press), 2012. [ASME Journal of Solar Energy Engineering (in press), 2012. [

Inman, Richard Headen

2012-01-01T23:59:59.000Z

365

Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)  

SciTech Connect

Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

2009-11-01T23:59:59.000Z

366

Press Room - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

American Energy Security and Innovation: An Assessment of North America's Energy Resources pdf. Subject: EIA, Energy Markets, Forecasts: Presented by:

367

Saudi Arabia - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

State energy information, ... Maps. Maps by energy source and topic, includes forecast maps. Countries. Country energy information, ... Installed Capa ...

368

Bulgaria - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

State energy information, ... Maps. Maps by energy source and topic, includes forecast maps. Countries. Country energy information, ... Installed Capa ...

369

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & Finance. ... State Energy Data System ...

370

Load Forecast For use in Resource Adequacy  

E-Print Network (OSTI)

Load Forecast 2019 For use in Resource Adequacy Massoud Jourabchi #12;In today's presentation d l­ Load forecast methodology ­ Drivers of the forecast f i­ Treatment of conservation ­ Incorporating impact of weather ­ Forecast for 2019 #12;Regional Loads (MWA and MW)Regional Loads (MWA and MW

371

Forecast Technical Document Felling and Removals  

E-Print Network (OSTI)

Forecast Technical Document Felling and Removals Forecasts A document describing how volume fellings and removals are handled in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Felling and removals forecasts Background A fellings and removals

372

Combining forecast weights: Why and how?  

Science Conference Proceedings (OSTI)

This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions

Yip Chee Yin; Ng Kok-Haur; Lim Hock-Eam

2012-01-01T23:59:59.000Z

373

PROBLEMS OF FORECAST1 Dmitry KUCHARAVY  

E-Print Network (OSTI)

1 PROBLEMS OF FORECAST1 Dmitry KUCHARAVY dmitry.kucharavy@insa-strasbourg.fr Roland DE GUIO roland for the purpose of Innovative Design. First, a brief analysis of problems for existing forecasting methods of the forecast errors. Second, using a contradiction analysis, a set of problems related to technology forecast

Paris-Sud XI, Université de

374

Using reforecasts for probabilistic forecast calibration  

E-Print Network (OSTI)

1 Using reforecasts for probabilistic forecast calibration Tom Hamill NOAA Earth System Research that is currently operational. #12;3 Why compute reforecasts? · For many forecast problems, such as long-lead forecasts or high-precipitation events, a few past forecasts may be insufficient for calibrating

Hamill, Tom

375

Assessing Forecast Accuracy Measures Department of Economics  

E-Print Network (OSTI)

Assessing Forecast Accuracy Measures Zhuo Chen Department of Economics Heady Hall 260 Iowa State forecast accuracy measures. In the theoretical direction, for comparing two forecasters, only when the errors are stochastically ordered, the ranking of the forecasts is basically independent of the form

376

Quantitative Precipitation Forecast Techniques for Use in Hydrologic Forecasting  

Science Conference Proceedings (OSTI)

Quantitative hydrologic forecasting usually requires knowledge of the spatial and temporal distribution of precipitation. First, it is important to accurately measure the precipitation falling over a particular watershed of interest. Second, ...

Konstantine P. Georgakakos; Michael D. Hudlow

1984-11-01T23:59:59.000Z

377

Current status of ForecastCurrent status of Forecast 2005 EPACT is in the model  

E-Print Network (OSTI)

1 1 Current status of ForecastCurrent status of Forecast 2005 EPACT is in the model 2007 Federal prices are being inputted into the model 2 Sales forecast Select yearsSales forecast Select years --Draft 0.53% Irrigation 2.76% Annual Growth Rates Preliminary Electricity ForecastAnnual Growth Rates

378

Can earnings forecasts be improved by taking into account the forecast bias?  

E-Print Network (OSTI)

Can earnings forecasts be improved by taking into account the forecast bias? François DOSSOU allow the calculation of earnings adjusted forecasts, for horizons from 1 to 24 months. We explain variables. From the forecast evaluation statistics viewpoints, the adjusted forecasts make it possible quasi

Paris-Sud XI, Université de

379

Economic Forecast Report Economic Outlook and Forecasts  

E-Print Network (OSTI)

volatile prices such as food and energy, is even softer, averaging around 1% for the year. Inflation should in our last report, the rebound in economic activity has been weak and uninspiring with below-trend formation is far below desired level, the overall trend is positive. Despite these improve- ments, we fear

de Lijser, Peter

380

Downscaling Extended Weather Forecasts for Hydrologic Prediction  

SciTech Connect

Weather and climate forecasts are critical inputs to hydrologic forecasting systems. The National Center for Environmental Prediction (NCEP) issues 8-15 days outlook daily for the U.S. based on the Medium Range Forecast (MRF) model, which is a global model applied at about 2? spatial resolution. Because of the relatively coarse spatial resolution, weather forecasts produced by the MRF model cannot be applied directly to hydrologic forecasting models that require high spatial resolution to represent land surface hydrology. A mesoscale atmospheric model was used to dynamically downscale the 1-8 day extended global weather forecasts to test the feasibility of hydrologic forecasting through this model nesting approach. Atmospheric conditions of each 8-day forecast during the period 1990-2000 were used to provide initial and boundary conditions for the mesoscale model to produce an 8-day atmospheric forecast for the western U.S. at 30 km spatial resolution. To examine the impact of initialization of the land surface state on forecast skill, two sets of simulations were performed with the land surface state initialized based on the global forecasts versus land surface conditions from a continuous mesoscale simulation driven by the NCEP reanalysis. Comparison of the skill of the global and downscaled precipitation forecasts in the western U.S. showed higher skill for the downscaled forecasts at all precipitation thresholds and increasingly larger differences at the larger thresholds. Analyses of the surface temperature forecasts show that the mesoscale forecasts generally reduced the root-mean-square error by about 1.5 C compared to the global forecasts, because of the much better resolved topography at 30 km spatial resolution. In addition, initialization of the land surface states has large impacts on the temperature forecasts, but not the precipitation forecasts. The improvements in forecast skill using downscaling could be potentially significant for improving hydrologic forecasts for managing river basins.

Leung, Lai-Yung R.; Qian, Yun

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Annual Energy Outlook 2002 with Projections to 2020 - Table of...  

