Powered by Deep Web Technologies
Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Protection of Personally Identifiable Information (PII) UT-B Contracts Div Page 1 of 1  

E-Print Network [OSTI]

Protection of Personally Identifiable Information (PII) UT-B Contracts Div Oct 2010 Page 1 of 1 protect-pii-ext-oct10.docx PROTECTION OF PERSONALLY IDENTIFIABLE INFORMATION (PII) (Oct 2010) (a information about an individual (hereinafter referred to as "PII"), the Seller shall after receipt thereof

Pennycook, Steve

2

H-1 Nuclear Magnetic Resonance Metabolomics Analysis Identifies Novel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene'sEMSLonly)EnergyP.Oc t o b e r 2 0

3

BrainPrint : Identifying Subjects by their Brain Christian Wachinger1,2  

E-Print Network [OSTI]

BrainPrint : Identifying Subjects by their Brain Christian Wachinger1,2 , Polina Golland1 , Martin, Harvard Medical School Abstract. Introducing BrainPrint, a compact and discriminative rep- resentation of anatomical structures in the brain. BrainPrint captures shape information of an ensemble of cortical

Golland, Polina

4

Donoghue et al.1 MODEL FOR IDENTIFYING AND CHARACTERIZING OFFSHORE SAND  

E-Print Network [OSTI]

Donoghue et al.1 MODEL FOR IDENTIFYING AND CHARACTERIZING OFFSHORE SAND SOURCES USING of offshore sand bodies. Such sand bodies might be suitable as borrow sand for renourishment projects, an interpretation of the regional patterns in offshore sediment characteristics, and a knowledge of the regional sea

Donoghue, Joseph

5

RNAi-Based Screening Identifies Kinases Interfering with Dioxin-Mediated Up-Regulation of CYP1A1 Activity  

E-Print Network [OSTI]

RNAi-Based Screening Identifies Kinases Interfering with Dioxin-Mediated Up-Regulation of CYP1A1,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and involved in carcinogenesis and various physiological processes, including with Dioxin-Mediated Up-Regulation of CYP1A1 Activity. PLoS ONE 6(3): e18261. doi:10.1371/journal.pone.0018261

Paris-Sud XI, Université de

6

Call title: Energy Call Part 1 Call identifier: FP7-ENERGY-2010-1  

E-Print Network [OSTI]

Collaborative Project ENERGY.2010.2.5-1: Dry-cooling methods for multi-MW sized concentrated solar power plants Collaborative ProjectAREA ENERGY.2.5: CONCENTRATED SOLAR POWER ENERGY.2010.2.5-2: Main CSP components for high

Milano-Bicocca, UniversitĂ 

7

FOUR NEW T DWARFS IDENTIFIED IN Pan-STARRS 1 COMMISSIONING DATA  

SciTech Connect (OSTI)

A complete well-defined sample of ultracool dwarfs is one of the key science programs of the Pan-STARRS 1 optical survey telescope (PS1). Here we combine PS1 commissioning data with the Two Micron All Sky Survey (2MASS) to conduct a proper motion search (0.''1-2.''0 yr{sup -1}) for nearby T dwarfs, using optical+near-IR colors to select objects for spectroscopic follow-up. The addition of sensitive far-red optical imaging from PS1 enables discovery of nearby ultracool dwarfs that cannot be identified from 2MASS data alone. We have searched 3700 deg{sup 2} of PS1 y-band (0.95-1.03 {mu}m) data to y {approx} 19.5 mag (AB) and J {approx} 16.5 mag (Vega) and discovered four previously unknown bright T dwarfs. Three of the objects (with spectral types T1.5, T2, and T3.5) have photometric distances within 25 pc and were missed by previous 2MASS searches due to more restrictive color selection criteria. The fourth object (spectral type T4.5) is more distant than 25 pc and is only a single-band detection in 2MASS. We also examine the potential for completing the census of nearby ultracool objects with the PS1 3{pi} survey.

Deacon, Niall R.; Liu, Michael C.; Magnier, Eugene A.; Bowler, Brendan P.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Kaiser, N.; Morgan, J. S.; Sweeney, W. E.; Tonry, J. L.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Goldman, Bertrand [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Redstone, Joshua A. [Facebook, 1601 S. California Avenue, Palo Alto, CA 94304 (United States); Lupton, R. H.; Price, P. A., E-mail: ndeacon@ifa.hawaii.edu [Princeton University Observatory, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

2011-09-15T23:59:59.000Z

8

Identifying stellar streams in the 1st RAVE public data release  

E-Print Network [OSTI]

We searched for and detected stellar streams or moving groups in the solar neighbourhood, using the data provided by the 1st RAVE public data release. This analysis is based on distances to RAVE stars estimated from a color-magnitude relation that was calibrated on Hipparcos stars. Our final sample consists of 7015 stars selected to be within 500 pc of the Sun and to have distance errors better than 25%. Together with radial velocities from RAVE and proper motions from various data bases, there are estimates for all 6 phase-space coordinates of the stars in the sample. We characterize the orbits of these stars through suitable proxies for their angular momentum and eccentricity, and compare the observed distribution to the expectations from a smooth distribution. On this basis we identify at least four "phase space overdensities" of stars on very similar orbits in the Solar neighbourhood. We estimate the statistical significance of these overdensities by Monte Carlo simulations. Three of them have been identified previously: the Sirius and Hercules moving group and a stream found independently in 2006 by Arifyanto and Fuchs and Helmi et al. In addition, we have found a new stream candidate on a quite radial orbit, suggesting an origin external to the Milky Way's disk. Also, there is evidence for the Arcturus stream and the Hyades-Pleiades moving group in the sample. This analysis, using only a minute fraction of the final RAVE data set, shows the power of this experiment to probe the phase-space substructure of stars around the Sun.

Rainer Klement; Burkhard Fuchs; Hans-Walter Rix

2008-05-19T23:59:59.000Z

9

Modeling Complex Control Systems to Identify Remotely Accessible Devices Vulnerable to Cyber Attack1  

E-Print Network [OSTI]

and SCADA systems such as: "Which is the most vulnerable device of our power substation under an attack to remote power substations and control centers comes with the added risk of cyber attack by hackers andModeling Complex Control Systems to Identify Remotely Accessible Devices Vulnerable to Cyber Attack

Krings, Axel W.

10

Four recent National Academy studies of materials and manufacturing [1-4] have identified the recently established field of Integrated  

E-Print Network [OSTI]

in a computational materials design team project in MSc390 Materials Design. [1] NRC 2003, Materials Research to MeetFour recent National Academy studies of materials and manufacturing [1-4] have identified the recently established field of Integrated Computational Materials Engineering (ICME) as the greatest

Shull, Kenneth R.

11

A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1  

E-Print Network [OSTI]

) for 2 h, 5 ?M etoposide (ETP) for 2 h, 2 mM hydroxyurea (HU) for 12 h, 10 Gy of ionizing radiation (IR) 1 h before harvesting, 60 ?g/ml phleomycin (PHL) for 1 h, or 10 J/m2 of ultraviolet light (UV) 1 h before harvesting. (c) Antibodies against KAP1... were added to trypsin-digested peptides. The beads were extensively washed with 2 ml each of water, 5 M NaCl, 50% acetonitrile, and 5% formic acid in water, sequentially. Phosphopeptides were eluted using 200 ?l of a 1 mg/ml solution of Oxone...

Blasius, Melanie; Forment, Josep V; Thakkar, Neha; Wagner, Sebastian A; Choudhary, Chunaram; Jackson, Stephen P

2011-08-18T23:59:59.000Z

12

Using Archived AVL/APC Bus Data to Identify Spatial-Temporal1 Causes of Bus Bunching2  

E-Print Network [OSTI]

Using Archived AVL/APC Bus Data to Identify Spatial-Temporal1 Causes of Bus Bunching2 3 4 5 Wei passenger count (APC) technologies provide tremendous amounts of archived data for6 transit planners-year's worth of data for TriMet's Route 15. TriMet is the transit provider for the Portland,11 Oregon

Bertini, Robert L.

13

Hydrogen Bonds Involved in Binding the Qi-site Semiquinone in the bc1 Complex, Identified through Deuterium Exchange  

E-Print Network [OSTI]

Hydrogen Bonds Involved in Binding the Qi-site Semiquinone in the bc1 Complex, Identified through them. The strength of interactions indicates that the protons are involved in hydrogen bonds with SQ. The hyperfine cou- plings differ from values typical for in-plane hydrogen bonds previously observed in model

Crofts, Antony R.

14

Blau Syndrome polymorphisms in NOD2 identify nucleotide hydrolysis and Helical Domain 1 as signalling regulators  

E-Print Network [OSTI]

 under the control of an NF?B promoter and 160  phrG  encoding Renilla luciferase controlled by a constitutive promoter were kind gifts from Prof 161  Clare Bryant. 162  N F k B  reporter assays 163  HEK293T  cells in 96  well plates were transfected with: 2 ng pLuc, 1 ng phrG,  0.1 ng...  Mayle for assistance with reporter assays and Prof Clare Bryant for 201  helpful discussion and guidance. This work was funded by a Wellcome  Trust CDF (WT085090MA  ) to 202  TPM.  203     204  References  205   1   Miceli?Richard, C. et al. (2001) CARD...

Parkhouse, Rhiannon; Boyle, Joseph P.; Monie, Tom P.

2014-08-02T23:59:59.000Z

15

Call title: Call 6: FP7-INFRASTRUCTURES-2010-1 Call identifier: FP7-INFRASTRUCTURES-2010-1  

E-Print Network [OSTI]

-1.1.23: Research Infrastructures for offshore renewable energy devices: ocean-, current-, wave- and wind energy and Retirement in Europe. ° INFRA-2010-1.1.3: European Social Science Data Archives and remote access to Official Statistics. ° INFRA-2010-1.1.4: Archives for Historical research. ° INFRA-2010-1.1.5: Towards a European

Milano-Bicocca, UniversitĂ 

16

et al. (2008) identified several additional methylation sites on FOXO1 that ap-  

E-Print Network [OSTI]

, it remains to be deter- mined how methylation alters the activity and posttranslational regulation. In this light, methylation could, therefore, play a very general role in the regulation of FOXO1 activity serve as a link between aging and age-related diseases such as diabe- tes and cancer. FOXO dysregulation

Hertel, Klemens J.

17

Status Update on Action 1b: Analysis of WP&C Deficiencies Identified by the DNFSB  

Broader source: Energy.gov [DOE]

Slide Presentation by Stephen L. Domotor, Office of Analysis, Office of Health, Safety and Security. Office of Analysis, Office of Health, Safety and Security. Analysis of Integrated Safety Management at the Activity Level: Work Planning and Control-Final Report,, U.S. Department of Energy, August 1, 2013.

18

Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1  

SciTech Connect (OSTI)

The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

Battista, John R

2010-02-22T23:59:59.000Z

19

Action 1b: Analysis of WP&C Deficiencies Identified by the DNFSB  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAbout -------------------------

20

Executive Summary of the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 19902009 1 n emissions inventory that identifies and quantifies a country's primary anthropogenic1  

E-Print Network [OSTI]

Executive Summary of the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990­2009 1 n emissions inventory that identifies and quantifies a country's primary anthropogenic1 In 1992, the United climate change. This inventory adheres to both (1) a comprehensive and detailed set of methodologies

Little, John B.

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solutions to Test 1 Review Problems 1. Here are two sound waves. Identify which is periodic. For the periodic wave, sketch a  

E-Print Network [OSTI]

Solutions to Test 1 Review Problems 1. Here are two sound waves. Identify which is periodic. Sound wave = You hear a sound that fades in, then gets quiet, then gets louder, and inally fades out. The width of the sound wave corresponds to intensity. (b) Suppose a 1000 Hz tone and a 1008 Hz tone

Hall, Rachel W.

22

Executive Summary An emissions inventory that identifies and quantifies a country's primary anthropogenic1 sources and sinks of  

E-Print Network [OSTI]

Executive Summary An emissions inventory that identifies and quantifies a country's primary emission sources and greenhouse gases to climate change. In 1992, the United States signed and ratified and make available...national inventories of anthropogenic emissions by sources and removals by sinks

Little, John B.

23

Fractal Analysis: An Objective Method for Identifying Atypical Nuclei in Dysplastic Lesions of the Cervix Uteri1  

E-Print Network [OSTI]

Fractal Analysis: An Objective Method for Identifying Atypical Nuclei in Dysplastic Lesions, Vienna, Austria Received October 15, 1998 Objectives. Fractal geometry is a tool used to characterize.g., the human renal artery tree), but also to derive parameters such as the fractal dimension in order

Svozil, Karl

24

Network analysis identifies a putative role for the PPAR and type 1 interferon pathways in glucocorticoid actions in asthmatics  

E-Print Network [OSTI]

CD163 CCDC88A SIRPB1 DOCK11 VIM GMFG S100A4 AXL COLEC12KLF9 SAT1 EEF1G C1orf103 VIM PHACTR3 SULT1E1 DDIT4 FAM107A

2012-01-01T23:59:59.000Z

25

Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes the program to identify information classified under the Atomic Energy Act [Restricted Data (RD), Formerly Restricted Data (FRD), and Transclassified Foreign Nuclear Information (TFNI)] or Executive Order (E.O.) 13526 [National Security Information (NSI)], so that it can be protected against unauthorized dissemination. Cancels DOE O 475.2 and DOE M 475.1-1B.

2011-02-01T23:59:59.000Z

26

Digital Object Identifier (DOI) 10.1007/s10107-005-0685-1 Math. Program., Ser. B 107, 213230 (2006)  

E-Print Network [OSTI]

of the constraints. The main advance of the paper is to present two sparsity preserving ways for efficient) with an uncertain parameter vector p Rnp , and smooth real valued functions f0, f1, . . . , fnf , g1, . . . , gnx constraints equals the dimension of x.We assume the jacobian g x to be invertible everywhere, so that we can

2006-01-01T23:59:59.000Z

27

Are Boltzmann Plots of Hydrogen Balmer lines a tool for identifying a subclass of S1 AGN?  

E-Print Network [OSTI]

It is becoming clear that we can define two different types of nearby AGN belonging to the Seyfert 1 class (S1), on the basis of the match of the intensities of their Broad Balmer Lines (BBL) with the Boltzmann Plots (BP). These two types of S1 galaxies, that we call BP-S1 and NoBP-S1, are characterized, in first approximation, by Broad Line Regions (BLR) with different structural and physical properties. In this communication, we show that these features can be well pointed out by a multi-wavelength analysis of the continuum and of the broad recombination Hydrogen lines, that we carry out on a sample of objects detected at optical and X-ray frequencies. The investigation is addressed to verify whether BP-S1 are the ideal candidates for the study of the kinematical and structural properties of the BLR, in order to derive reliable estimates of the mass of their central engine and to constrain the properties of their nuclear continuum spectrum.

