Sample records for idaho technologies company

  1. Lockheed Martin Idaho Technologies Company information management technology architecture

    SciTech Connect (OSTI)

    Hughes, M.J.; Lau, P.K.S.

    1996-05-01T23:59:59.000Z

    The Information Management Technology Architecture (TA) is being driven by the business objectives of reducing costs and improving effectiveness. The strategy is to reduce the cost of computing through standardization. The Lockheed Martin Idaho Technologies Company (LMITCO) TA is a set of standards and products for use at the Idaho National Engineering Laboratory (INEL). The TA will provide direction for information management resource acquisitions, development of information systems, formulation of plans, and resolution of issues involving LMITCO computing resources. Exceptions to the preferred products may be granted by the Information Management Executive Council (IMEC). Certain implementation and deployment strategies are inherent in the design and structure of LMITCO TA. These include: migration from centralized toward distributed computing; deployment of the networks, servers, and other information technology infrastructure components necessary for a more integrated information technology support environment; increased emphasis on standards to make it easier to link systems and to share information; and improved use of the company`s investment in desktop computing resources. The intent is for the LMITCO TA to be a living document constantly being reviewed to take advantage of industry directions to reduce costs while balancing technological diversity with business flexibility.

  2. Enforcement Letter, Lockheed Martin Idaho Technologies Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    related to a Repetitive Problem with Instrument Operability at the Idaho National Engineering and Environmental Laboratory On August 4, 1998, the U.S. Department of Energy...

  3. Cooperative Research and Development Agreement between the California Air Resources Board and Lockheed Martin Idaho Technologies Company. Final report

    SciTech Connect (OSTI)

    Cole, G.H.

    1998-04-01T23:59:59.000Z

    This report summarizes the activities under a Cooperative Research and Development Agreement (CRADA) between Lockheed-Martin Idaho Technologies Company (LMITCO) and the California Air Resources Board (CARB). The activities were performed at the Idaho National Engineering and Environmental Laboratory (INEEL) between June 1995 and December 1997. Work under this agreement was concentrated in two task areas as defined in the California Air Resources Board`s contract number 94-908 having an approval date of June 9, 1995: Task 1--EV and HEV Vehicle Testing and Assessment and Task 4--Advanced Battery Testing.

  4. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Idaho Technologies Company related to Unplanned Internal Radiation Exposures at the Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory,...

  5. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Lockheed Martin Idaho Technologies Company, related to Unauthorized Disabling of the Seismic Scram Subsystem and Surveillance Deficiencies at the Advanced Test Reactor Critical...

  6. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company related to Work Process Deficiencies at the Test Reactor Area and Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory,...

  7. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  8. City of Minidoka, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban TransportMartinsville,Minidoka, Idaho (Utility Company)

  9. City of Plummer, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, Idaho (Utility Company) Jump to:

  10. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-12-01T23:59:59.000Z

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  11. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Company, related to a Radioactive Material Release at the Idaho National Engineering and Environmental Laboratory, (EA-98-04) On June 4, 1998, the U.S. Department of...

  12. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    SciTech Connect (OSTI)

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23T23:59:59.000Z

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  13. City of Albion, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,CimaCirisAlbion, Idaho (Utility

  14. City of Soda Springs, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach, FloridaCityRuston,CitySoda Springs, Idaho

  15. Idaho Power Company Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT Power LimitedIdaTech UK JumpIdaho

  16. Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

  17. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    Matthew Shirk Idaho National Laboratory 16 May 2012 VSS021 This presentation does not contain any proprietary, confidential, or otherwise restricted information INLMIS-12-25036...

  18. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Quality Assurance, Emergency Communications, and other issues at the Idaho National Engineering and Environmental laboratory, (EA-1999-07) On August 18, 1999, the U.S. Department...

  19. National Interest Security Company NISC Formerly Technology Management...

    Open Energy Info (EERE)

    National Interest Security Company NISC Formerly Technology Management Services TMS Inc Jump to: navigation, search Name: National Interest Security Company (NISC) (Formerly...

  20. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies Company

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment of- EA-1999-07 | Department of

  1. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies Company

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment of- EA-1999-07 | Department of-

  2. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies Company

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment of- EA-1999-07 | Department of--

  3. Enforcement Letter, Lockheed Martin Idaho Technologies Company - August 4,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC |Departmentinputof Energy 12,Department1997

  4. Idaho's Energy Options

    SciTech Connect (OSTI)

    Robert M. Neilson

    2006-03-01T23:59:59.000Z

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  5. Hydrogen Technology Park DTE Energy -Company Overview

    E-Print Network [OSTI]

    Gas Production Detroit Edison Power Generation Energy Services* Energy Trading Biomass Energy Coal billion · 2.6 million customers · 11,000 MW of generation · 600 BCF natural gas delivery · 11,000 employees #12;3 Diversified Energy and Energy Technology Company * Energy Services: Coal Based Fuels

  6. Hiring Company: Chevron Oronite Technology Group, a Chevron Company

    E-Print Network [OSTI]

    Southern California, University of

    additives for fuels and lubricating oils. We are a Global company and a subsidiary of Chevron Corporation

  7. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandards forandDepartment ofIdaho National

  8. Idaho Nuclear Technology and Engineering Center Tank Farm Facility |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandards forandDepartment ofIdahoDepartment

  9. Idaho National Laboratory Description, Chellenges, Technology, Issues, and Needs

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1i f th Hi

  10. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael F. Simpson

    2012-03-01T23:59:59.000Z

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  11. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    2007-06-01T23:59:59.000Z

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  12. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

    1999-10-01T23:59:59.000Z

    The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

  14. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss021francfort2011o.pdf More Documents & Publications Vehicle...

  15. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    1999-06-01T23:59:59.000Z

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  16. Idaho National Laboratory Technologies Available for Licensing - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventyTechnologies

  17. Idaho National Laboratory Testing of Advanced Technology Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology Vision 2020WasteImplementation

  18. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

    1999-10-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  19. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

    1999-09-30T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  20. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  1. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  2. Patent Litigation for High Technology and Life Sciences Companies

    E-Print Network [OSTI]

    Shamos, Michael I.

    Patent Litigation for High Technology and Life Sciences Companies #12;© 2005 Fenwick & West LLP Corporate (emerging growth, financings, securities, mergers & acquisitions) n Intellectual Property (patent, copyright, licensing, trademark) n Litigation (patent and other IP, securities, antitrust, employment

  3. Cold Crucible Induction Melter Testing at The Idaho National Laboratory for the Advanced Remediation Technologies Program

    SciTech Connect (OSTI)

    Jay Roach; Nick Soelberg; Mike Ancho; Eric Tchemitcheff; John Richardson

    2009-03-01T23:59:59.000Z

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. This paper provides preliminary results of tests using the engineering-scale CCIM test system located at the INL. The CCIM test system was operated continuously over a time period of about 58 hours. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated semi-continuously because the glass drain rate was higher than the glass feedrate. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was operated with a target melt temperature of either 1,250oC or 1,300oC, and with either a partial or complete cold cap of unmelted feed on top of the molten glass. Samples of all input and output streams were collected for analysis. Laboratory analyses and mass balances will be used to determine the fate of feed constituents, especially Cs. The melter off-gas composition was measured at the melter outlet duct. Sample analyses are still in progress; but preliminary conclusions are possible using the continuous emissions monitoring system (CEMS) data. The concentrations of CO2, CO, CH4, total hydrocarbons (THC), and NOx increased with increasing feedrate of the feed containing water, nitrates, and formate. Over 90% of the formate (a reductant used in the simulant feed) was converted to CO2 and water vapor. Under 6-9% of the H in the formate converted to H2, and under 1% of the formate decomposed to gaseous hydrocarbons. This small degree of formate conversion to potentially flammable off-gas species reduces off-gas flammability concerns. About 36-61% of the NOx in the off-gas (evolved from nitrites and nitrates in the feed) was destroyed.

  4. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    SciTech Connect (OSTI)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-03-01T23:59:59.000Z

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites. Objectives of the research included: (1) defining the range of concerns of the public toward different bioremediation strategies and long-term stewardship; (2) creating materials and delivery methods that address bioremediation issues; and (3) assessing the effectiveness of the consensus workshop in identifying concerns about bioremediation and involving the public in a dialogue about their use. After a brief description of the Idaho workshop, we discuss the range of concerns articulated by the participants about bioremediation, discuss the materials and delivery methods used to communicate information about bioremediation, and assess the effectiveness of the consensus workshop. In summary we found that panel members in general: understood complex technical issues, especially when given enough time in a facilitated discussion with experts; are generally accepting of in situ bioremediation, but concerned about costs, safety, and effectiveness of the technology; are concerned equally about technology and decision processes; and liked the consensus workshop approach to learning about bioremediation.

  5. Pennsylvania Company Develops Solar Cell Printing Technology

    Broader source: Energy.gov [DOE]

    The technology uses Plextronics’ conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

  6. Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination

    SciTech Connect (OSTI)

    Jacobson, Victor Levon

    2002-08-01T23:59:59.000Z

    U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

  7. Idaho HWMA/RCRA Closure Plan for Idaho Nuclear Technology and Engineering Center Tanks WM-182 and WM-183 - Rev. 2

    SciTech Connect (OSTI)

    Evans, Susan Kay; unknown

    2000-12-01T23:59:59.000Z

    This document presents the plan for the closure of the Idaho Nuclear Technology and Engineering Center Tank Farm Facility tanks WM-182 and WM-183 in accordance with Idaho Hazardous Waste Management Act/Resource Conservation and Recovery Act interim status closure requirements. Closure of these two tanks is the first in a series of closures leading to the final closure of the eleven 300,000-gal tanks in the Tank Farm Facility. As such, closure of tanks WM-182 and WM-183 will serve as a proof-of-process demonstration of the waste removal, decontamination, and sampling techniques for the closure of the remaining Tank Farm Facility tanks. Such an approach is required because of the complexity and uniqueness of the Tank Farm Facility closure. This plan describes the closure units, objectives, and compliance strategy as well as the operational history and current status of the tanks. Decontamination, closure activities, and sampling and analysis will be performed with the goal of achieving clean closure of the tanks. Coordination with other regulatory requirements, such as U.S. Department of Energy closure requirements, is also discussed.