Gasoline and Diesel Fuel Update (EIA)

Issues in Focus Market Trends Energy Demand Electricity Oil and Natural Gas Coal Emissions Forecast Comparisons Major Assumptions for the Forecasts Summary of the AEO2002...

382

Short-Term Energy Outlook Quarterly/Biennial Updates  

Reports and Publications (EIA)

Short-term forecasts of energy supply, demand, and price projections through 2001 for U.S. and International oil forecasts

Joe Ayoub

383

Short-Term Energy Outlook Quarterly/Biennial Updates  

Reports and Publications (EIA)

Short-term forecasts of energy supply, demand, and price projections through 2001 for U.S. and International oil forecasts

2013-08-29T23:59:59.000Z

384

Statement from Secretary of Energy Samuel W. Bodman Regarding...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

regarding the EIA's Annual Energy Outlook which forecasts to 2030: "EIA's updated forecast projecting higher oil prices and increased demand reinforces the Department of...

385

Chart Gallery for January 2014 - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Total production (left axis) Production forecast (left axis) Source: Short-Term Energy Outlook, January 2014. Forecast 275 300 325 350 375 400 425 ...

386

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

forecast methods report. California Energy Commission, CEC-Chris Kavalec. California Energy Commission. CEC (2005d)Office, 5/12/2006. California Energy Advanced Energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

387

Short-term wind speed forecasting based on a hybrid model  

Science Conference Proceedings (OSTI)

Wind power is currently one of the types of renewable energy with a large generation capacity. However, operation of wind power generation is very challenging because of the intermittent and stochastic nature of the wind speed. Wind speed forecasting ... Keywords: Forecasting, RBF neural networks, Seasonal adjustment, Wavelet transform, Wind speed

Wenyu Zhang, Jujie Wang, Jianzhou Wang, Zengbao Zhao, Meng Tian

2013-07-01T23:59:59.000Z

388

A Hybrid ARCH-M and BP Neural Network Model For GSCI Futures Price Forecasting  

Science Conference Proceedings (OSTI)

As a versatile investment tool in energy markets for speculators and hedgers, the Goldman Sachs Commodity Index (GSCI) futures are quite well known. Therefore, this paper proposes a hybrid model incorporating ARCH family models and ANN model to forecast ... Keywords: ANN, ARCH-M, Commodity Index, Forecasting, GSCI

Wen Bo; Wang Shouyang; K. K. Lai

2007-05-01T23:59:59.000Z

389

Value of Wind Power Forecasting  

DOE Green Energy (OSTI)

This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

2011-04-01T23:59:59.000Z

390

Fuzzy forecasting with DNA computing  

Science Conference Proceedings (OSTI)

There are many forecasting techniques including: exponential smoothing, ARIMA model, GARCH model, neural networks and genetic algorithm, etc. Since financial time series may be influenced by many factors, conventional model based techniques and hard ...

Don Jyh-Fu Jeng; Junzo Watada; Berlin Wu; Jui-Yu Wu

2006-06-01T23:59:59.000Z

391

Sampling Errors in Seasonal Forecasting  

Science Conference Proceedings (OSTI)

The limited numbers of start dates and ensemble sizes in seasonal forecasts lead to sampling errors in predictions. Defining the magnitude of these sampling errors would be useful for end users as well as informing decisions on resource ...

Stephen Cusack; Alberto Arribas

2009-03-01T23:59:59.000Z

392

Scoring Rules for Forecast Verification  

Science Conference Proceedings (OSTI)

The problem of probabilistic forecast verification is approached from a theoretical point of view starting from three basic desiderata: additivity, exclusive dependence on physical observations (locality), and strictly proper behavior. By ...

Riccardo Benedetti

2010-01-01T23:59:59.000Z

393

Wavelets and Field Forecast Verification  

Science Conference Proceedings (OSTI)

Current field forecast verification measures are inadequate, primarily because they compress the comparison between two complex spatial field processes into one number. Discrete wavelet transforms (DWTs) applied to analysis and contemporaneous ...

William M. Briggs; Richard A. Levine

1997-06-01T23:59:59.000Z

394

Richardson's Barotropic Forecast: A Reappraisal  

Science Conference Proceedings (OSTI)

To elucidate his numerical technique and to examine the effectiveness of geostrophic initial winds, Lewis Fry Richardson carried out an idealized forecast using the linear shallow-water equations and simple analytical pressure and velocity ...

Peter Lynch

1992-01-01T23:59:59.000Z

395

Documentation - Price Forecast Uncertainty  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Short-Term Energy Outlook Supplement October 2009 2 example, if a confidence level of 95 percent is specified, then a range of ...

396

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & Finance. ... Job Seekers Policy Analysts ...

397

The Potential Impact of Using Persistence as a Reference Forecast on Perceived Forecast Skill  

Science Conference Proceedings (OSTI)

Skill is defined as actual forecast performance relative to the performance of a reference forecast. It is shown that the choice of reference (e.g., random or persistence) can affect the perceived performance of the forecast system. Two scores, ...

Marion P. Mittermaier

2008-10-01T23:59:59.000Z

398

The Complex Relationship between Forecast Skill and Forecast Value: A Real-World Analysis  

Science Conference Proceedings (OSTI)

For routine forecasts of temperature and precipitation, the relative skill advantage of human forecasters with respect to the numericalstatistical guidance is small (and diminishing). Since the relationship between forecast skill and the value ...

Paul J. Roebber; Lance F. Bosart

1996-12-01T23:59:59.000Z

399

Evaluation of Wave Forecasts Consistent with Tropical Cyclone Warning Center Wind Forecasts  

Science Conference Proceedings (OSTI)

An algorithm to generate wave fields consistent with forecasts from the official U.S. tropical cyclone forecast centers has been made available in nearreal time to forecasters since summer 2007. The algorithm removes the tropical cyclone from ...

Charles R. Sampson; Paul A. Wittmann; Efren A. Serra; Hendrik L. Tolman; Jessica Schauer; Timothy Marchok

2013-02-01T23:59:59.000Z

400

Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting  

E-Print Network (OSTI)

This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

Goto, Susumu

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ability to Forecast Regional Soil Moisture with a Distributed Hydrological Model Using ECMWF Rainfall Forecasts  

Science Conference Proceedings (OSTI)

This study mimics an online forecast system to provide nine day-ahead forecasts of regional soil moisture. It uses modified ensemble rainfall forecasts from the numerical weather prediction model of the European Centre for Medium-Range Weather ...