Rafanelli, P; Cracco, V; Di Mille, F; Ili?, D; La Mura, G; Popovi?, L ?

2013-01-01T23:59:59.000Z

28

Identifying silicate-absorbed ULIRGs at z~1-2 in the Bootes Field using Spitzer/IRS  

E-Print Network [OSTI]

Using the 16$\\mu$m peakup imager on the Infrared Spectrograph (IRS) on Spitzer, we present a serendipitous survey of 0.0392 deg$^{2}$ within the area of the NOAO Deep Wide Field Survey in Bootes. Combining our results with the available Multiband Imaging Photometer for Spitzer (MIPS) 24$\\mu$m survey of this area, we produce a catalog of 150 16$\\mu$m sources brighter than 0.18 mJy (3$\\sigma$) for which we derive measures or limits on the 16/24$\\mu$m colors. Such colors are especially useful in determining redshifts for sources whose mid infrared spectra contain strong emission or absorption features that characterize these colors as a function of redshift. We find that the 9.7$\\mu$m silicate absorption feature in Ultraluminous Infrared Galaxies (ULIRGs) results in sources brighter at 16$\\mu$m than at 24$\\mu$m at z $\\sim$ 1--1.8 by at least 20%. With a threshold flux ratio of 1.2, restricting our analysis to $>5\\sigma$ detections at 16$\\mu$m, and using a $3\\sigma$ limit on 24$\\mu$m non-detections, the number of silicate-absorbed ULIRG candidates is 36. This defines a strong upper limit of $\\sim$920 sources deg$^{-2}$, on the population of silicate-absorbed ULIRGs at z $\\sim$ 1--1.8. This source count is about half of the total number of sources predicted at z $\\sim$ 1--2 by various phenomenological models. We note that the high 16/24$\\mu$m colors measured cannot be reproduced by any of the mid-IR spectral energy distributions assumed by these models, which points to the strong limitations currently affecting our phenomenological and theoretical understanding of infrared galaxy evolution.

M. M. Kasliwal; V. Charmandaris; D. Weedman; J. R. Houck; E. Le Floc'h; S. J. U. Higdon; L. Armus; H. I. Teplitz

2005-09-20T23:59:59.000Z

29

Manual for Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Manual provides detailed requirements to supplement DOE O 475.2, Identifying Classified Information, dated 8/28/07. Cancels DOE M 475.1-1A; canceled by DOE O 475.2A

2007-08-28T23:59:59.000Z

30

Mutant HNF-1{alpha} and mutant HNF-1{beta} identified in MODY3 and MODY5 downregulate DPP-IV gene expression in Caco-2 cells  

SciTech Connect (OSTI)

Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1{alpha} and HNF-1{beta}, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1{alpha} and mutant HNF-1{beta} in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1{alpha} and 13 mutant HNF-1{alpha}, as well as wild HNF-1{beta} and 2 mutant HNF-1{beta}, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1{alpha} and wild HNF-1{beta} significantly transactivated DPP-IV promoter, but mutant HNF-1{alpha} and mutant HNF-1{beta} exhibited low transactivation activity. Moreover, to study whether mutant HNF-1{alpha} and mutant HNF-1{beta} change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1{alpha} or wild HNF-1{beta}, or else respective dominant-negative mutant HNF-1{alpha}T539fsdelC or dominant-negative mutant HNF-1{beta}R177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1{alpha} cells and wild HNF-1{beta} cells, whereas they decreased in HNF-1{alpha}T539fsdelC cells and HNF-1{beta}R177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1{alpha} and wild HNF-1{beta} have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1{alpha} and mutant HNF-1{beta} attenuate the stimulatory effect.

Gu Ning [Laboratory of Metabolism, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Laboratory of Neurochemistry, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Adachi, Tetsuya [Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto (Japan); Matsunaga, Tetsuro [Laboratory of Metabolism, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Takeda, Jun [Department of Endocrinology Diabetes and Rheumatology, Graduate School of Medicine, Gifu University School of Medicine, Gifu (Japan); Tsujimoto, Gozoh [Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto (Japan); Ishihara, Akihiko [Laboratory of Neurochemistry, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Yasuda, Koichiro [Laboratory of Metabolism, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Diabetic Center, Tsunashimakai-Kosei Hospital, Himeji (Japan); Tsuda, Kinsuke [Laboratory of Metabolism, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan)]. E-mail: jinkan@tom.life.h.kyoto-u.ac.jp

2006-08-04T23:59:59.000Z

31

Metal alloy identifier  

DOE Patents [OSTI]

To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

1987-01-01T23:59:59.000Z

32

Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the program to identify information classified under the Atomic Energy Act [Restricted Data (RD), Formerly Restricted Data (FRD), and Transclassified Foreign Nuclear Information (TFNI)] or Executive Order (E.O.) 13526 [National Security Information (NSI)], so that it can be protected against unauthorized dissemination.

2014-10-03T23:59:59.000Z

33

Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes the program to identify information classified under the Atomic Energy Act [Restricted Data (RD), Formerly Restricted Data (FRD), and Transclassified Foreign Nuclear Information (TFNI)]or Executive Order (E.O.) 13526 [National Security Information (NSI)], so that it can be protected against unauthorized dissemination.

2014-06-03T23:59:59.000Z

34

Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes the program to identify information classified under the Atomic Energy Act [Restricted Data (RD) and Formerly Restricted Data (FRD)] or Executive Order 12958, as amended [National Security Information (NSI)], so that it can be protected against unauthorized dissemination. Canceled by DOE O 475.2

2007-08-28T23:59:59.000Z

35

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 The Utilization of Satellite Images to Identify  

E-Print Network [OSTI]

The Utilization of Satellite Images to Identify Trees Endangering Transmission Lines Y. Kobayashi, G. G. Karady, G to determine tree interference with overhead transmission lines. Index Terms-- satellite images, tree trimming a transmission lines may inter- fere with circuit operation and may produce short cir- cuits. As a typical

36

Genome-scale RNAi on living-cell microarrays identifies novel regulators of Drosophila melanogaster TORC1–S6K pathway signaling  

E-Print Network [OSTI]

The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls cell growth in response to nutrient availability and growth factors. TORC1 signaling is hyperactive in cancer, and regulators of TORC1 signaling ...

Lindquist, Robert A.

37

Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides requirements for managing the Department of Energy (DOE) classification and declassification program, including details for classifying and declassifying information, documents, and material. This Manual also supplements DOE O 200.1, INFORMATION MANAGEMENT PROGRAM, which combines broad information management topics under a single Order. Specific requirements for each topic are issued in separate Manuals. Cancels DOE M 475.1-1. Canceled by DOE M 475.1-1B

2001-02-26T23:59:59.000Z

38

Identifying Risk Groups Associated with Colorectal Cancer  

E-Print Network [OSTI]

Identifying Risk Groups Associated with Colorectal Cancer Jie Chen1 , Hongxing He1 , Huidong Jin1 of identifying and describing risk groups for colorectal cancer (CRC) from population based administrative health are applied to the colorectal cancer patients' profiles in contrast to background pa- tients' profiles

Jin, Huidong "Warren"

39

Identifying Effective School Principals  

E-Print Network [OSTI]

our calculated adjusted gain scores. 6 Table 3: Summary of Adjusted Gains By Year 1996-2005 Year Total Campuses with Adjusted Gains Mean Std. Dev. Min Max All Years 54,628 1.750 11.489 -117.664 116.212 1996 5,722 1.154 11.740 -111.978 88...

Fernandez, Kandyce; Flores, Santa; Huang, Emily; Igwe, Carolyn; McDonald, Leslie; Stroud, Ryan; Willis, Rebecca; Dugat, Amber

2007-01-01T23:59:59.000Z

40

Identifying and Protecting Official Use Only Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes a program within DOE and NNSA to identify certain unclassified controlled information as Official Use Only (OUO) and to identify, mark, and protect documents containing such information. Chg 1 dated 1-12-11, cancels DOE O 471.3.

2003-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

TOWARD IDENTIFYING THE UNASSOCIATED GAMMA-RAY SOURCE 1FGL J1311.7-3429 WITH X-RAY AND OPTICAL OBSERVATIONS  

SciTech Connect (OSTI)

We present deep optical and X-ray follow-up observations of the bright unassociated Fermi-LAT gamma-ray source 1FGL J1311.7-3429. The source was already known as an unidentified EGRET source (3EG J1314-3431, EGR J1314-3417), hence its nature has remained uncertain for the past two decades. For the putative counterpart, we detected a quasi-sinusoidal optical modulation of {Delta}m {approx} 2 mag with a period of {approx_equal}1.5 hr in the Rc, r', and g' bands. Moreover, we found that the amplitude of the modulation and peak intensity changed by {approx}>1 mag and {approx}0.5 mag, respectively, over our total six nights of observations from 2012 March to May. Combined with Swift UVOT data, the optical-UV spectrum is consistent with a blackbody temperature, kT {approx_equal} 1 eV and the emission volume radius R{sub bb} {approx_equal} 1.5 Multiplication-Sign 10{sup 4} d{sub kpc} km (d{sub kpc} is the distance to the source in units of 1 kpc). In contrast, deep Suzaku observations conducted in 2009 and 2011 revealed strong X-ray flares with a light curve characterized with a power spectrum density of P(f) {proportional_to} f {sup -2.0{+-}0.4}, but the folded X-ray light curves suggest an orbital modulation also in X-rays. Together with the non-detection of a radio counterpart, and significant curved spectrum and non-detection of variability in gamma-rays, the source may be the second 'radio-quiet' gamma-ray emitting millisecond pulsar candidate after 1FGL J2339.7-0531, although the origin of flaring X-ray and optical variability remains an open question.

Kataoka, J.; Takahashi, Y.; Maeda, K. [Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Yatsu, Y.; Kawai, N. [Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro, Tokyo 152-8551 (Japan); Urata, Y.; Tsai, A. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Cheung, C. C. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Totani, T.; Makiya, R. [Department of Astronomy, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Hanayama, H.; Miyaji, T., E-mail: kataoka.jun@waseda.jp [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa, 907-0024 (Japan)

2012-10-01T23:59:59.000Z

42

Here is a summary of the project guidelines and how points will be assigned. (1) Operational Definition. Identify a health behavior that you would like to  

E-Print Network [OSTI]

Here is a summary of the project guidelines and how points will be assigned. (1) Operational and veggies, decrease smoking, flossing, etc.). You will need to be able to measure this behavior, therefore to support the new target behavior during the intervention phase. (25 pts) (4) BASELINE MEASUREMENT PHASE

Meagher, Mary

43

Geographic information system for Long Island: An epidemiologic systems approach to identify environmental breast cancer risks on Long Island. Phase 1  

SciTech Connect (OSTI)

BNL is developing and implementing the project ``Geographic Information System (GIS) for Long Island`` to address the potential relationship of environmental and occupational exposures to breast cancer etiology on Long Island. The project is divided into two major phases: The four month-feasibility project (Phase 1), and the major development and implementation project (Phase 2). This report summarizes the work completed in the four month Phase 1 Project, ``Feasibility of a Geographic Information System for Long Island.`` It provides the baseline information needed to further define and prioritize the scope of work for subsequent tasks. Phase 2 will build upon this foundation to develop an operational GIS for the Long Island Breast Cancer Study Project (LIBCSP).

Barancik, J.I.; Kramer, C.F.; Thode, H.C. Jr.

1995-12-01T23:59:59.000Z

44

The Structure and Function of an Arabinan-specific [alpha]-1,2-Arabinofuranosidase Identified from Screening the Activities of Bacterial GH43 Glycoside Hydrolases  

SciTech Connect (OSTI)

Reflecting the diverse chemistry of plant cell walls, microorganisms that degrade these composite structures synthesize an array of glycoside hydrolases. These enzymes are organized into sequence-, mechanism-, and structure-based families. Genomic data have shown that several organisms that degrade the plant cell wall contain a large number of genes encoding family 43 (GH43) glycoside hydrolases. Here we report the biochemical properties of the GH43 enzymes of a saprophytic soil bacterium, Cellvibrio japonicus, and a human colonic symbiont, Bacteroides thetaiotaomicron. The data show that C. japonicus uses predominantly exo-acting enzymes to degrade arabinan into arabinose, whereas B. thetaiotaomicron deploys a combination of endo- and side chain-cleaving glycoside hydrolases. Both organisms, however, utilize an arabinan-specific {alpha}-1,2-arabinofuranosidase in the degradative process, an activity that has not previously been reported. The enzyme can cleave {alpha}-1,2-arabinofuranose decorations in single or double substitutions, the latter being recalcitrant to the action of other arabinofuranosidases. The crystal structure of the C. japonicus arabinan-specific {alpha}-1,2-arabinofuranosidase, CjAbf43A, displays a five-bladed {beta}-propeller fold. The specificity of the enzyme for arabinan is conferred by a surface cleft that is complementary to the helical backbone of the polysaccharide. The specificity of CjAbf43A for {alpha}-1,2-L-arabinofuranose side chains is conferred by a polar residue that orientates the arabinan backbone such that O2 arabinose decorations are directed into the active site pocket. A shelflike structure adjacent to the active site pocket accommodates O3 arabinose side chains, explaining how the enzyme can target O2 linkages that are components of single or double substitutions.

Cartmell, Alan; McKee, Lauren S.; Pena, Maria J.; Larsbrink, Johan; Brumer, Harry; Kaneko, Satoshi; Ichinose, Hitomi; Lewis, Richard J.; Vikso-Nielsen, Anders; Gilbert, Harry; Marles-Wright, Jon (Newcastle); (National Food Research Institute); (Novozymes A/S); (RITS); (Georgia)

2012-03-26T23:59:59.000Z

45

LHS 2803B: A VERY WIDE MID-T DWARF COMPANION TO AN OLD M DWARF IDENTIFIED FROM PAN-STARRS1  

SciTech Connect (OSTI)

We report the discovery of a wide ({approx}1400 AU projected separation), common proper motion companion to the nearby M dwarf LHS 2803 (PSO J207.0300-13.7422). This object was discovered during our census of the local T dwarf population using Pan-STARRS1 and Two Micron All Sky Survey data. Using the Infrared Telescope Facility/SpeX near-infrared spectroscopy, we classify the secondary to be spectral type T5.5. University of Hawaii 2.2 m/SuperNova Integral Field Spectrograph optical spectroscopy indicates that the primary has a spectral type of M4.5, with approximately solar metallicity and no measurable H{alpha} emission. We use this lack of activity to set a lower age limit for the system of 3.5 Gyr. Using a comparison with chance alignments of brown dwarfs and nearby stars, we conclude that the two objects are unlikely to be a chance association. The primary's photometric distance of 21 pc and its proper motion implies thin disk kinematics. Based on these kinematics and its metallicity, we set an upper age limit for the system of 10 Gyr. Evolutionary model calculations suggest that the secondary has a mass of 72{+-}{sup 4}{sub 7} M{sub Jup}, temperature of 1120 {+-} 80 K, and log g = 5.4 {+-} 0.1 dex. Model atmosphere fitting to the near-IR spectrum gives similar physical parameters of 1100 K and log g = 5.0.