  8. Williams Companies Distinguished Chair in Energy Technology Raj Singh will lead

    E-Print Network [OSTI]

    Piao, Daqing

    Williams Companies Distinguished Chair in Energy Technology Raj Singh will lead the new school Williams Companies Distinguished Chair in Energy Technology. "I'm quite excited by what we are doing at OSU Companies Distinguished Chair in Energy Technology. As the chair, Singh will research advanced materials

  9. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01T23:59:59.000Z

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  10. Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center

    SciTech Connect (OSTI)

    M. D. Staiger; Michael Swenson; T. R. Thomas

    2004-05-01T23:59:59.000Z

    This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

  11. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01T23:59:59.000Z

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  12. Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    S. L. Claggett

    1999-12-01T23:59:59.000Z

    This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years.

  13. Company Name: Linear Technology Corporation Web Site: www.linear.com

    E-Print Network [OSTI]

    New Hampshire, University of

    Company Name: Linear Technology Corporation Web Site: www.linear.com Industry: Semiconductor Brief worldwide for three decades. The Company's products provide an essential bridge between our analog world

  14. Horsehead Resource Development Company, Inc. , flame reactor technology. Technology demonstration summary

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Under the Superfund Innovative Technology Evaluation (SITE) program, the Horsehead Resource Development Company, Inc., (HRD) Flame Reactor was evaluated during a series of test runs. The tests were conducted at the HRD facility in Monaca, PA, using 72 tons of secondary lead smelter soda slag (waste feed) from the National Smelting and Refining Company, Inc., site in Atlanta, GA. The waste feed contained lead, zinc, iron, and many other metals and inorganic compounds. This summary includes an overview of the demonstration, a technology description, analytical results, and conclusions.

  15. Results of 2001 Groundwater Sampling in Support of Conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the Vicinity of the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Meachum, T.R.

    2002-04-26T23:59:59.000Z

    This report summarizes the results of sampling five groundwater monitoring wells in the vicinity of the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory in 2001. Information on general sampling practices, quality assurance practices, parameter concentrations, representativeness of sampling results, and cumulative cancer risk are presented. The information is provided to support a conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the vicinity of the Idaho Nuclear Technology and Engineering Center.

  16. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  17. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3

    SciTech Connect (OSTI)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

  18. A comparative analysis of technological learning systems in emerging rotorcraft companies

    E-Print Network [OSTI]

    Gan, Thiam Soon

    2011-01-01T23:59:59.000Z

    The aim of this research is to understand how emerging rotorcraft companies in various countries accomplished technological learning over the last sixty years. Owing to its unique products and growing market demand, ...

  19. Company Name: OPNET Technologies Inc. Web Site: www.opnet.com

    E-Print Network [OSTI]

    New Hampshire, University of

    Company Name: OPNET Technologies Inc. Web Site: www.opnet.com Industry: Computer Software Brief Majors they typically recruit: Business Administration, Computer Engineering, Computer Science, Electrical Engineering Internship Description: We recruit students for Internship/Co-op Opportunities at our

  20. FMC-Argonne project could expand use of company's lithium technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FMC-Argonne project could expand use of company's lithium technology May 28, 2014 Tweet EmailPrint Researchers at the U.S. Department of Energy's Argonne National Laboratory...

  1. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect (OSTI)

    Griebenow, B.

    1996-03-01T23:59:59.000Z

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  2. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-04-22T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  3. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

    2003-04-01T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  4. Training Reciprocity Achieves Greater Consistency, Saves Time and Money for Idaho, Other DOE Sites

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – Contracting companies supporting EM’s cleanup program at the Idaho site volunteered to be among the first to use a new DOE training reciprocity program designed to bring more consistency to health and safety training across the complex, reduce redundancy and realize savings and other efficiencies.

  5. NEZ PERCE SOIL AND WATER CONSERVATION DISTRICT CULDESAC, IDAHO 83524

    E-Print Network [OSTI]

    of Culdesac, McGregor Company, and the Idaho Soil Conservation Commission. In addition, the District has of the wetland and sod bio-logs that are installed our projects. This results in more on-the-ground projects

  6. Idaho Site Closes Out Decontamination and Decommissioning Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. The Engineering Test Reactor vessel is shown...

  7. The critical role of manufacturing-process innovation on product development excellence in high-technology companies

    E-Print Network [OSTI]

    Duarte, Carlos E. A., 1962-

    2004-01-01T23:59:59.000Z

    Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

  8. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  9. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  10. Productivity genefits from new energy technology: A case study of a paint manufacturing company

    SciTech Connect (OSTI)

    Raghunathan, P.; Capehart, B.L.

    1997-06-01T23:59:59.000Z

    In many cases, implementing new energy efficiency technologies not only helps facilities reduce their energy costs, but it also creates greater profits by increasing productivity. These added benefits from productivity improvements can sometimes be greater than the energy cost savings, and can result in an attractive overall payback period for implementing the new technology. This paper presents a case study of productivity improvement at a paint manufacturing company as a result of implementing new energy efficiency technology. During an industrial energy assessment, it was noted that the company had experienced frequent failures of motor belts and sheaves on five paint mixers resulting in significant replacement costs and labor costs. In addition, a bigger loss was being suffered due to lost potential profit associated with the frequent work stoppages. The IAC recommendation was to install motor soft starters (also known as motor voltage controllers) on the five mixing machines. Installation of soft starters would have the following benefits: lower energy costs, lower replacement costs for transmission components, lower labor costs, and higher production levels and increased profits. The total annual benefits were estimated at $122,659, of which the benefits from increased productivity were nearly $67,000. The overall simple payback period for installing the soft starters was less than 2 months.

  11. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01T23:59:59.000Z

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  12. City of Idaho Falls, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCity of Hope, NorthHubbard,CityCityCity

  13. Idaho National Engineering Laboratory site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    Mitchell, R.G.; Peterson, D.; Hoff, D.L.

    1996-08-01T23:59:59.000Z

    This report presents a compilation of data collected in 1995 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering Laboratory (INEL). During 1995, the offsite surveillance program was conducted by the Environmental Science and Research Foundation. Onsite surveillance was performed by Lockheed Idaho Technologies Company (LITCO). Ground-water monitoring, both on and offsite, was performed by the US Geological Survey (USGS). This report also presents summaries of facility effluent monitoring data collected by INEL contractors. This report, prepared in accordance with the requirements in DOE Order 5400.1, is not intended to cover the numerous special environmental research programs being conducted at the INEL by the Foundation, LITCO, USGS, and others.

  14. Affordable Solar Energy Solar Powder is a solar-energy company that has developed an innovative technology that will set a new

    E-Print Network [OSTI]

    Jawitz, James W.

    Affordable Solar Energy Solar Powder is a solar-energy company that has developed an innovative technology that will set a new low cost point for solar energy. The company plans to manufacture and distribute high-efficiency, high yield, low cost solar panels. The company is making green energy more

  15. Evaluation and selection of aqueous-based technology for partitioning radionuclides from ICPP calcine

    SciTech Connect (OSTI)

    Olson, A.L.; Schulz, W.W.; Burchfield, L.A.; Carlson, C.D.; Swanson, J.L.; Thompson, M.C.

    1993-02-01T23:59:59.000Z

    Early in 1993 Westinghouse Idaho Nuclear Company (WINCO) chartered a Panel of Nuclear Separations Experts. The purpose of this Panel was to assist WINCO scientists and engineers in selecting, evaluating, and ranking candidate aqueous-based processes and technologies for potential use in partitioning selected radionuclides from nitric acid solutions of retrieved Idaho Chemical Processing Plant (ICPP) calcine. Radionuclides of interest are all transuranium elements, {sup 90}Sr, {sup 99}Tc, {sup 129}I, and {sup 137}Cs. The six man Panel met for 4 days (February 16--19, 1993) on the campus of the Idaho State University in Pocatello, Idaho. Principal topics addressed included: Available radionuclide removal technology; applicability of separations technology and processes to ICPP calcine; and potential integrated radionuclide partitioning schemes. This report, prepared from contributions from all Panel members, presents a comprehensive account of the proceedings and significant findings of the February, 1993 meeting in Pocatello.

  16. EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho.  The...

  17. Business model transformation for the international division of a fortune 100 high technology company

    E-Print Network [OSTI]

    Mokhtari Dizaji, Reza, 1968-

    2008-01-01T23:59:59.000Z

    Raytheon Canada in Waterloo, Ontario offers a very interesting but challenging research case. As one of the international divisions of Raytheon Corporation, the company has a business model similar to its parent company. ...

  18. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

  19. Company Profile Mobileye is the leading provider of automated driver assistance technologies to the automotive industry.

    E-Print Network [OSTI]

    Adler, Joan

    to the automotive industry. Founded in 1999, the company has established itself as the leader in vision systems for intelligent transportation systems (ITS), and has gained recognition from the leading automotive companies computers and at a fraction of the cost. EyeQ meets automotive cabin grade qualification requirements

  20. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan K.

    2002-01-02T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  1. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan Keith

    2002-01-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  2. The NORM technology connection web site : streamlined access to NORM-related service company and regulatory information.

    SciTech Connect (OSTI)

    Smith, K. P.; Richmond, P.; LePoire, D. J.; Arnish, J. J.; Johnson, R.

    2000-11-08T23:59:59.000Z

    Argonne National Laboratory has developed an Internet web site providing access to critical information needed to support decisions on the management and disposal of wastes containing naturally occurring radioactive material (NORM). The NORM Technology Connection web site provides current information on (1) service companies that provide support on NORM issues (e.g., site characterization and remediation, sample analysis, radiation safety training, disposal) and (2) existing applicable NORM regulations and guidelines. A third element of the site is an electronic mail list that allows users to post or respond to questions about the management of NORM. Development of the NORM Technology Connection web site was funded by the U.S. Department of Energy, Office of Fossil Energy. It is hosted and maintained by the Interstate Oil and Gas Compact Commission. The web site is publicly available; access is free, as is participation by any of the service companies.

