Powered by Deep Web Technologies
Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Stable Separator Identified for High-Energy Batteries | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Functional Materials for Energy Stable Separator Identified for High-Energy Batteries November 04, 2014 A combination of carbon coating and cryo-STEM technique enables atomic level...

2

Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,...

3

Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

4

Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

5

New Mexico Natural Gas Wet After Lease Separation, Reserves in...  

U.S. Energy Information Administration (EIA) Indexed Site

After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) New Mexico Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion...

6

California--State Offshore Natural Gas Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) California--State Offshore Natural Gas Wet After Lease Separation, Reserves in Nonproducing...

7

,"Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

8

,"Colorado Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

9

,"New York Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

10

,"New York Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

11

,"California Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

12

,"Louisiana State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

13

,"California State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

14

,"Texas State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

15

California State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 234 1980's 166 256 254 243 235 1990's 194 60 63 65 63 59 49 56 44 77 2000's 91 85 91 83 87 90 90 83 57 57 2010's 66 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

16

Texas State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,112 1,073 739 634 564 610 1990's 461 477 350 337 230 313 293 290 350 419 2000's 400 468 436 456 321 265 305 261 220 164 2010's 131 118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 TX, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

17

Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After

18

Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 142 1980's 146 181 47 50 63 52 95 53 56 48 1990's 50 62 82 87 56 37 40 13 22 13 2000's 23 64 80 120 98 118 120 226 263 271 2010's 353 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Miscellaneous Nonassociated Natural Gas Proved Reserves, Wet After

19

Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 432 1980's 282 165 158 396 364 395 522 477 749 686 1990's 844 805 780 763 780 699 715 594 548 777 2000's 717 631 772 823 767 714 801 926 886 799 2010's 742 684 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease

20

Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 26 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Nonassociated Natural Gas Proved Reserves, Wet After Lease

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

California Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,881 1980's 1,792 1,424 1,230 1,120 1,006 1990's 911 901 799 817 808 736 610 570 453 355 2000's 754 842 796 759 767 799 780 686 621 612 2010's 503 510 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 California Nonassociated Natural Gas Proved Reserves, Wet After

22

Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 733 1980's 883 758 719 824 774 689 577 569 491 432 1990's 408 437 352 328 357 326 347 281 228 227 2000's 214 159 214 269 193 153 192 179 148 77 2010's 72 77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

23

North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 284 1980's 355 401 448 416 376 319 317 302 327 312 1990's 316 290 301 311 293 255 257 274 240 225 2000's 223 225 209 181 145 165 182 155 119 143 2010's 152 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

24

Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

25

Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

26

New York Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New York Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 211 1980's 208 262 226 295 387 367 457 410 351 364 1990's 354 331 329 264 240 195 229 223 217 212 2000's 320 311 315 365 324 346 361 365 360 196 2010's 271 245 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

27

Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 786 1980's 1,186 1,247 789 813 748 793 725 704 733 821 1990's 834 782 814 631 672 739 755 727 737 784 2000's 822 822 820 956 872 837 874 848 817 681 2010's 657 522 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

28

Liquid absorbent solutions for separating nitrogen from natural gas  

DOE Patents [OSTI]

Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Redmond, OR); Lyon, David K. (Bend, OR); Miller, Warren K. (Bend, OR)

2000-01-01T23:59:59.000Z

29

Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,269 1,351 1,478 1,209 1,273 1990's 1,019 1,082 845 946 988 862 783 743 571 661 2000's 721 772 512 527 394 433 442 392 934 728 2010's 386 519 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Natural Gas Reserves Summary as of Dec. 31

30

Miscellaneous States Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Miscellaneous States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 156 1980's 180 193 74 81 77 77 136 66 84 87 1990's 72 76 93 96 67 69 68 44 39 67 2000's 42 83 100 134 110 132 139 241 272 349 2010's 363 393 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Miscellaneous Natural Gas Reserves Summary as of Dec. 31

31

North Dakota Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 485 1980's 594 654 696 673 643 650 610 578 593 625 1990's 650 533 567 585 568 518 512 531 501 475 2000's 487 495 524 497 465 508 539 572 603 1,213 2010's 1,869 2,652 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North Dakota Natural Gas Reserves Summary as of Dec. 31

32

Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 837 1980's 1,308 1,336 870 921 825 884 823 801 834 889 1990's 920 848 875 684 727 792 806 769 789 851 2000's 892 907 914 1,068 1,002 998 1,069 1,067 1,014 993 2010's 959 792 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Montana Natural Gas Reserves Summary as of Dec. 31

33

California - Coastal Region Onshore Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 395 1980's 330 325 384 405 284 277 275 255 232 238 1990's 232 231 215 201 205 163 168 176 118 233 2000's 244 185 197 174 196 277 214 212 151 169 2010's 180 173 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Coastal Region Onshore Natural Gas Reserves Summary as of Dec.

34

Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

35

Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Associated-Dissolved Natural Gas Proved Reserves, Wet After

36

Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 122 99 86 64 90 81 69 62 69 57 1990's 53 45 55 59 117 110 119 112 106 100 2000's 93 96 102 92 88 87 50 110 1 7 2010's 30 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Associated-Dissolved Natural Gas Proved Reserves, Wet After

37

California Federal Offshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 322 1980's 414 1,337 1,466 1,570 1,519 1990's 1,469 1,174 1,136 1,123 1,187 1,289 1,266 556 489 536 2000's 576 540 515 511 459 825 811 805 705 740 2010's 725 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore, Pacific (California) Natural Gas Reserves Summary

38

Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 1,923 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

39

Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 680 1980's 659 658 1990's 4,159 5,437 5,840 5,166 4,842 4,886 5,062 4,983 4,615 4,338 2000's 4,241 3,931 3,891 4,313 4,127 3,977 3,945 4,016 3,360 2,919 2010's 2,686 2,522 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

40

Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463 2,916 2,969 2010's 2,995 2,615 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

42

California Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,842 1980's 5,137 4,084 3,893 3,666 3,513 1990's 3,311 3,114 2,892 2,799 2,506 2,355 2,193 2,390 2,332 2,505 2000's 2,952 2,763 2,696 2,569 2,773 3,384 2,935 2,879 2,538 2,926 2010's 2,785 3,042 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 California Natural Gas Reserves Summary as of Dec. 31

43

Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,676 13,334 12,852 12,620 12,912 1990's 12,151 11,363 10,227 9,541 10,145 9,891 10,077 10,036 9,480 9,646 2000's 9,512 10,040 9,190 9,538 9,792 10,679 10,710 10,292 11,816 20,970 2010's 29,517 30,545 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Louisiana Natural Gas Reserves Summary as of Dec. 31

44

Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 2,446 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Virginia Natural Gas Reserves Summary as of Dec. 31

45

Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,803 46,620 44,319 42,192 41,404 41,554 1990's 41,411 39,288 38,141 37,847 39,020 39,736 41,592 41,108 40,793 43,350 2000's 45,419 46,462 47,491 48,717 53,275 60,178 65,805 76,357 81,843 85,034 2010's 94,287 104,454 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Texas Natural Gas Reserves Summary as of Dec. 31

46

Mississippi Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Mississippi Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,511 1980's 1,776 2,042 1,803 1,603 1,496 1,364 1,304 1,223 1,146 1,108 1990's 1,129 1,061 873 800 653 667 634 583 662 681 2000's 620 663 746 748 692 758 816 958 1,035 922 2010's 858 868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Mississippi Natural Gas Reserves Summary as of Dec. 31

47

Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 504 1980's 536 561 592 600 647 806 883 940 957 1,015 1990's 1,047 1,187 1,126 1,036 1,025 1,102 1,046 1,429 1,295 1,530 2000's 1,837 1,950 1,999 1,971 1,982 2,240 2,369 2,588 2,846 2,919 2010's 2,785 2,128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Natural Gas Reserves Summary as of Dec. 31

48

Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Natural Gas Reserves Summary as of Dec. 31

49

West Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,593 1980's 2,437 1,881 2,169 2,238 2,173 2,104 2,207 2,210 2,299 2,244 1990's 2,243 2,513 2,293 2,408 2,569 2,514 2,722 2,887 2,925 2,952 2000's 2,929 2,777 3,477 3,376 3,489 4,553 4,638 4,865 5,243 6,066 2010's 7,134 10,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

50

Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 601 1980's 668 494 481 529 419 375 665 1,002 943 1,011 1990's 922 967 938 890 1,022 1,018 1,778 1,975 2,158 2,086 2000's 2,558 2,873 3,097 3,219 2,961 2,808 2,925 3,512 3,105 2,728 2010's 2,903 2,472 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

51

Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,657 1980's 2,970 2,969 3,345 3,200 2,932 2,928 3,008 2,912 3,572 4,290 1990's 4,249 5,329 5,701 5,817 5,948 6,520 7,009 6,627 7,436 8,591 2000's 9,877 11,924 13,251 14,707 13,956 15,796 16,141 20,642 22,159 22,199 2010's 23,001 23,633 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

52

Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 1980's 200 259 206 173 208 167 190 219 177 236 1990's 510 682 762 1,162 1,088 1,072 1,055 533 772 781 2000's 960 1,025 1,097 1,186 1,293 1,326 1,541 1,838 2,010 1,882 2010's 2,371 2,518 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

53

Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,559 1980's 1,602 1,637 1,800 1,887 2,051 1,875 1,861 1,873 1,843 1,637 1990's 1,672 1,536 1,619 1,462 1,525 1,462 1,383 1,423 1,294 1,505 2000's 1,545 1,589 1,616 1,629 1,797 1,921 2,227 3,269 5,616 10,852 2010's 14,152 16,328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

54

Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,971 35,867 34,584 32,852 32,309 32,349 1990's 32,412 30,729 29,474 29,967 31,071 31,949 33,432 33,322 33,429 35,470 2000's 38,585 40,376 41,104 42,280 46,728 53,175 58,736 68,827 74,284 76,272 2010's 84,157 90,947 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

55

California Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,961 1980's 3,345 2,660 2,663 2,546 2,507 1990's 2,400 2,213 2,093 1,982 1,698 1,619 1,583 1,820 1,879 2,150 2000's 2,198 1,922 1,900 1,810 2,006 2,585 2,155 2,193 1,917 2,314 2010's 2,282 2,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

56

Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 502 1980's 525 547 580 581 630 793 866 921 938 993 1990's 1,039 1,177 1,118 1,030 978 1,075 1,022 1,403 1,275 1,501 2000's 1,810 1,925 1,974 1,946 1,963 2,210 2,333 2,554 2,812 2,887 2010's 2,674 2,030 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

57

Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,316 10,943 10,724 10,826 11,171 1990's 10,597 9,969 9,060 8,615 9,165 8,890 9,038 9,020 8,569 8,667 2000's 8,704 9,245 8,520 8,952 9,235 10,091 10,149 9,651 10,581 19,898 2010's 28,838 29,906 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

58

Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,058 1980's 4,828 4,373 4,188 3,883 4,120 3,131 2,462 2,983 2,910 2,821 1990's 2,466 2,924 3,002 3,492 3,326 3,310 3,216 2,957 2,768 2,646 2000's 2,564 2,309 2,157 2,081 2,004 1,875 1,447 1,270 1,139 1,090 2010's 1,021 976 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

59

Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,334 1980's 1,551 1,252 1,200 1,353 1,193 1,064 1,242 1,571 1,434 1,443 1990's 1,330 1,404 1,290 1,218 1,379 1,344 2,125 2,256 2,386 2,313 2000's 2,772 3,032 3,311 3,488 3,154 2,961 3,117 3,691 3,253 2,805 2010's 2,975 2,549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

60

West Virginia Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) West Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,669 1980's 2,559 1,944 2,252 2,324 2,246 2,177 2,272 2,360 2,440 2,342 1990's 2,329 2,672 2,491 2,598 2,702 2,588 2,793 2,946 2,968 3,040 2000's 3,062 2,825 3,498 3,399 3,509 4,572 4,654 4,881 5,266 6,090 2010's 7,163 10,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,725 1980's 1,796 1,821 1,974 2,081 2,240 2,032 2,011 2,018 2,000 1,782 1990's 1,739 1,672 1,752 1,555 1,610 1,566 1,472 1,479 1,332 1,546 2000's 1,584 1,619 1,654 1,666 1,837 1,967 2,271 3,306 5,628 10,872 2010's 14,181 16,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

62

Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,824 1980's 10,065 10,443 10,128 10,183 9,981 9,844 11,093 11,089 10,530 10,509 1990's 10,004 9,946 10,302 9,872 9,705 9,093 8,145 7,328 6,862 6,248 2000's 5,682 5,460 5,329 5,143 5,003 4,598 4,197 4,248 3,795 3,500 2010's 3,937 3,747 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

63

Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,834 1980's 9,413 9,659 10,155 10,728 11,014 11,229 10,393 10,572 10,903 11,276 1990's 10,433 10,433 11,305 11,387 11,351 12,712 13,084 14,321 14,371 14,809 2000's 17,211 19,399 21,531 22,716 23,640 24,722 24,463 30,896 32,399 36,748 2010's 36,526 36,930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

64

Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,516 1980's 951 1,265 1,430 1,882 1,576 1,618 1,562 1,650 2,074 1,644 1990's 1,722 1,631 1,533 1,722 1,806 1,488 1,702 1,861 1,848 1,780 2000's 1,740 1,782 2,225 2,497 2,371 2,793 3,064 3,377 3,594 7,018 2010's 14,068 26,719 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

65

New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

- West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9,934 1980's 10,001 10,536 9,231 8,654 8,341 7,947 9,344 9,275 15,000 13,088 1990's 14,804 16,131 16,854 16,494 15,156 15,421 14,620 13,586 13,122 13,292 2000's 14,396 14,541 14,339 14,476 15,632 15,114 14,727 13,923 12,855 12,004 2010's 11,704 11,111 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

66

Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,796 1980's 8,039 8,431 9,095 9,769 10,147 10,519 9,702 9,881 10,287 10,695 1990's 9,860 9,861 10,681 10,885 10,740 11,833 12,260 13,471 13,577 14,096 2000's 16,559 18,911 20,970 22,266 23,278 24,338 24,116 30,531 32,176 36,386 2010's 36,192 36,612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

67

Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,299 1980's 11,656 13,066 14,714 14,992 14,858 14,929 15,588 15,686 15,556 14,948 1990's 15,147 14,112 13,249 12,549 12,981 13,067 12,929 13,296 13,321 12,252 2000's 13,430 13,256 14,576 15,176 16,301 17,337 17,735 19,225 21,155 23,115 2010's 26,873 27,683 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

68

New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,634 1980's 2,266 2,377 2,331 2,214 2,117 2,001 1,750 1,901 2,030 2,131 1990's 2,290 2,073 1,948 1,860 1,791 1,648 1,612 1,694 1,694 1,880 2000's 2,526 2,571 2,632 2,205 2,477 2,569 2,605 2,633 2,737 2,658 2010's 2,612 2,475 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

69

New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,568 1980's 12,267 12,913 11,562 10,868 10,458 9,948 11,094 11,176 17,030 15,219 1990's 17,094 18,204 18,802 18,354 16,947 17,069 16,232 15,280 14,816 15,172 2000's 16,922 17,112 16,971 16,681 18,109 17,683 17,332 16,556 15,592 14,662 2010's 14,316 13,586 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

70

Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation,  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 143,852 1980's 139,421 143,515 142,984 143,469 141,226 138,464 139,070 135,256 141,211 139,798 1990's 141,941 140,584 138,883 136,953 138,213 139,369 141,136 140,382 139,015 142,098 2000's 154,113 159,612 163,863 166,512 171,547 183,197 189,329 213,851 224,873 249,406 2010's 280,880 305,010 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013

71

,"U.S. Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

72

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

73

Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 167 1980's 185 139 112 132 110 115 132 115 103 101 1990's 114 115 94 93 75 67 82 51 60 52 2000's 40 105 66 85 80 83 82 83 85 83 2010's 79 127 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

74

Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,047 1980's 1,417 800 984 1,635 1,178 938 898 594 480 589 1990's 371 376 381 343 315 355 399 391 342 402 2000's 469 340 346 304 208 184 174 101 99 97 2010's 90 74 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

75

Evaluation of gas-liquid separation performance of natural gas filters  

Science Journals Connector (OSTI)

Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filte...

Baisong Li; Zhongli Ji; Xue Yang

2009-12-01T23:59:59.000Z

76

,"U.S. Natural Gas Proved Reserves, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2013,"6301979" ,"Release...

77

West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 122 63 83 86 73 73 65 150 141 98 1990's 86 159 198 190 133 74 71 59 43 88 2000's 98 48 21 23 20 19 16 16 23 24 2010's 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

78

New York Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New York Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 211 1980's 208 264 229 295 389 369 457 410 351 368 1990's 354 331 329 264 242 197 232 224 218 221 2000's 322 318 315 365 324 349 363 375 389 196 2010's 281 253 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 New York Natural Gas Reserves Summary as of Dec. 31

79

North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717 2,511 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

80

Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 842 1980's 862 947 947 1,210 937 850 833 828 840 560 1990's 627 536 550 580 513 539 610 559 510 465 2000's 356 290 294 383 364 932 1,663 2,412 2,750 2,424 2010's 2,625 3,887 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 TX, RRC District 7B Natural Gas Reserves Summary as of Dec. 31

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 31,849 29,914 28,186 27,586 28,813 29,518 29,419 29,011 27,426 26,598 2000's 27,467 27,640 25,862 23,033 19,747 18,252 15,750 14,813 13,892 12,856 2010's 12,120 10,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore U.S. Natural Gas Reserves Summary as of Dec. 31

82

Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,034 1980's 2,566 2,726 2,565 2,637 2,626 2,465 2,277 2,373 2,131 1,849 1990's 1,825 1,479 1,484 1,425 1,468 1,371 1,430 1,732 1,720 1,974 2000's 2,045 1,863 1,867 1,849 1,934 2,175 2,166 2,386 2,364 1,909 2010's 2,235 3,690 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

83

Texas - RRC District 8A Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,556 1980's 1,465 1,545 1,457 1,345 1,315 1,353 1,309 1,301 1,291 1,550 1990's 1,547 1,542 1,598 1,463 1,587 1,333 1,294 1,247 1,115 1,557 2000's 1,215 1,190 1,167 1,137 1,281 1,471 1,384 1,531 1,257 1,289 2010's 1,228 1,289 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

84

Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,080 1980's 2,543 2,750 2,928 2,855 3,169 3,255 3,039 3,032 3,101 3,497 1990's 3,829 3,592 3,621 3,578 3,660 3,468 4,063 3,843 3,496 3,593 2000's 4,132 3,757 4,167 4,791 5,190 5,702 5,727 6,028 5,529 5,430 2010's 5,432 5,236 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

85

Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,189 1980's 1,192 1,309 1,369 1,529 1,955 2,140 2,238 2,224 2,090 1,925 1990's 1,951 1,930 1,818 1,931 2,074 1,923 2,141 1,749 1,995 2,350 2000's 3,217 4,289 4,653 5,460 6,583 9,611 12,648 17,274 20,460 22,623 2010's 24,694 28,187 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

86

Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 808 1980's 751 1,070 1,264 1,100 1,060 1,043 1,024 984 927 829 1990's 917 874 797 814 863 868 870 932 864 1,360 2000's 1,854 2,552 3,210 3,639 4,555 4,734 6,765 7,985 9,548 11,522 2010's 13,172 10,920 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

87

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8,559 1980's 8,366 8,256 8,692 8,612 8,796 8,509 8,560 7,768 7,284 7,380 1990's 7,774 7,339 7,041 7,351 7,870 8,021 8,123 8,483 8,824 9,351 2000's 10,118 10,345 9,861 9,055 9,067 9,104 8,474 8,327 7,930 7,057 2010's 7,392 10,054 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

88

Separating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method  

E-Print Network [OSTI]

in the upper ocean, and as a proxy for anthropogenic CO2 concentration. Both the power and the difficultySeparating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method M. Key Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey, USA

89

Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,718 1980's 9,785 9,250 8,992 9,078 8,294 8,250 8,330 7,871 7,810 7,531 1990's 7,391 6,793 6,534 6,131 6,018 6,052 6,050 6,030 5,547 6,122 2000's 6,136 6,007 6,056 5,835 6,002 6,800 6,855 7,303 7,586 7,440 2010's 8,105 8,088 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

90

Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,289 1980's 6,927 6,720 6,731 6,485 6,060 6,044 5,857 5,512 5,300 5,213 1990's 4,919 5,061 4,859 4,478 4,669 4,910 4,845 4,613 4,744 4,688 2000's 4,433 4,263 4,299 4,510 5,383 5,430 5,950 6,932 7,601 7,594 2010's 8,484 8,373 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

91

Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,479 1980's 1,699 965 1,142 2,031 1,542 1,333 1,420 1,071 1,229 1,275 1990's 1,215 1,181 1,161 1,106 1,095 1,054 1,114 985 890 1,179 2000's 1,186 971 1,118 1,127 975 898 975 1,027 985 896 2010's 832 758 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Ohio Natural Gas Reserves Summary as of Dec. 31

92

Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,832 10,753 9,735 9,340 9,095 9,205 1990's 8,999 8,559 8,667 7,880 7,949 7,787 8,160 7,786 7,364 7,880 2000's 6,833 6,089 6,387 6,437 6,547 7,003 7,069 7,530 7,559 8,762 2010's 10,130 13,507 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

93

U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New  

Gasoline and Diesel Fuel Update (EIA)

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 264 1980's 369 271 365 326 296 341 189 155 339 174 1990's 250 334 292 163 202 634 338 187 218 424 2000's 249 477 331 124 97 79 65 73 820 169 2010's 186 160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas New Reservoir Discoveries in Old Fields, Wet After Lease Separation

94

New Mexico - West Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico - West Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,085 1980's 10,157 10,686 9,377 8,834 8,535 8,128 9,558 9,488 15,259 13,266 1990's 14,988 16,287 16,981 16,601 15,253 15,540 14,728 13,692 13,220 13,384 2000's 14,511 14,640 14,442 14,565 15,722 15,212 14,809 14,010 12,941 12,086 2010's 11,809 11,254 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

95

Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,017 1980's 1,284 2,057 2,253 2,472 2,325 2,288 2,205 2,341 1,984 1,940 1990's 1,887 2,001 2,018 2,198 1,917 1,701 1,747 2,005 2,502 3,371 2000's 4,472 4,753 4,274 3,617 3,951 4,359 5,211 6,463 6,714 7,411 2010's 7,146 8,108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

96

New Mexico Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,391 1980's 13,956 14,562 13,082 12,371 12,027 11,438 12,540 12,621 18,483 16,597 1990's 18,529 19,758 20,399 19,939 18,588 18,747 17,925 16,700 16,259 16,750 2000's 18,509 18,559 18,453 18,226 19,687 19,344 19,104 18,397 17,347 16,644 2010's 16,529 16,138 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

97

Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27,217 1980's 28,567 28,676 30,814 30,408 30,356 31,092 30,893 30,732 6,269 6,198 1990's 6,927 6,729 6,723 6,494 6,487 6,265 6,080 7,716 7,275 7,209 2000's 6,768 6,592 6,376 6,267 6,469 6,362 8,886 10,752 6,627 8,093 2010's 7,896 8,535 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

98

New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,823 1980's 1,689 1,649 1,520 1,503 1,569 1,490 1,446 1,445 1,453 1,378 1990's 1,435 1,554 1,597 1,585 1,641 1,678 1,693 1,420 1,443 1,578 2000's 1,588 1,447 1,482 1,545 1,578 1,661 1,772 1,841 1,755 1,982 2010's 2,213 2,552 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

99

Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

Daling, P.M.; Graham, T.M.

