National Library of Energy BETA

Sample records for idb-climate change mitigation

  1. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  2. Exploring changes in solar model physics to mitigate the solar...

    Office of Scientific and Technical Information (OSTI)

    Exploring changes in solar model physics to mitigate the solar abundance problem Citation Details In-Document Search Title: Exploring changes in solar model physics to mitigate the ...

  3. Korea's Green Growth Strategy: Mitigating Climate Change and...

    Open Energy Info (EERE)

    Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Growth Engines Jump to: navigation, search Name Korea's Green Growth Strategy: Mitigating Climate Change...

  4. Financing Global Climate Change Mitigation | Open Energy Information

    Open Energy Info (EERE)

    Global Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financing Global Climate Change Mitigation AgencyCompany Organization: United Nations...

  5. Exploring changes in solar model physics to mitigate the solar...

    Office of Scientific and Technical Information (OSTI)

    Exploring changes in solar model physics to mitigate the solar abundance problem Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  6. Game-Changing Process Mitigates CO2 Emissions Using Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Game-Changing Process Mitigates CO2 Emissions Using Renewable Energy Gold nanoparticles ... Researchers developed a special form of gold nanoparticle that contains exactly 25 gold ...

  7. Chile-Climate Change Mitigation and Agriculture in Latin America...

    Open Energy Info (EERE)

    Agriculture in Latin America and the Caribbean Jump to: navigation, search Logo: Chile-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Name...

  8. Climate Change Mitigation in the Energy and Forestry Sectors...

    Open Energy Info (EERE)

    of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

  9. Development based climate change adaptation and mitigation-conceptual...

    Open Energy Info (EERE)

    based climate change adaptation and mitigation-conceptual issues and lessons learned in studies in developing countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  10. Agricultural Technologies for Climate Change Mitigation and Adaptation...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovations and Technology Diffusion Jump to: navigation, search Tool Summary...

  11. Climate Change Adaptation and Mitigation in the Tourism Sector...

    Open Energy Info (EERE)

    their decision making processes and operations. It presents an overview of the current science and policy of climate change, followed by self-guidance material on mitigation and...

  12. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  13. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect (OSTI)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  14. Global climate change and the mitigation challenge

    SciTech Connect (OSTI)

    Frank Princiotta

    2009-10-15

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

  15. Ocean Fertilization and Other Climate Change Mitigation Strategies: An Overview

    SciTech Connect (OSTI)

    Huesemann, Michael H.

    2008-07-29

    In order to evaluate ocean fertilization in the larger context of other proposed strategies for reducing the threat of the global warming, a wide range of different climate change mitigation approaches are compared in terms of their long-term potential, stage of development, relative costs and potential risks, as well as public acceptance. This broad comparative analysis is carried out for the following climate change mitigation strategies: supply-side and end-use efficiency improvements, terrestrial and geological carbon sequestration, CO2 ocean disposal and iron fertilization, nuclear power, and renewable energy generation from biomass, passive solar, solar thermal, photovoltaics, hydroelectric and wind. In addition, because of the inherent problems of conducting an objective comparative cost-benefit analysis, two non-technological solutions to global warming are also discussed: curbing population growth and transitioning to a steady-state economy.

  16. Relative outcomes of climate change mitigation related to global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature versus sea-level rise | Argonne Leadership Computing Facility Relative outcomes of climate change mitigation related to global temperature versus sea-level rise Authors: Gerald A. Meehl, Aixue Hu, Claudia Tebaldi, Julie M. Arblaster, Warren M. Washington, Haiyan Teng, Benjamin M. Sanderson, Toby Ault, Warren G. Strand & James B. White III There is a common perception that, if human societies make the significant adjustments necessary to substantively cut emissions of

  17. JICA's Assistance for Mitigation to Climate Change - The Co-Benefits...

    Open Energy Info (EERE)

    JICA's Assistance for Mitigation to Climate Change - The Co-Benefits Approach to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: JICA's Assistance for...

  18. Role of Biochar in Mitigation of Climate Change

    SciTech Connect (OSTI)

    Lehmann, Johannes C.; Amonette, James E.; Roberts, Kelli G.

    2010-09-30

    By virtue of the large fraction of the terrestrial carbon (C) cycle controlled by human activities, agroecosystems are both sources and sinks for greenhouse gases. Their potential role in mitigation of climate change thus depends on a dual strategy of decreasing greenhouse gas emissions while increasing sinks so that the net impact on climate warming is less than at present. Emissions of carbon dioxide, methane and nitrous oxide arise from various agricultural activities, ranging from land clearing to ploughing, fertilization, and animal husbandry. Reductions in these emissions can be achieved by decreasing the heterotrophic conversion of organic C to carbon dioxide, and by better management of agricultural waste streams to minimize release of methane and nitrous oxide. Current sinks include C stored in standing biomass and soil organic matter, and the oxidation of atmospheric methane by soil bacteria. These sinks can be enhanced by increasing net primary productivity, thereby actively withdrawing more carbon dioxide from the atmosphere, and by promoting more oxidation of methane by soils. Judicious biochar management may contribute to both strategies, reductions of emissions by agriculture and active withdrawal of atmospheric carbon dioxide, as part of a comprehensive scheme in agricultural and forestry watersheds. Biochar is a carbon-rich organic material generated by heating biomass in the absence, or under a limited supply, of oxygen. This so-called charring or pyrolysis process has been used to produce charcoal as a source of fuel for millennia. Recently, interest has grown in understanding the potential of this process to improve soil health by adding biochar as an amendment to soil, to manage agricultural and forestry wastes, to generate energy, to decrease net emissions of nitrous oxide and methane, and to store carbon (C). The main incentive of biochar systems for mitigation of climate change is to increase the stability of organic matter or biomass. This

  19. Implications of simultaneously mitigating and adapting to climate change: Initial experiments using GCAM

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Clarke, Leon E.; Edmonds, James A.; Kyle, G. Page; Luckow, Patrick W.; Thomson, Allison M.

    2013-04-01

    Historically climate impacts research and climate mitigation research have been two separate and independent domains of inquiry. Climate mitigation research has investigated greenhouse gas emissions assuming that climate is unchanging. At the same time climate mitigation research has investigated the implications of climate change on the assumption that climate mitigation will proceed without affecting the degree of climate impacts or the ability of human and natural systems to adapt. The Global Change Assessment Model (GCAM) has largely been employed to study climate mitigation. Here we explore the development of capabilities to assess climate change impacts and adaptation within the GCAM model. These capabilities are being developed so as to be able to simultaneously reconcile the joint implications of climate change mitigation, impacts and adaptive potential. This is an important step forward in that it enables direct comparison between climate mitigation activities and climate impacts and the opportunity to understand interactions between the two.

  20. Climate Change Mitigation Through Land-Use Measures in the Agriculture...

    Open Energy Info (EERE)

    and Forestry Sectors Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation Through Land-Use Measures in the Agriculture and Forestry...

  1. The Role of Asia in Mitigating Climate Change: Results from the Asia Modeling Exercise

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Clarke, Leon E.; Krey, Volker; Blanford, Geoffrey J.; Jiang, Kejun; Kainuma, M.; Kriegler, Elmar; Luderer, Gunnar; Shukla, Priyadarshi R.

    2012-12-01

    In 2010, Asia accounted for 60% of global population, 39% of Gross World Product, 44% of global energy consumption and nearly half of the world’s energy system CO2 emissions. Thus, Asia is an important region to consider in any discussion of climate change or climate change mitigation. This paper explores the role of Asia in mitigating climate change, by comparing the results of 23 energy-economy and integrated assessment models. We focus our analysis on seven key areas: base year data, future energy use and emissions absent climate policy, the effect of urban and rural development on future energy use and emissions, the role of technology in emissions mitigation, regional emissions mitigation, and national climate policies

  2. The contribution of future agricultural trends in the US Midwest to global climate change mitigation

    SciTech Connect (OSTI)

    Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong; Bandaru, Varaprasad; West, Tristram O.; Wise, Marshall A.; Izaurralde, Roberto C.; Calvin, Katherine V.

    2014-01-19

    Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicator Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.

  3. DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation

    Broader source: Energy.gov [DOE]

    An agreement aimed at improving cooperation and collaboration in the areas of oil and natural gas supply, delivery, and climate change mitigation, has been signed by the U.S. Department of Energy and the Interstate Oil and Gas Compact Commission (IOGCC).

  4. Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options

    SciTech Connect (OSTI)

    Geffen, CA; Dooley, JJ; Kim, SH

    2003-08-24

    It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

  5. Climate change, insurance, and the buildings sector: Technological synergisms between adaptation and mitigation

    SciTech Connect (OSTI)

    Mills, Evan

    2002-11-01

    Examining the intersection of risk analysis and sustainable energy strategies reveals numerous examples of energy efficient and renewable energy technologies that offer insurance loss-prevention benefits. The growing threat of climate change provides an added motivation for the risk community to better understand this area of opportunity. While analyses of climate change mitigation typically focus on the emissions-reduction characteristics of sustainable energy technologies, less often recognized are a host of synergistic ways in which these technologies also offer adaptation benefits, e.g. making buildings more resilient to natural disasters. While there is already some relevant activity, there remain various barriers to significantly expanding these efforts. Achieving successful integration of sustainable energy considerations with risk-management objectives requires a more proactive orientation, and coordination among diverse actors and industry groups.

  6. The lifetime of carbon capture and storage as a climate-change mitigation technology

    SciTech Connect (OSTI)

    Juanes, Ruben

    2013-12-30

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 years. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century.

  7. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    SciTech Connect (OSTI)

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  8. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    SciTech Connect (OSTI)

    Makundi, Willy R.

    1998-06-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

  9. Peru mitigation assessment of greenhouse gases: Sector -- Energy. Peru climate change country study; Final report

    SciTech Connect (OSTI)

    1996-08-01

    The aim of this study is to determine the Inventory and propose Greenhouse Gases Mitigation alternatives in order to face the future development of the country in a clean environmental setting without delaying the development process required to improve Peruvian standard of living. The main idea of this executive abstract is to show concisely the results of the Greenhouse Gases Mitigation for Peru in the period 1990--2015. The studies about mitigation for the Energy Sector are shown in this summary.