Deacon, Niall R. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Liu, Michael C.; Magnier, Eugene A.; Bowler, Brendan P.; Mann, Andrew W.; Burgett, William S.; Chambers, Ken C.; Kaiser, Nick; Kudritzki, Rolf-Peter; Morgan, Jeff S.; Tonry, John L.; Wainscoat, Richard J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Redstone, Joshua A. [Facebook, 1601 Willow Road, Menlo Park, CA 94025 (United States); Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 North Aohoku Place, Hilo, HI 96720 (United States); Price, Paul A., E-mail: deacon@mpia.de [Princeton University Observatory, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

2012-09-20T23:59:59.000Z

46

Guide to Identifying Official Use Only Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide supplements information contained in Department of Energy (DOE) O 471.3, Identifying and Protecting Official Use Only Information, dated 4-9-03, and DOE M 471.3-1, Manual for Identifying and Protecting Official Use Only Information, dated 4-9-03.

2003-04-09T23:59:59.000Z

47

CCPPolicyBriefing Identifying Fuel  

E-Print Network [OSTI]

CCPPolicyBriefing June 2007 Identifying Fuel Poverty Using Objective and Subjective Measures W: www.ccp.uea.ac.uk T: +44 (0)1603 593715 A: UEA, Norwich, NR4 7TJ Identifying Fuel Poverty Using Objective and Subjective Measures BACKGROUND · The government defines fuel poverty as occurring when a household needs

Feigon, Brooke

48

Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease  

SciTech Connect (OSTI)

Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.

Yedidi, Ravikiran S. [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States)] [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Muhuhi, Joseck M. [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States)] [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); Liu, Zhigang [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States)] [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Bencze, Krisztina Z. [Department of Chemistry, Fort Hays State University, Hays, KS 67601 (United States)] [Department of Chemistry, Fort Hays State University, Hays, KS 67601 (United States); Koupparis, Kyriacos [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States) [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); O’Connor, Carrie E.; Kovari, Iulia A. [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States)] [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Spaller, Mark R. [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States)] [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); Kovari, Ladislau C., E-mail: kovari@med.wayne.edu [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States)

2013-09-06T23:59:59.000Z

49

Identifying Microbially Influenced Corrosion in Paper  

E-Print Network [OSTI]

1 Identifying Microbially Influenced Corrosion in Paper Machines and elsewhere Sandy Sharp, SharpConsultant, Columbia, MD, USA Symposium on Corrosion in Pulp and Paper Mills and Biorefineries, Georgia Tech., November (floating in solution) do not cause corrosion, but Sessile bacteria (attached to metal surfaces) can

Das, Suman

50

3740SPACE REPURPOSING PROCEDURE Client identifies  

E-Print Network [OSTI]

Page 1 3740SPACE REPURPOSING PROCEDURE Client identifies space repurposing requirement Client completes space request form Submit space request form to Space Management Office Space Management Office acknowledge reciept Is space form completed accurately Space Management Office conduct space analysis Does

51

Call Identifier: CIP-IEE-2009  

E-Print Network [OSTI]

://ec.europa.eu/intelligentenergy #12;Intelligent Energy ­ Europe Call for Proposals 2009 2/17 CALL FOR PROPOSALS 2009 FOR ACTIONS UNDER THE PROGRAMME "INTELLIGENT ENERGY ­ EUROPE" Call Identifier: CIP-IEE-2009 TABLE OF CONTENTS 1. THE INTELLIGENT ENERGY ­ EUROPE PROGRAMME 3 2. BUDGET, FUNDING RATES AND ELIGIBILITY OF COSTS 5 3. ELIGIBILITY CRITERIA 5

De Cindio, Fiorella

52

E-Print Network 3.0 - analysis identifies driver Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results for: analysis identifies driver Page: << < 1 2 3 4 5 > >> 1 Improving the Reliability of Commodity Operating Summary: 12;Summary I identified properties of drivers...

53

E-Print Network 3.0 - absence epilepsy identifies Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

epilepsy identifies Search Powered by Explorit Topic List Advanced Search Sample search results for: absence epilepsy identifies Page: << < 1 2 3 4 5 > >> 1 BOAZ UNIVERSITY TAM...

54

Identify Institutional Change Tools for Sustainability  

Broader source: Energy.gov [DOE]

After identifying institutional change rules and roles, a Federal agency should identify the tools that create the infrastructural context within which it can achieve its sustainability goals.

55

Identify Potential HITs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy Media ContactExchangeforIdentify

56

Notice of Intent to Revise DOE O 475.2A, Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The revision will incorporate changes that were identified during the 1-year review after initial issuance

2014-03-06T23:59:59.000Z

57

Identifying and Protecting Official Use Only Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish a program within the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), to identify certain unclassified controlled information as Official Use Only (OUO) and to identify, mark, and protect documents containing such information.

2003-04-09T23:59:59.000Z

58

Method of identifying plant pathogen tolerance  

DOE Patents [OSTI]

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

1997-10-07T23:59:59.000Z

59

Manual for Identifying and Protecting Official Use Only Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Manual provides detailed requirements to supplement DOE O 471.3, Identifying and Protecting Official Use Only Information, dated 4-9-03. Admin Chg dated 1-13-11.

2003-04-09T23:59:59.000Z

60

High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis  

E-Print Network [OSTI]

Ippoliti7, Laimas Jonaitis50, Luke Jostins1, Tom H Karlsen49,Gediminas Kiudelis50, Limas Kupcinskas50, Subra Kugathasan51, Anna Latiano52, Debby Laukens53, Ian C Lawrance54, James C Lee10, Charlie W Lees55, Paolo Lionetti96, Jimmy Z Liu1, Edouard Louis18...

Goyette, Philippe; Boucher, Gabrielle; Dermot, Mallon; Ellinghaus, Eva; Jostins, Luke; Huang, Hailiang; Ripke, Stephan; Gusareva, Elena S; Annese, Vito; Hauser, Stephen L.; Oksenberg, Jorge R.; Thomsen, Ingo; Leslie, Stephen; International Inflammatory Bowel Disease Genetics Consortium; Daly, Mark J.; Van Steen, Kristel; Duerr, Richard H.; Barrett, Jeffrey C.; McGovern, Dermot P. B.; Schumm, L. Philip; Traherne, James A.; Carrington, Mary N.; Kosmoliaptsis, Vasilis; Karlsen, Tom H.; Franke, Andre; Rioux, John D.

2015-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solid tags for identifying failed reactor components  

DOE Patents [OSTI]

A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

Bunch, Wilbur L. (Richland, WA); Schenter, Robert E. (Richland, WA)

1987-01-01T23:59:59.000Z

62

Identifying Wind and Solar Ramping Events: Preprint  

SciTech Connect (OSTI)

Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in power system operations. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here the Swinging Door Algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as the ability to quantify the value of probabilistic approaches for future use in practice.

Florita, A.; Hodge, B. M.; Orwig, K.

2013-01-01T23:59:59.000Z

63

Sampling Plan: Engineering Sampling Plan to Identify Areas for Remediation in the Southeast Drainage (Vicinity Properties DA-4 and DOC-7) Addendum 1. DOE/OR/21548-582  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga Site CertificationSalmon,

64

Lithium Ethylene Dicarbonate Identified as the Primary Product ofChemical and Electrochemical Reduction of EC in EC:EMC/1.2M LiPF6Electrolyte  

SciTech Connect (OSTI)

Lithium ethylene dicarbonate (CH2OCO2Li)2 was chemically synthesized and its Fourier Transform Infrared (FTIR) spectrum was obtained and compared with that of surface films formed on Ni after cyclic voltammetry (CV) in 1.2M lithium hexafluorophosphate(LiPF6)/ethylene carbonate (EC): ethyl methyl carbonate (EMC) (3:7, w/w) electrolyte and on metallic lithium cleaved in-situ in the same electrolyte. By comparison of IR experimental spectra with that of the synthesized compound, we established that the title compound is the predominant surface species in both instances. Detailed analysis of the IR spectrum utilizing quantum chemical (Hartree-Fock) calculations indicates that intermolecular association through O...Li...O interactions is very important in this compound. It is likely that the title compound in passivation layer has a highly associated structure, but the exact intermolecular conformation could not be established based on analysis of the IR spectrum.

Zhuang, Guorong V.; Xu, Kang; Yang, Hui; Jow, T. Richard; RossJr., Philip N.

2005-05-11T23:59:59.000Z

65

Identifying Best Practices in Hydraulic Fracturing Using  

E-Print Network [OSTI]

Medina and Whirlpool sands of southwest New York State are considered to be tight gas sands. Most wells modifications, can be used to identify best practices from any oil and gas database. The methodology that has

Mohaghegh, Shahab

66

National Renewable Energy Laboratory Report Identifies Research...  

Broader source: Energy.gov (indexed) [DOE]

2014 - 12:25pm Addthis A new report by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) identifies research opportunities to improve the ways in which...

67

Identifying chromatin interactions at high spatial resolution  

E-Print Network [OSTI]

This thesis presents two computational approaches for identifying chromatin interactions at high spatial resolution from ChIA-PET data. We introduce SPROUT which is a hierarchical probabilistic model that discovers high ...

Reeder, Christopher Campbell

2014-01-01T23:59:59.000Z

68

E-Print Network 3.0 - analysis identifies susceptibility Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topic List Advanced Search Sample search results for: analysis identifies susceptibility Page: << < 1 2 3 4 5 > >> 1 Biodiversity and Conservation 10: 14191472, 2001. 2001 Kluwer...

69

Identify Institutional Change Roles for Sustainability  

Broader source: Energy.gov [DOE]

To achieve the sustainability goals you've identified, take into account the network of roles essential to make or maintain the desired changes. As a rule of thumb, it may help to think about what roles are necessary for determining what changes to make, implementing those changes, and supporting or abiding by those changes. One place to start is by identifying leaders in your organization who have the authority, resources, and influence to make change happen. Those leadership roles typically include: Senior management Policy and technology officers Facilities and operations managers.

70

Part 1 Identify yourself (mandatory) Student Number: _______________________Queen's Email: ________________________________________  

E-Print Network [OSTI]

First Name Initial Part 2 ­ Setup Pre-Authorized Payment Plan (PPL) · This method of Payment: ________________________________________________________ Pre-Authorized Payment Plan (PPL) (SGS Students Only) The personal information on this form

Ellis, Randy

71

Part 1 Identify yourself (mandatory) Student Number: _______________________Queen's Email: ________________________________________  

E-Print Network [OSTI]

for the PPL and deposits for awards will use the same bank account). · Any changes to payroll banking

Abolmaesumi, Purang

72

IDENTIFYING ACTIVITY? 1. First-Order Conditions for Composite ...  

E-Print Network [OSTI]

Dec 6, 2010 ... the more general setting of composite nonsmooth minimization, in which ... In this work we study “active set” ideas in this composite framework.

2010-12-06T23:59:59.000Z

73

3739SPACE ALLOCATION/RE-ALLOCATION PROCEDURE Client identifies  

E-Print Network [OSTI]

Page 1 3739SPACE ALLOCATION/RE-ALLOCATION PROCEDURE Client identifies space requirement Client completes space request form Submit space request form to Space Management Office Space Management Office acknowledge receipt Is space form completed accurately Is there vacant space Space Management Office conduct

74

Embedded sensor having an identifiable orientation  

DOE Patents [OSTI]

An apparatus and method is described wherein a sensor, such as a mechanical strain sensor, embedded in a fiber core, is "flagged" to identify a preferred orientation of the sensor. The identifying "flag" is a composite material, comprising a plurality of non-woven filaments distributed in a resin matrix, forming a small planar tab. The fiber is first subjected to a stimulus to identify the orientation providing the desired signal response, and then sandwiched between first and second layers of the composite material. The fiber, and therefore, the sensor orientation is thereby captured and fixed in place. The process for achieving the oriented fiber includes, after identifying the fiber orientation, carefully laying the oriented fiber onto the first layer of composite, moderately heating the assembled layer for a short period in order to bring the composite resin to a "tacky" state, heating the second composite layer as the first, and assembling the two layers together such that they merge to form a single consolidated block. The consolidated block achieving a roughly uniform distribution of composite filaments near the embedded fiber such that excess resin is prevented from "pooling" around the periphery of the fiber.

Bennett, Thomas E. (31 Portola Ct., Danville, CA 94506); Nelson, Drew V. (840 Cabot Ct., San Carlos, CA 94070)

2002-01-01T23:59:59.000Z

75

Identify the Problem: Reduce Waste By  

E-Print Network [OSTI]

aims to reduce waste by banning plastic bags in light of the California state law AB 2449 which Primary energy Plastic uses 23% less Paper uses 80% less Solid waste Plastic contributes 76% less AbioticIdentify the Problem: Reduce Waste By Banning Plastic Bag Use Define Goal: Is the ban the most

Iglesia, Enrique

76

Guidelines for identifying suspect/counterfeit material  

SciTech Connect (OSTI)

These guidelines are intended to assist users of products in identifying: substandard, misrepresented, or fraudulently marked items. The guidelines provide information about such topics as: precautions, inspection and testing, dispositioning identified items, installed inspection and reporting suspect/counterfeit materials. These guidelines apply to users who are developing procurement documents, product acceptance/verification methods, company procedures, work instructions, etc. The intent of these SM guidelines in relation to the Quality Assurance Program Description (QAPD) and implementing company Management Control Procedures is not to substitute or replace existing requirements, as defined in either the QAPD or company implementing instructions (Management Control Procedures). Instead, the guidelines are intended to provide a consolidated source of information addressing the issue of Suspect/Counterfeit materials. These guidelines provide an extensive suspect component listing and suspect indications listing. Users can quickly check their suspect items against the list of manufacturers products (i.e., type, LD. number, and nameplate information) by consulting either of these listings.