1997-08-01T23:59:59.000Z

100

A Transient Model of Induced Natural Circulation Thermal Cycling for Hydrogen Isotope Separation  

SciTech Connect (OSTI)

The property of selective temperature dependence of adsorption and desorption of hydrogen isotopes by palladium is used for isotope separation. A proposal to use natural circulation of nitrogen to alternately heat and cool a packed bed of palladium coated beads is under active investigation, and a device consisting of two interlocking natural convection loops is being designed. A transient numerical model of the device has been developed to aid the design process. It is a one-dimensional finite-difference model, using the Boussinesq approximation. The thermal inertia of the pipe walls and other heat structures as well as the heater control logic is included in the model. Two system configurations were modeled and results are compared.

SHADDAY, MARTIN

2005-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lower 48 States Natural Gas, Wet After Lease Separation Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Lower 48 States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176,060 1980's 172,864 176,385 174,252 174,755 171,508 167,979 167,754 162,713 167,820 166,409 1990's 168,183 165,672 163,584 160,504 162,126 163,901 165,851 165,048 162,400 166,304 2000's 177,179 182,842 187,028 188,797 192,727 205,071 210,083 235,767 247,269 274,696 2010's 308,730 339,298 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

102

Table 15. Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old FieldsProduction Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 97,449 1,584 25,993 23,455 22,694 27,038 32,764 232 699 7,994 131,616 Alabama 0 0 0 0 0 0 0 0 0 0 0 Arkansas 12,526 655 502 141 6,087 6,220 2,073 0 0 940 14,808 California 0 1 912 0 0 0 43 0 0 101 855 Colorado 4 0 4 0 0 0 5 0 0 3 10 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 0 0 0 0 0 0 0 0 0 0 0 Kentucky 10 0 44 11 45 45 2 0 0 4 41 Louisiana 20,070 -172 2,002 3,882 3,782 4,291 5,367 0 140 2,084 21,950 North Onshore 20,070 -172 2,002 3,882 3,782 4,291 5,367

103

Table 10. Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 8,917 -2 938 207 36 222 4 0 3 328 9,511 Lower 48 States 308,730 2,717 55,077 55,920 44,539 47,651 47,631 987 1,257 24,293 339,298 Alabama 2,724 -45 472 163 595 398 3 2 0 226 2,570 Arkansas 14,181 729 631 324 6,762 6,882 2,094 0 23 1,080 16,374 California 2,785 917 1,542 1,959 49 55 75 0 0 324 3,042 Coastal Region Onshore 180 15 21 32 0 0 1 0 0 12 173 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 2,447 895 1,498

104

Table 12. Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases SalesAcquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 1,021 -1 95 128 34 171 1 0 3 152 976 Lower 48 States 280,880 2,326 47,832 50,046 43,203 45,818 41,677 376 1,097 21,747 305,010 Alabama 2,686 -48 470 163 586 378 3 0 0 218 2,522 Arkansas 14,152 705 581 311 6,724 6,882 2,094 0 23 1,074 16,328 California 503 -12 118 32 48 44 1 0 0 64 510 Coastal Region Onshore 2 0 0 1 0 0 0 0 0 0 1 Los Angeles Basin Onshore 0 0 0 0 0 0 0 0 0 0 0 San Joaquin Basin Onshore 498 -12 116 31 47 44 1 0 0 63 506 State Offshore

105

U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir  

Gasoline and Diesel Fuel Update (EIA)

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,373 1980's 2,279 2,809 3,155 2,745 2,482 2,712 1,666 1,401 1,640 2,139 1990's 2,242 1,321 1,481 1,767 3,404 1,884 2,871 2,268 2,022 1,841 2000's 2,211 2,420 1,421 1,529 1,147 1,164 1,132 1,171 858 2,487 2010's 1,515 1,100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas New Reservoir Discoveries in Old Fields,

106

U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,637 1980's 2,648 3,080 3,520 3,071 2,778 3,053 1,855 1,556 1,979 2,313 1990's 2,492 1,655 1,773 1,930 3,606 2,518 3,209 2,455 2,240 2,265 2000's 2,463 2,898 1,752 1,653 1,244 1,243 1,197 1,244 1,678 2,656 2010's 1,701 1,260 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: New Reservoir Discoveries in Old Fields of Natural Gas, Wet After

107

Table 13. Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 7,896 -1 843 79 2 51 3 0 0 176 8,535 Lower 48 States 27,850 391 7,245 5,874 1,336 1,833 5,954 611 160 2,546 34,288 Alabama 38 3 2 0 9 20 0 2 0 8 48 Arkansas 29 24 50 13 38 0 0 0 0 6 46 California 2,282 929 1,424 1,927 1 11 74 0 0 260 2,532 Coastal Region Onshore 178 15 21 31 0 0 1 0 0 12 172 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 1,949 907 1,382 1,892 0 0 70 0 0 237 2,179 State Offshore 63 1 9 0 1 8 3 0 0 4 79

108

Protocol for Identifying the Presence of and Understanding the Nature of Soluble, Non-pertechnetate Technetium in Hanford Tank Supernatants  

SciTech Connect (OSTI)

The objective of this report is to propose a method to evaluate the presence and extent of soluble, non-pertechnetate Tc in Hanford tank supernatants as well as methods that might be used to gain insight as to the nature of the specie(s) that make up this fraction. This study will then provide a recommendation as to the preferred approach for identifying and quantifying the presence of Hanford tank supernatant-soluble, non-pertechnetate, technetium. The recommendation will also describe an approach to address the issue of whether inductively coupled plasma mass spectrometry (ICP-MS) analysis, which is useful as a monitoring tool for Tc, may be confounded by the presence of other mass 99 species.

Rapko, Brian M.

2014-02-27T23:59:59.000Z

109

Identifying the concepts, principles, and applications of technology needed by entry-level workers in food, environmental, and natural resource systems in 2010  

E-Print Network [OSTI]

IDENTIFYING THE CONCEPTS, PRINCIPLES, AND APPLICATIONS OF TECHNOLOGY NEEDED BY ENTRY-LEVEL WORKERS IN FOOD, ENVIRONMENTAL, AND NATURAL RESOURCE SYSTEMS IN 2010 A Thesis RYAN ALLAN HEGER Submitted to the Office of Graduate Studies of Texas A..., ENVIRONMENTAL, AND NATURAL RESOURCE SYSTEMS IN 2010 A Thesis by RYAN ALLAN HEGER Submitted to Texas A8 M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Glen C. Shinn (Chair...

Heger, Ryan Allan

2012-06-07T23:59:59.000Z

110

Natural gas cleanup: Evaluation of a molecular sieve carbon as a pressure swing adsorbent for the separation of methane/nitrogen mixtures  

SciTech Connect (OSTI)

This report describes the results of a preliminary evaluation to determine the technical feasibility of using a molecular sieve carbon manufactured by the Takeda Chemical Company of Japan in a pressure owing adsorption cycle for upgrading natural gas (methane) contaminated with nitrogen. Adsorption tests were conducted using this adsorbent in two, four, and five-step adsorption cycles. Separation performance was evaluated in terms of product purity, product recovery, and sorbent productivity for all tests. The tests were conducted in a small, single-column adsorption apparatus that held 120 grams of the adsorbent. Test variables included adsorption pressure, pressurization rate, purge rate and volume, feed rate, and flow direction in the steps from which the product was collected. Sorbent regeneration was accomplished by purging the column with the feed gas mixture for all but one test series where a pure methane purge was used. The ratio between the volumes of the pressurization gas and the purge gas streams was found to be an important factor in determining separation performance. Flow rates in the various cycle steps had no significant effect. Countercurrent flow in the blow-down and purge steps improved separation performance. Separation performance appears to improve with increasing adsorption pressure, but because there are a number of interrelated variables that are also effected by pressure, further testing will be needed to verify this. The work demonstrates that a molecular sieve carbon can be used to separate a mixture of methane and nitrogen when used in a pressure swing cycle with regeneration by purge. Further work is needed to increase product purity and product recovery.

Grimes, R.W.

1994-06-01T23:59:59.000Z

111

Ultracapacitor separator  

DOE Patents [OSTI]

An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

Wei, Chang (Niskayuna, NY); Jerabek, Elihu Calvin (Glenmont, NY); LeBlanc, Jr., Oliver Harris (Schenectady, NY)

2001-03-06T23:59:59.000Z

112

Natural  

Gasoline and Diesel Fuel Update (EIA)

Summary of U.S. Natural Gas Imports and Exports, 1992-1996 Table 1992 1993 1994 1995 1996 Imports Volume (million cubic feet) Pipeline Canada............................. 2,094,387 2,266,751 2,566,049 2,816,408 2,883,277 Mexico .............................. 0 1,678 7,013 6,722 13,862 Total Pipeline Imports....... 2,094,387 2,268,429 2,573,061 2,823,130 2,897,138 LNG Algeria .............................. 43,116 81,685 50,778 17,918 35,325 United Arab Emirates ....... 0 0 0 0 4,949 Total LNG Imports............. 43,116 81,685 50,778 17,918 40,274 Total Imports......................... 2,137,504 2,350,115 2,623,839 2,841,048 2,937,413 Average Price (dollars per thousand cubic feet) Pipeline Canada............................. 1.84 2.02 1.86 1.48 1.96 Mexico .............................. - 1.94 1.99 1.53 2.25 Total Pipeline Imports.......

113

Neptunium separations  

SciTech Connect (OSTI)

Two procedures for the separation of Np are presented; the first involves separation of /sup 239/Np from irradiated /sup 238/U, and the second involves separation of /sup 237/Np from a solution representing that from a dissolved fuel element.

Wild, J.F.

1983-05-09T23:59:59.000Z

114

Substituted polyacetylene separation membrane  

DOE Patents [OSTI]

A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

Pinnau, I.; Morisato, Atsushi

1998-01-13T23:59:59.000Z

115

Substituted polyacetylene separation membrane  

DOE Patents [OSTI]

A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

1998-01-13T23:59:59.000Z

116

Separation technologies: Marketing factors  

SciTech Connect (OSTI)

The chemical and petroleum industries consume approximately 5.8 quads per year of energy. Within these industries, 43% of the energy is used by separation processes to recover and purify products. With 40,000 distillation columns in operation, distillation is used to make 95% of all separations in these two industries. Although separations are identified which are amenable to advanced separation technologies (that make distillation more energy-efficient), they are not implemented because of commercial barriers. The focus of this work was on barriers which can by overcome by implementing advanced separation-related technologies. Barriers were screened and prioritized, and Return On Investment (ROI) was calculated for each project designed to overcome a high priority barrier. Economic analyses were based on specific separations such as ethylene-ethane, propylene-propane, ethyl benzene-styrene, and ethanol-water. These separations were selected because they consume significant amounts of energy for separation. Thus, conclusions are based on a limited number of case studies; an approach necessary to complete this project within a reasonable time frame. Recommended projects are discussed and summarized.

Humphrey, J.L.; Seibert, A.F.; Goodpastor, C.V.

1991-12-01T23:59:59.000Z

117

Separation system  

DOE Patents [OSTI]

A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

Rubin, Leslie S. (Newton, MA)

1986-01-01T23:59:59.000Z

118

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

119

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

120

Separation Processes, Second Edition  

E-Print Network [OSTI]

by; Uranium isotopes separation) Iteration methods (seemethod for activity coefficients, 43, 481 Uranium isotopes separation,

King, C. Judson

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Efficient separations & processing crosscutting program  

SciTech Connect (OSTI)

The Efficient Separations and Processing Crosscutting Program (ESP) was created in 1991 to identify, develop, and perfect chemical and physical separations technologies and chemical processes which treat wastes and address environmental problems throughout the DOE complex. The ESP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R & D) leading to the demonstration or use of these separations technologies by other organizations within the Department of Energy (DOE), Office of Environmental Management.

NONE

1996-08-01T23:59:59.000Z

122

Innovative Separations Technologies  

SciTech Connect (OSTI)

Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

J. Tripp; N. Soelberg; R. Wigeland

2011-05-01T23:59:59.000Z

123

Tri-reforming of Natural Gas Using CO2 in Flue Gas of Power Plants without CO2 Pre-separation for Production of Synthesis Gas with Desired H2/CO Ratios  

Science Journals Connector (OSTI)

Most existing CO2 conversion processes use pure CO2 that comes from CO2 recovery, separation and subsequent purification, which are all energy- consuming steps that add up the cost and can lead to additional CO2 ...

Chunshan Song; Wei Pan; Srinivas T. Srimat

2002-01-01T23:59:59.000Z

124

Guayule resin separation and purification  

E-Print Network [OSTI]

fraction and reducing the presence of these terpenes to practically non-detectable levels in the polar fraction. A single component, as identified by gas chromatograph (GC) was also effectively extracted from the Texas A&M resins. Saponification..., using an FID Solvent fractionation of the Firestone resin between methanol and hexane was also apparently effective in separating the low molecular weight rubber. Figure 16 and Figure 17 show the gas chromatographs of the bottom phase (fraction "a...

Bajwa, Mohinder P.S.

1992-01-01T23:59:59.000Z

125

Actinide separations conference  

SciTech Connect (OSTI)

This report contains the abstracts for 55 presentations given at the fourteenth annual Actinide Separations Conference. (JDL)

Not Available

1990-01-01T23:59:59.000Z

126

Gas Separations using Ceramic Membranes  

SciTech Connect (OSTI)

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

127

Membrane Separations Research  

E-Print Network [OSTI]

MEMBRANE SEPARATIONS RESEARCH James R. Fair Chemical Engineering Department The University of Texas at Austin Austin, TX 78712 ABSTRACT The use of membranes for separating gaseous and liquid mixtures has grown dramatically in the past 15... years. Applications have been dominated by light gas separations and water purification. During this pioneering period, equipment containing the membrane suIfaces has been developed to a point where failures are minimal and the membranes themselves...

Fair, J. R.

128

Atomic Spectroscopy and Separated Isotopes  

Science Journals Connector (OSTI)

The advantages in the use of separated isotopes in atomic spectroscopy for the determination of nuclear momentsI ? Q and for studies of the isotope-shift phenomena are discussed. Illustrations of spectra are given for mercury uranium and samarium. In addition a summary is given of twenty-two so-called problem nuclei i.e. those naturally occurring isotopes for which the nuclear moments are completely uncertain. Concluding remarks are made on such problems as the evaluation of the absolute magnitude of isotope shifts the role of “forbidden transitions” in isotope spectra and the potential future value of spectro-isotopic assay techniques.

J. R. McNally Jr.

1952-01-01T23:59:59.000Z

129

Separators for flywheel rotors  

DOE Patents [OSTI]

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

Bender, D.A.; Kuklo, T.C.

1998-07-07T23:59:59.000Z

130

Separators for flywheel rotors  

DOE Patents [OSTI]

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

Bender, Donald A. (Dublin, CA); Kuklo, Thomas C. (Oakdale, CA)

1998-01-01T23:59:59.000Z

131

Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides requirements for managing the Department of Energy (DOE) classification and declassification program, including details for classifying and declassifying information, documents, and material. This Manual also supplements DOE O 200.1, INFORMATION MANAGEMENT PROGRAM, which combines broad information management topics under a single Order. Specific requirements for each topic are issued in separate Manuals. Cancels DOE M 475.1-1. Canceled by DOE M 475.1-1B

2001-02-26T23:59:59.000Z

132

Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

133

Texas State Offshore Associated-Dissolved Natural Gas, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

134

A Vortex Contactor for Carbon Dioxide Separations  

SciTech Connect (OSTI)

Many analysts identify carbon dioxide (CO2) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA) Greenhouse Gas Research and Development Programme cited separation costs from $35 to $264 per tonne of CO2 avoided for a conventional coal fired power plant utilizing existing capture technologies. Because these costs equate to a greater than 40% increase in current power generation rates, it appears obvious that a significant improvement in CO2 separation technology is required if a negative impact on the world economy is to be avoided.

Raterman, Kevin Thomas; Mc Kellar, Michael George; Turner, Terry Donald; Podgorney, Anna Kristine; Stacey, Douglas Edwin; Stokes, B.; Vranicar, J.

2001-05-01T23:59:59.000Z

135

Power generation method including membrane separation  

DOE Patents [OSTI]

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

136

Metal alloy identifier  

DOE Patents [OSTI]

To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

1987-01-01T23:59:59.000Z

137

USABC Battery Separator Development  

Broader source: Energy.gov (indexed) [DOE]

Separator Development P.I. - Ron Smith Presenter - Kristoffer Stokes, Ph.D. Celgard, LLC Project ID ES007 May 10, 2011 This presentation does not contain any proprietary,...

138

successfully demonstrated the separation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

successfully demonstrated the separation and capture of 90 percent successfully demonstrated the separation and capture of 90 percent of the c arbon dioxide (CO 2 ) from a pulve rized coal plant. In t he ARRA-funded project, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris(tm) membrane system, which uses a CO 2 -selective polymeric membrane material and module to capture CO 2 from a plant's flue gas. Since the Polaris(tm) membranes

139

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

140

Separation technologies: Marketing factors. Final report  

SciTech Connect (OSTI)

The chemical and petroleum industries consume approximately 5.8 quads per year of energy. Within these industries, 43% of the energy is used by separation processes to recover and purify products. With 40,000 distillation columns in operation, distillation is used to make 95% of all separations in these two industries. Although separations are identified which are amenable to advanced separation technologies (that make distillation more energy-efficient), they are not implemented because of commercial barriers. The focus of this work was on barriers which can by overcome by implementing advanced separation-related technologies. Barriers were screened and prioritized, and Return On Investment (ROI) was calculated for each project designed to overcome a high priority barrier. Economic analyses were based on specific separations such as ethylene-ethane, propylene-propane, ethyl benzene-styrene, and ethanol-water. These separations were selected because they consume significant amounts of energy for separation. Thus, conclusions are based on a limited number of case studies; an approach necessary to complete this project within a reasonable time frame. Recommended projects are discussed and summarized.

Humphrey, J.L.; Seibert, A.F.; Goodpastor, C.V.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the program to identify information classified under the Atomic Energy Act [Restricted Data (RD), Formerly Restricted Data (FRD), and Transclassified Foreign Nuclear Information (TFNI)] or Executive Order (E.O.) 13526 [National Security Information (NSI)], so that it can be protected against unauthorized dissemination.

2014-10-03T23:59:59.000Z

142

Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes the program to identify information classified under the Atomic Energy Act [Restricted Data (RD), Formerly Restricted Data (FRD), and Transclassified Foreign Nuclear Information (TFNI)]or Executive Order (E.O.) 13526 [National Security Information (NSI)], so that it can be protected against unauthorized dissemination.

2014-06-03T23:59:59.000Z

143

Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes the program to identify information classified under the Atomic Energy Act [Restricted Data (RD), Formerly Restricted Data (FRD), and Transclassified Foreign Nuclear Information (TFNI)] or Executive Order (E.O.) 13526 [National Security Information (NSI)], so that it can be protected against unauthorized dissemination. Cancels DOE O 475.2 and DOE M 475.1-1B.

2011-02-01T23:59:59.000Z

144

Identifying Classified Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes the program to identify information classified under the Atomic Energy Act [Restricted Data (RD) and Formerly Restricted Data (FRD)] or Executive Order 12958, as amended [National Security Information (NSI)], so that it can be protected against unauthorized dissemination. Canceled by DOE O 475.2

2007-08-28T23:59:59.000Z

145

Most Commonly Identified Recommendations  

Broader source: Energy.gov (indexed) [DOE]

Most Commonly Identified Recommendations Most Commonly Identified Recommendations DOE ITP In Depth ITP Energy Assessment Webcast Presented by: Dr. Bin Wu, Director, Professor of Industrial Engineering Dr. Sanjeev Khanna, Assistant Director, Associate Professor of Mechanical Engineering With Contribution From MO IAC Student Engineers: Chatchai Pinthuprapa Jason Fox Yunpeng Ren College of Engineering, University of Missouri. April 16, 2009 Missouri Industrial Assessment Center Missouri IAC is one of the 26 centers founded by the U.S. DOE in the nation. Since its establishment in 2005, we have been working closely with the MoDNR, the MU University Extension, utility providers in the state, etc, to provide education, development and services in industrial energy efficiency. Our services (audits, workshops, etc), have already covered many locations across the state of Missouri.

146

Organic Separation Test Results  

SciTech Connect (OSTI)

Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

2014-09-22T23:59:59.000Z

147

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

148

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

149

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

150

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

151

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

152

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

153

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

154

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

155

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

156

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

157

Florida Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

1 7 56 6 16 15 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 0 0 26 4 16 14 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease Separation 1 7 30 2 0 1...

158

CA, Coastal Region Onshore Natural Gas Reserves Summary as of...  

U.S. Energy Information Administration (EIA) Indexed Site

151 169 180 173 305 284 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 1 1 2 1 2 2 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease Separation 150 168...

159

CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

81 91 92 102 98 90 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 0 0 0 0 0 0 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease Separation 81 91 92 102...

160

Separators for electrochemical cells  

DOE Patents [OSTI]

Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Preferably, the inorganic oxide comprises an hydrated aluminum oxide of the formula Al.sub.2O.sub.3.xH.sub.2O, wherein x is less than 1.0, and wherein the hydrated aluminum oxide comprises organic substituents, preferably comprising a reaction product of a multifunctional monomer and/or organic carbonate with an aluminum oxide, such as pseudo-boehmite and an aluminum oxide. Also provided are electrochemical cells comprising such separators.

Carlson, Steven Allen; Anakor, Ifenna Kingsley

2014-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydrogen isotope separation  

DOE Patents [OSTI]

A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

162

Natural gas treatment process using PTMSP membrane  

DOE Patents [OSTI]

A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

Toy, L.G.; Pinnau, I.

1996-03-26T23:59:59.000Z

163

Natural gas treatment process using PTMSP membrane  

DOE Patents [OSTI]

A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

1996-01-01T23:59:59.000Z

164

,"California Federal Offshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

165

,"Federal Offshore, Pacific (California) Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Pacific (California) Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",...

166

Identifying Provider Counseling Practices Using Natural Language Processing: Gout Example  

Science Journals Connector (OSTI)

National guidelines for a number of health conditions recommend that practitioners assess and reinforce patient's adherence to specific diet and lifestyle modifications. Counseling intervention has shown to have a long-term positive effect on patient ... Keywords: NLP, information extraction, patient education

Olga V. Patterson; Gail S. Kerr; J. Steuart Richards; Carl A. Nunziato; David D. Maron; Richard L. Amdur; Scott L. DuVall

2012-09-01T23:59:59.000Z

167

Identifying HER2 Inhibitors from Natural Products Database  

E-Print Network [OSTI]

The relationship between abnormal HER2 expression and cancer is important in cancer therapeutics. Formation and spread of cancer cells may be restricted by inhibiting HER2. We conducted ligand-based and structure-based ...

