Powered by Deep Web Technologies
Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Event:IDB Climate Change and Sustainability Day | Open Energy Information  

Open Energy Info (EERE)

IDB Climate Change and Sustainability Day IDB Climate Change and Sustainability Day Jump to: navigation, search Calendar.png IDB Climate Change and Sustainability Day: on 2012/06/20 The Inter-American Development Bank is organizing an event on Climate Change and Sustainability on the sidelines of the UN Conference on Sustainable Development (UNCSD, or Rio+20). The event is open to the private and public sectors as well as civil society. Discussions will address, among other topics: mitigation and adaptation to climate change, resilient low carbon development, biodiversity, sustainable energy and the challenges of a local level sustainability agenda. Event Details Name IDB Climate Change and Sustainability Day Date 2012/06/20 Location Rio de Janeiro, Brazil Organizer Inter-American Development Bank (IDB)

2

Climate Change 2007: Mitigation of Climate Change.  

E-Print Network [OSTI]

2007: Mitigation of Climate Change. Full report. WorkingIntergovernmental Panel on Climate Change www.webcda.it LaIntergovernmental Panel on Climate Change”. Il Rapporto

Schiavon, Stefano; Zecchin, Roberto

2007-01-01T23:59:59.000Z

3

ORIGINAL ARTICLE Synergisms between climate change mitigation  

E-Print Network [OSTI]

but increasingly so in developing countries and economies in transition. Certain measures that integrate climateORIGINAL ARTICLE Synergisms between climate change mitigation and adaptation: an insurance an aggregator of the impacts of climate change and a market actor able to play a material role in decreasing

4

Integrating Efficiency Into Climate Change Mitigation Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrating Efficiency Into Climate Change Mitigation Policy Integrating Efficiency Into Climate Change Mitigation Policy Speaker(s): Steven R. Schiller Date: December 8, 2008 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Richard Diamond Steve will discuss policy options for deploying energy efficiency resources in electricity (non-transportation) end-use markets to meet needed GHG emission reduction levels. This discussion will include listing some barriers inherent to climate policy design, as well as energy markets, that inhibit efficiency investment as an emissions reduction strategy. However, the focus of the talk is on recommendations for effective mechanisms that incorporate end-use electricity energy efficiency into climate change mitigation efforts. In a recent ACEEE paper, Steve and his co-authors,

5

Climate ChangeClimate Change Mitigation StrategiesMitigation Strategies----  

E-Print Network [OSTI]

on global mean temperature change or other key impacts translate into limits on atmospheric GHG concentrations? Target: limit atmospheric GHG concentrations How do atmospheric GHG concentration limits translate into limits on global GHG emissions? Target: limit global GHG emissions TargetTarget: limit U

6

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

Technologies for Climate Change Mitigation: Transport Sector Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector Agency/Company /Organization: Global Environment Facility, United Nations Environment Programme Sector: Energy, Climate Focus Area: Transportation Topics: Low emission development planning Resource Type: Guide/manual Website: tech-action.org/Guidebooks/TNAhandbook_Transport.pdf Cost: Free Technologies for Climate Change Mitigation: Transport Sector Screenshot References: Technologies for Climate Change Mitigation: Transport Sector[1] "The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries

7

Development based climate change adaptation and mitigation-conceptual...  

Open Energy Info (EERE)

based climate change adaptation and mitigation-conceptual issues and lessons learned in studies in developing countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

8

Climate Change Mitigation in the Energy and Forestry Sectors...  

Open Energy Info (EERE)

of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

9

Agricultural Technologies for Climate Change Mitigation and Adaptation...  

Open Energy Info (EERE)

Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for...

10

Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions  

SciTech Connect (OSTI)

This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

2011-09-30T23:59:59.000Z

11

Argentina-Climate Change Mitigation and Agriculture in Latin...  

Open Energy Info (EERE)

on climate change mitigation and agriculture in Latin America and the Caribbean1 Abstract The Government of New Zealand, the Inter-American Development Bank (IDB) and the...

12

Climate Change Adaptation and Mitigation in the Tourism Sector | Open  

Open Energy Info (EERE)

Climate Change Adaptation and Mitigation in the Tourism Sector Climate Change Adaptation and Mitigation in the Tourism Sector Jump to: navigation, search Tool Summary Name: Climate Change Adaptation and Mitigation in the Tourism Sector Agency/Company /Organization: United Nations Environment Programme Topics: Adaptation, Co-benefits assessment Resource Type: Publications Website: www.unep.fr/shared/publications/pdf/DTIx1047xPA-ClimateChange.pdf Climate Change Adaptation and Mitigation in the Tourism Sector Screenshot References: Climate Change Adaptation and Mitigation in the Tourism Sector[1] Summary "This document forms part of the " UNEP Manuals on Sustainable Tourism" and the UNWTO sustainable tourism policy guidebooks publication series, aiming to provide guidance to tourism stakeholders to integrate

13

Economics of nuclear power and climate change mitigation policies  

Science Journals Connector (OSTI)

...climate change mitigation literature. We apply an energy economy...announced a thorough review of their plans. A public...stabilization. The existing literature on the economics...provided by hydropower, bioenergy with CCS, wind, and geothermal...climate change mitigation literature. We apply an energy...

Nico Bauer; Robert J. Brecha; Gunnar Luderer

2012-01-01T23:59:59.000Z

14

The Costs of Greenhouse Gas Mitigation with Induced Technological Change  

E-Print Network [OSTI]

The Costs of Greenhouse Gas Mitigation with Induced Technological Change: A Meta of Greenhouse Gas Mitigation with Induced Technological Change: A Meta-Analysis of Estimates in the Literature and overlapping choices of assumptions. The purpose of the study is to use regression and related analyses

Watson, Andrew

15

Dominican Republic-Climate Change Mitigation and Agriculture in Latin  

Open Energy Info (EERE)

Dominican Republic-Climate Change Mitigation and Agriculture in Latin Dominican Republic-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Jump to: navigation, search Logo: Dominican Republic-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Name Dominican Republic-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Agency/Company /Organization Inter-American Development Bank, The Regional Fund for Agricultural Technology, Government of New Zealand Sector Climate, Land Focus Area Agriculture Topics Background analysis, GHG inventory, Low emission development planning Website http://www.iadb.org/en/news/ne Program Start 2011 Country Dominican Republic Caribbean References IDB, FONTAGRO, Government of New Zealand sign agreement on climate change mitigation and agriculture in Latin America and the Caribbean[1]

16

Mitigation of Climate Change in Agriculture (MICCA) Project | Open Energy  

Open Energy Info (EERE)

Climate Change in Agriculture (MICCA) Project Climate Change in Agriculture (MICCA) Project Jump to: navigation, search Name Mitigation of Climate Change in Agriculture (MICCA) Project Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Land Focus Area Agriculture Topics Policies/deployment programs Website http://www.fao.org/climatechan Program Start 2010 References Mitigation of Climate Change in Agriculture (MICCA) Project[1] "The main goal of this project is to support efforts to mitigate climate change through agriculture in developing countries and move towards carbon friendly agricultural practices. The aim of the project is to help realise the substantial mitigation potential of agriculture, especially that of smallholders in developing countries. If the right changes are implemented in production systems,

17

Agricultural Technologies for Climate Change Mitigation and Adaptation in  

Open Energy Info (EERE)

Agricultural Technologies for Climate Change Mitigation and Adaptation in Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovations and Technology Diffusion Jump to: navigation, search Tool Summary Name: Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovations and Technology Diffusion Agency/Company /Organization: International Centre for Trade and Sustainable Development Sector: Land Focus Area: Agriculture, Biomass Topics: Adaptation, Implementation, Policies/deployment programs Resource Type: Guide/manual, Publications Website: ictsd.org/downloads/2010/06/agricultural-technologies-for-climate-chan Language: English Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovations and Technology Diffusion Screenshot

18

Agriculture, Climate Change and Climate Change Mitigation Bruce A. McCarl  

E-Print Network [OSTI]

Agriculture, Climate Change and Climate Change Mitigation Bruce A. McCarl Regents Professor Change Happen Let's Avoid Climate Change Mitigation Effects Presented at Texas Recycling and Sustainability Summit San Antonio, Sept 29, 2004 #12;Climate Change has in part a human cause Source http

McCarl, Bruce A.

19

Industrial Energy Efficiency and Climate Change Mitigation  

SciTech Connect (OSTI)

Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

2009-02-02T23:59:59.000Z

20

Global climate change and the mitigation challenge  

SciTech Connect (OSTI)

Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

Frank Princiotta [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). Air Pollution Prevention and Control Division

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Financing Global Climate Change Mitigation | Open Energy Information  

Open Energy Info (EERE)

Financing Global Climate Change Mitigation Financing Global Climate Change Mitigation Jump to: navigation, search Tool Summary Name: Financing Global Climate Change Mitigation Agency/Company /Organization: United Nations Economic Commission for Europe Sector: Energy Focus Area: Energy Efficiency, Renewable Energy Topics: Finance Resource Type: Publications, Guide/manual Website: www.unece.org/energy/se/pdfs/gee21/gee21_pub/GEE21_GlobalClimateChange UN Region: "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

22

Korea's Green Growth Strategy: Mitigating Climate Change and Developing New  

Open Energy Info (EERE)

Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Growth Engines Jump to: navigation, search Name Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Growth Engines Agency/Company /Organization Organisation for Economic Co-Operation and Development Topics Policies/deployment programs, Pathways analysis, Background analysis Resource Type Publications, Guide/manual Website http://www.oecd.org/officialdo Country South Korea UN Region Eastern Asia References Korea's Green Growth Strategy[1] Overview "Korea's greenhouse gas emissions almost doubled between 1990 and 2005, the highest growth rate in the OECD area. Korea recently set a target of reducing emissions by 30% by 2020 relative to a "business as usual"

23

Development based climate change adaptation and mitigation-conceptual  

Open Energy Info (EERE)

Development based climate change adaptation and mitigation-conceptual Development based climate change adaptation and mitigation-conceptual issues and lessons learned in studies in developing countries Jump to: navigation, search Tool Summary Name: Development based climate change adaptation and mitigation-conceptual issues and lessons learned in studies in developing countries Agency/Company /Organization: Lawrence Berkeley National Laboratory (LBNL) Sector: Climate, Energy, Land, Water Topics: Adaptation, Co-benefits assessment, - Energy Access, - Energy Security, - Health Resource Type: Case studies/examples, Lessons learned/best practices, Publications Website: ies.lbl.gov/iespubs/2halsaes.pdf Country: India, China, South Africa, Brazil, Bangladesh, Senegal Cost: Free Southern Asia, Eastern Asia, Southern Africa, South America, Southern Asia, Western Africa

24

Relative outcomes of climate change mitigation related to global  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Relative outcomes of climate change mitigation related to global Relative outcomes of climate change mitigation related to global temperature versus sea-level rise Submitted by mkaczmar on February 8, 2013 - 15:19 Authors: Gerald A. Meehl, Aixue Hu, Claudia Tebaldi, Julie M. Arblaster, Warren M. Washington, Haiyan Teng, Benjamin M. Sanderson, Toby Ault, Warren G. Strand & James B. White III There is a common perception that, if human societies make the significant adjustments necessary to substantively cut emissions of greenhouse gases, global temperature increases could be stabilized, and the most dangerous consequences of climate change could be avoided. Here we show results from global coupled climate model simulations with the new representative concentration pathway mitigation scenarios to 2300 to illustrate that, with

25

Climate change mitigation through forestry measures: potentials, options, practice  

E-Print Network [OSTI]

properties of GHG balances in forestry systems (1 slide) · The current GHG balance and potentials at different scales (5 slides) · Modelling forest GHG balances and impacts of measures (2 slides;18 May 2010 Climate change mitigation and forestry measures GHG dynamics in forest systems · Emissions

26

Regional climate change mitigation with crops: context and assessment  

Science Journals Connector (OSTI)

...degree of climate remediation achievable given...had an impact on ground albedo and increased...concerned with climate remediation. Biogeoengineering...absorption peaks by water in leaves in the...change mitigation and remediation. Curr. Biol...Environment Agency. 2009 Water for people and the...

2012-01-01T23:59:59.000Z

27

Mitigating Climate Change through Energy Efficiency: Implications of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mitigating Climate Change through Energy Efficiency: Implications of Mitigating Climate Change through Energy Efficiency: Implications of China's 20 % Energy Intensity Reduction Target Speaker(s): Jiang Lin Date: March 13, 2007 - 12:00pm Location: 90-3122 China's rapid economic growth in the last few years has spurred a construction boom for power plants on an unprecedented scale. In 2006 alone, 102 GW of generating capacity was brought online, 90 GW of which are from coal-fired power plants. Further, energy has grown faster than GDP since 2001, reversing a two-decade trend of declining energy intensity from 19080 to 2000. The ramifications of this reversal are far-reaching for global energy market and environment. China has since set an ambitious target of reducing its energy intensity by 20% by the year 2010, with a first-year goal of 4% reduction for 2006. This presentation will discuss

28

Invention and International Diffusion of Climate Change Mitigation Technologies: An Empirical Approach  

E-Print Network [OSTI]

International technology transfer..........................................................51 6 Conclusion ......................................................................................................62 Research paper 2: What Drives the International Transfer of Climate Change Mitigation Technologies1 Invention and International Diffusion of Climate Change Mitigation Technologies: An Empirical

Paris-Sud XI, Université de

29

Guidelines for the Monitoring, Evaluation, Reporting, Verification, and Certification of Forestry Projects for Climate Change Mitigation  

E-Print Network [OSTI]

MERVC guidelines for climate change projects require non-applicable in the climate change project, these items needof Forestry Projects for Climate Change Mitigation Edward

Vine, Edward; Sathaye, Jayant; Makundi, Willy

1999-01-01T23:59:59.000Z

30

JICA's Assistance for Mitigation to Climate Change - The Co-Benefits...  

Open Energy Info (EERE)

JICA's Assistance for Mitigation to Climate Change - The Co-Benefits Approach to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: JICA's Assistance for...

31

Statement by Secretary Moniz on IPCC's Working Group Report on Climate Change Mitigation  

Broader source: Energy.gov [DOE]

Energy Secretary Ernest Moniz issued a statement on the Intergovernmental Panel on Climate Change's Working Group report on climate change mitigation.

32

Role of Biochar in Mitigation of Climate Change  

SciTech Connect (OSTI)

By virtue of the large fraction of the terrestrial carbon (C) cycle controlled by human activities, agroecosystems are both sources and sinks for greenhouse gases. Their potential role in mitigation of climate change thus depends on a dual strategy of decreasing greenhouse gas emissions while increasing sinks so that the net impact on climate warming is less than at present. Emissions of carbon dioxide, methane and nitrous oxide arise from various agricultural activities, ranging from land clearing to ploughing, fertilization, and animal husbandry. Reductions in these emissions can be achieved by decreasing the heterotrophic conversion of organic C to carbon dioxide, and by better management of agricultural waste streams to minimize release of methane and nitrous oxide. Current sinks include C stored in standing biomass and soil organic matter, and the oxidation of atmospheric methane by soil bacteria. These sinks can be enhanced by increasing net primary productivity, thereby actively withdrawing more carbon dioxide from the atmosphere, and by promoting more oxidation of methane by soils. Judicious biochar management may contribute to both strategies, reductions of emissions by agriculture and active withdrawal of atmospheric carbon dioxide, as part of a comprehensive scheme in agricultural and forestry watersheds. Biochar is a carbon-rich organic material generated by heating biomass in the absence, or under a limited supply, of oxygen. This so-called charring or pyrolysis process has been used to produce charcoal as a source of fuel for millennia. Recently, interest has grown in understanding the potential of this process to improve soil health by adding biochar as an amendment to soil, to manage agricultural and forestry wastes, to generate energy, to decrease net emissions of nitrous oxide and methane, and to store carbon (C). The main incentive of biochar systems for mitigation of climate change is to increase the stability of organic matter or biomass. This stability is achieved by the conversion of fresh organic materials, which mineralize comparatively quickly, into biochar, which mineralizes much more slowly. The difference between the mineralization of uncharred and charred material results in a greater amount of carbon storage in soils and a lower amount of carbon dioxide, the major greenhouse gas, in the atmosphere. The principle of creating and managing biochar systems may address multiple environmental constraints. Biochar may help not only in mitigating climate change, but also fulfill a role in management of agricultural and forestry wastes, enhancement of soil sustainability, and generation of energy. Pyrolysis is a comparatively low-technology intervention. Deployment on a global scale, however, must be done carefully if the full mitigation potential is to be reached. Critical aspects of a successful implementation are that: 1) the biochar is sufficiently stable to reduce greenhouse gases in the atmosphere for an appropriate length of time. 2) the storage of carbon as biochar in soil is not offset by greenhouse gas emissions along the value chain of the system, such as mineralization of soil carbon or emissions of other greenhouse gases (e.g., methane and nitrous oxide). 3) net emission reductions are achieved for the entire life cycle of the system including indirect land use. 4) the biochar product does not cause unwanted side effects in soil. 5) the handling and production of biochar are in compliance with health and safety standards and do not pose hurdles to implementation. and 6) the biochar system is financially viable. This chapter discusses these issues in separate sections, identifies knowledge gaps, and proposes a road map to fully evaluate an environmentally and socially safe exploration of the biochar potential to mitigate climate change if adopted widely around the world.

Lehmann, Johannes C.; Amonette, James E.; Roberts, Kelli G.

2010-09-30T23:59:59.000Z

33

Climate Change Mitigation Through Land-Use Measures in the Agriculture and  

Open Energy Info (EERE)

Climate Change Mitigation Through Land-Use Measures in the Agriculture and Climate Change Mitigation Through Land-Use Measures in the Agriculture and Forestry Sectors Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation Through Land-Use Measures in the Agriculture and Forestry Sectors Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Energy, Land, Climate Focus Area: Forestry, Agriculture Topics: Policies/deployment programs Resource Type: Publications Website: www.iisd.org/pdf/2009/climate_change_mitigation_land_use.pdf References: Climate Change Mitigation Through Land-Use Measures in the Agriculture and Forestry Sectors[1] Overview "This paper reviews the status of the post-2012 negotiations on climate change mitigation through land-use measures in the agriculture and forestry

34

JICA's Assistance for Mitigation to Climate Change - The Co-Benefits  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » JICA's Assistance for Mitigation to Climate Change - The Co-Benefits Approach to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: JICA's Assistance for Mitigation to Climate Change - The Co-Benefits Approach to Climate Change Agency/Company /Organization: Japan International Cooperation Agency Sector: Energy, Land Topics: Co-benefits assessment Website: www.jica.go.jp/english/index.html JICA's Assistance for Mitigation to Climate Change - The Co-Benefits Approach to Climate Change Screenshot References: JICA's Assistance for Mitigation to Climate Change - The Co-Benefits Approach to Climate Change[1] References ↑ "JICA's Assistance for Mitigation to Climate Change - The

35

Climate Change Mitigation Through Land-Use Measures in the Agriculture...  

Open Energy Info (EERE)

and Forestry Sectors Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation Through Land-Use Measures in the Agriculture and Forestry...

36

ASSESSING CLIMATE CHANGE MITIGATION WITH A HYBRID ENERGY-ECONOMY APPROACH FOR  

E-Print Network [OSTI]

ASSESSING CLIMATE CHANGE MITIGATION WITH A HYBRID ENERGY-ECONOMY APPROACH FOR AFRICA, THE MIDDLE Management Title of Thesis: Assessing Climate Change Mitigation with a Hybrid Energy-Economy Approach create a hybrid energy-economy model for developing countries in Africa, the Middle East and Latin

37

Argentina-Climate Change Mitigation and Agriculture in Latin America and  

Open Energy Info (EERE)

Argentina-Climate Change Mitigation and Agriculture in Latin America and Argentina-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Jump to: navigation, search Logo: Argentina-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Name Argentina-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Agency/Company /Organization Inter-American Development Bank, The Regional Fund for Agricultural Technology, Government of New Zealand Sector Climate, Land Focus Area Agriculture Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, Policies/deployment programs Website http://www.iadb.org/en/news/ne Program Start 2011 Country Argentina UN Region South America References IDB, FONTAGRO, Government of New Zealand sign agreement on climate change mitigation and agriculture in Latin America and the Caribbean[1]

38

Colombia-Climate Change Mitigation and Agriculture in Latin America and the  

Open Energy Info (EERE)

Colombia-Climate Change Mitigation and Agriculture in Latin America and the Colombia-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Jump to: navigation, search Logo: Colombia-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Name Colombia-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Agency/Company /Organization Inter-American Development Bank, The Regional Fund for Agricultural Technology, Government of New Zealand Sector Climate, Land Focus Area Agriculture Topics Background analysis, GHG inventory, Low emission development planning Website http://www.iadb.org/en/news/ne Program Start 2011 Country Colombia South America References IDB, FONTAGRO, Government of New Zealand sign agreement on climate change mitigation and agriculture in Latin America and the Caribbean[1]

39

Uruguay-Climate Change Mitigation and Agriculture in Latin America and the  

Open Energy Info (EERE)

Uruguay-Climate Change Mitigation and Agriculture in Latin America and the Uruguay-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Jump to: navigation, search Logo: Uruguay-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Name Uruguay-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Agency/Company /Organization Inter-American Development Bank, The Regional Fund for Agricultural Technology, Government of New Zealand Sector Climate, Land Focus Area Agriculture Topics Background analysis, GHG inventory, Low emission development planning Website http://www.iadb.org/en/news/ne Program Start 2011 Country Uruguay South America References IDB, FONTAGRO, Government of New Zealand sign agreement on climate change mitigation and agriculture in Latin America and the Caribbean[1]

40

Chile-Climate Change Mitigation and Agriculture in Latin America and the  

Open Energy Info (EERE)

Chile-Climate Change Mitigation and Agriculture in Latin America and the Chile-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Jump to: navigation, search Logo: Chile-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Name Chile-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Agency/Company /Organization Inter-American Development Bank, The Regional Fund for Agricultural Technology, Government of New Zealand Sector Climate, Land Focus Area Agriculture Topics Background analysis, GHG inventory, Low emission development planning Website http://www.iadb.org/en/news/ne Program Start 2011 Country Chile South America References IDB, FONTAGRO, Government of New Zealand sign agreement on climate change mitigation and agriculture in Latin America and the Caribbean[1]

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Climate change mitigation and co-benefits of feasible transport demand policies in Beijing  

E-Print Network [OSTI]

i n f o Keywords: Climate change mitigation Transport demand management External costs Urban and potential impacts of travel demand management help to define policy instruments that mitigate the damaging. The paper investi- gates the role of demand elasticities and demonstrates that joint demand and supply-side

Kammen, Daniel M.

42

The Role of China in Mitigating Climate Change  

E-Print Network [OSTI]

We explore short- and long-term implications of several energy scenarios of China’s role in efforts to mitigate global climate risk. The focus is on the impacts on China’s energy system and GDP growth, and on global climate ...

Paltsev, S.

43

Renewable and low-carbon energies as mitigation options of climate change for China  

Science Journals Connector (OSTI)

This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China’s ... transitions towards a low-carbon system relying on renewable and low-carbon energies. ...

F. Urban; R. M. J. Benders; H. C. Moll

2009-05-01T23:59:59.000Z

44

Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An  

E-Print Network [OSTI]

Bioenergy crop productivity and potential climate change mitigation from marginal lands bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops June 2014 Introduction Bioenergy, an important renewable energy produced from biological materials

Zhuang, Qianlai

45

Three Essays On Agricultural and Forestry Offsets In Climate Change Mitigation  

E-Print Network [OSTI]

major crops. The implementation of climate change mitigation strategies, such as the expansion of bioenergy production, causes demand for the agricultural sector to increase substantially. The new demand would cause noticeable leakage effect if crop...

Feng, Siyi

2012-07-16T23:59:59.000Z

46

Induced technological change in moderate and fragmented climate change mitigation regimes  

Science Journals Connector (OSTI)

Abstract Climate change mitigation efforts are currently characterized by a lack of globally coordinated measures and predominantly moderate regional action. This paper compares the results from different Integrated Assessment Models to analyze the impact of such moderate climate change mitigation actions on electricity technology deployment and development, along with the impact of first movers taking stringent unilateral action-specifically, the EU and an EU-plus-China coalition. We find that a fragmented regime with moderate climate and technology targets produces significant emission reductions and changes in the adoption of electricity technologies towards low-carbon alternatives, promoting global technology change. The adoption of more stringent policies by the first movers implies a further transformation of their electricity sectors, but technology deployment outside the coalition is not significantly affected. Furthermore, the results in some models show (1) that first movers can benefit from early action by increased access to low-carbon energy carriers and (2) that delayed action implies the lock-in of carbon-intensive technologies leading to a slower transformation of the electricity sector later.

Adriana Marcucci; Hal Turton

2013-01-01T23:59:59.000Z

47

The role of US agricultural and forest activities in global climate change mitigation  

E-Print Network [OSTI]

THE ROLE OF US AGRICULTURAL AND FOREST ACTIVITIES IN GLOBAL CLIMATE CHANGE MITIGATION A Dissertation by EN ZHU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2007 Major Subject: Agricultural Economics THE ROLE OF US AGRICULTURAL AND FOREST ACTIVITIES IN GLOBAL CLIMATE CHANGE MITIGATION A Dissertation...

Zhu, En

2009-05-15T23:59:59.000Z

48

Designing Climate Change Mitigation Plans That Add Up  

Science Journals Connector (OSTI)

For example: MacKay(2) demonstrates that deployment of renewable energy in the UK is likely to be constrained by a available land; Smil(3) argues that “The speed of transition from a predominantly fossil-fuelled world to conversion of renewable flows is being grossly overestimated”; the International Energy Agency (IEA)(4) suggests that deployment of clean energy technologies and carbon capture and storage (CCS) is lagging behind critical projections. ... A study of integrated models used to anticipate transition pathways and future equilibria arising from different energy or carbon related price signals reports that at least six different approaches are in use for assessing technical mitigation opportunities. ... Table S21 presents five illustrative options to mitigate these emissions: (i) car sharing, (ii) a switch to train, (iii) car light-weighting, (iv) technology switch to diesel, and (v) engine improvements. ...

Bojana Bajželj; Julian M. Allwood; Jonathan M. Cullen

2013-06-25T23:59:59.000Z

49

The Role of Asia in Mitigating Climate Change: Results from the Asia Modeling Exercise  

SciTech Connect (OSTI)

In 2010, Asia accounted for 60% of global population, 39% of Gross World Product, 44% of global energy consumption and nearly half of the world’s energy system CO2 emissions. Thus, Asia is an important region to consider in any discussion of climate change or climate change mitigation. This paper explores the role of Asia in mitigating climate change, by comparing the results of 23 energy-economy and integrated assessment models. We focus our analysis on seven key areas: base year data, future energy use and emissions absent climate policy, the effect of urban and rural development on future energy use and emissions, the role of technology in emissions mitigation, regional emissions mitigation, and national climate policies

Calvin, Katherine V.; Clarke, Leon E.; Krey, Volker; Blanford, Geoffrey J.; Jiang, Kejun; Kainuma, M.; Kriegler, Elmar; Luderer, Gunnar; Shukla, Priyadarshi R.

2012-12-01T23:59:59.000Z

50

The contribution of future agricultural trends in the US Midwest to global climate change mitigation  

SciTech Connect (OSTI)

Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicator Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.

Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong; Bandaru, Varaprasad; West, Tristram O.; Wise, Marshall A.; Izaurralde, Roberto C.; Calvin, Katherine V.

2014-01-19T23:59:59.000Z

51

Using Land To Mitigate Climate Change: Hitting the Target, Recognizing the Trade-offs  

Science Journals Connector (OSTI)

Land can be used in several ways to mitigate climate change, but especially under changing environmental conditions there may be implications for food prices. Using an integrated global system model, we explore the roles that these land-use options can ...

John Reilly; Jerry Melillo; Yongxia Cai; David Kicklighter; Angelo Gurgel; Sergey Paltsev; Timothy Cronin; Andrei Sokolov; Adam Schlosser

2012-04-25T23:59:59.000Z

52

Graduate Assistantships in: FOREST CONSERVATION/CLIMATE CHANGE MITIGATION  

E-Print Network [OSTI]

Scholarships are available to graduate students (M.S. or Ph.D.) seeking training in Forest Conservation approaches to understand how to manage forest tree species for long-term growth and survival in changing at The Hardwood Tree Improvement and Regeneration Center (HTIRC) at Purdue University. Qualifications: Candidates

53

Lifetime of carbon capture and storage as a climate-change mitigation technology  

E-Print Network [OSTI]

Lifetime of carbon capture and storage as a climate-change mitigation technology Michael L) In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geo

54

Solar energy for heat and electricity: the potential for mitigating climate change  

E-Print Network [OSTI]

Solar energy for heat and electricity: the potential for mitigating climate change Dr N.J. Eki that powers the Earth's climate and ecosystem. Harnessing this energy for hot water and electrical power could electricity. solar hot water systems could be used to supply up to 70% of household hot water in the UK

55

International technology transfer for climate change mitigation and the cases of Russia and China  

SciTech Connect (OSTI)

The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs.

Martinot, E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Stockholm Environment Inst., Boston, MA (United States); Sinton, J.E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Lawrence Berkeley National Lab., CA (United States). International Energy Studies Group; Haddad, B.M. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States)

1997-12-31T23:59:59.000Z

56

Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options  

SciTech Connect (OSTI)

It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

Geffen, CA; Dooley, JJ; Kim, SH

2003-08-24T23:59:59.000Z

57

Climate change mitigation with integration of renewable energy resources in the electricity grid of New South Wales, Australia  

Science Journals Connector (OSTI)

Abstract The implementation of climate change mitigation strategies may significantly affect the current practices for electricity network operation. Increasing penetration of renewable energy generation technologies into electricity networks is one of the key mitigation strategies to achieve greenhouse gas emission reduction targets. Additional climate change mitigation strategies can also contribute to emission reduction thereby supplementing the renewable energy generation participation, which may be limited due to technical constraints of the network. In this paper, the penetration requirements for different renewable energy generation resources are assessed while concurrently examining other mitigation strategies to reduce overall emissions from electricity networks and meet requisite targets. The impacts of climate change mitigation strategies on the demand and generation mix are considered for facilitating the penetration of renewable generation. New climate change mitigation indices namely change in average demand, change in peak demand, generation flexibility and generation mix have been proposed to measure the level of emission reduction by incorporating different mitigation strategies. The marginal emissions associated with the individual generation technologies in the state of New South Wales (NSW) are modelled and the total emissions associated with the electricity grid of NSW are evaluated.