J. M. Schuurmans; M. F. P. Bierkens

2009-04-01T23:59:59.000Z

402

Spatial Structure, Forecast Errors, and Predictability of the South Asian Monsoon in CFS Monthly Retrospective Forecasts  

Science Conference Proceedings (OSTI)

The spatial structure of the boreal summer South Asian monsoon in the ensemble mean of monthly retrospective forecasts by the Climate Forecast System of the National Centers for Environmental Prediction is examined. The forecast errors and ...

Hae-Kyung Lee Drbohlav; V. Krishnamurthy

2010-09-01T23:59:59.000Z

403

What Is a Good Forecast? An Essay on the Nature of Goodness in Weather Forecasting  

Science Conference Proceedings (OSTI)

Differences of opinion exist among forecastersand between forecasters and usersregarding the meaning of the phrase good (bad) weather forecasts. These differences of opinion are fueled by a lack of clarity and/or understanding concerning the ...

Allan H. Murphy

1993-06-01T23:59:59.000Z

404

Quantification of Uncertainity in Fire-Weather Forecasts: Some Results of Operational and Experimental Forecasting Programs  

Science Conference Proceedings (OSTI)

Fire-weather forecasts (FWFs) prepared by National Weather Service (NWS) forecasters on an operational basis are traditionally expressed in categorical terms. However, to make rational and optimal use of such forecasts, fire managers need ...

Barbara G. Brown; Allan H. Murphy

1987-09-01T23:59:59.000Z

405

Renewable & Appropriate Energy Laboratory Energy & Resources Group  

E-Print Network (OSTI)

's forecasted electrical demand is met through a combination of renewable resources, T&D grid upgrades, energy dash line represents the Base consumption, the solid line shows the load forecast in the presence the load forecast if energy efficiency measures were to be adopted countywide. We have adopted

Kammen, Daniel M.

406

Base Resource Forecasts - Power Marketing - Sierra Nevada Region...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing > Base Resource Forecasts Base Resource Forecasts Note: Annual, rolling (monthly for 12 months), base resource forecasts are posted when they become available. Annual...

407

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

choice model for forecasting demand for alternative-fuel7511, Urban Travel Demand Forecasting Project, Institute of89 (1999) 109129 Forecasting new product penetration with ?

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

408

Overestimation Reduction in Forecasting Telecommuting as a TDM Policy  

E-Print Network (OSTI)

M. , Ethics and advocacy in forecasting for public policy.change and social forecasting: the case of telecommuting asOverestimation Reduction in Forecasting Telecommuting as a

Tal, Gil

2008-01-01T23:59:59.000Z

409

Forecasting US CO2 Emissions Using State-Level Data  

E-Print Network (OSTI)

F. Hendry (eds), Economic Forecasting, Blackwell Publishing,W. : 2002, Macroeconomic forecasting using di?usion indexes,2003, Macroeconomic forecasting in the euro area: Country

Steinhauser, Ralf; Auffhammer, Maximilian

2005-01-01T23:59:59.000Z

410

NoVaS Transformations: Flexible Inference for Volatility Forecasting  

E-Print Network (OSTI)

and Correlation Forecasting in G. Elliott, C.W.J.Handbook of Economic Forecasting, Amsterdam: North-Holland,Transformations, forthcoming in Forecasting in the Presence

Politis, Dimitris N; Thomakos, Dimitrios D

2008-01-01T23:59:59.000Z

411

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

7511, Urban Travel Demand Forecasting Project, Institute ofchoice model for forecasting demand for alternative-fuel89 (1999) 109129 Forecasting new product penetration with

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

412

Earthquake Forecasting in Diverse Tectonic Zones of the Globe  

E-Print Network (OSTI)

Long-term probabilistic forecasting of earthquakes, J.2000), Probabilistic forecasting of earthquakes, Geophys. J.F.F. (2006), The EEPAS forecasting model and the probability

Kagan, Y. Y.; Jackson, D. D.

2010-01-01T23:59:59.000Z

413

Ensemble-based methods for forecasting census in hospital units  

E-Print Network (OSTI)

P, Fitzgerald G: Regression forecasting of patient admissionapproach to modeling and forecasting demand in the emergencySJ, Haug PJ, Snow GL: Forecasting daily patient volumes in

Koestler, Devin C; Ombao, Hernando; Bender, Jesse

2013-01-01T23:59:59.000Z

414

Forecasting Danerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures  

E-Print Network (OSTI)

costs could alter forecasting skill and the predictors thatForecasting Dangerous Inmate Misconduct: An Applications ofOn-Line Working Paper Series Forecasting Dangerous Inmate

Berk, Richard A.; Kriegler, Brian; Baek, John-Ho

2005-01-01T23:59:59.000Z

415

Developing a Practical Forecasting Screener for Domestic Violence Incidents  

E-Print Network (OSTI)

Developing a Practical Forecasting Screener for Domesticcomplicated did not improve forecasting skill. Taking thethe local costs of forecasting errors. It is also feasible

Richard A. Berk; Susan B. Sorenson; Yan He

2011-01-01T23:59:59.000Z

416

Forecasting with Dynamic Microsimulation: Design, Implementation, and Demonstration  

E-Print Network (OSTI)

Goulias Page 84 Forecasting with Dynamic Microsimulation:Goulias Page 80 Forecasting with Dynamic Microsimulation:L. Demographic Forecasting with a Dynamic Stochastic

Ravulaparthy, Srinath; Goulias, Konstadinos G.

2011-01-01T23:59:59.000Z

417

Short-Term Energy Outlook - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & Finance. ... Market-Derived Probabilities: ...

418

Short-Term Energy Outlook - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... imports and exports, production, prices, sales. ... Maps by energy source and topic, includes forecast maps.

419

Voluntary Green Power Market Forecast through 2015  

SciTech Connect

Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

2010-05-01T23:59:59.000Z

420

Voluntary Green Power Market Forecast through 2015  

SciTech Connect

Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Forum  

Reports and Publications (EIA)

Natural Gas, ForecastPresented by: Guy F. Caruso, EIA AdministratorPresented to: Energy ForumNew York, New York

Information Center

2003-09-25T23:59:59.000Z

422

Verification of clear-air turbulence forecasts June 2002, KNMI  

E-Print Network (OSTI)

to increase potential energy. Under these conditions turbulence will increase in intensity until different weather conditions. It often occurs in relatively clear skies and is then referred to as clear-airVerification of clear-air turbulence forecasts A. Overeem June 2002, KNMI Technisch rapport #12

Stoffelen, Ad

423

Remarks on the Potential for Long-Range Forecasting  

Science Conference Proceedings (OSTI)

This paper, originally delivered as a lecture before the DOE-sponsored Workshop on Climate and Energy, offers some comments on the state-of-the-art of long-range weather forecasting based on the author's extensive decades of experience. An ...