Yang, Shun-Chieh

168

Natural Toxicants in Foods  

Science Journals Connector (OSTI)

The purpose of exploring the potential naturally occurring toxic hazards of food plants is not to suggest an irrational avoidance of these common foods. However, it is important to identify, define, and invest...

Ross C. Beier; Herbert N. Nigg

1992-01-01T23:59:59.000Z

169

Advanced Separation Consortium  

SciTech Connect (OSTI)

The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

NONE

2006-01-01T23:59:59.000Z

170

Natural Gas - CNG & LNG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

171

The tangential velocity profile and momentum transfer within a microgravity, vortex separator  

E-Print Network [OSTI]

Liquid and gas do not separate naturally in microgravity, presenting a problem for twophase space systems. Increased integration of multiphase systems requires a separation method adaptable to a variety of systems. Researchers at Texas A...

Ellis, Michael Clay

2009-05-15T23:59:59.000Z

172

NETL: Gasification Systems - Gas Separation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Separation Separation Ion-Transport Membrane Oxygen Separation Modules Ion-Transport Membrane Oxygen Separation Modules Gas separation unit operations represent major cost elements in gasification plants. The gas separation technology being supported in the DOE program promises significant reduction in cost of electricity, improved thermal efficiency, and superior environmental performance. Gasification-based energy conversion systems rely on two gas separation processes: (1) separation of oxygen from air for feed to oxygen-blown gasifiers; and (2) post-gasification separation of hydrogen from carbon dioxide following (or along with) the shifting of gas composition when carbon dioxide capture is required or hydrogen is the desired product. Research efforts include development of advanced gas separation

173

A Vortex Contactor for Carbon Dioxide Separations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vortex Contactor for Carbon Dioxide Separations Vortex Contactor for Carbon Dioxide Separations Kevin T. Raterman (ratekt@inel.gov; 208-526-5444) Michael McKellar (mgq@inel.gov; 208-526-1346) Anna Podgorney (poloak@inel.gov; 208-526-0064) Douglas Stacey (stacde@inel.gov; 208-526-3938) Terry Turner (tdt@inel.gov; 208-526-8623) Idaho National Engineering and Environmental Laboratory P.O. Box 1625 Idaho Falls, Idaho 83415-2110 Brian Stokes (bxs9@pge.com; 415-972-5591) John Vranicar (jjv2@pge.com; 415-972-5591) Pacific Gas & Electric Company 123 Mission Street San Francisco, CA 94105 Introduction Many analysts 1,2,3 identify carbon dioxide (CO 2 ) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA)

174

Nuclear Separations Technologies Workshop Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Separations Technologies Workshop Report Separations Technologies Workshop Report Nuclear Separations Technologies Workshop Report The Department of Energy (DOE) sponsored a workshop on nuclear separations technologies in Bethesda, Maryland, on July 27 and 28, 2011, to (1) identify common needs and potential requirements in separations technologies and opportunities for program partnerships, and (2) evaluate the need for a DOE nuclear separations center of knowledge to improve cross- program collaboration in separations technology. The workshop supported Goal 3 of the DOE Strategic Plan1 to enhance nuclear security through defense, nonproliferation, and environmental management. The Office of Environmental Management (EM), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA) jointly sponsored the workshop. The Office of Science

175

Nuclear Separations Technologies Workshop Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Separations Technologies Workshop Report Nuclear Separations Technologies Workshop Report Nuclear Separations Technologies Workshop Report The Department of Energy (DOE) sponsored a workshop on nuclear separations technologies in Bethesda, Maryland, on July 27 and 28, 2011, to (1) identify common needs and potential requirements in separations technologies and opportunities for program partnerships, and (2) evaluate the need for a DOE nuclear separations center of knowledge to improve cross- program collaboration in separations technology. The workshop supported Goal 3 of the DOE Strategic Plan1 to enhance nuclear security through defense, nonproliferation, and environmental management. The Office of Environmental Management (EM), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA) jointly sponsored the workshop. The Office of Science

176

Enhanced membrane gas separations  

SciTech Connect (OSTI)

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

177

Explosively separable casing  

DOE Patents [OSTI]

An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a pocket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

Jacobson, Albin K. (Albuquerque, NM); Rychnovsky, Raymond E. (Livermore, CA); Visbeck, Cornelius N. (Livermore, CA)

1985-01-01T23:59:59.000Z

178

Particle Data Group - PDG Identifiers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PDG Identifiers PDG Identifiers PDG Identifiers are references to items of PDG data such as particles, particle properties, decay modes and review articles. Once defined, a PDG Identifier is guaranteed to not change and can thus be used in other systems as a permanent reference to PDG data. Note that although the meaning of a given PDG Identifier will not change, there is no guarantee that the corresponding data will be included into future editions of the Review of Particle Physics. Each PDG Identifier consists of a single string without embedded spaces. PDG Identifiers are not case-sensitive. More details on PDG Identifiers can be found in this proposal. Future versions of pdgLive will directly support PDG Identifiers both for viewing and for downloading the data associated with a given PDG Identifier.

179

Dual-phase membrane for High temperature CO2 separation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jerry Y.S. Lin Jerry Y.S. Lin Chemical Engineering Arizona State University Tempe, AZ 85287 Jerry.lin@asu.edu Pre-Combustion Carbon Dioxide Capture by a New Dual-Phase Ceramic-Carbonate Membrane Reactor 2 Background 3 CO 2 Capture Methods and Efficiency Improvement Coal, Natural gas, Biomass CO 2 separation Power plant CO 2 compression, conditioning for sequestration Gasification Reforming Shift CO 2 Separation Power plant Power plant Air separation N 2 /O 2 CO 2 Post- combustion H 2 /CO H 2 /CO H 2 CO 2 H 2 O/N 2 /O 2 CO 2 H 2 Pre- combustion Air N 2 O 2 or O 2 /CO 2 CO 2 Oxyfuel Combustion Air separation Air Air separation Air Air separation Air Air Air Air Air separation Air Air separation Air N 2 Air separation Air O 2 or O 2 /CO 2 N 2 Air separation Air N 2 Air O 2 or O 2 /CO 2 N 2 Air Air separation N 2 Air 4 Water-Gas-Shift Reaction and Membrane Reactor Reforming

180

Isotope separation apparatus  

DOE Patents [OSTI]

Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

Arnush, Donald (Rancho Palos Verdes, CA); MacKenzie, Kenneth R. (Pacific Palisades, CA); Wuerker, Ralph F. (Palos Verdes Estates, CA)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Electrified Separation Processes in Industry  

E-Print Network [OSTI]

For any separation procedure in the chemical industry, a certain amount of reversible work in the form of free energy is required, as dictated by the second law of thermodynamics. Classical techniques for effecting liquid-phase separations...

Appleby, A. J.

1983-01-01T23:59:59.000Z

182

Actinide Separation Science and Technology  

Science Journals Connector (OSTI)

Both the science and technology of the actinides as we know them today owe much to separation science. Conversely, the field of metal ion separations, solvent extraction, and ion exchange in particular, would ...

Kenneth L. Nash; Charles Madic…

2011-01-01T23:59:59.000Z

183

Actinide Separation Science and Technology  

Science Journals Connector (OSTI)

Both the science and technology of the actinides as we know them today owe much to separation science. Conversely, the field of metal ion separations, solvent extraction, and ion exchange in particular, would ...

Kenneth L. Nash; Charles Madic…

2006-01-01T23:59:59.000Z

184

Advanced isotope separation  

SciTech Connect (OSTI)

The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

Not Available

1982-05-04T23:59:59.000Z

185

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

186

Separation Nanotechnology of Diethylenetriaminepentaacetic Acid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotechnology of Diethylenetriaminepentaacetic Acid Bonded Magnetic Nanoparticles for Spent Nuclear Fuel. Separation Nanotechnology of Diethylenetriaminepentaacetic Acid Bonded...

187

New Field Discoveries of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

425 814 1,229 1,423 895 987 1979-2011 425 814 1,229 1,423 895 987 1979-2011 Federal Offshore U.S. 114 618 321 310 71 590 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 85 313 288 50 71 590 1981-2011 Texas 29 305 33 260 0 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 425 814 1,229 1,423 895 987 1979-2011 Alabama 0 0 2 0 3 2 1979-2011 Arkansas 7 0 0 0 0 0 1979-2011 California 0 0 0 1 1 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 1 1 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 15 15 18 8 23 19 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 10 0 4 0 1979-2011 Kentucky

188

Nonassociated Natural Gas New Field Discoveries, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

385 768 1,122 1,160 793 376 1979-2011 385 768 1,122 1,160 793 376 1979-2011 Federal Offshore U.S. 87 575 228 96 65 66 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 58 309 195 25 65 66 1981-2011 Texas 29 266 33 71 0 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 385 768 1,122 1,160 793 376 1979-2011 Alabama 0 0 2 0 1 0 1979-2011 Arkansas 7 0 0 0 0 0 1979-2011 California 0 0 0 1 1 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 1 1 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 15 15 18 8 23 19 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 6 0 3 0 1979-2011 Kentucky 0 0 0 0 0 2 1979-2011

189

Nonassociated Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 Federal Offshore U.S. 2,317 763 672 142 827 266 2000-2011 Pacific (California) 0 0 0 0 0 0 2000-2011 Louisiana & Alabama 1,261 674 587 108 697 243 2000-2011 Texas 1,056 89 85 34 130 23 2000-2011 Alaska 0 8 0 4 132 34 2000-2011 Lower 48 States 22,178 14,395 7,249 3,809 9,304 43,203 2000-2011 Alabama 188 303 11 2 270 586 2000-2011 Arkansas 4 298 19 49 393 6,724 2000-2011 California 154 165 1 0 2 48 2000-2011 Coastal Region Onshore 2 0 0 0 0 0 2000-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 2000-2011 San Joaquin Basin Onshore 152 165 1 0 2 47 2000-2011 State Offshore 0 0 0 0 0 1 2000-2011 Colorado 1,009 769 774 382 253 1,292 2000-2011

190

Nonassociated Natural Gas Estimated Production, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 Federal Offshore U.S. 2,206 2,178 1,745 1,779 1,660 1,210 1990-2011 Pacific (California) 2 2 2 1 1 0 1979-2011 Louisiana & Alabama 1,574 1,628 1,371 1,425 1,318 960 1981-2011 Texas 630 548 372 353 341 250 1981-2011 Alaska 192 164 149 136 145 152 1979-2011 Lower 48 States 16,900 17,858 18,917 19,845 20,634 21,747 1979-2011 Alabama 286 273 262 256 225 218 1979-2011 Arkansas 183 265 454 694 948 1,074 1979-2011 California 88 101 88 80 69 64 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 87 99 86 78 68 63 1979-2011 State Offshore 1 2 2 2 1 1 1979-2011 Colorado

191

Nonassociated Natural Gas Reserves Adjustments, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

,000 714 -184 5,046 1,774 2,325 1979-2011 ,000 714 -184 5,046 1,774 2,325 1979-2011 Federal Offshore U.S. -11 -46 -1 2 -41 73 1990-2011 Pacific (California) 0 0 0 -1 0 0 1979-2011 Louisiana & Alabama -10 1 -11 -3 -25 72 1981-2011 Texas -1 -47 10 6 -16 1 1981-2011 Alaska -49 1 -1 1 -2 -1 1979-2011 Lower 48 States 1,049 713 -183 5,045 1,776 2,326 1979-2011 Alabama -3 2 -7 42 47 -48 1979-2011 Arkansas -31 -22 -67 -8 -31 705 1979-2011 California -11 29 3 2 -3 -12 1979-2011 Coastal Region Onshore 0 0 0 1 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore -11 28 3 1 -3 -12 1979-2011 State Offshore 0 1 0 0 0 0 1979-2011 Colorado 44 91 -70 474 578 921 1979-2011 Florida 0 0 0 0 33 -26 1979-2011

192

Natural Gas Reserves Extensions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 Federal Offshore U.S. 751 675 924 298 333 98 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 547 543 630 279 193 85 1981-2011 Texas 204 132 294 19 140 13 1981-2011 Alaska 50 28 18 2 15 4 1979-2011 Lower 48 States 22,784 28,227 27,782 43,498 46,268 47,631 1979-2011 Alabama 150 125 61 21 29 3 1979-2011 Arkansas 492 1,149 1,755 4,629 3,083 2,094 1979-2011 California 186 18 107 476 13 75 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 176 14 102 472 9 71 1979-2011 State Offshore 1 4 5 4 4 3 1979-2011 Colorado 2,042 2,893 2,379 3,495 2,986 2,123 1979-2011

193

New Field Discoveries of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

425 814 1,229 1,423 895 987 1979-2011 425 814 1,229 1,423 895 987 1979-2011 Federal Offshore U.S. 114 618 321 310 71 590 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 85 313 288 50 71 590 1981-2011 Texas 29 305 33 260 0 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 425 814 1,229 1,423 895 987 1979-2011 Alabama 0 0 2 0 3 2 1979-2011 Arkansas 7 0 0 0 0 0 1979-2011 California 0 0 0 1 1 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 1 1 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 15 15 18 8 23 19 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 10 0 4 0 1979-2011 Kentucky

194

Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

3,904 15,518 7,911 4,377 10,582 44,575 2000-2011 3,904 15,518 7,911 4,377 10,582 44,575 2000-2011 Federal Offshore U.S. 2,772 924 720 162 910 332 2000-2011 Pacific (California) 0 1 0 0 0 0 2000-2011 Louisiana & Alabama 1,581 830 635 128 771 309 2000-2011 Texas 1,191 93 85 34 139 23 2000-2011 Alaska 0 11 0 5 132 36 2000-2011 Lower 48 States 23,904 15,507 7,911 4,372 10,450 44,539 2000-2011 Alabama 192 308 11 2 272 595 2000-2011 Arkansas 4 298 19 54 393 6,762 2000-2011 California 287 173 8 4 3 49 2000-2011 Coastal Region Onshore 72 4 6 0 1 0 2000-2011 Los Angeles Basin Onshore 37 0 1 0 0 0 2000-2011 San Joaquin Basin Onshore 178 167 1 4 2 47 2000-2011 State Offshore 0 2 0 0 0 2 2000-2011 Colorado 1,587 772 775 391 255 1,311 2000-2011

195

Estimated Production of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 Federal Offshore U.S. 2,841 2,803 2,308 2,438 2,224 1,724 1990-2011 Pacific (California) 37 41 37 37 29 31 1979-2011 Louisiana & Alabama 2,036 2,135 1,807 1,947 1,786 1,375 1981-2011 Texas 768 627 464 454 409 318 1981-2011 Alaska 410 391 356 361 319 328 1979-2011 Lower 48 States 18,963 19,927 21,059 22,176 22,905 24,293 1979-2011 Alabama 290 277 265 261 231 226 1979-2011 Arkansas 188 269 457 698 952 1,080 1979-2011 California 268 264 251 251 255 324 1979-2011 Coastal Region Onshore 9 12 11 12 12 12 1979-2011 Los Angeles Basin Onshore 8 8 7 7 6 7 1979-2011 San Joaquin Basin Onshore 244 238 229 226 232 300 1979-2011 State Offshore 7 6 4 6 5 5 1979-2011

196

Natural Gas Reserves Acquisitions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 Federal Offshore U.S. 2,624 1,218 632 186 1,034 474 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 1,384 1,023 549 164 816 404 2000-2011 Texas 1,240 192 83 22 218 70 2000-2011 Alaska 0 6 0 0 0 222 2000-2011 Lower 48 States 27,082 15,964 8,848 4,155 13,348 47,651 2000-2011 Alabama 259 386 21 0 153 398 2000-2011 Arkansas 5 280 5 36 807 6,882 2000-2011 California 266 243 31 83 0 55 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 165 237 24 83 0 44 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 1,588 463 1,396 456 241 1,283 2000-2011

197

Nonassociated Natural Gas Estimated Production, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 Federal Offshore U.S. 2,206 2,178 1,745 1,779 1,660 1,210 1990-2011 Pacific (California) 2 2 2 1 1 0 1979-2011 Louisiana & Alabama 1,574 1,628 1,371 1,425 1,318 960 1981-2011 Texas 630 548 372 353 341 250 1981-2011 Alaska 192 164 149 136 145 152 1979-2011 Lower 48 States 16,900 17,858 18,917 19,845 20,634 21,747 1979-2011 Alabama 286 273 262 256 225 218 1979-2011 Arkansas 183 265 454 694 948 1,074 1979-2011 California 88 101 88 80 69 64 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 87 99 86 78 68 63 1979-2011 State Offshore 1 2 2 2 1 1 1979-2011 Colorado

198

Natural Gas Reserves Acquisitions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 Federal Offshore U.S. 2,624 1,218 632 186 1,034 474 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 1,384 1,023 549 164 816 404 2000-2011 Texas 1,240 192 83 22 218 70 2000-2011 Alaska 0 6 0 0 0 222 2000-2011 Lower 48 States 27,082 15,964 8,848 4,155 13,348 47,651 2000-2011 Alabama 259 386 21 0 153 398 2000-2011 Arkansas 5 280 5 36 807 6,882 2000-2011 California 266 243 31 83 0 55 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 165 237 24 83 0 44 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 1,588 463 1,396 456 241 1,283 2000-2011

199

Estimated Production of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 Federal Offshore U.S. 2,841 2,803 2,308 2,438 2,224 1,724 1990-2011 Pacific (California) 37 41 37 37 29 31 1979-2011 Louisiana & Alabama 2,036 2,135 1,807 1,947 1,786 1,375 1981-2011 Texas 768 627 464 454 409 318 1981-2011 Alaska 410 391 356 361 319 328 1979-2011 Lower 48 States 18,963 19,927 21,059 22,176 22,905 24,293 1979-2011 Alabama 290 277 265 261 231 226 1979-2011 Arkansas 188 269 457 698 952 1,080 1979-2011 California 268 264 251 251 255 324 1979-2011 Coastal Region Onshore 9 12 11 12 12 12 1979-2011 Los Angeles Basin Onshore 8 8 7 7 6 7 1979-2011 San Joaquin Basin Onshore 244 238 229 226 232 300 1979-2011 State Offshore 7 6 4 6 5 5 1979-2011

200

Natural Gas Reserves Revision Increases, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

1,640 33,404 31,941 32,664 42,394 56,015 1979-2011 1,640 33,404 31,941 32,664 42,394 56,015 1979-2011 Federal Offshore U.S. 2,084 1,862 1,740 2,365 3,082 2,567 1990-2011 Pacific (California) 43 48 23 79 23 39 1979-2011 Louisiana & Alabama 1,658 1,477 1,269 1,690 2,721 2,150 1981-2011 Texas 383 337 448 596 338 378 1981-2011 Alaska 2,882 2,168 186 1,887 628 938 1979-2011 Lower 48 States 18,758 31,236 31,755 30,777 41,766 55,077 1979-2011 Alabama 238 165 288 101 214 472 1979-2011 Arkansas 101 321 1,250 1,912 1,072 631 1979-2011 California 163 372 277 274 575 1,542 1979-2011 Coastal Region Onshore 29 33 21 42 39 21 1979-2011 Los Angeles Basin Onshore 7 16 1 38 9 12 1979-2011 San Joaquin Basin Onshore 118 311 253 191 514 1,498 1979-2011 State Offshore

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Natural Gas Nonassociated Proved Reserves, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 Federal Offshore U.S. 10,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Pacific (California) 55 53 3 9 3 0 1979-2011 Louisiana & Alabama 8,500 7,807 6,846 5,802 5,457 4,359 1981-2011 Texas 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Alaska 1,447 1,270 1,139 1,090 1,021 976 1979-2011 Lower 48 States 189,329 213,851 224,873 249,406 280,880 305,010 1979-2011 Alabama 3,945 4,016 3,360 2,919 2,686 2,522 1979-2011 Arkansas 2,227 3,269 5,616 10,852 14,152 16,328 1979-2011 California 780 686 621 612 503 510 1979-2011 Coastal Region Onshore 6 1 1 1 2 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 769 681 617 607 498 506 1979-2011

202

Natural Gas Nonassociated Proved Reserves, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 Federal Offshore U.S. 10,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Pacific (California) 55 53 3 9 3 0 1979-2011 Louisiana & Alabama 8,500 7,807 6,846 5,802 5,457 4,359 1981-2011 Texas 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Alaska 1,447 1,270 1,139 1,090 1,021 976 1979-2011 Lower 48 States 189,329 213,851 224,873 249,406 280,880 305,010 1979-2011 Alabama 3,945 4,016 3,360 2,919 2,686 2,522 1979-2011 Arkansas 2,227 3,269 5,616 10,852 14,152 16,328 1979-2011 California 780 686 621 612 503 510 1979-2011 Coastal Region Onshore 6 1 1 1 2 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 769 681 617 607 498 506 1979-2011

203

Nonassociated Natural Gas Reserves Acquisitions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

5,122 14,620 7,910 3,477 10,879 45,989 2000-2011 5,122 14,620 7,910 3,477 10,879 45,989 2000-2011 Federal Offshore U.S. 2,264 987 558 165 784 418 2000-2011 Pacific (California) 0 0 0 0 0 0 2000-2011 Louisiana & Alabama 1,150 804 481 152 594 355 2000-2011 Texas 1,114 183 77 13 190 63 2000-2011 Alaska 0 5 0 0 0 171 2000-2011 Lower 48 States 25,122 14,615 7,910 3,477 10,879 45,818 2000-2011 Alabama 259 385 20 0 153 378 2000-2011 Arkansas 5 280 5 36 807 6,882 2000-2011 California 47 234 23 25 0 44 2000-2011 Coastal Region Onshore 0 0 0 0 0 0 2000-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 2000-2011 San Joaquin Basin Onshore 47 234 23 25 0 44 2000-2011 State Offshore 0 0 0 0 0 0 2000-2011 Colorado 1,009 448 1,382 446 81 1,278 2000-2011

204

Nonassociated Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 Federal Offshore U.S. 2,317 763 672 142 827 266 2000-2011 Pacific (California) 0 0 0 0 0 0 2000-2011 Louisiana & Alabama 1,261 674 587 108 697 243 2000-2011 Texas 1,056 89 85 34 130 23 2000-2011 Alaska 0 8 0 4 132 34 2000-2011 Lower 48 States 22,178 14,395 7,249 3,809 9,304 43,203 2000-2011 Alabama 188 303 11 2 270 586 2000-2011 Arkansas 4 298 19 49 393 6,724 2000-2011 California 154 165 1 0 2 48 2000-2011 Coastal Region Onshore 2 0 0 0 0 0 2000-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 2000-2011 San Joaquin Basin Onshore 152 165 1 0 2 47 2000-2011 State Offshore 0 0 0 0 0 1 2000-2011 Colorado 1,009 769 774 382 253 1,292 2000-2011

205

,"Mississippi Natural Gas, Wet After Lease Separation Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Billion Cubic Feet)" 29036,1511 29402,1776 29767,2042 30132,1803 30497,1603 30863,1496 31228,1364 31593,1304 31958,1223 32324,1146 32689,1108 33054,1129 33419,1061...

206

Kansas Nonassociated Natural Gas, Wet After Lease Separation...  