M.A. Abdullah; A.P. Agalgaonkar; K.M. Muttaqi

2014-01-01T23:59:59.000Z

58

Climate change, insurance, and the buildings sector: Technological synergisms between adaptation and mitigation  

SciTech Connect (OSTI)

Examining the intersection of risk analysis and sustainable energy strategies reveals numerous examples of energy efficient and renewable energy technologies that offer insurance loss-prevention benefits. The growing threat of climate change provides an added motivation for the risk community to better understand this area of opportunity. While analyses of climate change mitigation typically focus on the emissions-reduction characteristics of sustainable energy technologies, less often recognized are a host of synergistic ways in which these technologies also offer adaptation benefits, e.g. making buildings more resilient to natural disasters. While there is already some relevant activity, there remain various barriers to significantly expanding these efforts. Achieving successful integration of sustainable energy considerations with risk-management objectives requires a more proactive orientation, and coordination among diverse actors and industry groups.

Mills, Evan

2002-11-01T23:59:59.000Z

59

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

and mitigation cost comparisons between fossil fuel, nuclear and renewable energyrenewable energy credit-tracking and trading system Collaborate on GHG mitigationenergy efficiency and renewable fuels) that the mitigation

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

60

Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification  

SciTech Connect (OSTI)

In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

Makundi, Willy R.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change  

SciTech Connect (OSTI)

The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels--particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a ''nuclear renaissance'', this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.

Winslow, Anne [Stanford University, Stanford, CA 94305, USA and MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

2011-06-28T23:59:59.000Z

62

Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden  

E-Print Network [OSTI]

a critical conversation on climate change, privatization andamounts due to climate change." Atmospheric Environment 41(Board. CARB (2008d). Climate change proposed scoping plan: a

Shonkoff, Seth Berrin

2012-01-01T23:59:59.000Z

63

The potential for a nuclear renaissance : the development of nuclear power under climate change mitigation policies .  

E-Print Network [OSTI]

??Anthropogenic emissions of greenhouse gases are very likely to have already changed the Earth's climate, and will continue to change it for centuries if no… (more)

Osouf, Nicolas

2007-01-01T23:59:59.000Z

64

Composting projects under the Clean Development Mechanism: Sustainable contribution to mitigate climate change  

SciTech Connect (OSTI)

The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects, composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.

Rogger, Cyrill [Department for Management, Technology, and Economics, ETH Zurich, Kreuzplatz 5, 8032 Zurich (Switzerland); Beaurain, Francois [South Pole Carbon Asset Management Ltd., Switzerland, Technoparkstr. 1, 8005 Zurich (Switzerland); Schmidt, Tobias S., E-mail: tobiasschmidt@ethz.ch [Department for Management, Technology, and Economics, ETH Zurich, Kreuzplatz 5, 8032 Zurich (Switzerland)

2011-01-15T23:59:59.000Z

65

The potential for a nuclear renaissance : the development of nuclear power under climate change mitigation policies  

E-Print Network [OSTI]

Anthropogenic emissions of greenhouse gases are very likely to have already changed the Earth's climate, and will continue to change it for centuries if no action is taken. Nuclear power, a nearly carbon-free source of ...

Osouf, Nicolas

2007-01-01T23:59:59.000Z

66

Economic Prospects for Advanced Combustion Technologies Suited for Climate Change Mitigation.  

E-Print Network [OSTI]

??Coal is projected to remain a significant portion of the global energy portfolio in the coming century. Concerns over accelerating climate change have spurred development… (more)

Jacobson, Craig Bryan

2012-01-01T23:59:59.000Z

67

Three Essays on Climate Change Impacts, Adaptation and Mitigation in Agriculture  

E-Print Network [OSTI]

regionally detailed dynamic land allocation model is developed and applied for studying interrelationships between limited natural resources (e.g. land and groundwater), climate change, bioenergy demands and agricultural production. We find out...

Wang, Wei Wei

2012-10-19T23:59:59.000Z

68

Public Awareness of Carbon Capture and Storage: A Survey of Attitudes toward Climate Change Mitigation  

E-Print Network [OSTI]

Public Awareness of Carbon Capture and Storage: A Survey of Attitudes toward Climate Change, Technology and Policy Program #12;2 #12;3 Public Awareness of Carbon Capture and Storage: A Survey in Technology and Policy Abstract The Carbon Capture and Sequestration Technologies Program in the Laboratory

69

The role of interactions in a world implementing adaptation and mitigation solutions to climate change  

Science Journals Connector (OSTI)

...siting of plant. Deployment of renewable energy, nuclear power, and carbon capture...climate change, crop yields and Mexico-US cross-border migrationProc...C: A drastic reduction in the renewable energy potential of sugarcaneSee http...

2011-01-01T23:59:59.000Z

70

Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase  

E-Print Network [OSTI]

Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil-caused CO2 emissions and to remove CO2 from the atmosphere. 2.0 What is carbon sequestration? The term "carbon sequestration" is used to describe both natural and deliberate CARBON,INGIGATONSPERYEAR 1.5 Fossil

71

Three Essays on U.S. Agriculture under Climate Change: Active Engagement in Mitigation and Adaptation  

E-Print Network [OSTI]

with different levels of specifications of bioenergy production activities. 9 Typically, the computable general equilibrium (CGE) approach allows the analysis of policies on the entire economy, including fossil fuel energy markets. Dixon et al... and management adjustments to deal with variability in climate, soil, market, and other factors. Also, non-climate factors such as changes in production technology, introduction of new crop varieties, and government farm programs can result in production...

Zhang, Yuquan

2012-02-14T23:59:59.000Z

72

Concerns About Climate Change Mitigation Projects: Summary of Findings from Case Studies in Brazil, India, Mexico, and South Africa  

E-Print Network [OSTI]

and Findings for Climate Change Projects ..3 Table 2.Case Studies: Climate-Change Projects andin the debate on climate change projects under the Kyoto

1998-01-01T23:59:59.000Z

73

Agricultural Carbon Mitigation in Europe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Smith P, Powlson DS, Smith JU, Falloon P, and Coleman K. 2000. Meeting Europe's climate change commitments: Quantitative estimates of the potential for carbon mitigation by agriculture. Global Climate Change 6:525-539. Abstract Under the Kyoto Protocol, the European Union is committed to a reduction in CO2 emissions to 92% of baseline (1990) levels during the first commitment period (2008-2012). The Kyoto Protocol allows carbon emissions to be offset by demonstrable removal of carbon from the atmosphere. Thus, land-use / land-management change and forestry activities that are shown to reduce atmospheric CO2 levels can be included in the Kyoto targets. These activities include afforestation, reforestation and deforestation (article

74

Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States  

SciTech Connect (OSTI)

This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.

Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.

2011-06-01T23:59:59.000Z

75

The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China  

SciTech Connect (OSTI)

A changing climate will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate on heating and cooling demands must take into account not only the manner in which the building sector might evolve over time - including, for example, movements from rural to urban environments in developing countries - but also important uncertainty about the nature of climate change itself and the growth and movements of populations over time. In this study, we explored the uncertainty in climate change impacts on heating and cooling by constructing estimates of heating and cooling degree days for both a reference (no-policy) scenario and a climate mitigation scenario built from 0.5 degree latitude by 0.5 degree longitude resolution output from three different Global Climate Models (GCMs) and three gridded scenarios of population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China were then explored by using the heating and cooling degree days results as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). Across the climate models and population distribution scenarios, the results indicate that unabated climate change would cause total final energy consumption to decrease modestly in both U.S. and China buildings by the end of the century, as decreased heating consumption is more than balanced by increased cooling using primarily electricity. However, the results also indicate that when indirect emissions from the power sector are also taken into account, climate change may have negligible effect on building sector CO2 emissions in the two countries. The variation in results due to variation of population distribution is noticeably smaller than variation due to the use of different climate models.

Zhou, Yuyu; Eom, Jiyong; Clarke, Leon E.

2013-08-01T23:59:59.000Z

76

Climate change effects on red spruce decline mitigated by reduction in air pollution within its shrinking habitat range  

Science Journals Connector (OSTI)

Abstract We investigated the potential effects of projected climate change on red spruce (Picea rubens Sarg.) growth in the Great Smoky Mountains of Southeastern USA. A model called Annual Radial Increment Model (ARIM) was used to capture ecosystem complexity manifested as direct and indirect effects in multifactorial within- and across-scale interactions. The model was run under different scenarios, including projected climate change under reduced, no change, and increased atmospheric pollution. Modeled red spruce growth at end of 21st century (2080–2099) was compared to modeled growth at end of the 20th century (1980–1999). Red spruce growth at high elevations (?1700 m) declined by 10.8% when climate change interacted with a 10% increase in air pollution, but red spruce growth increased by 8.4% when air pollution decreased by 10%. In contrast, red spruce growth at low elevations (air pollution, 8.9% with no change, and 6.4% with a 10% decrease in air pollution. Our results suggest that red spruce populations at high-elevation may grow more rapidly under climate change if air pollution decreases, but populations at low-elevation may decline irrespective of air pollution changes as habitats shrink.

Kyung Ah Koo; Bernard C. Patten; Robert O. Teskey; Irena F. Creed

2014-01-01T23:59:59.000Z

77

Potential carbon mitigation and income in developing countries from changes in use and management of agricultural and forest lands  

Science Journals Connector (OSTI)

...Brown, S. 1997 Estimating biomass and biomass change of tropical forests...global outlook for future wood supply from forest plantations. Working Paper no. GFPOS...information systems to estimate biomass density of tropical forests...

2002-01-01T23:59:59.000Z

78

UNFCCC-Mitigation Assessments | Open Energy Information  

Open Energy Info (EERE)

UNFCCC-Mitigation Assessments UNFCCC-Mitigation Assessments Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Mitigation Assessments Agency/Company /Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: Pathways analysis Resource Type: Presentation, Training materials Website: unfccc.int/resource/cd_roms/na1/mitigation/index.htm UNFCCC-Mitigation Assessments Screenshot References: UNFCCC-Mitigation Assessments[1] "This training package (containing PowerPoint presentations and notes, a handbook and reference materials) is designed to facilitate the preparation of the mitigation component of the national communications by non-Annex I teams based on UNFCCC guidelines contained in the annex to decision 17/CP.8." References

79

Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition  

Science Journals Connector (OSTI)

Abstract The threat of climate change and other risks for ecosystems and human health require a transition of the energy system from fossil fuels towards renewable energies and higher efficiency. The European geographical periphery, and specifically Southern Europe, has considerable potential for renewable energies. At the same time it is also stricken by high levels of public debt and unemployment, and struggles with austerity policies as consequences of the Eurozone crisis. Modeling studies find a broad optimum when searching for a cost-optimal deployment of renewable energy installations. This allows for the consideration of additional policy objectives. Simultaneously, economists argue for an increase in public expenditure to compensate for the slump in private investments and to provide economic stimulus. This paper combines these two perspectives. We assess the potential for renewable energies in the European periphery, and highlight relevant costs and barriers for a large-scale transition to a renewable energy system. We find that a European energy transition with a high-level of renewable energy installations in the periphery could act as an economic stimulus, decrease trade deficits, and possibly have positive employment effects. Our analysis also suggests that country-specific conditions and policy frameworks require member state policies to play a leading role in fostering an energy transition. This notwithstanding, a stronger European-wide coordination of regulatory frameworks and supportive funding schemes would leverage country-specific action. Renewed solidarity could be the most valuable outcome of a commonly designed and implemented European energy transition.

Felix Creutzig; Jan Christoph Goldschmidt; Paul Lehmann; Eva Schmid; Felix von Blücher; Christian Breyer; Blanca Fernandez; Michael Jakob; Brigitte Knopf; Steffen Lohrey; Tiziana Susca; Konstantin Wiegandt

2014-01-01T23:59:59.000Z

80

Greenhouse Effect Mitigation Through Photocatalytic Technology  

Science Journals Connector (OSTI)

Climate change is one of the most critical issues facing the world. One of the pillars of the fight against this phenomenon is the mitigation of greenhouse gas (GHG) emissions, CO2 in particular. Although many ac...

Jesusa Rincón; Rafael Camarillo; Fabiola Martínez; Carlos Jiménez; Susana Tostón

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Measuring Abatement Potentials When Multiple Change is Present: The Case of Greenhouse Gas Mitigation in U.S. Agriculture and Forestry  

E-Print Network [OSTI]

source of low-cost alternatives for greenhouse gas emission mitigation during the next few decades (Mc can also offset greenhouse gas (GHG) emissions by increasing production of energy crops, which can cost of individual strategies. Third, efforts to lower net emissions of a particular greenhouse gas can

McCarl, Bruce A.

82

Financing Climate Adaptation and Mitigation in Rural Areas of...  

Open Energy Info (EERE)

areas that USAID could explore to enable the implementation of projects that produce climate change benefits." References "Financing Climate Adaptation and Mitigation in...

83

Agriculture, Forestry and Other Land Use Mitigation Project Database | Open  

Open Energy Info (EERE)

Agriculture, Forestry and Other Land Use Mitigation Project Database Agriculture, Forestry and Other Land Use Mitigation Project Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture, Forestry and Other Land Use Mitigation Project Database Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Forestry, Agriculture Resource Type: Dataset Website: www.fao.org/climatechange/67148/en/ RelatedTo: Mitigation of Climate Change in Agriculture (MICCA) Project Agriculture, Forestry and Other Land Use Mitigation Project Database Screenshot References: AFOLU Mitigation Database[1] Global Survey of Agricultural Mitigation Projects Paper[2] "The AFOLU MP database endeavors to gather information on all mitigation activities currently ongoing within the agricultural and forestry sectors

84

Greenhouse Gas Mitigation Planning  

Broader source: Energy.gov [DOE]

The Greenhouse Gas (GHG) Mitigation Planning section provides Federal agency personnel with guidance to achieve agency GHG reduction goals in the most cost-effective way. Using a portfolio-based management approach for GHG mitigation planning, agencies will be able to prioritize strategies for GHG mitigation. Agencies can also use this guidance to set appropriate GHG reduction targets for different programs and sites within an agency.

85

MITIGATION ACTION PLAN  

Broader source: Energy.gov (indexed) [DOE]

MITIGATION ACTION PLAN MITIGATION ACTION PLAN KEMPER COUNTY IGCC PROJECT KEMPER COUNTY, MISSISSIPPI U.S. Department of Energy National Energy Technology Laboratory September 2010 2 INTRODUCTION The Department of Energy (DOE) issued a Final Environmental Impact Statement (EIS) for the Kemper County IGCC Project (Project) (DOE/EIS-0409) in May 2010 and a Record of Decision (ROD) in August 2010 (75 FR 51248). The ROD identified commitments to mitigate potential adverse impacts associated with the project. This Mitigation Action Plan (MAP) describes the monitoring and mitigation actions the recipient must implement during the design, construction, and demonstration of the Project. DOE prepared this MAP in accordance with 10 CFR § 1021.331. PURPOSE Section 1021.331 of the DOE regulations implementing NEPA (10 CFR Part 1021) provides

86

EIS-0472: Mitigation Action Plan  

Broader source: Energy.gov [DOE]

Uranium Leasing Program Mitigation Action Plan for the Final Uranium Leasing Program Programmatic Environmental Impact Statement

87

150 G. Marland et al. / Climate Policy 3 (2003) 149157 Strategies to mitigate anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere  

E-Print Network [OSTI]

anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere can reduce to create a system of credits and debits wherein emission or sequestration of carbon in the biosphere; Carbon sequestration; Land use change; Land surface change; Surface energy balance 1. Introduction Human

Niyogi, Dev

88

Policies and Measures to Realise Industrial Energy Efficiency and Mitigate  

Open Energy Info (EERE)

Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Agency/Company /Organization: United Nations Industrial Development Organization Sector: Energy Focus Area: Conventional Energy, Energy Efficiency, Industry Topics: GHG inventory, Low emission development planning, Policies/deployment programs Resource Type: Publications Website: www.unido.org/fileadmin/user_media/Publications/Pub_free/UNEnergy2009P Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Screenshot References: Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change[1]

89

Monitoring and Mitigation of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mitigation of Mitigation of Sustained Localized Pitting Corrosion FINAL REPORT DOE FEW 49297 YuPo J. Lin, Edward J. St.Martin, and James R. Frank Argonne National Laboratory Argonne, IL 60439 January 2003 Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439 Monitoring and Mitigation of Sustained Localized Pitting Corrosion Submitted to: Nancy C. Comstock U.S. Department of Energy (DOE) National Petroleum Technology Office By: YuPo J. Lin, Edward J. St.Martin, and James R. Frank Argonne National Laboratory Argonne, IL 60439 January 2003 The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-Eng-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on

90

Charles R. Goldman, Michio Kumagai, Richard D. Robarts: Climatic change and global warming of inland waters. Impacts and mitigation for ecosystems and societies  

Science Journals Connector (OSTI)

This book is about changes that have occurred and are likely to happen in surface inland waters, both fresh and saline, as warming proceeds. The book is organised in three ... chapters describe and analyse the ef...

Luc Hens

2014-08-01T23:59:59.000Z

91

Agricultural Mitigation and Offsets: Policy Issues, Progress  

E-Print Network [OSTI]

emissions reductions from GHG emissions reductions policies; AND WE should incentivize agriculture.S. Agriculture in Climate Change Mitigation: Agriculture is both a source of GHG, and a sink (GHG reservoir) As a source of GHG, agriculture contributes approximately 7% of US GHG emissions* ­ mostly from small, diffuse

92

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

Carlson, Ann E.

2008-01-01T23:59:59.000Z

93

Greenhouse gas mitigation in agriculture  

Science Journals Connector (OSTI)

...dung and dedicated energy crops). The economic mitigation potential of biomass...soils and potential mitigation practices in eastern...international bio-energy trade chains. Biomass...regional potential of renewable energy sources. PhD thesis...

2008-01-01T23:59:59.000Z

94

Engi 9601, In Class Assignment, 25 Sept. 2012 Shindell et al., 2012, Simultaneously Mitigating Near-Term Climate Change and Improving Human  

E-Print Network [OSTI]

) Coal mining, oil and gas production, long distance gas transmission, municipal waste and landfills, wastewater, livestock manure, rice paddies, diesel vehicles, clean-burning biomass stoves, brick kilns, coke Change. (3 marks) coal mining in China, oil and gas production in Central Africa, the Middle East

Coles, Cynthia

95

GAINS – An Interactive Tool for Assessing International GHG Mitigation Regimes  

Science Journals Connector (OSTI)

Mitigating greenhouse gases (GHGs) is key to reducing the long-term impacts of climate change. In this paper we present the GAINS system, i.e. a data warehouse with an online integrated assessment model that is a...

Thanh Binh Nguyen; Fabian Wagner…

2011-01-01T23:59:59.000Z

96

Mitigation Action Plan  

Broader source: Energy.gov (indexed) [DOE]

212 212 Mitigation Action Plan for the Lease of Land for the Development of a Research Park at Los Alamos National Laboratory Departme~t of Energy Albuquerque Operations Office Los Alamos Area Office Los Alamos, New Mexico MITIGATION ACTION PLAN for the LEASE OF LAND FOR THE DEVELOPMENT OF A RESEARCH PARK AT LOS ALAMOS NATIONAL LABORATORY Background on the Lease of Land at Los Alamos National Laboratory: The U. S. Department of Energy (DOE) has approved an Environmental Assessment (EA) on the Lease of Land for the Development of a Research Park at Los Alamos National Laboratory (LANL)(DOE/EA-1212), Los Alamos, New Mexico. The DOE released a Predecisional Draft of this EA for State and Tribal review and made the draft document available to the public on July 24, 1997 for

97

FAO Global Inventory of Agricultural Mitigation Projects in Developing  

Open Energy Info (EERE)

FAO Global Inventory of Agricultural Mitigation Projects in Developing FAO Global Inventory of Agricultural Mitigation Projects in Developing Countries Jump to: navigation, search Tool Summary Name: FAO Global Inventory of Agricultural Mitigation Projects in Developing Countries Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Agriculture Topics: Resource assessment, Background analysis Website: www.fao.org/climatechange/micca/en/ References: FAO Global Inventory of Agricultural Mitigation Projects in Developing Countries[1] "The aim of the project is to help realise the substantial mitigation potential of agriculture, especially that of smallholders in developing countries. If the right changes are implemented in production systems, emissions can be reduced and sinks created in biomass and soils while

98

Special Issue On Estimation Of Baselines And Leakage In Carbon Mitigation Forestry Projects  

E-Print Network [OSTI]

change and forestry climate project regional baselines: Afarm forestry climate mitigation projects: Case studies fromat the project level in international agreements. Climate

Sathaye, Jayant A.; Andrasko, Kenneth

2008-01-01T23:59:59.000Z

99

Standard Assessment of Mitigation Potential and Livelihoods in Smallholder  

Open Energy Info (EERE)

Mitigation Potential and Livelihoods in Smallholder Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES) Jump to: navigation, search Name Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES) Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian International Development Agency (CIDA), the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in Agroforestry (ICRAF), International Rice Research Institute (IRRI), Ministry of Agriculture Sector Climate, Land Focus Area Agriculture Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, GHG inventory, Low emission development planning, -LEDS, -TNA

100

Kenya-Standard Assessment of Mitigation Potential and Livelihoods in  

Open Energy Info (EERE)

Kenya-Standard Assessment of Mitigation Potential and Livelihoods in Kenya-Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES) Jump to: navigation, search Name Kenya-Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES) Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian International Development Agency (CIDA), the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in Agroforestry (ICRAF), International Rice Research Institute (IRRI), Ministry of Agriculture Sector Climate, Land Focus Area Agriculture Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, GHG inventory, Low emission development planning, -LEDS, -TNA

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Philippines-Standard Assessment of Mitigation Potential and Livelihoods in  

Open Energy Info (EERE)

Philippines-Standard Assessment of Mitigation Potential and Livelihoods in Philippines-Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES) Jump to: navigation, search Name Philippines-Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES) Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian International Development Agency (CIDA), the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in Agroforestry (ICRAF), International Rice Research Institute (IRRI), Ministry of Agriculture Sector Climate, Land Focus Area Agriculture Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, GHG inventory, Low emission development planning, -LEDS, -TNA

102

Mexico-Standard Assessment of Mitigation Potential and Livelihoods in  

Open Energy Info (EERE)

Mexico-Standard Assessment of Mitigation Potential and Livelihoods in Mexico-Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES) Jump to: navigation, search Name Mexico-Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES) Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian International Development Agency (CIDA), the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in Agroforestry (ICRAF), International Rice Research Institute (IRRI), Ministry of Agriculture Sector Climate, Land Focus Area Agriculture Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, GHG inventory, Low emission development planning, -LEDS, -TNA

103

Executive Summary Mitigation of Climate Change through  

E-Print Network [OSTI]

rate, mean annual temperature and precipitation, and dominant vegetation cover type. · Soil Sampling (CO2) emitted as a result of burning fossil fuels (IPCC, 2007). Large amounts of carbon are also services for generating human well-being. #12;2 Methods and Study Locations · Site selection: Soils from

Brown, Sally

104

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

L. , S. de la Rue du Can, J. Sinton, E. Worrell, N. Zhou, J.industry. Energy 23: 725-32. Sinton, J.E. and D.G. Fridley (Roy, 2000; IEA, 2003a,b; Sinton and Fridley, 2000). Hence,

Worrell, Ernst

2009-01-01T23:59:59.000Z

105

Climate Change Basics: Science, Adaptation, & Mitigation  

E-Print Network [OSTI]

is Radiative Imbalance, Anthropogenic Big. #12;But, Feedbacks are Important! The most powerful greenhouse gas

Fox-Kemper, Baylor

106

Road transport technology and climate change mitigation  

E-Print Network [OSTI]

cost with established technologies such as engine downsizing, light- weighting and selection of smaller. Plug-in hybrid electric vehicles (PHevs) attempt to address this, but incur the extra costs in the use of vehicles in developing economies, and the dependence of low-carbon vehicles on the still

107

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

increased use of biomass and energy efficiency improvements,Energy (EJ) Notes 1) Biomass energy included 2) Industrialenergy efficiency improvement, cogeneration, increased use of (self- generated) biomass

Worrell, Ernst

2009-01-01T23:59:59.000Z

108

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

world energy consumption. More than 90% of this energy is used in the productionworld steel production, finding potential CO 2 emission reductions due to energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

109

Climate change mitigation through livestock system transitions  

Science Journals Connector (OSTI)

...projections from external energy models are used to drive...this paper, bioenergy demand projections the POLES...32) were used, where energy demand from biomass is disaggregated...between crop yields and GDP per capita developments. The relationship...

Petr Havlík; Hugo Valin; Mario Herrero; Michael Obersteiner; Erwin Schmid; Mariana C. Rufino; Aline Mosnier; Philip K. Thornton; Hannes Böttcher; Richard T. Conant; Stefan Frank; Steffen Fritz; Sabine Fuss; Florian Kraxner; An Notenbaert

2014-01-01T23:59:59.000Z

110

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

industry’s share of global primary energy use declined toused 91 EJ of primary energy, 40% of the global total of 227eq/yr. Global and sectoral data on final energy use, primary

Worrell, Ernst

2009-01-01T23:59:59.000Z

111

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

route used, product mix, energy and carbon intensities ofmix, different degrees of integration but mainly due to the age and type of technology and levels of retrofitting of energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

112

Place-based Mitigation of Climate Change  

E-Print Network [OSTI]

electricity, fuel for University fleet. **7,100 students and 5,400 employees What about your workplace, church The post-industrial age features unprecedented private consumption. In industrialized countries more than 60% of oil is used in vehicles, more than 60% of electricity in buildings. #12;Efficient Use of Fuel

113

Climate change mitigation through livestock system transitions  

Science Journals Connector (OSTI)

...external energy models are used to drive the bioenergy supply. In this paper, bioenergy demand projections the POLES model (32) were...Lucia, St Vincent, Trinidad and Tobago RSAM Argentina, Bolivia, Chile, Colombia, Ecuador, Guyana...

Petr Havlík; Hugo Valin; Mario Herrero; Michael Obersteiner; Erwin Schmid; Mariana C. Rufino; Aline Mosnier; Philip K. Thornton; Hannes Böttcher; Richard T. Conant; Stefan Frank; Steffen Fritz; Sabine Fuss; Florian Kraxner; An Notenbaert

2014-01-01T23:59:59.000Z

114

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Byof the global greenhouse gas emissions. Total energy-relatedglobal greenhouse gas emissions, of which over 80% is from energy use. Total

Worrell, Ernst

2009-01-01T23:59:59.000Z

115

Nationally Appropriate Mitigation Actions | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nationally Appropriate Mitigation Actions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Nationally Appropriate Mitigation Actions Agency/Company /Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Focus Area: Energy Efficiency Topics: GHG inventory, Low emission development planning Resource Type: Publications, Lessons learned/best practices, Case studies/examples Website: unfccc.int/home/items/5265.php Country: Afghanistan, Antigua and Barbuda, Armenia, Benin, Bhutan, Botswana, Brazil, Cameroon, Central African Republic, China, Democratic Republic of Congo, Costa Rica, Ivory Coast, Ethiopia, Eritrea, Gabon, Georgia (country), Ghana, India, Indonesia, Israel, Jordan, Madagascar, Maldives, Marshall Islands, Mauritania, Mexico, Mongolia, Morocco, Papua New Guinea, Peru, South Korea, Moldova, San Marino, Sierra Leone, Singapore, South Africa, Republic of Macedonia, Togo, Tunisia

116

Implantation, Activation, Characterization and Prevention/Mitigation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Activation, Characterization and PreventionMitigation of Internal Short Circuits in Lithium-Ion Cells Implantation, Activation, Characterization and PreventionMitigation of...

117

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

Energy Resources for Carbon Emissions Mitigation RyanEnergy Resources for Carbon Emissions Mitigation Ryanand/or site-attributable carbon emissions at commercial and

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

118

Greenhouse Gas Mitigation Planning for Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Mitigation Planning for Buildings Greenhouse Gas Mitigation Planning for Buildings Greenhouse Gas Mitigation Planning for Buildings October 7, 2013 - 10:29am Addthis Energy use in buildings represents the single largest source of greenhouse gas (GHG) emissions in the Federal sector. Buildings can contribute to Scope 1 emissions from direct stationary combustion sources; Scope 2 from indirect electricity, heat, or steam purchases; and Scope 3 emissions from transmission and distribution losses. Also see Use Renewable Energy in Buildings for Greenhouse Gas Mitigation. Step 1: Assess Agency Size Changes Step 2: Evaluate Emissions Profile Step 3: Evaluate Reduction Strategies Step 4: Estimate Implementation Costs Step 5: Prioritize Strategies Helpful Data and Tools See GHG planning data and tools for buildings.

119

Carbon Mitigation in Europe Through No-till Farming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Mitigation in European Soils Carbon Mitigation in European Soils Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming DOI: 10.3334/CDIAC/tcm.003 Global Change Biology 4:679-685 (1998) P. Smith, D. Powlson, M. Glendining, J. Smith School of Biological Sciences University of Aberdeen Cruikshank Building, St Machar Drive Aberdeen, AB24 3UU, UK Sponsor: Biotechnology and Biological Sciences Research Council of the United Kingdom Abstract In this paper we estimate the European potential for carbon mitigation of no-till farming using results from European tillage experiments. Our calculations suggest some potential in terms of (a) reduced agricultural fossil fuel emissions, and (b) increased soil carbon sequestration. We estimate that 100% conversion to no-till farming would be likely to

120

Ultrasonic mitigation investigation  

SciTech Connect (OSTI)

The suggestion was made that the introduction of ultrasound into Tank 101-SY might serve to release the hydrogen bubbles trapped in the slurry. This would cause a continuous release of bubbles and thereby prevent the turnover phenomenon. Two major considerations were (1) the method for delivering the energy into the slurry and (2) the effective volume of action. In this study, we attached the former by designing and testing a liquid-filled waveguide and radiator, and the latter by making ultrasonic property measurements on synthetic waste. Our conclusion is that ultrasonic mitigation may not be feasible, primarily because of the very high attenuation (1000 to 50000 dB/m) factor to 10 to 30 kHz. Such a high attenuation would restrict the action volume to such a low value as to make the method impractical. Further investigations are recommended to identify the cause of this effect and determine if this same effect will be seen in real 101-SY waste.