Jerome Namias

1985-02-01T23:59:59.000Z

424

Annual Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. States. State energy information, detailed and overviews. Maps. Maps by energy source and topic, includes forecast maps. Countries. Country ...

425

Annual Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

State energy information, detailed and overviews. Maps. Maps by energy source and topic, includes forecast maps. ... A6 Approximate Heat Rates for Electricity, ...

426

Performance Profiles of Major Energy Producers - Energy ...  

U.S. Energy Information Administration (EIA)

Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. ... Statement of Income for U.S. & Foreign Downstream Gas:

427

Forecast of contracting and subcontracting opportunities. Fiscal year 1996  

SciTech Connect

This forecast of prime and subcontracting opportunities with the U.S. Department of Energy and its MAO contractors and environmental restoration and waste management contractors, is the Department`s best estimate of small, small disadvantaged and women-owned small business procurement opportunities for fiscal year 1996. The information contained in the forecast is published in accordance with Public Law 100-656. It is not an invitation for bids, a request for proposals, or a commitment by DOE to purchase products or services. Each procurement opportunity is based on the best information available at the time of publication and may be revised or cancelled.

NONE

1996-02-01T23:59:59.000Z

428

Conceptual design of a geothermal site development forecasting system  

DOE Green Energy (OSTI)

A site development forecasting system has been designed in response to the need to monitor and forecast the development of specific geothermal resource sites for electrical power generation and direct heat applications. The system is comprised of customized software, a site development status data base, and a set of complex geothermal project development schedules. The system would use site-specific development status information obtained from the Geothermal Progress Monitor and other data derived from economic and market penetration studies to produce reports on the rates of geothermal energy development, federal agency manpower requirements to ensure these developments, and capital expenditures and technical/laborer manpower required to achieve these developments.

Neham, E.A.; Entingh, D.J.

1980-03-01T23:59:59.000Z

429

Summary Verification Measures and Their Interpretation for Ensemble Forecasts  

Science Conference Proceedings (OSTI)

Ensemble prediction systems produce forecasts that represent the probability distribution of a continuous forecast variable. Most often, the verification problem is simplified by transforming the ensemble forecast into probability forecasts for ...

A. Allen Bradley; Stuart S. Schwartz

2011-09-01T23:59:59.000Z

430

A Review of Numerical Forecast Guidance for Hurricane Hugo  

Science Conference Proceedings (OSTI)

Numerical forecast guidance for Hurricane Hugo from the National Meteorological Center is examined, as well as forecasts from the European Center for Medium Range Forecasting and the United Kingdom Meteorological Office. No one forecast product ...

John H. Ward

1990-09-01T23:59:59.000Z

431

Using Customers' Reported Forecasts to Predict Future Sales  

E-Print Network (OSTI)

Using Customers' Reported Forecasts to Predict Future Sales Nihat Altintas , Alan Montgomery orders using forecasts provided by their customers. Our goal is to improve the supplier's operations through a better un- derstanding of the customers's forecast behavior. Unfortunately, customer forecasts

Murphy, Robert F.

432

Short-Range Ensemble Forecasts of Precipitation Type  

Science Conference Proceedings (OSTI)

Short-range ensemble forecasting is extended to a critical winter weather problem: forecasting precipitation type. Forecast soundings from the operational NCEP Short-Range Ensemble Forecast system are combined with five precipitation-type ...

Matthew S. Wandishin; Michael E. Baldwin; Steven L. Mullen; John V. Cortinas Jr.

2005-08-01T23:59:59.000Z

433

Expert Panel: Forecast Future Demand for Medical Isotopes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and stimulate biomedical research. The expert panel recommends that the U.S. government build this capability around either a reactor, an accelerator or a combination of both technologies as long as isotopes for clinical and research applications can be supplied reliably, with diversity in adequate

434

Forecasting Wind Markets  

U.S. Energy Information Administration (EIA)

Emerging Technologies, Data, and NEM Modeling Issues in Wind Resource Supply Data and Modeling Chris Namovicz ASA Committee on Energy Statistics

435

Management of supply chain: an alternative modelling technique for forecasting  

E-Print Network (OSTI)

Forecasting is a necessity almost in any operation. However, the tools of forecasting are still primitive in view

Datta, Shoumen

2007-05-23T23:59:59.000Z

436

The Automated Tropical Cyclone Forecasting System (ATCF)  

Science Conference Proceedings (OSTI)

The U.S. Navy Automated Tropical Cyclone Forecasting System (ATCF) is an IBM-AT compatible software package developed for the Joint Typhoon Warning Center (JTWC), Guam. ATCF is designed to assist forecasters with the process of making tropical ...

Ronald J. Miller; Ann J. Schrader; Charles R. Sampson; Ted L. Tsui

1990-12-01T23:59:59.000Z

437

Performance of Recent Multimodel ENSO Forecasts  

Science Conference Proceedings (OSTI)

The performance of the International Research Institute for Climate and Society ENSO forecast plume during the 200211 period is evaluated using deterministic and probabilistic verification measures. The plume includes multiple model forecasts ...

Michael K. Tippett; Anthony G. Barnston; Shuhua Li

2012-03-01T23:59:59.000Z

438

Local Forecast Communication In The Altiplano  

Science Conference Proceedings (OSTI)

Forecasts play an important role in planting decisions for Andean peasant producers. Predictions of the upcoming cropping season determine when, where, and what farmers will plant. This research looks at the sources of forecast information used ...

Jere L. Gilles; Corinne Valdivia

2009-01-01T23:59:59.000Z

439

Evaluation of LFM-2 Quantitative Precipitation Forecasts  

Science Conference Proceedings (OSTI)

The results of a near real time experiment designed to assess the state of the art of quantitative precipitation forecasting skill of the operational NMC LFM-2 are described. All available LFM-2 quantitative precipitation forecasts were verified ...

Lance F. Bosart

1980-08-01T23:59:59.000Z

440

Bayesian Model Verification of NWP Ensemble Forecasts  

Science Conference Proceedings (OSTI)

Forecasts of convective precipitation have large uncertainties. To consider the forecast uncertainties of convection-permitting models, a convection-permitting ensemble prediction system (EPS) based on the Consortium for Small-scale Modeling (...