Gasoline and Diesel Fuel Update (EIA)

Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,657 1980's 9,880 10,304 10,016 10,051 9,871 9,729 10,961 10,974 10,427 10,408 1990's 9,890 9,831 10,208 9,779 9,630 9,026 8,063...

207

Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 Federal Offshore U.S. 10,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Pacific (California) 55 53 3 9 3 0 1979-2011 Louisiana & Alabama 8,500 7,807 6,846 5,802 5,457 4,359 1981-2011 Texas 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Alaska 1,447 1,270 1,139 1,090 1,021 976 1979-2011

208

Natural Gas Reserves Revision Decreases, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

3,739 17,468 35,195 34,563 38,339 56,127 1979-2011 3,739 17,468 35,195 34,563 38,339 56,127 1979-2011 Federal Offshore U.S. 2,871 1,912 2,061 1,917 2,312 3,104 1990-2011 Pacific (California) 22 10 86 7 10 21 1979-2011 Louisiana & Alabama 2,272 1,476 1,355 1,463 1,841 2,371 1981-2011 Texas 577 426 620 447 461 712 1981-2011 Alaska 378 113 4,107 108 455 207 1979-2011 Lower 48 States 23,361 17,355 31,088 34,455 37,884 55,920 1979-2011 Alabama 213 36 747 337 180 163 1979-2011 Arkansas 114 146 189 621 301 324 1979-2011 California 440 288 517 199 476 1,959 1979-2011 Coastal Region Onshore 12 27 72 15 17 32 1979-2011 Los Angeles Basin Onshore 31 17 71 25 5 4 1979-2011 San Joaquin Basin Onshore 390 229 345 156 451 1,923 1979-2011 State Offshore

209

Natural Gas Reserves Extensions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 Federal Offshore U.S. 751 675 924 298 333 98 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 547 543 630 279 193 85 1981-2011 Texas 204 132 294 19 140 13 1981-2011 Alaska 50 28 18 2 15 4 1979-2011 Lower 48 States 22,784 28,227 27,782 43,498 46,268 47,631 1979-2011 Alabama 150 125 61 21 29 3 1979-2011 Arkansas 492 1,149 1,755 4,629 3,083 2,094 1979-2011 California 186 18 107 476 13 75 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 176 14 102 472 9 71 1979-2011 State Offshore 1 4 5 4 4 3 1979-2011 Colorado 2,042 2,893 2,379 3,495 2,986 2,123 1979-2011

210

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

211

Gas separation process  

SciTech Connect (OSTI)

The method for production of high purity hydrogen and high purity carbon monoxide from a mixed gas stream comprising these components together with carbon dioxide and a zero to a minor amount of one or more other gaseous contaminants is described comprising the steps of: (a) passing the mixed gas stream into and through a first bed of solid adsorbent capable of selectively adsorbing carbon dioxide and water while discharging from the bed a dry CO/sub 2/-freed effluent; (b) introducing the dry CO/sub 2/-freed effluent into a cryogenic environment for cooling the same therein under conditions effective for condensation of at least the major part of the carbon monoxide present in the dry CO/sub 2/-freed effluent; (c) withdrawing from the cryogenic environment carbon monoxide of high purity; (d) separately withdrawing from the cryogenic environment an uncondensed first gas stream product comprised of crude hydrogen and subjecting the first gas stream product to selective adsorption of non-hydrogen components therefrom in a second bed of solid absorbent, while recovering from the second bed the non-sorbed fraction as a product stream of essentially pure hydrogen; (e) purging the second solid adsorbent bed to desorb non-hydrogen components sorbed therein in step (d), and withdrawing from the bed a gas stream comprising the desorbed non-hydrogen components.

Nicholas, D.M.; Hopkins, J.A.; Roden, T.M.; Bushinsky, J.P.

1988-03-22T23:59:59.000Z

212

Identifying structural damage from images  

E-Print Network [OSTI]

and loss assessment, the december 26, 2004 natural disaster.iran, earthquake of december 26, 2003. Technical report,iran) earthquake of december 26, 2003: From an engineering

Chen, ZhiQiang

2009-01-01T23:59:59.000Z

213

Natural Gas  

Science Journals Connector (OSTI)

... CHOOSING an awkward moment, Phillips Petroleum Exploration have announced a new find of natural ...naturalgas ...

1967-02-11T23:59:59.000Z

214

On the origins of unsteadiness and three-dimensionality in a laminar separation bubble  

Science Journals Connector (OSTI)

...instabilities in separation bubbles. Aero. J. 99, 439...Linear and nonlinear stability of the Blasius boundary...of laminar separation bubbles caused by natural transition...dimensional laminar separation bubbles as result of linear...Th. 1997 Parabolized stability equations. A. Rev...

2000-01-01T23:59:59.000Z

215

Separation process using microchannel technology  

DOE Patents [OSTI]

The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

Tonkovich, Anna Lee (Dublin, OH); Perry, Steven T. (Galloway, OH); Arora, Ravi (Dublin, OH); Qiu, Dongming (Bothell, WA); Lamont, Michael Jay (Hilliard, OH); Burwell, Deanna (Cleveland Heights, OH); Dritz, Terence Andrew (Worthington, OH); McDaniel, Jeffrey S. (Columbus, OH); Rogers, Jr.; William A. (Marysville, OH); Silva, Laura J. (Dublin, OH); Weidert, Daniel J. (Lewis Center, OH); Simmons, Wayne W. (Dublin, OH); Chadwell, G. Bradley (Reynoldsburg, OH)

2009-03-24T23:59:59.000Z

216

Membrane Separations of Liquid Mixtures  

E-Print Network [OSTI]

MEMBRANE SEPARATIONS OF LIQUID MIXTURES Douglas R. Lloyd Separations Research Program Department of Chemical Engineering The University of Texas at Austin Austin, Texas In recent years considerable attention has been given to the need... for reduced energy costs in the chemical processing industry. A major portion of the energy consumed in this industry is associated with the separation and recovery of chemicals. Membrane processes offer energy-efficient, cost effective methods...

Lloyd, D. R.

217

Air separation by the Moltox process  

SciTech Connect (OSTI)

The report describes results of a development program on a new and energy saving process for air separation. The Moltox process involves reversibly reacting oxygen in air with a recirculating salt solution, such that oxygen is extracted without depressurizing the remaining nitrogen. Energy savings of approximately 50% are indicated for this process compared to conventional cryogenic air separation. The development program consisted of design, construction, and operation of a 6 liter/minute pilot plant; optimization of the process flowsheet through computer modelling; investigation of engineering aspects of the process including corrosion, safety, and NO/sub x/ generation; and an economic comparison to conventional cryogenic practice. All objectives were satisfactorily achieved except for continuous operation of the pilot plant, and the modifications necessary to achieve that have been identified. Economically the Moltox process shows a substantial advantage over large scale cryogenic plants which are powered by fuel vice electricity.

Erickson, D. C.

1981-04-01T23:59:59.000Z

218

CCPPolicyBriefing Identifying Fuel  

E-Print Network [OSTI]

CCPPolicyBriefing June 2007 Identifying Fuel Poverty Using Objective and Subjective Measures W: www.ccp.uea.ac.uk T: +44 (0)1603 593715 A: UEA, Norwich, NR4 7TJ Identifying Fuel Poverty Using Objective and Subjective Measures BACKGROUND · The government defines fuel poverty as occurring when a household needs

Feigon, Brooke

219

Identifying extended Higgs models at the LHC  

Science Journals Connector (OSTI)

We make a complete catalog of extended Higgs sectors involving SU(2)L doublets and singlets, subject to natural flavor conservation. In each case we present the couplings of a light neutral CP-even Higgs state h in terms of the model parameters, and identify which models are distinguishable in principle based on this information. We also give explicit expressions for the model parameters in terms of h couplings and exhibit the behaviors of the couplings in the limit where the deviations from the standard model (SM) Higgs couplings are small. Finally, we discuss prospects for differentiation of extended Higgs models based on measurements at the LHC and International Linear Collider and identify the regions in which these experiments could detect deviations from the SM Higgs predictions.

Vernon Barger; Heather E. Logan; Gabe Shaughnessy

2009-06-24T23:59:59.000Z

220

Three phase downhole separator process  

DOE Patents [OSTI]

Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

Cognata, Louis John (Baytown, TX)

2008-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CA, State Offshore Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

57 57 66 82 66 75 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 3 4 3 3 1 0 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease Separation 54 53 63 79 65...

222

Density-based separation in multiphase systems provides a simple method to identify sickle cell disease  

Science Journals Connector (OSTI)

...print a holder to punch reproducible holes in the sides of the microhematocrit tubes. The holder was designed with AutoCAD (AutoDesk). We load each holder with microhematocrit tubes and use standard metal pushpins (Staples) to punch holes in the sides...

Ashok A. Kumar; Matthew R. Patton; Jonathan W. Hennek; Si Yi Ryan Lee; Gaetana D’Alesio-Spina; Xiaoxi Yang; Julie Kanter; Sergey S. Shevkoplyas; Carlo Brugnara; George M. Whitesides

2014-01-01T23:59:59.000Z

223

Quasiprobability Based Criterion for Classicality and Separability of States of Spin-1/2 Particles  

E-Print Network [OSTI]

A sufficient condition for a quantum state of a system of spin-1/2 particles (spin-1/2s) to admit a local hidden variable (LHV) description i.e. to be classical is the separability of the density matrix characterizing its state, but not all classical states are separable. This leads one to infer that separability and classicality are two different concepts. These concepts are examined here in the framework of a criterion for identifying classicality of a system of spin-1/2s based on the concept of joint quasiprobability (JQP) for the eigevalues of spin components. The said criterion identifies a state as classical if a suitably defined JQP of the eigenvalues of spin components in suitably chosen three or two orthogonal directions is non-negative. In agreement with other approaches, the JQP based criterion leads to the result that all non-factorizable pure states of two spin-1/2s are non-classical. Furthermore, the validity of the criterion is confirmed by comparing its predictions with those arrived at by other methods when applied to several mixed states of two spin-1/2s and the Werner like state of three spin-1/2s (G.Toth and A.Acin,Phys.Rev. A74, 030306(R) (2006)). The JQP based approach, formulated as it is along the lines of the P-function approach for identifying classical states of the electromagnetic field, offers a unified approach for systems of arbitrary number of spin-1/2s and the possibility of linking classicality with the nature of the measurement process.

R. R. Puri

2014-10-06T23:59:59.000Z

224

Phase separation and coarsening in active matter  

E-Print Network [OSTI]

Active systems, or active matter, are self-driven systems which live, or function, far from equilibrium - a paradigmatic example which we focus on here is provided by a suspension of self-motile particles. Active systems are far from equilibrium because their microscopic constituents constantly consume energy from the environment in order to do work, for instance to propel themselves. The nonequilibrium nature of active matter leads to a variety of non-trivial intriguing phenomena. An important one which has recently been the subject of intense interest among biological and soft matter physicists is that of the so-called "motility-induced phase separation", whereby self-propelled particles accumulate into clusters in the absence of any explicit attractive interactions between them. Here we review the physics of motility-induced phase separation, and discuss this phenomenon within the framework of the classic physics of phase separation and coarsening. We also discuss cases where the coarsening may be arrested, either in theories for bacterial colonies or in experiments. Most of this work will focus on the case of run-and-tumble and active Brownian particles in the absence of solvent-mediated hydrodynamic interactions - we will briefly discuss at the end their role, which is not currently fully understood in this context.

Giuseppe Gonnella; Davide Marenduzzo; Antonio Suma; Adriano Tiribocchi

2015-02-08T23:59:59.000Z

225

Natural Gas Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Vehicle Basics Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two separate fueling systems that enable the vehicle to use either natural gas or a conventional fuel (gasoline or diesel). In general, dedicated natural gas vehicles demonstrate better performance and have lower emissions than bi-fuel vehicles because their engines are optimized to run on natural gas. In addition, the vehicle does not have to

226

Alternative Fuels Data Center: Natural Gas Metering  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Metering Natural Gas Metering to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Metering on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Metering on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Metering on Google Bookmark Alternative Fuels Data Center: Natural Gas Metering on Delicious Rank Alternative Fuels Data Center: Natural Gas Metering on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Metering on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Metering Individuals who use natural gas for residential or other tax-free purposes may not use natural gas in motor vehicles unless the natural gas is obtained through a separate meter installed by the alternative fuels

227

Portable apparatus for separating sample and detecting target analytes  

DOE Patents [OSTI]

Portable devices and methods for determining the presence of a target analyte using a portable device are provided. The portable device is preferably hand-held. A sample is injected to the portable device. A microfluidic separation is performed within the portable device and at least one separated component detected by a detection module within the portable device, in embodiments of the invention. A target analyte is identified, based on the separated component, and the presence of the target analyte is indicated on an output interface of the portable device, in accordance with embodiments of the invention.

Renzi, Ronald F. (Tracy, CA); Wally, Karl (Lafayette, CA); Crocker, Robert W. (Fremont, CA); Stamps, James F. (Livermore, CA); Griffiths; Stewart K. , (Livermore, CA); Fruetel, Julia A. (Livermore, CA); Horn, Brent A. (Roy, UT); Shokair, Isaac R. (Livermore, CA); Yee, Daniel D. (Dublin, CA); VanderNoot, Victoria A. (Pleasanton, CA); Wiedenman, Boyd J. (Aiken, SC); West, Jason A. A. (Pleasanton, CA); Ferko, Scott M. (Livermore, CA)

2008-11-18T23:59:59.000Z

228

Robust Polymer Composite Membranes for Hydrogen Separation |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Robust Polymer Composite Membranes for Hydrogen Separation Robust Polymer Composite Membranes for Hydrogen Separation polymercompositemembranes.pdf More Documents & Publications...

229

EIA - All Natural Gas Analysis  

Gasoline and Diesel Fuel Update (EIA)

All Natural Gas Analysis All Natural Gas Analysis 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format)

230

Natural Gas Utilities Options Analysis for the Hydrogen Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Utilities Options Analysis for the Hydrogen Economy Natural Gas Utilities Options Analysis for the Hydrogen Economy Objectives: Identify business opportunities and...

231

The Natural Gas Data Redbook 1983 update  

SciTech Connect (OSTI)

This Natural Gas Data Redbook (Redbook) is designed to assist in the quality control of natural gas data. Discrepancies are identified by comparing similar data from two different data collection systems and by studying revisions of published monthly estimates. The Redbook contains five separate comparisons, as well as an analysis of monthly estimates published by the Reserves and Natural Gas Division (RNGD) of the Office of Oil and Gas. The comparisons are: (1) production, wet after lease separation (EIA 23 and EIA 627); (2) underground storage injections and withdrawals (EIA 176 and EIA 191/FPC 8); (3) electric utility consumption (EIA 176 and EIA 759); (4) deliveries to consumers (EIA 176 and FERC 50); and (5) imports (FERC 15 and FPC 14). Data on each of these quantities are gathered by the Energy Information Administration (EIA) on at least two different forms. The most immediately useful comparisons for purposes of quality control are deliveries to consumers by category from the EIA 176 and FERC 50 data systems, which are compared by state and by company. An integral part of the Redbook is the presentation and discussion of generic differences between the data systems being compared. In all cases, reporting periods, respondent frames, and/or definitions differ on the two systems. Examples of these differences are (1) the frame for the FERC 50 does not include producers and plants selling directly to consumers, but the EIA 176 frame does; and (2) definitions of the commercial, industrial, and electric utility sectors on EIA 176 are not identical with those on FERC 50.

Boercker, S.W.; Sigmon, E.B.; Reister, D.

1985-09-01T23:59:59.000Z

232

,"Colorado Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

233

,"New York Nonassociated Natural Gas Proved Reserves, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2013...

234

,"New Mexico Nonassociated Natural Gas Proved Reserves, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",201...

235

,"New York Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

236

,"U.S. Federal Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

237

,"California State Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

238

,"California Federal Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

239

,"California State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

240

,"Louisiana State Offshore Associated-Dissolved Natural Gas,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

242

,"Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

243

,"Louisiana State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

244

,"California Nonassociated Natural Gas Proved Reserves, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2...

245

,"New York Nonassociated Natural Gas Proved Reserves, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2012...

246

,"New York Associated-Dissolved Natural Gas Proved Reserves,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annua...

247

Pump and centrifugal separator apparatus  

SciTech Connect (OSTI)

The invention relates to agitating means for preventing the accumulation of particulate matter at the contaminate outlet orifices in a pump and centrifugal separator apparatus. The pump separator apparatus includes a rotatable casing forming a chamber for centrifugally separating the oil, water and contaminant matter in an oil well production fluid. The clean oil is collected by a stationary pitot tube in the chamber, the clean water is drawn off at an outlet port near the outer periphery of the chamber, and the dirty water and contaminants are discharged through outlet orifices formed in the outer wall of the casing. The agitating means includes rotating jet ports for directing streams of pressurized fluid tangentially along the inner surface of the casing to agitate accumulations of separated solid contaminant matter thereby preventing the clogging of the outlet orifices.

Erickson, J.W.

1981-08-11T23:59:59.000Z

248

Continuous magnetic separator and process  

DOE Patents [OSTI]

A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

Oder, Robin R. (Export, PA); Jamison, Russell E. (Lower Burrell, PA)

2008-04-22T23:59:59.000Z

249

Fluorine separation and generation device  

DOE Patents [OSTI]

A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

The Regents of the University of California (Oakland, CA)

2008-12-23T23:59:59.000Z

250

Separations in the STATS report  

SciTech Connect (OSTI)

The Separations Technology and Transmutation Systems (STATS) Committee formed a Subcommittee on Separations. This subcommittee was charged with evaluating the separations proposed for the several reactor and accelerator transmutation systems. It was also asked to review the processing options for the safe management of high-level waste generated by the defense programs, in particular, the special problems involved in dealing with the waste at the U.S. Department of Energy (DOE) facility in Hanford, Washington. Based on the evaluations from the Subcommittee on Separations, the STATS Committee concluded that for the reactor transmutation programs, aqueous separations involving a combination of PUREX and TRUEX solvent extraction processes could be used. However, additional research and development (R&D) would be required before full plant-scale use of the TRUEX technology could be employed. Alternate separations technology for the reactor transmutation program involves pyroprocessing. This process would require a significant amount of R&D before its full-scale application can be evaluated.

Choppin, G.R. [Florida State Univ., Tallahassee, FL (United States)

1996-12-31T23:59:59.000Z

251

Separation and Fixation of Carbon Dioxide Using Polymeric Membrane Contactor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Natural Science Foundation of China. National Natural Science Foundation of China. Separation and Fixation of Carbon Dioxide Using Polymeric Membrane Contactor Zhikang XU, Jianli WANG, Wei CHEN, Youyi XU Institute of Polymer Science, Zhejiang University, 310027, Hangzhou, P. R. China Tel: +86-571-7951342-8218, E-mail: xuzk@ipsm.zju.edu.cn ABSTRACT: Polypropylene hollow fiber membrane (PPHFM) contactor, with aqueous solution absorbent such as sodium hydroxide (NaOH), monoethanolamine (MEA) and diethanolamine (DEA), was designed and used to separate and fix CO 2 from CO 2 /N 2 gas mixtures. The factors that influence the separation properties of CO 2 /N 2 were investigated. It was found that the CO 2 removal efficiency is the best by using MEA solution as absorbent. The overall mass transfer coefficient (K) increases

252

Montana Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

14 993 959 792 616 590 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 817 681 657 522 327 286 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease...

253

Mississippi Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

35 922 858 868 612 600 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 990 884 822 806 550 557 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease...

254

Miscellaneous Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

72 349 363 393 233 188 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 263 271 353 270 219 169 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease...

255

Natural Gas Exports from Iran  

Reports and Publications (EIA)

This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

2012-01-01T23:59:59.000Z

256

Natural Gas and Hydrogen Infrastructure Opportunities Workshop...  

Broader source: Energy.gov (indexed) [DOE]

* Convene industry and other stakeholders to share current statusstate-of-the art for natural gas and hydrogen infrastructure. * Identify key challenges (both technical and...

257

Microcellular foams via phase separation  

SciTech Connect (OSTI)

A study of wide variety of processes for making plastic foams shows that phase separation processes for polymers from solutions offers the most viable methods for obtaining rigid plastic foams which met the physical requirements for fusion target designs. Four general phase separation methods have been shown to give polymer foams with densities less than 0.1 g/cm/sup 3/ and cell sizes of 30..mu..m or less. These methods involve the utilization of non-solvent, chemical or thermal cooling processes to achieve a controlled phase separation wherein either two distinct phases are obtained where the polymer phase is a continuous phase or two bicontinuous phases are obtained where both the polymer and solvent are interpenetrating, continuous, labyrinthine phases. Subsequent removal of the solvent gives the final foam structure.

Young, A.T.

1985-01-01T23:59:59.000Z

258

Actinide Lanthanide Separation Process – ALSEP  

SciTech Connect (OSTI)

Separation of the minor actinides (Am, Cm) from the lanthanides at an industrial scale remains a significant technical challenge for closing the nuclear fuel cycle. To increase the safety of used nuclear fuel (UNF) reprocessing, as well as reduce associated costs, a novel solvent extraction process has been developed. The process allows for partitioning minor actinides, lanthanides and fission products following uranium/plutonium/neptunium removal; minimizing the number of separation steps, flowsheets, chemical consumption, and waste. This new process, Actinide Lanthanide SEParation (ALSEP), uses an organic solvent consisting of a neutral diglycolamide extractant, either N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) or N,N,N',N'-tetraoctyldiglycolamide (TODGA), and an acidic extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]), dissolved in an aliphatic diluent (e.g. n-dodecane). The An/Ln co-extraction is conducted from moderate-to-strong nitric acid, while the selective stripping of the minor actinides from the lanthanides is carried out using a polyaminocarboxylic acid/citrate buffered solution at pH anywhere between 3 and 4.5. The extraction and separation of the actinides from the fission products is very effective in a wide range of HNO3 concentrations and the minimum separation factors for lanthanide/Am exceed 30 for Nd/Am, reaching > 60 for Eu/Am under some conditions. The experimental results presented here demonstrate the great potential for a combined system, consisting of a neutral extractant such as T2EHDGA or TODGA, and an acidic extractant such as HEH[EHP], for separating the minor actinides from the lanthanides.

Gelis, Artem V.; Lumetta, Gregg J.

2014-01-29T23:59:59.000Z

259

Membrane separation systems---A research and development needs assessment  

SciTech Connect (OSTI)

Industrial separation processes consume a significant portion of the energy used in the United States. A 1986 survey by the Office of Industrial Programs estimated that about 4.2 quads of energy are expended annually on distillation, drying and evaporation operations. This survey also concluded that over 0.8 quads of energy could be saved in the chemical, petroleum and food industries alone if these industries adopted membrane separation systems more widely. Membrane separation systems offer significant advantages over existing separation processes. In addition to consuming less energy than conventional processes, membrane systems are compact and modular, enabling easy retrofit to existing industrial processes. The present study was commissioned by the Department of Energy, Office of Program Analysis, to identify and prioritize membrane research needs in light of DOE's mission. Each report will be individually cataloged.

Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

1990-04-01T23:59:59.000Z

260

Separable geodesic action slicing in stationary spacetimes  

E-Print Network [OSTI]

A simple observation about the action for geodesics in a stationary spacetime with separable geodesic equations leads to a natural class of slicings of that spacetime whose orthogonal geodesic trajectories represent freely falling observers. The time coordinate function can then be taken to be the observer proper time, leading to a unit lapse function. This explains some of the properties of the original Painlev\\'e-Gullstrand coordinates on the Schwarzschild spacetime and their generalization to the Kerr-Newman family of spacetimes, reproducible also locally for the G\\"odel spacetime. For the static spherically symmetric case the slicing can be chosen to be intrinsically flat with spherically symmetric geodesic observers, leaving all the gravitational field information in the shift vector field.

Donato Bini; Andrea Geralico; Robert T. Jantzen

2014-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Device and method for separating oxygen isotopes  

DOE Patents [OSTI]

A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

Rockwood, Stephen D. (Los Alamos, NM); Sander, Robert K. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

262

Development of an electrochemical hydrogen separator  

SciTech Connect (OSTI)

The EHS is an electrochemical hydrogen separator based on the uniquely reversible nature of hydrogen oxidation-reduction reactions in electrochemical systems. The principle and the hardware concept are shown in Figure 1. Hydrogen from the mixed gas stream is oxidized to H{sup +} ions, transported through a cation transport electrolyte membrane (matrix) under an applied electric field and discharged in a pure hydrogen state on the cathode. The cation transfer electrolyte membrane provides a barrier between the feed and product gases. The EHS design is an offshoot of phosphoric acid fuel cell development. Although any proton transfer electrolyte can be used, the phosphoric acid based system offers a unique advantage because its operating temperature of {approximately}200{degree}C makes it tolerant to trace CO and also closely matches the water-shift reactor exit gas temperature ({approximately}250{degree}C). Hydrogen-containing streams in coal gasification systems have large carbon monoxide contents. For efficient hydrogen recovery, most of the CO must be converted to hydrogen by the low temperature water-shift reaction (Figure 2). Advanced coal gasification and gas separation technologies offer an important pathway to the clean utilization of coal resources.

Abens, S.; Fruchtman, J.; Kush, A.

1993-09-01T23:59:59.000Z

263

Energy Conservation Possibilities Using Gas Separating Membranes  

E-Print Network [OSTI]

The separation of gases using semi permeable membranes is a viable unit operation. A novel composite membrane combined with hollow fiber spinning technology enable Monsanto Co. to offer PRISM (TM); Separators to the industrial market. The separator...

Knieriem, H.; Henis, J. M. S.

1980-01-01T23:59:59.000Z

264

The role of natural gas as a vehicle transportation fuel  

E-Print Network [OSTI]

This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

265

Separations innovative concepts: Project summary  

SciTech Connect (OSTI)

This project summary includes the results of 10 innovations that were funded under the US Department's Innovative Concept Programs. The concepts address innovations that can substantially reduce the energy used in industrial separations. Each paper describes the proposed concept, and discusses the concept's potential energy savings, market applications, technical feasibility, prior work and state of the art, and future development needs.

Lee, V.E. (ed.)

1988-05-01T23:59:59.000Z

266

33rd Actinide Separations Conference  

SciTech Connect (OSTI)

Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

McDonald, L M; Wilk, P A

2009-05-04T23:59:59.000Z

267

natural gasoline  

Science Journals Connector (OSTI)

natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-coloured and of high API gravity (above 6o°), that are produced with wet gas] ? Gasbenzin n, Gasolin n ...

2014-08-01T23:59:59.000Z

268

Gas separations using ceramic membranes. Final report, September 1988--February 1993  

SciTech Connect (OSTI)

This study covers a comprehensive evaluation of existing ceramic membranes for high temperature gas separations. Methodology has been established for microporous characterization stability and gas separation efficiency. A mathematical model was developed to predict gas separations with existing membranes. Silica and zeolitic modifications of existing membranes were pursued to enhance its separation efficiency. Some of which demonstrate unique separations properties. Use of the dense-silica membranes for hydrogen enrichment was identified as a promising candidate for future development. In addition, the decomposition of trace ammonia contaminant via a catalytic membrane reactor appears feasible. A further economic analysis is required to assess its commercial viability.

Lin, C.L.; Wu, J.C.S.; Gallaher, G.R.; Smith, G.W.; Flowers, D.L.; Gerdes, T.E.; Liu, P.K.T.

1993-02-01T23:59:59.000Z

269

Element A "Identifying Sources and Causes of Impairment in the  

E-Print Network [OSTI]

-based plan (and to achieve any other watershed goals identified in the watershed-based plan). What Does that into plan. Characterizing the Watershed is Element A Refer to Handbook Chapters 5,6,7 Gather existing data (Social and Environmental tools) Data Typical for Watershed Characterization Physical and Natural Features

270

Identification of Heavy and Superheavy Nuclides Using Chemical Separator Systems  

SciTech Connect (OSTI)

With the recent synthesis of superheavy nuclides produced in the reactions {sup 48}Ca+{sup 238}U and {sup 48}Ca+{sup 242,244}Pu, much longer-lived nuclei than the previously known neutron-deficient isotopes of the heaviest elements have been identified. Half-lives of several hours and up to several years have been predicted for the longest-lived isotopes of these elements. Thus, the sensitivity of radiochemical separation techniques may present a viable alternative to physical separator systems for the discovery of some of the predicted longer-lived heavy and superheavy nuclides. The advantages of chemical separator systems in comparison to kinematic separators lie in the possibility of using thick targets, high beam intensities spread over larger target areas and in providing access to nuclides emitted under large angles and low velocities. Thus, chemical separator systems are ideally suited to study also transfer and (HI, axn) reaction products. In the following, a study of (HI, axn) reactions will be presented and prospects to chemically identify heavy and superheavy elements discussed.

Turler, Andreas

1999-12-31T23:59:59.000Z

271

Noise suppressing capillary separation system  

DOE Patents [OSTI]

A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans. 13 figs.

Yeung, E.S.; Xue, Y.

1996-07-30T23:59:59.000Z

272

Convex polytopes and quantum separability  

SciTech Connect (OSTI)

We advance a perspective of the entanglement issue that appeals to the Schlienz-Mahler measure [Phys. Rev. A 52, 4396 (1995)]. Related to it, we propose a criterium based on the consideration of convex subsets of quantum states. This criterium generalizes a property of product states to convex subsets (of the set of quantum states) that is able to uncover an interesting geometrical property of the separability property.

Holik, F.; Plastino, A. [Departamento de Matematica - Ciclo Basico Comun, Universidad de Buenos Aires - Pabellon III, Ciudad Universitaria, Buenos Aires, Argentina and CONICET (Argentina); National University La Plata and CONICET IFLP-CCT, C.C. 727 - 1900 La Plata (Argentina)

2011-12-15T23:59:59.000Z

273

Method to blend separator powders  

DOE Patents [OSTI]

A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

Guidotti, Ronald A. (Albuquerque, NM); Andazola, Arthur H. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM)

2007-12-04T23:59:59.000Z

274

Separation of Tritium from Wastewater  

SciTech Connect (OSTI)

A proprietary tritium loading bed developed by Molecular Separations, Inc (MSI) has been shown to selectively load tritiated water as waters of hydration at near ambient temperatures. Tests conducted with a 126 {micro}C{sub 1} tritium/liter water standard mixture showed reductions to 25 {micro}C{sub 1}/L utilizing two, 2-meter long columns in series. Demonstration tests with Hanford Site wastewater samples indicate an approximate tritium concentration reduction from 0.3 {micro}C{sub 1}/L to 0.07 {micro}C{sub 1}/L for a series of two, 2-meter long stationary column beds Further reduction to less than 0.02 {micro}C{sub 1}/L, the current drinking water maximum contaminant level (MCL), is projected with additional bed media in series. Tritium can be removed from the loaded beds with a modest temperature increase and the beds can be reused Results of initial tests are presented and a moving bed process for treating large quantities of wastewaters is proposed. The moving bed separation process appears promising to treat existing large quantities of wastewater at various US Department of Energy (DOE) sites. The enriched tritium stream can be grouted for waste disposition. The separations system has also been shown to reduce tritium concentrations in nuclear reactor cooling water to levels that allow reuse. Energy requirements to reconstitute the loading beds and waste disposal costs for this process appear modest.

JEPPSON, D.W.

2000-01-25T23:59:59.000Z

275

Anisotropic membranes for gas separation  

DOE Patents [OSTI]

A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7--25 C and then air dried at ambient temperature, typically 10--30 C. 2 figs.

Gollan, A.Z.

1987-07-21T23:59:59.000Z

276

Anisotropic membranes for gas separation  

DOE Patents [OSTI]

A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.

Gollan, Arye Z. (Newton, MA)

1987-01-01T23:59:59.000Z

277

Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix  

SciTech Connect (OSTI)

The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process.l

Dr. Ronald Baney

2008-12-15T23:59:59.000Z

278

Natural System  

Broader source: Energy.gov (indexed) [DOE]

Natural System Natural System Evaluation and Tool Development - FY11 Progress Report Prepared for U.S. Department of Energy Used Fuel Disposition Program Yifeng Wang (SNL) Michael Simpson (INL) Scott Painter (LANL) Hui-Hai Liu (LBNL) Annie B. Kersting (LLNL) July 15, 2011 FCRD-USED-2011-000223 UFD Natural System Evaluation - FY11 Year-End Report July 15, 2011 2 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

279

Task 38 - commercial mercury remediation demonstrations: Thermal retorting and physical separation/chemical leaching. Topical report, December 1, 1994--June 30, 1996  

SciTech Connect (OSTI)

Results are presented on the demonstration of two commercial technologies for the removal of mercury from soils found at natural gas metering sites. Technologies include a thermal retorting process and a combination of separation, leaching, and electrokinetic separation process.

Charlton, D.S.; Fraley, R.H.; Stepan, D.J.

1998-12-31T23:59:59.000Z

280

Ionically Conducting Membranes for Hydrogen Production and Separation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IONICALLY CONDUCTING MEMBRANES IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND SEPARATION Presented by Tony Sammells Eltron Research Inc. Boulder, Colorado www.eltronresearch.com Presented at DOE Hydrogen Separations Workshop Arlington, Virginia September 8, 2004 ELTRON RESEARCH INC. TO BE DISCUSSED * Membranes for Hydrogen Production - Compositions - Feedstocks - Performance - Key Technical Hurdles * Membranes for Hydrogen Separation - Compositions - Ex Situ vs. In Situ WGS - Performance - Key Technical Hurdles ELTRON RESEARCH INC. OVERALL SCHEME FOR CONVERTING FEEDSTOCK TO HYDROGEN WITH SIMULTANEOUS CARBON DIOXIDE SEQUESTRATION Oxygen Transport Membrane Hydrogen Transport Membrane Natural Gas Coal Biomass Syngas CO/H 2 WGS H 2 O CO 2 /H 2 1618afs.dsf H 2 CO 2 ELTRON RESEARCH INC. INCENTIVES FOR OXYGEN TRANSPORT MEMBRANES FOR

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NATURE STUDY  

Science Journals Connector (OSTI)

...last two numbers of SCIENCE have appeared articles by Drs. Wheeler and Chapman on the abuses of nature writing as exemplified...imprint of Rand, IeNally and Co., 1903, and its author is Katherine E. Dopp, of the Extension Division of the Chicago University...

E. C. CASE

1904-04-01T23:59:59.000Z

282

Continuous flow system for controlling phases separation near ? transition  

SciTech Connect (OSTI)

As demands on 3He are increasing and conventional 3He production through tritium decay is decreasing, alternative 3He production methods are becoming economically viable. One such possibility is to use entropy filters for extraction of the 3He isotope from natural gas. According to the phase diagram of the 3He, its solidification is impossible by only lowering of the temperature. Hence during the cooling process at stable pressure we can reach ?-point and pass to the special phase - He II. The total density of HeII is a sum of the two phases: normal the superfluid ones. It is possible to separate these two phases with an entropy filter - the barrier for the classically-behaving normal phase. This barrier can also be used to separate the two main isotopes of He: 4He and 3He, because at temperatures close to the 4He-?-point the 3He isotope is part of the normal phase. The paper presents continuous flow schemes of different separation methods of 3He from helium commodity coming from natural gas cryogenic processing. An overall thermodynamic efficiency of the 3He/4He separation process is presented. A simplified model of continuous flow HeI -HeII recuperative heat exchanger is given. Ceramic and carbon porous plugs have been tested in entropy filter applications.

Chorowski, M.; Poli?ski, J. [Wroc?aw University of Technology, Wybrze?e Wyspia?skiego 27,50-560 Wroc?aw (Poland); Kempi?ski, W.; Trybu?a, Z.; ?o?, Sz. [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17,60-179 Pozna? (Poland); Cho?ast, K.; Kociemba, A. [Polish Oil and Gas Company, Odolanow, ul. Krotoszynska 148, 63-430 Odolanow (Poland)

2014-01-29T23:59:59.000Z

283

Marketing Mother Nature’s Molecules  

Science Journals Connector (OSTI)

Marketing Mother Nature’s Molecules ... Yet molecules made by Mother Nature, or derivatives thereof, still account for nearly half of the drugs on the market. ...

LISA JARVIS

2012-02-19T23:59:59.000Z

284

A Study of Scientometric Methods to Identify Emerging Technologies  

SciTech Connect (OSTI)

This work examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, worldwide patents, news archives, and on-line mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain we investigated.

Abercrombie, Robert K [ORNL] [ORNL; Udoeyop, Akaninyene W [ORNL] [ORNL

2011-01-01T23:59:59.000Z

285

Optimization of antibody separation Master thesis at R&D, Protein Tools, GE Healthcare, Uppsala  

E-Print Network [OSTI]

Optimization of antibody separation Master thesis at R&D, Protein Tools, GE Healthcare, Uppsala point but in most cases the separation needs some optimization work to give the best possible starting protocol and then optimize the protocol by identifying important experimental factors that may

Uppsala Universitet

286

METHOD TO TEST ISOTOPIC SEPARATION EFFICIENCY OF PALLADIUM PACKED COLUMNS  

SciTech Connect (OSTI)

The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam use, were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages using the test results. The effects of column diameter, metal foam and gas flow rate were identified.

Heung, L; Gregory Staack, G; James Klein, J; William Jacobs, W

2007-06-27T23:59:59.000Z

287

Identify Institutional Change Tools for Sustainability  

Broader source: Energy.gov [DOE]

After identifying institutional change rules and roles, a Federal agency should identify the tools that create the infrastructural context within which it can achieve its sustainability goals.

288

Separations and safeguards model integration.  

SciTech Connect (OSTI)

Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

Cipiti, Benjamin B.; Zinaman, Owen

2010-09-01T23:59:59.000Z

289

Killing tensors, warped products and the orthogonal separation of the Hamilton-Jacobi equation  

SciTech Connect (OSTI)

We study Killing tensors in the context of warped products and apply the results to the problem of orthogonal separation of the Hamilton-Jacobi equation. This work is motivated primarily by the case of spaces of constant curvature where warped products are abundant. We first characterize Killing tensors which have a natural algebraic decomposition in warped products. We then apply this result to show how one can obtain the Killing-Stäckel space (KS-space) for separable coordinate systems decomposable in warped products. This result in combination with Benenti's theory for constructing the KS-space of certain special separable coordinates can be used to obtain the KS-space for all orthogonal separable coordinates found by Kalnins and Miller in Riemannian spaces of constant curvature. Next we characterize when a natural Hamiltonian is separable in coordinates decomposable in a warped product by showing that the conditions originally given by Benenti can be reduced. Finally, we use this characterization and concircular tensors (a special type of torsionless conformal Killing tensor) to develop a general algorithm to determine when a natural Hamiltonian is separable in a special class of separable coordinates which include all orthogonal separable coordinates in spaces of constant curvature.

Rajaratnam, Krishan, E-mail: k2rajara@uwaterloo.ca; McLenaghan, Raymond G., E-mail: rgmclenaghan@uwaterloo.ca [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

2014-01-15T23:59:59.000Z

290

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

291

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

292

Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste  

SciTech Connect (OSTI)

Development of remediation technologies for the characterization, retrieval, treatment, concentration, and final disposal of radioactive and chemical tank waste stored within the Department of Energy (DOE) complex represents an enormous scientific and technological challenge. A combined total of over 90 million gallons of high-level waste (HLW) and low-level waste (LLW) are stored in 335 underground storage tanks at four different DOE sites. Roughly 98% of this waste is highly alkaline in nature and contains high concentrations of nitrate and nitrite salts along with lesser concentrations of other salts. The primary waste forms are sludge, saltcake, and liquid supernatant with the bulk of the radioactivity contained in the sludge, making it the largest source of HLW. The saltcake (liquid waste with most of the water removed) and liquid supernatant consist mainly of sodium nitrate and sodium hydroxide salts. The main radioactive constituent in the alkaline supernatant is cesium-137, but strontium-90, technetium-99, and transuranic nuclides are also present in varying concentrations. Reduction of the radioactivity below Nuclear Regulatory Commission (NRC) limits would allow the bulk of the waste to be disposed of as LLW. Because of the long half-life of technetium-99 (2.1 x 10 5 y) and the mobility of the pertechnetate ion (TcO 4 - ) in the environment, it is expected that technetium will have to be removed from the Hanford wastes prior to disposal as LLW. Also, for some of the wastes, some level of technetium removal will be required to meet LLW criteria for radioactive content. Therefore, DOE has identified a need to develop technologies for the separation and concentration of technetium-99 from LLW streams. Eichrom has responded to this DOE-identified need by demonstrating a complete flowsheet for the separation, concentration, and immobilization of technetium (and iodine) from alkaline supernatant waste.

James Harvey; Michael Gula

1998-12-07T23:59:59.000Z

293

Identified Patent Waivers | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Identified Identified Patent Waivers Identified Patent Waivers June 18, 2013 Identified Patent Waiver W(I)2012-012 This is a request by DR. F. JEFFREY MARTIN for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC52-06NA25396. March 1, 2013 Identified Patent Waiver W(I)2012-005 This is a request by UCHICAGO ARGONNE, LLC for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC02-06CH11357. March 1, 2013 Identified Patent Waiver W(I)2012-004 This is a request by UCHICAGO ARGONNE, LLC for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC02-06CH11357. March 1, 2013 Identified Patent Waiver W(I)2012-003 This is a request by UCHICAGO ARGONNE, LLC for a DOE Identified patent

294

Efficient Separations and Processing Crosscutting Program. Technology summary  

SciTech Connect (OSTI)

The Efficient Separations and Processing (ESP) Crosscutting Program was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. The ESP funds several multi-year tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R and D) leading to demonstration or use of these separations technologies by other organizations within DOE-EM. Treating essentially all DOE defense wastes requires separation methods that concentrate the contaminants and/or purify waste streams for release to the environment or for downgrading to a waste form less difficult and expensive to dispose of. Initially, ESP R and D efforts focused on treatment of high-level waste (HLW) from underground storage tanks (USTs) because of the potential for large reductions in disposal costs and hazards. As further separations needs emerge and as waste management and environmental restoration priorities change, the program has evolved to encompass the breadth of waste management and environmental remediation problems.

NONE

1995-06-01T23:59:59.000Z

295

Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,820 1,100 1,218 1,002 1,042 1990's 812 875 691 789 820 714 626 613 473 541 2000's 592 627 428 448 333 370 386 327 248 215 2010's 279 468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

296

California - Los Angeles Basin Onshore Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as of

297

California State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 6 12 22 22 29 1990's 6 5 4 2 4 3 2 2 5 19 2000's 5 5 6 7 2 1 5 4 3 4 2010's 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

298

California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 1 1 1 1 3 0 0 0 0 1990's 0 0 3 0 0 0 0 3 1 0 2000's 1 1 0 0 0 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Nonassociated Natural Gas Proved

299

California Federal Offshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 73 1980's 107 227 217 258 267 1990's 240 179 149 147 110 94 115 58 52 48 2000's 76 50 56 55 47 49 55 53 3 9 2010's 3 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore California Nonassociated Natural Gas Proved

300

Guidelines For Developing Low Energy Separation Processes  

E-Print Network [OSTI]

A large portion of the energy required by the process industry is consumed by separation processes. This paper discusses current engineering techniques that can be used in the development and optimization of low energy separation processes....

Bojnowski, J. H.; Hanks, D. L.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MONTHLY NATURAL GAS PRODUCTION REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

No. 1905-0205 No. 1905-0205 Expiration Date: 05/31/2015 Burden: 3 hours MONTHLY NATURAL GAS PRODUCTION REPORT Version No.: 2011.001 REPORT PERIOD: Month: Year: If any respondent identification data has changed since the last report, enter an "X" in the box: - - - - Mail to: - Oklahoma 2. Natural Gas Lease Production 1. Gross Withdrawals of Natural Texas Contact Title: COMMENTS: Identify any unusual aspects of your operations during the report month. (To start a new line, use alt + enter.) Wyoming Other States Alaska New Mexico City: Gas Louisiana Company Name: Address 1:

302

Separation of magnetic field lines  

SciTech Connect (OSTI)

The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

2012-11-15T23:59:59.000Z

303

Cascade Performance for Large Separation Factors  

Science Journals Connector (OSTI)

Technical Paper / Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Isotopes Separation

George Emanuel*

304

Device for hydrogen separation and method  

DOE Patents [OSTI]

A device for hydrogen separation has a porous support and hydrogen separation material on the support. The support is prepared by heat treatment of metal microparticles, preferably of iron-based or nickel-based alloys that also include aluminum and/or yttrium. The hydrogen separation material is then deposited on the support. Preferred hydrogen separation materials include metals such as palladium, alloys, platinum, refractory metals, and alloys.

Paglieri, Stephen N. (White Rock, NM); Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)

2009-11-03T23:59:59.000Z

305

GEOMETRIC SOURCE SEPARATION: MERGING CONVOLUTIVE SOURCE  

E-Print Network [OSTI]

adaptive beamforming algorithms by a cross-power criteria, we gain new geometric source separation with convo- lutive blind source separation. We concentrate on cross-power spectral min- imization which is su to ambiguities in the choice of separating lters. There are in theory multiple lters that invert the room

Parra, Lucas C.

306

Charts and graphs: NUKEM Uranium price ange data; NUKEM Uranium historical price graph; U.S. DOE & euratom average contract prices for natural uranium; NUKEM SWU historical price graph; NUKEM SWU spot/secondary price range; U.S. DOE separative work prices data  

SciTech Connect (OSTI)

This article is the uranium market data summary. It contains data for the following subjects: (1) March 1996 transactions, (2) Uranium price range data, (3) Historical uranium price range data, (4) DOE and Euratom average contract prices for natural uranium, (5) SWU historical price data, (6) SWU/spot/secondary price range data, and (7) DOE SWU prices data.