Hildebrand, B.P.; Shepard, C.L.

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Regional GHG Mitigation Response and Leakage Effects  

E-Print Network [OSTI]

Regional GHG Mitigation Response and Leakage Effects: Scenario Analysis of U.S. Forestry of Analysis · Assess net GHG mitigation potential in forestry & ag · Use FASOM-GHG model · Mitigation results) ­ vary GHG targets ­ vary payment approach · Show regional mitigation potential across U

McCarl, Bruce A.

122

Greenhouse Gas Mitigation Planning | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Mitigation Planning Greenhouse Gas Mitigation Planning October 7, 2013 - 10:08am Addthis The Greenhouse Gas (GHG) Mitigation Planning section provides Federal agency personnel with guidance to achieve agency GHG reduction goals in the most cost-effective way. Using a portfolio-based management approach for GHG mitigation planning, agencies will be able to prioritize strategies for GHG mitigation. Agencies can also use this guidance to set appropriate GHG reduction targets for different programs and sites within an agency. Learn more about the benefits of portfolio-based planning for GHG mitigation. Also see information about greenhouse gas mitigation planning data and tools. Step-by-Step The GHG mitigation planning process follows six key steps. Click on a step

123

INTEGRATING AGRICULTURAL AND FORESTRY GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS  

E-Print Network [OSTI]

INTEGRATING AGRICULTURAL AND FORESTRY GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS: DEVELOPING A FAMILY OF RESPONSE FUNCTIONS 1. Introduction There has been a recent increase in concern over the greenhouse gas (GHG) climate change forcing

McCarl, Bruce A.

124

EIS-0397: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan EIS-0397: Mitigation Action Plan Lyle Falls Fish Passage Project This Mitigation Action Plan identifies measures that are intended to avoid, reduce, or...

125

EA-1912: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2: Mitigation Action Plan EA-1912: Mitigation Action Plan Midway-Benton No. 1 Rebuild Project, neartown of Desert Aire, Benton County, Washington This Mitigation Action Plan (MAP)...

126

EIS-0026: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan EIS-0026: Mitigation Action Plan Waste Isolation Pilot Plant This MAP focuses on mitigation commitments stated in the RODs to the 1980 Final Environmental...

127

EIS-0026: Annual Mitigation Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

026: Annual Mitigation Report EIS-0026: Annual Mitigation Report Waste Isolation Pilot Plant The Waste Isolation Pilot Plant (WIPP) Mitigation Action Plan was prepared to address...

128

EA-1891: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan EA-1891: Mitigation Action Plan Alvey-Fairview Transmission Line Rebuild Project, Oregon This Mitigation Action Plan (MAP) is part of the Finding of No...

129

Albeni Falls Wildlife Mitigation Project  

E-Print Network [OSTI]

from the Albeni Falls Hydroelectric Project #12;Biological Objective 1 Protect 900 acres of wetland hydroelectric project. · 1988 publication of the Final Report Albeni Falls Wildlife Protection, Mitigation effects on wildlife resulting from hydroelectric development. 2. Select target wildlife species

130

Greenhouse Gas Mitigation Planning for Employee Commuting | Department of  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Mitigation Planning for Employee Commuting Greenhouse Gas Mitigation Planning for Employee Commuting Greenhouse Gas Mitigation Planning for Employee Commuting October 7, 2013 - 1:39pm Addthis Employee commuting is the single largest source of Scope 3 greenhouse gas (GHG) emissions accounted for by Federal agencies. The establishment of Federal telework and transportation coordination programs over the past decade creates a strong foundation for commute behavior change. However few agencies have achieved substantial commuting emissions reductions from their fiscal year 2008 baseline inventories. Effective planning for aggressive commute reductions starts with the location of agency facilities. Facility siting and design decisions should be made with public transportation access in mind to make it easier for

131

WIPPAnnualMitigationActionReport2012  

Broader source: Energy.gov (indexed) [DOE]

2-3322 2-3322 2012 ANNUAL MITIGATION REPORT FOR THE WASTE ISOLATION PILOT PLANT JULY 10, 2012 DOE/CBFO-12-3322 2 TABLE OF CONTENTS ACRONYMS ................................................................................................................................. 3 INTRODUCTION......................................................................................................................... 4 THE 2012 ANNUAL MITIGATION REPORT ......................................................................... 5 REFERENCES ............................................................................................................................ 14 DOE/CBFO-12-3322 3 ACRONYMS AMR Annual Mitigation Report ASER Annual Site Environmental Report

132

Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.  

SciTech Connect (OSTI)

Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.

Dunnigan, James; DeShazer, J.; Garrow, L.

2009-05-26T23:59:59.000Z

133

India-Standard Assessment of Mitigation Potential and Livelihoods in  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » India-Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES) Jump to: navigation, search Name India-Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES) Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian International Development Agency (CIDA), the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in Agroforestry (ICRAF), International Rice Research Institute (IRRI), Ministry of Agriculture

134

GHG mitigation options database (GMOD) and analysis tool  

Science Journals Connector (OSTI)

Abstract There is a growing public consensus that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions and that it will be necessary for the global community to use low-carbon technologies in both the energy and industrial sectors (IEA, 2013). As a result of the recent focus on GHG emissions, the U.S. Environmental Protection Agency (EPA) and state agencies are implementing policies and programs to quantify and regulate GHG emissions from sources in the United States. These policies and programs have generated a need for a reliable source of information regarding GHG mitigation options. In response to this need, EPA developed a comprehensive GHG mitigation options database (GMOD). The database is a repository of data on available GHG technologies in various stages of development for several industry sectors. It can also be used to assess the performance, costs, and limitations of various mitigation control options. This paper further describes the objectives of GMOD, the data available in GMOD, and functionality of GMOD as an analysis tool. In addition, examples are provided to demonstrate GMOD's usability and capabilities. A comparison of GMOD to other existing GHG mitigation databases is also provided along with the recommended next steps for GMOD.

Gurbakhash Bhander; Nick Hutson; Jacky Rosati; Frank Princiotta; Kristine Pelt; Jim Staudt; Jeffrey Petrusa

2014-01-01T23:59:59.000Z

135

Generalized Comprehensive Mitigation Assessment Process (GCOMAP) | Open  

Open Energy Info (EERE)

Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Land Focus Area: Forestry Topics: GHG inventory, Pathways analysis Website: ies.lbl.gov/taxonomy/term/34 References: GCOMAP Project [1] Logo: Generalized Comprehensive Mitigation Assessment Process (GCOMAP) "The GCOMAP project reported on the global potential for carbon sequestration in forest plantations, and the reduction of carbon emissions from deforestation, in response to six carbon price scenarios from 2000 to 2100. These carbon price scenarios cover a range typically seen in global

136

Generalized Comprehensive Mitigation Assessment Process (GCOMAP) | Open  

Open Energy Info (EERE)

Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Generalized Comprehensive Mitigation Assessment Process (GCOMAP) (Redirected from GCOMAP) Jump to: navigation, search Tool Summary Name: Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Land Focus Area: Forestry Topics: GHG inventory, Pathways analysis Website: ies.lbl.gov/taxonomy/term/34 References: GCOMAP Project [1] Logo: Generalized Comprehensive Mitigation Assessment Process (GCOMAP) "The GCOMAP project reported on the global potential for carbon sequestration in forest plantations, and the reduction of carbon emissions from deforestation, in response to six carbon price scenarios from 2000 to 2100. These carbon price scenarios cover a range typically seen in global

137

Financing Climate Adaptation and Mitigation in India  

Science Journals Connector (OSTI)

This section looks at financial requirements for successfully implementing Nationally Appropriate Mitigation Actions such as the National and State ... path. The financial requirement of scaling of renewable energy

Dhanapal Govindarajulu

2014-08-01T23:59:59.000Z

138

Greenhouse Gas Mitigation Planning Data and Tools  

Broader source: Energy.gov [DOE]

These data and tools from the U.S. Department of Energy (DOE) and other organizations can help Federal agencies with greenhouse gas (GHG) mitigation planning for:

139

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

140

Environmental Mitigation Technology (Innovative System Testing...  

Broader source: Energy.gov (indexed) [DOE]

Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System...

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Chapter 4 Environmental Consequences and Mitigation Measures  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

programs that directly and indirectly contribute to avoiding, minimizing and mitigating air pollution emissions and associated impacts and risks. These programs are in place and...

142

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HW aves B. Heat-related

Carlson, Ann E.

2008-01-01T23:59:59.000Z

143

Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.  

SciTech Connect (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

2009-08-06T23:59:59.000Z

144

Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.  

SciTech Connect (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

2008-12-22T23:59:59.000Z

145

Restoration As Mitigation: Analysis of Stream Mitigation for Coal Mining Impacts in Southern Appalachia  

E-Print Network [OSTI]

being implemented in southern Appalachia for coal mining are not meeting the objectives of the CleanRestoration As Mitigation: Analysis of Stream Mitigation for Coal Mining Impacts in Southern of information about 434 stream mitigation projects from 117 permits for surface mining in Appalachia. Data from

Palmer, Margaret A.

146

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry Title Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry Publication Type Report Year of Publication 2012 Authors Kong, Lingbo, Ali Hasanbeigi, and Lynn K. Price Date Published 12/2012 Publisher Lawrence Berkeley National Laboratory Keywords emerging technologies, energy efficiency, ghg, Low Emission & Efficient Industry, pulp and paper Abstract The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2)emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry's absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry's mid- and long-term climate change mitigation strategies. This report describes the industry's processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry's energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

147

CARBON MITIGATION HS 2013 Prof. Nicolas Gruber  

E-Print Network [OSTI]

CARBON MITIGATION HS 2013 Prof. Nicolas Gruber Mondays 10-12, CHN E42 (nicolas & Introduction (Gruber) Introduction to the carbon mitigation problem 9/23 2 Ocean Sequestration (Gruber) Putting2 sequestration (Mazzotti) Putting the CO2 underground... 10/14 5 Carbon sinks on land (Gruber) How

Fischlin, Andreas

148

CARBON MITIGATION HS 2014 Prof. Nicolas Gruber  

E-Print Network [OSTI]

CARBON MITIGATION HS 2014 Prof. Nicolas Gruber Mondays 10-12, CHN E42 (nicolas & Introduction (Gruber) Introduction to the carbon mitigation problem 9/22 2 Geological CO2 sequestration (Mazzotti) Putting the CO2 underground... 9/29 3 No class ­ group formation 10/06 4 Carbon sinks on land

Fischlin, Andreas

149

Property:EnvironmentalMitigation | Open Energy Information  

Open Energy Info (EERE)

EnvironmentalMitigation EnvironmentalMitigation Jump to: navigation, search Property Name EnvironmentalMitigation Property Type Text Description Description of measures that could be used to mitigate environmental impact. Subproperties This property has the following 1 subproperty: E Exploration Drilling Pages using the property "EnvironmentalMitigation" Showing 24 pages using this property. 2 2-M Probe Survey + The use of off road vehicles should avoid overland travel during periods when soils are moist or wet. Backfilling of excavated probe holes. A Active Seismic Techniques + The environmental impacts of a seismic survey vary drastically and are survey-specific. Factors to consider are: terrain, land access, land usage, survey extent, seismic crew size, source (dynamite, vibroseis, etc.), accomodation for the crew, remoteness of survey location, among others.

150

National Mitigation Planning in Agriculture: Review and Guidelines | Open  

Open Energy Info (EERE)

Agriculture: Review and Guidelines Agriculture: Review and Guidelines Jump to: navigation, search Name National Mitigation Planning in Agriculture: Review and Guidelines Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Food and Agriculture Organization of the United Nations, UNIQUE Agroforestry Sector Land Focus Area Agriculture Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, Low emission development planning, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Program Start 2012 Program End 2013 References CGIAR - CCAFS[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "CGIAR - CCAFS" Retrieved from "http://en.openei.org/w/index.php?title=National_Mitigation_Planning_in_Agriculture:_Review_and_Guidelines&oldid=581360"

151

Procedures for Interagency Consultation to Avoid or Mitigate...  

Broader source: Energy.gov (indexed) [DOE]

Procedures for Interagency Consultation to Avoid or Mitigate Adverse Effects on Rivers in the Nationwide Inventory Procedures for Interagency Consultation to Avoid or Mitigate...

152

Mitigating Wind-Radar Interference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

mitigating radar interference caused by the physical and electromagnetic effects of wind turbines. These new mitigation technologies are expected to open up new areas to wind...

153

Recent Diesel Engine Emission Mitigation Activities of the Maritime...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

154

China-Transportation Demand Management in Beijing: Mitigation...  

Open Energy Info (EERE)

Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport...

155

Improving Department of Energy Capabilities for Mitigating Beyond...  

Broader source: Energy.gov (indexed) [DOE]

Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April...

156

EIS-0389: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan EIS-0389: Mitigation Action Plan Trinity Public Utilities District Direct Interconnection Project Western Area Power Administration (Western) proposes to...

157

Transmission/Resource Library/Enviromental Resources and Mitigation...  

Open Energy Info (EERE)

Enviromental Resources and Mitigation < Transmission | Resource Library(Redirected from TransmissionResource LibraryMitigation) Redirect page Jump to: navigation, search...

158

EIS-0026: Annual Mitigation Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy 2007 Annual Mitigation Report for the Waste Isolation Pilot Plant (July 2007) More Documents & Publications EIS-0026: Annual Mitigation Report EIS-0026: 2010...

159

EIS-0026: Annual Mitigation Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2008 Annual Mitigation Report for the Waste Isolation Pilot Plant, DOECBFO-08-3322 (July 2008) More Documents & Publications EIS-0026: 2010 Annual Mitigation Report EIS-0026:...

160

EIS-0026: Annual Mitigation Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of submittal of the 1994 Annual Mitigation Report in July 1994 through June 2013. EIS-0026-AMR-2013.pdf More Documents & Publications EIS-0026: Annual Mitigation Report...

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EA-1595: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan EA-1595: Mitigation Action Plan Davis-Mead 230-kV Transmission Line Reconductor Project Western Area Power Administration proposes to reconductor...

162

EIS-0422: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Action Plan EIS-0422: Mitigation Action Plan Central Ferry-Lower Monumental 500-kilovolt Transmission Line Project Mitigation measures and estimated time of implementation within...

163

South Africa-Facilitating Implementation and Readiness for Mitigation...  

Open Energy Info (EERE)

and Readiness for Mitigation (FIRM)" Retrieved from "http:en.openei.orgwindex.php?titleSouthAfrica-FacilitatingImplementationandReadinessforMitigation(FIRM)&oldid70000...

164

Electrification and Mitigation: Long-Term GHG Deep-Cut Scenario Compatible  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrification and Mitigation: Long-Term GHG Deep-Cut Scenario Compatible Electrification and Mitigation: Long-Term GHG Deep-Cut Scenario Compatible with Economic Development Speaker(s): Taishi Sugiyama Date: August 6, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Lynn Price We have analyzed scenarios of Japanese energy systems in the 21st century with special focus on the electrification and climate change mitigation. We have described the causality pathway as to how the major drivers will have impacts on the structure of energy systems and found the followings: (1) Steady electrification in the building sector is expected driven by technological progresses and social change in the absence of climate change policy; (2) With strong greenhouse gas emission constraints, the combination of accelerated electrification across all sectors and

165

Energy Demand and GHG Mitigation Options  

Science Journals Connector (OSTI)

N. African countries, although not committed to reduce their GHG emissions, can take advantage of their high ... CSP potential in order to contribute to the GHG mitigation effort by providing clean energy (potent...

Leonidas Paroussos; Pantelis Capros…

2013-01-01T23:59:59.000Z

166

Heading into the Amendment Process: Hydrosystem Mitigation  

E-Print Network [OSTI]

reforms: Implementation of l ll d t d h t h iti ti lllegally mandated hatchery mitigation, as well uncertainties. Standardized metrics, protocols, reporting and HLIs are being adopted. A number of reforms

167

EA-1562-SA-1: Mitigation Action Plan  

Broader source: Energy.gov [DOE]

Construction and Operation of a Physical Sciences Facility at the Pacific Northwest National Laboratory, Richland, Washington (Mitigation Action Plan for Phase II Build Out, North Federal Campus, PNNL Site)

168

Comprehensive mitigation assessment process (COMAP) - Description and instruction manual  

SciTech Connect (OSTI)

In order to prepare policies and plans to reduce GHG emissions, national policy-makers need information on the costs and benefits of different mitigation options in addition to their carbon implications. Policy-makers must weigh the costs, benefits, and impacts of climate change mitigation and adaptation options, in the face of competition for limited resources. The policy goal for mitigation options in the land use sector is to identify which mix of options is likely to best achieve the desired forestry service and production objectives at the least cost, while attempting to maximize economic and social benefits, and minimize negative environmental and social impacts. Improved national-level cost estimates of response options in the land use sector can be generated by estimating the costs and benefits of different forest management practices appropriate for specific country conditions which can be undertaken within the constraint of land availability and its opportunity cost. These co st and land use estimates can be combined to develop cost curves, which would assist policy-makers in constructing policies and programs to implement forest responses.

Makundi, Willy; Sathaye, Jayant

2001-11-09T23:59:59.000Z

169

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.  

SciTech Connect (OSTI)

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

2012-02-01T23:59:59.000Z

170

Insights from EMF Associated Agricultural and Forestry Greenhouse Gas Mitigation Studies  

SciTech Connect (OSTI)

Integrated assessment modeling (IAM) as employed by the Energy Modeling Forum (EMF) generally involves a multi-sector appraisal of greenhouse gas emission (GHGE) mitigation alternatives and climate change effects typically at the global level. Such a multi-sector evaluation encompasses potential climate change effects and mitigative actions within the agricultural and forestry (AF) sectors. In comparison with many of the other sectors covered by IAM, the AF sectors may require somewhat different treatment due to their critical dependence upon spatially and temporally varying resource and climatic conditions. In particular, in large countries like the United States, forest production conditions vary dramatically across the landscape. For example, some areas in the southern US present conditions favorable to production of fast growing, heat tolerant pine species, while more northern regions often favor slower-growing hardwood and softwood species. Moreover, some lands are currently not suitable for forest production (e.g., the arid western plains). Similarly, in agriculture, the US has areas where citrus and cotton can be grown and other areas where barley and wheat are more suitable. This diversity across the landscape causes differential GHGE mitigation potential in the face of climatic changes and/or responses to policy or price incentives. It is difficult for a reasonably sized global IAM system to reflect the full range of sub-national geographic AF production possibilities alluded to above. AF response in the face of climate change altered temperature precipitation regimes or mitigation incentives will likely involve region-specific shifts in land use and agricultural/forest production. This chapter addresses AF sectoral responses in climate change mitigation analysis. Specifically, we draw upon US-based studies of AF GHGE mitigation possibilities that incorporate sub-national detail drawing largely on a body of studies done by the authors in association with EMF activities. We discuss characteristics of AF sectoral responses that could be incorporated in future IAM efforts in climate change policy.

McCarl, Bruce A.; Murray, Brian; Kim, Man-Keun; Lee, Heng-Chi; Sands, Ronald D.; Schneider, Uwe

2007-11-19T23:59:59.000Z

171

EA-1096: Washington Wildlife Mitigation Projects (Programmatic), Washington  

Broader source: Energy.gov (indexed) [DOE]

6: Washington Wildlife Mitigation Projects (Programmatic), 6: Washington Wildlife Mitigation Projects (Programmatic), Washington EA-1096: Washington Wildlife Mitigation Projects (Programmatic), Washington SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Bonneville Power Administration to fund the portion of the Washington Wildlife Mitigation Agreement pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 30, 1996 EA-1096: Finding of No Significant Impact Washington Wildlife Mitigation Projects (Programmatic) July 30, 1996 EA-1096: Final Environmental Assessment Washington Wildlife Mitigation Projects (Programmatic)

172

Biofuels and indirect land use change  

E-Print Network [OSTI]

Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

173

Paving materials for heat island mitigation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paving materials for heat island mitigation Paving materials for heat island mitigation Title Paving materials for heat island mitigation Publication Type Report Year of Publication 1997 Authors Pomerantz, Melvin, Hashem Akbari, Allan Chen, Haider Taha, and Arthur H. Rosenfeld Keywords Cool Pavements, Heat Island Abstract This report summarizes paving materials suitable for urban streets, driveways, parking lots and walkways. The authors evaluate materials for their abilities to reflect sunlight, which will reduce their temperatures. This in turn reduces the excess air temperature of cities (the heat island effect). The report presents the compositions of the materials, their suitability for particular applications, and their approximate costs (in 1996). Both new and resurfacing are described. They conclude that, although light-colored materials may be more expensive than conventional black materials, a thin layer of light-colored pavement may produce energy savings and smog reductions whose long-term worth is greater than the extra cost.

174

EA-1508: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

508: Mitigation Action Plan 508: Mitigation Action Plan EA-1508: Mitigation Action Plan Beaver Creek-Hoyt-Erie Transmission Line Upgrade Project Morgan and Weld Counties, Colorado This is the mitigation action plan (MAP) for use during construction of the Beaver Creek-Hoyt-Erie transmission line upgrades, including right-of ways (ROWS), hydrology, vegetation, construction debris and dewatering, landscape engineering, borrow pits and recommended procedures for Raptors and powerline construction. Mitigation Action Plan to Implement Mitigation Requirements for Beaver Creek-Hoyt-Erie Transmission Line Upgrade Project Morgan and Weld Counties, Colorado November 2005 More Documents & Publications EA-1617: Mitigation Action Plan EA-1456: Mitigation Action Plan EA-1611: Mitigation Action Plan

175

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

US 1990 GHG emissions None 684 US cities representing 26% ofGHG emissions by states sources and sectors 684 US cities,The overall US GHG emissions effect of the state and city

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

176

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

EC (2004). c US MCPA (2007). d RGGI (2005). e WGA (2006). fGHG emissions PTP WGA US MCPA WCG RGGI NEG/ECP Year Fig. 5.Greenhouse Gas Initiative (RGGI), 2007. About RGGI /http://

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

177

Renewable Energy for Development and Climate Change Mitigation  

Science Journals Connector (OSTI)

The world population is growing by almost 216,000 individuals per day – or in 1 year by 79 million (US Census Bureau 2011). By 2050, the global population will increase by about one third to surpass 9 billion....

Osman Benchikh Ph.D.

2012-01-01T23:59:59.000Z

178

Economics of nuclear power and climate change mitigation policies  

Science Journals Connector (OSTI)

...their own nuclear plans, and Saudi Arabia and Poland announced plans to start a nuclear...announced a thorough review of their plans. A public vote...barriers set by high standards for refurbishment...maintenance costs. Uranium Resources. Conventional...

Nico Bauer; Robert J. Brecha; Gunnar Luderer

2012-01-01T23:59:59.000Z

179

Economics of nuclear power and climate change mitigation policies  

Science Journals Connector (OSTI)

...and sequestration (CCS) to natural gas power plants. The net shortfalls...constraint is increased. Natural gas generally plays the most...the global integration of natural gas markets. The major caveat...for all markets (including capital, energy resource, and CO 2 permit markets...

Nico Bauer; Robert J. Brecha; Gunnar Luderer

2012-01-01T23:59:59.000Z

180

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

than 100% reduction in GHG emission rates from baseline non-generation). We assume a 95% GHG reduction from renewableElectricity Generation GHG Emissions (MMT CO 2 -equivalent)

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

large conventional hydroelectric power, municipal solidconventional large hydroelectric power). To quantify theby states that large hydroelectric is not counted toward the

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

182

Climate Change and the Transporation Sector- Challenges and Mitigation Options  

Broader source: Energy.gov [DOE]

2003 DEER Conference Presentation: U.S. Department of Energy FreedomCAR and Vehicle Technologies Program

183

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

stabilize US GHG emissions at their 2010 levels until thefor US light-duty vehicle GHG emissions under varying levelsUS GHG emissions would be stabilized at 2010 levels by 2020—

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

184

Mitigating Climate Change with Managed Forests: Balancing Expectations,  

E-Print Network [OSTI]

and biomass energy) and di- rect substitution for more energy-intensive building mate- rials (e.g., concrete. Carbon markets may in the future offer some potential for com- pensating forest landowners for actions Climate Action Registry, and Regional Greenhouse Gas Initiative), some managed forest projects may prove

Vermont, University of

185

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

US Department of Energy’s Transportation Energy Data Book (Davis and Diegel, 2006). Baseline gasoline and ethanol usage

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

186

Solar cooling systems for climate change mitigation: A review  

Science Journals Connector (OSTI)

Abstract The impact of global warming and an increase in the indoor cooling equipments using energy sources other than conventional energy have become very attractive because they can reduce consumption of fossil fuels as well as harmful emissions in to the environment. The solar energy is one of the readily available forms of renewable energy which can be used to operate the cooling equipments depending on the geographical location of the area where solar cooling system needs to be installed. The effectiveness of solar cooling also needs to be evaluated based on various performance indicating parameters. However, different types of solar collectors also need to be evaluated in order to find out their feasibility for cooling applications. Thus in this article review of different types of solar cooling technologies have been carried out. The study reveals that evacuated tube collectors are best option for solar cooling where as desiccant cooling helps in improving the indoor air quality. Also, thermal energy storage and ejector based solar cooling efficiently improves the performance besides energy saving.

S. Anand; A. Gupta; S.K. Tyagi

2015-01-01T23:59:59.000Z

187

Economics of nuclear power and climate change mitigation policies  

Science Journals Connector (OSTI)

...CCS, wind, and geothermal power. Solar...and adjustment costs. In the longer...deployment of solar energy sources to meet...strategies and costs . Energy J 31 : 11 – 48...International Energy Agency ( 2010 ) Costs of Electricity...

Nico Bauer; Robert J. Brecha; Gunnar Luderer

2012-01-01T23:59:59.000Z

188

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

large conventional hydroelectric power, municipal solidconventional large hydroelectric power). To quantify thelarge conventional hydroelectric power is not included (this

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

189

How can cities mitigate and adapt to climate change?  

E-Print Network [OSTI]

, that it is possible for the global envir- onment to improve. The interesting papers in the special issue of Building; not only the obvious ones of biology, architecture, geography and eco- nomics, but also physics

Hunt, Julian

190

Climate Change and China's Agricultural Sector: An Overview of...  

Open Energy Info (EERE)

An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and...

191

Public Finance Mechanisms to Mobilize Investment in Climate Change...  

Open Energy Info (EERE)

Mechanisms to Mobilize Investment in Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Public Finance Mechanisms to Mobilize Investment in...

192

An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy  

E-Print Network [OSTI]

An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy- ture,'' which refers to the direct removal of carbon dioxide from the ambient air. Air capture has to be changing (e.g., Jones, 2008). By contrast, the capture and storage of carbon dioxide from power plants has

Colorado at Boulder, University of

193

Thailand-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Thailand-The Mitigation Action Implementation Network (MAIN) Thailand-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Thailand-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

194

Uruguay-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Uruguay-The Mitigation Action Implementation Network (MAIN) Uruguay-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Uruguay-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

195

Dominican Republic-The Mitigation Action Implementation Network (MAIN) |  

Open Energy Info (EERE)

Dominican Republic-The Mitigation Action Implementation Network (MAIN) Dominican Republic-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Dominican Republic-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

196

Costa Rica-The Mitigation Action Implementation Network (MAIN) | Open  

Open Energy Info (EERE)

Costa Rica-The Mitigation Action Implementation Network (MAIN) Costa Rica-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Costa Rica-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

197

Pakistan-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Pakistan-The Mitigation Action Implementation Network (MAIN) Pakistan-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Pakistan-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

198

Mexico-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Mexico-The Mitigation Action Implementation Network (MAIN) Mexico-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Mexico-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

199

Colombia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Colombia-The Mitigation Action Implementation Network (MAIN) Colombia-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Colombia-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

200

Philippines-The Mitigation Action Implementation Network (MAIN) | Open  

Open Energy Info (EERE)

Philippines-The Mitigation Action Implementation Network (MAIN) Philippines-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Philippines-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

China-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

China-The Mitigation Action Implementation Network (MAIN) China-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name China-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

202

The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

203

Panama-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Panama-The Mitigation Action Implementation Network (MAIN) Panama-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Panama-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

204

Malaysia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Malaysia-The Mitigation Action Implementation Network (MAIN) Malaysia-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Malaysia-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

205

Peru-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Peru-The Mitigation Action Implementation Network (MAIN) Peru-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Peru-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

206

Vietnam-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Vietnam-The Mitigation Action Implementation Network (MAIN) Vietnam-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Vietnam-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

207

Brazil-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Brazil-The Mitigation Action Implementation Network (MAIN) Brazil-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Brazil-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

208

Chile-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Chile-The Mitigation Action Implementation Network (MAIN) Chile-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Chile-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

209

India-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

India-The Mitigation Action Implementation Network (MAIN) India-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name India-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

210

Indonesia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Indonesia-The Mitigation Action Implementation Network (MAIN) Indonesia-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Indonesia-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

211

GHG Mitigation Potential, Costs and Benefits in Global Forests: A Dynamic Partial Equilibrium Approach  

E-Print Network [OSTI]

Estimating Global Forestry GHG Mitigation Potential andN ATIONAL L ABORATORY GHG Mitigation Potential, Costs andopportunity employer. LBNL-58291 GHG Mitigation Potential,

Sathaye, Jayant; Makundi, Willy; Dale, Larry; Chan, Peter; Andrasko, Kenneth

2005-01-01T23:59:59.000Z

212

Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Jump to: navigation, search Name Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Agency/Company /Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Greenhouse Gas, Grid Assessment and Integration, Industry, Land Use, Offsets and Certificates, Transportation

213

IDAHO HABITAT EVALUATION FOR OFFSITE MITIGATION RECORD  

E-Print Network [OSTI]

-1 #12;This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy Mitigation Record, Annual Report FY 1984, Report to Bonneville Power Administration, Contract No. 1984BP13381, Bonneville Power Administration (BPA) under the Northwest Power Planning Act. The Clearw

214

Cryogenic Filters for RFI Mitigation in Radioastronomy  

E-Print Network [OSTI]

RFI mitigation in Radioastronomy can be achieved adopting cryogenic filters in appropriate typologies. A study has been conducted in L, C and X band with the evaluation of the filter architecture in copper, with theoretical estimation, computer simulations, prototypes realization, laboratory measurements. Such work has been preliminary to the realization of HTS samples with the purpose of a similar complete characterization approach.