  10. Influence of Climate Change Mitigation Technology on Global Demands of Water for Electricity Generation

    SciTech Connect (OSTI)

    Kyle, G. Page; Davies, Evan; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad I.

    2013-01-17

    Globally, electricity generation accounts for a large and potentially growing water demand, and as such is an important component to assessments of global and regional water scarcity. However, the current suite—as well as potential future suites—of thermoelectric generation technologies has a very wide range of water demand intensities, spanning two orders of magnitude. As such, the evolution of the generation mix is important for the future water demands of the sector. This study uses GCAM, an integrated assessment model, to analyze the global electric sector’s water demands in three futures of climate change mitigation policy and two technology strategies. We find that despite five- to seven-fold expansion of the electric sector as a whole from 2005 to 2095, global electric sector water withdrawals remain relatively stable, due to the retirement of existing power plants with water-intensive once-through flow cooling systems. In the scenarios examined here, climate policies lead to the large-scale deployment of advanced, low-emissions technologies such as carbon dioxide capture and storage (CCS), concentrating solar power, and engineered geothermal systems. In particular, we find that the large-scale deployment of CCS technologies does not increase long-term water consumption from hydrocarbon-fueled power generation as compared with a no-policy scenario without CCS. Moreover, in sensitivity scenarios where low-emissions electricity technologies are required to use dry cooling systems, we find that the consequent additional costs and efficiency reductions do not limit the utility of these technologies in achieving cost-effective whole-system emissions mitigation.

  11. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    SciTech Connect (OSTI)

    Winslow, Anne

    2011-06-28

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels--particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a ''nuclear renaissance'', this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.

  12. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    SciTech Connect (OSTI)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining

  13. iRESM INITIATIVE UNDERSTANDING DECISION SUPPORT NEEDS FOR CLIMATE CHANGE MITIGATION AND ADAPTATION --US Midwest Region—

    SciTech Connect (OSTI)

    Rice, Jennie S.; Runci, Paul J.; Moss, Richard H.; Anderson, Kate L.

    2010-10-01

    The impacts of climate change are already affecting human and environmental systems worldwide, yet many uncertainties persist in the prediction of future climate changes and impacts due to limitations in scientific understanding of relevant causal factors. In particular, there is mounting urgency to efforts to improve models of human and environmental systems at the regional scale, and to integrate climate, ecosystem and energy-economic models to support policy, investment, and risk management decisions related to climate change mitigation (i.e., reducing greenhouse gas emissions) and adaptation (i.e., responding to climate change impacts). The Pacific Northwest National Laboratory (PNNL) is developing a modeling framework, the integrated Regional Earth System Model (iRESM), to address regional human-environmental system interactions in response to climate change and the uncertainties therein. The framework will consist of a suite of integrated models representing regional climate change, regional climate policy, and the regional economy, with a focus on simulating the mitigation and adaptation decisions made over time in the energy, transportation, agriculture, and natural resource management sectors.

  14. Mitigating climate change through managing constructed-microbial communities in agriculture

    SciTech Connect (OSTI)

    Hamilton, Cyd E.; Bever, James D.; Labbe, Jessy; Yang, Xiaohan; Yin, Hengfu

    2015-10-27

    The importance of increasing crop production while reducing resource inputs and land-use change cannot be overstated especially in light of climate change and a human population growth projected to reach nine billion this century. Here, mutualistic plant microbe interactions offer a novel approach to enhance agricultural productivity while reducing environmental costs. In concert with other novel agronomic technologies and management, plant-microbial mutualisms could help increase crop production and reduce yield losses by improving resistance and/or resilience to edaphic, biologic, and climatic variability from both bottom-up and top-down perspectives.

  15. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Oldenburg, Curtis M

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  16. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2011-04-28

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  17. Integrated Assessment of Global Water Scarcity over the 21st Century under Multiple Climate Change Mitigation Policies

    SciTech Connect (OSTI)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-01-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and a global population of 14 billion by 2095, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demand for water exceeds the amount of water availability in two GCAM regions, the Middle East and India. Additionally, in years 2050 and 2095, 20% and 27% of the global population, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). This study implies an increasingly prominent role for water in future human decisions, and highlights the importance of including water in integrated assessment of global change.

  18. Mitigation Action Plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  19. A wedge-based approach to estimating health co-benefits of climate change mitigation activities in the United States

    SciTech Connect (OSTI)

    Balbus, John M.; Greenblatt, Jeffery B.; Chari, Ramya; Millstein, Dev; Ebi, Kristie L.

    2015-02-01

    While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefits in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.

  20. Mind the gap in SEA: An institutional perspective on why assessment of synergies amongst climate change mitigation, adaptation and other policy areas are missing

    SciTech Connect (OSTI)

    Vammen Larsen, Sanne; Kornov, Lone; Wejs, Anja

    2012-02-15

    This article takes its point of departure in two approaches to integrating climate change into Strategic Environmental Assessment (SEA): Mitigation and adaptation, and in the fact that these, as well as the synergies between them and other policy areas, are needed as part of an integrated assessment and policy response. First, the article makes a review of how positive and negative synergies between a) climate change mitigation and adaptation and b) climate change and other environmental concerns are integrated into Danish SEA practice. Then, the article discusses the implications of not addressing synergies. Finally, the article explores institutional explanations as to why synergies are not addressed in SEA practice. A document analysis of 149 Danish SEA reports shows that only one report comprises the assessment of synergies between mitigation and adaptation, whilst 9,4% of the reports assess the synergies between climate change and other environmental concerns. The consequences of separation are both the risk of trade-offs and missed opportunities for enhancing positive synergies. In order to propose explanations for the lacking integration, the institutional background is analysed and discussed, mainly based on Scott's theory of institutions. The institutional analysis highlights a regulatory element, since the assessment of climate change synergies is underpinned by legislation, but not by guidance. This means that great focus is on normative elements such as the local interpretation of legislation and of climate change mitigation and adaptation. The analysis also focuses on how the fragmentation of the organisation in which climate change and SEA are embedded has bearings on both normative and cultural-cognitive elements. This makes the assessment of synergies challenging. The evidence gathered and presented in the article points to a need for developing the SEA process and methodology in Denmark with the aim to include climate change in the assessments in a

  1. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States

    SciTech Connect (OSTI)

    Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.

    2011-06-01

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.

  2. The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China

    SciTech Connect (OSTI)

    Zhou, Yuyu; Eom, Jiyong; Clarke, Leon E.

    2013-08-01

    A changing climate will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate on heating and cooling demands must take into account not only the manner in which the building sector might evolve over time - including, for example, movements from rural to urban environments in developing countries - but also important uncertainty about the nature of climate change itself and the growth and movements of populations over time. In this study, we explored the uncertainty in climate change impacts on heating and cooling by constructing estimates of heating and cooling degree days for both a reference (no-policy) scenario and a climate mitigation scenario built from 0.5 degree latitude by 0.5 degree longitude resolution output from three different Global Climate Models (GCMs) and three gridded scenarios of population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China were then explored by using the heating and cooling degree days results as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). Across the climate models and population distribution scenarios, the results indicate that unabated climate change would cause total final energy consumption to decrease modestly in both U.S. and China buildings by the end of the century, as decreased heating consumption is more than balanced by increased cooling using primarily electricity. However, the results also indicate that when indirect emissions from the power sector are also taken into account, climate change may have negligible effect on building sector CO2 emissions in the two countries. The variation in results due to variation of population distribution is noticeably smaller than variation due to the use of different

  3. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    SciTech Connect (OSTI)

    McNeil, Michael A.; Bojda, Nicholas; Ke, Jing; Qin, Yining; de la Rue du Can, Stephane; Fridley, David; Letschert, Virginie E.; McMahon, James E.

    2011-08-18

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. As the study title suggests, the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as 'economic savings potential'. Chinese energy demand has grown dramatically over the last few decades. While heavy industry still plays a dominant role in greenhouse gas emissions, demand from residential and commercial buildings has also seen rapid growth in percentage terms. In the residential sector this growth is driven by internal migration from the countryside to cities. Meanwhile, income in both urban and rural subsectors allows ownership of major appliances. While residences are still relatively small by U.S. or European standards, nearly all households own a refrigerator, a television and an air conditioner. In the future, ownership rates are not expected to grow as much as in other developing countries, because they are already close to saturation. However, the gradual turnover of equipment in the world's largest consumer market provides a huge opportunity for greenhouse gas mitigation. In addition to residences, commercial floor space has expanded rapidly in recent years, and construction

  4. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines

    SciTech Connect (OSTI)

    Vine, E.; Sathaye, J.

    1997-12-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations (i.e., joint implementation), climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG impacts (i.e., environmental, economic, and social impacts). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects in order to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues and methodologies involved in MERV activities. In addition, they review protocols and guidelines that have been developed for MERV of GHG emissions in the energy and non-energy sectors by governments, nongovernmental organizations, and international agencies. They comment on their relevance and completeness, and identify several topics that future protocols and guidelines need to address, such as (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other impacts; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  5. Mitigating Wildland Fires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigating Wildland Fires Mitigating Wildland Fires Our interactive wildland fire map displays the locations of wildland fire mitigation activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email View in Google Maps What we are doing to mitigate wildland fires Recent large wildfires in the area, including the La Mesa Fire (1977), the Dome Fire (1996), the Oso Fire (1998), the Cerro Grande Fire (2000), and the Las

  6. Neutralize & Mitigate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities » Neutralize & Mitigate Neutralize & Mitigate Scientists are developing technologies designed to mitigate the effects of IEDs, protecting personnel and equipment from the detonation effects of these and other types of explosives. v Protecting personnel and equipment from the detonation effects At Los Alamos, scientists are developing technologies designed to mitigate the effects of IEDs, protecting personnel and equipment from the detonation effects of these and other types

  7. Mitigation Action Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Action Plan FutureGen 2.0 Project DOE/EIS-0460 U.S. Department of Energy National Energy Technology Laboratory March 2014 DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN INTENTIONALLY LEFT BLANK DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN TABLE OF CONTENTS Introduction ................................................................................................................................................... 1 Purpose

  8. Mitigation Action Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan FutureGen 2.0 Project DOE/EIS-0460 U.S. Department of Energy National Energy Technology Laboratory March 2014 DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN INTENTIONALLY LEFT BLANK DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN TABLE OF CONTENTS Introduction ................................................................................................................................................... 1 Purpose

  9. WREP Mitigation Action Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Interconnection of the Whistling Ridge Energy Project 1 Mitigation Action Plan June 2015 Mitigation Action Plan for the Whistling Ridge Energy Project Measure Implementation Timeline Implementation Responsibility Earth (geology, soils, topography, and geologic hazards) Prior to Project construction, confirm subsurface soil and rock types and strength properties through a detailed geotechnical investigation of the specific locations of all wind Project elements, including wind

  10. Making the Most of Mitigation

    Broader source: Energy.gov [DOE]

    The Los Alamos Field Office uses a comprehensive Mitigation Action Plan to monitor and manage commitments to mitigate adverse environmental impacts associated with the 2008 Los Alamos National Laboratory Site-Wide Environmental Impact Statement (EIS) and multiple project-specific EISs and environmental assessments (EAs). The DOE NEPA Order requires a publicly available annual report on progress made in implementing mitigation commitments and the effectiveness of the mitigation.