  3. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    SciTech Connect (OSTI)

    Patterson, M.W. [Westinghouse Idaho Nuclear Co., Idaho Falls, ID (United States); Thompson, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-01-01T23:59:59.000Z

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities.

  4. Independent Oversight Focused Safety Management Evaluation, Idaho...

    Office of Environmental Management (EM)

    Focused Safety Management Evaluation, Idaho National Engineering and Environmental Laboratory - January 2001 Independent Oversight Focused Safety Management Evaluation, Idaho...

  5. Analysis Activities at Idaho National Engineering & Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Analysis Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's...

  6. EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

  7. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    SciTech Connect (OSTI)

    Patterson, M.W.

    1994-10-01T23:59:59.000Z

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  8. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  9. Acquisition and management of technology-based firms in a trading and investment company

    E-Print Network [OSTI]

    Tanaka, Jin, M.B.A. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Among several key factors affecting new technology innovation, two important ones that are sometimes disturbed by M&A are long-term p-ans and the commitment of the acquired firm's management team. M&A led by technology ...

  10. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31T23:59:59.000Z

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  11. Task 11 - systems analysis of environmental management technologies

    SciTech Connect (OSTI)

    Musich, M.A.

    1997-06-01T23:59:59.000Z

    A review was conducted of three systems analysis (SA) studies performed by Lockheed Idaho Technologies Company (LITCO) on integrated thermal treatment systems (ITTs) and integrated nonthermal treatment systems (INTSs) for the remediation of mixed low-level waste (MLLW) stored throughout the U.S. Department of Energy (DOE) weapons complex. The review was performed by an independent team led by the Energy & Environment Research Center (EERC), including Science Applications International Corporation (SAIC), the Waste Policy Institute (WPI), and Virginia Tech.

  12. Evaluation of Machine Guarding pilot course taught in Idaho Falls, Idaho, June 23, 1992--June 25, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Machine Guarding which was conducted June 23--25 at the Westinghouse Idaho Nuclear Company, in Idaho Falls, Idaho. This class was the fourth pilot course taught. Also, this report summarize the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees` written comments. This class was conducted concurrently with a ``Supervisors Orientation to Occupational Safety in DOE`` class. This allowed the lead instructor to use two experts in the classes without additional cost. The experiment was successful, both from a standpoint of cost and quality. The same format (concurrent classes) will be used at the Nevada test site in October.

  13. Evaluation of Machine Guarding pilot course taught in Idaho Falls, Idaho, June 23, 1992--June 25, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Machine Guarding which was conducted June 23--25 at the Westinghouse Idaho Nuclear Company, in Idaho Falls, Idaho. This class was the fourth pilot course taught. Also, this report summarize the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees' written comments. This class was conducted concurrently with a Supervisors Orientation to Occupational Safety in DOE'' class. This allowed the lead instructor to use two experts in the classes without additional cost. The experiment was successful, both from a standpoint of cost and quality. The same format (concurrent classes) will be used at the Nevada test site in October.

  14. Idaho National Engineering Laboratory Radiological Environmental Surveillance Program 1995 annual report

    SciTech Connect (OSTI)

    Miles, M.; Wilhelmsen, R.N.; Borsella, B.W.; Wright, K.C.

    1996-08-01T23:59:59.000Z

    This report describes calendar year 1995 environmental surveillance activities of Environmental Monitoring and Water Resources of Lockheed Martin Idaho Technologies Company, performed at the following Waste Management Facilities: the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and tow surplus facilities. Results of the sampling performed by the Radiological Environmental Surveillance Program, Site Environmental Surveillance Program, and the United States Geological Survey at these facilities are included in this report. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards and to ensure protection of human health and the environment. This report compares 1995 environmental surveillance data with US DOE Derived Concentration Guides and with data form previous years.

  15. Integrated Safety Management Workshop Registration, PIA, Idaho...

    Office of Environmental Management (EM)

    Idaho National Laboratory More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory PIA - INL Education Programs Business...

  16. Showcasing Solar Technologies from San José Companies at the Tech Museum of Innovation

    Broader source: Energy.gov [DOE]

    In May 2007, the City of San José won a Solar America Showcase award from the US Department of Energy. This award offers technical assistance to help the City realize its ambitious solar technology deployment goals on large buildings and complexes mainly in the revitalized downtown area. In July 2007, a DOE Tiger Team — led by Cécile Warner of the National Renewable Energy Laboratory (NREL) — met with numerous city officials to discuss the City’s solar plans in detail and visit the various sites under consideration for solar technology adoption.

  17. Idaho_Amsterdam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power - Idaho

  18. Idaho_Arkoosh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power - IdahoMitch

  19. In Summary: Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1998

    SciTech Connect (OSTI)

    A. A. Luft; R. B. Evans; T. Saffle; R. G. Mitchell; D. B. Martin

    2000-06-01T23:59:59.000Z

    Scientists from the Environmental Science and Research Foundation, Lockheed Martin Idaho Technologies Company (LMITCO), the US Geological Survey, the Naval Nuclear Propulsion Program Naval Reactors Facility, Argonne National Laboratory-West, and others monitored the environment on and around the INEEL to find contaminants attributable to the INEEL. During 1998, exposures from the INEEL to the public were found to be negligible. The US Department of Energy (DOE) and LMITCO made progress in developing and implementing a site-wide Environmental Management System. This system provides an underlying structure to make the management of environmental activities at the INEEL more systematic and predictable. Pathways by which INEEL contaminants might reach people off the INEEL were monitored. These included air, precipitation, water, locally grown food (milk, lettuce, wheat, and potatoes), livestock, game animals, soil, and direct ionizing radiation. Results from samples collected to monitor these pathways often contain ''background radioactivity,'' which is radioactivity from natural sources and nuclear weapons tests carried out between 1945 and 1980. According to results obtained in 1998, radioactivity from operations at the INEEL could not be distinguished from this background radioactivity in the regions surrounding the INEEL. Because radioactivity from the INEEL was not detected by offsite environmental surveillance methods, computer models were used to estimate the radiation dose to the public. The hypothetical maximum dose to an individual from INEEL operations was calculated to be 0.08 millirem. That is 0.002 percent of an average person's annual dose of 360 millirem from natural background radiation in southeast Idaho.

  20. In Summary: Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1997

    SciTech Connect (OSTI)

    R. G. Mitchell; D. E. Roush, Jr.; R. B. Evans

    1998-10-01T23:59:59.000Z

    Scientists from the Environmental Science and Research Foundation, Lockheed Martin Idaho Technologies Company, the US Geological Survey, and other INEEL contractors monitored the environment on and around the INEEL to find contaminants attributable to the INEEL. During 1997, exposures from the INEEL to the public were found to be negligible. Pathways by which INEEL contaminants might reach people were monitored. These included air, precipitation, water, locally grown food (wheat, milk, potatoes, and lettuce), livestock, game animals, and direct radiation. Results from samples collected to monitor these pathways often contain radioactivity from natural sources and nuclear weapons testing carried out in the 1950s and 1960s, termed ''background radioactivity.'' According to the results obtained in 1997, radioactivity from operations at the INEEL could not be distinguished from this background radioactivity in the regions surrounding the INEEL. Because radioactivity from t! he INEEL wa s not detected by offsite environmental surveillance methods, computer models were used to estimate a radiation dose to people. The hypothetical maximum individual dose from the INEEL was calculated to be 0.03 millirem. That is 0.008 percent of an average person's annual dose from background radiation in southeast Idaho.

  1. 1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    L. V. Street

    1999-09-01T23:59:59.000Z

    This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.

  2. Metso Corporation is a EUR 4.2 billion engineering and technology company with core businesses in the areas of fiber and paper making,

    E-Print Network [OSTI]

    Fisher, Kathleen

    rollout to 2,600 employees · Marked improvement in product delivery, project management and salesMetso Corporation is a EUR 4.2 billion engineering and technology company with core businesses in the areas of fiber and paper making, rock and minerals processing, and automation and control. Metso

  3. Idaho Cleanup Contractor Surpasses Significant Safety Milestones

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – For the second time in a little over a year, employees with DOE contractor CH2M-WG Idaho (CWI) supporting EM at the Idaho site have achieved 1 million hours without a recordable injury. They also worked more than 1.7 million hours without a lost work-time injury.

  4. E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho...

  5. aquifer idaho national: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and educators from all Idaho state universities; staff 30 Idaho Asphalt Conference October 24, 25, 2012 Attendee List Engineering Websites Summary: 52nd Idaho Asphalt...

  6. Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility...

    Office of Environmental Management (EM)

    Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho...

  7. Successful neural network projects at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Cordes, G.A.

    1991-01-01T23:59:59.000Z

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs.

  8. Idaho National Laboratory Research & Development Impacts

    SciTech Connect (OSTI)

    Nicole Stricker

    2015-01-01T23:59:59.000Z

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  9. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  10. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Technology Solutions for New Manufactured Homes - Washington, Oregon, and Idaho Building America Technology Solutions for New and Existing Homes: Technology Solutions for New...

  11. Marketing Plan Company Description

    E-Print Network [OSTI]

    Dahl, David B.

    productivity without the jitters/crash of normal energy drinks and shots. Short Project Name: Internet groups would generate the most profit? How can we cross-market/up-sell to our email database and 20K the model) Company Description: We are a rapidly growing, subscription-based, finance and technology company

  12. Idaho - Access Management: Standards and Procedures for Highway...

    Open Energy Info (EERE)

    EncroachmentsPermittingRegulatory GuidanceGuideHandbook Author Idaho Transportation Department Published Idaho Transportation Department, 042001 DOI Not Provided...