NONE

1995-09-01T23:59:59.000Z

77

Consistent nonlinear dynamics: identifying model inadequacy  

E-Print Network [OSTI]

Empirical modelling often aims for the simplest model consistent with the data. A new technique is presented which quantifies the consistency of the model dynamics as a function of location in state space. As is well-known, traditional statistics of nonlinear models like root-mean-square (RMS) forecast error can prove misleading. Testing consistency is shown to overcome some of the deficiencies of RMS error, both within the perfect model scenario and when applied to data from several physical systems using previously published models. In particular, testing for consistent nonlinear dynamics provides insight towards (i) identifying when a delay reconstruction fails to be an embedding, (ii) allowing state dependent model selection and (iii) optimising local neighbourhood size. It also provides a more relevant (state dependent) threshold for identifying false nearest neighbours.

Patrick E. McSharry; Leonard A. Smith

2004-03-09T23:59:59.000Z

78

Diffraction gratings used as identifying markers  

DOE Patents [OSTI]

A finely detailed diffraction grating is applied to an object as an identifier or tag which is unambiguous, difficult to duplicate, or remove and transfer to another item, and can be read and compared with prior readings with relative ease. The exact pattern of the diffraction grating is mapped by diffraction moire techniques and recorded for comparison with future readings of the same grating. 7 figures.

Deason, V.A.; Ward, M.B.

1991-03-26T23:59:59.000Z

79

Interrogator system for identifying electrical circuits  

DOE Patents [OSTI]

A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples.

Jatko, William B. (10601 Rivermist La., Knoxville, TN 37922); McNeilly, David R. (Rte. 12, Box 538, Maryville, TN 37801)

1988-01-01T23:59:59.000Z

80

Interrogator system for identifying electrical circuits  

DOE Patents [OSTI]

A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads is disclosed. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples. 6 figs.

Jatko, W.B.; McNeilly, D.R.

1988-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Identifying Energy Systems that Maximize Cogeneration Savings  

E-Print Network [OSTI]

the method of Lagrange mult1pl1ers: 120 ESL-IE-88-09-24 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 aV/akW, + ~at1/akW1 ~ 0 (4) aO p/HR p1 a01 /HR c1 (11 ) aV/ aO p 1 + ~1 at2/aOp1 o (5...Igure 5 Indicates t e incremental cogeneratIon power cost trends for dependent cogeneratIon systems. for these systems the maxlmum benef1ts are achleved at condlt1on (11). The process heat to power ratio 1s constant, and thus, sIte cogenerat1on...

Ahner, D. J.

82

Identifying Nuclear Materials Using Tagged Muons  

E-Print Network [OSTI]

Experimental results from a new technique that uses neutrons generated by stopped cosmic-ray muons to identify nuclear materials are described. The neutrons are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of uranium objects tagged using muon tracking detectors located above or to the side of the objects. The specificity of the technique to significant quantities of nuclear material along with its insensitivity to spatial details may provide a new method for the task of warhead verification for future arms reduction treaties.

C. L. Morris; J. D. Bacon; K. Borodzin; J. M. Durham; J. M. Fabritius II; E. Guardincerri; A. Hecht; E. C. Milner; H. Miyadera; J. O. Perry; D. Poulson

2014-06-04T23:59:59.000Z

83

Identifying seasonal stars in Kaurna astronomical traditions  

E-Print Network [OSTI]

Early ethnographers and missionaries recorded Aboriginal languages and oral traditions across Australia. Their general lack of astronomical training resulted in misidentifications, transcription errors, and omissions in these records. Additionally, many of these early records are fragmented. In western Victoria and southeast South Australia, many astronomical traditions were recorded, but curiously, some of the brightest stars in the sky were omitted. Scholars claimed these stars did not feature in Aboriginal traditions. This under-representation continues to be repeated in the literature, but current research shows that some of these stars may in fact feature in Aboriginal traditions and could be seasonal calendar markers. This paper uses established techniques in cultural astronomy to identify seasonal stars in the traditions of the Kaurna Aboriginal people of the Adelaide Plains, South Australia.

Hamacher, Duane W

2015-01-01T23:59:59.000Z

84

Sweeney, Abu and Winn Identifying Participants in the Personal Genome Project by Name Identifying Participants in the Personal Genome Project by Name  

E-Print Network [OSTI]

to make personal data sharing decisions, thereby depriving society of individual choice. To make smarterSweeney, Abu and Winn Identifying Participants in the Personal Genome Project by Name 1 Identifying Participants in the Personal Genome Project by Name Latanya Sweeney, Akua Abu, Julia Winn Harvard College

Chen, Yiling

85

Canopy hot-spot as crop identifier  

SciTech Connect (OSTI)

Illuminating any reflective rough or structured surface by a directional light source results in an angular reflectance distribution that shows a narrow peak in the direction of retro-reflection. This is called the Heiligenschein or hot-spot of vegetation canopies and is caused by mutual shading of leaves. The angular intensity distribution of the hot-spot, its brightness and slope, are therefore indicators of the plant's geometry. We propose the use of hot-spot characteristics as crop identifiers in satellite remote sensing because the canopy hot-spot carries information about plant stand architecture that is more distinctive for different plant species than, for instance, their spectral reflectance characteristics. A simple three-dimensional Monte Carlo/ray tracing model and an analytic two-dimensional model are developed to estimate the angular distribution of the hot-spot as a function of the size of the plant leaves. The results show that the brightness-distribution and slope of the hot-spot change distinctively for different leaf sizes indicating a much more peaked maximum for the smaller leaves.

Gerstl, S.A.W.; Simmer, C.; Powers, B.J.

1986-05-01T23:59:59.000Z

86

Identifying Lagrangian fronts with favourable fishery conditions  

E-Print Network [OSTI]

Lagrangian fronts (LF) in the ocean delineate boundaries between surface waters with different Lagrangian properties. They can be accurately detected in a given velocity field by computing synoptic maps of the drift of synthetic tracers and other Lagrangian indicators. Using Russian ship's catch and location data for a number of commercial fishery seasons in the region of the northwest Pacific with one of the richest fishery in the world, it is shown statistically that the saury fishing grounds with maximal catches are not randomly distributed over the region but located mainly along those LFs where productive cold waters of the Oyashio Current, warmer waters of the southern branch of the Soya Current, and waters of warm-core Kuroshio rings converge. Computation of those fronts with the altimetric geostrophic velocity fields both in the years with the First and Second Oyashio Intrusions shows that in spite of different oceanographic conditions the LF locations may serve good indicators of potential fishing grounds. Possible reasons for saury aggregation near LFs are discussed. We propose a mechanism of effective export of nutrient rich waters based on stretching of material lines in the vicinity of hyperbolic objects in the ocean. The developed method, based on identifying LFs in any velocity fields, is quite general and may be applied to forecast potential fishing grounds for the other pelagic fishes in different seas and the oceans.

S. V. Prants; M. V. Budyansky; M. Yu. Uleysky

2013-06-20T23:59:59.000Z

87

Sandia National Laboratories: identifying critical network elements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performancestoragei-GATE ECIScritical network

88

Martin Gogolla: Identifying Objects by Declarative  

E-Print Network [OSTI]

are recorded with their names and population. Branches own a set of cars characterized by a chasis number­called observation term, in order to observe a unique, iden­ tifying property of objects of the corresponding type. 1 property of the object is question. Such an identification number is something which comes from outside

Gogolla, Martin - Fachbereich 3

89

Identify Institutional Change Rules, Roles, and Tools Constituting...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Identify Institutional Change Rules, Roles, and Tools Constituting Context for Sustainability Identify Institutional Change Rules, Roles, and Tools Constituting Context for...

90

IDENTIFY AND PROTECT YOUR VITAL RECORDS | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistoryia/802871 IA Blog ArchiveIDENTIFY AND

91

Identified Patent Waivers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy Media ContactExchange

92

Identifying Needs and Goals | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy Media

93

ARM - Publications: Science Team Meeting Documents: Identifying  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication andAn AssessmentARMArcticCloud Fractions andMoments

94

Energy Assessment Results: Most Commonly Identified Recommendations |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatementNOTElectricityofWaterMapProductivity |Department

95

BPA Study of Smart Grid Economics Identifies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P. Study of Smart Grid Economics

96

Los Alamos identifies internal material control issue  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las Conchas recoveryNuclear energy innovation hub

97

A novel method for identifying exoplanetary rings  

E-Print Network [OSTI]

The discovery of rings around extrasolar planets ("exorings") is one of the next breakthroughs in exoplanetary research. Previous studies have explored the feasibility of detecting exorings with present and future photometric sensitivities by seeking anomalous deviations in the residuals of a standard transit light curve fit, at the level of ~100 ppm for Kronian rings. In this work, we explore two much larger observational consequences of exorings: (1) the significant increase in transit depth that may lead to misclassification of ringed planetary candidates as false-positives and/or the underestimation of planetary density; and (2) the so-called "photo-ring" effect, a new asterodensity profiling effect, revealed by a comparison of the light curve derived stellar density to that measured with independent methods (e.g. asteroseismology). Whilst these methods do not provide an unambiguous discovery of exorings, we show that the large amplitude of these effects combined with their relatively simple analytic desc...

Zuluaga, Jorge I; Sucerquia, Mario; Alvarado, Jaime A

2015-01-01T23:59:59.000Z

98

On the development of a GroEL based platform for identifying pharmacological chaperones  

E-Print Network [OSTI]

1 CHAPTER 1: ON THE NEED FOR A PLATFORM FOR IDENTIFYING PHARMACOLOGICAL CHAPERONES 1.1 Protein misfolding and proteostasis. 1.1.1 Protein folding and misfolding. a Protein folding and function. Proteins are crucial for all essential life... years. Some of the initial studies in the field of protein folding were performed by Linus Pauling and E.J. Corey, who first discovered that polypeptides form secondary structure elements such as alpha helices and beta sheets (1). Later, Christian...

Naik, Subhashchandra

2013-05-31T23:59:59.000Z

99

An advanced diffusion model to identify emergent research issues: the case of optoelectronic devices  

E-Print Network [OSTI]

1 An advanced diffusion model to identify emergent research issues: the case of optoelectronic of keywords in published articles. In this paper we show how emerging topics in the field of optoelectronic the identified keywords were used to technological topics in the field of optoelectronic devices

Boyer, Edmond

100

: ................................................................................................................................................................................................. 1 1. ......................................................  

E-Print Network [OSTI]

: ................................................................................................................................................................................................. 1 1. ............................................................................................................................................................................................................................................................ 1 2

Moon, Sue B.

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Contribution of Identified Active Faults to Near Fault Seismic Hazard in the Flinders Ranges  

E-Print Network [OSTI]

Somerville1 , Peggy Quijada1 , Hong Kie Thio1 , Mike Sandiford2 and Mark Quigley2 1. URS Corporation estimates of fault slip rate from Quigley et al. (2006) to quantify the seismic activity rate on the faults of these models was used in conjunction with the active fault model. Quigley et al. (2006) identified a system

Sandiford, Mike

102

A Chemical Stain for Identifying Arsenic-Treated Wood  

E-Print Network [OSTI]

A Chemical Stain for Identifying Arsenic-Treated Wood (FINAL) Submitted June 23, 2006 Amy Omae.2 Motivation 4 I.3 Objectives 5 CHAPTER II, DEVELOPMENT OF A CHEMICAL STAIN FOR IDENTIFYING ARSENIC-TREATED Applications 22 II.5 Resulting Stain to Identify Arsenic-Treated Wood and Methods of Testing 25 CHAPTER III

Florida, University of

103

Synchrotron radiation identified human chemical fingerprints a novel forensic approach  

E-Print Network [OSTI]

Synchrotron radiation identified human chemical fingerprints ­ a novel forensic approach T with the goal of developing an advanced forensic technique to identify complicated partial latent prints a forensic analysis of the fingerprint chemistry, or to identify the latent prints of pre-pubescent children

104

Identifying Calcium Channels and Porters in Plant Membranes  

SciTech Connect (OSTI)

The overall objectives of the proposal submitted in 6/90 was to understand how Ca was transported across plant membranes, and how these transport pathways were regulated. Ca participates in many cellular processes, including the transduction of hormonal and environmental signals, secretion, and protein folding. These processes depend on the coordination of passive Ca fluxes via channels and active Ca pumps; however these transport pathways are poorly understood in plants. We had, therefore, proposed to identify and characterize Ca transport proteins, such as the inositol-1 ,4,5-trisphosphate (IP3)-sensitive Ca channels and Ca pumps. We have had difficulties characterizing and cloning the IP3-sensitive Ca channel, but have made considerable progress on the biochemical characterization, and partial purification of a 120 kD Ca-pumping ATPase. We have begun to determine the structure of Ca pumps by molecular cloning and have already obtained a partial cDNA with features characteristic of Ca pumps.

Sze, Heven

1998-04-01T23:59:59.000Z

105

Identifying Markov Blankets with Decision Tree Induction PrePublication Version  

E-Print Network [OSTI]

1 Identifying Markov Blankets with Decision Tree Induction PrePublication Version Lewis Frey Frey Blankets consist of strongly relevant features as defined in relation to optimal classifiers (Kohavi & John

Fisher, Douglas H.

106

Response and Notification Procedures for Data Breaches Involving Personally Identifiable Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Notice concerns actions to address data breaches of personally identifiable information that is collected, processed or maintained by DOE. Extended by DOE N 251.73 until 1-9-09. No cancellation.

2007-10-09T23:59:59.000Z

107

Topological Analysis of Protein Co-Abundance Networks Identifies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topological Analysis of Protein Co-Abundance Networks Identifies Novel Host Targets Important for HCV Infection and Pathogenesis Topological Analysis of Protein Co-Abundance...

108

analysis identifies jnk: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Iraq). Heyam Daod 283 Contribution of Identified Active Faults to Near Fault Seismic Hazard in the Flinders Ranges Geosciences Websites Summary: Contribution of...

109

ago2 immunoprecipitation identifies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of activities, including energy extraction, aquifer storage, carbon sequestration, and seismic hazard assessment. Identifying individual (more) Fagan, Deborah Kay 2012-01-01 165...

110

analysis identifies tlr7: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Iraq). Heyam Daod 265 Contribution of Identified Active Faults to Near Fault Seismic Hazard in the Flinders Ranges Geosciences Websites Summary: Contribution of...

111

assessment meca identifying: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HITS algorithm, which relies on dubious statistical assumptions, our model provides probabilistic estimates that have clear semantics. We also find that in general, the identified...

112

analysis identifies amphiregulin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Iraq). Heyam Daod 266 Contribution of Identified Active Faults to Near Fault Seismic Hazard in the Flinders Ranges Geosciences Websites Summary: Contribution of...