  11. Siting and Barrier Mitigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siting and Barrier Mitigation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  12. Mitigation technologies and measures in energy sector of Kazakstan

    SciTech Connect (OSTI)

    Pilifosova, O.; Danchuk, D.; Temertekov, T.

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  13. BIAS MITIGATION | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diversity and Inclusion » BIAS MITIGATION BIAS MITIGATION BIAS MITIGATION The DOE has focused its efforts on eliminating implicit bias at the individual and institutional levels. At the individual level, the DOE's efforts to eliminate implicit bias include: conflict prevention and resolution; Ombudsman - which promotes the early identification and resolution of issues in order to promote morale and productivity through an informal process; workplace improvement forums; and an anti-harassment

  14. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference ...

  15. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Cover of the Federal Interagency ...

  16. Enhanced Separation and Mitigated Plasticization in Membranes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Separation and Mitigated Plasticization in Membranes using Metal-Organic Framework Nanoparticles

  17. Addendum to 2010 NREL Environmental Performance Report Â… Traffic Mitigation Action Plan Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addendum to the National Renewable Energy Laboratory Environmental Performance Report for 2010 (Annual Site Environmental Report per the U.S. Department of Energy Order 231.1-1A Chg 2) Traffic Mitigation Action Plan Update November 2011 Page 1 of 4 Traffic Mitigation Action Plan 2010 Update Traffic Management A Mitigation Action Plan (MAP), finalized in May 2008, was developed to address potential environmental impacts from changes in traffic at NREL and to support a Finding of No Significant

  18. GHG emission mitigation measures and technologies in the Czech Republic

    SciTech Connect (OSTI)

    Tichy, M.

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  19. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Action Plans (MAP) and Related Documents Mitigation Action Plans (MAP) and Related Documents Mitigation Action Plans are documents DOE prepares in accordance with DOE NEPA regulations (10 CFR 1021.331) that describes the plan for implementing commitments made in a DOE environmental impact statement and its associated record of decision, or, when appropriate, an EA or FONSI, to mitigate adverse environmental impacts associated with an action. If you have any trouble finding a specific

  20. EIS-0380: Mitigation Action Plan Annual Report

    Broader source: Energy.gov [DOE]

    Los Alamos National Laboratory Site-Wide Environmental Impact Statement Fiscal Year 2012 Mitigation Action Plan Annual Report

  1. Generalized Comprehensive Mitigation Assessment Process (GCOMAP...

    Open Energy Info (EERE)

    Generalized Comprehensive Mitigation Assessment Process (GCOMAP) (Redirected from GCOMAP) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Generalized Comprehensive...

  2. Generalized Comprehensive Mitigation Assessment Process (GCOMAP...

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: Generalized Comprehensive Mitigation Assessment Process (GCOMAP) AgencyCompany Organization: Lawrence Berkeley National Laboratory...

  3. Appropriate Use of Mitigation and Monitoring and Clarifying the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate Use of Mitigated Findings of No Significant Impact Appropriate Use of Mitigation and Monitoring and ...

  4. EIS-0422: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mitigation measures and estimated time of implementation within the Mitigation Action Plan for the Central Ferry-Lower Monumental 500-kilovolt Transmission Line Project. Mitigation...

  5. EIS-0026: Annual Mitigation Report | Department of Energy

    Energy Savers [EERE]

    Annual Mitigation Report EIS-0026: Annual Mitigation Report The Waste Isolation Pilot Plant (WIPP) Mitigation Action Plan was prepared to address commitments made in the RODs for...

  6. EIS-0026: 2009 Annual Mitigation Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Annual Mitigation Report (AMR) addresses those WIPP-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through...

  7. EIS-0026: Annual Mitigation Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Annual Mitigation Report addresses those WIPP Project-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through...

  8. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Environmental Management (EM)

    7 Annual Mitigation Report (2007 AMR) addresses those WIPP- related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994...

  9. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Environmental Management (EM)

    8 Annual Mitigation Report (AMR) addresses those WIPP-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through...

  10. EIS-0397: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0397: Mitigation Action Plan Lyle Falls Fish Passage Project This Mitigation Action Plan identifies measures that are intended to avoid, reduce, or...

  11. Estimating the potential of greenhouse gas mitigation in Kazakhstan

    SciTech Connect (OSTI)

    Monacrovich, E.; Pilifosova, O.; Danchuck, D.

    1996-09-01

    As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

  12. Bonneville Power Administration Wildlife Mitigation Program : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1996-08-01

    Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. Future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and enhancement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative. Five standardizing alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information.

  13. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    2009-05-26

    basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.

  14. Greenhouse gas mitigation options for Washington State

    SciTech Connect (OSTI)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  15. EA-1628: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lignocellulosic Biorefinery, Emmetsburg, Iowa This Mitigation Action Plan specifieis the methods for implementing mitigation measures that address the potential environmental...

  16. EA-1508: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and dewatering, landscape engineering, borrow pits and recommended procedures for Raptors and powerline construction. Mitigation Action Plan to Implement Mitigation...

  17. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Annual Mitigation Report addresses those WIPP Project-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through June 2014. EIS-0026-MAP-2014.pdf (1.05 MB) More Documents & Publications EIS-0026: Annual Mitigation Report EIS-0026: Annual Mitigation Report EIS-0026: Mitigation Action Plan

  18. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Annual Mitigation Report addresses those WIPP Project-related mitigation activities undertaken since time of submittal of the 1994 Annual Mitigation Report in July 1994 through June 2016. Download Document EIS-0026: Annual Mitigation Report - 2016 (139.49 KB) More Documents & Publications EIS-0026: Annual Mitigation Report EIS-0026: Annual Mitigation Report EIS-0026: 2010

  19. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Annual Mitigation Report addresses those WIPP Project-related mitigation activities undertaken since time of submittal of the 1994 Annual Mitigation Report in July 1994 through June 2015. EIS-0026: Annual Mitigation Report - 2015 (133.54 KB) More Documents & Publications EIS-0026: Annual Mitigation Report EIS-0026: Annual Mitigation Report EIS-0026:

  20. Environmental Mitigation Technology (Innovative System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental ...

  1. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report ... First, the authors would like to thank the entire Wind Turbine Radar Interference Working ...

  2. Implantation, Activation, Characterization and Prevention/Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Internal Short Circuits in Lithium-Ion Cells Implantation, Activation, Characterization and PreventionMitigation of Internal Short Circuits in Lithium-Ion Cells 2012 ...

  3. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report ... from the advice and comments of two wind industry and trade association ...

  4. Advanced Technology Development and Mitigation | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Advanced Technology Development and Mitigation (ATDM) subprogram includes laboratory code and computer engineering and science projects that pursue long-term simulation and ...

  5. Mitigation Action Implementation Network (MAIN) | Open Energy...

    Open Energy Info (EERE)

    of Nationally Appropriate Mitigation Actions (NAMAs) and Low-Carbon Development (LCD) strategies in developing countries through regionally based dialogues, web-based...

  6. Priority mitigation measures in non-energy sector in Kazakstan

    SciTech Connect (OSTI)

    Mizina, S.V.; Pilifosova, O.V.; Gossen, E.F.

    1996-12-31

    Fulfilling the Commitments on UN FCCC through the U.S. Country Studies Program, Kazakstan has developed the national GHG Inventory, vulnerability and adaptation assessment and estimated the possibility of mitigation measures in certain sectors. Next step is developing National Climate Change Action Plan. That process includes such major steps as setting priorities in mitigation measures and technologies, their comprehensive evaluation, preparation implementation strategies, developing the procedure of incorporation of the National Action Plan into other development plans and programs. This paper presents programs and measures that can reduce GHG emissions in non-energy sector. Measures in land-use change and forestry, agriculture and coal mining are considered. Current situation in non-energy sector of Kazakstan is discussed. The amount of GHG emissions reduction and cost analysis presented in this paper was developed with the use of IPCC recommendations.

  7. Assessment of GHG mitigation technology measures in Ukraine

    SciTech Connect (OSTI)

    Raptsoun, N.; Parasiouk, N.

    1996-12-31

    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.

  8. Mitigation assessment results and priorities in China

    SciTech Connect (OSTI)

    Wu Zongxin; Wei Zhihong

    1996-12-31

    In this paper energy related CO2 emission projections of China by 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the AHP approach is used for helping assessment of priority technologies.

  9. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Measures for Distributed Interconnection" Michael Coddington with National Renewable Energy Laboratory and Robert Broderick with Sandia National Laboratories July 9, 2014 2 Speakers Michael Coddington Principal Investigator Distributed Grid Integration NREL Robert Broderick Technical Lead Distributed Grid Integration Programs Sandia National Laboratories Kristen Ardani Solar Analyst, (today's moderator) NREL 3 INTERCONNECTION, SCREENING & MITIGATION PRACTICES OF 21 UTILITIES

  10. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring

  11. 2009 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey; K. A. Gano; R. D. Teel

    2009-09-30

    This document details the results of revegetation and mitigation monitoring conducted in 2009, including 25 revegetation/restoration projects, one revegetation/mitigation project, and three bat mitigation projects.