  13. Occupational Medical Surveillance System (OMSS) PIA, Idaho National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (OMSS) PIA, Idaho National Laboratory More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System...

  14. Scale and differentiation in services : using information technologies to manage customer experiences at Harrah's Entertainment and other companies

    E-Print Network [OSTI]

    Mansharamani, Vikram, 1974-

    2007-01-01T23:59:59.000Z

    This dissertation is focused on the topic of service innovation and explores economies of scale and strategic differentiation in services via an inductive field-based case study of the world's largest casino gaming company, ...

  15. CRAD, Engineering - Idaho Accelerated Retrieval Project Phase...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Idaho Accelerated Retrieval Project Phase II CRAD, Engineering - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

  16. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R. [and others

    1996-07-01T23:59:59.000Z

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  17. IDAHO WATER USER RECOMMENDATIONS MAINSTEM PLAN

    E-Print Network [OSTI]

    IDAHO WATER USER RECOMMENDATIONS ON THE MAINSTEM PLAN COLUMBIA RIVER BASIN FISH AND WILDLIFE PROGRAM SUBMITTED ON BEHALF OF THE COMMITTEE OF NINE AND THE IDAHO WATER USERS ASSOCIATION JUNE 15, 2001 and Flow Augmentation Policy in the Columbia River Basin #12;1 IDAHO WATER USER RECOMMENDATIONS

  18. Idaho National Engineering Laboratory: Annual report, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities.

  19. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01T23:59:59.000Z

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  20. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01T23:59:59.000Z

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  1. CURRICULUM VITAE University of Idaho

    E-Print Network [OSTI]

    : Professor of Fish and Wildlife Resources DEPARTMENT AND CAMPUS ZIP: Fish and Wildlife Resources, 1136 OFFICE and Research Appointments: July 1998-present, Professor, Department of Fish and Wildlife Resources, University of Idaho 1990-June 1998, Associate Professor, Department of Fish and Wildlife Resources, University

  2. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  3. City of Declo, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington,City ofCityCity ofCity ofDeaver,Declo,

  4. City of Weiser, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity of Spencer,CityWaterville,City of Webster

  5. City of Bonners Ferry, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |City ofBlue Earth, Minnesota

  6. City of Burley, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |City ofBlue Earth,City of

  7. City of Heyburn, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCityCity ofCity ofHerndon,City of

  8. City of Rupert, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity of Holyoke,Monroe,City of Quincy,City

  9. Chemical analysis quality assurance at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

    1985-01-01T23:59:59.000Z

    The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

  10. Walk-through survey report: Control technology for metal reclamation industries at East Penn Manufacturing Company Inc. , Lyon Station, Pennsylvania

    SciTech Connect (OSTI)

    Hall, R.M.

    1994-08-12T23:59:59.000Z

    A walk through survey was conducted at the East Penn Manufacturing Company (SIC-3341), Lyon Station, Pennsylvania to identify and evaluate potentially effective controls and work practices in the lead (7439921) reclamation industry. The facility was a secondary lead smelter which operated 7 days a week, and recycled about 20,000 batteries a day, primarily automobile batteries. The company employed automation, local exhaust ventilation, partial enclosures, and enclosed ventilation systems in the reverberatory furnace operations, blast furnace operations, and casting and refinery area to reduce employee exposure to lead. The arsenic (7440382) personal exposure time weighted averages ranged from 0.10 to 1.14 microg/cubic m in the industrial battery breaking area and ranged from nondetected to 6.16 microg/cubic m in the alloying/pots area.

  11. Idaho National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER Subscribe to RSS -Innovation

  12. IDAHO RECOVERY ACT SNAPSHOT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SNAPSHOT Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  13. Idaho Falls Power- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an...

  14. Preliminary Notice of Violation, International Isotopes Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    to Work Planning and Control Deficiencies associated with Replacement of Exhaust Ventilation Filters at the Test Reactor Area Hot Cell Facility at the Idaho National...

  15. Idaho Power- Irrigation Efficiency Rewards Rebate Program

    Broader source: Energy.gov [DOE]

    Through Idaho Power's Irrigation Efficiency Rewards program, agricultural irrigation customers qualify to receive an incentive for a portion of the cost to install a new, more efficient irrigation...

  16. In-depth survey report: Control technology for metal reclamation industries at East Penn Manufacturing Company Inc., Lyon Station, Pennsylvania

    SciTech Connect (OSTI)

    Hall, R.M.; Earnest, G.S.; Jensen, P.A.; Zimmer, A.T.

    1996-06-03T23:59:59.000Z

    In an effort to identify effective hazard control methods and work practices, an in depth evaluation was conducted at the East Penn Manufacturing Company Inc. (SIC-3341), Lyon Station, Pennsylvania, which had previously been identified as having the lowest air lead (7439921) concentrations in lead smelter areas during a previous survey. This facility was primarily involved in lead reclamation from recycled automobile and industrial batteries. Control methods employed included automation, local exhaust ventilation, partial enclosures, and enclosed ventilation systems in the reverberatory and blast furnaces, and in casting and refinery areas. Employees in production areas also wore filtered half mask respirators, adhered to strict company policies on personal hygiene, and participated in incentive programs designed to reduce blood lead levels and encourage good personal hygiene and work practices. The authors noted that there was a potential for significant lead exposure in the blast furnace area, reverberatory furnace area, refinery area, and front end load operations. The authors recommend that efforts be made to improve controls in these areas.

  17. Prehistoric Rock Structures of the Idaho National Laboratory

    SciTech Connect (OSTI)

    Brenda R Pace

    2007-04-01T23:59:59.000Z

    Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

  18. Battelle Energy Alliance - Idaho National Lab, October 2009

    Broader source: Energy.gov (indexed) [DOE]

    and lead a National University Consortium, as well as the three Idaho research universities of the Idaho University Consortium in support of nuclear research and related...

  19. Department of Energy Designates the Idaho National Laboratory...

    Energy Savers [EERE]

    Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National...

  20. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus...

    Energy Savers [EERE]

    AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results The Vehicle...

  1. Voluntary Protection Program Onsite Review, IDAHO NATIONAL LABORATORY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IDAHO NATIONAL LABORATORY Battelle Energy Alliance, LLC May 2006 Voluntary Protection Program Onsite Review, IDAHO NATIONAL LABORATORY Battelle Energy Alliance, LLC May 2006 May...

  2. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

    Office of Environmental Management (EM)

    Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

  3. Idaho County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPoint Hot SpringsIdahoCounty,

  4. Idaho Falls, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ Storage

  5. Idaho Settlement Agreement Signed at Idaho National Laboratory | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1i f th

  6. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). Version 1.0

    SciTech Connect (OSTI)

    Bandy, P.J.; Hall, L.F.

    1993-03-01T23:59:59.000Z

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG&G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

  7. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). [Contaminant transport computer codes

    SciTech Connect (OSTI)

    Bandy, P.J.; Hall, L.F.

    1993-03-01T23:59:59.000Z

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

  8. CompanieswithPNNLRoots All of these companies

    E-Print Network [OSTI]

    Devary Communications ­ 1995 Directed Technologies Drilling, Inc. ­ 1992 Ebasco, (Foster Wheeler Toro Prepaid, Inc., now Coinstar) ­ 1997 New Horizon Technologies, Inc. ­ 1995 Nortec (formerlyCompanieswithPNNLRoots All of these companies have received foundational technology and

  9. Idaho Site | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandardsIdaho National Laboratory Advance

  10. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPoint Hot SpringsIdaho

  11. Idaho_AmericanFallsRockland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power - Idaho Wind

  12. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    to natural gas. 2008 Wind Technologies Market Report 1% windforward gas market. 2008 Wind Technologies Market Report 4.Market Report Wind Penetration (Capacity Basis) Arizona Public Service Avista Utilities California RPS Idaho Power Xcel-PSCo-2008 at 2006 Gas

  13. Technology Solutions for New Manufactured Homes, Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnology Performance Exchange(tm) (TPEx(tm)) is

  14. School of Engineering Design, Technology, and Professional Programs Spring 2013 The Boeing Company 3 Fuel Slosh Amplification and Damping

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE School of Engineering Design, Technology, and Professional Programs Spring 2013 fit into a small manhole and must be able to be installed without piercing or drilling into the lining to determine a new natural tank frequency and to predict slosh forces. A CAD model of the slosh table

  15. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology

    SciTech Connect (OSTI)

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13T23:59:59.000Z

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications (2 total), reports (3 total including this Final Report), and presentations (5 total).

  16. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Broader source: Energy.gov [DOE]

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  17. Independent Oversight Inspection, Idaho National Laboratory- August 2007

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory's Materials and Fuels Complex

  18. Idaho State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology VisionImproper UseIdaho Site

  19. Idaho Waste Retrieval Facility Begins New Role | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology VisionImproper UseIdaho SiteRetrieval

  20. Idaho waste treatment facility startup testing suspended to evaluate system

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology VisionImproper UseIdahoDecades Ago

  1. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  2. Retrofitting the Streetlights in Boise, Idaho

    ScienceCinema (OSTI)

    Young, Clay; Oliver, LeAnn; Bieter, David; Johnson, Michael; Oldemeyer, Neal

    2013-05-29T23:59:59.000Z

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and local quality of life.

  3. Alternative Fuels Data Center: Idaho Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Idaho, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  4. Retrofitting the Streetlights in Boise, Idaho

    Broader source: Energy.gov [DOE]

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and...

  5. Vehicle Technologies Office Merit Review 2015: INL Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical...

  6. High Level Waste Tank Closure Project at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Wessman, D. L.; Quigley, K. D.

    2002-02-27T23:59:59.000Z

    The Department of Energy, Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities.