G. Tuccari; A. Caddemi; S. Barbarino; G. Nicotra; F. Consoli; F. Schilliro; F. Catalfamo

2005-01-03T23:59:59.000Z

215

Highly concentrated foam formulation for blast mitigation  

DOE Patents [OSTI]

A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

Tucker, Mark D. (Albuquerque, NM); Gao, Huizhen (Albuquerque, NM)

2010-12-14T23:59:59.000Z

216

Albeni Falls Wildlife Mitigation : Annual Report 2002.  

SciTech Connect (OSTI)

The Albeni Falls Interagency Work Group continued to actively engage in implementing wildlife mitigation actions in 2002. Regular Work Group meetings were held to discuss budget concerns affecting the Albeni Falls Wildlife Mitigation Program, to present potential acquisition projects, and to discuss and evaluate other issues affecting the Work Group and Project. Work Group members protected 1,386.29 acres of wildlife habitat in 2002. To date, the Albeni Falls project has protected approximately 5,914.31 acres of wildlife habitat. About 21% of the total wildlife habitat lost has been mitigated. Administrative activities have increased as more properties are purchased and continue to center on restoration, operation and maintenance, and monitoring. In 2001, Work Group members focused on development of a monitoring and evaluation program as well as completion of site-specific management plans. This year the Work Group began implementation of the monitoring and evaluation program performing population and plant surveys, data evaluation and storage, and map development as well as developing management plans. Assuming that the current BPA budget restrictions will be lifted in the near future, the Work Group expects to increase mitigation properties this coming year with several potential projects.

Terra-Berns, Mary

2003-01-01T23:59:59.000Z

217

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

218

Mitigation and Remediation of Mercury Contamination at the Y...  

Office of Environmental Management (EM)

Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and...

219

EIS-0473: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Action Plan EIS-0473: Mitigation Action Plan W.A. Parish Post-Combustion CO2 Capture and Sequestration Project, Fort Bend County, Texas This Mitigation Action Plan (MAP)...

220

Mitigating Performance Degradation of High-Energy Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Mitigating Performance Degradation of High-Energy Lithium-Ion Cells 2013 DOE Hydrogen and Fuel Cells Program and...

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Micro-Structural Mitigation Strategies for PEM Fuel Cells | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Micro-Structural Mitigation Strategies for PEM Fuel Cells Micro-Structural Mitigation Strategies for PEM Fuel Cells November 19, 2013 5:00PM EST Online http:www1.eere.energy.gov...

222

Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Congestion Mitigation Congestion Mitigation and Air Quality (CMAQ) Improvement Program to someone by E-mail Share Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on Facebook Tweet about Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on Twitter Bookmark Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on Google Bookmark Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on Delicious Rank Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on Digg Find More places to share Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on AddThis.com...

223

2007 Annual Mitigation Report for the Waste Isolation Pilot Plant (July 2007)  

Broader source: Energy.gov (indexed) [DOE]

Carlsbad Field Office Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 MEMORANDUM FOR: JAMES A. RISPOLI ASSISTANT SECRETARY FOR ENVIRONMENTAL MANAGEMENT THROUGH: DR. INES TRIAY CHIEF OPERATING OFFICER OFFICE OF ENVIRONMENTAL MANAGEMENT FROM: DR. DAVID C. MOODY MANAGER CARLSBAD FIELD OFFICE SUBJECT: 2007 Annual Mitigation Report for the Waste Isolation Pilot Plant DO E Order 451.1 B Change 1 requires you to track and report annually to the Assistant Secretary for Environment, Safety and Health, progress made in implementing and the effectiveness ofmitigation action plans prepared pursuant to the Department's National Environmental Policy Act implementing regulations until mitigation is complete. The 2007 annual report for the WIPP site is attached. In order to avoid duplicating reporting requirements, this mitigation action report does not specifically

224

News From the D.C. Office: Greenhouse Gas Mitigation Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerial view of Washington D.C. Aerial view of Washington D.C. News From the D.C. Office Greenhouse Gas Mitigation Workshops LBNL brought technical training to four continents this summer with a series of regional greenhouse gas mitigation workshops. As part of LBNL's continued work on the U.S. Country Studies Program (USCSP), staff members of the Energy Analysis Program from Washington, D.C. and Berkeley worked together to put on workshops in Warsaw, Poland; Cancun, Mexico; Arusha, Tanzania; and Seoul, Korea. LBNL began working with USCSP more than a year and a half ago, when it was awarded the contract to provide mitigation assistance to some 35 countries. The Program grew out of the U.S.'s commitment to help developing and transitional countries address climate-change issues- specifically to

225

Event:Hands-on Training Workshop for the Africa Region on Mitigation  

Open Energy Info (EERE)

Calendar.png Calendar.png Hands-on Training Workshop for the Africa Region on Mitigation Assessment: on 2012/09/10 The Consultative Group of Experts provides essential support to developing countries in the preparation of their national communications, including support for GHG inventories, mitigation assessment, among other areas. Beyond the simple act of reporting, the training and support also focuses on mainstreaming climate change and providing support for the maintenance of in-country capacity. The CGE is comprised of 26 experts nominated by their regional groups under the UNFCCC. Event Details Name Hands-on Training Workshop for the Africa Region on Mitigation Assessment Date 2012/09/10 Location Ghana Organizer UNFCCC Tags LEDS, CLEAN, Training Website Event Website

226

UNDP-Peru GEF Nationally Appropriate Mitigation Actions in the Energy  

Open Energy Info (EERE)

GEF Nationally Appropriate Mitigation Actions in the Energy GEF Nationally Appropriate Mitigation Actions in the Energy Generation and End-Use Sectors Jump to: navigation, search Name UNDP-Peru GEF Nationally Appropriate Mitigation Actions in the Energy Generation and End-Use Sectors Agency/Company /Organization United Nations Development Programme (UNDP) Sector Climate Focus Area People and Policy Topics Low emission development planning, -LEDS Country Peru South America References UNDP - Latin America & the Caribbean[1] Contents 1 Program Overview 1.1 Program Focus 1.2 Environment and Sustainable Development 2 References Program Overview "Across Latin America and the Caribbean, UNDP helps countries build and share their own solutions to urgent development challenges, supporting coalitions for change and connecting individuals and institutions so they

227

Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming  

Science Journals Connector (OSTI)

A means of assessing the relative impact of different renewable energy technologies on global warming has been developed. All power plants emit thermal energy to the atmosphere. Fossil fuel power plants also emit CO2 which accumulates in the atmosphere and provides an indirect increase in global warming via the greenhouse effect. A fossil fuel power plant may operate for some time before the global warming due to its CO2 emission exceeds the warming due to its direct heat emission. When a renewable energy power plant is deployed instead of a fossil fuel power plant there may be a significant time delay before the direct global warming effect is less than the combined direct and indirect global warming effect from an equivalent output coal fired plant – the “business as usual” case. Simple expressions are derived to calculate global temperature change as a function of ground reflectance and conversion efficiency for various types of fossil fuelled and renewable energy power plants. These expressions are used to assess the global warming mitigation potential of some proposed Australian renewable energy projects. The application of the expressions is extended to evaluate the deployment in Australia of current and new geo-engineering and carbon sequestration solutions to mitigate global warming. Principal findings are that warming mitigation depends strongly on the solar to electric conversion efficiency of renewable technologies, geo-engineering projects may offer more economic mitigation than renewable energy projects and the mitigation potential of reforestation projects depends strongly on the location of the projects.

Ian Edmonds; Geoff Smith

2011-01-01T23:59:59.000Z

228

EIS-0380: Annual Mitigation Action Plan Annual Report  

Broader source: Energy.gov [DOE]

Los Alamos National Laboratory Site-Wide Environmental Impact Statement Fiscal Year 2013 Mitigation Action Plan Annual Report

229

2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect (OSTI)

The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

K. A. Gano; C. T. Lindsey

2007-09-27T23:59:59.000Z

230

2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect (OSTI)

The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

C. T. Lindsey; K. A. Gano

2008-09-30T23:59:59.000Z

231

Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds  

Broader source: Energy.gov [DOE]

The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

232

Threat Mitigation: The Gravity Tractor  

E-Print Network [OSTI]

The Gravity Tractor (GT) is a fully controlled asteroid deflection concept using the mutual gravity between a robotic spacecraft and an asteroid to slowly accelerate the asteroid in the direction of the "hovering" spacecraft. Based on early warning, provided by ground tracking and orbit prediction, it would be deployed a decade or more prior to a potential impact. Ion engines would be utilized for both the rendezvous with the asteroid and the towing phase. Since the GT does not dock with or otherwise physically contact the asteroid during the deflection process there is no requirement for knowledge of the asteroid's shape, composition, rotation state or other "conventional" characteristics. The GT would first reduce the uncertainty in the orbit of the asteroid via Earth tracking of its radio transponder while station keeping with the asteroid. If, after analysis of the more precise asteroid orbit a deflection is indeed indicated, the GT would "hover" above the surface of the asteroid in the direction of the required acceleration vector for a duration adequate to achieve the desired velocity change. The orbit of the asteroid is continuously monitored throughout the deflection process and the end state is known in real time. The performance envelope for the GT includes most NEOs which experience close gravitational encounters prior to impact and those below 150-200 meters in diameter on a direct Earth impact trajectory.

Russell Schweickart; Clark Chapman; Dan Durda; Piet Hut

2006-08-15T23:59:59.000Z

233

Mitigation options for accidental releases of hazardous gases  

SciTech Connect (OSTI)

The objective of this paper is to review and compare technologies available for mitigation of unconfined releases of toxic and flammable gases. These technologies include: secondary confinement, deinventory, vapor barriers, foam spraying, and water sprays/monitors. Guidelines for the design and/or operation of effective post-release mitigation systems and case studies involving actual industrial mitigation systems are also presented.

Fthenakis, V.M.

1995-05-01T23:59:59.000Z

234

Carbon Sequestration as a Greenhouse Gas Mitigation Strategy: A Comparative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Conference Proceedings 3 Conference Proceedings NETL-sponsored Symposia at the AAAS Annual Meeting February, 2003 Table of Contents Disclaimer Papers and Presentations Carbon Sequestration as a Greenhouse Gas Mitigation Strategy: A Comparative Assessment of Options Climate Change Mitigation Strategy: Technical Challenges for Carbon Sequestration Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

235

Threat Mitigation: The Asteroid Tugboat  

E-Print Network [OSTI]

The Asteroid Tugboat (AT) is a fully controlled asteroid deflection concept using a robotic spacecraft powered by a high efficiency, electric propulsion system (ion or plasma) which docks with and attaches to the asteroid, conducts preliminary operations, and then thrusts continuously parallel to the asteroid velocity vector until the desired velocity change is achieved. Based on early warning, provided by ground tracking and orbit prediction, it would be deployed a decade or more prior to a potential impact. On completion of the initial rendezvous with the near-Earth object (NEO) the AT would first reduce the uncertainty in the orbit of the asteroid via Earth tracking of its radio transponder while it is station keeping with the asteroid. If on analysis of tracking data a deflection is required the AT would execute a reconnaissance phase collecting and processing information about the physical characteristics of the asteroid to support subsequent operations. The AT would then dock at the appropriate pole (i.e. on the spin axis), attach to the asteroid surface, and initiate a NEO reorientation maneuver. Following completion of the NEO reorientation the AT would initiate the deflection phase by thrusting continuously parallel to the asteroid velocity vector until the resultant target orbit is achieved. The orbit of the asteroid is continuously monitored throughout the deflection process and the end state is known in real time. If one assumes a nuclear-electric propulsion (NEP) system similar to that formerly under development in the recently canceled Prometheus Program, the AT would be capable of deflecting threatening NEOs up to 800 meters in diameter or more.

Russell Schweickart; Clark Chapman; Dan Durda; Piet Hut

2006-08-15T23:59:59.000Z

236

Prepare The Nation For Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prepare The Nation For Change Print E-mail What Is Adaptation and Mitigation? Adaptation An adjustment in natural and/or human systems to a new or changing environment that exploits beneficial opportunities and moderates negative impacts. Mitigation An intervention to reduce the sources or enhance the sinks of greenhouse gases and other climate warming agents. This intervention could include approaches devised to: reduce emissions of greenhouse gases to the atmosphere to enhance their removal from the atmosphere through storage in geological formations, soils, biomass, or the ocean How do we prepare for global change? Global change is affecting many aspects of society, livelihoods, and the environment. Across the United States and around the world, people are making decisions to effectively minimize (mitigate) and prepare for (adapt) global change.

237

Global Warming Mitigation Investments Optimized under Uncertainty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Warming Mitigation Investments Optimized under Uncertainty Global Warming Mitigation Investments Optimized under Uncertainty Speaker(s): Hermann Held Date: July 9, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone The Copenhagen Accord (2009) recognizes that 'the increase in global temperature should be below 2 degrees Celsius' (compared to pre-industrial levels, '2° target'). In recent years, energy economics have derived welfare-optimal investment streams into low-emission energy mixes and associated costs. According to our analyses, auxiliary targets that are in line with the 2° target could be achieved at relatively low costs if energy investments were triggered rather swiftly. While such analyses assume 'perfect foresight' of a benevolent 'social planner', an accompanying suite of experiments explicitly

238

Decarbonization and Sequestration for Mitigating Global Warming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DECARBONIZATION AND SEQUESTRATION FOR DECARBONIZATION AND SEQUESTRATION FOR MITIGATING GLOBAL WARMING M. Steinberg (msteinbe@bnl.gov); 631-344-3036 Brookhaven National Laboratory 12 South Upton Street Upton, NY 11973-5000, USA ABSTRACT Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO 2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat generation. Decarbonization means removal of carbon as C or CO 2 either before or after fossil fuel combustion and sequestration means disposal of the recovered C or CO 2 including its utilization. Removal and recovery of CO

239

Ethiopia-Facilitating Implementation and Readiness for Mitigation (FIRM) |  

Open Energy Info (EERE)

Ethiopia-Facilitating Implementation and Readiness for Mitigation (FIRM) Ethiopia-Facilitating Implementation and Readiness for Mitigation (FIRM) Jump to: navigation, search Logo: Ethiopia-Facilitating Implementation and Readiness for Mitigation (FIRM) Name Ethiopia-Facilitating Implementation and Readiness for Mitigation (FIRM) Agency/Company /Organization United Nations Environment Programme (UNEP) Partner Global Environment Facility (GEF), Government of Denmark Sector Climate, Energy, Land Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, Finance, Implementation, Low emission development planning Website http://www.unep.org/climatecha Program Start 2011 Program End 2013 Country Ethiopia UN Region Central America References Facilitating Implementation and Readiness for Mitigation (FIRM)[1]

240

EA-1592: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan Mitigation Action Plan EA-1592: Mitigation Action Plan Modernization of Facilities and Infrastructure for the Non-Nuclear Production Activities Conducted at the NNSA's Kansas City Plant Based on the analysis in the Environmental Assessment prepared for the proposal by the GSA and NNSA, neither the construction nor operation of the selected alternative wouldhave significant environmental impact. This MAP contains mitigation and monitoring commitments for the project, including commitments set in permits for the new facility. Mitigation Action Plan for the Modernization of Facilities and Infrastructure for the Non-Nuclear Production Activities Conducted at the NNSA's Kansas City Plant More Documents & Publications EA-1592: Finding of No Significant Impact

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

UNEP-Facilitating Implementation and Readiness for Mitigation (FIRM) | Open  

Open Energy Info (EERE)

UNEP-Facilitating Implementation and Readiness for Mitigation (FIRM) UNEP-Facilitating Implementation and Readiness for Mitigation (FIRM) Jump to: navigation, search Logo: UNEP-Facilitating Implementation and Readiness for Mitigation (FIRM) Name UNEP-Facilitating Implementation and Readiness for Mitigation (FIRM) Agency/Company /Organization United Nations Environment Programme (UNEP) Partner Global Environment Facility (GEF), Government of Denmark Sector Climate, Energy, Land Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, Finance, Implementation, Low emission development planning Website http://www.unep.org/climatecha Program Start 2011 References Facilitating Implementation and Readiness for Mitigation (FIRM)[1] "The Government of Denmark will provide US$6 million to the new programme

242

Greenhouse Gas Training Program for Inventory and Mitigation Modeling |  

Open Energy Info (EERE)

Greenhouse Gas Training Program for Inventory and Mitigation Modeling Greenhouse Gas Training Program for Inventory and Mitigation Modeling Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Training Program for Inventory and Mitigation Modeling Agency/Company /Organization: Future Perfect Sector: Climate Focus Area: GHG Inventory Development, Greenhouse Gas Topics: GHG inventory, Low emission development planning, -LEDS Resource Type: Case studies/examples, Training materials Website: www.gpstrategiesltd.com/divisions/future-perfect/ Country: South Korea Eastern Asia Language: English References: Greenhouse Gas Training Program for Inventory and Mitigation Modeling[1] Logo: Greenhouse Gas Training Program for Inventory and Mitigation Modeling Jointly sponsored by Greenhouse Gas Inventory & Research (GIR) Center of

243

Facilitating Implementation and Readiness for Mitigation (FIRM) | Open  

Open Energy Info (EERE)

Facilitating Implementation and Readiness for Mitigation (FIRM) Facilitating Implementation and Readiness for Mitigation (FIRM) Jump to: navigation, search Logo: UNEP-Facilitating Implementation and Readiness for Mitigation (FIRM) Name UNEP-Facilitating Implementation and Readiness for Mitigation (FIRM) Agency/Company /Organization United Nations Environment Programme (UNEP) Partner Global Environment Facility (GEF), Government of Denmark Sector Climate, Energy, Land Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, Finance, Implementation, Low emission development planning Website http://www.unep.org/climatecha Program Start 2011 Program End 2013 Country Costa Rica, Ethiopia, Ghana, Indonesia, Mexico, Morocco, Senegal, South Africa, Vietnam UN Region Central America References Facilitating Implementation and Readiness for Mitigation (FIRM)[1]

244

Costa Rica-Facilitating Implementation and Readiness for Mitigation (FIRM)  

Open Energy Info (EERE)

Costa Rica-Facilitating Implementation and Readiness for Mitigation (FIRM) Costa Rica-Facilitating Implementation and Readiness for Mitigation (FIRM) Jump to: navigation, search Logo: Costa Rica-Facilitating Implementation and Readiness for Mitigation (FIRM) Name Costa Rica-Facilitating Implementation and Readiness for Mitigation (FIRM) Agency/Company /Organization United Nations Environment Programme (UNEP) Partner Global Environment Facility (GEF), Government of Denmark Sector Climate, Energy, Land Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, Finance, Implementation, Low emission development planning Website http://www.unep.org/climatecha Program Start 2011 Program End 2013 Country Costa Rica UN Region Central America References Facilitating Implementation and Readiness for Mitigation (FIRM)[1]

245

Ecofys-Nationally Appropriate Mitigation Actions: Insights from Example  

Open Energy Info (EERE)

Ecofys-Nationally Appropriate Mitigation Actions: Insights from Example Ecofys-Nationally Appropriate Mitigation Actions: Insights from Example Development Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Appropriate Mitigation Actions: Insights from Example Development Agency/Company /Organization: Ecofys Sector: Energy, Land Topics: Low emission development planning, Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.ecofys.com/com/publications/brochures_newsletters/documents/Report National Appropriate Mitigation Actions: Insights from Example Development Screenshot References: National Appropriate Mitigation Actions: Insights from Example Development[1] "Ecofys elaborated in several projects, concrete examples of NAMAs to understand the issues arising from this concept. This report summarizes the

246

Wildlife Mitigation Program Record of Decision; 06April1997  

Broader source: Energy.gov (indexed) [DOE]

Wildlife Mitigation Program Record of Decision Wildlife Mitigation Program Record of Decision SUMMARY Bonneville Power Administration (BPA) has decided to adopt a set of prescriptions (goals, strategies, and procedural requirements) that apply to future BPA-funded wildlife mitigation projects. Various sourcesincluding Indian tribes, state agencies, property owners, private conservation groups, or other Federal agenciespropose wildlife mitigation projects to the Northwest Power Planning Council (Council) for BPA funding. Following independent scientific and public reviews, Council then selects projects to recommend for BPA funding. BPA adopts this set of prescriptions to standardize the planning and implementation of individual wildlife mitigation projects. This decision is based on consideration of potential environmental

247

South Africa-Facilitating Implementation and Readiness for Mitigation  

Open Energy Info (EERE)

South Africa-Facilitating Implementation and Readiness for Mitigation South Africa-Facilitating Implementation and Readiness for Mitigation (FIRM) Jump to: navigation, search Logo: South Africa-Facilitating Implementation and Readiness for Mitigation (FIRM) Name South Africa-Facilitating Implementation and Readiness for Mitigation (FIRM) Agency/Company /Organization United Nations Environment Programme (UNEP) Partner Global Environment Facility (GEF), Government of Denmark Sector Climate, Energy, Land Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, Finance, Implementation, Low emission development planning Website http://www.unep.org/climatecha Program Start 2011 Program End 2013 Country South Africa UN Region Central America References Facilitating Implementation and Readiness for Mitigation (FIRM)[1]

248

300 Area Building Retention Evaluation Mitigation Plan  

SciTech Connect (OSTI)

Evaluate the long-term retention of several facilities associated with the PNNL Capability Replacement Laboratory and other Hanfor mission needs. WCH prepared a mitigation plan for three scenarios with different release dates for specific buildings. The evaluations present a proposed plan for providing utility services to retained facilities in support of a long-term (+20 year) lifespan in addition to temporary services to buildings with specified delayed release dates.

D. J. McBride

2007-07-03T23:59:59.000Z

249

MITIGATION ACTION PLAN FOR THE FINAL ENVIRONMENTAL ASSESSMENT,  

Broader source: Energy.gov (indexed) [DOE]

MITIGATION MITIGATION ACTION PLAN FOR THE FINAL ENVIRONMENTAL ASSESSMENT, NOTICE OF WETLAND INVOLVEMENT, AND FINDING OF NO SIGNIFICANT IMPACT FOR THE CONSTRUCTION AND OPERATION OF A LIGNOCELLULOSIC U.S. Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401 1.0 Introd uction 1 1.1 Purpose of the Mitigation Action Plan 1 1.2 Structure of the Mitigation Action Plan 2 2.0 Ambient Ai r Quality 3 2.1 Potential Impacts 3 2.2 Mitigation Measures 3 2.3 Metrics for Determining Success or Failure of the Mitigation Measures 4 2.4 Monitoring Techniques for Mitigation Measures 4 3.0 Truck Traffic 4 3.1 Potential Impacts 4 3.2 Mitigation Measures 4 3.3 Metrics for Determining Success or Failure of the Mitigation Measures 5 3.4 Monitoring Techniques for Mitigation Measures 5 4.0 Genetically Modified Yeasts 6 4.1 Potential Impacts 6 4.2 Mitigation Measures 6 4.3 Metrics for Determining

250

National and Sectoral GHG Mitigation Potential: A Comparison Across Models  

Open Energy Info (EERE)

National and Sectoral GHG Mitigation Potential: A Comparison Across Models National and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary Name: National and Sectoral GHG Mitigation Potential: A Comparison Across Models Agency/Company /Organization: Organisation for Economic Co-Operation and Development Topics: GHG inventory, Policies/deployment programs, Pathways analysis Resource Type: Software/modeling tools, Publications, Lessons learned/best practices Website: www.iea.org/papers/2009/Mitigation_potentials.pdf References: National and Sectoral GHG Mitigation Potential: A Comparison Across Models[1] Summary "This paper focuses on mitigation potential to provide a comparative assessment across key economies. GHG mitigation potential is defined here to be the level of GHG emission reductions that could be realised, relative

251

EIS-0409: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan Mitigation Action Plan EIS-0409: Mitigation Action Plan Kemper County Integrated Gasification Combined Cycle Project, Kemper County, Mississippi The Department of Energy (DOE) issued a Final Environmental Impact Statement (EIS) for the Kemper County Integrated Gasification Combine Cycle Project (Project) (DOE/EIS-0409) in May 2010 and a Record of Decision (ROD) in August 2010 (75 FR 51248). The ROD identified commitments to mitigate potential adverse impacts associated with the project. This Mitigation Action Plan (MAP) describes the monitoring and mitigation actions the recipient must implement during the design, construction, and demonstration of the Project. Mitigation Action Plan Kemper County Iintegrated Gasification Combined Cycle Project, Kemper County, Mississippi, DOE/EIS-0409 (September 2010)

252

Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate  

Broader source: Energy.gov (indexed) [DOE]

Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate Use of Mitigated Findings of No Significant Impact Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate Use of Mitigated Findings of No Significant Impact The Council on Environmental Quality is issuing this guidance for Federal departments and agencies on establishing, implementing, and monitoring mitigation commitments identified and analyzed in Environmental Assessments, Environmental Impact Statements, and adopted in the final decision documents. This guidance also clarifies the appropriate use of mitigated "Findings of No Significant Impact" under the National Environmental Policy Act (NEPA). The guidance explains the requirements of NEPA and the CEQ Regulations, describes CEQ policies, and recommends

253

Greenhouse Gas Mitigation Planning Data and Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Mitigation Planning Data and Tools Greenhouse Gas Mitigation Planning Data and Tools Greenhouse Gas Mitigation Planning Data and Tools October 7, 2013 - 10:27am Addthis These data and tools from the U.S. Department of Energy (DOE) and other organizations can help Federal agencies with greenhouse gas (GHG) mitigation planning for: Buildings Vehicles and mobile equipment Business travel Employee commuting. Buildings Table 1 features data and tools to help with GHG mitigation planning for buildings. Table 1. GHG Mitigation Planning Data and Tools for Buildings Data or Tool Source Description Planning Use Buildings GHG Mitigation Worksheet Estimator Federal Energy Management Program (FEMP) Estimates savings and costs from GHG reduction strategies Evaluate GHG Reduction Strategies Estimate Costs to Implement GHG Reduction Strategies

254

Timelines for mitigating methane emissions from energy technologies  

E-Print Network [OSTI]

Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

Roy, Mandira; Trancik, Jessika E

2015-01-01T23:59:59.000Z

255

Strategies for mitigating risk to buildings from abnormal load events  

Science Journals Connector (OSTI)

Building structures customarily are designed to withstand loads from their occupants and the natural environment. The normal design process provides a measure of structural integrity that is also available to withstand events that traditionally have been outside the design envelope, including accidents, misuse, and sabotage. Changes in design and construction practices over the past several decades have lessened inherent robustness in certain modern structural systems, making them vulnerable to such events. Social and political factors also have led to an increase in hazardous events that may pose a risk to buildings. Finally, public awareness of building safety has increased as a result of well-publicised natural and man-made disasters. Building practices to mitigate the risk of abnormal loads and ensuing unacceptable damage or collapse can be improved using concepts of structural reliability and risk analysis. This paper summarises the basis for such practices, from the perspective of a structural engineer.

Bruce R. Ellingwood

2007-01-01T23:59:59.000Z

256

The economics of abrupt climate change  

Science Journals Connector (OSTI)

...rate of growth in per capita consumption. Positive...changes in world GDP associated with mitigation...competitive renewable-energy technologies? There...current levels of demand, and current estimates...for non-renewable energy sources. In principle...