  12. Mitigation options for the industrial sector in Egypt

    SciTech Connect (OSTI)

    Gelil, I.A.; El-Touny, S.; Korkor, H.

    1996-12-31

    Though its contribution to the global Greenhouse gases emission is relatively small, Egypt has signed and ratified the United Nations Framework Convention on Climate Change (UN FCCC) and has been playing an active role in the international efforts to deal with such environmental challenges. Energy efficiency has been one of the main strategies that Egypt has adopted to improve environmental quality and enhance economic competitiveness. This paper highlights three initiatives currently underway to improve energy efficiency of the Egyptian industry. The first is a project that has been recently completed by OECP to assess potential GHG mitigation options available in Egypt`s oil refineries. The second initiative is an assessment of GHG mitigation potential in the Small and Medium size Enterprises (SME) in the Mediterranean city of Alexandria. The third one focuses on identifying demand side management options in some industrial electricity consumers in the same city.

  13. EIS-0419: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0419: Mitigation Action Plan Whistling Ridge Energy Project; Skamania County, Washington Bonneville Power Administration (BPA) adopted all the mitigation measures described in the Whistling Ridge Energy Project EIS and prepared a mitigation action plan. The applicant will be responsible for executing the mitigation measures for the wind project, and BPA will be responsible for executing the mitigation measures for the BPA interconnection facilities. For more

  14. EIS-0486: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0486: Mitigation Action Plan Plains & Eastern Clean Line Transmission Project DOE issued a Mitigation Action Plan that explains how mitigation measures, which have been designed to mitigate adverse environmental impacts associated with the course of action directed by the Record of Decision, will be planned and implemented. For more information visit the project page: http://energy.gov/node/583039. Download Document EIS-0486: Mitigation Action Plan (12.85 MB) More

  15. Procedures for Interagency Consultation to Avoid or Mitigate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Mitigate Adverse Effects on Rivers in the Nationwide Inventory (CEQ, 1980) Procedures for Interagency Consultation to Avoid or Mitigate Adverse Effects on Rivers in the ...

  16. DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity...

    Energy Savers [EERE]

    DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report DOE Uranium Leasing ...

  17. National and Sectoral GHG Mitigation Potential: A Comparison...

    Open Energy Info (EERE)

    and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National and Sectoral GHG Mitigation Potential: A...

  18. EA-1595: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1595: Mitigation Action Plan Davis-Mead 230-kV Transmission Line Reconductor Project Western Area Power Administration proposes to reconductor ...

  19. Mitigation Action Plans (MAP) and Related Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 25, 2014 EIS-0472: Mitigation Action Plan Uranium Leasing Program Mitigation Action Plan for the Final Uranium Leasing Program Programmatic Environmental Impact Statement ...

  20. EA-1923: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1923: Mitigation Action Plan Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands This Mitgation Action Plan ...

  1. EA-1923: Mitigated Finding of No Significant Impact | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigated Finding of No Significant Impact EA-1923: Mitigated Finding of No Significant Impact Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern ...

  2. EA-1706: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1706: Mitigation Action Plan West Tennessee Solar Farm Project Haywood County, Tennessee Based on the analyses in the Environmental Assessment, DOE...

  3. Nanoparticles to Mitigate Biofilm Growth. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Nanoparticles to Mitigate Biofilm Growth. Citation Details In-Document Search Title: Nanoparticles to Mitigate Biofilm Growth. Abstract not provided. Authors: Altman, Susan Jeanne ...

  4. EIS-0380: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Mitigation Action Plan EIS-0380: Mitigation Action Plan Continued Operation of Los Alamos National Laboratory, Los Alamos, New Mexico PDF icon Site-Wide Environmental Impact ...

  5. EA-1917: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Mitigation Action Plan EA-1917: Mitigation Action Plan Wave Energy Test Facility Project, Newport, OR Through the environmental review process, DOE determined, via consultations ...

  6. Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    Mitigation Action Plans and Scenarios (MAPS) (Redirected from CIFF-Chile-Mitigation Action Plans and Scenarios (MAPS)) Jump to: navigation, search Retrieved from "http:...

  7. Improving Department of Energy Capabilities for Mitigating Beyond...

    Energy Savers [EERE]

    Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April ...

  8. EIS-0350-S1: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Los Alamos, NM This Mitigation Action Plan (MAP) describes mitigation and monitoring commitments for constructing and operating the Modified CMRR-NF. The commitments made in this ...

  9. Oregon Fish and Wildlife Mitigation Policy | Open Energy Information

    Open Energy Info (EERE)

    Fish and Wildlife Mitigation Policy Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Oregon Fish and Wildlife Mitigation Policy Published Publisher Not...

  10. Recent Diesel Engine Emission Mitigation Activities of the Maritime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime ...

  11. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012 ...

  12. Property:Environmental Monitoring and Mitigation Efforts | Open...

    Open Energy Info (EERE)

    Environmental Monitoring and Mitigation Efforts Jump to: navigation, search Property Name Environmental Monitoring and Mitigation Efforts Property Type String Retrieved from...

  13. Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the...

    Open Energy Info (EERE)

    Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Jump to: navigation, search Name Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo...

  14. National integrated mitigation planning in agriculture: A review...

    Open Energy Info (EERE)

    National integrated mitigation planning in agriculture: A review paper This review of national greenhouse gas (GHG) mitigation planning in the agriculture sector has two...

  15. EIS-0218: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0218: Mitigation Action Plan Implementation of a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel The ...

  16. EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual ...

  17. Mitigating the Impacts of Glint and Glare

    SciTech Connect (OSTI)

    Hillesheim, Michael; Kandt, Alicen; Phillips, Steven

    2015-09-01

    The National Renewable Energy Laboratory, supporting the Department of the Navy Renewable Energy Program Office, has developed an innovative glint/glare analysis and visualization methodology to understand and mitigate the possible impacts of light reflecting off solar photovoltaic arrays.

  18. Information Needs for Energy Mitigation and Siting

    Broader source: Energy.gov (indexed) [DOE]

    esources University o f W yoming QUADRENNIAL ENERGY REVIEW - Aug. 21,2014 1. A shared language 2. Solid baseline data to guide planning and siting 3. Mitigation best practices -...

  19. Mitigation Monitoring Program at Lawrence Livermore National Laboratory FY00 Annual Report

    SciTech Connect (OSTI)

    Mcguff, R R

    2003-12-01

    Lawrence Livermore National Laboratory (LLNL) has completed eight years of implementing the mitigation measures from the Final Environmental Impact Statement/Environmental Impact Report (EIS/EIR) for the Continued Operation of LLNL and Sandia National Laboratories (SNL), Livermore. This eighth annual report documents LLNL's implementation of the mitigation measures during the fiscal year ending September 30, 2000 (FY00). It provides background information on the mitigation measures, describes activities undertaken during FY00, and documents changes in the monitoring program. Table 1 on page 12, provides a numerical listing of each mitigation measure, the department responsible for implementing it, and the location within this report where the status is discussed. The discussion of the mitigation measures is organized by the University of California (UC)'s three categories of approaches to implementation: project-specific, service-level and administrative. Table 2 on page 19, Table 6 on page 55, and Table 7 on page 63 provide a detailed discussion of each mitigation measure, including LLNL's implementation strategy and the status as of the end of the fiscal year. Table 3 on page 37, Table 4 on page 46, and Table 5 on page 47 list each construction project undertaken in FY00 and the mitigation measures implemented.

  20. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon

  1. Comprehensive mitigation assessment process (COMAP) - Description and instruction manual

    SciTech Connect (OSTI)

    Makundi, Willy; Sathaye, Jayant

    2001-11-09

    In order to prepare policies and plans to reduce GHG emissions, national policy-makers need information on the costs and benefits of different mitigation options in addition to their carbon implications. Policy-makers must weigh the costs, benefits, and impacts of climate change mitigation and adaptation options, in the face of competition for limited resources. The policy goal for mitigation options in the land use sector is to identify which mix of options is likely to best achieve the desired forestry service and production objectives at the least cost, while attempting to maximize economic and social benefits, and minimize negative environmental and social impacts. Improved national-level cost estimates of response options in the land use sector can be generated by estimating the costs and benefits of different forest management practices appropriate for specific country conditions which can be undertaken within the constraint of land availability and its opportunity cost. These co st and land use estimates can be combined to develop cost curves, which would assist policy-makers in constructing policies and programs to implement forest responses.

  2. Greenhouse gases mitigation options and strategies for Tanzania

    SciTech Connect (OSTI)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  3. Mitigation for the Construction and Operation of Libby Dam, 2000 Annual Report.

    SciTech Connect (OSTI)

    Hoffman, Greg; Marotz, Brian L.; Dunnigan, James

    2002-09-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness.

  4. Advanced Mitigating Measures for the Cell Internal Short Risk (Presentation)

    SciTech Connect (OSTI)

    Darcy, E.; Smith, K.

    2010-04-01

    This presentation describes mitigation measures for internal short circuits in lithium-ion battery cells.

  5. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  6. Public Finance Mechanisms to Mobilize Investment in Climate Change...

    Open Energy Info (EERE)

    Mobilize Investment in Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Public Finance Mechanisms to Mobilize Investment in Climate Change...

  7. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios

    SciTech Connect (OSTI)

    Clarke, Leon E.; Wise, Marshall A.; Placet, Marylynn; Izaurralde, R Cesar; Lurz, Joshua P.; Kim, Son H.; Smith, Steven J.; Thomson, Allison M.

    2006-09-18

    This report documents a scenario analysis that explores three advanced technology pathways toward climate stabilization using the MiniCAM model.

  8. Climate Change and the Transporation Sector- Challenges and Mitigation Options

    Broader source: Energy.gov [DOE]

    2003 DEER Conference Presentation: U.S. Department of Energy FreedomCAR and Vehicle Technologies Program

  9. Global climate change: Mitigation opportunities high efficiency large chiller technology

    SciTech Connect (OSTI)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  10. Platelet composite coatings for tin whisker mitigation

    SciTech Connect (OSTI)

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results for several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.