113

Energy Department Announces $3 Million to Identify New Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy today announced 3 million to spur geothermal energy development using play fairway analysis. This technique identifies prospective geothermal resources...

114

Step 4: Identify Target Audiences and Behavior Changes | Department...  

Broader source: Energy.gov (indexed) [DOE]

the program tailored marketing strategies to each segment's motivations. Coordinated Brain Trust in Wisconsin In an effort to better identify various customer and market...

115

Study identifies two Northwest basalt rock caverns sites for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PNNL and BPA have identified two possible sites in eastern Washington to build compressed air energy storage facilities that could temporarily store the Northwest's excess wind...

116

Energy Department Announces $3 Million to Identify New Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Addthis The U.S. Department of Energy today announced 3 million to spur geothermal energy development using play fairway analysis. This technique identifies prospective...

117

Systems Virology Identifies a Mitochondrial Fatty Acid Oxidation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fatty Acid Oxidation Enyzme, Dodecenoyl Coenzyme A Delta Isomerase, Required for Systems Virology Identifies a Mitochondrial Fatty Acid Oxidation Enyzme, Dodecenoyl Coenzyme...

118

THE OPTX PROJECT. V. IDENTIFYING DISTANT ACTIVE GALACTIC NUCLEI  

SciTech Connect (OSTI)

The Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([O III]/H{beta} versus [N II]/H{alpha}, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation (BPT-SF) from those dominated by active galactic nucleus (AGN) activity (BPT-AGN). Yet this BPT diagram is limited to z < 0.5, the redshift at which [N II]{lambda}6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g - z color, [Ne III]{lambda}3869, and [O II]{lambda}{lambda}3726 + 3729 and can be used for galaxies out to z < 1.4. The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray-selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray-selected AGNs as BPT-SF. We use the Great Observatories Origins Deep Survey North and Lockman Hole galaxy samples, with their accompanying deep Chandra imaging, to perform X-ray and infrared stacking analyses to further validate our TBT-AGN and TBT-SF selections; that is, we verify the dominance of AGN activity in the former and star formation activity in the latter. Finally, we address the inclusion of the majority of the BPT-comp (sources lying between the BPT-SF and BPT-AGN regimes) in our TBT-AGN regime. We find that the stacked BPT-comp source is X-ray hard (({Gamma}{sub eff}) = 1.0{sup +0.4}{sub -0.4}) and has a high X-ray luminosity to total infrared luminosity ratio. This suggests that, on average, the X-ray signal in BPT-comp is dominated by obscured or low accretion rate AGN activity rather than by star formation, supporting their inclusion in the TBT-AGN regime.

Trouille, L. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Barger, A. J.; Tremonti, C. [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706 (United States)

2011-11-20T23:59:59.000Z

119

Method of identifying hairpin DNA probes by partial fold analysis  

DOE Patents [OSTI]

Method of identifying molecular beacons in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within a target gene having the requisite hairpin structure. Isolated oligonucleotides, molecular beacons prepared from those oligonucleotides, and their use are also disclosed.

Miller, Benjamin L. (Penfield, NY); Strohsahl, Christopher M. (Saugerties, NY)

2009-10-06T23:59:59.000Z

120

Method of identifying hairpin DNA probes by partial fold analysis  

DOE Patents [OSTI]

Methods of identifying molecular beacons in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within a target gene having the requisite hairpin structure. Isolated oligonucleotides, molecular beacons prepared from those oligonucleotides, and their use are also disclosed.

Miller, Benjamin L.; Strohsahl, Christopher M.

2008-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Examine existing ULS access services to identify potential avenues of  

E-Print Network [OSTI]

. Promote an organizational culture· that emphasizes continuous improvement through learning and identify, and the establishment of trusted repositories for the research output of the University. Organizational Agility 5Encourage initiatives that will identify areas for innovative changes in our organizational and operational

Jiang, Huiqiang

122

Identifying the motives and behaviors of brand hate University of Twente IDENTIFYING THE MOTIVES AND BEHAVIORS OF  

E-Print Network [OSTI]

. Brand hate can be a serious risk for companies, since it can damage the brand image and reputationIdentifying the motives and behaviors of brand hate ­ University of Twente 9 IDENTIFYING THE MOTIVES AND BEHAVIORS OF BRAND HATE Marianne van Delzen Master Thesis Communication Science February 24th

Vellekoop, Michel

123

Laboratory Reports for the Development of a Chemical Stain to Identify Arsenic-Treated Wood  

E-Print Network [OSTI]

A-1 APPENDIX A Laboratory Reports for the Development of a Chemical Stain to Identify Arsenic-Treated CCA-Treated, 9.6 kg/m3 CCA-Treated, 40 kg/m3 CCA-Treated, and Weathered Wood. · Group 1 ­ Blank o

Florida, University of

124

Call title: "The ocean of tomorrow" Call identifier: FP7-OCEAN-2010  

E-Print Network [OSTI]

challenges in ocean management Theme 5 ­ Energy Area ENERGY.10.1 Call "The ocean of tomorrow" ­ Joining1 Call title: "The ocean of tomorrow" · Call identifier: FP7-OCEAN-2010 · Date of publication: 30, and Biotechnology (KBBE) - EUR 6 million from Theme 5 ­ Energy - EUR 10.5 million from Theme 6 ­ Environment

Milano-Bicocca, UniversitĂ 

125

Performance Analysis: Work Control Events Identified January - August 2010  

SciTech Connect (OSTI)

This performance analysis evaluated 24 events that occurred at LLNL from January through August 2010. The analysis identified areas of potential work control process and/or implementation weaknesses and several common underlying causes. Human performance improvement and safety culture factors were part of the causal analysis of each event and were analyzed. The collective significance of all events in 2010, as measured by the occurrence reporting significance category and by the proportion of events that have been reported to the DOE ORPS under the ''management concerns'' reporting criteria, does not appear to have increased in 2010. The frequency of reporting in each of the significance categories has not changed in 2010 compared to the previous four years. There is no change indicating a trend in the significance category and there has been no increase in the proportion of occurrences reported in the higher significance category. Also, the frequency of events, 42 events reported through August 2010, is not greater than in previous years and is below the average of 63 occurrences per year at LLNL since 2006. Over the previous four years, an average of 43% of the LLNL's reported occurrences have been reported as either ''management concerns'' or ''near misses.'' In 2010, 29% of the occurrences have been reported as ''management concerns'' or ''near misses.'' This rate indicates that LLNL is now reporting fewer ''management concern'' and ''near miss'' occurrences compared to the previous four years. From 2008 to the present, LLNL senior management has undertaken a series of initiatives to strengthen the work planning and control system with the primary objective to improve worker safety. In 2008, the LLNL Deputy Director established the Work Control Integrated Project Team to develop the core requirements and graded elements of an institutional work planning and control system. By the end of that year this system was documented and implementation had begun. In 2009, training of the workforce began and as of the time of this report more than 50% of authorized Integration Work Sheets (IWS) use the activity-based planning process. In 2010, LSO independently reviewed the work planning and control process and confirmed to the Laboratory that the Integrated Safety Management (ISM) System was implemented. LLNL conducted a cross-directorate management self-assessment of work planning and control and is developing actions to respond to the issues identified. Ongoing efforts to strengthen the work planning and control process and to improve the quality of LLNL work packages are in progress: completion of remaining actions in response to the 2009 DOE Office of Health, Safety, and Security (HSS) evaluation of LLNL's ISM System; scheduling more than 14 work planning and control self-assessments in FY11; continuing to align subcontractor work control with the Institutional work planning and control system; and continuing to maintain the electronic IWS application. The 24 events included in this analysis were caused by errors in the first four of the five ISMS functions. The most frequent cause was errors in analyzing the hazards (Function 2). The second most frequent cause was errors occurring when defining the work (Function 1), followed by errors during the performance of work (Function 4). Interestingly, very few errors in developing controls (Function 3) resulted in events. This leads one to conclude that if improvements are made to defining the scope of work and analyzing the potential hazards, LLNL may reduce the frequency or severity of events. Analysis of the 24 events resulted in the identification of ten common causes. Some events had multiple causes, resulting in the mention of 39 causes being identified for the 24 events. The most frequent cause was workers, supervisors, or experts believing they understood the work and the hazards but their understanding was incomplete. The second most frequent cause was unclear, incomplete or confusing documents directing the work. Together, these two causes were mentioned 17 times and co

De Grange, C E; Freeman, J W; Kerr, C E; Holman, G; Marsh, K; Beach, R

2011-01-14T23:59:59.000Z

126

Identified Patent Waiver W(I)2012-012  

Broader source: Energy.gov [DOE]

This is a request by DR. F. JEFFREY MARTIN for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC52-06NA25396.

127

Identifying Patterns in Geospatial Natural Language Kristin Stock  

E-Print Network [OSTI]

Identifying Patterns in Geospatial Natural Language Kristin Stock Nottingham Geospatial Institute University of Nottingham Abstract The automated interpretation of geospatial be suitable as an approach to the representation of geospatial natural language that supports

Stock, Kristin

128

aureus genomes identify: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to be under Selective Constraint Using GERP++. PLoS Comput Sidow, Arend 10 ABSTRACT Genomics and bioinformatics have the vast potential to identify genes that cause disease by...

129

Identified Patent Waiver W(I)2012-009  

Broader source: Energy.gov [DOE]

This is a request by UNITED TECHNOLOGIES RESEARCH for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC02-05CH11231.

130

Microfluidic in vivo screen identifies compounds enhancing neuronal  

E-Print Network [OSTI]

Compound screening is a powerful tool to identify new therapeutic targets, drug leads, and elucidate the fundamental mechanisms of biological processes. We report here the results of the first in vivo small-molecule screens ...

Haggarty, Stephen

131

Identified Patent Waiver W(I)2012-004  

Broader source: Energy.gov [DOE]

This is a request by UCHICAGO ARGONNE, LLC for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC02-06CH11357.

132

Identified Patent Waiver W(I)2012-005  

Broader source: Energy.gov [DOE]

This is a request by UCHICAGO ARGONNE, LLC for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC02-06CH11357.

133

Identified Patent Waiver W(I)2012-003  

Broader source: Energy.gov [DOE]

This is a request by UCHICAGO ARGONNE, LLC for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC02-06CH11357.

134

DURING THIS REPORTING PERIOD, WE ISSUED 39 REPORTS; IDENTIFIED  

Energy Savers [EERE]

by the contractor by more than 20 million. * Our audit report on The Department's Hydrogen and Fuel Cells Program (OAS-RA-13-31, September 2013), identified concerns with...

135

Identifying vocalizations and their possible function in Texas Blue Jays  

E-Print Network [OSTI]

IDENTIFYING VOCALIZATIONS AND THEIR POSSIBLE FUNCTION IN TEXAS BLUE JAYS A Thesis JULIE JETER-EDWARDS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1989 Major Subject: Wildlife & Fisheries Science IDENTIFYING VOCALIZATIONS AND THEIR POSSIBLE FUNCTION IN TEXAS BLUE JAYS A Thesis JULIE JETER-EDWARDS Approved as to style and content by: Keith A. Arnold (Chair of Committee...

Jeter-Edwards, Julie

1989-01-01T23:59:59.000Z

136

A Study of Scientometric Methods to Identify Emerging Technologies  

SciTech Connect (OSTI)

This work examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, worldwide patents, news archives, and on-line mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain we investigated.

Abercrombie, Robert K [ORNL] [ORNL; Udoeyop, Akaninyene W [ORNL] [ORNL

2011-01-01T23:59:59.000Z

137

Towards prospective Life Cycle Assessment: how to identify key parameters inducing most  

E-Print Network [OSTI]

of Life Cycle Assessments (LCA) have been undertaken, attempting to give a quantitative assessmentTowards prospective Life Cycle Assessment: how to identify key parameters inducing most Blanc1 MINES ParisTech, O.I.E. center, Sophia Antipolis, France Abstract. Prospective Life Cycle

Paris-Sud XI, Université de

138

Identifying the importance of amino acids for protein folding from crystal structures  

E-Print Network [OSTI]

Identifying the importance of amino acids for protein folding from crystal structures Nikolay V and characterizing protein folding kinetics from crystal structures using computational techniques. We also describe as the protein folding prob- lem [1­25], is of great importance because understanding protein folding mechanisms

Stanley, H. Eugene

139

[25] Identifying Importance of Amino Acids for Protein Folding from Crystal Structures  

E-Print Network [OSTI]

[25] Identifying Importance of Amino Acids for Protein Folding from Crystal Structures By Nikolay V their unique three-dimensional structure. This ques- tion, known as the protein-folding problem,1­25 is of great importance because understanding protein-folding mechanisms is a key to success- ful manipulation

Dokholyan, Nikolay V.

140

WebFEATURE: An interactive web tool for identifying and visualizing functional sites on macromolecular structures  

E-Print Network [OSTI]

1 WebFEATURE: An interactive web tool for identifying and visualizing functional sites University, Stanford CA 94305 USA Abstract WebFEATURE (http://feature.stanford.edu/webfeature/) is a web and nucleic acids. WebFEATURE is the public interface to the scanning algorithm of the FEATURE package

Brutlag, Doug

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Developing a Real-Time Identify-and-Locate System for the Blind  

E-Print Network [OSTI]

Developing a Real-Time Identify-and-Locate System for the Blind Gemstone Team Vision 1 , Bobby Bobo Lighthouse for the Blind 3 University of Maryland Institute for Advanced Computer Studies 4 University to the blind in the foreseeable future. But despite the rapid advances in computer hardware and vi- sion

Paris-Sud XI, Université de

142

USING DNASE DIGESTION DATA TO ACCURATELY IDENTIFY TRANSCRIPTION FACTOR BINDING SITES  

E-Print Network [OSTI]

USING DNASE DIGESTION DATA TO ACCURATELY IDENTIFY TRANSCRIPTION FACTOR BINDING SITES KAIXUAN LUO1. But methods combining DNase digestion data with TF binding specificity information could potentially be used on the genomic digestion prod- ucts of deoxyribonuclease I (DNase I, which we will simply call DNase) might

Hartemink, Alexander

143

Crypto-Based Identifiers (CBIDs): Concepts and Applications  

E-Print Network [OSTI]

Crypto-Based Identifiers (CBIDs): Concepts and Applications GABRIEL MONTENEGRO Sun Labs, Europe of this material appeared in G. Montenegro and C. Castelluccia, "Statistically Unique and Cryptographically Security Conference (NDSS02), San Diego, February 2002. Authors' addresses: G. Montenegro, Sun Labs, Europe

Castelluccia, Claude

144

Identifying and Developing New, Carbon Dioxide Consuming Processes , Sudheer Indalaa  

E-Print Network [OSTI]

of propane, styrene from ethyl benzene and carbon dioxide, and methanol from hydrogenation of carbon dioxide408b Identifying and Developing New, Carbon Dioxide Consuming Processes Aimin Xua , Sudheer Indalaa@hal.lamar.edu, yawscl@hal.lamar.edu Key words; Carbon Dioxide Processes, Greenhouse Gases, Chemical Complex, Sustainable

Pike, Ralph W.