2003-01-01T23:59:59.000Z

257

EIS-0026: 2009 Annual Mitigation Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

026: 2009 Annual Mitigation Report 026: 2009 Annual Mitigation Report EIS-0026: 2009 Annual Mitigation Report Waste Isolation Pilot Plant Guidance for the development of a Mitigation Action Plan (MAP) is contained in Department of Energy (DOE) Order 451.1B, National Environmental Policy Act Compliance Program, and 10 CFR 1021, National Environmental Policy Act Implementing Procedures. These documents specify that a MAP be prepared to mitigate environmental impacts resulting from the implementation of commitments made in the Record of Decision (ROD) for an Environmental Impact Statement (EIS). The Order further requires that an annual report be prepared to demonstrate the progress made in implementing the commitments and effectiveness of any mitigation activity until the activity has been

258

EIS-0128: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

28: Mitigation Action Plan 28: Mitigation Action Plan EIS-0128: Mitigation Action Plan Los Banos - Gates (Path 15) Transmission Project, Revision 2 Revision 2: This MAP addresses the construction, operation, and maintenance of the new 84-mile long 500-kV transmission line. Necessary work conducted by Pacific Gas and Electric (PG&E) at their substations will occur within the previously disturbed area inside the substation boundaries. Western or Trans Electric, Inc. will also not have a role in upgrading the various existing PG&E 230-kV system components. DOE-0128-MAP-02, Western Area Power Administration, Mitigation Action Plan for Los Banos - Gates (Path 15) Transmission Project, Revision 2 (December 2003) More Documents & Publications EIS-0128: Mitigation Action Plan EA-1456: Mitigation Action Plan

259

EIS-0380: Mitigation Action Plan Annual Report | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mitigation Action Plan Annual Report Mitigation Action Plan Annual Report EIS-0380: Mitigation Action Plan Annual Report Los Alamos National Laboratory Site-Wide Environmental Impact Statement Fiscal Year 2012 Mitigation Action Plan Annual Report In Fiscal Year (FY) 2012, the Los Alamos National Laboratory (LANL) Site-Wide Environmental Impact Statement (SWEIS) Project Office focused on tracking and managing mitigation action commitments and reporting. Highlights for FY 2012 include the following: completion and distribution of the FY 2011 SWEIS Mitigation Action Plan Annual Report (DOE 2012), which included a section for the Las Conchas Fire, completion and distribution of the calendar year (CY) 2010 SWEIS Yearbook in April 2012 (LANL 2012a), construction and operation of SERF-E, construction of an institutional

260

EA-1923: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan Mitigation Action Plan EA-1923: Mitigation Action Plan Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands This Mitgation Action Plan specifies the methods for implementing mitigation measures that address the potential environmental impacts identified in DOE/EA-1923 and by the USFWS Biological Opinion issued to DOE on February 1, 2012, in accordance with the Endangered Species Act (ESA) (16 U.S.C.1531 et seq.). The development of these measures and an implementation plan, are a necessary condition for the DOE FONSI, as described by 40 CFR 1021.331(b) Mitigation action plans. EA-1923-MAP-2013 More Documents & Publications EA-1923: Final Environmental Assessment EA-1923: Draft Environmental Assessment EA-1923: Mitigated Finding of No Significant Impact

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EA-1591: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

91: Mitigation Action Plan 91: Mitigation Action Plan EA-1591: Mitigation Action Plan Palisades-Goshen Transmission Line Reconstruction Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Palisades-Goshen Transmission Line Reconstruction Project. The project involves reconstruction of the existing Palisades-Goshen 115-kV transmission line, which extends from Palisades Dam in eastern Idaho approximately 52 miles west to the Goshen Substation south of Idaho Falls, Idaho. Mitigation Action Plan for the Palisades-Goshen Transmission Line Reconstruction Project More Documents & Publications EA-1591: Final Environmental Assessment, Finding of No Significant Impact, and Mitigation Action Plan EA-1591: Finding of No Significant Impact

262

EIS-0026: 2009 Annual Mitigation Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

09 Annual Mitigation Report 09 Annual Mitigation Report EIS-0026: 2009 Annual Mitigation Report Waste Isolation Pilot Plant Guidance for the development of a Mitigation Action Plan (MAP) is contained in Department of Energy (DOE) Order 451.1B, National Environmental Policy Act Compliance Program, and 10 CFR 1021, National Environmental Policy Act Implementing Procedures. These documents specify that a MAP be prepared to mitigate environmental impacts resulting from the implementation of commitments made in the Record of Decision (ROD) for an Environmental Impact Statement (EIS). The Order further requires that an annual report be prepared to demonstrate the progress made in implementing the commitments and effectiveness of any mitigation activity until the activity has been completed. The Waste Isolation Pilot Plant (WIPP) MAP was prepared to

263

EIS-0350-S1: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan Mitigation Action Plan EIS-0350-S1: Mitigation Action Plan Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos, NM This Mitigation Action Plan (MAP) describes mitigation and monitoring commitments for constructing and operating the Modified CMRR-NF. The commitments made in this MAP are designed to mitigate potentially adverse environmental consequences associated with the CMRR-NF Project as the CMRR-NF is constructed and operated, and as direct, indirect, and cumulative impacts from these actions occur over time. EIS-0350-S1-MAP-2011.pdf More Documents & Publications EIS-0350-S1: Final Supplemental Environmental Impact Statement EIS-0350-S1: Draft Supplemental Environmental Impact Statement

264

Mitigation Action Plans (MAP) and Related Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 1, 2010 December 1, 2010 EA-1782: Mitigation Action Plan University of Delaware Lewes Campus Onsite Wind Energy Project September 1, 2010 EIS-0409: Mitigation Action Plan Kemper County Integrated Gasification Combined Cycle Project, Kemper County, Mississippi August 24, 2010 EA-1736: Mitigation Action Plan Expansion of the Sanitary Effluent Reclamation Facility and Environmental Restoration of Reach S-2 of Sandia Canyon at Los Alamos National Laboratory, Los Alamos, Los Alamos, New Mexico July 10, 2010 EIS-0026: 2010 Annual Mitigation Report Waste Isolation Pilot Plant June 4, 2010 EA-1704: Mitigation Action Plan Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi January 1, 2010 EA-1755: Mitigation Action Plan

265

EIS-0026: 2010 Annual Mitigation Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

10 Annual Mitigation Report 10 Annual Mitigation Report EIS-0026: 2010 Annual Mitigation Report Waste Isolation Pilot Plant Guidance for the development of a Mitigation Action Plan (MAP) is contained in Department of Energy (DOE) Order 451.1B, National Environmental Policy Act Compliance Program, and 10 CFR 1021, National Environmental Policy Act Implementing Procedures. These documents specify that a MAP be prepared to mitigate environmental impacts resulting from the implementation of commitments made in the Record of Decision (ROD) for an Environmental Impact Statement (EIS). The Order further requires that an annual report be prepared to demonstrate the progress made in implementing the commitments and effectiveness of any mitigation activity until the activity has been completed. The Waste Isolation Pilot Plant (WIPP) MAP was prepared to

266

Argentina-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

Argentina-Mitigation Action Plans and Scenarios (MAPS) Argentina-Mitigation Action Plans and Scenarios (MAPS) Jump to: navigation, search Logo: Argentina-Mitigation Action Plans and Scenarios (MAPS) Name Argentina-Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Argentina South America References Mitigation Action Plans and Scenarios (MAPS)[1] Contents 1 Overview 2 MAPS Processes and Outcomes 2.1 Chile 2.2 Colombia 2.3 Peru 2.4 Brazil 2.5 Resources 2.5.1 Mitigation Action Country Studies

267

Colombia-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

Colombia-Mitigation Action Plans and Scenarios (MAPS) Colombia-Mitigation Action Plans and Scenarios (MAPS) Jump to: navigation, search Logo: Colombia-Mitigation Action Plans and Scenarios (MAPS) Name Colombia-Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Colombia South America References Mitigation Action Plans and Scenarios (MAPS)[1] Contents 1 Overview 2 MAPS Processes and Outcomes 2.1 Chile 2.2 Colombia 2.3 Peru 2.4 Brazil 2.5 Resources 2.5.1 Mitigation Action Country Studies

268

EA-1901: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1: Mitigation Action Plan 1: Mitigation Action Plan EA-1901: Mitigation Action Plan Kootenai River White Sturgeon and Burbot Hatcheries Project, Bonners Ferry, Boundary County, Idaho This Mitigation Action Plan (MAP) is referenced in the Finding of No Significant Impact for the Kootenai River White Sturgeon and Burbot Hatcheries Project (Department of Energy Environmental Assessment-1901). This MAP includes all of the mitigation measures recommended in the Final Environmental Assessment to mitigate adverse environmental impacts. It includes some measures that are essential to render the impacts of the Proposed Action not significant and other measures that will decrease impacts that did not reach a level to be considered significant. EA-1901-MAP-2013.pdf More Documents & Publications

269

Brazil-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

Brazil-Mitigation Action Plans and Scenarios (MAPS) Brazil-Mitigation Action Plans and Scenarios (MAPS) Jump to: navigation, search Logo: Brazil-Mitigation Action Plans and Scenarios (MAPS) Name Brazil-Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Brazil South America References Mitigation Action Plans and Scenarios (MAPS)[1] Contents 1 Overview 2 MAPS Processes and Outcomes 2.1 Chile 2.2 Colombia 2.3 Peru 2.4 Brazil 2.5 Resources 2.5.1 Mitigation Action Country Studies

270

EIS-0128: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

: Mitigation Action Plan : Mitigation Action Plan EIS-0128: Mitigation Action Plan Los Banos - Gates (Path 15) Transmission Project, Revision 2 Revision 2: This MAP addresses the construction, operation, and maintenance of the new 84-mile long 500-kV transmission line. Necessary work conducted by Pacific Gas and Electric (PG&E) at their substations will occur within the previously disturbed area inside the substation boundaries. Western or Trans Electric, Inc. will also not have a role in upgrading the various existing PG&E 230-kV system components. DOE-0128-MAP-02, Western Area Power Administration, Mitigation Action Plan for Los Banos - Gates (Path 15) Transmission Project, Revision 2 (December 2003) More Documents & Publications EIS-0128: Mitigation Action Plan EA-1456: Mitigation Action Plan

271

Carbon Geography: The Political Economy of Congressional Support for Legislation Intended to Mitigate Greenhouse Gas Production  

SciTech Connect (OSTI)

Over the last five years, the U.S Congress has voted on several pieces of legislation intended to sharply reduce the nation’s greenhouse gas emissions. Given that climate change is a world public bad, standard economic logic would predict that the United States would ?free ride? and wait for other nations to reduce their emissions. Within the Congress, there are clear patterns to who votes in favor of mitigating greenhouse gas emissions. This paper presents a political economy analysis of the determinants of ?pro-green? votes on such legislation. Conservatives consistently vote against such legislation. Controlling for a Representative’s ideology, representatives from richer districts and districts with a lower per-capita carbon dioxide footprint are more likely to vote in favor of climate change mitigation legislation. Representatives from districts where industrial emissions represent a larger share of greenhouse gas emissions are more likely to vote no.

Cragg, Michael; Zhou, Yuyu; Gurney, Kevin R.; Kahn, Matthew

2013-04-01T23:59:59.000Z

272

Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation  

Open Energy Info (EERE)

Greenhouse Gas Emissions and Mitigation Greenhouse Gas Emissions and Mitigation Potential in Agriculture Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Name Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Climate, Land Focus Area Agriculture, Greenhouse Gas Topics GHG inventory, Low emission development planning, -LEDS Resource Type Dataset, Technical report Website http://www.fao.org/climatechan References MICCA Website[1] The overall objective of the MAGHG project is to support developing countries assess and report their greenhouse gas (GHG) emissions from

273

International Partnership on Mitigation and Measuring, Reporting and  

Open Energy Info (EERE)

Mitigation and Measuring, Reporting and Mitigation and Measuring, Reporting and Verification (MRV) Jump to: navigation, search Logo: International Partnership on Mitigation and Measuring, Reporting and Verification (MRV) Name International Partnership on Mitigation and Measuring, Reporting and Verification (MRV) Agency/Company /Organization German Federal Ministry for the Environment, Nature Conservancy and Nuclear Safety (BMU), German Agency for International Cooperation (GIZ) Sector Climate Focus Area Non-renewable Energy, Agriculture, Buildings, Energy Efficiency, Greenhouse Gas, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, Pathways analysis, Policies/deployment programs, Technology characterizations

274

Experts assemble at PPPL to discuss mitigation of tokamak disruptions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experts assemble at PPPL to discuss mitigation of tokamak disruptions By John Greenwald July 15, 2014 Tweet Widget Google Plus One Share on Facebook Amitava Bhattacharjee, left,...

275

PPPL successfully tests system for mitigating instabilities called...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary tabs View(active tab) High Resolution News PPPL successfully tests system for mitigating instabilities called "ELMs" By John Greenwald September 29, 2014 Tweet Widget...

276

PPPL successfully tests system for mitigating instabilities called...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary tabs View(active tab) High Resolution Press Releases PPPL successfully tests system for mitigating instabilities called "ELMs" By John Greenwald September 29, 2014 Tweet...

277

EA-1950: Finding of No Significant Impact and Mitigation Action...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EA-1950: Finding of No Significant Impact and Mitigation Action Plan Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington Bonneville Power...

278

Oregon Fish and Wildlife Mitigation Policy | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Oregon Fish and Wildlife Mitigation Policy Published Publisher Not Provided, Date Not Provided DOI...

279

EA-1611: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EA-1611: Mitigation Action Plan Colorado Highlands Wind Project, Logan County, Colorado Colorado Highlands Wind LLC applied to Western Area Power Administration to interconnect a...

280

Oregon Willamette River Basin Mitigation Agreement | Open Energy...  

Open Energy Info (EERE)

Willamette River Basin Mitigation Agreement Author State of Oregon Recipient Bonneville Power Administration Published Publisher Not Provided, 10222010 DOI Not Provided Check for...

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

National Planning for GHG Mitigation in Agriculture: A Guidance...  

Open Energy Info (EERE)

Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Planning for GHG Mitigation in Agriculture: A Guidance Document AgencyCompany Organization: Food and...

282

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Buildings  

Broader source: Energy.gov [DOE]

When estimating the cost of implementing the greenhouse gas (GHG) mitigation strategies, Federal agencies should consider the life-cycle costs and savings of the efforts.

283

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual...

284

Mitigation Action Plans (MAP) and Related Documents | Department...  

Energy Savers [EERE]

Uranium Leasing Program Programmatic Environmental Impact Statement July 10, 2014 EIS-0026: Annual Mitigation Report Waste Isolation Pilot Plant June 9, 2014 EIS-0380:...

285

Mitigation Action Plans (MAP) and Related Documents | Department...  

Broader source: Energy.gov (indexed) [DOE]

Operation of a Proposed Lignocellulosic Biorefinery, Emmetsburg, Iowa July 10, 2008 EIS-0026: Annual Mitigation Report Waste Isolation Pilot Plant May 8, 2008 EA-1440-S1:...

286

Webinar: Micro-Structural Mitigation Strategies for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, Micro-Structural Mitigation Strategies for PEM Fuel Cells, originally presented on November 19, 2013.

287

EA-1923: Mitigated Finding of No Significant Impact | Department...  

Broader source: Energy.gov (indexed) [DOE]

Finding of No Significant Impact EA-1923: Mitigated Finding of No Significant Impact Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana...

288

EIS-0332: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

kilovolt transmission line between Bonneville Power Administration's existing McNary and John Day substations. Mitigation Action Plan for the McNary-John Day Transmission Line...

289

EA-1679: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Action Plan EA-1679: Mitigation Action Plan Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington This MAP is for...

290

2006 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect (OSTI)

The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. One of the objectives of restoration is the revegetation of remediated waste sites to stabilize the soil and restore the land to native vegetation. The report documents the results of revegetation and mitigation monitoring conducted in 2006 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 2 bat habitat mitigation projects.

A. L. Johnson; K. A. Gano

2006-10-03T23:59:59.000Z

291

EIS-0460: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

those required mitigation actions and the monitoring and reporting requirements the Alliance must implement during the design, construction, and operation of the FutureGen 2.0...

292

Renewable Energy and Climate Change  

SciTech Connect (OSTI)

The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as their integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.

Chum, H. L.

2012-01-01T23:59:59.000Z

293

The Drivers for Divergence: Exploring Variation in New Zealand Organisational Responses to Climate Change.  

E-Print Network [OSTI]

??For many years, the development of an Emissions Trading Scheme to mitigate against climate change has been one of the most controversial political issues in… (more)

Phillips, Lara

2010-01-01T23:59:59.000Z

294

Sweet-Talking the Climate? Evaluating Sugar Mill Cogeneration and Climate Change Financing in India  

E-Print Network [OSTI]

some argue that climate projects have the potential to design,  projects  that  bring  about  climate  benefits support  climate  change  mitigation  in  India,  projects 

Ranganathan, Malini; Haya, Barbara; Kirpekar, Sujit

2005-01-01T23:59:59.000Z

295

E-Print Network 3.0 - abrupt climate change Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the practical... for climate change mitigation House et al. Nature 5 Humans in Earth System Models Cornell et al. Current... conservation implications ... Source: Watson, Andrew...

296

E-Print Network 3.0 - abrupt climatic change Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the practical... for climate change mitigation House et al. Nature 5 Humans in Earth System Models Cornell et al. Current... conservation implications ... Source: Watson, Andrew...

297

Mitigating Greenhouse Gas Emissions: Voluntary Reporting  

Gasoline and Diesel Fuel Update (EIA)

08(96) 08(96) Distribution Category UC-950 Mitigating Greenhouse Gas Emissions: Voluntary Reporting October 1997 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. For More Information Individuals or members of organizations wishing to report reductions in emissions of greenhouse gases under the auspices of the Voluntary Reporting Program can contact the Energy Information Administration (EIA) at: Voluntary Reporting of Greenhouse Gases Energy Information Administration U.S. Department

298

Blast mitigation capabilities of aqueous foam.  

SciTech Connect (OSTI)

A series of tests involving detonation of high explosive blanketed by aqueous foam (conducted from 1982 to 1984) are described in primarily terms of recorded peak pressure, positive phase specific impulse, and time of arrival. The investigation showed that optimal blast mitigation occurs for foams with an expansion ratio of about 60:1. Simple analyses representing the foam as a shocked single phase mixture are presented and shown inadequate. The experimental data demonstrate that foam slows down and broadens the propagated pressure disturbance relative to a shock in air. Shaped charges and flyer plates were evaluated for operation in foam and appreciable degradation was observed for the flyer plates due to drag created by the foam.

Hartman, William Franklin; Larsen, Marvin Elwood; Boughton, Bruce A.

2006-02-01T23:59:59.000Z

299

Microsoft Word - Mitigation Action Plan.doc  

Broader source: Energy.gov (indexed) [DOE]

782 782 MITIGATION ACTION PLAN FOR THE UNIVERSITY OF DELAWARE LEWES CAMPUS ONSITE WIND ENERGY PROJECT DECEMBER 2010 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 1000 Independence Avenue, SW Washington, D.C. 20585 1.0 INTRODUCTION The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA) to aid its decision whether to provide funding for the University of Delaware's construction and operation of a 2-megawatt wind turbine adjacent to the University's College of Earth, Ocean, and Environment Campus in Lewes, Delaware. The EA (DOE/EA-1782) for the University's Wind Energy Project was completed in compliance with the National Environmental Policy Act (NEPA) and implementing regulations issued by the Council on Environmental Quality and

300

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Demand Responses to Climate Change: Methodology and Application to the Com- monwealth of Massachusetts,

Carlson, Ann E.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

BWR ATWS mitigation by Fine Motion Control Rod  

SciTech Connect (OSTI)

Two main methods of ATWS mitigation in a SBWR are: fine Motion control Rods (FMCRD) and Boron injection via the Standby Liquid control System (SLCS). This study has demonstrated that the use of FMCRD along with feedwater runback mitigated the conditions due to reactivity insertion and possible ATWS in a BWR which is similar to SBWR.

Rohatgi, U.S.; Cheng, H.S.; Khan, H.; Mallen, A.; Diamond, D.

1994-03-01T23:59:59.000Z

302

Tillman Creek Mitigation Site As-Build Report.  

SciTech Connect (OSTI)

This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

Gresham, Doug [Otak, Inc.

2009-05-29T23:59:59.000Z

303

RESEARCH REPORT 1740-1 WETLANDS MITIGATION FORHIGHWAY IMPACTS  

E-Print Network [OSTI]

RESEARCH REPORT 1740-1 WETLANDS MITIGATION FORHIGHWAY IMPACTS: A NATIONWIDESURVEY OF STATE; 8QFODVVLILHG 1RRISDJHV 3ULFH )RUP'27)#12; 5HSURGXFWLRQRIFRPSOHWHGSDJHDXWKRUL]HG #12;WETLANDS Title: Development of a Mechanism to Compare On-Site vs. Off-Site Wetlands Mitigation Conducted

Texas at Austin, University of

304

List of Texas Fuel Mitigation Vendors This list of fuel mitigation vendors that offer services in Texas is divided into two groups  

E-Print Network [OSTI]

List of Texas Fuel Mitigation Vendors This list of fuel mitigation vendors that offer services as a service to communities and landowners seeking assistance with fuel mitigation practices on their land Service Area Mu, Be, CP, Sc, Mo, FB Page 1 of 4Last updated on 10/16/2013 #12;List of Fuel Mitigation

Behmer, Spencer T.

305

Morocco-Facilitating Implementation and Readiness for Mitigation (FIRM) |  

Open Energy Info (EERE)

Morocco-Facilitating Implementation and Readiness for Mitigation (FIRM) Morocco-Facilitating Implementation and Readiness for Mitigation (FIRM) Jump to: navigation, search Logo: Morocco-Facilitating Implementation and Readiness for Mitigation (FIRM) Name Morocco-Facilitating Implementation and Readiness for Mitigation (FIRM) Agency/Company /Organization United Nations Environment Programme (UNEP) Partner Global Environment Facility (GEF), Government of Denmark Sector Climate, Energy, Land Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, Finance, Implementation, Low emission development planning Website http://www.unep.org/climatecha Program Start 2011 Program End 2013 Country Morocco UN Region Central America References Facilitating Implementation and Readiness for Mitigation (FIRM)[1] "The Government of Denmark will provide US$6 million to the new programme

306

Portfolio-Based Planning Process for Greenhouse Gas Mitigation | Department  

Broader source: Energy.gov (indexed) [DOE]

Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation October 7, 2013 - 10:10am Addthis The portfolio-based planning process for greenhouse gas (GHG) mitigation offers an approach to: Evaluating the GHG reduction potential at the site, program, and agency level Identifying strategies for reducing those emissions Prioritizing activities to achieve both GHG reduction and cost objectives. Portfolio-based management for GHG mitigation helps agencies move from "peanut-butter-spreading" obligations for meeting GHG reduction targets evenly across all agency operating units to strategic planning of GHG reduction activities based on each operating unit's potential and cost to reduce emissions. The result of this prioritization will lay the foundation

307

Financing Climate Adaptation and Mitigation in Rural Areas of Developing  

Open Energy Info (EERE)

Financing Climate Adaptation and Mitigation in Rural Areas of Developing Financing Climate Adaptation and Mitigation in Rural Areas of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financing Climate Adaptation and Mitigation in Rural Areas of Developing Countries Agency/Company /Organization: U.S. Agency for International Development Topics: Adaptation, Co-benefits assessment, Finance Resource Type: Publications Website: pdf.usaid.gov/pdf_docs/PNADO826.pdf Financing Climate Adaptation and Mitigation in Rural Areas of Developing Countries Screenshot References: Financing Climate Adaptation and Mitigation in Rural Areas of Developing Countries[1] Summary "In order to determine how USAID assistance may help overcome barriers to financing these types of projects, this report addresses the following

308

EA-1456: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6: Mitigation Action Plan 6: Mitigation Action Plan EA-1456: Mitigation Action Plan Cheyenne-Miracle Mile and Ault-Cheyenne Transmission Line Rebuild Project Carbon, Albany and Laramie Counties, Wyoming and Weld County, Colorado Western proposes to upgrade the existing 146 miles of CH-MM 115kB transmission line which crosses Carbon, Albany and Larmie Counties in Wyoming and 35 miles of the AU-CH transmission line which corsses portions of Laramie Counties, Wyoming and Weld County, Colorado. The upgrade would remove the existing 115-kV H-frame structures and replace them with new 230-Kv H-frame structures and single pole steel structures. Western also proposes to widen the existing right-of-way (ROW), where necessary to allow adequate electrical clearances. Mitigation Action Plan to Implement Mitigation Requirements for

309

EA-1755: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan Mitigation Action Plan EA-1755: Mitigation Action Plan Reconstruction of the South Access Road (CR 802) in Support of the Department of Energy, Waste Isolation Pilot Plant (WIPP) in Eddy County, New Mexico EA prepared for the proposed reconstruction of the Waste Isolation Pilot Plant (WIPP) South Access Road (County Road 802) located in Eddy County, New Mexico. Through the environmental review process, the Bureau of Land Management Carlsbad Field Office (BLM CFO) determined that there would be potential environmental impacts from the proposed project that would require mitigation to assure that the impacts would not become significant. Therefore, the Department of Energy Carlsbad Field Office (CBFO) prepared this Mitigation Action Plan (MAP) to establish conditions for issuing its

310

Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information  

Open Energy Info (EERE)

(Redirected from CIFF-Chile-Mitigation Action Plans and Scenarios (MAPS)) (Redirected from CIFF-Chile-Mitigation Action Plans and Scenarios (MAPS)) Jump to: navigation, search Logo: Mitigation Action Plans and Scenarios (MAPS) Name Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Argentina, Brazil, Chile, Colombia, Peru, South Africa South America, South America, South America, South America, South America, Southern Africa References Mitigation Action Plans and Scenarios (MAPS)[1]

311

EIS-0026: Annual Mitigation Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

These documents specify that a MAP be prepared to mitigate environmental These documents specify that a MAP be prepared to mitigate environmental impacts resulting from the implementation of commitments made in the Record of Decision (ROD) for an Environmental Impact Statement (EIS). The Order further requires that an annual report be prepared to demonstrate the progress made in implementing the commitments and effectiveness of any mitigation activity until the activity has been completed. The Waste Isolation Pilot Plant (WIPP) MAP was prepared to address commitments made in the RODs for the WIPP Final Environmental Impact Statement (FEIS), and the WIPP Final Supplemental Environmental Impact Statement. This 2011 Annual Mitigation Report (2011 AMR) addresses those WIPP Project-related mitigation activities undertaken from the time of submittal of the 1994

312

Vietnam-Facilitating Implementation and Readiness for Mitigation (FIRM) |  

Open Energy Info (EERE)

Vietnam-Facilitating Implementation and Readiness for Mitigation (FIRM) Vietnam-Facilitating Implementation and Readiness for Mitigation (FIRM) Jump to: navigation, search Logo: Vietnam-Facilitating Implementation and Readiness for Mitigation (FIRM) Name Vietnam-Facilitating Implementation and Readiness for Mitigation (FIRM) Agency/Company /Organization United Nations Environment Programme (UNEP) Partner Global Environment Facility (GEF), Government of Denmark Sector Climate, Energy, Land Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, Finance, Implementation, Low emission development planning Website http://www.unep.org/climatecha Program Start 2011 Program End 2013 Country Vietnam UN Region Central America References Facilitating Implementation and Readiness for Mitigation (FIRM)[1] "The Government of Denmark will provide US$6 million to the new programme

313

Buildings GHG Mitigation Estimator Worksheet, Version 1 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Buildings GHG Mitigation Estimator Worksheet, Version 1 Buildings GHG Mitigation Estimator Worksheet, Version 1 Buildings GHG Mitigation Estimator Worksheet, Version 1 Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be

314

EA-1636: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan Mitigation Action Plan EA-1636: Mitigation Action Plan Albany-Burnt Woods and Santiam-Toledo Pole Replacement Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Albany-Burnt Woods and Santiam-Toledo Pole Replacement Project. The project involves replacing wood pole structures on about 26 miles of the Albany-Burnt Woods single-circuit, 115-kilovolt (kV) transmission line and about 21 miles of the Santiam-Toledo single circuit, 230-kVtransmission line in Linn, Benton and Lincoln counties, Oregon. Mitigation Action Plan for the Albany-Burnt Woods and Santiam-Toledo Pole Replacement Project More Documents & Publications EA-1636: Final Environmental Assessment EA-1636: Finding of No Significant Impact

315

Ghana-Facilitating Implementation and Readiness for Mitigation (FIRM) |  

Open Energy Info (EERE)

Ghana-Facilitating Implementation and Readiness for Mitigation (FIRM) Ghana-Facilitating Implementation and Readiness for Mitigation (FIRM) Jump to: navigation, search Logo: Ghana-Facilitating Implementation and Readiness for Mitigation (FIRM) Name Ghana-Facilitating Implementation and Readiness for Mitigation (FIRM) Agency/Company /Organization United Nations Environment Programme (UNEP) Partner Global Environment Facility (GEF), Government of Denmark Sector Climate, Energy, Land Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, Finance, Implementation, Low emission development planning Website http://www.unep.org/climatecha Program Start 2011 Program End 2013 Country Ghana UN Region Central America References Facilitating Implementation and Readiness for Mitigation (FIRM)[1] "The Government of Denmark will provide US$6 million to the new programme

316

EIS-0128: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

128: Mitigation Action Plan 128: Mitigation Action Plan EIS-0128: Mitigation Action Plan Los Banos-Gates (Path 15) Transmission Project This MAP addresses the construction, operation, and maintenance of the new 84-mile long 500-kV transmission line. Necessary work conducted by Pacific Gas and Electric (PG&E) at their substations will occur within the previously disturbed area inside the substation boundaries. Western or Trans Elect, Inc. will also not have a role in upgrading the various existing PG&E 230-kV system components. DOE/EIS-0128, Western Area Power Administration, Mitigation Action Plan for the Los Banos-Gates (Path 15) Transmission Project (January 2003) More Documents & Publications EIS-0128: Mitigation Action Plan FAQS Gap Analysis Qualification Card - Mechanical Systems

317

Supporting International Mitigation and MRV activities | Open Energy  

Open Energy Info (EERE)

International Mitigation and MRV activities International Mitigation and MRV activities Jump to: navigation, search Name Supporting International Mitigation and MRV activities Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Renewable Energy, Energy Efficiency Topics Implementation, Low emission development planning, -LEDS, -NAMA, Policies/deployment programs Resource Type Lessons learned/best practices Website http://www.mitigationpartnersh Program End 2014 References International Partnership on Mitigation and MRV[1] Program Overview In the framework of the Petersberg Climate Dialogue in May 2010 in Bonn/Germany, South Africa, South Korea and Germany launched the International Partnership on Mitigation and MRV. The overall aim of the

318

Mexico-Facilitating Implementation and Readiness for Mitigation (FIRM) |  

Open Energy Info (EERE)

Mexico-Facilitating Implementation and Readiness for Mitigation (FIRM) Mexico-Facilitating Implementation and Readiness for Mitigation (FIRM) Jump to: navigation, search Logo: Mexico-Facilitating Implementation and Readiness for Mitigation (FIRM) Name Mexico-Facilitating Implementation and Readiness for Mitigation (FIRM) Agency/Company /Organization United Nations Environment Programme (UNEP) Partner Global Environment Facility (GEF), Government of Denmark Sector Climate, Energy, Land Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, Finance, Implementation, Low emission development planning Website http://www.unep.org/climatecha Program Start 2011 Program End 2013 Country Mexico UN Region Central America References Facilitating Implementation and Readiness for Mitigation (FIRM)[1] "The Government of Denmark will provide US$6 million to the new programme

319

EA-1440-S1: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan Mitigation Action Plan EA-1440-S1: Mitigation Action Plan National Renewable Energy Laboratory's South Table Mountain Complex, Golden, Colorado ThIs Mitigation Action Plan implements the mitigation measures associated with the potential environmental impact of a DOE proposal that consists of three site development projects at the National Renewable Energy Laboratory's (NREL) South Table Mountain (STM) site at Golden, Colorado: Construction of the Research Support Facilities (RSF), a new office building or multi-building office complex; Installation of Phase 1 of planned Site Infrastructure Improvements (Phase 1 of Full Site Development); Upgrades to the Thermochemical User Facility (TCUF), TCUF High Bay area, and addition of the Thermochemical Biorefinery Pilot Plant

320

Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks  

E-Print Network [OSTI]

Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks. #12;2 Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks and Forestry Response to GHG Mitigation into General Economy Frameworks: Developing a Family of Response

McCarl, Bruce A.