Andreas Rpnack; Andreas Hense; Christoph Gebhardt; Detlev Majewski

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Value from Ambiguity in Ensemble Forecasts  

Science Conference Proceedings (OSTI)

This study explores the objective application of ambiguity information, that is, the uncertainty in forecast probability derived from an ensemble. One application approach, called uncertainty folding, merges ambiguity with forecast uncertainty ...

Mark S. Allen; F. Anthony Eckel

2012-02-01T23:59:59.000Z

442

Forecaster Workstation Design: Concepts and Issues  

Science Conference Proceedings (OSTI)

Some basic ideas about designing a meteorological workstation for operational weather forecasting are presented, in part as a complement to the recently published discussion of workstation design by R. R. Hoffman. Scientific weather forecasting ...

Charles A. Doswell III

1992-06-01T23:59:59.000Z

443

Economic and Statistical Measures of Forecast Accuracy  

E-Print Network (OSTI)

This paper argues in favour of a closer link between decision and forecast evaluation problems. Although the idea of using decision theory for forecast evaluation appears early in the dynamic stochastic programming literature, and has continued...

Granger, Clive W J; Pesaran, M Hashem

2004-06-16T23:59:59.000Z

444

2013 Midyear Economic Forecast Sponsorship Opportunity  

E-Print Network (OSTI)

2013 Midyear Economic Forecast Sponsorship Opportunity Thursday, April 18, 2013, ­ Hyatt Regency Irvine 11:30 a.m. ­ 1:30 p.m. Dr. Anil Puri presents his annual Midyear Economic Forecast addressing

de Lijser, Peter

445

Forecasting consumer products using prediction markets  

E-Print Network (OSTI)

Prediction Markets hold the promise of improving the forecasting process. Research has shown that Prediction Markets can develop more accurate forecasts than polls or experts. Our research concentrated on analyzing Prediction ...

Trepte, Kai

2009-01-01T23:59:59.000Z

446

Probabilistic Visibility Forecasting Using Bayesian Model Averaging  

Science Conference Proceedings (OSTI)

Bayesian model averaging (BMA) is a statistical postprocessing technique that has been used in probabilistic weather forecasting to calibrate forecast ensembles and generate predictive probability density functions (PDFs) for weather quantities. ...

Richard M. Chmielecki; Adrian E. Raftery

2011-05-01T23:59:59.000Z

447

Intercomparison of Spatial Forecast Verification Methods  

Science Conference Proceedings (OSTI)

Advancements in weather forecast models and their enhanced resolution have led to substantially improved and more realistic-appearing forecasts for some variables. However, traditional verification scores often indicate poor performance because ...

Eric Gilleland; David Ahijevych; Barbara G. Brown; Barbara Casati; Elizabeth E. Ebert

2009-10-01T23:59:59.000Z

448

Forecasting with Reference to a Specific Climatology  

Science Conference Proceedings (OSTI)

Seasonal forecasts are most commonly issued as anomalies with respect to some multiyear reference period. However, different seasonal forecasting centers use different reference periods. This paper shows that for near-surface temperature, ...

Emily Wallace; Alberto Arribas

2012-11-01T23:59:59.000Z

449

Probabilistic Quantitative Precipitation Forecasts for River Basins  

Science Conference Proceedings (OSTI)

A methodology has been formulated to aid a field forecaster in preparing probabilistic quantitative precipitation forecasts (QPFs) for river basins. The format of probabilistic QPF is designed to meet three requirements: (i) it is compatible with ...

Roman Krzysztofowicz; William J. Drzal; Theresa Rossi Drake; James C. Weyman; Louis A. Giordano

1993-12-01T23:59:59.000Z

450

A General Framework for Forecast Verification  

Science Conference Proceedings (OSTI)

A general framework for forecast verification based on the joint distribution of forecasts and observations is described. For further elaboration of the framework, two factorizations of the joint distribution are investigated: 1) the calibration-...

Allan H. Murphy; Robert L. Winkler

1987-07-01T23:59:59.000Z

451

Antarctic Satellite Meteorology: Applications for Weather Forecasting  

Science Conference Proceedings (OSTI)

For over 30 years, weather forecasting for the Antarctic continent and adjacent Southern Ocean has relied on weather satellites. Significant advancements in forecasting skill have come via the weather satellite. The advent of the high-resolution ...

Matthew A. Lazzara; Linda M. Keller; Charles R. Stearns; Jonathan E. Thom; George A. Weidner

2003-02-01T23:59:59.000Z

452

Forecasting Techniques Utilized by the Forecast Branch of the National Meteorological Center During a Major Convective Rainfall Event  

Science Conference Proceedings (OSTI)

Meteorologists within the Forecast Branch (FB) of the National Meteorological Center (NMC) produce operational quantitative precipitation forecasts (QPFs). These manual forecasts are prepared utilizing various forecasting techniques, which are ...

Theodore W. Funk

1991-12-01T23:59:59.000Z

453

Application of Forecast Verification Science to Operational River Forecasting in the U.S. National Weather Service  

Science Conference Proceedings (OSTI)

Forecast verification in operational hydrology has been very limited to date, mainly due to the complexity of verifying both forcing input forecasts and hydrologic forecasts on multiple spacetime scales. However, forecast verification needs to ...

Julie Demargne; Mary Mullusky; Kevin Werner; Thomas Adams; Scott Lindsey; Noreen Schwein; William Marosi; Edwin Welles

2009-06-01T23:59:59.000Z

454

OpenEI/Tool/Keyword Green Button Apps | Open Energy Information  

Open Energy Info (EERE)

+ Energy Forecaster + Energy Insight + Energy Monitoring Made Simple (EMMS) + Energy Usage Analytics + EnergyAi + EnergyDataOnline.com + EnergyRewards + Exploring...

455

Improving week two forecasts with multi-model re-forecast ensembles  

E-Print Network (OSTI)

Improving week two forecasts with multi-model re-forecast ensembles Jeffrey S. Whitaker and Xue Wei NOAA-CIRES Climate Diagnostics Center, Boulder, CO Fr´ed´eric Vitart Seasonal Forecasting Group, ECMWF dataset of ensemble 're-forecasts' from a single model can significantly improve the skill

Whitaker, Jeffrey S.