  11. Platelet composite coatings for tin whisker mitigation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results formore » several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.« less

  12. Disruption mitigation using high pressure gas jets

    SciTech Connect (OSTI)

    Dennis G. Whyte

    2007-10-11

    The goal of this research is to establish credible disruption mitigation scenarios based on the technique of massive gas injection. Disruption mitigation seeks to minimize or eliminate damage to internal components that can occur due to the rapid dissipation of thermal and magnetic energy during a tokamak disruption. In particular, the focus of present research is extrapolating mitigation techniques to burning plasma experiments such as ITER, where disruption-caused damage poses a serious threat to the lifetime of internal vessel components. A majority of effort has focused on national and international collaborative research with large tokamaks: DIII-D, Alcator C-Mod, JET, and ASDEX Upgrade. The research was oriented towards empirical trials of gas-jet mitigation on several tokamaks, with the goal of developing and applying cohesive models to the data across devices. Disruption mitigation using gas jet injection has proven to be a viable candidate for avoiding or minimizing damage to internal components in burning plasma experiments like ITER. The physics understanding is progress towards a technological design for the required gas injection system in ITER.

  13. On the road to HF mitigation

    SciTech Connect (OSTI)

    VanZele, R.L.; Diener, R. )

    1990-06-01

    The hazards of hydrogen fluoride (HF) have long been recognized and industry performance reflects sound operating practices. However, full-scale industry-sponsored HF release test conducted at the U.S. Department of Energy (DOE) test site in 1986 caused concern in view of HF's toxicity. Ambient impacts were greater than anticipated. And diking, a primary mitigation technique, proved ineffective for releases of pressurized superheated HF. In partial response to these new technical data, an ad-hoc three-component Industry Cooperative Hydrogen Fluoride Mitigation Assessment Program (ICHMAP) was begun in late 1987 to study and test techniques for mitigating accidental releases of HF and alkylation unit acid (AUA) and to enhance capabilities to estimate ambient impacts from such releases. AUA is a mixture of HF and hydrocarbons. The program's mitigation components have recently been completed while work on the impact assessment component is nearing completion. This article describes the program and summarizes the objective, scope of work, structure, and conclusions from the program's two mitigation components. In addition, the objectives and scope of work of the impact assessment components are described.

  14. EIS-0472: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0472: Mitigation Action Plan Uranium Leasing Program Mitigation Action Plan for the Final Uranium Leasing Program Programmatic Environmental Impact Statement DOE LM issued the Final Uranium Leasing Program Programmatic Environmental Impact Statement (DOE/EIS-0472) in March 2014 and issued the associated Record of Decision (ROD) on May 6, 2014; the ROD was published in the Federal Register on May 12, 2014. This Mitigation Action Plan addresses the mitigation commitments

  15. Mitigating PQ Problems in Legacy Data Centers

    SciTech Connect (OSTI)

    Ilinets, Boris; /SLAC

    2011-06-01

    The conclusions of this presentation are: (1) Problems with PQ in legacy data centers still exist and need to be mitigated; (2) Harmonics generated by non-linear IT load can be lowered by passive, active and hybrid cancellation methods; (3) Harmonic study is necessary to find the best way to treat PQ problems; (4) AHF's and harmonic cancellation transformers proved to be very efficient in mitigating PQ problems; and (5) It is important that IT leaders partner with electrical engineering to appropriate ROI statements, justifying many of these expenditures.

  16. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  17. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  18. Ray Effect Mitigation Through Reference Frame Rotation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tencer, John

    2016-06-14

    The discrete ordinates method is a popular and versatile technique for solving the radiative transport equation, a major drawback of which is the presence of ray effects. Mitigation of ray effects can yield significantly more accurate results and enhanced numerical stability for combined mode codes. Moreover, when ray effects are present, the solution is seen to be highly dependent upon the relative orientation of the geometry and the global reference frame. It is an undesirable property. A novel ray effect mitigation technique of averaging the computed solution for various reference frame orientations is proposed.

  19. Highly concentrated foam formulation for blast mitigation

    DOE Patents [OSTI]

    Tucker, Mark D.; Gao, Huizhen

    2010-12-14

    A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

  20. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    Reports and Publications (EIA)

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  1. Siting: Wind Turbine/Radar Interference Mitigation (TSPEAR &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Wind TurbineRadar Interference Mitigation (TSPEAR & IFT&E) HomeStationary PowerEnergy Conversion EfficiencyWind EnergySiting and Barrier MitigationSiting: Wind TurbineRadar ...

  2. Mitigation and Remediation of Mercury Contamination at the Y...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and ...

  3. Market-Based Wildlife Mitigation in Wyoming | Open Energy Information

    Open Energy Info (EERE)

    in Wyoming Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Market-Based Wildlife Mitigation in Wyoming Abstract Covers the basics of mitigation...

  4. EA-1440-S1: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1440-S1: Mitigation Action Plan National Renewable Energy ... Biorefinery Pilot Plant (TBPP). EA-1440-S1-MAP-2008.pdf (3.04 MB) More Documents & ...

  5. 2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey; K. A. Gano

    2008-09-30

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

  6. 2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    K. A. Gano; C. T. Lindsey

    2007-09-27

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

  7. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Environmental Management (EM)

    2010 Annual Mitigation Report EIS-0026: 2010 Annual Mitigation Report Waste Isolation Pilot Plant Guidance for the development of a Mitigation Action Plan (MAP) is contained in Department of Energy (DOE) Order 451.1B, National Environmental Policy Act Compliance Program, and 10 CFR 1021, National Environmental Policy Act Implementing Procedures. These documents specify that a MAP be prepared to mitigate environmental impacts resulting from the implementation of commitments made in the Record of

  8. EA-1704: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Mitigation Action Plan EA-1704: Mitigation Action Plan Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi This Mitigation Action Plan specifies the methods for implementing mitigation measures that address the potential environmental impacts associated with the construction and operation of a lignocellulosic ethanol refinery, BlueFire Fulton Renewable Energy, LLC in Fulton, Mississippi. EA-1704-MAP-2010.pdf (2.11 MB)

  9. EIS-0464: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0464: Mitigation Action Plan Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County, Texas This Mitigation Action Plan (MAP) briefly describes the mitigation actions and monitoring and reporting requirements the recipient must implement during the design, construction, and demonstration of the Lake Charles Carbon Capture and Sequestration Project. DOE prepared this MAP in accordance with 10 CFR 1021.331. EIS-0464-MAP-2014.pdf

  10. Wildfire Mitigation at Los Alamos National Laboratory | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wildfire Mitigation at Los Alamos National Laboratory Wildfire Mitigation at Los Alamos National Laboratory The Laboratory's Fire Mitigation program is closely integrated with Los Alamos County, the U.S. Forest Service and the National Park Service to fight any wildfire in the region. The Laboratory's Fire Management posts daily Fire Danger Ratings on their website. Wildfire-Mitigation-at-Los-Alamos-National-Laboratory.pdf (2.69 MB) More Documents & Publications Remediated Nitrate

  11. EIS-0425: Record of Decision and Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration Record of Decision and Mitigation Action Plan for the Mid-Columbia Restoration Project

  12. Peru-GEF Nationally Appropriate Mitigation Actions in the Energy...

    Open Energy Info (EERE)

    (Redirected from UNDP-Peru GEF Nationally Appropriate Mitigation Actions in the Energy Generation and End-Use Sectors)...

  13. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  14. DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report (447.33 KB) More Documents & Publications LM Annual NEPA Planning Summary 2014 EA-1535: Final Programmatic Environmental Assessment EA-1934: 2015 Annual Report for Mitigation Action

  15. EIS-0380: Annual Mitigation Action Plan Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Los Alamos National Laboratory Site-Wide Environmental Impact Statement Fiscal Year 2013 Mitigation Action Plan Annual Report

  16. Mitigation measures and programs in Hungary

    SciTech Connect (OSTI)

    Molnar, S.

    1996-12-31

    In Hungary there are four main governmental programs, which may result in a decrease of emissions of anthropogenic greenhouse gases (GHGs): (1) National program of energy efficiency improvement and energy conservation, (2) Afforestation program, (3) Volatile organic compounds (VOC) emission reduction program, and (4) Program to reduce the use of ozone depleting substances. These ambitious programs were launched in the beginning of the 90`s, but they have been slowed down because of budgetary problems. The comprehensive action plan for mitigation of GHG emissions should be based on these ongoing programs. These programs should be expanded by further measures and programs in order to fulfill the requirements of the FCCC. In the next sections the results and prospects of the above mentioned programs will be summarized. Also the results of the mitigation study supported by the U.S. Country Studies Program are included.

  17. Buildings GHG Mitigation Estimator Worksheet, Version 1

    Broader source: Energy.gov [DOE]

    Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be found in Step 2 of the buildings emission reduction guidance. The output of this tool is a prioritized set of activities that can help the agency to achieve its greenhouse gas reduction targets most cost-effectively.

  18. Explosive parcel containment and blast mitigation container

    DOE Patents [OSTI]

    Sparks, Michael H.

    2001-06-12

    The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

  19. 300 Area Building Retention Evaluation Mitigation Plan

    SciTech Connect (OSTI)

    D. J. McBride

    2007-07-03

    Evaluate the long-term retention of several facilities associated with the PNNL Capability Replacement Laboratory and other Hanfor mission needs. WCH prepared a mitigation plan for three scenarios with different release dates for specific buildings. The evaluations present a proposed plan for providing utility services to retained facilities in support of a long-term (+20 year) lifespan in addition to temporary services to buildings with specified delayed release dates.

  20. Southern Idaho Wildlife Mitigation Implementation 2000 Annual Report.

    SciTech Connect (OSTI)

    Bottum, Edward; Mikkelsen, Anders

    2001-03-01

    This report covers calendar year 2000 activities for the Southern Idaho Wildlife Mitigation Implementation project. This project, implemented by Idaho Department of Fish and Game and Shoshone Bannock Tribes wildlife mitigation staff, is designed to protect, enhance and maintain wildlife habitats to mitigate construction losses for Palisades, Anderson Ranch, Black Canyon and Minidoka hydroelectric projects. Additional project information is available in the quarterly reports.