145

Identifying the Original Contribution of a Document via Language Modeling  

E-Print Network [OSTI]

and impact, and we show how it can find text passages that best summarize the original contributionIdentifying the Original Contribution of a Document via Language Modeling Benyah Shaparenko Cornell that a document contributes to a corpus, focusing on self-referential diachronic corpora such as research pub

Joachims, Thorsten

146

Identifying the Original Contribution of a Document via Language Modeling  

E-Print Network [OSTI]

Identifying the Original Contribution of a Document via Language Modeling Benyah Shaparenko the original ideas that a document contributes to a corpus, focusing on self-referential diachronic corpora such as research publications, blogs, email, and news articles. Our statistical model of passage impact defines

Joachims, Thorsten

147

Identify and Visualize Differences in Traffic Data Zhonghua Xi*  

E-Print Network [OSTI]

Identify and Visualize Differences in Traffic Data Zhonghua Xi* , Jyh-Ming Lien* , Yi-Chang Chiu visualization is developed to automatically search for events of interest using quantitative metrics, while also relies on traffic analysis. Traffic analysis can be approached as a problem of searching for trends

Lien, Jyh-Ming

148

Identifying Energy Waste through Dense Power Sensing and Utilization Monitoring  

E-Print Network [OSTI]

Identifying Energy Waste through Dense Power Sensing and Utilization Monitoring Maria Kazandjieva the efficiency of such a computing system requires detailed data of both en- ergy consumption and energy waste to differentiate energy used well from energy waste. This is an important difference from pre- vious work [8, 14

Stanford University

149

SHORT REPORT Open Access Nuclear lipid droplets identified by electron  

E-Print Network [OSTI]

SHORT REPORT Open Access Nuclear lipid droplets identified by electron microscopy of serial that nuclear lipid droplets (LDs) are organized into domains similar to those of cytoplasmic LDs with the nuclear envelope, it could be suggested however that nuclear LDs are cytoplamic LDs trapped within

Boyer, Edmond

150

Classifying Web Search Queries to Identify High Revenue Generating Customers  

E-Print Network [OSTI]

searching, the set of terms for which a user searches is called the query. If a user enters a query and then clicks on a result, these query terms are embedded within the URL that is passed from the search engineClassifying Web Search Queries to Identify High Revenue Generating Customers Adan Ortiz-Cordova 329

Jansen, James

151

MATERIAL FLOW ANALYSIS FOR IDENTIFYING RARE EARTH ELEMENT  

E-Print Network [OSTI]

MATERIAL FLOW ANALYSIS FOR IDENTIFYING RARE EARTH ELEMENT RECYCLING POTENTIALS IN THE EU-27 D Rochelle (F) SUMMARY: Rare earth elements (REEs) are essential for high-techology industrial sectors earths. Rare earth elements (REEs) are a group of 17 elements comprising the 15 lanthanides, scandium

Paris-Sud XI, Université de

152

LEAN ENERGY ANALYSIS: IDENTIFYING, DISCOVERING AND TRACKING ENERGY SAVINGS POTENTIAL  

E-Print Network [OSTI]

LEAN ENERGY ANALYSIS: IDENTIFYING, DISCOVERING AND TRACKING ENERGY SAVINGS POTENTIAL KELLY KISSOCK a methodology, called lean energy analysis, LEA, for graphically and statistically analyzing plant energy use from reducing non-production and space-conditioning energy use. In addition, graphical analysis

Kissock, Kelly

153

Engineering Identifying the source of an atmospheric pollutant  

E-Print Network [OSTI]

Chemical Engineering Abstract Identifying the source of an atmospheric pollutant or phenomena this question using combinations of atmospheric models and remote sensing observations will be presented challenge currently facing the US EPA in developing secondary standards for the control of this pollutant

154

d Original Contribution IDENTIFYING THE INERTIAL CAVITATION THRESHOLD AND SKULL  

E-Print Network [OSTI]

d Original Contribution IDENTIFYING THE INERTIAL CAVITATION THRESHOLD AND SKULL EFFECTS IN AVESSEL unknown. To investigate the pressure threshold for inertial cavitation of pre- formed microbubbles during sonication, passive cavitation detection in conjunction with B-mode imaging was used. A cerebral vessel

Konofagou, Elisa E.

155

Grid Database Service Specification Document Identifier: GDSS-0.2  

E-Print Network [OSTI]

Grid Database Service Specification Document Identifier: GDSS-0.2 Date: 4th October 2002 Authors of networked resources. The Open Grid Services Architecture (OGSA) extends Web Services with consistent interfaces for creating, managing and exchanging information among Grid Services, which are dynamic

Glasgow, University of

156

A FRAMEWORK FOR IDENTIFYING ANTIBIOTIC RESISTANCE IN THE HUMAN MICROBIOME  

E-Print Network [OSTI]

in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computational Science Schmieder as fulfilling the scope and quality requirements for meriting the degree of Doctor of Philosophy treatments, resulting in prolonged illness and a greater risk of death. In order to identify alternative

157

Identifying Transformer Incipient Events for Maintaining Distribution System Reliability  

E-Print Network [OSTI]

Identifying Transformer Incipient Events for Maintaining Distribution System Reliability Karen L events in single-phase distribution transformers. This analysis will aid in the development of an automatic detection method for internal incipient faults in the transformers. The detection method can

158

A SIMPLE ALGORITHM FOR IDENTIFYING ABBREVIATION DEFINITIONS IN BIOMEDICAL TEXT  

E-Print Network [OSTI]

A SIMPLE ALGORITHM FOR IDENTIFYING ABBREVIATION DEFINITIONS IN BIOMEDICAL TEXT ARIEL S. SCHWARTZ of biomedical text is growing at a fast rate, creating challenges for humans and computer systems alike. One of these challenges arises from the frequent use of novel abbreviations in these texts, thus requiring that biomedical

Hearst, Marti

159

Identifying two steps in the internal wave energy cascade  

E-Print Network [OSTI]

1.1.1 The internal wave energy cascade . . . . . . .? ? , which contain only wave energy trav- eling upward anddistinction is made between wave energy propagating upward

Sun, Oliver Ming-Teh

2010-01-01T23:59:59.000Z

160

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

targets December 1, 2014 New technology puts bioinformatics within easy reach of health-care professionals, researchers and others LOS ALAMOS, N.M., Dec. 1, 2014-Los...

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Paramount Petroleum: Plant-Wide Energy-Efficiency Assessment Identifies Three Projects  

SciTech Connect (OSTI)

The Paramount Petroleum plant-wide energy assessment identified a cost-effective electrical power and heat energy production facility and systems that could benefit from either fuel-burn adjustments or a new drive/control system. This could lead to independence from a local electric utility with much improved reliability, estimated annual energy savings of 1,200,000 kWh of electricity, and estimated annual savings of$4.1 million for energy reduction and other improvements.

Not Available

2003-07-01T23:59:59.000Z

162

Identifying, Implementing and Complying with Environment, Safety and Health Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Policy sets forth the framework for identifying, implementing and complying with environment, safety and health (ES&H) requirements so that work is performed in the DOE complex in a manner that ensures adequate protection of workers, the public and the environment. Ownership of this policy is shared between GC and HS. Cancels DOE P 450.2. Canceled by DOE P 450.4A.

1996-05-15T23:59:59.000Z

163

Methods for characterizing, classifying, and identifying unknowns in samples  

DOE Patents [OSTI]

Disclosed is a method for taking the data generated from an array of responses from a multichannel instrument, and determining the characteristics of a chemical in the sample without the necessity of calibrating or training the instrument with known samples containing the same chemical. The characteristics determined by the method are then used to classify and identify the chemical in the sample. The method can also be used to quantify the concentration of the chemical in the sample.

Grate, Jay W [West Richland, WA; Wise, Barry M [Manson, WA

2002-01-01T23:59:59.000Z

164

Identifying fracture zones in the Austin Chalk using seismic attributes  

E-Print Network [OSTI]

varies with time and in areas of known production. Areas of production were identified from gas flares documented on the mud logs and drilling reports. These locations were measured from the end of the lateral and were then placed on the seismic grid... flares Strong correlations were found between gas flares and both raw amplitude and instantaneous reflection magnitude of the base of the Austin Chalk. In order to prove that these correlations were not in response to noise, the seismic data...

Bafia, Daniel Joseph

1998-01-01T23:59:59.000Z

165

Method for processing seismic data to identify anomalous absorption zones  

DOE Patents [OSTI]

A method is disclosed for identifying zones anomalously absorptive of seismic energy. The method includes jointly time-frequency decomposing seismic traces, low frequency bandpass filtering the decomposed traces to determine a general trend of mean frequency and bandwidth of the seismic traces, and high frequency bandpass filtering the decomposed traces to determine local variations in the mean frequency and bandwidth of the seismic traces. Anomalous zones are determined where there is difference between the general trend and the local variations.

Taner, M. Turhan

2006-01-03T23:59:59.000Z

166

Energy Cost Reduction Measures Identified for Texas State Agencies  

E-Print Network [OSTI]

conservation opportunities and capital intensive energy cost reduction measures. Though more square feet was audited in 1984, more utility cost savings per square foot were identified in 1986. Changes in the screening process, the audit report format... square foot for the audited facilities by building type. Maintenance and operation savings are included in this table. A sufficient number of academic buildings, medical research facilities, libraries, hospitals, and office buildings were audited...

Grigg, T. J.; Verdict, M. E.

1987-01-01T23:59:59.000Z

167

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

begins demolition of Cold War-era buildings December 1, 2009 Walls come down sooner, thanks to Recovery Act funding Los Alamos, New Mexico, December 1, 2009 - Los Alamos National...

168

Manual for Identifying and Protecting Official Use Only Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual provides detailed requirements to supplement DOE O 471.3. Admin Chg 1 dated 1-13-11. No cancellation.

2003-04-09T23:59:59.000Z

169

Augmented Reality (AR) A Method to Identify AR Annotated Objects  

E-Print Network [OSTI]

:direction of feature point from camera. #12;3 1 2 T Td 4. GPS Arduino Web 1 5 1 GPS Visual Studio 2008 C++ 1 Used devices. Logicool HD Pro Webcam C910 Arduino Arduino Pro Mini 328 3.3V 8MHz GPS RS232C GPS GT-723F

Tanaka, Jiro

170

Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy  

SciTech Connect (OSTI)

Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

Dilley, Lorie M.; Norman, David; Owens, Lara

2008-06-30T23:59:59.000Z

171

GAMQUEST, A computer program to identify gamma rays  

SciTech Connect (OSTI)

This paper describes the application of the computer program GAMQUEST to the study of gamma-ray spectra. The program is especially suited to the analysis of samples produced by neutron activation, and of environmental samples containing radioactive pollutants. GAMQUEST searches a large database (with data for over 60,000 gamma rays) to identify the various spectral lines from samples. The program runs on the VAX/6610 computer cluster of the Lawrence Berkeley Laboratory, and can be accessed from individual accounts or through Hepnet, Internet, or World Wide Web networks.

Brown, E.

1994-05-01T23:59:59.000Z

172

Portable data collection device with self identifying probe  

DOE Patents [OSTI]

The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of time. The sensor may also store a unique sensor identifier.

French, Patrick D. (Aurora, CO)

1998-01-01T23:59:59.000Z

173

Portable data collection device with self identifying probe  

DOE Patents [OSTI]

The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of time. The sensor may also store a unique sensor identifier. 13 figs.

French, P.D.

1998-11-17T23:59:59.000Z

174

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conservation is good, preservation is better May 1, 2013 3:26 See how LANL workers treat every day as Earth Day...

175

1  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the additional qualitative information box. EECBG Financing Program Annual Report Page 1 of 3 EECBG Financing Program Annual Report OMB control number (1910-5150) Expiration...

176

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGas SeparationsRelevant0 0 0 1 0 0 0 1 1

177

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Major New Mexico employers sign STEM education proclamation November 1, 2014 Six major employers in New Mexico are collaborating to put New Mexico on the forefront of science,...

178

Identifying Requirements for Effective Human-Automation Teamwork  

SciTech Connect (OSTI)

Previous studies have shown that poorly designed human-automation collaboration, such as poorly designed communication protocols, often leads to problems for the human operators, such as: lack of vigilance, complacency, and loss of skills. These problems often lead to suboptimal system performance. To address this situation, a considerable amount of research has been conducted to improve human-automation collaboration and to make automation function better as a “team player.” Much of this research is based on an understanding of what it means to be a good team player from the perspective of a human team. However, the research is often based on a simplified view of human teams and teamwork. In this study, we sought to better understand the capabilities and limitations of automation from the standpoint of human teams. We first examined human teams to identify the principles for effective teamwork. We next reviewed the research on integrating automation agents and human agents into mixed agent teams to identify the limitations of automation agents to conform to teamwork principles. This research resulted in insights that can lead to more effective human-automation collaboration by enabling a more realistic set of requirements to be developed based on the strengths and limitations of all agents.

Jeffrey C. Joe; John O'Hara; Heather D. Medema; Johanna H. Oxstrand

2014-06-01T23:59:59.000Z

179

Identifying the mechanisms of activated transcription factor 6 - mediated cardioprotection  

E-Print Network [OSTI]

RW, Bedows E. Assisted protein folding. J Biol Chem. AustinProtein Folding .1 Protein Folding in the Endoplasmic

Belmont, Peter Joseph

2010-01-01T23:59:59.000Z

180

A methodology to identify material properties in layered visoelastic halfspaces  

E-Print Network [OSTI]

UNKNOWN SYSTEM OUTPUT D FORWARD MODEL MODEL: M + \\ CI ~ OUTPUT ERROR a) NOISE INPUT + INPUT ERROR~ UNKNOWN SYSTEM INVERSE MODEL: M I OUTPUT D INVERSE MODEL b) NOISE UNK NOWN SYSTEM OUTPUT GENERALIZE= MODEL Ml M -I 2 c) GENERALIZED... that displacements vary linearly within each sublayer 25 Sensors 0 1 2 3 4 5 6 Layer 1 E' - E'(v) + iE" (v) E?m, t, Layer 2 E' E'(v) (1 + i8) E?8? t, Layer 3 E' E'(8) (1 + i8) E?8? t, Halfspace E* - E'(m) (1 + i8) E? 8? ~ Figure 4 Schematic...