456

A Rank Approach to Equity Forecast Construction  

E-Print Network (OSTI)

that are fit for their purpose; for example, returningaggregate county and sector forecasts that are consistent by construction....

Satchell, Stephen E; Wright, Stephen M

2006-03-14T23:59:59.000Z

457

Impacts of Soil Heating Condition on Precipitation Simulations in the Weather Research and Forecasting Model  

Science Conference Proceedings (OSTI)

Soil temperature is a major variable in land surface models, representing soil energy status, storage, and transfer. It serves as an important factor indicating the underlying surface heating condition for weather and climate forecasts. This ...

Xingang Fan

2009-07-01T23:59:59.000Z

458

Evaluation of the NCEP Global Forecast System at the ARM SGP Site  

Science Conference Proceedings (OSTI)

This study evaluates the performance of the National Centers for Environmental Prediction Global Forecast System (GFS) against observations made by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program at the southern ...

Fanglin Yang; Hua-Lu Pan; Steven K. Krueger; Shrinivas Moorthi; Stephen J. Lord

2006-12-01T23:59:59.000Z

459

Incorporating Hurricane Forecast Uncertainty into a Decision Support Application for Power Outage Modeling  

Science Conference Proceedings (OSTI)

A variety of decision-support systems, such as those employed by energy and utility companies, use the National Hurricane Center (NHC) forecasts of track and intensity to inform operational decision-making as a hurricane approaches. Track and intensity ...

Steven M. Quiring; Andrea B. Schumacher; Seth D. Guikema

460

Predicting Cloud-to-Ground and Intracloud Lightning in Weather Forecast Models  

Science Conference Proceedings (OSTI)

A new prognostic, spatially and temporally dependent variable is introduced to the Weather Research and Forecasting Model (WRF). This variable is called the potential electrical energy (Ep). It was used to predict the dynamic contribution of the ...

Barry H. Lynn; Yoav Yair; Colin Price; Guy Kelman; Adam J. Clark

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electricity Market Price Forecasting: Neural Networks versus Weighted-Distance Nearest Neighbours  

E-Print Network (OSTI)

In today's deregulated markets, forecasting energy prices is becoming more and more important. In the short term, expected price pro les help market participants to determine their bidding strategies.

A. Troncoso; J.M. Riquelme; Alicia Troncoso Lora; J.L. Martnez; A. Gmez; Jose Riquelme Santos; Jesus Riquelme Santos

2001-01-01T23:59:59.000Z

462

Crude Oil Price Forecasting with an Improved Model Based on Wavelet Transform and RBF Neural Network  

Science Conference Proceedings (OSTI)

The fluctuation of oil price decides the security of energy and economics. So the crude oil price forecasting performs importantly. In the paper, we apply the improved model based on Wavelet Transform and Radial Basis Function (RBF) neural network to ...

Wu Qunli; Hao Ge; Cheng Xiaodong

2009-05-01T23:59:59.000Z

463

International Energy Outlook 2013 - Energy Information ...  

U.S. Energy Information Administration (EIA)

Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, ... International Energy Outlook 2013. Release Date: July 25, 2013 ...

464

Annual Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, ... Annual Energy Outlook 2013. Release Dates: April 15 - May 2, 2013 ...

465

SPECIAL REPORT 298: EFFECTS OF LAND DEVELOPMENT PATTERNS ON MOTORIZED TRAVEL, ENERGY, AND CO2 EMISSIONS  

E-Print Network (OSTI)

Integrated Database (eGRID). Forecasted marginal carbon factors are derived from energy efficiency scenario

Kockelman, Kara M.

466

Consensus Coal Production And Price Forecast For  

E-Print Network (OSTI)

Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

Mohaghegh, Shahab

467

Load Forecasting for Modern Distribution Systems  

Science Conference Proceedings (OSTI)

Load forecasting is a fundamental activity for numerous organizations and activities within a utility, including planning, operations, and control. Transmission and Distribution (T&D) planning and design engineers use the load forecast to determine whether any changes and additions are needed to the electric system to satisfy the anticipated load. Other load forecast users include system operations, financial ...

2013-03-08T23:59:59.000Z

468

Load forecast and treatment of conservation  

E-Print Network (OSTI)

Load forecast and treatment of conservation July 28th 2010 Resource Adequacy Technical Committee conservation is implicitly incorporated in the short-term demand forecast? #12;3 Incorporating conservation in the short-term model Our short-term model is an econometric model which can not explicitly forecast

469

Blue Chip Consensus US GDP Forecast  

E-Print Network (OSTI)

and metro area from Moodys Economy.com Equivalent to US-level Gross Domestic Product ? The GMP forecasts have a large impact on the peak load forecasts Rule of thumb: 1 % growth in RTO GMP ? approx. 1,000 MW growth in forecast RTO peak load

James F. Wilson

2007-01-01T23:59:59.000Z

470

5, 183218, 2008 A rainfall forecast  

E-Print Network (OSTI)

HESSD 5, 183­218, 2008 A rainfall forecast model using Artificial Neural Network N. Q. Hung et al An artificial neural network model for rainfall forecasting in Bangkok, Thailand N. Q. Hung, M. S. Babel, S Geosciences Union. 183 #12;HESSD 5, 183­218, 2008 A rainfall forecast model using Artificial Neural Network N

Paris-Sud XI, Université de

471

System Demonstration Multilingual Weather Forecast Generation System  

E-Print Network (OSTI)

System Demonstration Multilingual Weather Forecast Generation System Tianfang Yao DongmoZhang Qian (Multilingual Weather Forecasts Assistant) system will be demonstrated. It is developed to generate the multilingual text of the weather forecasts automatically. The raw data from the weather observation can be used

472

(1) Ensemble forecast calibration & (2) using reforecasts  

E-Print Network (OSTI)

1 (1) Ensemble forecast calibration & (2) using reforecasts Tom Hamill NOAA Earth System Research · Calibration: ; the statistical adjustment of the (ensemble) forecast ­ Rationale 1: Infer large-sample probabilities from small ensemble. ­ Rationale 2: Remove bias, increase forecast reliability while preserving

Hamill, Tom

473

Modeling and Forecasting Electric Daily Peak Loads  

E-Print Network (OSTI)

Forecast Update As part of the Mid Term Assessment, staff is preparing a long term wholesale electricity 29, 2012 Preliminary Results of the Electricity Price Forecast Update As part of the Mid Term Assessment, staff is preparing a long term wholesale electricity market price forecast. A summary of the work

Abdel-Aal, Radwan E.