  1. Southern idaho Wildlife Mitigation Implementation 1999 Annual Report.

    SciTech Connect (OSTI)

    Bottum, Edward; Mikkelsen, Anders

    2000-04-01

    This report is for the Southern Idaho Wildlife Mitigation Implementation project. This project, implemented by IDFG and SBT wildlife mitigation staff, is designed to protect, enhance and maintain wildlife habitats to mitigate construction losses for Palisades, Anderson Ranch, Black Canyon and Minidoka hydroelectric projects. Additional project information is available in the quarterly reports.

  2. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    SciTech Connect (OSTI)

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  3. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.

  4. Near-Term Climate Mitigation by Short-Lived Forcers

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.

    2013-08-12

    Emissions reductions focused on anthropogenic climate forcing agents with relatively short atmospheric lifetimes such as methane (CH4) and black carbon (BC) have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and BC would likely have only a modest impact on near-term climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 are reduced by 0.16 °C, with an uncertainty range of 0.04-0.36°C, with the high end of this range only possible if total historical aerosol forcing is small. More realistic mitigation scenarios would likely provide a smaller climate benefit. The climate benefits from targeted reductions in short-lived forcing agents are smaller than previously estimated and are not substantially different in magnitude from the benefits due to a comprehensive climate policy.

  5. Wildfre Mitigation at Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wildfre Mitigation at Los Alamos National Laboratory Background Established in 1943, Los Alamos National Laboratory consists of 1,280 buildings in 47 technical areas spread out over 37 square miles. The complex includes 11 nuclear facilities and more than 10,000 workers. In the past, large wildfres in the area, including the La Mesa Fire (1977), the Dome Fire (1996), the Oso Fire (1998), the Cerro Grande Fire (2000), and the Las Conchas Fire (2011) demonstrate that forests on and surrounding the

  6. Review of some effects of climate change on indoor environmental...

    Office of Scientific and Technical Information (OSTI)

    Review of some effects of climate change on indoor environmental quality and health and associated no-regrets mitigation measures Citation Details In-Document Search This content ...

  7. Climate Change and China's Agricultural Sector: An Overview of...

    Open Energy Info (EERE)

    An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and...

  8. Mitigation of Syngas Cooler Plugging and Fouling

    SciTech Connect (OSTI)

    Bockelie, Michael J.

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  9. EA-1915: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1915: Mitigation Action Plan Proposed Conveyance of Land at the Hanford Site, Richland, Washington DOE prepared a Mitigation Action Plan (MAP) as an integral part of the Finding of No Significant Impact for DOE's EA. For more information on this project, see the project webpage: http://energy.gov/nepa/ea-1915-proposed-conveyance-land-hanford-site-ric... EA-1915-MAP-2015.pdf (86.09 KB) More Documents & Publications EA-1915: Final Environmental Assessment EA-1915:

  10. EA-1934: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1934: Mitigation Action Plan Expansion of Active Borrow Areas, Hanford Site, Richland, Washington This Mitigation Action Plan is an integral part of the Finding of No Significant Impact for the proposed action within the Expansion of Active Borrow Areas, Hanford Site. The proposed action would expand 11active borrow pits on the Hanford Site that were included in the previous Environmental Assessments (DOE/EA-1403, DOE/EA-1454), and establish 1 new borrow source. This

  11. Improving Department of Energy Capabilities for Mitigating Beyond Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basis Events | Department of Energy Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April 2013 OE-1: 2013-01 Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events The purpose of this Operating Experience (OE) document is to: provide results from U.S. Department of Energy (DOE), including the National Nuclear Security Administration,

  12. TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR ASSOCIATED MITIGATIONS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR ASSOCIATED MITIGATIONS TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR ASSOCIATED MITIGATIONS This document provides practices that can help mitigate the potential risks that can occur to some electricity sector organizations. Each organization decides for itself the risks it can accept and the practices it deems appropriate to manage those risks. TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR ASSOCIATED

  13. Buildings Greenhouse Gas Mitigation Estimator Worksheet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Buildings Greenhouse Gas Mitigation Estimator Worksheet Buildings Greenhouse Gas Mitigation Estimator Worksheet Excel tool helps agencies estimate the greenhouse gas (GHG) mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings. For example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office

  14. International perspectives on mitigating laboratory biorisks.

    SciTech Connect (OSTI)

    Pinard, William J.; Salazar, Carlos A.

    2010-11-01

    The International Perspectives on Mitigating Laboratory Biorisks workshop, held at the Renaissance Polat Istanbul Hotel in Istanbul, Republic of Turkey, from October 25 to 27, 2010, sought to promote discussion between experts and stakeholders from around the world on issues related to the management of biological risk in laboratories. The event was organized by Sandia National Laboratories International Biological Threat Reduction program, on behalf of the US Department of State Biosecurity Engagement Program and the US Department of Defense Cooperative Biological Engagement Program. The workshop came about as a response to US Under Secretary of State Ellen O. Tauscher's statements in Geneva on December 9, 2009, during the Annual Meeting of the States Parties to the Biological Weapons Convention (BWC). Pursuant to those remarks, the workshop was intended to provide a forum for interested countries to share information on biorisk management training, standards, and needs. Over the course of the meeting's three days, participants discussed diverse topics such as the role of risk assessment in laboratory biorisk management, strategies for mitigating risk, measurement of performance and upkeep, international standards, training and building workforce competence, and the important role of government and regulation. The meeting concluded with affirmations of the utility of international cooperation in this sphere and recognition of positive prospects for the future. The workshop was organized as a series of short presentations by international experts on the field of biorisk management, followed by breakout sessions in which participants were divided into four groups and urged to discuss a particular topic with the aid of a facilitator and a set of guiding questions. Rapporteurs were present during the plenary session as well as breakout sessions and in particular were tasked with taking notes during discussions and reporting back to the assembled participants a brief

  15. EIS-0389: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Action Plan EIS-0389: Mitigation Action Plan Trinity Public Utilities District Direct Interconnection Project Western Area Power Administration (Western) proposes to...

  16. Mitigation Action Plans (MAP) and Related Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0218: Mitigation Action Plan Implementation of a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel May 1, 1994 EIS-0186:...

  17. Greenhouse Gas Training Program for Inventory and Mitigation...

    Open Energy Info (EERE)

    divisionsfuture-perfect Country: South Korea Eastern Asia Language: English References: Greenhouse Gas Training Program for Inventory and Mitigation Modeling1...

  18. EA-1739: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    More Documents & Publications EA-1951: Finding of No Significant Impact and Mitigation Action Plan EA-1739: Finding of No Significant Impact EIS-0285-SA-117: Supplement Analysis

  19. Property:NEPA Resource Imposed Mitigation | Open Energy Information

    Open Energy Info (EERE)

    Protection) for applicable mitigation measures. Antelope Valley NesetNEPAImpactwithAirQuality + See http:ww2.wapa.govsiteswesternbusinesssellingDocuments...

  20. Wind Turbine Radar Interference Mitigation Working Group Releases...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Turbine Radar Interference Mitigation Working Group to address these challenges. This new report lays out the plan for how the working group will address wind turbine radar ...

  1. EA-1858: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    boiler and a 20-megawatt steam turbine at its existing paper mill in Port Angeles, Washington. PDF icon Mitigation Action Plan for the Environmental Assessment for the...

  2. EIS-0323: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan for the Sacramento Area Voltage Support Project which is prepared to accompany the Sacramento Area Voltage Support Project Supplement Environmental Impact...

  3. EIS-0323: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approval is implemented. PDF icon Mitigation Action Plan for the Sacramento Area Voltage Support Project Prepared to Accompany The Sacramento Area Voltage Support Project...

  4. Mitigation Action Plans (MAP) and Related Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project, Grant and Okanogon Counties, Washington November 1, 2011 EIS-0350-S1: Mitigation Action Plan Nuclear Facility Portion of the Chemistry and Metallurgy Research Building...

  5. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast ... AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  6. Urban Surfaces and Heat Island Mitigation Potentials (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Urban Surfaces and Heat Island Mitigation Potentials Citation Details ... and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city. ...

  7. EA-1855: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lincoln and Spokane Counties, Washington (aka DOEEA-4406) This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact for the Creston-Bell...

  8. EA-1591: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan Palisades-Goshen Transmission Line Reconstruction Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the...

  9. EA-1731: Mitigation Acton Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan Walla Walla-Tucannon River Transmission Line Rebuild Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Walla...

  10. MCA 22-3-430 - Montana Antiquities Avoidance and Mitigation ...

    Open Energy Info (EERE)

    MCA 22-3-430 - Montana Antiquities Avoidance and MitigationLegal Abstract Sets forth a principle of preferred avoidance of heritage properties or paleontological remains,...

  11. RAPID/Best Practices/Landscape-Scale Mitigation | Open Energy...

    Open Energy Info (EERE)

    features that minimize impacts (for example, the best types of materials and structure types for visual mitigation or avian-safe structure design) would have been identified...

  12. Mitigations for Security Vulnerabilities Found in Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigations for Security Vulnerabilities Found in Control System Networks (425.98 KB) More Documents & Publications Cyber Assessment Methods for SCADA Security Introduction SCADA ...

  13. Oregon Willamette River Basin Mitigation Agreement | Open Energy...

    Open Energy Info (EERE)

    River Basin Mitigation Agreement Author State of Oregon Recipient Bonneville Power Administration Published Publisher Not Provided, 10222010 DOI Not Provided Check for DOI...

  14. Mitigation Action Plans (MAP) and Related Documents | Department...

    Broader source: Energy.gov (indexed) [DOE]

    EA-1704: Mitigation Action Plan Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi March 10, 2010...

  15. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture) Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas...

  16. UNEP-Ethiopia-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    UNEP-Ethiopia-Facilitating Implementation and Readiness for Mitigation (FIRM) Redirect page Jump to: navigation, search REDIRECT Facilitating Implementation and Readiness for...

  17. EIS-0332: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transmission line between Bonneville Power Administration's existing McNary and John Day substations. PDF icon Mitigation Action Plan for the McNary-John Day Transmission...