  7. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  8. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode Island, Vermont, and Wisconsin. A total of 233 companies operated approximately 650 clay pits or quarries

  9. Investment companies

    E-Print Network [OSTI]

    Sauer, Edward F

    1961-01-01T23:59:59.000Z

    stockholder challenged the management fee paid to F. Eberstadt & Co. , Inc. , manager and distributor of Chemical Fund. The court dismissed the case on the grounds that excessive fees had not been proved. This case, however, could hardly be considered a... Tax-Exempt Bond Funds. . . . . . . . Daily Pricing of Mutual Investment Company Shares. 56 57 59 59 60 iv Management Fees. . . . . Tax-Free Exchange Funds . 61 62 V. CONCLUSIONS 63 BIBLIOGRAPHY GLOSSARY OF TERMS Balanced fund...

  10. High Water Heating Bills on Lockdown at Idaho Jail | Department...

    Broader source: Energy.gov (indexed) [DOE]

    High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail August 19, 2010 - 12:05pm Addthis The Blaine County Public Safety Facility...

  11. areas southwestern idaho: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agency University of Idaho Other university students 34 Michael Kyte, University of Idaho Marshall Comstock, Mayor, City of Moscow 9:00 am 12;12; Kyte, Michael 104 College of...

  12. CRAD, Engineering - Idaho MF-628 Drum Treatment Facility | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Idaho MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line...

  13. Idaho: Nez Perce Tribe Energy-Efficient Facilities Upgrade |...

    Energy Savers [EERE]

    Idaho: Nez Perce Tribe Energy-Efficient Facilities Upgrade Idaho: Nez Perce Tribe Energy-Efficient Facilities Upgrade November 8, 2013 - 12:00am Addthis Utilizing 67,000 of EERE's...

  14. Independent Study in Idaho ISI Course BSU Course NOTES

    E-Print Network [OSTI]

    Barrash, Warren

    Independent Study in Idaho ISI Course BSU Course NOTES Updated 03/2012 Boise State University Administration #12;Independent Study in Idaho ISI Course BSU Course NOTES Updated 03/2012 Boise State University

  15. Idaho Power- Rebate Advantage for New Manufactured Homes

    Broader source: Energy.gov [DOE]

    Idaho Power is offering a $1000 sales rebate to customers who purchase a new ENERGY STAR all-electric manufactured home and connect that home to an Idaho Power residential account. In addition, the...

  16. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01T23:59:59.000Z

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  17. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  18. Voluntary Protection Program Onsite Review, Idaho Cleanup Project- October 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Idaho Cleanup Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  19. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.

  20. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Julie Braun Williams

    2013-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  1. Idaho Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformation AbandonIdaho

  2. Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT Power LimitedIdaTech UK JumpIdahoIdaho:

  3. Company Name: Oracle Web Site: www.oracle.com

    E-Print Network [OSTI]

    New Hampshire, University of

    , current product ownership, current and future technology plans and targeted areas of opportunity To viewCompany Name: Oracle Web Site: www.oracle.com Industry: Technology Brief Company Overview: Oracle company. With more than 370,000 customers including 100 of the Fortune 100 in more than 145 countries

  4. Case study of the competitive behavior of companies in response to disruptive technologies in the dynamic environment of changing user needs

    E-Print Network [OSTI]

    Naumov, Sergey A

    2013-01-01T23:59:59.000Z

    Innovations are part of everyday reality in the business life of many companies. While for startups, success in business largely depends on success of innovations as they are trying to enter the market, for large monopolistic ...

  5. EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Idaho National Engineering Laboratory's proposal to remove 344 canisters of Three Mile Island core debris and...

  6. Chevron, GE form Technology Alliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    form Technology Alliance February 3, 2014 HOUSTON, TX, Feb. 3, 2014-Chevron Energy Technology Company and GE Oil & Gas announced today the creation of the Chevron GE Technology...

  7. Matching Gift Companies LEHIGH UNIVERSITY 1 3M Corporation

    E-Print Network [OSTI]

    Gilchrist, James F.

    Corporation Foundation The Eaton Charitable Fund Electroline Corporation Eli Lilly and Company FoundationMatching Gift Companies LEHIGH UNIVERSITY 1 3M Corporation Abbott Laboratories Accenture Foundation Technologies, Inc. Air Products Air Products Foundation Albemarle Corporation Alcoa Foundation Alliance Capital

  8. Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-10-11T23:59:59.000Z

    This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS-0287D), as well as information on available treatment technologies, DOE and the State of Idaho have identified separate preferred alternatives for waste treatment. DOE's preferred alternative for waste treatment is performance based with the focus on placing the wastes in forms suitable for disposal. Technologies available to meet the performance objectives may be chosen from the action alternatives analyzed in this EIS. The State of Idaho's Preferred Alternative for treating mixed transuranic waste/SBW and calcine is vitrification, with or without calcine separations. Under both the DOE and State of Idaho preferred alternatives, newly generated liquid waste would be segregated after 2005, stored or treated directly and disposed of as low-level, mixed low-level, or transuranic waste depending on its characteristics. The objective of each preferred alternative is to enable compliance with the legal requirement to have INEEL HLW road ready by a target date of 2035. Both DOE and the State of Idaho have identified the same preferred alternative for facilities disposition, which is to use performance-based closure methods for existing facilities and to design new facilities consistent with clean closure methods.

  9. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2011-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  10. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2009-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  11. Vehicle Technologies Office Merit Review 2015: Wireless & Conductive Charging Testing to support Code & Standards

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless and...

  12. Idaho Geological Survey and University of Idaho Explore for Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology Vision 2020Waste

  13. Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2005-06-30T23:59:59.000Z

    In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

  14. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long- term management of the high- level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant a t the Idaho National Engineering Laboratory.

  15. PYROPROCESSING PROGRESS AT IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Solbrig, Chuck; B. R. Westphal; Johnson, T.; Li, S.; Marsden, K.; Goff, K. M.

    2007-09-01T23:59:59.000Z

    At the end of May 2007, 830 and 2600 kilograms of EBR-II driver and blanket metal fuel have been treated by a pyroprocess since spent fuel operations began in June 1996. A new metal waste furnace has completed out-of-cell testing and is being installed in the Hot Fuel Examination Facility. Also, ceramic waste process development and qualification is progressing so integrated nuclear fuel separations and high level waste processes will exist at Idaho National Laboratory. These operations have provided important scale-up and performance data on engineering scale operations. Idaho National Laboratory is also increasing their laboratory scale capabilities so new process improvements and new concepts can be tested before implementation at engineering scale. This paper provides an overview of recent achievements and provides the interested reader references for more details.

  16. N-K Manufacturing Technologies: Industrial Energy Assessment Yields Savings of More than $27,000 Per Year for Molded Plastics Company

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at N-K Manufacturing Technologies by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

  17. Geothermal: Sponsored by OSTI -- ESMERALDA ENERGY COMPANY FINAL...

    Office of Scientific and Technical Information (OSTI)

    ESMERALDA ENERGY COMPANY FINAL SCIENTIFIC TECHNICAL REPORT, January 2008, EMIGRANT SLIMHOLE DRILLING PROJECT, DOE GRED III (DE-FC36-04GO14339) Geothermal Technologies Legacy...

  18. Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The

    E-Print Network [OSTI]

    O'Laughlin, Jay

    HIGHLIGHTS Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The state's growers produce about 30% of the U.S. potato crop, but the Idaho potato industry is more than potato fields. Idaho frozen

  19. Idaho Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Memo Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  20. Idaho Falls Power- Commercial Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power is offering a zero interest loan program to qualifying commercial customers to install efficient lighting and other energy conservation measures. The building must receive its...

  1. Idaho Falls Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers rebates to eligible customers on energy efficient HVAC measures and weatherization upgrades. Rebates are available on heat pumps, new manufactured homes and insulation....

  2. Idaho Falls Power- Commercial Energy Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    In addition to loan programs, Idaho Falls Power offers rebates for customers meeting certain criteria. An energy audit will inspect the following measures and recommend upgrades as needed:...

  3. Small Business Opportunities at the Idaho National Laboratory...

    Office of Environmental Management (EM)

    - Nuclear Energy Idaho Operations Office Office of Nuclear Energy (NE) Advance nuclear power as a resource capable of meeting the Nation's energy, environmental, and national...

  4. Idaho Operations Office: American Recovery and Reinvestment Act Update

    ScienceCinema (OSTI)

    Provencher, Rick

    2012-06-14T23:59:59.000Z

    An update from Idaho National Laboratory, Rick Provencher addresses the progress that has been made due to the American Recovery and Reinvestment Act.

  5. Technical Qualification Program Self-Assessment Report - Idaho...

    Office of Environmental Management (EM)

    - Idaho Operations Office - 2014 This TQP self-assessment was performed by a review team with extensive assessment experience. The team lead has participated on past TQP...

  6. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering...

    Energy Savers [EERE]

    03: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs EIS-0203: Spent Nuclear Fuel Management and...

  7. EIS-0290: Idaho National Engineering and Environmental Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Regarding Remote-Handled Transuranic Waste Identified in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental...

  8. Reconnaissance geothermal exploration at Raft River, Idaho from...

    Open Energy Info (EERE)

    exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Reconnaissance geothermal...

  9. Voluntary Protection Program Onsite Review, Idaho National Laboratory- October 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Idaho National Laboratory is continuing to perform at a level deserving DOE-VPP Star recognition.

  10. Curtis Smith, Diego Mandelli, Cristian Rabiti Idaho National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A case study in the interaction of mechanistic and probabilistic safety analysis Curtis Smith, Diego Mandelli, Cristian Rabiti Idaho National Laboratory (INL) RISMC strategic goals...

  11. Idaho Public Utilities Commission Approves Neal Hot Springs Power...

    Open Energy Info (EERE)

    Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves...

  12. Independent Oversight Review of the Idaho National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    DOE-ID DOE Idaho Operations Office DR Damage Ratio DSA Documented Safety Analysis DU Depleted Uranium EBA Evaluation Basis Accident EBE Evaluation Basis Earthquake ECAR...

  13. Once nearly extinct, Idaho sockeye regaining fitness advantage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the wild once more. A newly published analysis by the Idaho Department of Fish and Game and the Northwest Fisheries Science Center shows endangered Snake River...