Torpunuri, Vikram Simha

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Method for identifying and probing phase transitions in materials  

DOE Patents [OSTI]

The present invention includes a method for identifying and probing phase transitions in materials. A polymorphic material capable of existing in at least one non-centrosymmetric phase is interrogated with a beam of laser light at a chosen wavelength and frequency. A phase transition is induced in the material while it is interrogated. The intensity of light scattered by the material and having a wavelength equal to one half the wavelength of the interrogating laser light is detected. If the phase transition results in the production of a non-centrosymmetric phase, the intensity of this scattered light increases; if the phase transition results in the disappearance of a non-centrosymmetric phase, the intensity of this scattered light decreases.

Asay, Blaine W. (Los Alamos, NM); Henson, Bryan F. (Los Alamos, NM); Sander, Robert K. (Los Alamos, NM); Robinson, Jeanne M. (Los Alamos, NM); Son, Steven F. (Los Alamos, NM); Dickson, Peter M. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

182

Identifying features in biological sequences: Sixth workshop report  

SciTech Connect (OSTI)

This report covers the sixth of an annual series of workshops held at the Aspen Center for Physics concentrating particularly on the identification of features in DNA sequence, and more broadly on related topics in computational molecular biology. The workshop series originally focused primarily on discussion of current needs and future strategies for identifying and predicting the presence of complex functional units on sequenced, but otherwise uncharacterized, genomic DNA. We addressed the need for computationally-based, automatic tools for synthesizing available data about individual consensus sequences and local compositional patterns into the composite objects (e.g., genes) that are -- as composite entities -- the true object of interest when scanning DNA sequences. The workshop was structured to promote sustained informal contact and exchange of expertise between molecular biologists, computer scientists, and mathematicians.

Burks, C. [Los Alamos National Lab., NM (United States); Myers, E. [Univ. of Arizona (United States); Pearson, W.R. [Univ. of Virginia (United States)

1995-12-31T23:59:59.000Z

183

Method To Identify Specific Inhibiutors Of Imp Dehydrogenase  

DOE Patents [OSTI]

This invention relates to methods to identify specific inhibitors of the purine nucleotide synthesis enzyme, IMP dehydrogenase (IMPDH). IMPDH is an essential enzyme found in all free-living organisms from humans to bacteria and is an important therapeutic target. The invention allows the identification of specific inhibitors of any IMPDH enzyme which can be expressed in a functional form in a recombinant host cell. A variety of eukaryotic or prokaryotic host systems commonly used for the expression of recombinant proteins are suitable for the practice of the invention. The methods are amenable to high throughput systems for the screening of inhibitors generated by combinatorial chemistry or other methods such as antisense molecule production. Utilization of exogenous guanosine as a control component of the methods allows for the identification of inhibitors specific for IMPDH rather than other causes of decreased cell proliferation.

Collart, Frank R. (Bolingbrook, IL); Huberman, Eliezer (LaGrange, IL)

2000-11-28T23:59:59.000Z

184

70 DA WHITE DWARFS IDENTIFIED IN LAMOST PILOT SURVEY  

SciTech Connect (OSTI)

We present a spectroscopically identified catalog of 70 DA white dwarfs (WDs) from the LAMOST pilot survey. Thirty-five are found to be new identifications after cross-correlation with the Eisenstein et al. and Villanova catalogs. The effective temperature and gravity of these WDs are estimated by Balmer lines fitting. Most of them are hot WDs. The cooling times and masses of these WDs are estimated by interpolation in theoretical evolution tracks. The peak of the mass distribution is found to be {approx}0.6 M {sub Sun }, which is consistent with prior work in the literature. The distances of these WDs are estimated using the method of synthetic spectral distances. All of these WDs are found to be in the Galactic disk from our analysis of space motions. Our sample supports the expectation that WDs with high mass are concentrated near the plane of the Galactic disk.

Zhao, J. K.; Luo, A. L.; Zhao, G. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Oswalt, T. D., E-mail: zjk@bao.ac.cn, E-mail: gzhao@bao.ac.cn, E-mail: lal@bao.ac.cn, E-mail: toswalt@fit.edu [Physics and Space Science Department, Florida Institute of Technology, Melbourne, FL 32901 (United States)

2013-06-01T23:59:59.000Z

185

1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  

E-Print Network [OSTI]

( ) 2011 3 #12;#12;1 1 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1

Tanaka, Jiro

186

1  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r 1Lcla (8.8gJ Y,

187

1  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r 1Lcla (8.8gJ

188

1  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r 1Lcla (8.8gJ , ' ! i _

189

1  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r 1Lcla (8.8gJ , ' ! i

190

&#1;  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8, 2003VietNam 2004 5th4redirects&#1;

191

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripples forests October 1, 2012

192

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripples forests October 1, 2012the long

193

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripples forests October 1, 2012the

194

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripples forests October 1, 2012theGoing

195

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripples forests October 1,

196

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripples forests October 1,PBS

197

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripples forests October 1,PBSyields

198

1  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration helps more than 600 kidspeople |1 Summary

199

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions. |8Portable MRI-CI1/23/98

200

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010) Title: Standard

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010) Title:

202

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010) Title:8) Section

203

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010) Title:8) SectionCR

204

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010) Title:8)

205

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010) Title:8)El (01-02)

206

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010) Title:8)El

207

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010) Title:8)El2-99)

208

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010)

209

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010)4-08) Section II

210

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010)4-08) Section IIFP

211

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010)4-08) Section

212

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010)4-08) Section2-04)

213

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010)4-08)

214

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.1-03-2010)4-08)10-03) SECTION

215

Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors  

SciTech Connect (OSTI)

Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors William Richins1, Stephen Novascone1, and Cheryl O’Brien1 1Idaho National Laboratory, US Dept. of Energy, Idaho Falls, Idaho, USA, e-mail: William.Richins@inl.gov The Idaho National Laboratory (INL, USA) and IASMiRT sponsored an international forum Nov 5-6, 2008 in Porvoo, Finland for nuclear industry, academic, and regulatory representatives to identify structural issues in current and future advanced reactor design, especially for extreme conditions and external threats. The purpose of this Topical Workshop was to articulate research, engineering, and regulatory Code development needs. The topics addressed by the Workshop were selected to address critical industry needs specific to advanced reactor structures that have long lead times and can be the subject of future SMiRT technical sessions. The topics were; 1) structural/materials needs for extreme conditions and external threats in contemporary (Gen. III) and future (Gen. IV and NGNP) advanced reactors and 2) calibrating simulation software and methods that address topic 1 The workshop discussions and research needs identified are presented. The Workshop successfully produced interactive discussion on the two topics resulting in a list of research and technology needs. It is recommended that IASMiRT communicate the results of the discussion to industry and researchers to encourage new ideas and projects. In addition, opportunities exist to retrieve research reports and information that currently exists, and encourage more international cooperation and collaboration. It is recommended that IASMiRT continue with an off-year workshop series on select topics.

William Richins; Stephen Novascone; Cheryl O'Brien

2009-08-01T23:59:59.000Z

216

Identifying the Dominant Critical Soil for NM Planning  

E-Print Network [OSTI]

.2M LCDs cost share for farmers - $1 M lapse for 09 ­ $520K Implementation support · UW-Soils UW-NPM

Balser, Teri C.

217

Systematic evaluation of satellite remote sensing for identifying uranium mines and mills.  

SciTech Connect (OSTI)

In this report, we systematically evaluate the ability of current-generation, satellite-based spectroscopic sensors to distinguish uranium mines and mills from other mineral mining and milling operations. We perform this systematic evaluation by (1) outlining the remote, spectroscopic signal generation process, (2) documenting the capabilities of current commercial satellite systems, (3) systematically comparing the uranium mining and milling process to other mineral mining and milling operations, and (4) identifying the most promising observables associated with uranium mining and milling that can be identified using satellite remote sensing. The Ranger uranium mine and mill in Australia serves as a case study where we apply and test the techniques developed in this systematic analysis. Based on literature research of mineral mining and milling practices, we develop a decision tree which utilizes the information contained in one or more observables to determine whether uranium is possibly being mined and/or milled at a given site. Promising observables associated with uranium mining and milling at the Ranger site included in the decision tree are uranium ore, sulfur, the uranium pregnant leach liquor, ammonia, and uranyl compounds and sulfate ion disposed of in the tailings pond. Based on the size, concentration, and spectral characteristics of these promising observables, we then determine whether these observables can be identified using current commercial satellite systems, namely Hyperion, ASTER, and Quickbird. We conclude that the only promising observables at Ranger that can be uniquely identified using a current commercial satellite system (notably Hyperion) are magnesium chlorite in the open pit mine and the sulfur stockpile. Based on the identified magnesium chlorite and sulfur observables, the decision tree narrows the possible mineral candidates at Ranger to uranium, copper, zinc, manganese, vanadium, the rare earths, and phosphorus, all of which are milled using sulfuric acid leaching.

Blair, Dianna Sue; Stork, Christopher Lyle; Smartt, Heidi Anne; Smith, Jody Lynn

2006-01-01T23:59:59.000Z

218

Framework for Identifying Key Environmental Concerns in Marine Renewable Energy Projects- Appendices  

SciTech Connect (OSTI)

Marine wave and tidal energy technology could interact with marine resources in ways that are not well understood. As wave and tidal energy conversion projects are planned, tested, and deployed, a wide range of stakeholders will be engaged; these include developers, state and federal regulatory agencies, environmental groups, tribal governments, recreational and commercial fishermen, and local communities. Identifying stakeholders’ environmental concerns in the early stages of the industry’s development will help developers address and minimize potential environmental effects. Identifying important concerns will also assist with streamlining siting and associated permitting processes, which are considered key hurdles by the industry in the U.S. today. In September 2008, RE Vision consulting, LLC was selected by the Department of Energy (DoE) to conduct a scenario-based evaluation of emerging hydrokinetic technologies. The purpose of this evaluation is to identify and characterize environmental impacts that are likely to occur, demonstrate a process for analyzing these impacts, identify the “key” environmental concerns for each scenario, identify areas of uncertainty, and describe studies that could address that uncertainty. This process is intended to provide an objective and transparent tool to assist in decision-making for siting and selection of technology for wave and tidal energy development. RE Vision worked with H. T. Harvey & Associates, to develop a framework for identifying key environmental concerns with marine renewable technology. This report describes the results of this study. This framework was applied to varying wave and tidal power conversion technologies, scales, and locations. The following wave and tidal energy scenarios were considered: ? 4 wave energy generation technologies ? 3 tidal energy generation technologies ? 3 sites: Humboldt coast, California (wave); Makapu’u Point, Oahu, Hawaii (wave); and the Tacoma Narrows, Washington (tidal) ? 3 project sizes: pilot, small commercial, and large commercial The possible combinations total 24 wave technology scenarios and 9 tidal technology scenarios. We evaluated 3 of the 33 scenarios in detail: 1. A small commercial OPT Power Buoy project off the Humboldt County, California coast 2. A small commercial Pelamis Wave Power P-2 project off Makapu’u Point, Oahu, Hawaii 3. A pilot MCT SeaGen tidal project, sited in the Tacoma Narrows, Washington This framework document used information available from permitting documents that were written to support actual wave or tidal energy projects, but the results obtained here should not be confused with those of the permitting documents1. The main difference between this framework document and permitting documents of currently proposed pilot projects is that this framework identifies key environmental concerns and describes the next steps in addressing those concerns; permitting documents must identify effects, find or declare thresholds of significance, evaluate the effects against the thresholds, and find mitigation measures that will minimize or avoid the effects so they can be considered less-than-significant. Two methodologies, 1) an environmental effects analysis and 2) Raptools, were developed and tested to identify potential environmental effects associated with wave or tidal energy conversion projects. For the environmental effects analysis, we developed a framework based on standard risk assessment techniques. The framework was applied to the three scenarios listed above. The environmental effects analysis addressed questions such as: ? What is the temporal and spatial exposure of a species at a site? ? What are the specific potential project effects on that species? ? What measures could minimize, mitigate, or eliminate negative effects? ? Are there potential effects of the project, or species’ response to the effect, that are highly uncertain and warrant additional study? The second methodology, Raptools, is a collaborative approach useful for evaluating multiple characteristi

Sharon Kramer; Mirko Previsic; Peter Nelson; Sheri Woo

2010-06-17T23:59:59.000Z

219

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecure

220

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole ofmetal

222

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole ofmetaltrillion

223

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole

224

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situ

225

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween

226

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable solar: powering communities

227

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars

228

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved

229

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe

230

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41

231

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41the Absorption Characteristics

232

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41the Absorption

233

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41the

234

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41theInversion

235

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar

236

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstruction and Prediction of Variations

237

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstruction and Prediction of

238

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstruction and Prediction

239

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstruction and PredictionHistorical

240

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstruction and

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstruction andSpectral Dependences

242

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstruction andSpectral

243

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstruction andSpectralImproving

244

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstruction

245

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathy Prestridge-Physics'

246

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathy

247

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripples forests October

248

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripples forests Octoberscour

249

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripples forests

250

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripples

251

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange cripplesSaturn's

252

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychange

253

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulate nanoscale material failure

254

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulate nanoscale material

255

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulate nanoscale materialmodel

256

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulate nanoscale materialmodelstorage

257

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulate nanoscale

258

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulate nanoscaleMimicking

259

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulate nanoscaleMimickinglight

260

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulate

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSafer nuclear reactors

262

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSafer nuclear reactorsforum

263

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSafer nuclear

264

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSafer

265

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusing NIH grant

266

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusing NIH

267

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusing NIHNonprofits receive

268

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusing NIHNonprofits

269

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusing NIHNonprofitswind

270

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusing NIHNonprofitswindwins

271

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusing

272

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusinghuman resources

273

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusinghuman resourcesdrive

274

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusinghuman

275

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusinghumanreaches waste

276

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusinghumanreaches wastealgal

277

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusinghumanreaches

278

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusinghumanreachesIs

279

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusinghumanreachesIswin two

280

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolarReconstructionKathychangesimulateSaferusinghumanreachesIswin

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG

282

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28 at Bradbury

283

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28 at Bradburygrapes,

284

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28 at

285

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28 atapproves LANL

286

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28 atapproves LANLFacility

287

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28 atapproves LANLFacilityadvisory:

288

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28 atapproves

289

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28 atapprovesevolution could

290

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28 atapprovesevolution

291

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28

292

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28Martian laser

293

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28Martian laser

294

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct. 28Martian

295

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct.