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Natural resources: the climate change challenge  

E-Print Network [OSTI]

adapt has dominated discussions on climate change, with developing countries seen as bearing the bruntNatural resources: the climate change challenge Policy Message Countries in the South have a potential both to mitigate climate change and to adapt to its effects through good natural resource

Richner, Heinz

322

The Environmental Justice Dimensions of Climate Change  

E-Print Network [OSTI]

The Environmental Justice Dimensions of Climate Change Marie Lynn Miranda, Douglas A. Hastings to mitigate the severe impacts of climate change predicted to occur in the twenty-first century. Many with climate change. This study investigates the varying degrees to which developing and developed nations

323

Sources and Mitigation of CO and UHC Emissions in Low-temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Mitigation of CO and UHC Emissions in Low-temperature Diesel Combustion Regimes: Insights Obtained via Homogeneous Reactor Modeling Sources and Mitigation of CO and UHC...

324

E-Print Network 3.0 - assessment mitigation options Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the selected mitigation options, methodologies for estimating on-road mobile... (GHG) mitigation ... Source: Texas A&M University, Texas Transportation Institute...

325

E-Print Network 3.0 - addressing mitigation options Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On... (GHG) mitigation options for on-road mobile sources from the perspective of DOTs, MPOs and...

326

E-Print Network 3.0 - activation effects mitigated Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On... (GHG) mitigation options for on-road mobile sources from the perspective of DOTs, MPOs and...

327

E-Print Network 3.0 - assess carbon mitigation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, The potential for U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York... fields: assessment, measurement and mitigation. Plant...

328

Aspen and Pitkin County - Renewable Energy Mitigation Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Aspen and Pitkin County - Renewable Energy Mitigation Program Aspen and Pitkin County - Renewable Energy Mitigation Program Aspen and Pitkin County - Renewable Energy Mitigation Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Colorado Program Type Building Energy Code Provider Community Office for Resource Efficiency (CORE) The City of Aspen and Pitkin County have adopted the 2009 International Energy Conservation Code (IECC), with some amendments, as their official energy code effective March 9, 2010. The [http://www.aspenpitkin.com/Portals/0/docs/county/countycode/Building%20C...

329

Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo  

Open Energy Info (EERE)

Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Jump to: navigation, search Name Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Agency/Company /Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Greenhouse Gas, Grid Assessment and Integration, Industry, Land Use, Offsets and Certificates, Transportation Topics Adaptation, Background analysis, Baseline projection, GHG inventory, Low emission development planning, -NAMA, Pathways analysis, Policies/deployment programs Program Start 2012 Program End 2013 Country Burundia

330

Democratic Republic of Congo-Nationally Appropriate Mitigation Actions  

Open Energy Info (EERE)

Democratic Republic of Congo-Nationally Appropriate Mitigation Actions Democratic Republic of Congo-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Jump to: navigation, search Name Democratic Republic of Congo-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Agency/Company /Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Greenhouse Gas, Grid Assessment and Integration, Industry, Land Use, Offsets and Certificates, Transportation Topics Adaptation, Background analysis, Baseline projection, GHG inventory, Low emission development planning, -NAMA, Pathways analysis, Policies/deployment programs

331

Mitigation of Severe Accident Consequences Using Inherent Safety Principles  

SciTech Connect (OSTI)

Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to automatically respond to the change in reactor conditions and to result in a benign response to these events. This approach has the advantage of being relatively simple to implement, and does not face the issue of reliability since only fundamental physical phenomena are used in a passive manner, not active engineered systems. However, the challenge is to present a convincing case that such passive means can be implemented and used. The purpose of this paper is to describe this third approach in detail, the technical basis and experimental validation for the approach, and the resulting reactor performance that can be achieved for ATWS events.

R. A. Wigeland; J. E. Cahalan

2009-12-01T23:59:59.000Z

332

A case study on regional impacts of climate change: peak loads on the power grid in Rochester, New York  

Science Journals Connector (OSTI)

Understanding the effects of climate change and determining appropriate mitigation and adaptation measures comprise a paradigmatic example of an issue that crosses traditional disciplinary boundaries and requi...

Scott Constable; Jason Hamilton…

2013-03-01T23:59:59.000Z

333

Public Finance Mechanisms to Mobilize Investment in Climate Change  

Open Energy Info (EERE)

Public Finance Mechanisms to Mobilize Investment in Climate Change Public Finance Mechanisms to Mobilize Investment in Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Public Finance Mechanisms to Mobilize Investment in Climate Change Mitigation Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Energy Efficiency, Renewable Energy Topics: Finance Resource Type: Publications, Guide/manual Website: www.sefalliance.org/fileadmin/media/sefalliance/docs/Resources/UNEP_Pu Public Finance Mechanisms to Mobilize Investment in Climate Change Mitigation Screenshot References: Public Finance Mechanisms to Mobilize Investment in Climate Change Mitigation[1] Overview The purpose of this report is to provide an overview of PFMs that mobilise and leverage commercial financing, build commercially sustainable markets,

334

Measuring & Mitigating Electric Vehicle Adoption Barriers.  

E-Print Network [OSTI]

??Transitioning our cars to run on renewable sources of energy is crucial to addressing concerns over energy security and climate change. Electric vehicles (EVs), vehicles… (more)

Tommy, Carpenter

2015-01-01T23:59:59.000Z

335

Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Developing and Developed World Alike Title Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Developing and Developed World Alike Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-6308E Year of Publication 2013 Authors DeForest, Nicholas, Gonçalo Mendes, Michael Stadler, Wei Feng, Judy Lai, and Chris Marnay Conference Name ECEEE 2013 Summer Study 3-8 June 2013, Belambra Les Criques, France Date Published 06/2013 Conference Location Belambra Les Criques, France Keywords electricity, energy storage, Energy System Planning & Grid Integration, peakdemand mitigation, thermal Abstract In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity

336

Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation  

Broader source: Energy.gov (indexed) [DOE]

Estimate and Analyze Greenhouse Gas Mitigation Strategy Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs October 7, 2013 - 10:18am Addthis Analyzing the cost of implementing each greenhouse gas (GHG) mitigation measure provides an important basis for prioritizing different emission reduction strategies. While actual costs should be used when available, this guidance provides cost estimates or considerations for the major emission reduction measures to help agencies estimate costs without perfect information. Cost criteria the agency may consider when prioritizing strategies include: Lifecycle cost Payback Cost effectiveness ($ invested per MTCO2e, metric tonne carbon dioxide equivalent avoided). Implementation costs should be analyzed for each emissions source:

337

EA-1706: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

706: Mitigation Action Plan 706: Mitigation Action Plan EA-1706: Mitigation Action Plan West Tennessee Solar Farm Project Haywood County, Tennessee Based on the analyses in the Environmental Assessment, DOE determined that its proposed action - allowing the State of Tennessee to use some of its State Energy Program funds appropriated in the American Recovery and Reinvestment Act to construct and operate the West Tennessee Solar Farm Project - would not result in any significant environmental impacts. Mitigation Action Plan for the West Tennessee Solar farm Project Haywood County, Tennessee, DOE/EA-1706 More Documents & Publications EA-1706: Finding of No Significant Impact EA-1706: Final Environmental Assessment 2012 Annual Planning Summary for Fossil Energy, National Energy Technology

338

EA-1731: Mitigation Acton Plan | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: Mitigation Acton Plan 1: Mitigation Acton Plan EA-1731: Mitigation Acton Plan Walla Walla-Tucannon River Transmission Line Rebuild Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Walla Walla-Tucannon River Transmission Line Rebuild Project (Proposed Action). The Proposed Action involves rebuilding the 47-mile-long 115-kilovolt (kV) transmission line from the existing Walla Walla Substation, located in the city of Walla Walla, Washington, to the existing Tucannon River Substation, located near the town of Dayton, Washington. Walla Walla-Tucannon River Transmission Line Rebuild Project, DOE/EA-1731, (May 2011) More Documents & Publications EA-1731: Finding of No Significant Impact EA-1731: Final Environmental Assessment

339

Mitigation Action Implementation Network (MAIN) | Open Energy Information  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Mitigation Action Implementation Network (MAIN) Year founded 2011 Website http://www.ccap.org/index.php? References MAIN[1] LinkedIn Connections "CCAP is working in collaboration with the World Bank Institute (WBI) and INCAE Business School to support the design and implementation of Nationally Appropriate Mitigation Actions (NAMAs) and Low-Carbon Development (LCD) strategies in developing countries through regionally based dialogues, web-based exchanges, and practitioner networks. Recent UNFCCC negotiations have made it clear that climate protection will depend on actions on the ground in both developing and developed countries. In recent years, developing countries have shown a significant commitment to

340

Chile-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Chile-Mitigation Action Plans and Scenarios (MAPS) Jump to: navigation, search Logo: Chile-Mitigation Action Plans and Scenarios (MAPS) Name Chile-Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Chile South America References Mitigation Action Plans and Scenarios (MAPS)[1] Contents 1 Overview 2 MAPS Processes and Outcomes 2.1 Chile 2.2 Colombia 2.3 Peru

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EA-1440: Mitigation Action Plan | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

440: Mitigation Action Plan 440: Mitigation Action Plan EA-1440: Mitigation Action Plan National Renewable Energy Laboratory's South Table Mountain Complex The Department of Energy has issued a Supplemental Environmental Assessment and has prepared a Finding of No Significant Impact for three site development projects at the National Renewable Energy Laboratory's South Table Mountain site at Golden, Colorado. 1) Construction of the Research Support Facilities, a new office building or multi-building office complex; 2) Installation of phase 1 of planned Site Infrastructure Improvements (Phase 1 of Full Site Development); and 3) Upgrades to the Thermochemical User Facility (TCUF), TCUF High Bay area, and addition of the Thermochemical Biorefinery Pilot Plant. Mitigation Action Plan for the Supplement to the Final Site-Wide

342

EA-1736: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan Mitigation Action Plan EA-1736: Mitigation Action Plan Expansion of the Sanitary Effluent Reclamation Facility and Environmental Restoration of Reach S-2 of Sandia Canyon at Los Alamos National Laboratory, Los Alamos, Los Alamos, New Mexico Based on the analysis of potential environmental impacts presented in the environmental assessment, neither the construction or operation of the expanded Sanitary Effluent Reclamation Facility considered in the two action alternatives for that facility, nor the environmental restoration action measures considered in the two action alternatives for reach S-2 of Sandia Canyon would have significant environmental impacts. Mitigation Action Plan for the Expansion of the Sanitary Effluent Reclamation Facility and Environmental Restoration of Reach S-2 of Sandia

343

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation |  

Broader source: Energy.gov (indexed) [DOE]

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation Use Renewable Energy in Buildings for Greenhouse Gas Mitigation Use Renewable Energy in Buildings for Greenhouse Gas Mitigation October 7, 2013 - 11:13am Addthis After all cost-effective energy efficiency projects have been explored as part of a Federal agency's planning efforts for greenhouse gas (GHG) mitigation in buildings, renewable energy may be considered as an option for meeting the agency's GHG reduction goals. Renewable energy can reduce emissions in all three GHG emission scopes by displacing conventional fossil fuel use. The focus of this guidance is prioritizing on-site renewable energy projects that will best support GHG reduction goals. It is intended to provide a high-level screening approach for on-site renewable energy projects to support agency- or program-level portfolio planning. General

344

Turkey - Analyzing Greenhouse Gas Mitigation Issues | Open Energy  

Open Energy Info (EERE)

Turkey - Analyzing Greenhouse Gas Mitigation Issues Turkey - Analyzing Greenhouse Gas Mitigation Issues Jump to: navigation, search Logo: Turkey - Analyzing Greenhouse Gas Mitigation Issues Name Turkey - Analyzing Greenhouse Gas Mitigation Issues Agency/Company /Organization Argonne National Laboratory Partner Turkish Ministry of Energy and Natural Resources, Turkish Electricity Transmission-Generation Company Sector Energy Focus Area Energy Efficiency Topics Background analysis Website http://www.dis.anl.gov/pubs/39 Country Turkey Western Asia References http://www.dis.anl.gov/pubs/39156.pdf Abstract CEEESA trained a team of experts from Turkey's Ministry of Energy and Natural Resources (MENR) and the Turkish Electricity Transmission-Generation Company (TEAS) to use various ENPEP modules. CEEESA trained a team of experts from Turkey's Ministry of Energy and

345

EA-1870: Mitigation Action Plan | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

70: Mitigation Action Plan 70: Mitigation Action Plan EA-1870: Mitigation Action Plan Utah Coal and Biomass Fueled Pilot Plant, Kanab, UT The Department of Energy (DOE) issues this Mitigation Action Plan (MAP) in conjunction with its Finding of No Significant Impact as to the department's proposed action of providing costshared funding for the Utah Coal and Biomass Fueled Pilot Plant Project. Based on the analyses in the Environmental Assessment (DOE/EA-1870), DOE determined that its proposed action allowing Viresco Energy, LLC (Viresco) to use federal funding to design, construct and operate a coal and biomass gasification pilot plant (pilot plant) - would not result in any significant environmental impacts. The pilot plant would evaluate the technical feasibility of using steam hydrogasification to convert coal and biomass (such as agricultural

346

Impacts of greenhouse gas mitigation policies on agricultural land  

E-Print Network [OSTI]

Greenhouse gas (GHG) emissions are widely acknowledged to be responsible for much of the global warming in the past century. A number of approaches have been proposed to mitigate GHG emissions. Since the burning of ...

Wang, Xiaodong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

347

The Role of Wood Material for Greenhouse Gas Mitigation  

Science Journals Connector (OSTI)

Based on an interdisciplinary perspective the role of wood as a carbon sink, as a multi-purpose material, and as a renewable energy source for the net reduction of greenhouse...2 mitigation. We also formulate som...

L. Gustavsson; R. Madlener; H.-F. Hoen…

2006-09-01T23:59:59.000Z

348

Introduction to Administrative Programs that Mitigate the Insider Threat  

SciTech Connect (OSTI)

This presentation begins with the reality of the insider threat, then elaborates on these tools to mitigate the insider threat: Human Reliability Program (HRP); Nuclear Security Culture (NSC) Program; Employee Assistance Program (EAP).

Gerke, Gretchen K.; Rogers, Erin; Landers, John; DeCastro, Kara

2012-09-01T23:59:59.000Z

349

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation  

Broader source: Energy.gov [DOE]

After all cost-effective energy efficiency projects have been explored as part of a Federal agency's planning efforts for greenhouse gas (GHG) mitigation in buildings, renewable energy may be...

350

Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)  

SciTech Connect (OSTI)

This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

Sheng, S.

2014-01-01T23:59:59.000Z

351

EIS-0026: Annual Mitigation Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Waste Isolation Pilot Plant (WIPP) Mitigation Action Plan was prepared to address commitments made in the RODs for the WIPP FEIS, and the WIPP Final SEIS. This 2012 Annual...

352

EIS-0425: Mitigation Action Plan | Department of Energy  

Energy Savers [EERE]

by the Confederated Tribes and Bands of the Yakama Nation to help mitigate impacts to fish affected by the Federal Columbia River Power System dams on the Columbia River. The...

353

EIS-0332: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

kV transmission line between Bonneville Power Administration's existing McNary and John Day substations. DOEEIS-0332: Mitigation Action Plan for the McNary-John Day Transmission...

354

Mitigations for Security Vulnerabilities Found in Control System Networks |  

Broader source: Energy.gov (indexed) [DOE]

Mitigations for Security Vulnerabilities Found in Control System Mitigations for Security Vulnerabilities Found in Control System Networks Mitigations for Security Vulnerabilities Found in Control System Networks Industry is aware of the need for Control System (CS) security, but in on-site assessments, Idaho National Laboratory (INL) has observed that security procedures and devices are not consistently and effectively implemented. The Department of Homeland Security (DHS), National Cyber Security Division (NCSD), established the Control Systems Security Center (CSSC) at INL to help industry and government improve the security of the CSs used in the nation's critical infrastructures. One of the main CSSC objectives is to identify control system vulnerabilities and develop effective mitigations for them. This paper discusses common problems and vulnerabilities seen in

355

Prioritize Greenhouse Gas Mitigation Strategies for Buildings | Department  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Prioritize Greenhouse Gas Mitigation Strategies for Buildings October 7, 2013 - 11:10am Addthis YOU ARE HERE: Step 5 After evaluating the cost to implement energy-savings measures and the greenhouse gas (GHG) reduction potential for buildings, the program or site may prioritize implementation of those measures using criteria of importance to the Federal agency. The Buildings GHG Mitigation Estimator summarizes energy savings and costs by program, site, building type, and mitigation measure. This can help users at different levels of the organization understand where the largest GHG reduction potential lies, and which mitigation measures are most common across programs and sites and then plan investments accordingly. Criteria for prioritization will vary by agency but may include:

356

Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system  

Science Journals Connector (OSTI)

The Copenhagen Accord established political consensus on the 2 °C limit (in global temperature increase) and for deep cuts in greenhouse gas (GHG) emissions levels to achieve this goal. The European Union has set ambitious GHG targets for the year 2050 (80–95% below 1990 levels), with each Member State developing strategies to contribute to these targets. This paper focuses on mitigation targets for one Member State, Ireland, an interesting case study due to the growth in GHG emissions (24% increase between 1990 and 2005) and the high share of emissions from agriculture (30% of total GHG emissions). We use the Irish TIMES energy systems modelling tool to build a number of scenarios delivering an 80% emissions reduction target by 2050, including accounting for the limited options for agriculture GHG abatement by increasing the emissions reduction target for the energy system. We then compare the scenario results in terms of changes in energy technology, the role of energy efficiency and renewable energy. We also quantify the economic impacts of the mitigation scenarios in terms of marginal CO2 abatement costs and energy system costs. The paper also sheds light on the impacts of short term targets and policies on long term mitigation pathways.

Alessandro Chiodi; Maurizio Gargiulo; Fionn Rogan; J.P. Deane; Denis Lavigne; Ullash K. Rout; Brian P. Ó Gallachóir

2013-01-01T23:59:59.000Z

357

2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect (OSTI)

This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

C. T. Lindsey, A. L. Johnson

2010-09-30T23:59:59.000Z

358

2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect (OSTI)

This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

West, W. J.; Lucas, J. G.; Gano, K. A.

2011-11-14T23:59:59.000Z

359

Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

United States. Bonneville Power Administration.

1995-01-01T23:59:59.000Z

360

ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION  

SciTech Connect (OSTI)

This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2001 through 10/01/2002. This report marks the end of year 2 of a three-year project as well as the milestone date for completion of Phase I activities. This report includes our current status and defines the steps being taken to ensure that we meet the project goals by the end of year 3. As indicated in the list of accomplishments below our current efforts are focused on evaluating candidate organisms and growth surfaces, preparing to conduct long-term tests in the bench-scale bioreactor test systems, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the third quarter of 2002 include: Organisms and Growth Surfaces: (1) Test results continue to indicate that thermophilic cyanobacteria have significant advantages as agents for practical photosynthetic CO{sub 2} mitigation before mesophilic forms. (2) Additional thermal features with developed cyanobacterial mats, which might be calcium resistant, were found in YNP. (3) Back to back tests show that there is no detectable difference in the growth of isolate 1.2 s.c. (2) in standard and Ca-modified BG-11 medium. The doubling time for both cases was about 12 hours. (4) The cultivation of cyanobacteria in Ca-BG medium should proceed in the pH range between 7 and 7.4, but this suggestion requires additional experiments. (5) Cyanobacteria can be grown in media where sodium is present at trace levels. (6) Ca{sup 2+} enriched medium can be used as a sink for CO{sub 2} under alkaline conditions. (7) Cyanobacteria are able to generate cones of filaments on travertine surfaces. [Travertine is a mixture of CaCO{sub 3} and CaSO{sub 4}]. We hypothesize that SO{sub 4}{sup 2-} stimulates the generation of such cones, because they are not almost generated on CaCO3 surface. On the other hand, we know that plant gas contains elevated concentrations of SO{sub 4}{sup 2-}. We may speculate that the introduction of 11.2 isolate in CRF might significantly increase the productivity of such facility. It is possible that a higher colonization potential for the screens may allow a higher surface productivity than some of the other isolates. (8) The colonization of Omnisil surface is an auto-inducible and time-requiring process. (9) Omnisil coupons should be treated under pH control, preferably using KOH. Bioreactor support systems and test facilities: (1) The pilot-scale bioreactor construction and debugging is continuing on schedule. Tests of the ''natural'' lighting system have shown acceptable levels of illumination for the bioreactor screens using only collected sunlight. (2) Flow control inserts have been designed for the CRF-2 screens, which require header pipes for flow distribution and control. A staggered drilled-hole design and a thick shim design have both shown acceptable performance results (little to no clogging, uniform flow, ability to load algae on to the screen). They will both be tested in the CRF-2 to see which performs the best over long durations, and the best performing design will be used for the pilot scale bioreactor screens.

Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

2002-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1987.  

SciTech Connect (OSTI)

The Idaho Department of Fish and Game has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) in the Clearwater and Salmon River drainages over the last four years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed to use increased smolt production at full seeding as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on presence of adequate numbers of fish to document actual increases in fish production. The depressed nature of upriver anadromous stocks have precluded attainment of full benefit of any habitat project in Idaho. Partial benefit will be credited to the mitigation record in the interim period of run restoration. According to the BPA Work Plan, project implementors have the primary responsibility for measuring physical habitat and estimating habitat change. To date, Idaho habitat projects have been implemented primarily by the US Forest Service (USFS). The Shoshone-Bannock Tribes (SBT) have sponsored three projects (Bear Valley Mine, Yankee Fork, and the proposed East Fork Salmon River projects). IDFG implemented two barrier-removal projects (Johnson Creek and Boulder Creek) that the USFS was unable to sponsor at that time. The role of IDFG in physical habitat monitoring is primarily to link habitat quality and habitat change to changes in actual, or potential, fish production. Individual papers were processed separately for the data base.

Petrosky, Charles E.; Holubetz, Terry B. (Idaho Dept. of Fish and Game, Boise, ID (USA)

1988-04-01T23:59:59.000Z

362

Property:NEPA Resource Applicant Mitigation | Open Energy Information  

Open Energy Info (EERE)

Resource Applicant Mitigation Resource Applicant Mitigation Jump to: navigation, search Property Name NEPA Resource Applicant Mitigation Property Type Text Description Applicant proposed mitigation plan to minimize the risk of a potential negative impact to a NEPA resource with a geothermal development effort. Pages using the property "NEPA Resource Applicant Mitigation" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01#NEPAImpact_with_Noise + Construction noise would be minimized through practices which avoid or minimize actions which may typically generate greater noise levels, or generate distinctive impact noise. BLM-NV-WN-ES-08-01-1310, NV-020-08-01#NEPAImpact_with_Air_Quality + Water would be applied to the ground during the construction and utilization of the drill pads, access roads, and other disturbed areas as necessary to control dust. NGP would comply with any requirements prescribed by the NDEP-BAPC. NGP also proposes to water the ground to control dust during construction.

363

Property:NEPA Resource Imposed Mitigation | Open Energy Information  

Open Energy Info (EERE)

Imposed Mitigation Imposed Mitigation Jump to: navigation, search Property Name NEPA Resource Imposed Mitigation Property Type Text Description Agency imposed mitigation plan to minimize the risk of a potential negative impact to a NEPA resource with a geothermal development effort. Pages using the property "NEPA Resource Imposed Mitigation" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01#NEPAImpact_with_Migratory_Birds + Initial ground disturbing activities would not be conducted during the migratory bird nesting season (March through July) unless necessary, and then only after inventories for migratory birds and nests were conducted by a qualified biologist acceptable to the BLM. This survey would be conducted to identify either breeding adult birds or nest sites within the specific areas to be disturbed. If active nests are present within these areas to be disturbed, NGP would coordinate with the authorized officer to develop appropriate protection measures for these sites, which may include avoidance, construction constraints, and/or the establishment of buffers.

364

Nursing and climate change: An emerging connection  

Science Journals Connector (OSTI)

Summary Awareness of the importance of climate change to public health has been growing. Calls for health professionals, including nurses, to take action to prepare for, and mitigate, climate change have been coming from a number of credible sources. This paper will assist nurses to recognise the health consequences of climate change, to generate and disseminate knowledge about these health consequences, to be active in mitigating emissions locally and within their organisations and to advocate and have input into policy processes. It is valuable for nurses to understand the health co-benefits of emission mitigation and the current health costs of fossil fuels. As advocates for evidence-based public health initiatives, nurses have a role to play in communicating to the public and to policy makers accurate information, including about the health costs of fossil fuel policies and the affordability of renewable energy technologies.

William Adlong; Elaine Dietsch

2013-01-01T23:59:59.000Z

365

Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin | Open  

Open Energy Info (EERE)

Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Jump to: navigation, search Name Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Agency/Company /Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Greenhouse Gas, Grid Assessment and Integration, Industry, Land Use, Offsets and Certificates, Transportation Topics Adaptation, Background analysis, Baseline projection, GHG inventory, Low emission development planning, -NAMA, Pathways analysis, Policies/deployment programs Program Start 2012 Program End 2013 Country Angola, Burundi, Cameroon, Central African Republic, Democratic Republic of Congo, Republic of Congo, Rwanda

366

Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in  

Broader source: Energy.gov (indexed) [DOE]

Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:27am Addthis At this point in the analysis for using renewable energy in buildings, after estimating costs to implement strategies, there should be a list of sites and promising renewable energy technologies. The next step in the analysis is to prioritize those sites and technologies to achieve cost-effective reductions in greenhouse (GHG) emissions. In prioritizing the locations for cost-effective renewable energy project development, start with the sites that have the: Best resources Best financial incentives Highest energy rates. These factors are the most important for determining the economic viability

367

Integrating Sub-national Actors into National Mitigation Strategies Through  

Open Energy Info (EERE)

Integrating Sub-national Actors into National Mitigation Strategies Through Integrating Sub-national Actors into National Mitigation Strategies Through Vertically Integrated NAMAs (V-NAMAs) Jump to: navigation, search Name Integrating Sub-national Actors into National Mitigation Strategies Through Vertically Integrated NAMAs (V-NAMAs) Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Renewable Energy Topics Low emission development planning, -LEDS, -NAMA Program Start 2011 Program End 2014 Country Indonesia, South Africa South-Eastern Asia, Southern Africa References Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)[1] Program Overview Many future NAMAs will only be successful to the extent that the sub-national players who also carry responsibility - such as provinces

368

EIS-0186: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

186: Mitigation Action Plan 186: Mitigation Action Plan EIS-0186: Mitigation Action Plan Alaska Industrial Development and Export Authority Healy Clean Coal Project In response to a Program Opportunity Notice issued in May 1989 by the Department of Energy (DOE) for the third solicitation of the Clean Coal Technology (CCT) Program, the Alaska Industrial Development and Export Authority (AIDEA) conceived, designed, and proposed the Healy Clean Coal Project (HCCP). The HCCP, a coal-fired power generating facility, would provide the necessary data for evaluating the commercial readiness of two promising technologies for decreasing emissions of sulfur dioxide (SO2), oxides of nitrogen (NOx), and particulate matter (PM). The two technologies to be demonstrated are the TRW Applied Technologies Division entrained

369

China-Transportation Demand Management in Beijing: Mitigation of Emissions  

Open Energy Info (EERE)

China-Transportation Demand Management in Beijing: Mitigation of Emissions China-Transportation Demand Management in Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in

370

NETL: Gasification Systems - Mitigation of Syngas Cooler Plugging and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mitigation of Syngas Cooler Plugging and Fouling Mitigation of Syngas Cooler Plugging and Fouling Project No.: DE-FE0007952 Reaction Engineering International (REI) is working to develop practical solutions to mitigate the plugging and fouling of syngas coolers (SC) - fire tube heat exchangers located between the coal gasifier and the combustion turbine. Syngas coolers used in Integrated Gasification Combined Cycle (IGCC) plants offer high efficiency, but their reliability is generally lower than other process equipment in the gasification island. The principle downtime events associated with syngas coolers are typically a result of ash deposits that: form on (wall) surfaces upstream of the syngas cooler, break loose, and then lodge in the tubes; or form on the fireside surface of the syngas cooler tubes that lead to fouling and reduced heat transfer. Both ash deposit mechanisms result in reduced equipment life and increased maintenance costs.