  14. Freedom of Information and Privacy Act Database PIA, Idaho Operations...

    Office of Environmental Management (EM)

    Office More Documents & Publications PIA - Security Clearance Work Tracking and Budget System TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory...

  15. Occupational Injury & Illness System (01&15) PIA, Idaho National...

    Office of Environmental Management (EM)

    Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Occupational Medicine - Assistant PIA, Idaho National Laboratory VisitDosimBadgeTrckg-PIA.pdf...

  16. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...

    Office of Environmental Management (EM)

    Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars...

  17. Geothermal investigations in Idaho. Part 1. Geochemistry and...

    Open Energy Info (EERE)

    in Idaho. Part 1. Geochemistry and geologic setting of selected thermal waters Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal investigations...

  18. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Electric Vehicle...

  19. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect (OSTI)

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01T23:59:59.000Z

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  20. Idaho National Laboratory Experimental Research In High Temperature Electrolysis For Hydrogen And Syngas Production

    SciTech Connect (OSTI)

    Carl M. Stoots; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2008-09-01T23:59:59.000Z

    The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO2 feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to ~15 kW testing capacity (H2 production rate based upon lower heating value).

  1. Competitor Analysis Company Description

    E-Print Network [OSTI]

    Dahl, David B.

    chemical company providing the household and industrial detergent, personal care, lubricant, oilfield

  2. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    SciTech Connect (OSTI)

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A. [Oak Ridge National Lab., TN (US); Egidi, P.V.; Mather, S.K. [Oak Ridge Inst. for Science and Education, Grand Junction, CO (United States)

    1993-07-01T23:59:59.000Z

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site`s compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building`s interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor`s report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for {sup 60}Co were below the detection limit. The highest {sup 137}Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g.

  3. Consumer Products Companies Company Website Headquarters

    E-Print Network [OSTI]

    McGaughey, Alan

    . www.coach.com New York, NY Coca-Cola Company www.thecoca-colacompany.com Atlanta, GA Cole & Ashcroft L

  4. Idaho Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    facing the State of Idaho. These projects addressed a wide range of physical, engineering and social subject to increased nutrient loads in northern Idaho; the regional economic demand for irrigation water Rathdrum Prairie Aquifer Project Basic Information Title: Award No. 04HQAG0205 Initial Model Development

  5. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect (OSTI)

    Reiser, Dudley W.

    1986-01-01T23:59:59.000Z

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  6. Almo, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo, Idaho: Energy Resources Jump to:

  7. Categorical Exclusion Determinations: Idaho | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 CategoricalIdaho Categorical Exclusion Determinations:

  8. Idaho Treatment Group AMWTP Fact Sheet

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on Armed ServicesDepartment of linkof Energy IDAHO

  9. DOE-Idaho's Packaging and Transportation Perspective

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly3010-94 December 1994 DOE27-99 June 1999Idaho's

  10. Kooskia, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: Energy ResourcesKooskia, Idaho: Energy

  11. Idaho State Historical Society | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho State Board of

  12. Idaho Transportation Department | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho State Board

  13. Idaho/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho Statesource History

  14. Idaho/Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho Statesource

  15. Idaho NPDES Permits Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho

  16. Idaho/Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolid WasteIdahoTransmissionHeader.png Roadmap

  17. Idaho/Transmission/Summary | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎ | Transmission JumpIdaho, the

  18. Idaho/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎ | Transmission JumpIdaho,

  19. Moscow, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr) JumpMorro Bay,Moscow, Idaho:

  20. Banks, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagleyBangladesh: EnergyBanks, Idaho:

  1. Meridian, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls,Mccoy GeothermalEnergieprojekte GmbH JumpIdaho:

  2. Council, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core AnalysisCouncil, Idaho: Energy Resources Jump to:

  3. Boise, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotionBoca Del Mar,EnergyBoise, Idaho:

  4. Idaho Power Co (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT Power LimitedIdaTech UK JumpIdaho Power

  5. EA-1954: Resumption of Transient Testing of Nuclear Fuels and Materials at the Idaho National Laboratory, Idaho

    Broader source: Energy.gov [DOE]

    This Environmental Assessment (EA) evaluates U.S. Department of Energy (DOE) activities associated with its proposal to resume testing of nuclear fuels and materials under transient high-power test conditions at the Transient Reactor Test (TREAT) Facility at the Idaho National Laboratory. The State of Idaho and Shoshone-Bannock Tribes are cooperating agencies.

  6. Gas Companies Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Gas Companies program is a set of rules that encourage the development of the natural gas industry in Tennessee. They empower gas companies to lay piped and extend conductors through the...

  7. City of Plymouth, Wisconsin (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, Idaho (Utility Company) Jump

  8. City of Pocahontas, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, Idaho (Utility Company)

  9. City of Pomona, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, Idaho (Utility Company)Pomona,

  10. Market Research Company Description

    E-Print Network [OSTI]

    Dahl, David B.

    development - Market research for enterprise and education adoption - Plan and execute a company-wide pingMarket Research Company Description: A company focused on developing web-based graphical and future products and then develop the necessary strategies and collateral to stay on the bleeding edge

  11. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    market by industrial companies, 58 including the Electro Optical Systems (EOS) in Germany, Arcam in Sweden, MCP Tooling Technologies in 59 the UK, and Stratasys, 3D Systems,...

  12. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    SciTech Connect (OSTI)

    John S. Irving; R. P. Breckenridge

    1992-12-01T23:59:59.000Z

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface flows can occur as a result of severe cattle grazing along riparian areas and deltas. Groundwater and springs also feed the lake, and are likely critical for oxygen supply during winter stratification. During the winter of 1991, Henrys Lake experienced low dissolved oxygen levels resulting in large fish kills. It is thought that thick ice cover combined with an increase in nutrient loads created conditions resulting in poor water quality. The Idaho Department of Health and Welfare, DEQ is currently conducting a study to determine the water quality of Henrys Lake, the sources contributing to its deterioration, and potential remedial actions to correct problem areas.

  13. Weapons of Mass Destruction Technology Evaluation and Training Range

    SciTech Connect (OSTI)

    Kevin Larry Young

    2009-05-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has a long history for providing technology evaluation and training for military and other federal level Weapons of Mass Destruction (WMD) response agencies. Currently there are many federal organizations and commercial companies developing technologies related to detecting, assessing, mitigating and protecting against hazards associated with a WMD event. Unfortunately, very few locations exist within the United States where WMD response technologies are realistically field tested and evaluated using real chemical, biological, radiological, nuclear and explosive materials. This is particularly true with biological and radiological hazards. Related to this lack of adequate WMD, multi-hazard technology testing capability is the shortage of locations where WMD response teams can train using actual chemical, biological, and radiological material or highly realistic simulates. In response to these technology evaluation and training needs, the INL has assembled a consortium of subject matter experts from existing programs and identified dedicated resources for the purpose of establishing an all-hazards, WMD technology evaluation and training range. The author describes the challenges associated with creating the all-hazards WMD technology evaluation and training range and lists the technical, logistical and financial benefits of an all-hazards technology evaluation and training range. Current resources and capabilities for conducting all-hazard technology evaluation and training at the INL are identified. Existing technology evaluation and training programs at the INL related to radiological, biological and chemical hazards are highlighted, including successes and lessons learned. Finally, remaining gaps in WMD technology evaluation and training capabilities are identified along with recommendations for closing those gaps.

  14. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    and (1) NIH DoD DOE MOU * Microclimate base study - Electric Vehicle Preparedness * Joint Base Lewis McChord * Candidate bases for evaluation * Vehicle data logging, PEV...

  15. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    * PEV infrastructure requirements and impacts are not yet understood * Development of codes and standards for products and testing is required Budget FY 2012 project funding...

  16. Vehicle Technologies Office Merit Review 2015: Idaho National Laboratory

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment ofConstruction || DepartmentTesting of

  17. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment of EnergyDepartment-EA-98-07

  18. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment of

  19. Idaho National Laboratory Testing of Advanced Technology Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 at IowaSecretary ChuSeptember 24, 2014IVANPAH IVANPAH IVANPAH

  20. Section 3116 Determination for Idaho Nuclear Technology and Engineering

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer to FundPreparedContinuing Appropriations Act |Department

  1. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01T23:59:59.000Z

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  2. Status of Tampa Electric Company IGCC Project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1992-01-01T23:59:59.000Z

    Tampa Electric Company will utilize Integrated Gasification Combined Cycle technology for its new Polk Power Station Unit [number sign]1. The project is partially funded under the Department of Energy Clean Coal Technology Program Round III. This paper describes the technology to be used, process details, demonstration of a new hot gas clean-up system, and the schedule, leading to commercial operation in July 1996.

  3. Status of Tampa Electric Company IGCC Project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1992-10-01T23:59:59.000Z

    Tampa Electric Company will utilize Integrated Gasification Combined Cycle technology for its new Polk Power Station Unit {number_sign}1. The project is partially funded under the Department of Energy Clean Coal Technology Program Round III. This paper describes the technology to be used, process details, demonstration of a new hot gas clean-up system, and the schedule, leading to commercial operation in July 1996.

  4. Idaho National Laboratory Vadose Zone Research Park Geohydrological Monitoring Results

    SciTech Connect (OSTI)

    Kristine Baker

    2006-01-01T23:59:59.000Z

    Vadose zone lithology, hydrological characterization of interbed sediments, and hydrological data from subsurface monitoring of Idaho Nuclear Technology and Engineering Center wastewater infiltration are presented. Three-dimensional subsurface lithology of the vadose zone beneath the Vadose Zone Research Park is represented in a 2 dimensional (2 D) diagram showing interpolated lithology between monitoring wells. Laboratory-measured values for saturated hydraulic conductivity and porosity are given for three major interbeds, denoted as the B BC interbed (20 to 35 m bls), the C D interbed (40 to 45 m bls), and the DE 1 2 interbed (55 to 65 m bls), along with an overall physical description of the sediments and geologic depositional environments. Pre-operational pore water pressure conditions are presented to show the presence and location of perched water zones before pond discharge at the New Percolation Ponds. Subsurface infiltration conditions during initial high-volume discharge are presented to show water arrival times and arrival sequences. Steady-state conditions are then presented to show formation and locations of perched water zones and recharge sources after several months of discharge to the New Percolation Ponds.