296

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct.uncover combustion

297

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct.uncover

298

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct.uncoverdevices capture

299

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct.uncoverdevices capturewebcast

300

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct.uncoverdevices

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science Oct.uncoverdevices'Fore!'

302

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween science

303

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecure computing for

304

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecure computing forawards

305

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecure computing forawardsboosts

306

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecure computing forawardsboostsreduces

307

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecure computing

308

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecure computingto study

309

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecure computingto

310

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions. |8

311

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions. |8Portable

312

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions.

313

Risk and Performance Technologies: Identifying the Keys to Successful Implementation  

SciTech Connect (OSTI)

The nuclear power industry has been utilizing risk and performance based technologies for over thirty years. Applications of these technologies have included risk assessment (e.g. Individual Plant Examinations), burden reduction (e.g. Risk-Informed Inservice Inspection, RI-ISI) and risk management (Maintenance Rule, 10CFR50.65). Over the last five to ten years the number of risk-informed (RI) burden reduction initiatives has increased. Unfortunately, the efficiencies of some of these applications have been questionable. This paper investigates those attributes necessary to support successful, cost-effective RI-applications. The premise to this paper is that by understanding the key attributes that support one successful application, insights can be gleaned that will streamline/coordinate future RI-applications. This paper is an extension to a paper presented at the Pressure Vessel and Piping (PVP-2001) Conference. In that paper, a number issues and opportunities were identified that needed to be assessed in order to support future (and efficient) RI-applications. It was noted in the paper that a proper understanding and resolution of these issues will facilitate implementation of risk and performance technology in the operation, maintenance and design disciplines. In addition, it will provide the foundation necessary to support regulatory review and approval. (authors)

McClain, Lynn [Niagara Mohawk (United States); Smith, Art [Entergy Operations (United States); O'Regan, Patrick [Electric Power Research Institute - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States)

2002-07-01T23:59:59.000Z

314

Identifying failure in a tree network of a parallel computer  

DOE Patents [OSTI]

Methods, parallel computers, and products are provided for identifying failure in a tree network of a parallel computer. The parallel computer includes one or more processing sets including an I/O node and a plurality of compute nodes. For each processing set embodiments include selecting a set of test compute nodes, the test compute nodes being a subset of the compute nodes of the processing set; measuring the performance of the I/O node of the processing set; measuring the performance of the selected set of test compute nodes; calculating a current test value in dependence upon the measured performance of the I/O node of the processing set, the measured performance of the set of test compute nodes, and a predetermined value for I/O node performance; and comparing the current test value with a predetermined tree performance threshold. If the current test value is below the predetermined tree performance threshold, embodiments include selecting another set of test compute nodes. If the current test value is not below the predetermined tree performance threshold, embodiments include selecting from the test compute nodes one or more potential problem nodes and testing individually potential problem nodes and links to potential problem nodes.

Archer, Charles J. (Rochester, MN); Pinnow, Kurt W. (Rochester, MN); Wallenfelt, Brian P. (Eden Prairie, MN)

2010-08-24T23:59:59.000Z

315

49 new T dwarfs identified using methane imaging  

E-Print Network [OSTI]

We present the discovery of 49 new photometrically classified T dwarfs from the combination of large infrared and optical surveys combined with follow-up TNG photometry. We used multi-band infrared and optical photometry from the UKIRT and Sloan Digital Sky Surveys to identify possible brown dwarf candidates, which were then confirmed using methane filter photometry. We have defined a new photometric conversion between CH4s - CH4l colour and spectral type for T4 to T8 brown dwarfs based on a part of the sample that has been followed up using methane photometry and spectroscopy. Using methane differential photometry as a proxy for spectral type for T dwarfs has proved to be a very efficient technique. Of a subset of 45 methane selected brown dwarfs that were observed spectroscopically, 100% were confirmed as T dwarfs. Future deep imaging surveys will produce large samples of faint brown dwarf candidates, for which spectroscopy will not be feasible. When broad wavelength coverage is unavailable, methane imaging...

Cardoso, C V; Smart, R L; van Spaandonk, L; Baker, D; Smith, L C; Andrei, A H; Bucciarelli, B; Dhital, S; Jones, H R A; Lattanzi, M G; Magazzu, A; Pinfield, D J; Tinney, C G

2015-01-01T23:59:59.000Z

316

Identifying Dirac cones in carbon allotropes with square symmetry  

SciTech Connect (OSTI)

A theoretical study is conducted to search for Dirac cones in two-dimensional carbon allotropes with square symmetry. By enumerating the carbon atoms in a unit cell up to 12, an allotrope with octatomic rings is recognized to possess Dirac cones under a simple tight-binding approach. The obtained Dirac cones are accompanied by flat bands at the Fermi level, and the resulting massless Dirac-Weyl fermions are chiral particles with a pseudospin of S = 1, rather than the conventional S = 1/2 of graphene. The spin-1 Dirac cones are also predicted to exist in hexagonal graphene antidot lattices.

Wang, Jinying [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)] [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Huang, Huaqing; Duan, Wenhui [Department of Physics, Tsinghua University, Beijing 100084 (China)] [Department of Physics, Tsinghua University, Beijing 100084 (China); Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China) [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); State Key Laboratory for Structural Chemistry of Unstable and Stable Species and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871 (China)

2013-11-14T23:59:59.000Z

317

DCAMKL-1 expression identifies tuft cells rather than stem cells in the adult mouse intestinal epithelium  

E-Print Network [OSTI]

differentiation markers. Tuft cells, also known as brush, caveolated, multivesicular or fibrillovesicular cells, are found in the hollow organs of the GI tract and in respiratory organs 6 . They are reliably distinguished

Boyer, Edmond

318

Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer  

E-Print Network [OSTI]

Prostate cancer is the second most common cancer in men worldwide and causes over 250,000 deaths each year. Overtreatment of indolent disease also results in significant morbidity. Common genetic alterations in prostate ...

Lander, Eric S.

319

Use of the high altitude Applications Technology Satellite (ATS-1) in identifying cloud features  

E-Print Network [OSTI]

' Scattered As, 12, 000' Very faint gray area with no organize- tion DELTA 11-7. 5 N, 159 W 7-. 5. 5 N, 159 W 4. 5-4 N& 159 W 4 N, 157=155 W 4 N, 155-157 W 4 N, 158-160 W 6 N, 160-162 W Scattered Cu, tops 3000' Broken Cu, tops 10, 00D' Broken...' Scattered Cu, tops 9000' Scattered Sc, tops 3000' Scattered/Broken Sc, tops 3000' White area with some "cotton ball" appear- ance and some east- west orientation White ares with "cotton ball" appearance Some east-west orientation Black...

Frazee, Donald William

2012-06-07T23:59:59.000Z

320

analysis identifies genes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

applied to determine the core cell cycle genes in the recently Gent, Universiteit 490 Graeber et al. 2013 -Roles of Lepidium Seed Dormancy Genes 1 Spatio-temporal Seed Development...

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Aged black carbon identified in marine dissolved organic carbon  

E-Print Network [OSTI]

pool in the northeast Pacific Ocean, Deep Sea Res. , Part I,?445‰ in the deep NE Pacific Ocean (Table S1). The Suwanneein the northeast Pacific Ocean. If the BC in the Amazon

Ziolkowski, Lori A; Druffel, Ellen R.M.

2010-01-01T23:59:59.000Z

322

Polysialylated N-Glycans Identified in Human Serum Through Combined  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic TheoryPlantElectrodes.

323

Sandia National Laboratories: identify policy variables that could increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performancestoragei-GATE ECIS and

324

Sandia National Laboratories: identifying component-level failures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performancestoragei-GATE ECIS

325

Sandia National Laboratories: identifying solar product failure modes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performancestoragei-GATE ECIScritical

326

1  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North Site Unit 24

327

1  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome toFarmRenewable Energy1pm EST I

328

1  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A ennike6/%2A en361sun 2-2Issued

329

1  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A ennike6/%2A en361sun

330

1  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3. LightingImports toTWO6Performance

331

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecure computingtoLightningcomputer models

332

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecure computingtoLightningcomputer

333

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganic chemistry on

334

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganic chemistry

335

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganic chemistryteam makes

336

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganic chemistryteam

337

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganic

338

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganicNo increase in

339

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganicNo increase

340

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganicNo increaseKlimov

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganicNo

342

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganicNoNetworks, smart

343

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganicNoNetworks,

344

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganicNoNetworks,3-D Earth

345

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganicNoNetworks,3-D

346

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole of inorganicNoNetworks,3-Dfilms

347

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole ofmetal solidification

348

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole ofmetal solidificationData

349

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole ofmetaltrillion particle

350

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole ofmetaltrillion particleIyer,

351

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole ofmetaltrillionNeutrons used to

352

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole ofmetaltrillionNeutrons used

353

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRole ofmetaltrillionNeutrons

354

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situ images of void collapse

355

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situ images of void

356

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situ images of

357

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situ images ofLujan Neutron

358

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situ images ofLujan

359

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situ images ofLujanmodeling

360

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situ images

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situ imagesanalyzes meteor

362

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situ imagesanalyzes

363

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situ imagesanalyzesresearchers

364

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situCyber-imaging the cosmos

365

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situCyber-imaging the

366

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situCyber-imaging theBrewing

367

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situCyber-imaging

368

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situCyber-imagingActive

369

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloween scienceSecureRolein-situCyber-imagingActiveBetter

370

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable solar: powering communities December 16,

371

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable solar: powering communities December

372

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable solar: powering communitiesAPRIL/MAY 2013

373

1  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 Sandia National00 Sandia02-201022-201056 Page

374

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In reply3, 20093 from61

375

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In reply3, 20093 from61

376

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In reply3, 20093 from61A

377

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In reply3, 20093

378

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In reply3, 20093Send in

379

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In reply3, 20093Send

380

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In reply3,

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In reply3,Scientific Find

382

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In reply3,Scientific Find

383

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In reply3,Scientific

384

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In reply3,ScientificFeel

385

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 In

386

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 InIgloo, Sweet Igloo

387

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 InIgloo, Sweet IglooMixed

388

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 InIgloo, Sweet

389

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 InIgloo, Sweeta Science

390

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 InIgloo, Sweeta

391

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 InIgloo, Sweetathe Storm

392

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 InIgloo, Sweetathe

393

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 InIgloo, SweetatheHall

394

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 InIgloo,

395

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 InIgloo,Tropical Western

396

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09 InIgloo,Tropical

397

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09

398

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09Wipe Out! Teacher Turtle's

399

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09Wipe Out! Teacher Turtle's

400

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09Wipe Out! Teacher

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09Wipe Out! TeacherLIRAD

402

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09Wipe Out!

403

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09Wipe Out!Cirrus

404

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09Wipe

405

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09WipeProfiler, Radiometer,

406

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09WipeProfiler,

407

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing Artificial09WipeProfiler,Simulations

408

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsing

409

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Between Modeled and Observed

410

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Between Modeled and

411

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Between Modeled andCloud

412

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Between Modeled

413

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Between ModeledStudy of Skin

414

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Between ModeledStudy of

415

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Between ModeledStudy ofHigh

416

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Between ModeledStudy

417

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Between ModeledStudySurface

418

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Between

419

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Betweenand Visualization of

420

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Betweenand Visualization

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Betweenand VisualizationLight

422

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement Betweenand

423

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement BetweenandUse of ARM

424

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement BetweenandUse of ARMFluxes

425

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement BetweenandUse of

426

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement BetweenandUse ofObjective

427

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement BetweenandUse

428

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement BetweenandUseParameterization

429

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreement

430

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99 Ship and Buoy

431

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99 Ship and

432

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99 Ship andSCM

433

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99 Ship andSCMImpact of

434

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99 Ship andSCMImpact

435

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99 Ship

436

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99 ShipCharacteristics of

437

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99 ShipCharacteristics

438

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99

439

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99Typical and Anomaly

440

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99Typical and

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99Typical

442

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99TypicalFive Years of

443

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99TypicalFive Years

444

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99TypicalFive YearsMMCR

445

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99TypicalFive

446

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars andUsingAgreementNauru99TypicalFiveShortwave

447

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water Vapor Measurements from ARM

448

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water Vapor Measurements from ARMPhoton

449

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water Vapor Measurements from

450

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water Vapor Measurements fromPlumes

451

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water Vapor Measurements fromPlumesthe

452

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water Vapor Measurements

453

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water Vapor MeasurementsExamination of

454

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water Vapor MeasurementsExamination

455

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water Vapor

456

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water VaporMillimeter-Wave Radiometric

457

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water VaporMillimeter-Wave

458

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water VaporMillimeter-WaveEffect of

459

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water VaporMillimeter-WaveEffect

460

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved Water

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved WaterDetermination Of Nitrogen

462

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved WaterDetermination Of NitrogenWater

463

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved WaterDetermination Of

464

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved WaterDetermination OfGround-Based

465

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved WaterDetermination

466

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved WaterDeterminationMeasurement of the

467

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved WaterDeterminationMeasurement of

468

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved WaterDeterminationMeasurement ofAerosol

469

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImproved WaterDeterminationMeasurement

470

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of Thin Cirrus Clouds on

471

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of Thin Cirrus Clouds

472

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of Thin Cirrus CloudsUse

473

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of Thin Cirrus

474

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of Thin CirrusAERI/GOES

475

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of Thin

476

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of ThinSimulation of the

477

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of ThinSimulation of

478

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of ThinSimulation

479

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of ThinSimulationSGP Site

480

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of ThinSimulationSGP

Note: This page contains sample records for the topic "identifier bldgid3 1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of ThinSimulationSGPGlobal

482

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence of

483

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence ofAerosols and the

484

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence ofAerosols and theCirrus

485

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence ofAerosols and

486

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence ofAerosols andTurbulent

487

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence ofAerosols

488

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence ofAerosolsComparisons with

489

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence ofAerosolsComparisons

490

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe Influence

491

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe InfluenceObservation of 4-5 Day

492

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe InfluenceObservation of 4-5 DayHigh

493

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe InfluenceObservation of 4-5

494

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe InfluenceObservation of

495

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe InfluenceObservation ofStudies of

496

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe InfluenceObservation ofStudies

497

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe InfluenceObservation

498

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedthe InfluenceObservationMulti-Angle

499

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedtheProgress Towards a Characterization

500

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (DollarsImprovedtheProgress Towards a