NONE

1996-04-01T23:59:59.000Z

307

Membrane separation processes for clean production  

SciTech Connect (OSTI)

Clean production can be considered as a strategic element in manufacturing technology for present and future products in the chemical industry. Demand is focused on the development of cost-effective technologies, the optimization of processes including separation steps, alternative processes for the reduction of waste, optimization of the use of resources and improvements in production efficiency. In many cases an environmentally friendly alternative to conventional separation processes could be membrane separation. Membrane separation techniques are suitable for mixtures of liquids, gases and vapors. Some examples of successful applications in the areas of waste water treatment and vapor recovery are given. Demands, advantages and problems of separation with membranes are also discussed.

Paul, D.; Ohlrogge, K. [GKSS Research Center, Geesthacht (Germany)

1998-12-31T23:59:59.000Z

308

Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code  

SciTech Connect (OSTI)

IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

Rudd, A.; Prahl, D.

2014-12-01T23:59:59.000Z

309

Process for strontium-82 separation  

DOE Patents [OSTI]

A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.

Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.

1992-12-01T23:59:59.000Z

310

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

311

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

312

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

313

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

314

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

315

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

316

,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

317

Concircular tensors in Spaces of Constant Curvature: With Applications to Orthogonal Separation of The Hamilton-Jacobi Equation  

E-Print Network [OSTI]

We study concircular tensors in spaces of constant curvature and then apply the results obtained to the problem of the orthogonal separation of the Hamilton-Jacobi equation on these spaces. Any coordinates which separate the geodesic Hamilton-Jacobi equation are called separable. Specifically for spaces of constant curvature, we obtain canonical forms of concircular tensors modulo the action of the isometry group, we obtain the separable coordinates induced by irreducible concircular tensors, and we obtain warped products adapted to reducible concircular tensors. Using these results, we show how to enumerate the isometrically inequivalent orthogonal separable coordinates, construct the transformation from separable to Cartesian coordinates, and execute the Benenti-Eisenhart-Kalnins-Miller (BEKM) separation algorithm for separating natural Hamilton-Jacobi equations.

Krishan Rajaratnam; Raymond G. McLenaghan

2014-04-10T23:59:59.000Z

318

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

SciTech Connect (OSTI)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

319

The neutron identified: Sir James Chadwick  

Science Journals Connector (OSTI)

The neutron identified: Sir James Chadwick ... Uses source material to describe the discovery of the neutron by James Chadwick. ...

Alfred B. Garrett

1962-01-01T23:59:59.000Z

320

Method of identifying plant pathogen tolerance  

DOE Patents [OSTI]

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

1997-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Method of identifying plant pathogen tolerance  

DOE Patents [OSTI]

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described.

Ecker, Joseph R. (Erial, NJ); Staskawicz, Brian J. (Castro Valley, CA); Bent, Andrew F. (Piedmont, CA); Innes, Roger W. (Bloomington, IN)

1997-10-07T23:59:59.000Z

322

The Extraction of Gasoline from Natural Gas  

E-Print Network [OSTI]

for the quantitative estimation of the condensable gasoline consti- tuents of so-called rtwetn natural gas» Three general lines of experimentation suggested themselves after a preliminary study of the problem. These were the separation of a liqui- fied sample... fractionation of a mixture of natural gases are, however, not available in the ordinary laboratory, so this method altho successful and accurate is hardly practical. Even after the fractionation of the gas has ^lebeau and Damiens in Chen. Abstr. 7, 1356...

Schroeder, J. P.

1914-05-15T23:59:59.000Z

323

Natural language search of structured documents  

E-Print Network [OSTI]

This thesis focuses on techniques with which natural language can be used to search for specific elements in a structured document, such as an XML file. The goal is to create a system capable of being trained to identify ...

Oney, Stephen W

2008-01-01T23:59:59.000Z

324

Reduced Nitrogen and Natural Gas Consumption at Deepwell Flare  

E-Print Network [OSTI]

Facing both an economic downturn and the liklihood of steep natural gas price increases, company plants were challenged to identify and quickly implement energy saving projects that would reduce natural gas usage. Unit operating personnel...

Williams, C.

2004-01-01T23:59:59.000Z

325

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

326

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

327

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

328

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

329

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

330

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

331

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

332

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

333

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

334

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

335

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

336

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

337

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

338

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

339

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

340

Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Gasoline and Diesel Fuel Update (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

342

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

343

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

344

Headquarters Separation Clearance Process | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Separation Clearance Process Separation Clearance Process Headquarters Separation Clearance Process When a DOE employee leaves the agency, either by resignation, transfer to another agency, termination or retirement, there is an important process to follow. There is important information that you need to know about your pay and benefits prior to leaving the agency. To set up an appointment to discuss further options, contact your servicing Human Resources Specialist. If you have made the decision to leave DOE, please notify your Administrative Officer as soon as possible so that they can assist you in completing this process in a timely manner. The Headquarters Separation Clearance Form 3293.1 must be completed prior to your separation in order for your clearance to be completed. At the time of your separation,

345

EIA - Natural Gas Production Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Production Production Gross Withdrawals and Production Components of natural gas production for the U.S., States and the Gulf of Mexico (monthly, annual). Number of Producing Gas Wells U.S. and State level data (annual). Wellhead Value & Marketed Production U.S. and State level natural gas wellhead values and prices of marketed production (annual). Offshore Gross Withdrawals U.S., State, and Gulf of Mexico gross withdrawals from oil and gas wells(annual). Gulf of Mexico Federal Offshore Production Production of crude oil, natural gas wet after lease separation, natural gas liquids, dry natural gas, and lease condensate (annual). Natural Gas Plant Liquids Production Production by U.S., region, and State (annual). Lease Condensate Production Production by U.S., region, and State (annual).

346

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production  

E-Print Network [OSTI]

50% of daily production H 2 gas storage costs (separate fromNatural gas is currently the lowest cost hydrogen productioncosts are calculated for each station. On-site natural gas steam reformers The hydrogen production

Yang, Christopher; Ogden, Joan M

2005-01-01T23:59:59.000Z

347

Label Building Natural Gas Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS)  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Usage Form Natural Gas Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may choose to mark

348

Liquefied Natural Gas Safety Research  

Broader source: Energy.gov (indexed) [DOE]

| May 2012 | May 2012 Liquefied Natural Gas (LNG) Safety Research | Page 1 Liquefied Natural Gas Safety Research Report to Congress May 2012 United States Department of Energy Washington, DC 20585 Department of Energy | May 2012 Liquefied Natural Gas (LNG) Safety Research | Page i Message from the Assistant Secretary for Fossil Energy The Explanatory Statement accompanying the Consolidated Appropriations Act, 2008 1 and the House Report on the House of Representatives version of the related bill 2 requested the Department of Energy to submit a report to Congress addressing several key liquefied natural gas (LNG) research priorities. These issues are identified in the February 2007 Government Accountability Office Report (GAO Report 07-316), Public Safety Consequences of a Terrorist

349

Axisymmetric Plasma-Optic Mass Separators  

SciTech Connect (OSTI)

A systematic description is given of the principles of operation of axisymmetric plasma-optic mass separators with azimuthators that are compatible with stationary plasma thrusters with closed electron drift. Two schemes of plasma-optic separators (with electrostatic and with magnetic ion focusing) are considered. Results are presented from calculations of the parameters of model devices for separating ions whose masses are on the order of those of xenon ions.

Morozov, A.I. [Nuclear Fusion Institute, Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 (Russian Federation); Savel'ev, V.V. [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 (Russian Federation)

2005-05-15T23:59:59.000Z

350

General Aspects of Membrane Separation Processes  

Science Journals Connector (OSTI)

This chapter focuses on the current challenges of water and wastewater treatment aiming reuse. Membrane separation processes are presented and electrodialysis is compared to pressure driven membrane processes,...

Andréa Moura Bernardes

2014-01-01T23:59:59.000Z

351

Separation of polar gases from nonpolar gases  

DOE Patents [OSTI]

Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

Kulprathipanja, S.; Kulkarni, S.S.

1986-08-26T23:59:59.000Z

352

Separation of polar gases from nonpolar gases  

DOE Patents [OSTI]

Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL)

1986-01-01T23:59:59.000Z

353

Liquid phase thermal swing chemical air separation  

DOE Patents [OSTI]

A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite. 2 figs.

Erickson, D.C.

1988-05-24T23:59:59.000Z

354

Liquid phase thermal swing chemical air separation  

DOE Patents [OSTI]

A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite.

Erickson, Donald C. (Annapolis, MD)

1988-01-01T23:59:59.000Z

355

Separation, Characterization and Initial Reaction Studies of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abstract: Magnetic and density separation methods have been applied to composite sediment sample from the Hanford formation from sediment recovered during drilling of an...

356

Celgard and Entek - Battery Separator Development  

Broader source: Energy.gov (indexed) [DOE]

Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

357

USABC Battery Separator Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es007smith2011p.pdf More Documents & Publications USABC Battery Separator Development Overview...

358

A comparative investigation of laminar separation bubbles at low Reynolds numbers in wind tunnels and free flight environments  

E-Print Network [OSTI]

Reynolds numbers between 230, 000 and 315, 000. The character and length of the laminar separation bubbles were documented as well as the nature of the flight environment. The results of the study were compared to existing wind tunnel data for similar... separation bubble lengths and integrated lift curve slopes. Small discrepancies existed between the two environments in the magnitudes of the pressure distributions and lengths of the separation bubbles at Reynolds numbers near 230, 000. ACKNOWLEDGEMENT...

Blohowiak, James Russell

2012-06-07T23:59:59.000Z

359

Air separation by the Moltox process. Interim final report  

SciTech Connect (OSTI)

Results are described of a development program on a new and energy-saving process for air separation. The Moltox process involves reversibly reacting oxygen in air with a recirculating salt solution, such that oxygen is extracted without depressurizing the remaining nitrogen. Energy savings of approximately 50% are indicated for this process compared to conventional cryogenic air separation. The development program consisted of design, construction, and operation of a 6 liter/minute pilot plant; optimization of the process flowsheet through computer modelling; investigation of engineering aspects of the process including corrosion, safety, and NO/sub x/ generation; and an economic comparison to conventional cryogenic practice. All objectives were satisfactorily achieved except for continuous operation of the pilot plant, and the modifications necessary to achieve that have been identified. Economically the Moltox process shows a substantial advantage over large scale cryogenic plants which are powered by fuel vice electricity.

Erickson, D.C.

1981-04-01T23:59:59.000Z

360

Natural radiation environment III. [Lead Abstract  

SciTech Connect (OSTI)

Separate abstracts were prepared for the 52 research papers presented at this symposium in April 1978. The major topics in this volume deal with penetrating radiation measurements, radiation surveys and population exposure, radioactivity in the indoor environment, and technologically enhanced natural radioactivity. (KRM)

Gesell, T.F.; Lowder, W.M. (eds.)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

HPLC of Biopolymers, Pharmaceuticals, and Natural Products  

Science Journals Connector (OSTI)

......Natural Products Yu Weile Li Ping Lanzhou Institute of Chemical...Wei-Lu Yu) and Li Ping Lanzhou Institute of Chemical...Quang et al. (40) and Jin et al. (41) investigated...separated, refer to Table XI Spherisorb C6 H1 4 -C2...114-16 (1985). 209. Li Ping, Z h a n g R e n b i......

Yu Weile; Li Ping; Zhang Renbin

1989-11-01T23:59:59.000Z

362

EERE SBIR Case Study: Sonic Energy Improves Industrial Separation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sonic Energy Improves Industrial Separation and Mixing Processes EERE SBIR Case Study: Sonic Energy Improves Industrial Separation and Mixing Processes Advanced membrane separation...

363

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

364

Solid tags for identifying failed reactor components  

DOE Patents [OSTI]

A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

Bunch, Wilbur L. (Richland, WA); Schenter, Robert E. (Richland, WA)

1987-01-01T23:59:59.000Z

365

Energy Assessment Results: Most Commonly Identified Recommendations...  

Broader source: Energy.gov (indexed) [DOE]

Assessment Results: Most Commonly Identified Recommendations The Missouri Industrial Assessment Center shares its experience providing energy assessments to local industry. Energy...

366

National Renewable Energy Laboratory Report Identifies Research...  

Broader source: Energy.gov (indexed) [DOE]

National Renewable Energy Laboratory Report Identifies Research Needed to Address Power Market Design Challenges Developing a New Primer on the Nation's Electricity Markets...

367

Identifying Green Meetings in the Hospitality Industry.  

E-Print Network [OSTI]

??Purpose: The purpose of this paper is to identify what constitutes green meetings in the hospitality industries with special attentions on the applications of modern… (more)

Chiou, Shin Yi (Felicity)

2011-01-01T23:59:59.000Z

368

Recoverable Resource Estimate of Identified Onshore Geopressured...  

Office of Scientific and Technical Information (OSTI)

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad...

369

Geothermal: Sponsored by OSTI -- Identifying Potential Geothermal...  

Office of Scientific and Technical Information (OSTI)

Identifying Potential Geothermal Resources from Co-Produced Fluids Using Existing Data from Drilling Logs: Williston Basin, North Dakota Geothermal Technologies Legacy Collection...

370

Encapsulated Metal Hydride for Hydrogen Separation  

E-Print Network [OSTI]

concentration feed stock, not for low concentration � Hydrogen economy will need hydrogen recovery from lowEncapsulated Metal Hydride for Hydrogen Separation (Formerly Separation Membrane Development) DOE Hydrogen Program 2003 Merit Review and Peer Evaluation L. Kit Heung, Jim Congdon Savannah River Technology

371

Apparatus and process for separating hydrogen isotopes  

DOE Patents [OSTI]

The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

Heung, Leung K; Sessions, Henry T; Xiao, Xin

2013-06-25T23:59:59.000Z

372

Passive gas separator and accumulator device  

DOE Patents [OSTI]

A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

Choe, Hwang (Saratoga, CA); Fallas, Thomas T. (Berkeley, CA)

1994-01-01T23:59:59.000Z

373

Passive gas separator and accumulator device  

DOE Patents [OSTI]

A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

Choe, H.; Fallas, T.T.

1994-08-02T23:59:59.000Z

374

Audio Source Separation using Sparse Representations  

E-Print Network [OSTI]

Audio Source Separation using Sparse Representations Andrew Nesbit1 , Maria G. Jafari1 , Emmanuel ABSTRACT We address the problem of audio source separation, namely, the recovery of audio signals from related to the windowing methods used in the MPEG audio coding framework. In considering the anechoic

Plumbley, Mark

375

Dual Magnetic Separator for TRI$?$P  

E-Print Network [OSTI]

The TRI$\\mu$P facility, under construction at KVI, requires the production and separation of short-lived and rare isotopes. Direct reactions, fragmentation and fusion-evaporation reactions in normal and inverse kinematics are foreseen to produce nuclides of interest with a variety of heavy-ion beams from the superconducting cyclotron AGOR. For this purpose, we have designed, constructed and commissioned a versatile magnetic separator that allows efficient injection into an ion catcher, i.e., gas-filled stopper/cooler or thermal ionizer, from which a low energy radioactive beam will be extracted. The separator performance was tested with the production and clean separation of $^{21}$Na ions, where a beam purity of 99.5% could be achieved. For fusion-evaporation products, some of the features of its operation as a gas-filled recoil separator were tested.

G. P. A. Berg; O. C. Dermois; U. Dammalapati; P. Dendooven M. N. Harakeh; K. Jungmann; C. J. G. Onderwater; A. Rogachevskiy; M. Sohani; E. Traykov; L. Willmann; H. W. Wilschut

2005-09-09T23:59:59.000Z

376

Nuclear Separations for Radiopharmacy:? The Need for Improved Separations To Meet Future Research and Clinical Demands  

Science Journals Connector (OSTI)

Nuclear Separations for Radiopharmacy:? The Need for Improved Separations To Meet Future Research and Clinical Demands ... Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487 ...

Andrew H. Bond; Robin D. Rogers; Mark L. Dietz

2000-07-08T23:59:59.000Z

377

Guide to Identifying Official Use Only Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide supplements information contained in Department of Energy (DOE) O 471.3, Identifying and Protecting Official Use Only Information, dated 4-9-03, and DOE M 471.3-1, Manual for Identifying and Protecting Official Use Only Information, dated 4-9-03.

2003-04-09T23:59:59.000Z

378

Identifying Risk Groups Associated with Colorectal Cancer  

E-Print Network [OSTI]

Identifying Risk Groups Associated with Colorectal Cancer Jie Chen1 , Hongxing He1 , Huidong Jin1 of identifying and describing risk groups for colorectal cancer (CRC) from population based administrative health are applied to the colorectal cancer patients' profiles in contrast to background pa- tients' profiles

Jin, Huidong "Warren"

379

The Chiral Separation of Triazole Pesticides Enantiomers by Amylose-tris(3,5-dimethylphenylcarbamate) Chiral Stationary Phase  

Science Journals Connector (OSTI)

......temperature and mobile phase composition; identify the enantiomers...different CSP mobile phase composition was adopted. For those that...using the same mobile phase composition. The chiral separation of...Opportunities for chiral agrochemicals. Pestic. Sci. 46: 321......

Peng Wang; Donghui Liu; Shuren Jiang; Yangguang Xu; Zhiqiang Zhou

2008-10-01T23:59:59.000Z

380

Chapter 3 - Building Skills with Basics: Learning to Identify Threats  

Science Journals Connector (OSTI)

Abstract The karate student builds skills in a variety of ways, but one of the fundamental ways to practice is through repetition of the basics: blocks, punches, and kicks. A student learns to respond to real attacks from any direction, through continual training on the right way to defend and to eliminate an opponent. This is the starting point where a student develops proper techniques to attack and counterattack against a variety of violent threats. Organizations must recognize harmful hazards. Hazards may be obvious, such as risks from hurricanes, or may be less evident, such as the risks from a chemical spill on a nearby roadway. Threats to your organization can come in many formats, from natural to accidental to deliberate. To successfully prepare for problems, the next step in the assessment process calls for identifying potential risks and using available sources to identify what things you really should worry about.

Eric N. Smith

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Norman Ramsey and the Separated Oscillatory Fields Method  

Office of Scientific and Technical Information (OSTI)

Norman Ramsey and the Norman Ramsey and the Separated Oscillatory Fields Method Resources with Additional Information Norman F. Ramsey Photo Credit: Courtesy of Fermilab Norman F. Ramsey was born in Washington, D.C. and 'was educated in the United States and England; he earned five degrees in physics including the Ph.D. (Columbia 1940) and the D.Sc. (Cambridge, 1964). Ramsey's scientific research focused on the properties of molecules, atoms, nuclei and elementary particles and includes key contributions to the knowledge of magnetic moments, the structural shape of nuclear particles, the nature of nuclear forces, the thermodynamics of energized populations of atoms and molecules (e.g. those in masers and lasers) and spectroscopy. Ramsey not only contributed basic advances in the theoretical understanding of the physics involved in his research, he also made pioneering advances in the methods of investigation; in particular, he contributed many refinements of the molecular beam method for the study of atomic and molecular properties, he invented the separated oscillatory field method of exciting resonances and, with the collaboration of his students, he was the principal inventor of the atomic hydrogen maser. The separated oscillatory field method provides extremely high resolution in atomic and molecular spectroscopy and it is the practical basis for the most precise atomic clocks; likewise the atomic hydrogen maser made even higher levels of spectroscopic resolution possible and it also functions as the basis for atomic clocks having the highest levels of stability for periods extending to several hours.'1

382

EIA - Analysis of Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

Prices Prices 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format)

383

Process for separating anthracite coal from impurities  

SciTech Connect (OSTI)

A process is described for separating a first mixture including previously mined anthracite coal, klinker-type cinder ash and other refuse consisting of: a. separating the first mixture to produce a refuse portion and a second mixture consisting of anthracite and klinker-type cinder ash, b. reducing the average particle size in the second mixture to a uniform size, c. subjecting the second mixture to a separating magnetic field to produce a klinker-type cinder ash portion and an anthracite coal portion.

Stiller, D.W.; Stiller, A.H.

1985-05-06T23:59:59.000Z

384

Membrane separation advances in FE hydrogen program  

SciTech Connect (OSTI)

Since its inception in Fiscal Year 2003 the US Office of Fossil Energy (FE) Hydrogen from Coal Program has sponsored more than 60 projects and made advances in the science of separating out pure hydrogen from syngas produced through coal gasification. The Program is focusing on advanced hydrogen separation technologies, which include membranes, and combining the WGS reaction and hydrogen separation in a single operation known as process intensification. The article explains the technologies and describes some key FE membrane projects. More details are available from http://www.fossil.energy.gov. 1 fig.

NONE

2007-12-31T23:59:59.000Z

385

Methods of separating particulate residue streams  

DOE Patents [OSTI]

A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

2011-04-05T23:59:59.000Z

386

Colorado Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

4,169 24,081 25,372 26,151 21,674 23,533 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 22,159 22,199 23,001 23,633 18,226 19,253 1979-2013 Natural Gas...

387

California Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

,879 2,538 2,926 2,785 3,042 2,119 1979-2012 Natural Gas Nonassociated, Wet After Lease Separation 686 621 612 503 510 272 1979-2012 Natural Gas Associated-Dissolved, Wet After...

388

Alaska Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

7,766 9,183 8,917 9,511 9,667 7,383 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 1,139 1,090 1,021 976 995 955 1979-2013 Natural Gas Associated-Dissolved, Wet...

389

Arkansas Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

5,628 10,872 14,181 16,374 11,039 13,524 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 5,616 10,852 14,152 16,328 10,957 13,389 1979-2013 Natural Gas...

390

Texas Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

81,843 85,034 94,287 104,454 93,475 97,921 1981-2013 Natural Gas Nonassociated, Wet After Lease Separation 74,284 76,272 84,157 90,947 74,442 75,754 1981-2013 Natural Gas...

391

Utah Natural Gas Reserves Summary as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

6,714 7,411 7,146 8,108 7,775 7,057 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 6,393 6,810 6,515 7,199 6,774 6,162 1979-2013 Natural Gas Associated-Dissolved,...

392

Louisiana Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

11,816 20,970 29,517 30,545 22,135 20,389 1981-2013 Natural Gas Nonassociated, Wet After Lease Separation 10,581 19,898 28,838 29,906 21,362 19,519 1981-2013 Natural Gas...

393

Wyoming Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

32,399 36,748 36,526 36,930 31,636 34,576 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 32,176 36,386 36,192 36,612 30,930 33,774 1979-2013 Natural Gas...

394

California Natural Gas Reserves Summary as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

,538 2,926 2,785 3,042 2,119 2,023 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 621 612 503 510 272 247 1979-2013 Natural Gas Associated-Dissolved, Wet After...

395

Oklahoma Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

22,113 24,207 28,182 29,937 28,714 28,900 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 21,155 23,115 26,873 27,683 25,018 24,370 1979-2013 Natural Gas...

396

Ohio Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

985 896 832 758 1,235 3,201 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 886 799 742 684 1,012 2,887 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease...

397

Michigan Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3,253 2,805 2,975 2,549 1,781 1,839 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 3,105 2,728 2,903 2,472 1,687 1,714 1979-2013 Natural Gas Associated-Dissolved,...

398

Alabama Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3,379 2,948 2,724 2,570 2,304 1,670 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 3,360 2,919 2,686 2,522 2,204 1,624 1979-2013 Natural Gas Associated-Dissolved,...