371

Transportation Demand Management in Beijing - Mitigation of emissions in  

Open Energy Info (EERE)

Beijing - Mitigation of emissions in Beijing - Mitigation of emissions in urban transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in Beijing to enable them to calculate baselines and assess reduction

372

Prioritize Greenhouse Gas Mitigation Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Prioritize Greenhouse Gas Mitigation Strategies Prioritize Greenhouse Gas Mitigation Strategies Prioritize Greenhouse Gas Mitigation Strategies October 7, 2013 - 10:20am Addthis Once a Federal agency understands what greenhouse gas (GHG) reductions are feasible and at what cost, proposed GHG reduction activities may be prioritized. While it may be useful for personnel responsible for managing GHG emissions to prioritize actions within emission categories-for example, prioritizing building emission reduction measures-prioritization should also occur across all major emission Scope 1 and 2 emission sources and all Scope 3 emission sources. Guidance on prioritizing strategies for specific emission sources includes: Buildings Vehicles and mobile equipment Business travel Employee commuting. Prioritizing actions across fleet, facility, and fugitive sources will

373

EIS-0186: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6: Mitigation Action Plan 6: Mitigation Action Plan EIS-0186: Mitigation Action Plan Alaska Industrial Development and Export Authority Healy Clean Coal Project In response to a Program Opportunity Notice issued in May 1989 by the Department of Energy (DOE) for the third solicitation of the Clean Coal Technology (CCT) Program, the Alaska Industrial Development and Export Authority (AIDEA) conceived, designed, and proposed the Healy Clean Coal Project (HCCP). The HCCP, a coal-fired power generating facility, would provide the necessary data for evaluating the commercial readiness of two promising technologies for decreasing emissions of sulfur dioxide (SO2), oxides of nitrogen (NOx), and particulate matter (PM). The two technologies to be demonstrated are the TRW Applied Technologies Division entrained

374

Low-Emission Development Strategies and National Appropriate Mitigation  

Open Energy Info (EERE)

Low-Emission Development Strategies and National Appropriate Mitigation Low-Emission Development Strategies and National Appropriate Mitigation Actions: Europe and CIS Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low-Emission Development Strategies and Mitigation Actions: Europe and CIS Agency/Company /Organization: United Nations Development Programme Sector: Energy, Land Topics: Low emission development planning Resource Type: Guide/manual, Lessons learned/best practices Website: europeandcis.undp.org/home/show/96D0B2D4-F203-1EE9-B9A6CBCB9151BFFA UN Region: Central Asia, "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

375

Establish Building Locations for Greenhouse Gas Mitigation | Department of  

Broader source: Energy.gov (indexed) [DOE]

Establish Building Locations for Greenhouse Gas Mitigation Establish Building Locations for Greenhouse Gas Mitigation Establish Building Locations for Greenhouse Gas Mitigation October 7, 2013 - 10:53am Addthis YOU ARE HERE Step 2 After estimating greenhouse gas (GHG) emissions by building type, building location is an important consideration in evaluating the relevance of energy-saving strategies due to variations in heating and cooling needs, and the GHG reduction potential due to variability of emissions factors across regions of the grid. If site-level energy use estimates are available for each of the program's key building types, the program can identify building locations with the greatest emission reduction potential by using the benchmarking approach. Locations with the worst energy performance relative to the benchmark are

376

Bringing a Range of Supported Mitigation Activities in Selected Countries  

Open Energy Info (EERE)

Bringing a Range of Supported Mitigation Activities in Selected Countries Bringing a Range of Supported Mitigation Activities in Selected Countries to the Next Level Jump to: navigation, search Name Bringing a Range of Supported Mitigation Activities in Selected Countries to the Next Level Agency/Company /Organization Energy Research Centre of the Netherlands (ECN), Ecofys Sector Climate Focus Area Renewable Energy, Agriculture, People and Policy Topics Low emission development planning, Policies/deployment programs Website http://www.ecn.nl/docs/library Program Start 2011 Program End 2014 Country Chile, Indonesia, Kenya, Peru, Tunisia South America, South-Eastern Asia, Eastern Africa, South America, Northern Africa References ECN[1] Ecofys[2] Program Overview This project runs from March 2012 to December 2014, and is a collaboration

377

Microsoft Word - Mitigation Action Plan master.doc  

Broader source: Energy.gov (indexed) [DOE]

Palisades-Goshen Transmission Line Reconstruction Project Palisades-Goshen Transmission Line Reconstruction Project DOE/EA-1591 Summary This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Palisades-Goshen Transmission Line Reconstruction Project. The project involves reconstruction of the existing Palisades-Goshen 115-kV transmission line, which extends from Palisades Dam in eastern Idaho approximately 52 miles west to the Goshen Substation south of Idaho Falls, Idaho. This MAP is for the Proposed Action and includes all integral elements and commitments made in the Environmental Assessment (EA) to mitigate any potential adverse environmental impacts. No impacts reached the level to be considered significant even without these mitigation measures.

378

Estimating Mitigation Potential of Agricultural Projects: an Application of  

Open Energy Info (EERE)

Estimating Mitigation Potential of Agricultural Projects: an Application of Estimating Mitigation Potential of Agricultural Projects: an Application of the EX-Ante Carbon-balance Tool (EX-ACT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Brazil-Estimating Mitigation Potential of Agricultural Projects: an Application of the EX-Ante Carbon-balance Tool (EX-ACT) Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Energy, Land Focus Area: Agriculture Topics: Co-benefits assessment, GHG inventory, Implementation, Policies/deployment programs Resource Type: Publications, Software/modeling tools User Interface: Spreadsheet Website: www.fao.org/tc/exact/ex-act-tool/en/ Country: Brazil RelatedTo: Ex Ante Appraisal Carbon-Balance Tool (EX-ACT) Cost: Free South America Coordinates: -14.235004°, -51.92528°

379

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using  

Broader source: Energy.gov (indexed) [DOE]

Costs to Implement Greenhouse Gas Mitigation Strategies Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:25am Addthis After determining the best greenhouse gas (GHG) reduction strategies using renewable energy, a Federal agency should estimate the cost of implementing them in a building or buildings. There are several cost factors that need to be considered when developing a renewable energy project. Capital costs, fixed and variable operations and maintenance (O&M) costs and in the case of biomass and waste-to-energy projects, fuel costs all contribute to the total cost of operating a renewable energy system. The levelized system cost takes into account these

380

Development Of Regional Climate Mitigation Baseline For A DominantAgro-Ecological Zone Of Karnataka, India  

SciTech Connect (OSTI)

Setting a baseline for carbon stock changes in forest andland use sector mitigation projects is an essential step for assessingadditionality of the project. There are two approaches for settingbaselines namely, project-specific and regional baseline. This paperpresents the methodology adopted for estimating the land available formitigation, for developing a regional baseline, transaction cost involvedand a comparison of project-specific and regional baseline. The studyshowed that it is possible to estimate the potential land and itssuitability for afforestation and reforestation mitigation projects,using existing maps and data, in the dry zone of Karnataka, southernIndia. The study adopted a three-step approach for developing a regionalbaseline, namely: i) identification of likely baseline options for landuse, ii) estimation of baseline rates of land-use change, and iii)quantification of baseline carbon profile over time. The analysis showedthat carbon stock estimates made for wastelands and fallow lands forproject-specific as well as the regional baseline are comparable. Theratio of wasteland Carbon stocks of a project to regional baseline is1.02, and that of fallow lands in the project to regional baseline is0.97. The cost of conducting field studies for determination of regionalbaseline is about a quarter of the cost of developing a project-specificbaseline on a per hectare basis. The study has shown the reliability,feasibility and cost-effectiveness of adopting regional baseline forforestry sectormitigation projects.

Sudha, P.; Shubhashree, D.; Khan, H.; Hedge, G.T.; Murthy, I.K.; Shreedhara, V.; Ravindranath, N.H.

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mitigation Action Implementation Network (MAIN) Feed | Open Energy  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Feed Mitigation Action Implementation Network (MAIN) Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ)

382

The short and long term role of the ocean in Greenhouse Gas mitigation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JY01ax.doc 19 May 2001 JY01ax.doc 19 May 2001 The short and long term role of the ocean in Greenhouse Gas mitigation Ian S F Jones, Lamont Doherty Earth Observatory, Columbia University, New York i.jones@ldeo.columbia.edu Helen E Young Earth Ocean and Space, Australian Technology Park, Sydney, HelenYoung@ozemail.com.au Introduction The carbon dioxide concentration in the atmosphere is rising rapidly, mostly as a result of fossil fuel burning. This is leading to more trapping of solar radiation in the atmosphere with the expectation that the world's climate will change. Rapid climate change has a downside risk of endangering the food security of the poor and raising the spectra of large scale transmigration. The UNFCCC was an agreement amongst most of the sovereign nations of the world

383

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

Science Journals Connector (OSTI)

Mitigating transportation emission reductions can result in significant changes in personal vehicle technologies, increases in vehicle fuel efficiency, and decreases in overall transportation fuel use. ... The Energy Independence and Security Act (H.R. 6), which includes a 36 billion gallon renewable fuel mandate, was passed by Congress and signed by President Bush on December 19, 2007. ... Mitigation strategies with the potential to achieve significant long-term transportation emission reductions often face significant competition for primary resources with other sectors, including biomass, natural gas, renewables, and coal, and for secondary energy sources such as electricity. ...

Sonia Yeh; Alex Farrell; Richard Plevin; Alan Sanstad; John Weyant

2008-10-21T23:59:59.000Z

384

Can Uncertainty Justify Overlapping Policy Instruments to Mitigate Emissions?  

E-Print Network [OSTI]

, for instance a renewable energy subsidy. Our analysis has both a practical and a theoretical purpose. It aims, Mitigation policy, Energy policy, EU-ETS, Re- newable energy, Corner solutions, Nil CO2 price, European Union (in some Member States), by energy-efficiency obligations2 (in some Member States), and by renewable

Paris-Sud XI, Université de

385

Center for Greenhouse Gas Mitigation through Natural Resource Management (CGGM)  

E-Print Network [OSTI]

production can increase animal productivity, yield renewable energy (CH4 capture from manure storage), and improve air quality. Over the longer term, renewable energy from agricultural biomass offers greatCenter for Greenhouse Gas Mitigation through Natural Resource Management (CGGM) NREL Scientists

MacDonald, Lee

386

RESEARCH PAPER Fouling and its mitigation in silicon microchannels used  

E-Print Network [OSTI]

RESEARCH PAPER Fouling and its mitigation in silicon microchannels used for IC chip cooling Jeffrey@rit.edu 123 Microfluid Nanofluid (2008) 5:357­371 DOI 10.1007/s10404-007-0254-4 #12;lE electrophoretic and micro- electronics. In recent years, the proliferation of Micro Electro Mechanical Systems (MEMS) has

Kandlikar, Satish

387

0 1 & 2 -& 0 -* ! Forestry potential mitigation and  

E-Print Network [OSTI]

of forestry-based carbon offset investments and markets Voluntary investments Types of standards and shared forest management ·Increasing off-site C stocks in wood products ·Fossil fuel substitution (Bioenergy;Forestry (excluding bioenergy): Economic Mitigation Potential, at US$ 100 / tCO2, by 2030. (IPCC FAR, Vol

Pettenella, Davide

388

The Economic Impact of Drought and Mitigation in Agriculture  

E-Print Network [OSTI]

The Economic Impact of Drought and Mitigation in Agriculture Texas Drought and Beyond CIESS Austin · In Agriculture, it Began in 2010 ­ Wheat and other winter grazing crops are planted in the Fall ­ Lost value ­ Infrastructure losses #12;Agricultural Costs of Drought · Estimated $7.62 Billion ­ Corn, cotton, wheat, hay $4

Yang, Zong-Liang

389

U.S. Agriculture's Role Greenhouse Gas Emission Mitigation World  

E-Print Network [OSTI]

U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective and Research Associate, respectively, Department of Agricultural Economics, Texas A&M University. Seniority of Authorship is shared. This research was supported by the Texas Agricultural Experiment Station through

McCarl, Bruce A.

390

Invited Talk: Mitigating the Effects of Internet Timing Faults  

E-Print Network [OSTI]

Invited Talk: Mitigating the Effects of Internet Timing Faults Across Embedded Network Gateways and the Internet. The usual approach to making such a connection is to install a gateway node which translates from Internet protocols to embedded field bus network protocols. Such connections raise obvious security

Koopman, Philip

391

Mitigating the Hospital Area Communication's Interference using Cognitive Radio Networks  

E-Print Network [OSTI]

, their communications could greatly increase electromagnetic interference with other critical medical equip- ments. There is therefore a need to mitigate potential risks of electromagnetic interference between the patients wireless should be devel- oped to ensure efficient communications while minimizing electromagnetic interference

Paris-Sud XI, Université de

392

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation  

E-Print Network [OSTI]

% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCs.S. CO2 emissions sources. U.S. CO2 transportation emissions sources by mode. #12;CenterTransportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge

393

Mitigating the Risk of Insider Threats When Sharing  

E-Print Network [OSTI]

Mitigating the Risk of Insider Threats When Sharing Credentials by Muntaha NourEddin Qasem Alawneh requirement. Achieving secure content sharing requires a deep analy- sis and understanding of security threats affecting such a fundamental requirement. We study and analyze one of the major threats which affect secure

Sheldon, Nathan D.

394

Ionosphere Threat to LAAS: Updated Model, User Impact, and Mitigations  

E-Print Network [OSTI]

1 Ionosphere Threat to LAAS: Updated Model, User Impact, and Mitigations Ming Luo, Sam Pullen-4], a "linear spatial gradient front" model was established and a threat space was extrapolated based on data from the 6 April 2000 ionospheric storm. User vertical error was estimated based on this threat model

Stanford University

395

Design of a Sediment Mitigation System for Conowingo Dam  

E-Print Network [OSTI]

Design of a Sediment Mitigation System for Conowingo Dam Rayhan Ain, Kevin Cazenas, Sheri Gravette as enhanced erosion of sediment due to significantly increased flow rates and constant interaction of water with the Dam. During these events, the sediment build up at Conowingo Dam in the Lower Susquehanna River has

396

Measuring and Mitigating Regulatory Risk in Private Infrastructure Investment  

SciTech Connect (OSTI)

There remain important gaps in our understanding of the various instruments that can be used to mitigate regulatory risk. Tradeoffs between predictability and flexibility and between independence and accountability raise issues. Arguably, there exist situations where policy flexibility is needed to lower risk or increase expected returns on investment, both of which would encourage long-term investment.

Jamison, Mark A.; Holt, Lynne; Berg, Sanford V.

2005-07-01T23:59:59.000Z

397

Albeni Falls Wildlife Mitigation Project, 2008 Annual Report.  

SciTech Connect (OSTI)

The Albeni Falls Interagency Work Group (AFIWG) was actively involved in implementing wildlife mitigation activities in late 2007, but due to internal conflicts, the AFIWG members has fractionated into a smaller group. Implementation of the monitoring and evaluation program continued across protected lands. As of 2008, The Albeni Falls Interagency Work Group (Work Group) is a coalition comprised of wildlife managers from three tribal entities (Kalispel Tribe, Kootenai Tribe, Coeur d Alene Tribe) and the US Army Corps of Engineers. The Work Group directs where wildlife mitigation implementation occurs in the Kootenai, Pend Oreille and Coeur d Alene subbasins. The Work Group is unique in the Columbia Basin. The Columbia Basin Fish and Wildlife Authority (CBFWA) wildlife managers in 1995, approved what was one of the first two project proposals to implement mitigation on a programmatic basis. The maintenance of this kind of approach through time has allowed the Work Group to implement an effective and responsive habitat protection program by reducing administrative costs associated with site-specific project proposals. The core mitigation entities maintain approximately 9,335 acres of wetland/riparian habitats in 2008.

Soults, Scott [Kootenai Tribe of Idaho

2009-08-05T23:59:59.000Z

398

The last mile: earthquake risk mitigation assistance in developing countries  

Science Journals Connector (OSTI)

...how one can balance the risk/reward equation. What...committed to achieve an acceptable level of safety is a...needed for earthquake risk reduction. There is...existing structures to some acceptable level of performance...non-capital intensive risk mitigation options...

2006-01-01T23:59:59.000Z

399

Air Quality and Emissions Impacts of Heat Island Mitigation Strategies  

E-Print Network [OSTI]

considerations, implementation plans, and an initial evaluation of solar energy systems' potential air quality in state implementation plans for air quality improvement. · Analyze the potential effects of largescaleAir Quality and Emissions Impacts of Heat Island Mitigation Strategies ENVIRONMENTAL AREA RESEARCH

400

Sensitivity of climate mitigation strategies to natural disturbances  

SciTech Connect (OSTI)

The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because of potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies

Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.; Bond-Lamberty, Benjamin; Patel, Pralit L.; Wise, Marshall A.; Calvin, Katherine V.; Kyle, G. Page; Clarke, Leon E.; Edmonds, James A.; Janetos, Anthony C.

2013-02-19T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Renewable energy technologies for the Indian power sector: mitigation potential and operational strategies  

Science Journals Connector (OSTI)

The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with attendant shortages and problems. Due to the predominance of fossil fuels in the generation mix, there are large negative environmental externalities caused by electricity generation. The power sector alone has a 40 percent contribution to the total carbon emissions. In this context, it is imperative to develop and promote alternative energy sources that can lead to sustainability of the energy–environment system. There are opportunities for renewable energy technologies under the new climate change regime as they meet the two basic conditions to be eligible for assistance under UNFCCC mechanisms: they contribute to global sustainability through GHG mitigation; and, they conform to national priorities by leading to the development of local capacities and infrastructure. This increases the importance of electricity generation from renewables. Considerable experience and capabilities exist in the country on renewable electricity technologies. But a number of techno–economic, market-related, and institutional barriers impede technology development and penetration. Although at present the contribution of renewable electricity is small, the capabilities promise the flexibility for responding to emerging economic, socio–environmental and sustainable development needs. This paper discusses the renewable and carbon market linkages and assesses mitigation potential of power sector renewable energy technologies under global environmental intervention scenarios for GHG emissions reduction. An overall energy system framework is used for assessing the future role of renewable energy in the power sector under baseline and different mitigation scenarios over a time frame of 35 years, between 2000 to 2035. The methodology uses an integrated bottom-up modelling framework. Looking into past performance trends and likely future developments, analysis results are compared with officially set targets for renewable energy. The paper also assesses the CDM investment potential for power sector renewables. It outlines specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.

Debyani Ghosh; P.R. Shukla; Amit Garg; P.Venkata Ramana

2002-01-01T23:59:59.000Z

402

Recent Developments in Field Response for Mitigation of Radiological Incidents  

Broader source: Energy.gov [DOE]

Recent Developments in Field Response for Mitigation of Radiological Incidents Carlos Corredor*, Department of Energy ; Charley Yu, Argonne National Labs Abstract: Since September 11, 2001, there has been a large effort by the government to develop new methods to reduce the consequence of potential radiological incidents. This is evident in the enhancement of technologies and methods to detect, prepare, or manage radiological incidents or accidents . With any radiological accident, radiological dispersal device (RDD), or improvised nuclear device (IND) , the major focus is always on the immediate phase of an incident or accident and less centered on the intermediate phase and the late recovery phase of that incident. In support of the 2008 protective action guides(PAGs) for RDDs , established by the Department of Homeland Security and by agreement with the EPA, the White House requested establishment of a series of operational guidelines that would focus on efforts during all phases of the incident and not just the immediate phase. “Operational Guidelines” were developed for this purpose. The operational guidelines are dose based pre-derived levels of radioactivity or radionuclide concentrations in various media that can be measured in the field and compared to the PAGs to quickly determine if protective actions are warranted. I.e can certain roads, bridges or metro systems be used, can the public return to their homes or businesses, can the public consume certain foods, etc. An operational guidelines manual, developed by a federal interagency working group led by the Department of Energy (DOE), was published in 2009 as the Preliminary Report on Operational Guidelines Developed for Use in Emergency Response to a Radiological Dispersal Device Incident, with its companion software RESidual RADiation (RESRAD)-RDD. With the development of the new PAG Manual (Interim Final 2013) by the EPA, an interagency working group was created under the auspices of the ISCORS to develop a revised operational guidelines manual that would reflect the changes by EPA’s new PAG Manual, new best available technology based on new dosimetric models (ICRP 60+), include operational guidelines for IND’s and increase the amount of radionuclides in the OGT Manual from 11 radioisotopes to 55. The new manual is scheduled for publication in 2015.

403

Global Climate Change: Why Understanding the Scientific Enterprise Matters  

E-Print Network [OSTI]

Global Climate Change: Why Understanding the Scientific Enterprise Matters Ellen MosleyPolar/ByrdPolarhttp://bprc.osu.edu/ Understanding Climate Change Risks and Identifying Opportunities for Mitigation & Adaptation in Ohio Ohio State University, May 15, 2014 #12;Key Points Earth's climate is changing - the world is warming ­ that debate

Howat, Ian M.

404

Least-cost greenhouse gas mitigation on New Zealand dairy farms  

Science Journals Connector (OSTI)

A whole-farm model is used to assess least-cost methods of mitigating GHG-e from dairy farms of different production intensity across five diverse regions of New Zealand. Mitigation costs can be significant, w...

Graeme J. Doole

2014-03-01T23:59:59.000Z

405

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network [OSTI]

Renewable Energy Sources in Aviation, Imperial College London. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

406

Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.  

SciTech Connect (OSTI)

This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

Bissell, Gael

1985-01-01T23:59:59.000Z

407

International Experiences with Quantifying the Co-Benefits of Energy-Efficiency and Greenhouse-Gas Mitigation Programs and Policies  

E-Print Network [OSTI]

Mitigation Measures: The Gold Standard is limited to projects entailing renewable energy,Renewable Energy and Energy Efficiency projects. Technologies transfer, RD&D projects Any GHG mitigation

Williams, Christopher

2014-01-01T23:59:59.000Z

408

Climate Change | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate Change Climate Change Climate Change The Office of Climate Change Policy and Technology (PI-50), located within the Office of Policy and International Affairs (PI), serves as the focal point within the U.S. Department of Energy (DOE) for the development, coordination, and implementation of DOE-related aspects of climate change technical programs, policies, and initiatives. The mission of the Office of Climate Change Policy and Technology is to accelerate the development and deployment of advanced technologies and best practices to mitigate climate change. To the extent delegated by the Secretary, the Office provides planning, analysis, and technical advisory services to other Federal agencies, and to Cabinet and sub-Cabinet-level interagency committees, working on climate

409

EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate Change  

Open Energy Info (EERE)

EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate Change EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate Change Mitigation Agency/Company /Organization: European Bank for Reconstruction and Development (EBRD) Sector: Energy, Land, Climate Topics: Finance Resource Type: Publications Website: www.ebrd.com/downloads/research/factsheets/sei.pdf Cost: Free EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate Change Mitigation Screenshot References: EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate Change Mitigation[1] "SEI promotes and facilitates the development of the carbon market in the EBRD countries of operations through the management of two carbon funds.

410

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Buildings October 7, 2013 - 11:09am Addthis YOU ARE HERE Step 4 When estimating the cost of implementing the greenhouse gas (GHG) mitigation strategies, Federal agencies should consider the life-cycle costs and savings of the efforts. The major cost elements associated with developing and implementing a project are identified in Table 1. Table 1. Major Costs for Project Development and Implementation Cost Element Description Variables Project planning costs Preparatory work by building owners and design team. Benchmarking activities. Building audits. Developing statements of work for subcontractors. Selecting contractors. Integrated design process (for major renovations). Type of project; previous team experience; local markets; number of stakeholders

411

Microsoft Word - Final Mitigated Action Plan - CNMI.docx  

Broader source: Energy.gov (indexed) [DOE]

| P | P a g e MITIGATION ACTION PLAN FOR THE FINAL ENVIRONMENTAL ASSESSMENT FOR THE GREEN ENERGY SCHOOL WIND PROJECT SAIPAN, COMMONWEALTH OF THE NORTHERN MARIANA ISLANDS U.S. Department of Energy Golden Service Center Office of Energy Efficiency and Renewable Energy DOE/EA-1923 2 | P a g e ACRONYMS AND ABBREVIATIONS AMC Adaptive Management Committee CFR Code of Federal Regulations DOE U.S. Department of Energy EA environmental assessment ESA Endangered Species Act FONSI finding of no significant impacts MAP mitigation action plan NEPA National Environmental Policy Act USFWS U.S. Fish and Wildlife Service 3 | P a g e 1.0 Introduction The United States Department of Energy (DOE) has issued a Final Environmental Assessment (EA) and a

412

Agricultural Mitigation of Greenhouse Gases: Science and Policy Options  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agricultural Mitigation of Greenhouse Gases: Science and Policy Options Agricultural Mitigation of Greenhouse Gases: Science and Policy Options Keith Paustian (keithp@nrel.colostate.edu; 970-491-1547) Natural Resource Ecology Laboratory Colorado State University Ft. Collins, CO 80523 Bruce Babcock (babcock@iastate.edu; 515-294-6785) Cathy Kling (ckling@iastate.edu; 515-294-5767) Center for Agriculture and Rural Development Iowa State University Ames, IA 50011-1070 Jerry Hatfield (hatfield@nstl.gov; 515-294-5723) USDA - National Soil Tilth Laboratory Ames, IA 50011 Rattan Lal (lal.1@osu.edu; 614-292-9069) School of Natural Resources The Ohio State University Columbus, OH 43210-1085 Bruce McCarl (mccarl@tamu.edu; 979-845-1706) Department of Agricultural Economics Texas A&M University College Station, TX 77843-2124 Sandy McLaughlin (un4@ornl.gov; 865-574-7358)

413

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Broader source: Energy.gov (indexed) [DOE]

Employee Commuting Employee Commuting Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Employee Commuting October 7, 2013 - 2:27pm Addthis YOU ARE HERE Step 4 For greenhouse gas (GHG) mitigation, once a Federal agency identifies the employee commute alternatives and supporting strategies that will most effectively reduce trips to the worksite, costs of encouraging adoption of those methods can be estimated. The annual costs of commute trip reduction programs can vary greatly by worksite. This section outlines types of costs that might be incurred by an agency as well as savings and other benefits of commute trip reduction to an agency, its employees, and the communities surrounding its major worksites. It includes: Employer costs and benefits Employee costs and benefits

414

Identify Strategies to Reduce Business Travel for Greenhouse Gas Mitigation  

Broader source: Energy.gov (indexed) [DOE]

Strategies to Reduce Business Travel for Greenhouse Gas Strategies to Reduce Business Travel for Greenhouse Gas Mitigation Identify Strategies to Reduce Business Travel for Greenhouse Gas Mitigation October 7, 2013 - 1:34pm Addthis YOU ARE HERE The tables below illustrate some of the more common strategies that can enable employees to travel less and travel more efficiently for business. The "Purpose of Travel" analysis in the previous step can be used with the guidance below to help determine what type of trips may be most appropriately substituted with each business travel alternative. Table 1. Strategies that Enable Employees to Travel Less Business Travel Strategy Best Potential Application Best Practices Web meetings/webinars, including option for video Purpose of travel: training, conferences.

415

Willow Creek Wildlife Mitigation- Project Final Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

Willow Creek Wildlife Mitigation- Project Willow Creek Wildlife Mitigation- Project Final Environmental Assessment DOE-EA-1 023 Bonneville POWER ADMINISTRATION April 1995 DISCLAIMER This report w a s prepared a s an account of work sponsored by an agency of t h e United States Government. Neither t h e United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or a s s u m e s any legal liability or responsibility for t h e accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents t h a t its use would not infringe privately owned rights. Reference herein to any specific commercial, product, process, or service by trade name, trademark, manufacturer, or otherwise d o e s not necessarily constitute or imply its

416

Prioritize Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

In order to prioritize the optimal greenhouse gas (GHG) emissions reduction strategies for vehicles and mobile equipment at each local site, Federal agencies should now aggregate the steps previously covered, including: Inventory size Emissions sources/characteristics Available mitigation options Implementation costs Various statutes, mandates and internal agency goals that regulate fleet vehicle acquisition and use. The local agency missions, as well as the local geographic characteristics, will determine the various strategic priorities for site-level decision-makers. Depending on an agency's organizational structure, headquarters level fleet managers and sustainability personnel should ensure that site-level staff have the necessary data collection tools to be able to analyze, strategically prioritize, and finally report their mitigation efforts. It is important for agencies to define the roles and responsibilities of their headquarters and site-level staff to ensure that strategies are continually refined based on performance.

417

Prioritize Greenhouse Gas Mitigation Strategies for Vehicles and Mobile  

Broader source: Energy.gov (indexed) [DOE]

Vehicles and Vehicles and Mobile Equipment Prioritize Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment October 7, 2013 - 1:19pm Addthis YOU ARE HERE: Step 5 In order to prioritize the optimal greenhouse gas (GHG) emissions reduction strategies for vehicles and mobile equipment at each local site, Federal agencies should now aggregate the steps previously covered, including: Inventory size Emissions sources/characteristics Available mitigation options Implementation costs Various statutes, mandates and internal agency goals that regulate fleet vehicle acquisition and use. The local agency missions, as well as the local geographic characteristics, will determine the various strategic priorities for site-level decision-makers. Depending on an agency's organizational structure,

418

South Africa Long Term Mitigation Scenarios | Open Energy Information  

Open Energy Info (EERE)

South Africa Long Term Mitigation Scenarios South Africa Long Term Mitigation Scenarios Jump to: navigation, search Tool Summary LAUNCH TOOL Name: South Africa Long Term Mitigation Scenarios Agency/Company /Organization: South Africa Department of Environment Affairs and Tourism Sector: Energy, Land Topics: Background analysis, Low emission development planning Resource Type: Case studies/examples Website: www.erc.uct.ac.za/Research/publications/07Scenario_team-LTMS_Scenarios Country: South Africa Southern Africa Coordinates: -30.559482°, 22.937506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-30.559482,"lon":22.937506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)  

SciTech Connect (OSTI)

Description of the Proposed Activity/REPORTABLE OCCURRENCE or PIAB: This ECN changes the computer systems design description support document describing the computers system used to control, monitor and archive the processes and outputs associated with the Hydrogen Mitigation Test Pump installed in SY-101. There is no new activity or procedure associated with the updating of this reference document. The updating of this computer system design description maintains an agreed upon documentation program initiated within the test program and carried into operations at time of turnover to maintain configuration control as outlined by design authority practicing guidelines. There are no new credible failure modes associated with the updating of information in a support description document. The failure analysis of each change was reviewed at the time of implementation of the Systems Change Request for all the processes changed. This document simply provides a history of implementation and current system status.

Ermi, A.M.

1997-05-01T23:59:59.000Z

420

New Webinar Series to Address Climate Change Impacts in Indian Country  

Broader source: Energy.gov [DOE]

On Thursday, April 3, the White House and eight federal agencies will launch a four-part webinar series focused on evaluating, assessing, and mitigating the impacts of climate change on U.S. tribal communities.

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NGOs & climate change campaigns : understanding variations in motivations and activities of environmental and development organizations  

E-Print Network [OSTI]

The unequal distribution of climate change impacts exploits the existing vulnerabilities of developing nations. This inequity, coupled with an inadequate, climate mitigation-focused response, has prompted a growing movement ...