  18. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charge Grid Impacts with Renewables and Energy Storage Mike Simpson National Renewable Energy ... Grid Impact Mitigation * Identify system benefits - Add efficient, electric ...

  19. Microsoft PowerPoint - Financial Plan Risk Mitigation Master...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    within acceptable bounds BPA Financial Plan Workshop 5 Financial Plan Risk Metrics Agenda Origin of the Risk Metrics Issue History of risk mitigation measures and origin of...

  20. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    the MAGHG project is to support developing countries assess and report their greenhouse gas (GHG) emissions from agriculture, including assessment of mitigation options for...

  1. Micro-Structural Mitigation Strategies for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Micro-Structural Mitigation Strategies for PEM Fuel Cells held on November 19, 2013.

  2. EA-1901: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    White Sturgeon and Burbot Hatcheries Project, Bonners Ferry, Boundary County, Idaho This Mitigation Action Plan (MAP) is referenced in the Finding of No Significant Impact for the...

  3. International Partnership on Mitigation and MRV | Open Energy...

    Open Energy Info (EERE)

    climate experts from a variety of countries, the Partnership seeks to: foster mutual learning between peers identify best practices establish a shared mitigation-related knowledge...

  4. Webinar: Micro-Structural Mitigation Strategies for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, Micro-Structural Mitigation Strategies for PEM Fuel Cells, originally presented on November 19, 2013.

  5. Democratic Republic of Congo-Nationally Appropriate Mitigation...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  6. Central African Republic-Nationally Appropriate Mitigation Actions...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  7. Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  8. Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  9. Cameroon-Nationally Appropriate Mitigation Actions (NAMAs) in...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  10. Site mitigation issues along the Alameda Corridor

    SciTech Connect (OSTI)

    Ripaldi, C.P.

    1996-12-31

    The Alameda Corridor is a consolidated railroad link between the Ports of Los Angeles and Long Beach and the regional and national rail systems linking the nation. A joint Environmental Impacts Report/Environmental Impact Statement (EIR/EIS) was prepared for the project. The Final EIS was issued in February 1996, and a record of decision was issued in May, 1996. Various Phase 1 and Phase 2 Environmental Site Assessments have provided extensive historical documentation of environmental contamination in the vicinity of the Alameda Corridor Transportation Project. A Site Mitigation Master Plan provides guidance and direction for the clean-up activities. Samples will be analyzed for metals, PCB`s TRPH, BTEX, and VOCs.

  11. Mitigation of radiation induced surface contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  12. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect (OSTI)

    Lee, H. Y.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho; Hahn, S. H.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Ghim, Y.-C.

    2015-12-15

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  13. Mitigation for one & all: An integrated framework for mitigation of development impacts on biodiversity and ecosystem services

    SciTech Connect (OSTI)

    Tallis, Heather; Kennedy, Christina M.; Ruckelshaus, Mary; Goldstein, Joshua; Kiesecker, Joseph M.

    2015-11-15

    Emerging development policies and lending standards call for consideration of ecosystem services when mitigating impacts from development, yet little guidance exists to inform this process. Here we propose a comprehensive framework for advancing both biodiversity and ecosystem service mitigation. We have clarified a means for choosing representative ecosystem service targets alongside biodiversity targets, identified servicesheds as a useful spatial unit for assessing ecosystem service avoidance, impact, and offset options, and discuss methods for consistent calculation of biodiversity and ecosystem service mitigation ratios. We emphasize the need to move away from area- and habitat-based assessment methods for both biodiversity and ecosystem services towards functional assessments at landscape or seascape scales. Such comprehensive assessments more accurately reflect cumulative impacts and variation in environmental quality, social needs and value preferences. The integrated framework builds on the experience of biodiversity mitigation while addressing the unique opportunities and challenges presented by ecosystem service mitigation. These advances contribute to growing potential for economic development planning and execution that will minimize impacts on nature and maximize human wellbeing. - Highlights: • This is the first framework for biodiversity and ecosystem service mitigation. • Functional, landscape scale assessments are ideal for avoidance and offsets. • Servicesheds define the appropriate spatial extent for ecosystem service mitigation. • Mitigation ratios should be calculated consistently and based on standard factors. • Our framework meets the needs of integrated mitigation assessment requirements.

  14. Special Issue On Estimation Of Baselines And Leakage In CarbonMitigation Forestry Projects

    SciTech Connect (OSTI)

    Sathaye, Jayant A.; Andrasko, Kenneth

    2006-06-01

    There is a growing acceptance that the environmentalbenefits of forests extend beyond traditional ecological benefits andinclude the mitigation of climate change. Interest in forestry mitigationactivities has led to the inclusion of forestry practices at the projectlevel in international agreements. Climate change activities place newdemands on participating institutions to set baselines, establishadditionality, determine leakage, ensure permanence, and monitor andverify a project's greenhouse gas benefits. These issues are common toboth forestry and other types of mitigation projects. They demandempirical evidence to establish conditions under which such projects canprovide sustained long term global benefits. This Special Issue reportson papers that experiment with a range of approaches based on empiricalevidence for the setting of baselines and estimation of leakage inprojects in developing Asia and Latin America.

  15. NEPA mitigation and monitoring activities on Army installations

    SciTech Connect (OSTI)

    Reinke, D.C.; Robitaille, P.

    1995-12-01

    The Army National Environmental Policy Act (NEPA) implementation regulation AR 200-2 (Army Regulation) requires only mitigation measures that can reasonably be accompanied as part of a proposed alternative be identified in the NEPA document. Failure of the identified mitigation actions to be executed or to perform as expected leads to a required reevaluation of the project and the significance of its impacts. The USAEC has undertaken a study of mitigation and monitoring actions listed in Army NEPA documents. As part of the USAEC NEPA program the study has outlined three major tasks (1) collection of a significant sample of Army NEPA documents, (2) review environmental documentation management and retention, and (3) review in detail a subsample of documents and follow-up with site visits. Some 242 Army NEPA documents, Environmental Assessments (EA) and Environmental Impact Statements (EIS) were collected and evaluated for mitigation requirements. Ninety seven of the 242 NEPA documents committed to one or more mitigation actions. While a wide array of mitigating activities have been identified in these documents, the four most common are (1) management plans and practices, (2) training actions, (3) revegetation actions, and (4) construction practices. Site visits to selected Army installations showed that mitigation practices were for the most part being done, but were poorly documented. No installation visited had a mitigation monitoring plan in place as required by AR 200-2.

  16. UNFCCC-Mitigation Assessments | Open Energy Information

    Open Energy Info (EERE)

    Change Sector: Energy, Land Topics: Pathways analysis Resource Type: Presentation, Training materials Website: unfccc.intresourcecdromsna1mitigationindex.htm...

  17. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.

  18. Issues in developing a mitigation strategy for Bangladesh

    SciTech Connect (OSTI)

    Asaduzzaman, M.

    1996-12-31

    Bangladesh, it is by now well-known, is at the receiving end, in the literal sense of the term, of the global climate change and its potential impacts. She contributes very little to the current global emission of greenhouse gases (GHGs). The Emission Inventory under the present umbrella project, Bangladesh Climate Change Study (BCCS), has found that her annual emission of carbon has been only 3.99 mn metric tons per year. An earlier study arrived at exactly the same figure. The figures for estimated release of methane is far less firm. The estimated methane emission in 1990 could be anywhere between 1 million and 6 million metric tons. In any case the total emission is unlikely to be more than one-half of one percent of the global total. On the other hand, however, she faces specter of widespread and more frequent floods, more frequent droughts, cyclones and above all sea-level rise (SLR) which may inundate a substantial part of the country all of these bringing in immeasurable misery and destitution and loss of income, employment and growth. One would expect that in such a situation, Bangladesh`s basic concern should be to prepare an appropriate adaptation strategy. This is already a major policy concern of the Government. There is, however, an increasing realization that Bangladesh should as well emphasize an appropriate mitigation strategy (MS). There may be at least three reasons why this should be so. The first is that she is a signatory of the Framework Convention on Climate Change. The second is that in the medium, if not short term she expects major growth due to a developing economy. Third is that Bangladesh depends primarily on fossil fuel imports for energy, and will become a larger source with further development.

  19. Hungry Horse Dam Fisheries Mitigation, 1992-1993 Progress Report.

    SciTech Connect (OSTI)

    DosSantos, Joe; Vashro, Jim; Lockard, Larry

    1994-06-01

    In February of 1900, over forty agency representatives and interested citizens began development of the 1991 Mitigation Plan. This effort culminated in the 1993 Implementation Plan for mitigation of fish losses attributable to the construction and operation of Hungry Horse Dam. The primary purpose of this biennial report is to inform the public of the status of ongoing mitigation activities resulting from those planning efforts. A habitat improvement project is underway to benefit bull trout in Big Creek in the North Fork drainage of the Flathead River and work is planned in Hay Creek, another North Fork tributary. Bull trout redd counts have been expanded and experimental programs involving genetic evaluation, outmigrant monitoring, and hatchery studies have been initiated, Cutthroat mitigation efforts have focused on habitat improvements in Elliott Creek and Taylor`s Outflow and improvements have been followed by imprint plants of hatchery fish and/or eyed eggs in those streams. Rogers Lake west of Kalispell and Lion Lake, near Hungry Horse, were chemically rehabilitated. Cool and warm water fish habitat has been improved in Halfmoon Lake and Echo Lake. Public education and public interest is important to the future success of mitigation activities. As part of the mitigation team`s public awareness responsibility we have worked with numerous volunteer groups, public agencies, and private landowners to stimulate interest and awareness of mitigation activities and the aquatic ecosystem. The purpose of this biennial report is to foster public awareness of, and support for, mitigation activities as we move forward in implementing the Hungry Horse Dam Fisheries Mitigation Implementation Plan.