399

Pennsylvania Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

3,594 7,018 14,068 26,719 36,543 50,078 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 3,467 6,885 13,924 26,585 36,418 49,809 1979-2013 Natural Gas...

400

Kansas Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

3,795 3,500 3,937 3,747 3,557 3,772 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 3,710 3,417 3,858 3,620 3,231 3,339 1979-2013 Natural Gas Associated-Dissolved,...

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CA, San Joaquin Basin Onshore Natural Gas Reserves Summary as...  

U.S. Energy Information Administration (EIA) Indexed Site

2,249 2,609 2,447 2,685 1,650 1,574 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 617 607 498 506 269 245 1979-2013 Natural Gas Associated-Dissolved, Wet After...

402

SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION  

SciTech Connect (OSTI)

Mixed-conducting membranes have the ability to conduct oxygen with perfect selectivity at elevated temperatures, which makes them an extremely attractive alternative for oxygen separation and membrane reactor applications. The ability to reliably fabricate these membranes in thin or thick films would enable solid-state divisional limitations to be minimized, thus providing higher oxygen flux. Based on that motivation, the overall objective for this project is to develop and demonstrate a strategy for the fabrication of supported Wick film ceramic mixed conducting membranes, and improve the understanding of the fundamental issues associated with reliable fabrication of these membranes. The project has focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} because of its superior permeability and stability in reducing atmospheres. The fabrication strategy employed involves the deposition of SrCo{sub 0.5}FeO{sub x} thick films onto porous supports of the same composition. In the second year of this project, we completed characterization of the sintering and phase behavior of the porous SrCo{sub 0.5}FeO{sub x} supports, leading to a standard support fabrication methodology. Using a doctor blade method, pastes made from aerosol-derived SrCo{sub 0.5}FeO{sub x} powder dispersed with polyethylene glycol were applied to the supports, and the sintering behavior of the thick film membranes was examined in air and nitrogen atmospheres. It has been demonstrated that the desired crystalline phase content can be produced in the membranes, and that the material in the membrane layer can be highly densified without densifying the underlying support. However, considerable cracking and opening of the film occurred when films densified to a high extent. The addition of MgO into the SrCo{sub 0.5}FeO{sub x} supports was shown to inhibit support sintering so that temperatures up to 1300 C, where significant liquid formation occurs, could be used for film sintering. This successfully reduced cracking, however the films retained open porosity. The investigation of this concept will be continued in the final year of the project. Investigation of a metal organic chemical vapor deposition (MOCVD) method for defect mending in dense membranes was also initiated. An appropriate metal organic precursor (iron tetramethylheptanedionate) was identified whose deposition can be controlled by access to oxygen at temperatures in the 280-300 C range. Initial experiments have deposited iron oxide, but only on the membrane surface; thus refinement of this method will continue.

Timothy L. Ward

2000-06-30T23:59:59.000Z

403

MONTHLY NATURAL GAS PRODUCTION REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

205 205 Expiration Date: 09/20/2012 Burden: 3 hours MONTHLY NATURAL GAS PRODUCTION REPORT Version No.: 2011.001 REPORT PERIOD: Month: Year: If any respondent identification data has changed since the last report, enter an "X" in the box: - - - - Mail to: - Oklahoma 2. Natural Gas Lease Production 1. Gross Withdrawals of Natural Texas Contact Title: COMMENTS: Identify any unusual aspects of your operations during the report month. (To start a new line, use alt + enter.) Wyoming Other States Alaska New Mexico City: Gas Louisiana Company Name: Address 1: Address 2: Questions? Contact Name: Phone No.: Email: If this is a resubmission, enter an "X" in the box: This form may be submitted to the EIA by mail, fax, e-mail, or secure file transfer. Should you choose to submit your data via e-mail, we must advise you that e-mail is an insecure means of transmission because the data are not encrypted, and there is

404

Identifying chromatin interactions at high spatial resolution  

E-Print Network [OSTI]

This thesis presents two computational approaches for identifying chromatin interactions at high spatial resolution from ChIA-PET data. We introduce SPROUT which is a hierarchical probabilistic model that discovers high ...

Reeder, Christopher Campbell

2014-01-01T23:59:59.000Z

405

Separation Design Group LLC | Open Energy Information  

Open Energy Info (EERE)

Separation Design Group LLC Separation Design Group LLC Jump to: navigation, search Name Separation Design Group LLC Place Waynesburg, Pennsylvania Zip 15370 Product Separation Design Group is a research and product development firm established in 2003. Coordinates 39.896456°, -80.185769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.896456,"lon":-80.185769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Electromagnetic Isotope Separation Lab (EMIS) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electromagnetic Isotope Separation Lab Electromagnetic Isotope Separation Lab May 30, 2013 ORNL established the Stable Isotope Enrichment Laboratory (SIEL) as part of a project funded by the DOE Office of Science, Nuclear Physics Program to develop a modernized electromagnetic isotope separator (EMIS), optimized for separation of a wide range of stable isotopes. The SIEL is located in the Building 6010 Shield Test Station, space formerly allocated to the Oak Ridge Electron Linear Accelerator, on the main campus of ORNL. ORNL staff have designed and built a nominal 10 mA ion current EMIS (sum of all isotopes at the collector) in the SIEL. This EMIS is currently being tested to determine basic performance metrics such as throughput and enrichment factor per pass. This EMIS unit and space will be used to

407

Nuclear Separations Technologies Workshop Report 2011  

Broader source: Energy.gov (indexed) [DOE]

i i NUCLEAR SEPARATIONS TECHNOLOGIES WORKSHOP REPORT November 7, 2011 FINAL TABLE OF CONTENTS Acronyms and Initialisms............................................................................................................ iii Executive Summary ...................................................................................................................... 1 1. Introduction ............................................................................................................................. 9 1.1 Overview .......................................................................................................................... 9 1.2 Background .................................................................................................................... 10

408

Hybrid Membranes for Light Gas Separations  

E-Print Network [OSTI]

Membrane separations provide a potentially attractive technology over conventional processes due to their advantages, such as low capital cost and energy consumption. The goal of this thesis is to design hybrid membranes that facilitate specific gas...

Liu, Ting

2012-07-16T23:59:59.000Z

409

pH-biased isoelectric trapping separations  

E-Print Network [OSTI]

The classical isoelectric trapping (IET) technique, using the multicompartment electrolyzer (MCE), has been one of the most successful electrophoretic techniques in preparative-scale protein separations. IET is capable of achieving high resolution...

Shave, Evan Eric

2006-10-30T23:59:59.000Z

410

Electrochemically mediated separation for carbon capture  

E-Print Network [OSTI]

Carbon capture technology has been proposed as an effective approach for the mitigation of anthropogenic CO[subscript 2] emissions. Thermal-swing separation technologies based on wet chemical scrubbing show potential for ...

Simeon, Fritz

411

Argonne In-Flight Radioactive Ion Separator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In-Flight Radioactive Ion Separator www.phy.anl.govairis B. B. Back, C. Dickerson, C. R. Hoffman, B. P. Kay, B. Mustapha, J. A. Nolen, P. Ostroumov, R. C. Pardo, K. E. Rehm, G....

412

Separation of carbon nanotubes in density gradients  

DOE Patents [OSTI]

The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

Hersam, Mark C. (Evanston, IL); Stupp, Samuel I. (Chicago, IL); Arnold, Michael S. (Northbrook, IL)

2012-02-07T23:59:59.000Z

413

Separation of carbon nanotubes in density gradients  

DOE Patents [OSTI]

The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

Hersam, Mark C. (Evanston, IL); Stupp, Samuel I. (Chicago, IL); Arnold, Michael S. (Northbrook, IL)

2010-02-16T23:59:59.000Z

414

Air separation with temperature and pressure swing  

DOE Patents [OSTI]

A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

Cassano, Anthony A. (Allentown, PA)

1986-01-01T23:59:59.000Z

415

Superstructure Optimization of the Olefin Separation Process  

E-Print Network [OSTI]

, and C2~C5 components. Since we are mainly concerned with the recovery of ethylene and propylene, we Table 1: Separation technologies T1 Distillation column T2 Physical absorption tower T3 Membrane

Grossmann, Ignacio E.

416

Gaseous isotope separation using solar wind phenomena  

Science Journals Connector (OSTI)

...isotope separation using solar wind phenomena Chia-Gee...essentially the same as that of the solar wind propagation, in which...the author was measuring solar wind parameters under Dr. H. S. Bridge at Massachusetts Institute of Technology in...

Chia-Gee Wang

1980-01-01T23:59:59.000Z

417

USABC Battery Separator Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. es007smith2010o.pdf More Documents & Publications USABC Battery Separator Development Celgard...

418

Method for improved gas-solids separation  

DOE Patents [OSTI]

Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

Kusik, C.L.; He, B.X.

1990-11-13T23:59:59.000Z

419

Identifying Chemicals That Are Planetary Boundary Threats  

Science Journals Connector (OSTI)

Identifying Chemicals That Are Planetary Boundary Threats ... Our point of departure to develop profiles for chemicals that are potential planetary boundary threats is to identify scenarios in which a chemical could fulfill each of the three conditions for being a planetary boundary threat. ... Note that chemicals named as examples do not necessarily represent planetary boundary threats since at least one scenario from each of the three conditions must be fulfilled for a chemical to pose a planetary boundary threat. ...

Matthew MacLeod; Magnus Breitholtz; Ian T. Cousins; Cynthia A. de Wit; Linn M. Persson; Christina Rudén; Michael S. McLachlan

2014-09-02T23:59:59.000Z

420

Protein separations using porous silicon membranes  

E-Print Network [OSTI]

extraction, liquid/liquid extraction, and electrical processes. Of all of these, adsorption/chromatography and membrane separations are perhaps the most promising. According to Wong et al. (1987), chromatography offers very high selectivity but is riddled... heat transfer or heat generating equipment is necessary. The only utility required is electricity to drive pumps. A membrane separation unit operation can also be run at ambient temperature. When balanced against its drawbacks which include fouling...

Pass, Shannon Marie

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A NOVEL CO2 SEPARATION SYSTEM  

SciTech Connect (OSTI)

Because of concern over global climate change, new systems are needed that produce electricity from fossil fuels and emit less CO{sub 2}. The fundamental problem with current CO{sub 2} separation systems is the need to separate dilute CO{sub 2} and pressurize it for storage or sequestration. This is an energy intensive process that can reduce plant efficiency by 9-37% and double the cost of electricity.

Robert J. Copeland; Gokhan Alptekin; Mike Cesario; Steven Gebhard; Yevgenia Gershanovich

1999-01-01T23:59:59.000Z

422

Highly efficient separation of carbon dioxide by a metal-organic framework replete with  

E-Print Network [OSTI]

Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal capture of CO2, which is essential for natural gas purifi- cation and CO2 sequestration, has been reported media. carbon dioxide capture dynamic adsorption reticular chemistry Selective removal of CO2 from

Yaghi, Omar M.

423

Separating Signal from Noise using Patch Recurrence Across Scales Maria Zontak Inbar Mosseri Michal Irani  

E-Print Network [OSTI]

Separating Signal from Noise using Patch Recurrence Across Scales Maria Zontak Inbar Mosseri Michal Abstract Recurrence of small clean image patches across differ- ent scales of a natural image has been conditions, such as image denoising. While clean patches are obscured by severe noise in the original scale

Shapiro, Ehud

424

Inertial separator as a sediment control device  

SciTech Connect (OSTI)

The focus of this research was to address the feasibility of employing an inertial separator as a sediment control device on surface mined lands. A mathematical model has been developed to predict the sediment capture efficiency of this device on a particle size basis, and under alternative design construction conditions. The predicted performance of the inertial separator has been analyzed for a 10 year-24 hour storm generated from a contour mining operation in the Appalachian coal region. The inertial separator is designed to replace a sediment basin as the primary sediment control device. It is designed to be transported on one flat bed truck and could be modularized to facilitate a rapid installation. It has the advantages of relocation and reuse from one site to another, no moving parts, no energy requirements, simple construction, etc. The inertial separator is designed to reduce the problems common to sedimentation processes. The system uses the inertia of settling particles in accelerating flow to enhance separation, reduce short circuiting, and increase particle detention time (with a resultant increase in flocculation potential). A detailed design example is presented to indicate the expected sediment trap efficiency of the inertial separator for a sediment generated from a typical mining operation. Sediment and hydrologic inputs were determined using the SEDIMOT II model. Also, preliminary construction specifications are detailed.

Sterling, H.J.; Warner, R.C.

1984-12-01T23:59:59.000Z

425

Adsorptive separation of propylene-propane mixtures  

SciTech Connect (OSTI)

The separation of propylene-propane mixtures is of great commercial importance and is carried out by fractional distillation. It is claimed to be the most energy-intensive distillation practiced in the United States. The purpose of this paper is to describe experimental work that suggests a practical alternative to distillation for separating the C[sub 3] hydrocarbons: adsorption. As studied, the process involves three adsorptive steps: initial separation with molecular sieves with heavy dilution with an inert gas; separation of propylene and propane separately from the inert gas, using activated carbon; and drying of the product streams with any of several available desiccants. The research information presented here deals with the initial step and includes both equilibrium and kinetic data. Isotherms are provided for propylene and propane adsorbed on three zeolites, activated alumina, silica gel, and coconut-based activated carbon. Breakthrough data are provided for both adsorption and regeneration steps for the zeolites, which were found to be superior to the other adsorbents for breakthrough separations. A flow diagram for the complete proposed process is included.

Jaervelin, H.; Fair, J.R. (Univ. of Texas, Austin, TX (United States))

1993-10-01T23:59:59.000Z

426

California Federal Offshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756 752 702 731 2010's 722 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

427

California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197 173 188 269 208 211 150 168 2010's 178 172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

428

Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53 2010's 73 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

429

California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203 194 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

430

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

431

Using Natural Language Processing to Identify and Extract HER2 Value from a large EMR system  

Science Journals Connector (OSTI)

...in a large health plan, only 49 of these...membership of a health plan based in southern...data as the gold standard, for positive and...A manual chart review was performed on...according to our chart review, some notes were...study. First, non-standard terminology for the...

C Zheng; C Avila; and R Haque

2012-12-17T23:59:59.000Z

432

LETTER doi:10.1038/nature10234 Integrative genomics identifies MCU as an essential  

E-Print Network [OSTI]

,2 , Olga Goldberger1,2 , Roman L. Bogorad3 , Victor Koteliansky4 & Vamsi K. Mootha1,2 Mitochondria from number NM_138357.1) that we now call `mitochondrial calcium uniporter' (MCU). MCU, which has two pre

433

40 nature genetics volume 33 january 2003 A systematic RNAi screen identifies  

E-Print Network [OSTI]

Medical School, Boston, Massachusetts 02114, USA. 2Wellcome Trust/Cancer Research UK Institute, University in the activity of the daf-2 pathway increase lifespan by a factor of up to 44­6. There are many insulin genes function have critical roles in deter- mining C. elegans lifespan. Consistent with these results

Ahringe, Julie

434

Janus Kinase 3–Activating Mutations Identified in Natural Killer/T-cell Lymphoma  

Science Journals Connector (OSTI)

...Assessing EGFR mutations. N Engl J Med 2006;354:526-8; author reply 526-8. 26. Solassol, J , Ramos, J, Crapez, E, Saifi, M, Mange, A, Vianes, E, KRAS mutation detection in paired frozen and formalin-fixed paraffin-embedded (FFPE) colorectal...

Ghee Chong Koo; Soo Yong Tan; Tiffany Tang; Song Ling Poon; George E. Allen; Leonard Tan; Soo Ching Chong; Whee Sze Ong; Kevin Tay; Miriam Tao; Richard Quek; Susan Loong; Kheng-Wei Yeoh; Swee Peng Yap; Kuo Ann Lee; Lay Cheng Lim; Daryl Tan; Christopher Goh; Ioana Cutcutache; Willie Yu; Cedric Chuan Young Ng; Vikneswari Rajasegaran; Hong Lee Heng; Anna Gan; Choon Kiat Ong; Steve Rozen; Patrick Tan; Bin Tean Teh; Soon Thye Lim

2012-07-01T23:59:59.000Z

435

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

436

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

437

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

438

Natural Gas Rules (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

439

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

440

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fragile Networks: Identifying Vulnerabilities and Synergies  

E-Print Network [OSTI]

, Efficiency Measurement, and Vulnerability Analysis · Part II: Applications and Extensions · Part III: Mergers the foundations for transportation and logistics, for communication, energy provision, social interactions that underlie our societies and economies are large-scale and complex in nature, they are liable to be faced

Nagurney, Anna

442

Clean Cities: Natural Gas Vehicle Technology Forum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forum Forum Natural Gas Vehicle Technology Form (NGVTF) logo The Natural Gas Vehicle Technology Forum (NGVTF) supports development and deployment of commercially competitive natural gas engines, vehicles, and infrastructure. Learn about NGVTF's purpose, activities, meetings, stakeholders, steering committee, and webinars. Purpose Led by the National Renewable Energy Laboratory in partnership with the U.S. Department of Energy and the California Energy Commission, NGVTF unites a diverse group of stakeholders to: Share information and resources Identify natural gas engine, vehicle, and infrastructure technology targets Facilitate government-industry research, development, demonstration, and deployment (RDD&D) to achieve targets Communicate high-priority needs of natural gas vehicle end users to natural gas equipment and vehicle manufacturers

443

An analytical model of the swirl vane steam separator for boiling water reactors  

SciTech Connect (OSTI)

Currently, no comprehensive mechanistic model for the two-phase flow through a swirl vane steam separator is available. Therefore, an attempt has been made to develop an analytical model, using fundamental fluid mechanics, which is capable of predicting separator performance over a wide range of conditions. The developed model subdivides a typical boiling water reactor swirl vane steam separator into four distinct regions: the standpipe region, the swirl vane region, the transition region, and the free vortex region. In each region, the vapor and liquid components are treated separately and the behavior of individual droplets is determined from the drag force induced by the vapor continuum. The analytical model is used to first determine the vapor velocities throughout the separator. The drag force on the droplets is then determined, and the droplets are tracked through the separator in order to determine the exit position of each droplet. Separator performance can then be determined from this final position in terms of the fraction of droplets removed from the flow stream. In order to assess the validity of this model, the computer code SEPARATOR was developed. Among other capabilities, the code is capable of determining separator performance in terms of carryover, carryunder, and exit quality. However, due to the simplicity of the single-phase fluid treatment of the vapor continuum and the lack of data related to the average droplet diameter for flows of this nature, the results are not of significant quantitative value. The investigation performed does, however, suggest that the developed methodology, upon refinement of the single-phase fluids treatment, will yield quantitatively accurate results for nearly all separator operating conditions of interest.

Betts, C.M.; Galvin, M.R.; Green, J.R.; Guymon, V.M.; Slater, S.M.; Klein, A.C. (Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering)

1994-03-01T23:59:59.000Z

444

Identify Institutional Change Roles for Sustainability  

Broader source: Energy.gov [DOE]

To achieve the sustainability goals you've identified, take into account the network of roles essential to make or maintain the desired changes. As a rule of thumb, it may help to think about what roles are necessary for determining what changes to make, implementing those changes, and supporting or abiding by those changes. One place to start is by identifying leaders in your organization who have the authority, resources, and influence to make change happen. Those leadership roles typically include: Senior management Policy and technology officers Facilities and operations managers.

445

Asymptotic and measured large frequency separations  

E-Print Network [OSTI]

With the space-borne missions CoRoT and Kepler, a large amount of asteroseismic data is now available. So-called global oscillation parameters are inferred to characterize the large sets of stars, to perform ensemble asteroseismology, and to derive scaling relations. The mean large separation is such a key parameter. It is therefore crucial to measure it with the highest accuracy. As the conditions of measurement of the large separation do not coincide with its theoretical definition, we revisit the asymptotic expressions used for analysing the observed oscillation spectra. Then, we examine the consequence of the difference between the observed and asymptotic values of the mean large separation. The analysis is focused on radial modes. We use series of radial-mode frequencies to compare the asymptotic and observational values of the large separation. We propose a simple formulation to correct the observed value of the large separation and then derive its asymptotic counterpart. We prove that, apart from glitc...

Mosser, B; Belkacem, K; Goupil, M J; Baglin, A; Barban, C; Provost, J; Samadi, R; Auvergne, M; Catala, C

2012-01-01T23:59:59.000Z

446

Chapter 9 - Natural Gas Dehydration  

Science Journals Connector (OSTI)

Natural, associated, or tail gas usually contains water, in liquid and/or vapor form, at source and/or as a result of sweetening with an aqueous solution. Operating experience and thorough engineering have proved that it is necessary to reduce and control the water content of gas to ensure safe processing and transmission. Pipeline drips installed near wellheads and at strategic locations along gathering and trunk lines will eliminate most of the free water lifted from the wells in the gas stream. Multistage separators can also be deployed to ensure the reduction of free water that may be present. However, the removal of the water vapor that exists in solution in natural gas requires a more complex treatment. This treatment consists of “dehydrating” the natural gas, which is accomplished by lowering the dew point temperature of the gas at which water vapor will condense from the gas. There are several methods of dehydrating natural gas. The most common of these are liquid desiccant (glycol) dehydration, solid desiccant dehydration, and cooling the gas. Any of these methods may be used to dry gas to a specific water content. Usually, the combination of the water content specification, initial water content, process character, operational nature, and economic factors determine the dehydration method to be utilized. However, the choice of dehydration method is usually between glycol and solid desiccants. These are presented in depth in subsequent portions of this chapter. Keywords: absorber, adsorption isotherm, bed loading, chemisorption, dehydration, desiccant, desiccant regeneration, equilibrium zone, flash tank, flow distribution, glycol circulation pump, glycol dehydration, inlet feed contamination, liquid carryover, mass transfer zone, molecular sieve, overcirculation, reboiler, solubility, still, surge tank, undercirculation.

Saeid Mokhatab; William A. Poe

2012-01-01T23:59:59.000Z

447

Method for separating disparate components in a fluid stream  

DOE Patents [OSTI]

The invention provides a method of separating a mixed component waste stream in a centrifugal separator. The mixed component waste stream is introduced into the separator and is centrifugally separated within a spinning rotor. A dual vortex separation occurs due to the phase density differences, with the phases exiting the rotor distinct from one another. In a preferred embodiment, aqueous solutions of organics can be separated with up to 100% efficiency. The relatively more dense water phase is centrifugally separated through a radially outer aperture in the separator, while the relatively less dense organic phase is separated through a radially inner aperture.

Meikrantz, David H. (Idaho Falls, ID)

1990-01-01T23:59:59.000Z

448

Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams  

SciTech Connect (OSTI)

Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

Keiser, J.R.; Wang, D. (Gas Technology Institute); Bischoff, B.; Ciora (Media and Process Technology); Radhakrishnan, B.; Gorti, S.B.