  5. Update on Ultrasonic Thermometry Development at Idaho National Laboratory

    SciTech Connect (OSTI)

    Joshua Daw; Joy Rempe; John Crepeau

    2012-07-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has initiated an effort to evaluate the viability of using ultrasonic thermometry technology as an improved sensor for detecting temperature during irradiation testing of advanced fuels proposed within the Fuel Cycle Research and Development (FCR&D) program sponsored by the U.S. Department of Energy (US DOE). Ultrasonic thermometers (UTs) work on the principle that the speed at which sound travels through a material (acoustic velocity) is dependent on the temperature of the material. UTs have several advantages over other types of temperature sensors . UTs can be made very small, as the sensor consists only of a small diameter rod which may or may not require a sheath. Measurements may be made up to very high temperature (near the melting point of the sensor material) and, as no electrical insulation is required, shunting effects observed in traditional high temperature thermocouple applications are avoided. Most attractive, however, is the ability to introduce multiple acoustic discontinuities into the sensor, as this enables temperature profiling with a single sensor. The current paper presents initial results from FCR&D UT development efforts. These developments include improved methods for fabricating magnetostrictive transducers and joining them to waveguides, characterization of candidate sensor materials appropriate for use in FCR&D fuels irradiations (both ceramic fuels in inert gas and sodium bonded metallic fuels), enhanced signal processing techniques, and tests to determine potential accuracy and resolution.

  6. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Schulthess, J.L.

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  7. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  8. Idaho National Laboratory Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2008-04-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  9. Idaho National Laboratory Quarterly Performance Analysis

    SciTech Connect (OSTI)

    Lisbeth Mitchell

    2014-11-01T23:59:59.000Z

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  10. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2010-10-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  11. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2012-08-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  12. QER- Comment of Southern Company

    Broader source: Energy.gov [DOE]

    Southern Company Services, Inc., as agent for Alabama Power Company, Georgia Power Company, Gulf Power Company, and Mississippi Power Company, (collectively, “Southern Companies”), are pleased to hereby provide their comments to the Department of Energy as it prepares the Quadrennial Energy Review. If there is anything else that we can do in this regard, please feel free to contact us.

  13. Idaho Application for Permit to Convert a Geothermal Injection...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal Injection Well - Form 4003-3 Form Type ApplicationNotice Form...

  14. Idaho Application for Permit to Construct Modify or Maintain...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- RegulationRegulation: Idaho Application for Permit to Construct Modify or Maintain an Injection Well - Form 42-39-1Legal Published NA...

  15. Idaho Falls Power- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power's Energy Efficiency Loan Program offers zero interest loans for qualifying customers to purchase and install efficient electric appliances. The program will loan up to 100% of the...

  16. Mission Need Statement: Idaho Spent Fuel Facility Project

    SciTech Connect (OSTI)

    Barbara Beller

    2007-09-01T23:59:59.000Z

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  17. Idaho Falls Power- Energy Efficient Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers zero interest loans to all eligible customers for the purchase and installation of energy efficient heat pumps. The Heat Pump Program applies to heating or cooling in...

  18. Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming, Missouri...

    Broader source: Energy.gov (indexed) [DOE]

    in the Mountain West and emerging opportunities in the President's all-of-the-above energy strategy. He will also tour the Human Systems Simulation Laboratory at the Idaho...

  19. Idaho Right-of-Way Encroachment Application and Permit - Other...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Right-of-Way Encroachment Application and Permit - Other Encroachments Form Type ApplicationNotice...

  20. Idaho Power Develops Renewable Integration Tool for More Cost...

    Broader source: Energy.gov (indexed) [DOE]

    developed a Renewables Integration Tool (RIT) that enables grid operators to use wind energy more cost-effectively to serve electricity customers in Idaho and Oregon. The tool was...

  1. Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment

    Broader source: Energy.gov [DOE]

    For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment...

  2. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2013-03-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  3. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2012-03-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  4. Implementation of a manufacturing technology roadmapping initiative

    E-Print Network [OSTI]

    Johnson, Marcus Cullen

    2012-01-01T23:59:59.000Z

    Strategic technology planning is a core competency of companies using technological capabilities for competitive advantage. It is also a competency with which many large companies struggle due to the cross-functional ...

  5. Progress in High-Level Waste Tank Cleaning at the Idaho National Environmental and Engineering Laboratory

    SciTech Connect (OSTI)

    Lockie, K. A.; McNaught, W. B.

    2002-02-26T23:59:59.000Z

    The Department of Energy Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy (DOE) orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). Design, development, and deployment of a remotely operated tank cleaning system were completed in August 2001. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system also uses existing waste transfer technology (steam-jets) to remove tank heel solids from the tank bottoms during the cleaning operations. By using this existing transfer system and commercially available equipment, the cost of developing custom designed cleaning equipment can be avoided. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. This system is also compliant with operational and safety performance requirements at INTEC. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has demonstrated the capability to clean tanks to meet RCRA clean closure standards and DOE closure performance measures. The tank cleaning system deployed at the INTEC offers unique advantages over other approaches evaluated at the INEEL and throughout the DOE Complex. The system's ability to agitate and homogenize the tank heel sludge will simplify verification-sampling techniques and reduce the total quantity of samples required to demonstrate compliance with the performance standards. This will reduce tank closure budget requirements and improve closure-planning schedules.

  6. Capital Reporting Company Quadrennial ...

    Office of Environmental Management (EM)

    3 05-27-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 QUADRENNIAL ENERGY REVIEW STAKEHOLDER MEETING 3 PETROLEUM TRANSMISSION, STORAGE AND DISTRIBUTION ISSUES...

  7. Capital Reporting Company Quadrennial ...

    Broader source: Energy.gov (indexed) [DOE]

    (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENERGY POLICY AND SYSTEMS ANALYSIS QUADRENNIAL ENERGY REVIEW STAKEHOLDER...

  8. Capital Reporting Company Quadrennial ...

    Broader source: Energy.gov (indexed) [DOE]

    - DEPO www.CapitalReportingCompany.com 2014 1 UNITED STATE OF AMERICA DEPARTMENT OF ENERGY ---: : IN RE: : : QUADRENNIAL ENERGY REVIEW : : NEW...

  9. Energy Service Companies

    Broader source: Energy.gov [DOE]

    Energy service companies (ESCOs) develop, design, build, and fund projects that save energy, reduce energy costs, decrease operations and maintenance costs at their customers' facilities.

  10. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  11. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  12. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  13. Idaho National Laboratory Site Pollution Prevention Plan

    SciTech Connect (OSTI)

    E. D. Sellers

    2007-03-01T23:59:59.000Z

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

  14. Idaho National Laboratory | Department of Energy

    Energy Savers [EERE]

    April 2012, the IWTU covers an area of 53,000 square feet. The IWTU uses the THOR® steam-reforming technology developed by Thor Treatment Technologies to treat waste that is...

  15. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2014-02-01T23:59:59.000Z

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  16. Department of Energy Idaho Operations Office evaluation of feasibility studies for private sector treatment of alpha and TRU mixed wastes

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INEL) is currently storing a large quantity of alpha contaminated mixed low level waste which will require treatment prior to disposal. The DOE Idaho Operations Office (DOE-ID) recognized that current knowledge and funding were insufficient to directly pursue services for the requisite treatment. Therefore, it was decided that private sector studies would be funded to clarify cost, regulatory, technology, and contractual issues associated with procuring treatment services. This report analyzes the three private sector studies procured and recommends a path forward for DOE in procuring retrieval, assay, characterization, and treatment services for INEL transuranic and alpha contaminated mixed low level waste. This report was prepared by a team of subject matter experts from the INEL referred to as the DOE-ID Evaluation Team.

  17. Strontium distribution coefficients of surficial sediment samples from the Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Liszewski, M.J.; Miller, K.E. [Geological Survey, Idaho Falls, ID (United States); Rosentreter, J.J. [Idaho State Univ., Idaho Falls, ID (United States)

    1997-05-01T23:59:59.000Z

    Strontium distribution coefficients (K{sub d}`s) were measured for 20 surficial sediment samples collected from selected sites at the Idaho national Engineering Laboratory (INEL). The measurements were made to help assess the variability of strontium K{sub d}`s found at the INEL as part of an ongoing investigation of strontium chemical transport properties of surficial and interbedded sediments at the INEL. The investigation is being conducted by the US Geological Survey and Idaho State University in cooperation with the US Department of Energy. Batch experimental techniques wee used to determine K{sub d}`s of surficial sediments using a synthesized aqueous solution representative of wastewater in waste disposal ponds at the INEL. Strontium K{sub d}`s of the 20 surficial sediments ranged from 36 {+-} 1 to 275 {+-} 6 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial sediments at the INEL. Some of this variability can be attributed to physical and chemical properties of the sediment itself; however, the remainder of the variability may be due to compositional changes in the equilibrated solutions after being mixed with the sediment.

  18. Search Business News, Stocks, Funds, Companies

    E-Print Network [OSTI]

    Yaghi, Omar M.

    To capture the carbon dioxide generated by coal plants, chemical companies like Dow Chemical Co. and energy in Business » Search All NYTimes.com Energy & Environment WORLD U.S. N.Y. / REGION BUSINESS TECHNOLOGY SCIENCE's Revival May Combat Climate Change Build a Better Carbon Trap and ... And Now, Climate Bill's Supporters

  19. Company name PhiloMetron, Inc. Contact name Carl Edman

    E-Print Network [OSTI]

    Wang, Deli

    description of your company PhiloMetron is a technology incubator with a primary focus on wireless "smart band-aids". We are located in Sorrento Valley. Our first spinout company, Corventis, is focused on at-home heart failure and arrhymia markets. Our current platform derives and expands from this core physiological

  20. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    SciTech Connect (OSTI)

    Sehlke, G.