474

NREL: Energy Analysis - David Palchak  

NLE Websites -- All DOE Office Websites (Extended Search)

David Palchak Photo of David Palchak David Palchak is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Energy Systems Engineer On...

475

NREL: Energy Analysis - Daniel Steinberg  

NLE Websites -- All DOE Office Websites (Extended Search)

Steinberg Photo of Daniel Steinberg Daniel Steinberg is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Energy and Environmental...

476

Use of wind power forecasting in operational decisions.  

DOE Green Energy (OSTI)

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

477

How Do You Like Your Weather?: Using Weather Forecast Data to Improve Short-Term Load Forecasts  

Science Conference Proceedings (OSTI)

This document provides a quick overview of weather forecasts as a data issue in the development of electricity demand forecasts. These are three sections in this Brief: o reasons behind the rise in interest in using weather forecasts in electricity forecasting models, o an overview of what some utilities are doing to evaluate weather forecasts, and o a resource list of weather forecast providers.

2001-09-28T23:59:59.000Z

478

Press Room - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

EIA, Renewable, Forecasts: Presented by: Adam Sieminski, Administrator: Presented to: Subcommittee on Energy and Power Committee on Energy and ...

479

Price forecasting for notebook computers  

E-Print Network (OSTI)

This paper proposes a four-step approach that uses statistical regression to forecast notebook computer prices. Notebook computer price is related to constituent features over a series of time periods, and the rates of change in the influence of individual features are estimated. A time series analysis is used to forecast and can be used, for example, to forecast (1) notebook computer price at introduction, and (2) rate of price erosion for a notebook's life cycle. Results indicate that this approach can forecast the price of a notebook computer up to four months in advance of its introduction with an average error of under 10% and the rate of price erosion to within 10% of the price for seven months after introduction-the length of the typical life cycle of a notebook. Since all data are publicly available, this approach can be used to assist managerial decision making in the notebook computer industry, for example, in determining when and how to upgrade a model and when to introduce a new model.

Rutherford, Derek Paul

1997-01-01T23:59:59.000Z

480

Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets  

Science Conference Proceedings (OSTI)

This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

2005-02-09T23:59:59.000Z

Note: This page contains sample records for the topic "idm forecasts energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network (OSTI)

current and forecasted energy prices, energy demand, and DERarises in energy loads, energy prices and IES equipmentenergy loads, and energy prices, regulatory constraints on

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

482

OpenEI/Tool/Keyword Challenge Generated | Open Energy Information  

Open Energy Info (EERE)

+ ElectricAnalysis.com + Energy Forecaster + Energy Monitoring Made Simple (EMMS) + Energy Usage Analytics + EnergyDataOnline.com + EnergyRewards + Exploring Background...

483

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

electrical and total energy demand forecasting. Many lines of investigation can be identified for further analysis.

Akbari, H.

2008-01-01T23:59:59.000Z

484

Essays on macroeconomics and forecasting  

E-Print Network (OSTI)

This dissertation consists of three essays. Chapter II uses the method of structural factor analysis to study the effects of monetary policy on key macroeconomic variables in a data rich environment. I propose two structural factor models. One is the structural factor augmented vector autoregressive (SFAVAR) model and the other is the structural factor vector autoregressive (SFVAR) model. Compared to the traditional vector autogression (VAR) model, both models incorporate far more information from hundreds of data series, series that can be and are monitored by the Central Bank. Moreover, the factors used are structurally meaningful, a feature that adds to the understanding of the â??black boxâ? of the monetary transmission mechanism. Both models generate qualitatively reasonable impulse response functions. Using the SFVAR model, both the â??price puzzleâ? and the â??liquidity puzzleâ? are eliminated. Chapter III employs the method of structural factor analysis to conduct a forecasting exercise in a data rich environment. I simulate out-of-sample real time forecasting using a structural dynamic factor forecasting model and its variations. I use several structural factors to summarize the information from a large set of candidate explanatory variables. Compared to Stock and Watson (2002)â??s models, the models proposed in this chapter can further allow me to select the factors structurally for each variable to be forecasted. I find advantages to using the structural dynamic factor forecasting models compared to alternatives that include univariate autoregression (AR) model, the VAR model and Stock and Watsonâ??s (2002) models, especially when forecasting real variables. In chapter IV, we measure U.S. technology shocks by implementing a dual approach, which is based on more reliable price data instead of aggregate quantity data. By doing so, we find the relative volatility of technology shocks and the correlation between output fluctuation and technology shocks to be much smaller than those revealed in most real-business-cycle (RBC) studies. Our results support the findings of Burnside, Eichenbaum and Rebelo (1996), who showed that the correlation between technology shocks and output is exaggerated in the RBC literature. This suggests that one should examine other sources of fluctuations for a better understanding of the business cycle phenomena.

Liu, Dandan

2005-08-01T23:59:59.000Z

485

Forecasting Techniques The Use of Hourly Model-Generated Soundings to Forecast Mesoscale Phenomena. Part I: Initial Assessment in Forecasting Warm-Season Phenomena  

Science Conference Proceedings (OSTI)

Since late 1995, NCEP has made available to forecasters hourly model guidance at selected sites in the form of vertical profiles of various forecast fields. These profiles provide forecasters with increased temporal resolution and greater ...

Robert E. Hart; Gregory S. Forbes; Richard H. Grumm

1998-12-01T23:59:59.000Z

486

Meese-Rogoff redux: Micro-based exchange-rate forecasting  

E-Print Network (OSTI)

Johnatban. "Exchange Rate Forecasting: The Errors We'veBased Exchange-Rate Forecasting By MARTIN D . D . EVANS ANDon longer-horizon forecasting, we examine forecasting over

Evans, MDD; Lyons, Richard K.