  20. Potential GHG mitigation options for agriculture in China

    SciTech Connect (OSTI)

    Erda, Lin; Yue, Li; Hongmin, Dong

    1996-12-31

    Agriculture contributes more or less to anthropogenic emissions of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). China`s agriculture accounts for about 5-15% of total emissions for these gases. Land-use changes related to agriculture are not major contributors in China. Mitigation options are available that could result in significant decrease in CH{sub 4} and N{sub 2}O emissions from agricultural systems. If implemented, they are likely to increase crop and animal productivity. Implementation has the potential to decrease CH{sub 4} emissions from rice, ruminants, and animal waste by 4-40%. The key to decreasing N{sub 2}O emissions is improving the efficiency of plant utilization of fertilizer N. This could decrease N{sub 2}O emissions from agriculture by almost 20%. Using animal waste to produce CH{sub 4} for energy and digested manure for fertilizer may at some time be cost effective. Economic analyses of options proposed should show positive economic as well as environmental benefits.

  1. Electron cloud experiments at Fermilab: Formation and mitigation

    SciTech Connect (OSTI)

    Zwaska, R.; /Fermilab

    2011-06-01

    We have performed a series of experiments at Fermilab to explore the electron cloud phenomenon. The Main Injector will have its beam intensity increased four-fold in the Project X upgrade, and would be subject to instabilities from the electron cloud. We present measurements of the cloud formation in the Main Injector and experiments with materials for the mitigation of the Cloud. An experimental installation of Titanium-Nitride (TiN) coated beam pipes has been under study in the Main Injector since 2009; this material was directly compared to an adjacent stainless chamber through electron cloud measurement with Retarding Field Analyzers (RFAs). Over the long period of running we were able to observe the secondary electron yield (SEY) change and correlate it with electron fluence, establishing a conditioning history. Additionally, the installation has allowed measurement of the electron energy spectrum, comparison of instrumentation techniques, and energydependent behavior of the electron cloud. Finally, a new installation, developed in conjunction with Cornell and SLAC, will allow direct SEY measurement of material samples irradiated in the accelerator.

  2. Mitigating Wind-Radar Interference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Wind-Radar Interference Mitigating Wind-Radar Interference April 1, 2013 - 12:54pm Addthis This is an excerpt from the First Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) and federal agency partners recently completed the final operational field test in a 2-year initiative to accelerate the deployment of the most promising new technologies for mitigating radar interference caused by the physical and electromagnetic effects of wind

  3. Insider Threat - Material Control and Accountability Mitigation

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T

    2011-01-01

    compensating mitigation can decrease the risk of an insider performing a malicious act without detection.

  4. Mitigation of Severe Accident Consequences Using Inherent Safety Principles

    SciTech Connect (OSTI)

    R. A. Wigeland; J. E. Cahalan

    2009-12-01

    Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to

  5. Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Mundinger, John

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

  6. Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate Use of Mitigated Findings of No Significant Impact (CEQ, 2011)

    Broader source: Energy.gov [DOE]

    The Council on Environmental Quality is issuing this guidance for Federal departments and agencies on establishing, implementing, and monitoring mitigation commitments identified and analyzed in Environmental Assessments, Environmental Impact Statements, and adopted in the final decision documents. This guidance also clarifies the appropriate use of mitigated "Findings of No Significant Impact" under the National Environmental Policy Act (NEPA). The guidance explains the requirements of NEPA and the CEQ Regulations, describes CEQ policies, and recommends procedures for agencies to use to help them comply with the requirements of NEPA and the CEQ Regulations when they establish mitigation planning and implementation procedures

  7. EA-1096: Washington Wildlife Mitigation Projects (Programmatic), Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Bonneville Power Administration to fund the portion of the Washington Wildlife Mitigation Agreement...

  8. EA-1636: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Burnt Woods and Santiam-Toledo Pole Replacement Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Albany-Burnt Woods and...

  9. EIS-0473: Mitigation Action Plan | Department of Energy

    Office of Environmental Management (EM)

    EIS-0473: Mitigation Action Plan W.A. Parish Post-Combustion CO2 Capture and Sequestration ... demonstration of the W.A. Parish Post-Combustion CO2 Capture and Sequestration Project. ...

  10. Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2014-01-01

    This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

  11. Market-based Wildlife Mitigation in Wyoming: A Primer | Open...

    Open Energy Info (EERE)

    A Primer Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Market-based Wildlife Mitigation in Wyoming: A Primer Abstract Covers the basics of...

  12. EIS-0332: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kV transmission line between Bonneville Power Administration's existing McNary and John Day substations. PDF icon DOEEIS-0332: Mitigation Action Plan for the McNary-John Day...

  13. EA-1934: 2014 Annual Report for Mitigation Action Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Site, Richland, Washington This annual report provides a summary of DOEEA-1934 Mitigation Action Plan implementation in calendar year 2014. PDF icon EA-1934-FEA-MAP-2014...

  14. Introduction to Administrative Programs that Mitigate the Insider Threat

    SciTech Connect (OSTI)

    Gerke, Gretchen K.; Rogers, Erin; Landers, John; DeCastro, Kara

    2012-09-01

    This presentation begins with the reality of the insider threat, then elaborates on these tools to mitigate the insider threat: Human Reliability Program (HRP); Nuclear Security Culture (NSC) Program; Employee Assistance Program (EAP).

  15. National Mitigation Planning in Agriculture: Review and Guidelines...

    Open Energy Info (EERE)

    Simple Website: www.fao.orgdocrep017i3237ei3237e.pdf Language: English This review of national greenhouse gas (GHG) mitigation planning in the agriculture sector provides...

  16. EIS-0460: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FutureGen 2.0 Project, Morgan County, Illinois This Mitigation Action Plan (MAP) briefly ... DOE prepared this MAP in accordance with 10 Code of Federal Regulations (CFR) 1021.331. ...

  17. EIS-0026: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0026: Mitigation Action Plan Waste Isolation Pilot Plant This MAP focuses on ... Action Plan, is the central focus of this MAP and will be updated as needed to allow for ...

  18. Over-Pressurized Drums: Their Causes and Mitigation

    SciTech Connect (OSTI)

    Simmons, Fred; Kuntamukkula, Murty; Quigley, David; Robertson, Janeen; Freshwater, David

    2009-07-10

    Having to contend with bulging or over-pressurized drums is, unfortunately, a common event for people storing chemicals and chemical wastes. (Figure 1) The Department of Energy alone reported over 120 incidents of bulging drums between 1992 and 1999 (1). Bulging drums can be caused by many different mechanisms, represent a number of significant hazards and can be tricky to mitigate. In this article, we will discuss reasons or mechanisms by which drums can become over-pressurized, recognition of the hazards associated with and mitigation of over-pressurized drums, and methods that can be used to prevent drum over-pressurization from ever occurring. Drum pressurization can represent a significant safety hazard. Unless recognized and properly mitigated, improperly manipulated pressurized drums can result in employee exposure, employee injury, and environmental contamination. Therefore, recognition of when a drum is pressurized and knowledge of pressurized drum mitigation techniques is essential.

  19. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

  20. Advanced Technology Development and Mitigation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Advanced Technology Development and Mitigation The Advanced Technology Development and Mitigation (ATDM) subprogram includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals relevant to the broad national security missions of the NNSA. It addresses the need to adapt current integrated design codes and build new codes that are attuned to emerging computing technologies. Performing this work within the

  1. Recent Developments in Field Response for Mitigation of Radiological

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incidents | Department of Energy Developments in Field Response for Mitigation of Radiological Incidents Recent Developments in Field Response for Mitigation of Radiological Incidents Carlos Corredor*, Department of Energy; Charley Yu, Argonne National Labs Abstract: Since September 11, 2001, there has been a large effort by the government to develop new methods to reduce the consequence of potential radiological incidents. This is evident in the enhancement of technologies and methods to

  2. Recent Diesel Engine Emission Mitigation Activities of the Maritime

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Energy Technologies Program | Department of Energy Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program 2003 DEER Conference Presentation: Maritime Administration 2003_deer_gore.pdf (759.73 KB) More Documents & Publications The Maritime Administration's Energy and Emissions Program - Part 2 Reduction of Emissions

  3. EERE Success Story-Mitigating Potential Environmental Impacts of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Mitigating Potential Environmental Impacts of Energy Development EERE Success Story-Mitigating Potential Environmental Impacts of Energy Development April 15, 2013 - 12:00am Addthis Partnering with EERE, Normandeau Associates of Bedford, New Hampshire, developed a tool that characterizes the risk for bird and bat species that may be susceptible to collisions with wind turbines. This tool will be used in environmental decision-making for the planning,

  4. Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-01-01

    The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  5. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

  6. 2014 WIND POWER PROGRAM PEER REVIEW-MARKET BARRIER MITIGATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Barrier Mitigation March 6-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Market Barrier Mitigation Siting, Environmental and Permitting- Karin Sinclair, National Renewable Energy Laboratory Developing high-resolution spatial data of migration corridors for avian species of concern in regions of high potential wind development- Todd Katzner, West Virginia University Deepwater Offshore Bat Monitoring Program-Steven K Pelletier, Stantec Consulting Services, Inc. A Synchronized

  7. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L.; Bezdek, Roger; Wendling, Robert

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  8. A statistical approach to designing mitigation for induced ac voltages

    SciTech Connect (OSTI)

    Dabkowski, J. [Electro Sciences, Inc., Crystal Lake, IL (United States)

    1996-08-01

    Induced voltage levels on buried pipelines collocated with overhead electric power transmission lines are usually mitigated by means of grounding the pipeline. Maximum effectiveness is obtained when grounds are placed at discrete locations along the pipeline where the peak induced voltages occur. The degree of mitigation achieved is dependent upon the local soil resistivity at these locations. On occasion it may be necessary to employ an extensive distributed grounding system, for example, a parallel buried wire connected to the pipe at periodic intervals. In this situation the a priori calculation of mitigated voltage levels is sometimes made assuming an average value for the soil resistivity. Over long distances, however, the soil resistivity generally varies as a log-normally distributed random variable. The effect of this variability upon the predicted mitigated voltage levels is examined. It is found that the predicted levels exhibit a statistical variability which precludes a precise determination of the mitigated voltage levels. Thus, post commissioning testing of the emplaced mitigation system is advisable.

  9. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    SciTech Connect (OSTI)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; Johnson, D.; Monier, Erwan; Strzepek, J.; Yoon, Jin-Ho

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richness in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.

  10. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; et al

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less