Reeve, Kara E

2008-01-01T23:59:59.000Z

422

CSLF, an international climate change init  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSLF, an international climate change initiative focused on cost- CSLF, an international climate change initiative focused on cost- effective CCUS technologies, officially recognized the projects at a recent meeting in Perth, Australia, for making contributions to the development of global carbon dioxide (CO 2 ) mitigation technologies. With the recognition, all three projects will appear on the CSLF website in a yearly project portfolio to keep the global community updated

423

To begin, what gave rise to this project on anticipatory learning for climate change  

E-Print Network [OSTI]

To begin, what gave rise to this project on anticipatory learning for climate change adaptation processes for climate change adaptation (CCA) whilst working on a USAID funded project, Climate Change in Africa. From prior work on the USAID project and having studied climate change mitigation among small

Giles, C. Lee

424

Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—A comment  

Science Journals Connector (OSTI)

Global warming is a grave environmental issue that has caught the attention of the globe. Due to the consequences of global warming, UNFCCC has established the Kyoto Protocol and the Copenhagen Accord as measures of combating climate change due to the emission of greenhouse gases. It has been three years since the first commitment period of the Kyoto Protocol and the Copenhagen Accord was just newly established. Therefore, there is a necessity to evaluate the performance of the Kyoto Protocol and to comment upon the Copenhagen Accord in its contributions toward climate change mitigation. Major greenhouse gas (GHG) emitters who are among the Kyoto Protocol ratifying developed nations exhibit the potential to achieve the desired Kyoto pledges through the aid of Clean Development Mechanisms (mainly from using renewable energy), as proposed in the Kyoto Protocol. However, the nullifying effects from non-ratified major emitters like the US and ratified but still developing countries have difficulties in adhering to the Kyoto Protocol. The Copenhagen Accord, on the other hand, is considered to be less ambitious and provides limited financial aid through the Copenhagen Green Climate Fund. The formulation of such a document indicates that modern societies continues to waste time in negotiations that emphasize on individual economic and political advantages, rather than taking into account true global considerations. It raises questions regarding how much time is needed before we decide to fully commit to the effective and collective efforts of climate change mitigation.

Lee Chung Lau; Keat Teong Lee; Abdul Rahman Mohamed

2012-01-01T23:59:59.000Z

425

Production and mitigation of acid chlorides in geothermal steam  

SciTech Connect (OSTI)

Measurements of the equilibrium distribution of relatively nonvolatile solutes between aqueous liquid and vapor phases have been made at temperatures to 350{degrees}C for HCl(aq) and chloride salts. These data are directly applicable to problems of corrosive-steam production in geothermal steam systems. Compositions of high-temperature brines which could produce steam having given concentrations of chlorides may be estimated at various boiling temperatures. Effects of mitigation methods (e.g., desuperheating) can be calculated based on liquid-vapor equilibrium constants and solute mass balances under vapor-saturation conditions.

Simonson, J.M.; Palmer, D.A.

1995-06-01T23:59:59.000Z

426

Climate Change and China's Agricultural Sector: An Overview of Impacts,  

Open Energy Info (EERE)

China's Agricultural Sector: An Overview of Impacts, China's Agricultural Sector: An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and Mitigation Agency/Company /Organization International Centre for Trade and Sustainable Development Sector Land Focus Area Agriculture Topics Adaptation, Background analysis, Co-benefits assessment Resource Type Publications Website http://ictsd.org/downloads/201 Country China UN Region Eastern Asia References China's Ag Impacts [1] Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and Mitigation Screenshot "The overall goal of this paper is to review and document the likely impacts of climate change on China's agricultural production, efforts

427

Event:First Asia Regional Dialogue on the Development of Mitigation Actions  

Open Energy Info (EERE)

First Asia Regional Dialogue on the Development of Mitigation Actions and First Asia Regional Dialogue on the Development of Mitigation Actions and Low-Carbon Development Strategies: on 2011/10/14 First Asia Regional Dialogue on the Development of Mitigation Actions and Low-Carbon Development Strategies Event Details Name First Asia Regional Dialogue on the Development of Mitigation Actions and Low-Carbon Development Strategies Date 2011/10/14 Location Thailand Organizer Mitigation Action Implementation Network (MAIN), Center for Clean Air Policy (CCAP) Tags LEDS, CLEAN, Capacity Building, Training Website Event Website Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Event:First_Asia_Regional_Dialogue_on_the_Development_of_Mitigation_Actions_and_Low-Carbon_Development_Strategies_Day_4&oldid=385340

428

Event:First Asia Regional Dialogue on the Development of Mitigation Actions  

Open Energy Info (EERE)

Asia Regional Dialogue on the Development of Mitigation Actions and Asia Regional Dialogue on the Development of Mitigation Actions and Low-Carbon Development Strategies: on 2011/10/12 First Asia Regional Dialogue on the Development of Mitigation Actions and Low-Carbon Development Strategies Event Details Name First Asia Regional Dialogue on the Development of Mitigation Actions and Low-Carbon Development Strategies Date 2011/10/12 Location Thailand Organizer Mitigation Action Implementation Network (MAIN), Center for Clean Air Policy (CCAP) Tags LEDS, CLEAN, Capacity Building, Training Website Event Website Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Event:First_Asia_Regional_Dialogue_on_the_Development_of_Mitigation_Actions_and_Low-Carbon_Development_Strategies_Day_2&oldid=38533

429

Peru-Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information  

Open Energy Info (EERE)

Peru-Mitigation Action Plans and Scenarios (MAPS) Peru-Mitigation Action Plans and Scenarios (MAPS) Jump to: navigation, search Logo: Peru-Mitigation Action Plans and Scenarios (MAPS) Name Peru-Mitigation Action Plans and Scenarios (MAPS) Agency/Company /Organization The Children's Investment Fund Foundation, SouthSouthNorth, University of Cape Town-Energy Research Centre, Danish Government Sector Climate, Energy Topics Baseline projection, Low emission development planning, -LEDS, -NAMA, Pathways analysis Website http://www.mapsprogramme.org Program Start 2010 Program End 2013 Country Peru South America References Mitigation Action Plans and Scenarios (MAPS)[1] Contents 1 Overview 2 MAPS Processes and Outcomes 2.1 Chile 2.2 Colombia 2.3 Peru 2.4 Brazil 2.5 Resources 2.5.1 Mitigation Action Country Studies

430

Event:First Asia Regional Dialogue on the Development of Mitigation Actions  

Open Energy Info (EERE)

First Asia Regional Dialogue on the Development of Mitigation Actions First Asia Regional Dialogue on the Development of Mitigation Actions and Low-Carbon Development Strategies Day 3 Jump to: navigation, search Calendar.png First Asia Regional Dialogue on the Development of Mitigation Actions and Low-Carbon Development Strategies: on 2011/10/13 First Asia Regional Dialogue on the Development of Mitigation Actions and Low-Carbon Development Strategies Event Details Name First Asia Regional Dialogue on the Development of Mitigation Actions and Low-Carbon Development Strategies Date 2011/10/13 Location Thailand Organizer Mitigation Action Implementation Network (MAIN), Center for Clean Air Policy (CCAP) Tags LEDS, CLEAN, Capacity Building, Training Website Event Website Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

431

Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States.  

SciTech Connect (OSTI)

Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed potential surface fire behavior with the Fuel Characteristic Classification System (FCCS), a tool which uses inventoried fuelbed inputs to predict fire behavior. Using inventory data from 629 plots established in the upper Atlantic Coastal Plain, South Carolina, we constructed FCCS fuelbeds representing median fuel characteristics by major forest type and age class. With a dry fuel moisture scenario and 6.4 km h{sub 1} midflame wind speed, the FCCS predicted moderate to high potential fire hazard for the majority of the fuelbeds under study. To explore fire hazard under potential future fuel conditions, we developed fuelbeds representing the range of quantitative inventorydata for fuelbed components that drive surface fire behavior algorithms and adjusted shrub species composition to represent 30% and 60% relative cover of highly flammable shrub species. Results indicate that the primary drivers of surface fire behavior vary by forest type, age and surface fire behavior rating. Litter tends to be a primary or secondary driver in most forest types. In comparison to other surface fire contributors, reducing shrub loading results in reduced flame lengths most consistently across forest types. FCCS fuelbeds and the results from this project can be used for fire hazard mitigation planning throughout the southern Atlantic Coastal Plain where similar forest types occur. The approach of building simulated fuelbeds across the range of available surface fuel data produces sets of incrementally different fuel characteristics that can be applied to any dynamic forest types in which surface fuel conditions change rapidly.

Andreu, Anne G.; Shea, Dan; Parresol, Bernard, R.; Ottmar, Roger, D.

2012-01-01T23:59:59.000Z

432

Is climate change affecting human health?  

Science Journals Connector (OSTI)

First principles suggest that climate change is affecting human health, based on what is understood about the relationships between the mean and variability of temperature, precipitation, and other weather variables and climate-sensitive health outcomes, and the magnitude of climate change that has occurred. However, the complexity of these relationships and the multiple drivers of climate-sensitive health outcomes makes the detection and attribution of changing disease patterns to climate change very challenging. Nevertheless, efforts to do so are vital for informing policy and for prioritizing adaptation and mitigation options.

Kristie L Ebi

2013-01-01T23:59:59.000Z

433

Massive Pellet and Rupture Disk Testing for Disruption Mitigation Applications  

SciTech Connect (OSTI)

Injection of massive quantities of noble gases or D2 has proven to be effective at mitigating some of the deleterious effects of disruptions in tokamaks. Two alternative methods that might offer some advantages over the present technique for massive gas injection are shattering massive pellets and employing close-coupled rupture disks. Laboratory testing has been carried out to evaluate their feasibility. For the study of massive pellets, a pipe gun pellet injector cooled with a cryogenic refrigerator was fitted with a relatively large barrel (16.5 mm bore), and D2 and Ne pellets were made and were accelerated to speeds of ~600 and 300 m/s, respectively. Based on the successful proof-of-principle testing with the injector and a special double-impact target to shatter pellets, a similar system has been prepared and installed on DIII-D and should be ready for experiments later this year. To study the applicability of rupture disks for disruption mitigation, a simple test apparatus was assembled in the lab. Commercially available rupture disks of 1 in. nominal diameter were tested at conditions relevant for the application on tokamaks, including tests with Ar and He gases and rupture pressures of ~54 bar. Some technical and practical issues of implementing this technique on a tokamak are discussed.

Combs, Stephen Kirk [ORNL] [ORNL; Meitner, Steven J [ORNL] [ORNL; Baylor, Larry R [ORNL] [ORNL; Caughman, John B [ORNL] [ORNL; Commaux, Nicolas JC [ORNL] [ORNL; Fehling, Dan T [ORNL] [ORNL; Foust, Charles R [ORNL] [ORNL; Jernigan, Thomas C [ORNL] [ORNL; McGill, James M [ORNL] [ORNL; Parks, P. B. [General Atomics] [General Atomics; Rasmussen, David A [ORNL] [ORNL

2009-01-01T23:59:59.000Z

434

Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.  

SciTech Connect (OSTI)

Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

1994-11-01T23:59:59.000Z

435

E-Print Network 3.0 - assessment protection mitigation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centres)1 Summary: risk assessment of all of its work in accordance with health and safety legislation (Regulation 3... by a mitigation strategy, with control mechanisms and...

436

Vegetation and Other Development Options for Mitigating Urban Air Pollution Impacts  

Science Journals Connector (OSTI)

While air pollution control devices and programs are the primary method of reducing emissions, urban air pollution can be further mitigated through planning and...

Richard Baldauf; David Nowak

2014-07-01T23:59:59.000Z

437

E-Print Network 3.0 - administration wildlife mitigation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IntroductionI. Introduction The Northwest Power Act of Summary: , mitigate and enhance fish and wildlife, including related spawning grounds and habitat, on the Columbia... to...

438

E-Print Network 3.0 - asia mitigating systemic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

through Natural Resource Management (CGGM) NREL Scientists... with Research Interests in GHG Emissions and Mitigation (15) Richard Conant, Steve Del Grosso, Karolien Denef... in...

439

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies  

Broader source: Energy.gov [DOE]

To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy.

440

Evaluating service mitigation proposals for the MBTA Green Line extension construction delay using simplified planning methods .  

E-Print Network [OSTI]

??This thesis reviews a select group of transit environmental mitigation proposals through the application of ridership estimation methodologies. In recent years, rider demands and environmental… (more)

Rosen, Jamie C. (Jamie Cara)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation.  

E-Print Network [OSTI]

??Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation Poupak Yaghoubi Department of Civil Engineering University of Illinois at Chicago Chicago, Illinois (2011) Dissertation Chairperson:… (more)

Yaghoubi, Poupak

2012-01-01T23:59:59.000Z

442

Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events  

Broader source: Energy.gov [DOE]

This is a level 1 operating experience document providing direction for Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events. [OE-1: 2013-01

443

Stakeholder Understandings of Wildfire Mitigation: A Case of Shared and Contested Meanings  

Science Journals Connector (OSTI)

This article identifies and compares meanings of wildfire risk mitigation for stakeholders in the Front Range of Colorado, USA. We examine the case of...

Joseph G. Champ; Jeffrey J. Brooks; Daniel R. Williams

2012-10-01T23:59:59.000Z

444

From sawdust to nuclear fuel: mitigating the removal of Humboldt Bay Power Plant.  

E-Print Network [OSTI]

??This projects purpose is to discuss the process for mitigating the removal of historic structures or buildings found eligible for listing in the National Register… (more)

Root, Garret Samuel

2012-01-01T23:59:59.000Z

445

E-Print Network 3.0 - air pollution mitigation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution mitigation Page: << < 1 2 3 4 5 > >> 1 Pacific Institute 654 13th Street,...

446

Functional requirements and technical criteria for the 241-SY-101 RAPID mitigation system  

SciTech Connect (OSTI)

This document provides functional, performance, and design criteria for the RAPID Mitigation System. In addition, critical interface, design assumptions, and analytical requirements are identified.

ERHART, M.F.

1999-02-26T23:59:59.000Z

447

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network [OSTI]

onward. Table A-4: Carbon Emission Factors of ElectricityAdjustment factor Carbon Emission Factor (kg C/kWh)L ABORATORY Mitigating Carbon Emissions: the Potential of

Lin, Jiang

2006-01-01T23:59:59.000Z

448

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

and gasification .. 26 Environmental impacts from wasteand gasification are two other thermal processes used to convert wastewastes is commonly practiced. I NCOMPLETE COMBUSTION : PYROLYSIS AND GASIFICATION

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

449

The Role of Carbon Capture and Sequestration Policies for Climate Change Mitigation  

Science Journals Connector (OSTI)

This paper takes the ‘policy failure’ in establishing a global carbon price for efficient emissions reduction as a ... best approach. From a supply-side perspective, carbon capture and storage (CCS) policies diff...

Matthias Kalkuhl; Ottmar Edenhofer; Kai Lessmann

2014-01-01T23:59:59.000Z

450

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

1, 2007. Regional Greenhouse Gas Initiative (RGGI), 2007.About RGGI. http://www.rggi.org/about.htm Accessed April 14,RI, VT, MD, Initiative d (RGGI) also DC and PA observing (

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

451

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Energy Through Greater Efficiency: The Potential for Conservation in California’s Residential Sector. Report

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

452

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Class 3-7 Heavy Vehicles. Argonne National Laboratory, U.S.the United States and Canada. ANL/ESD/02-5, Argonne NationalLaboratory, Argonne, Illinois. Plotkin, S. , D. Santini, A.

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

453

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

cost accounting Solar photovoltaic Cost effectiveness ($photovoltaic Average new plant (fossil, The GHG intensity and cost

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

454

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

air pollution control technologies emit a variety of pollutants,air pollutants produced represent a burden. Modern incinerators are equipped with pollution controlspollutants formed during combustion, a number of air pollution controls

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

455

Renewable Energy and Climate Change Mitigation: An Overview of the IPCC Special Report  

Science Journals Connector (OSTI)

Renewable energy systems currently meet only around 7–8 ... heating, cooling, electricity and transport end-use energy demands (Traditional biomass provides around 6.3 % of global primary energy and all other ren...

Ralph E. H. Sims

2014-01-01T23:59:59.000Z

456

Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden  

E-Print Network [OSTI]

gas emissions: health implications of short-lived greenhousegas emissions: health implications of short-lived greenhousegas emissions: health implications of short-lived greenhouse

Shonkoff, Seth Berrin

2012-01-01T23:59:59.000Z

457

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

the nexus between the waste and energy systems is crucial toof biological matter. wastes – into energy and compost. Non-used to convert waste to energy. Where conventional

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

458

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

Small-scale entrepreneurs in the urban water and sanitationsmall-scale providers, who are very important sources of water and sanitationsmall-scale private providers for water services and 50% of the population relies on non-state actors for sanitation

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

459

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

hybrid (gas or diesel) electric vehicle technology (Langer,e.g. hybrid gasoline-electric vs. diesel vehicles). Dealing

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

460

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

Greenhouse gas emissions and biogas potential from livestock50-55 °C) conditions. Biogas (55- 65% CH 4 , remaining is COfuel. The production of biogas from the AD process is

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

and California’s new feed-in tariff. ” BioCycle 49(3): 56uses a similar policy, a feed-in tariff, to pay producers aimportantly, no such feed-in tariff contracts have yet been

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

462

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

International Journal of LCA 2004; 9(3): 161-171. doi:technologies by means of LCA-modeling. ” Waste Managementemissions from biomass in an LCA. ” International Journal of

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

463

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

is the controlled burning of waste at a high temperature (1995). During the burning of wastes, moisture evaporatesSouth, though open burning of wastes is commonly practiced.

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

464

Greenhouse Gas Mitigation as a Structural Change and Policies that Offset Its Depressing Effects  

E-Print Network [OSTI]

The current economic modeling of emissions limitations does not embody economic features that are likely to be particularly important in the short term, yet the politics of limiting greenhouse gas emissions are often ...

Babiker, Mustafa H.M.

465

Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment  

E-Print Network [OSTI]

-10, 12165 Berlin, Germany H. Huebener Hessian Agency for the Environment and Geology, Rheingaustra�e 186, Italy W. May Á S. Yang Danish Climate Centre, Danish Meteorological Institute, Lyngbyvej 100, 2100.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K, is studied

Dufresne, Jean-Louis

466

Carbon capture technology: future fossil fuel use and mitigating climate change  

E-Print Network [OSTI]

sources for countries heavily reliant on imported fuels4 . Why CCS is not just a synonym for `clean coal

467

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

buildings to have a “net- zero-energy” impact. The issue hasto include such a net-zero-energy requirement by 2030 (CEC,like LEED certification or zero-net-energy are not directly

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

468

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

vehicle rolling resistance, aerodynamics, engine efficiency, and transmission efficiency are ordered according to their initial cost-

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

469

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

large conventional hydroelectric power, municipal solidconventional large hydroelectric power in the percentage).by states that large hydroelectric is not counted toward the

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

470

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

10: GHG emission sensitivity to landfill gas collectionfollowed by incineration, then landfill gas combustion), andthrough increased landfill gas collection; and avoided GHG

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

471

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

110 Table 26. Landfill gas GHG reductionlandfills to utilize the landfill gas generally includes acollection system. Landfill gas from throughout landfills

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

472

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

heaters Walk-in refrigerators and freezers Single-voltagewashers, commercial refrigerators and freezers, commercialDay Domestic Refrigerator – Freezer. ” ASHRAE Transactions ,

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

473

The role of interactions in a world implementing adaptation and mitigation solutions to climate change  

Science Journals Connector (OSTI)

...close to human habitation, as has occurred in Burkina Faso, Sudan and Egypt for schistosomiasis and malaria-[36]. Even for...or desert areas where crops are already grown close to their thermal limits. By 4C, crops in many regions are projected to be affected...

2011-01-01T23:59:59.000Z

474

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

generation, meaning the price the utility would have paid for electricity from a new natural gas-fired power

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

475

Lifetime of carbon capture and storage as a climate-change mitigation technology  

Science Journals Connector (OSTI)

...We focus on CO 2 produced by power plants because electric power generation currently accounts for >40...emissions (8) and because power plants are large, stationary...our analysis to coal- and gas-fired power plants because they emit...

Michael L. Szulczewski; Christopher W. MacMinn; Howard J. Herzog; Ruben Juanes

2012-01-01T23:59:59.000Z

476

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Update of States’ Combined Heat and Power Activities. ”M. Spurr, 1999. Combined Heat and Power: Capturing WastedElliot, 2001. “Combined Heat and Power: Saving Energy and

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

477

Workshop Report: Climate Change Mitigation: Considering Lifestyle Options in Europe and the US  

E-Print Network [OSTI]

environmental efficacy 4 , Mark Lubell 5 modeled the factorswell as on Ostrom and Olson, Lubell suggested a Collectiveversion of this paper: Lubell, M. , Zahran, S. , Vedlitz,

Schuetzenmeister, Falk

2009-01-01T23:59:59.000Z

478

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

are ethanol and biodiesel; the federal energy legislation,the total amount of ethanol, by fuel energy content, in thisof Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

479

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

of pollutants, including dioxins and furans, persistentCO, CO 2 , SO 2 , PM, dioxins, furans, and others), heat,in the emission of dioxins and furans (Polychlorinated-

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

480

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

of natural gas-powered combined cycle power plants. The mostintegrated gasification combined cycle (IGCC) coal plants,integrated gasification combined cycle (IGCC) technology for

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idb-climate change mitigation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

AMT), Gasoline direct injection (GDI), Tires (low rollingTechnology Direct injection (GDI) Low RR tires Integrated

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

482

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

electricity production cost of new coal and natural gasgas reduction cost-effectiveness of light duty vehicle refrigerant systems 56 Figure 17. Ethanol productionCost effectiveness curve for fuel feedstock GHG reduction technologies Greenhouse gas emissions (million tonne CO2e/yr) Reference Natural gas production

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

483

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

2006; Wang, 2005). Cellulose-based ethanol is associatedemissions per gge for cellulose-based ethanol that displacescellolosic ethanol scenario Reference (AEO2007), cellulose-

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

484

Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel  

E-Print Network [OSTI]

Photosynthesis Biomass Renewable liquid fuel Fuel synthesis #12;Renewable liquid fuel Combustion CO2 separation emissions from all sectors IEA, 2012; CO2 emissions from fuel combustion: Highlights. · Solar · Wind · CO2. R. Soc. A, 368, 3343, 2010 #12;Biological renewable liquid fuel Combustion Water CO2 in air

Homes, Christopher C.

485

CO Capture, Reuse, and Storage Technologies2 for Mitigating Global Climate Change  

E-Print Network [OSTI]

Gas R&D Programme; Jefferson Tester, MIT Energy Laboratory; and Edward Winter, Burns and Roe. Helpful

486

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Drennen, 2005. The Cost of Geothermal Energy in the Westerngeothermal energy through underground piping; these systems tend to be more cost-

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

487

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

large conventional hydroelectric power, municipal solidconventional large hydroelectric power in the percentage).large conventional hydroelectric power is not included (this

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

488

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

from a National Landfill Greenhouse Gas Inventory Model. ”Methane generation in landfills. ” Renewable Energy 32:50 3.2.1. Landfill

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

489

Lifetime of carbon capture and storage as a climate-change mitigation technology  

Science Journals Connector (OSTI)

...Poisson ratio [-] Geothermal gradient [L-1...Lt Width of well array [L] W...COLORADO NEW MEXICO MILES KILOMETERS0...Table C1] Geothermal gradient ( C...S15 Width of well array (km...temperature [ C] Ts 1 Geothermal gradient [ C...2 Width of well array W 0.1...

Michael L. Szulczewski; Christopher W. MacMinn; Howard J. Herzog; Ruben Juanes

2012-01-01T23:59:59.000Z

490

P 4.3 MIADAC Modelling Climate Change Policies: Mitigation, Adaptation, and  

E-Print Network [OSTI]

in emission trading markets. · Analyze the political economy side of national and international climate policy in Switzerland We will extend our phase 2 work on adaptation measures (Gonseth, 2008) and refine existing estimates of impact costs for the Swiss economy (Ecoplan - Sigmaplan, 2007) in order to achieve more

Richner, Heinz

491

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

material recycling, energy production, composting, or directwith reduced energy production, reduced uncontrolled dumpingand Ahring 2006). Energy production from anaerobic digestion

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

492

Malheur River Wildlife Mitigation Project, Annual Report 2003.  

SciTech Connect (OSTI)

Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

Ashley, Paul

2004-01-01T23:59:59.000Z

493

Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health  

SciTech Connect (OSTI)

Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.5±0.2, 1.3±0.6, and 2.2±1.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range of costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.

West, Jason; Smith, Steven J.; Silva, Raquel; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zacariah; Fry, Meridith M.; Anenberg, Susan C.; Horowitz, L.; Lamarque, Jean-Francois

2013-10-01T23:59:59.000Z

494

Hungry Horse Mitigation Plan; Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam, 1990-2003 Technical Report.  

SciTech Connect (OSTI)

In this document we present fisheries losses, mitigation alternatives, and recommendations to protect, mitigate, and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan addresses six separate program measures in the 1987 Columbia Basin Fish and Wildlife Program. We designed the plan to be closely coordinated in terms of dam operations, funding, and activities with the Kerr Mitigation Plan presently before the Federal Energy Regulatory Commission. This document represents a mitigation plan for consideration by the Northwest Power Planning Council process; it is not an implementation plan. Flathead Lake is one of the cleanest lakes of its size in the world. The exceptional water quality and unique native fisheries make the Flathead Lake/River system extremely valuable to the economy and quality of life in the basin. The recreational fishery in Flathead Lake has an estimated value of nearly eight million dollars annually. This mitigation process represents our best opportunity to reduce the impacts of hydropower in this valuable aquatic system and increase angling opportunity. We based loss estimates and mitigation alternatives on an extensive data base, agency reports, nationally and internationally peer-reviewed scientific articles, and an innovative biological model for Hungry Horse Reservoir and the Flathead River. We conducted an extensive, 14-month scoping and consultation process with agency representatives, representatives of citizen groups, and the general public. This consultation process helped identify issues, areas of agreement, areas of conflict, and advantages and disadvantages of mitigation alternatives. The results of the scoping and consultation process helped shape our mitigation plan. Our recommended plan is based firmly on principles of adaptive management and recognition of biological uncertainty. After we receive direction from the NPPC, we will add more detailed hypotheses and other features necessary for a long-term implementation plan.

Fraley, John J.; Marotz, Brian L. (Montana Department of Fish, Wildlife and Parks, Helena, MT); DosSantos, Joseph M. (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2003-04-01T23:59:59.000Z

495

File:Mitigation report.pdf | Open Energy Information  

Open Energy Info (EERE)

report.pdf report.pdf Jump to: navigation, search File File history File usage File:Mitigation report.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 29 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:25, 20 November 2012 Thumbnail for version as of 15:25, 20 November 2012 1,275 × 1,650, 2 pages (29 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file. Retrieved from

496

Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided  

Open Energy Info (EERE)

Greenhouse Gas Emissions through Avoided Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in High Conservation Value Areas Jump to: navigation, search Name Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in High Conservation Value Areas Agency/Company /Organization Government of Costa Rica, Peace with Nature Sector Land Focus Area Forestry Topics Co-benefits assessment, Implementation, Policies/deployment programs, Resource assessment, Background analysis Resource Type Publications Website http://www.paxnatura.org/pax_n Country Costa Rica UN Region Latin America and the Caribbean References Costa Rica[1] Overview References ↑ "Costa Rica" Retrieved from

497

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Broader source: Energy.gov (indexed) [DOE]

Business Travel Business Travel Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Business Travel October 7, 2013 - 1:37pm Addthis YOU ARE HERE Step 4 Once business travel reduction strategies have been identified, a Federal agency may evaluate the cost of implementing those measures and any potential savings from avoided travel. The annual costs associated with reducing business travel may vary greatly by agency, program, and site depending on the current level of video conferencing and desktop collaboration solutions that are available between the organization's major travel destinations. This will be largely driven by whether the agency has to install or upgrade equipment or just make them more accessible and familiar to users. Strategies focused on policy and

498

Prioritize Greenhouse Gas Mitigation Strategies for Business Travel |  

Broader source: Energy.gov (indexed) [DOE]

Business Travel Business Travel Prioritize Greenhouse Gas Mitigation Strategies for Business Travel October 7, 2013 - 1:38pm Addthis YOU ARE HERE Based on the guidance in steps 3 in evaluating strategies and step 4 in estimating the cost of implementing those strategies, the agency can define a program of communications, policy and management, and technological and infrastructure support activities that it believes are necessary to support travel reductions. Because business travel can be such a challenging areas to address, effective travel reduction programs will ensure that all of these elements are in place to enable the desired outcomes. Prioritization of those business travel management strategies will instead focus on how broadly the program can be deployed across the agency. The

499

Blue Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

Creek Winter Range: Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment I F 8 - Spokane Tribe of Indians Bonneville POWER ADMINISTRATION B r n u r r o N aF THIS D O C ~ I H ~ E E 1% utifi_;'iUzi: w DOVEA-0939 November1 994 Bureay of Indian Affairs DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DISCLAIMER This report was .prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

500

Prioritize Greenhouse Gas Mitigation Strategies for Employee Commuting |  

Broader source: Energy.gov (indexed) [DOE]

Employee Employee Commuting Prioritize Greenhouse Gas Mitigation Strategies for Employee Commuting October 7, 2013 - 2:29pm Addthis YOU ARE HERE Step 5 Proposed programs to reduce employee commute greenhouse gas (GHG) emissions should be prioritized at individual worksites and across agency worksites to help the agency understand what actions and worksites are most critical to reaching its goal. This section aims to help the employee transportation coordinators (ETCs) and telework coordinators to understand what commute reduction programs will yield the greatest "bang-for-the-buck" and what level of GHG reductions a site or program can achieve get with available resources. Criteria may include: GHG emission reduction potential by the 2020 target date Cost effectiveness ($ invested per MTCO2e avoided)