2013-01-14T23:59:59.000Z

449

Review and assessment of technologies for the separation of strontium from alkaline and acidic media  

SciTech Connect (OSTI)

A literature survey has been conducted to identify and evaluate methods for the separation of strontium from acidic and alkaline media as applied to Hanford tank waste. The most promising methods of solvent extraction, precipitation, and ion exchange are described. The following criteria were used for evaluating the separation methods: Appreciable strontium removal must be demonstrated; Strontium selectivity over bulk components must be demonstrated; The method must show promise for evolving into a practical and fairly simple process; The process should be safe to operate; The method must be robust (i.e., capable of separating strontium from various waste types); Secondary waste generation must be minimized; and The method must show resistance to radiation damage. The methods discussed did not necessarily satisfy all of the above criteria; thus, key areas requiring further development are also given for each method. Less promising solvent extraction, precipitation, and ion exchange methods were also identified; areas for potential development are included in this report.

Orth, R.J.; Kurath, D.E.

1994-01-01T23:59:59.000Z

450

Separation of transplutonium elements by the method of emulsion membrane extraction  

SciTech Connect (OSTI)

A study is made of the kinetics of extraction of transplutonium elements by liquid emulsions of the type water and oil, containing di-2-ethylhexylphosphoric acid as the carrier and span-80 as the emulsifier. Conditions of efficient extraction and separation of three-valence americium, curium, and californium from solutions of diethylenetriaminepentaacetic acid are identified.

Novikov, A.P.; Myasoedov, B.F.

1988-05-01T23:59:59.000Z

451

Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams  

DOE Patents [OSTI]

A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

Wilding, Bruce M; Turner, Terry D

2014-12-02T23:59:59.000Z

452

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

453

Identifying Microbially Influenced Corrosion in Paper  

E-Print Network [OSTI]

1 Identifying Microbially Influenced Corrosion in Paper Machines and elsewhere Sandy Sharp, SharpConsultant, Columbia, MD, USA Symposium on Corrosion in Pulp and Paper Mills and Biorefineries, Georgia Tech., November (floating in solution) do not cause corrosion, but Sessile bacteria (attached to metal surfaces) can

Das, Suman

454

Call Identifier: CIP-IEE-2009  

E-Print Network [OSTI]

://ec.europa.eu/intelligentenergy #12;Intelligent Energy ­ Europe Call for Proposals 2009 2/17 CALL FOR PROPOSALS 2009 FOR ACTIONS UNDER THE PROGRAMME "INTELLIGENT ENERGY ­ EUROPE" Call Identifier: CIP-IEE-2009 TABLE OF CONTENTS 1. THE INTELLIGENT ENERGY ­ EUROPE PROGRAMME 3 2. BUDGET, FUNDING RATES AND ELIGIBILITY OF COSTS 5 3. ELIGIBILITY CRITERIA 5

De Cindio, Fiorella

455

Research Highlights Nature Nanotechnology  

E-Print Network [OSTI]

© 2009 APS Research Highlights Nature Nanotechnology Published online: 17 July 2009 | doi:10 perfect fluid. Phys. Rev. Lett. 103, 025301 (2009). | Article |1. Nature Nanotechnology ISSN 1748 : Nature Nanotechnology http://www.nature.com/nnano/reshigh/2009/0709/full/nnano.2009.222.html 1 of 1 18

Müller, Markus

456

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

457

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

458

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

459

Tax consequences of separating corporate businesses  

E-Print Network [OSTI]

Lips ARY g ~ggpgF ep &Ex' TAX CONSEQUENCES OP SEPARATING CORPORATE BUSINESSES A Thesis Gordon D. Zuber Submitted to the Graduate School of the Agricultural and lNechanical College of Texas in partial fulfillment of the requirements... for the Degree of MASTER OP BUSINESS ADl/iliVISTRAT ION August 1958 Ma)or Subject: Accounting TAX CONSEQUENCES OP SEPARATING CORPORATE BUSINESSES A Thesis Gordon D. Zuber Approved as to style and content by: Chairman of the Committee ead. o the Divas...

Zuber, Gordon Dewey

2012-06-07T23:59:59.000Z

460

Straight-line separation of two polyhedra  

E-Print Network [OSTI]

STRAIGHT-LINE SEPARATION OF TWO POLYHEDRA A Thesis by SU-HUA WANG Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject...: Computer Science STRAIGHT-LINE SEPARATION OF TWO POLYHEDRA A Thesis by SU-HUA WANG Approved as to style and content by: Jan Wolter hair of Committee) Donald K. Friesen (Member) esa O. alav ( ember) Richard A, Volz (Head of Department) December...

Wang, Su-Hua

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Novel Metallic Membranes for Hydrogen Separation  

SciTech Connect (OSTI)

To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

Dogan, Omer

2011-02-27T23:59:59.000Z

462

Separation of strontium from fecal matter  

DOE Patents [OSTI]

A method is presented of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.

Kester, D.K.

1995-01-03T23:59:59.000Z

463

Separation of strontium from fecal matter  

DOE Patents [OSTI]

A method of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.

Kester, Dianne K. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

464

Frustrated phase separation and high temperature superconductivity  

SciTech Connect (OSTI)

A dilute system of neutral holes in an antiferromagnet separates into a hole-rich and a hole-poor phase. The phase separation is frustrated by long-range Coulomb interactions but, provided the dielectric constant is sufficiently large, there remain large-amplitude low-energy fluctuations in the hole density at intermediate length scales. The extensive experimental evidence showing that this behavior giver, a reasonable picture of high temperature superconductors is surveyed. Further, it is shown that the scattering of mobile holes from the local density fluctuations may account for the anomalous normal-state properties of high temperature superconductors and also provide the mechanism of pairing.

Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

1992-09-01T23:59:59.000Z

465

Frustrated phase separation and high temperature superconductivity  

SciTech Connect (OSTI)

A dilute system of neutral holes in an antiferromagnet separates into a hole-rich and a hole-poor phase. The phase separation is frustrated by long-range Coulomb interactions but, provided the dielectric constant is sufficiently large, there remain large-amplitude low-energy fluctuations in the hole density at intermediate length scales. The extensive experimental evidence showing that this behavior giver, a reasonable picture of high temperature superconductors is surveyed. Further, it is shown that the scattering of mobile holes from the local density fluctuations may account for the anomalous normal-state properties of high temperature superconductors and also provide the mechanism of pairing.

Emery, V.J. (Brookhaven National Lab., Upton, NY (United States)); Kivelson, S.A. (California Univ., Los Angeles, CA (United States). Dept. of Physics)

1992-01-01T23:59:59.000Z

466

EIAs Proposed Definitions for Natural Gas Liquids  

Gasoline and Diesel Fuel Update (EIA)

Definitions for Natural Gas Liquids 1 Definitions for Natural Gas Liquids 1 June 14, 2013 EIA's Proposed Definitions for Natural Gas Liquids Term Current Definition Proposed Definition Note Lease condensate Condensate (lease condensate): A natural gas liquid recovered from associated and non associated gas wells from lease separators or field facilities, reported in barrels of 42 U.S. gallons at atmospheric pressure and 60 degrees Fahrenheit. Lease condensate: Light liquid hydrocarbons recovered from lease separators or field facilities at associated and non-associated natural gas wells. Mostly pentanes and heavier hydrocarbons. Normally enters the crude oil stream after production. Includes lease condensate as part of the crude oil stream, not an NGL. Plant condensate Plant condensate: One of the

467

Advancement of isotope separation for the production of reference standards  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) operates a mass separator that is currently producing high purity isotopes for use as internal standards for high precision isotope dilution mass spectrometry (IDMS). In 2008, INL began the revival of the vintage 1970’s era instrument. Advancements thus far include the successful upgrading and development of system components such as the vacuum system, power supplies, ion-producing components, and beam detection equipment. Progress has been made in the separation and collection of isotopic species including those of Ar, Kr, Xe, Sr, and Ba. Particular focuses on ion source improvements and developments have proven successful with demonstrated output beam currents of over 10 micro-amps 138Ba and 350nA 134Ba from a natural abundance source charge (approximately 2.4 percent 134Ba). In order to increase production and collection of relatively high quantities (mg levels) of pure isotopes, several advancements have been made in ion source designs, source material introduction, and beam detection and collection. These advancements and future developments will be presented.

Jared Horkley; Christopher McGrath; Andrew Edwards; Gaven Knighton; Kevin Carney; Jacob Davies; James Sommers; Jeffrey Giglio

2012-03-01T23:59:59.000Z

468

Numerical Simulations of Synthetic Jet Based Separation Control in a Canonical Separated Flow  

E-Print Network [OSTI]

first superharmonic is found to result in optimal control of the mean separation bubble. The stability and blunt trailing edge at zero incidence in a free-stream. A separation bubble of prescribed size in terms of local linear stability theory based on the Orr�Sommerfeld equation. The numerical results

Mittal, Rajat

469

Gas Separation With Graphene Membranes By Will Soutter  

E-Print Network [OSTI]

Gas Separation With Graphene Membranes By Will Soutter Introduction What is Graphene? Benefits of Graphene in Gas Separation Membranes Recent Developments Conclusion References Introduction The separation applications including fuel cells, batteries, gas sensors and gas purification. The materials

Bunch, Scott

470

Personally Identifiable Information | Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

Personally Identifiable Information Personally Identifiable Information Print page Print page Email page Email page PII is any information about an individual which can be used to distinguish or trace an individual's identity. PII is categorized as either Public PII or Protected PII. Public PII is available in public sources such as telephone books, public websites, business cards, university listings, etc. Public PII does not require redaction prior to document submission to OSTI. Some common examples of Public PII include: · First and last name · Address · Work telephone number · E-mail address · Home telephone number · General educational credentials (e.g., those credentials typically found in resumes) Protected PII is defined as an individual's first name or first initial

471

Guidelines for identifying suspect/counterfeit material  

SciTech Connect (OSTI)

These guidelines are intended to assist users of products in identifying: substandard, misrepresented, or fraudulently marked items. The guidelines provide information about such topics as: precautions, inspection and testing, dispositioning identified items, installed inspection and reporting suspect/counterfeit materials. These guidelines apply to users who are developing procurement documents, product acceptance/verification methods, company procedures, work instructions, etc. The intent of these SM guidelines in relation to the Quality Assurance Program Description (QAPD) and implementing company Management Control Procedures is not to substitute or replace existing requirements, as defined in either the QAPD or company implementing instructions (Management Control Procedures). Instead, the guidelines are intended to provide a consolidated source of information addressing the issue of Suspect/Counterfeit materials. These guidelines provide an extensive suspect component listing and suspect indications listing. Users can quickly check their suspect items against the list of manufacturers products (i.e., type, LD. number, and nameplate information) by consulting either of these listings.

NONE

1995-09-01T23:59:59.000Z

472

Corn Wet Milling: Separation Chemistry and Technology  

Science Journals Connector (OSTI)

Publisher Summary This chapter focuses on the separation chemistry and technology of corn wet milling. The purpose of corn wet milling is to separate the kernel into its constituent chemical components. Wet milling processing begins with steeping whole kernel corn in an aqueous solution of sulfur dioxide and lactic acid (produced by microorganisms) at 50°C for 24–48 hours. The corn is then coarsely ground and the lipid-containing germ and fibrous hull portions are separated. After the remaining components are more finely ground, the starch and protein are separated using hydrocyclones, essentially continuous centrifuges; corn starch is slightly denser than corn protein. Germ is further processed into oil and the protein and fiber components are usually blended and used as animal feeds. The wet starch is either dried, chemically modified to change its functional properties, converted into intermediate-sized glucose polymers, or fully depolymerized into sugars. Starch is also often used as a raw ingredient for adjacent processing facilities that produce ethanol or other alcohols and other industrial chemicals.

David S. Jackson; Donald L. Shandera Jr.

1995-01-01T23:59:59.000Z

473

Gaseous isotope separation using solar wind phenomena  

Science Journals Connector (OSTI)

...the use of light carrier gas, a necessity that greatly...the separative process. Gases with low molecular weight...manner similar to that of a turbine, can be placed just outside...the calculation of light gases, we have not included...the author was measuring solar wind parameters under...

Chia-Gee Wang

1980-01-01T23:59:59.000Z

474

Cellular/Molecular Separate Ca2  

E-Print Network [OSTI]

Cellular/Molecular Separate Ca2 Sources Are Buffered by Distinct Ca2 Handling Systems in Aplysia's University, Kingston, Ontario K7L 3N6, Canada AlthoughthecontributionofCa2 bufferingsystemscanvarybetweenneuronaltypesandcellularcompartments,itisunknownwhether distinct Ca2 sources within a neuron have different buffers. As individual Ca2

Blohm, Gunnar

475

Composite hydrogen separation element and module  

DOE Patents [OSTI]

There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of a flexible porous intermediate layer between a support layer and a nonporous hydrogen-permeable coating metal layer, and the provision of a textured coating metal layer. 15 figs.

Edlund, D.J.

1996-03-12T23:59:59.000Z

476

Landau theory of phase separation in cuprates  

Science Journals Connector (OSTI)

I discuss the problem of phase separation in cuprates from the point of view of the Landau theory of Fermi liquids. I calculate the rate of growth of unstable regions for the hydrodynamics and collisionless limit and, in presence of long-range Coulomb interactions, the size of these regions. These are analytic results valid for any strength of the Landau parameters.

A. H. Castro Neto

1995-02-01T23:59:59.000Z

477

Locating and identifying codes in circulant networks  

Science Journals Connector (OSTI)

A set S of vertices of a graph G is a dominating set of G if every vertex u of G is either in S or it has a neighbour in S. In other words, S is dominating if the sets S@?N[u] where u@?V(G) and N[u] denotes the closed neighbourhood of u in G, are all ... Keywords: Circulant network, Domination, Identifying code, Locating code, Locating-dominating set

M. Ghebleh; L. Niepel

2013-09-01T23:59:59.000Z

478

Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides  

SciTech Connect (OSTI)

My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic resolution, high column stability, and high sensitivity. In addition, this method showed potential usefulness for the sensitive and quick analysis of hydrolysis products of polysaccharides, and for trace level analysis of individual oligosaccharides or oligosaccharide isomers from biological systems.

Ying Liu

2004-12-19T23:59:59.000Z

479

Information-Theoretic Methods for Identifying Relationships among Climate Variables  

E-Print Network [OSTI]

Information-theoretic quantities, such as entropy, are used to quantify the amount of information a given variable provides. Entropies can be used together to compute the mutual information, which quantifies the amount of information two variables share. However, accurately estimating these quantities from data is extremely challenging. We have developed a set of computational techniques that allow one to accurately compute marginal and joint entropies. These algorithms are probabilistic in nature and thus provide information on the uncertainty in our estimates, which enable us to establish statistical significance of our findings. We demonstrate these methods by identifying relations between cloud data from the International Satellite Cloud Climatology Project (ISCCP) and data from other sources, such as equatorial pacific sea surface temperatures (SST).

Knuth, Kevin H; Rossow, William B

2014-01-01T23:59:59.000Z

480

Locating and identifying codes in circulant networks  

Science Journals Connector (OSTI)

Abstract A set S of vertices of a graph G is a dominating set of G if every vertex u of G is either in S or it has a neighbour in  S . In other words, S is dominating if the sets S ? N [ u ] where u ? V ( G ) and N [ u ] denotes the closed neighbourhood of u in G , are all nonempty. A set S ? V ( G ) is called a locating code in G , if the sets S ? N [ u ] where u ? V ( G ) ? S are all nonempty and distinct. A set S ? V ( G ) is called an identifying code in G , if the sets S ? N [ u ] where u ? V ( G ) are all nonempty and distinct. We study locating and identifying codes in the circulant networks  C n ( 1 , 3 ) . For an integer n ? 7 , the graph C n ( 1 , 3 ) has vertex set Z n and edges x y where x , y ? Z n and | x ? y | ? { 1 , 3 } . We prove that a smallest locating code in C n ( 1 , 3 ) has size ? n / 3 ? + c , where c ? { 0 , 1 } , and a smallest identifying code in C n ( 1 , 3 ) has size ? 4 n / 11 ? + c ? , where c ? ? { 0 , 1 } .

M. Ghebleh; L. Niepel

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "identified separately natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Interrogator system for identifying electrical circuits  

DOE Patents [OSTI]

A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads is disclosed. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples. 6 figs.

Jatko, W.B.; McNeilly, D.R.

1988-04-12T23:59:59.000Z

482

Multifunctional, Inorganic-Filled Separators for Large Format...  

Broader source: Energy.gov (indexed) [DOE]

& Publications Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries...

483

Multifunctional, Inorganic-Filled Separators for Large Format...  

Broader source: Energy.gov (indexed) [DOE]

Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries 2012 DOE Hydrogen...

484

Solid-Liquid Separation of Animal Manure and Wastewater  

E-Print Network [OSTI]

Solid-liquid separation is an alternative treatment for animal manure and process-generated wastewater. This publication explains the techniques, equipment, performance and economics of separators....

Mukhtar, Saqib; Sweeten, John M.; Auvermann, Brent W.

1999-10-19T23:59:59.000Z

485

Graphene as the Ultimate Membrane for Gas Separation Project...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphene as the Ultimate Membrane for Gas Separation Graphene as the Ultimate Membrane for Gas Separation GraphenePore.jpg Key Challenges: Investigate the permeability and...

486

Effects of cell positive cans and separators on the performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the batteries by more than 13%. Among the five separators studied in this work, polyethylene (PE) separator shows the best electrochemical stability. The cells using...

487

Ethanol separation from molasses based fermentation broth by reverse osmosis  

Science Journals Connector (OSTI)

Irradiated styrene-grafted cellulose acetate membrane was used for the separation of ethanol by reverse osmosis. Ethanol separation from molasses based fermentation broth...

J. P. Choudhury; P. Ghosh; B. K. Guha

1986-10-01T23:59:59.000Z

488

Accelerated High-Resolution Differential Ion Mobility Separations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Resolution Differential Ion Mobility Separations Using Hydrogen. Accelerated High-Resolution Differential Ion Mobility Separations Using Hydrogen. Abstract: The resolving...

489

Haverford Researchers Create Carbon Dioxide-Separating Polymer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy...

490

Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved Reserves,

491

Nitrogen removal from natural gas  

SciTech Connect (OSTI)

According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

NONE

1997-04-01T23:59:59.000Z

492

U.S. Natural Gas Proved Reserves, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana New Mexico NM, East NM, West New York North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah Virginia West Virginia Wyoming Miscellaneous Period:

493

U.S. Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East NM, West New York North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah Virginia West Virginia Wyoming Miscellaneous Period:

494

Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

220,416 247,789 255,035 283,879 317,647 348,809 1979-2011 220,416 247,789 255,035 283,879 317,647 348,809 1979-2011 Federal Offshore U.S. 15,750 14,813 13,892 12,856 12,120 10,820 1990-2011 Pacific (California) 811 805 705 740 725 711 1979-2011 Gulf of Mexico 14,938 14,008 1992-2007 Louisiana & Alabama 12,201 11,458 10,785 9,665 9,250 8,555 1981-2011 Texas 2,738 2,550 2,402 2,451 2,145 1,554 1981-2011 Alaska 10,333 12,022 7,766 9,183 8,917 9,511 1979-2011 Lower 48 States 210,083 235,767 247,269 274,696 308,730 339,298 1979-2011 Alabama 3,963 4,036 3,379 2,948 2,724 2,570 1979-2011 Arkansas 2,271 3,306 5,628 10,872 14,181 16,374 1979-2011 California 2,935 2,879 2,538 2,926 2,785 3,042 1979-2011 Coastal Region Onshore 214 212 151 169 180 173 1979-2011

495

Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

220,416 247,789 255,035 283,879 317,647 348,809 1979-2011 220,416 247,789 255,035 283,879 317,647 348,809 1979-2011 Federal Offshore U.S. 15,750 14,813 13,892 12,856 12,120 10,820 1990-2011 Pacific (California) 811 805 705 740 725 711 1979-2011 Gulf of Mexico 14,938 14,008 1992-2007 Louisiana & Alabama 12,201 11,458 10,785 9,665 9,250 8,555 1981-2011 Texas 2,738 2,550 2,402 2,451 2,145 1,554 1981-2011 Alaska 10,333 12,022 7,766 9,183 8,917 9,511 1979-2011 Lower 48 States 210,083 235,767 247,269 274,696 308,730 339,298 1979-2011 Alabama 3,963 4,036 3,379 2,948 2,724 2,570 1979-2011 Arkansas 2,271 3,306 5,628 10,872 14,181 16,374 1979-2011 California 2,935 2,879 2,538 2,926 2,785 3,042 1979-2011 Coastal Region Onshore 214 212 151 169 180 173 1979-2011

496

Associated-Dissolved Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

726 1,115 662 564 1,146 1,338 2000-2011 726 1,115 662 564 1,146 1,338 2000-2011 Federal Offshore U.S. 455 161 48 20 83 66 2000-2011 Pacific (California) 0 1 0 0 0 0 2000-2011 Louisiana & Alabama 320 156 48 20 74 66 2000-2011 Texas 135 4 0 0 9 0 2000-2011 Alaska 0 3 0 1 0 2 2000-2011 Lower 48 States 1,726 1,112 662 563 1,146 1,336 2000-2011 Alabama 4 5 0 0 2 9 2000-2011 Arkansas 0 0 0 5 0 38 2000-2011 California 133 8 7 4 1 1 2000-2011 Coastal Region Onshore 70 4 6 0 1 0 2000-2011 Los Angeles Basin Onshore 37 0 1 0 0 0 2000-2011 San Joaquin Basin Onshore 26 2 0 4 0 0 2000-2011 State Offshore 0 2 0 0 0 1 2000-2011 Colorado 578 3 1 9 2 19 2000-2011 Florida 0 48 0 0 0 0 2000-2011 Kansas 0 0 1 0 1 1 2000-2011 Kentucky

497

Natural Proofs for Structure, Data, and Separation Xiaokang Qiu Pranav Garg Andrei Stefanescu P. Madhusudan  

E-Print Network [OSTI]

by automated logical decision procedures supported by SMT solvers, which have emerged as robust and pow- erful

Parthasarathy, Madhusudan

498

Natural Proofs for Structure, Data, and Separation Xiaokang Qiu Pranav Garg Andrei Stefanescu P. Madhusudan  

E-Print Network [OSTI]

conditions has become very powerful. The latter process is often executed by automated logical decision

Parthasarathy, Madhusudan

499

Declining Amphibian Populations: The Problem of Separating Human Impacts from Natural Fluctuations  

Science Journals Connector (OSTI)

...wound-inducible proteinase inhibitor proteins when supplied to...that activate pro-temase inhibitors in both local and distant...may regulate pro-teinase inhibitor I and II genes in both wounded...AUGUST 1991 3), chitin and chitosan fragments from fun-gal cell...

JOSEPH H. K. PECHMANN; DAVID E. SCOTT; RAYMOND D. SEMLITSCH; JANALEE P. CALDWELL; LAURIE J. VITT; J. WHITFIELD GIBBONS

1991-08-23T23:59:59.000Z

500

Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 220,416 247,789 255,035 283,879 317,647 348,809 1979-2011 Federal Offshore U.S. 15,750 14,813 13,892 12,856 12,120 10,820 1990-2011 Pacific (California) 811 805 705 740 725 711 1979-2011 Louisiana & Alabama 12,201 11,458 10,785 9,665 9,250 8,555 1981-2011 Texas 2,738 2,550 2,402 2,451 2,145 1,554 1981-2011