2005-01-01T23:59:59.000Z

487

The Past as Prologue? Business Cycles and Forecasting since the 1960s  

E-Print Network (OSTI)

Forecasters, Journal of Forecasting, Vol. 28, No. 2, Mar,of Macroeconomic Forecasting Journal of Macroeconomics,of Federal Reserve Forecasting, Journal of Macroeconomics,

Bardhan, Ashok Deo; Hicks, Daniel; Kroll, Cynthia A.; Yu, Tiffany

2010-01-01T23:59:59.000Z

488

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

E-Print Network (OSTI)

and V. Letschert (2005). Forecasting Electricity Demand in8364 Material World: Forecasting Household ApplianceMcNeil, 2008). Forecasting Diffusion Forecasting Variables

Letschert, Virginie

2010-01-01T23:59:59.000Z

489

Accurate Short Term Load Forecasting for an ESKOM Major Distribution Region in South Africa: An Application of EPRI ANNSTLF  

Science Conference Proceedings (OSTI)

ANNSTLF (Artificial Neural Network Short-term Load Forecaster), developed by EPRI, is a Microsoft Windows-based neural-network load forecasting software that uses historical load and weather parameters to predict future load values. The software requires customization for each utility. This project involved customizing ANNSTLF for the Eastern Region of the South African energy company ESKOM.

2005-09-27T23:59:59.000Z

490

Forecasting new gas users  

Science Conference Proceedings (OSTI)

Each year hundreds of oil or electric customers call Boston Gas to ask about fuel-switching. What do they look for? A gas utility can boost sales only one way-by gaining new customers. And in today`s slowly growing economy, conservation trends limit growth opportunities. The average household today uses two-thirds the energy of 15 years ago. Commercial and industrial (C/I) customers also conserve. If a gas utility is to grow, a majority of its new customers will likely come from competing fuels, such as oil or electricity.

Lonshteyn, A. [Boston Gas Co., MA (United States)

1995-02-01T23:59:59.000Z

491

User account | SAML IdM  

NLE Websites -- All DOE Office Websites (Extended Search)

account(active tab) account(active tab) Log in Request new password Type Of User * Public Publisher Display Name * E-mail * A valid e-mail address. All e-mails from the system will be sent to this address. The e-mail address is not made public and will only be used if you wish to receive a new password or wish to receive certain news or notifications by e-mail. First Name Middle Name Last Name Organization Type * - Select a value - Federal Government Local Government State Government Non-Profit Tribal University Other Agency * None Alaska Natural Gas Transportation Projects American Battle Monuments Commission Appalachian Regional Commission Broadcasting Board of Governors Chemical Safety Board Christopher Columbus Fellowship Foundation Commodity Futures Trading Commission Congressional Budget Office Consumer Financial

492

A Cosmology Forecast Toolkit -- CosmoLib  

E-Print Network (OSTI)

The package CosmoLib is a combination of a cosmological Boltzmann code and a simulation toolkit to forecast the constraints on cosmological parameters from future observations. In this paper we describe the released linear-order part of the package. We discuss the stability and performance of the Boltzmann code. This is written in Newtonian gauge and including dark energy perturbations. In CosmoLib the integrator that computes the CMB angular power spectrum is optimized for a $\\ell$-by-$\\ell$ brute-force integration, which is useful for studying inflationary models predicting sharp features in the primordial power spectrum of metric fluctuations. The numerical code and its documentation are available at http://www.cita.utoronto.ca/~zqhuang/CosmoLib.

Zhiqi Huang

2012-01-28T23:59:59.000Z

493

R/ECON July 2000 Forecast RUTGERS ECONOMIC ADVISORY SERVICE  

E-Print Network (OSTI)

R/ECON July 2000 Forecast RUTGERS ECONOMIC ADVISORY SERVICE FORECAST OF JULY 2000 NEW JERSEY of growth will decelerate over the forecast period. The R/ECON TM forecast for New Jersey in 2000 looks to decelerate over the course of the forecast. These forces will combine to push the unemployment rate to more

494

Increasing NOAA's computational capacity to improve global forecast modeling  

E-Print Network (OSTI)

1 Increasing NOAA's computational capacity to improve global forecast modeling A NOAA of the NWS's forecast products, even its regional forecast products, are constrained by the limitations of NOAA's global forecast model. Unfortunately, our global forecasts are less accurate than those from

Hamill, Tom

495

Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint  

DOE Green Energy (OSTI)

Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

Zhang, J.; Hodge, B. M.; Florita, A.

2013-05-01T23:59:59.000Z

496

BMA Probabilistic Quantitative Precipitation Forecasting over the Huaihe Basin Using TIGGE Multi-model Ensemble Forecasts  

Science Conference Proceedings (OSTI)

Bayesian model averaging (BMA) probability quantitative precipitation forecast (PQPF) models were established by calibrating their parameters using one- to seven-day ensemble forecasts of 24-hour accumulated precipitation, and observations from 43 ...

Jianguo Liu; Zhenghui Xie

497

Using National Air Quality Forecast Guidance to Develop Local Air Quality Index Forecasts  

Science Conference Proceedings (OSTI)

The National Air Quality Forecast Capability (NAQFC) currently provides next-day forecasts of ozone concentrations over the contiguous United States. It was developed collaboratively by NOAA and Environmental Protection Agency (EPA) in order to ...

Brian Eder; Daiwen Kang; S. Trivikrama Rao; Rohit Mathur; Shaocai Yu; Tanya Otte; Ken Schere; Richard Wayland; Scott Jackson; Paula Davidson; Jeff McQueen; George Bridgers

2010-03-01T23:59:59.000Z

498

A Probabilistic Forecast Contest and the Difficulty in Assessing Short-Range Forecast Uncertainty  

Science Conference Proceedings (OSTI)

Results are presented from a probability-based weather forecast contest. Rather than evaluating the absolute errors of nonprobabilistic temperature and precipitation forecasts, as is common in other contests, this contest evaluated the skill of ...

Thomas M. Hamill; Daniel S. Wilks

1995-09-01T23:59:59.000Z

499

Calibrated Precipitation Forecasts for a Limited-Area Ensemble Forecast System Using Reforecasts  

Science Conference Proceedings (OSTI)

The calibration of numerical weather forecasts using reforecasts has been shown to increase the skill of weather predictions. Here, the precipitation forecasts from the Consortium for Small Scale Modeling Limited Area Ensemble Prediction System (...

Felix Fundel; Andre Walser; Mark A. Liniger; Christoph Frei; Christof Appenzeller

2010-01-01T23:59:59.000Z

500

Implications of Ensemble Quantitative Precipitation Forecast Errors on Distributed Streamflow Forecasting  

Science Conference Proceedings (OSTI)

Evaluating the propagation of errors associated with ensemble quantitative precipitation forecasts (QPFs) into the ensemble streamflow response is important to reduce uncertainty in operational flow forecasting. In this paper, a multifractal ...

Giuseppe Mascaro; Enrique R. Vivoni; Roberto Deidda

2010-02-01T23:59:59.000Z