    2003-03-17T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL's public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

  1. The Development of a Human Systems Simulation Laboratory at Idaho National Laoboratory: Progress, Requirements and Lessons Learned

    SciTech Connect (OSTI)

    David I Gertman; Katya L. LeBlanc; William phoenix; Alan R Mecham

    2010-11-01T23:59:59.000Z

    Next generation nuclear power plants and digital upgrades to the existing nuclear fleet introduce potential human performance issues in the control room. Safe application of new technologies calls for a thorough understanding of how those technologies affect human performance and in turn, plant safety. In support of advancing human factors for small modular reactors and light water reactor sustainability, the Idaho National Laboratory (INL) has developed a reconfigurable simulation laboratory capable of testing human performance in multiple nuclear power plant (NPP) control room simulations. This paper discusses the laboratory infrastructure and capabilities, the laboratory’ s staffing requirements, lessons learned, and the researcher’s approach to measuring human performance in the simulation lab.

  2. Idaho: basic data for thermal springs and wells as recorded in GEOTHERM, Part A

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-07-01T23:59:59.000Z

    All chemical data for geothermal fluids in Idaho available as of December 1981 is maintained on GEOTHERM, computerized information system. This report presents summaries and sources of records for Idaho. 7 refs. (ACR)

  3. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595

  4. Public Service Companies, General Provisions (Virginia)

    Broader source: Energy.gov [DOE]

    Public Service Companies includes gas, pipeline, electric light, heat, power and water supply companies, sewer companies, telephone companies, and all persons authorized to transport passengers or...

  5. U.S. Department of Energy Idaho National Engineering and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Program Final...

  6. Interactive Energy Management Tool (IEMT) for Arkansas Companies

    E-Print Network [OSTI]

    Pidugu, S. B.; Menhart, S.; Midturi, S.

    2005-01-01T23:59:59.000Z

    To benefit small and medium industries located in Arkansas, the Engineering Technology Department at the University of Arkansas at Little Rock (UALR) is currently developing an Interactive Energy Management Tool (IEMT) for Arkansas Companies...

  7. Industrial application of geothermal energy in Southeast Idaho

    SciTech Connect (OSTI)

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01T23:59:59.000Z

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  8. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

    2011-11-01T23:59:59.000Z

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  9. Idaho Site’s Cold War Cleanup Takes Center Stage in Publication

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An association with more than 29,000 members featured an in-depth article on EM’s extensive Cold War legacy cleanup at the Idaho site in the current issue of its publication, The Military Engineer.

  10. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.; Bates, S.O. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Thompson, L.E.; McGrail, B.P. (Pacific Northwest Lab., Richland, WA (United States))

    1991-08-01T23:59:59.000Z

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.

  11. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect (OSTI)

    Chelsea Hubbard

    2001-05-01T23:59:59.000Z

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating out radioactive contamination, the copper cable was coated with a surrogate contaminant. The demonstration took place at the Bonneville County Technology Center in Idaho Falls, Idaho.

  12. Idaho Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefeiHydroenergy Company Ltd Jump to:IWSAIdaho

  13. Idaho Winds LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefeiHydroenergy Company Ltd Jump

  14. MANAGING SPENT NUCLEAR FUEL WASTES AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Hill, Thomas J

    2005-09-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy is in part due to the history of the INL as the National Reactor Testing Station, in part to its mission to recover highly enriched uranium from SNF and in part to it’s mission to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facility, some dating back 50 years in the site history. The success of the INL SNF program is measured by its ability to: 1) achieve safe existing storage, 2) continue to receive SNF from other locations, both foreign and domestic, 3) repackage SNF from wet storage to interim dry storage, and 4) prepare the SNF for dispositioning in a federal repository. Because of the diversity in the SNF and the facilities at the INL, the INL is addressing almost very condition that may exist in the SNF world. Many of solutions developed by the INL are applicable to other SNF storage sites as they develop their management strategy. The SNF being managed by the INL are in a variety of conditions, from intact assemblies to individual rods or plates to powders, rubble, and metallurgical mounts. Some of the fuel has been in wet storage for over forty years. The fuel is stored bare, or in metal cans and either wet under water or dry in vaults, caissons or casks. Inspections have shown varying degrees of corrosion and degradation of the fuel and the storage cans. Some of the fuel has been recanned under water, and the conditions of the fuel inside the second or third can are unknown. The fuel has been stored in one of 10 different facilities: five wet pools and one casks storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The wet pools range from forty years old to the most modern pool in the US Department of Energy (DOE) complex. The near-term objective is moving the fuel in the older wet storage facilities to interim dry storage facilities, thus permitting the shutdown and decommission of the older facilities. Two wet pool facilities, one at the Idaho Nuclear Technology and Engineering Center and the other at Test Area North, were targeted for initial SNF movements since these were some of the oldest at the INL. Because of the difference in the SNF materials different types of drying processes had to be developed. Passive drying, as is done with typical commercial SNF was not an option because on the condition of some of the fuel, the materials to be dried, and the low heat generation of some of the SNF. There were also size limitations in the existing facility. Active dry stations were designed to address the specific needs of the SNF and the facilities.

  15. Idaho, Navy, DOE agree on shipments to, from INEL

    SciTech Connect (OSTI)

    Tompkins, B.

    1995-12-01T23:59:59.000Z

    This report describes aspects of a legal agreement between the U.S. Navy, the state of Idaho, and the United States Department of Energy (US DOE) regarding shipments of radioactive wastes. The agreement will allow for the shipment of 244 spent fuel shipments from the Fort St Vrain facility in Colorado, if a repository or interim storage facility outside Idaho is open and accepting spent fuel from INEL. The number of shipments to the INEL will be limited to 1133, instead of the 1940 originally planned. The Navy will be allowed 575 total shipments through the year 2035.

  16. Idaho Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdaho Regions National Science Bowl®Idaho

  17. Idaho National Laboratory - WAG-1 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho

  18. Idaho National Laboratory - WAG-2 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho2

  19. Idaho National Laboratory - WAG-3 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho23

  20. Idaho National Laboratory - WAG-4 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho234

  1. MACHINE AND FOUNDRY COMPANY

    Office of Legacy Management (LM)

    MACHINE AND FOUNDRY COMPANY kt '- : :' ENGINEERING DIVISIOJ ---. Cl FIELD iRIP ,REP@?T ,' i;:z;zy MEETING REPORT : .I.-.-' Y ::,:I :. &, .I7 ENGINEERING REPORT- : T, ...

  2. Capital Reporting Company Quadrennial ...

    Energy Savers [EERE]

    11-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 QUADRENNIAL ENERGY REVIEW PUBLIC MEETING 10: Infrastructure Constraints Monday, August 11, 2014 New Mexico State...

  3. Capital Reporting Company Quadrennial ...

    Office of Environmental Management (EM)

    07-21-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 QUADRENNIAL ENERGY REVIEW PUBLIC MEETING 6 MONDAY, JULY 21, 2014 HELD AT: RASHID AUDITORIUM-HILLMAN CENTER...

  4. Capital Reporting Company Quadrenntial ...

    Broader source: Energy.gov (indexed) [DOE]

    Quadrenntial Energy Review 04-21-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 NEW ENGLAND REGIONAL INFRASTRUCTURE CONSTRAINTS A Public Meeting on the Quadrennial...

  5. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    SciTech Connect (OSTI)

    Croson, D.V.; Davis, R.H.; Cooper, W.B. [CH2M-WG Idaho, LLC, Idaho Cleanup Project, Idaho National Laboratory, Idaho Falls, ID (United States)

    2007-07-01T23:59:59.000Z

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM). The NTCRA is an interim action that reduces the risks to human health and the environment by minimizing the potential for release of hazardous substances. The interim action does not prejudice the final end-state alternative. (authors)

  6. WA_1993_022_NORTON_COMPANY_Waiver_of_Domestic_and_Foreign_Ri...

    Broader source: Energy.gov (indexed) [DOE]

    Golden Technologies Company, Inc. Request for An Advance Waiver of Domestic and Foreign Rights. January 10, 1995 WA1994011EATONCORPORATIONWaiverofDomesticandForeign...

  7. Electromagnetic pulse (EMP) survey of the Idaho State Emergency Operating Center, Boise, Idaho

    SciTech Connect (OSTI)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1992-02-01T23:59:59.000Z

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high- altitude electromagnetic pulses (HEMPs). This report was developed specifically for the Idaho State Emergency Operating Center (EOC) in Boise, Idaho. It is highly probable that there will be a heavy dependence upon high-frequency (hf) radio communications for long- haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, steps must be taken to protect the FNARS facilities against the effects of HEMP that are likely to be created in a nuclear confrontation. The solution must than be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. It is the intent of this report to define the particular hardening measures that will minimize the susceptibility of system components to HEMP effects. To the extent economically viable, protective actions have been recommended for implementation, along with necessary changes or additions, during the period of the FNARS upgrade program. This report addresses electromagnetic pulse (EMP) effects only and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe EMP conditions. The threatening environment will therefore be limited to HEMP situations.

  8. Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    SciTech Connect (OSTI)

    Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

    2000-03-01T23:59:59.000Z

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  9. Spin Out Company Petroc Technologies Ltd

    E-Print Network [OSTI]

    Painter, Kevin

    of laboratory measurements, numerical reservoir simulation and mathematical modelling services. Petroc's history Permeability (kr) Measurement. 6 Sour gas (H2 S) EOR 7 Alkaline Surfactant Polymer (ASP) Flooding. Distinctly covered: · Petrophysics · Reservoir Studies · Carbon Dioxide Injection and Underground Storage · Numerical

  10. Timo Technology Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson, New York:

  11. Applied Technologies Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT), India Sector: Solar

  12. Wuhan Rixin Technology Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin Polysilicon CoWuduWuhan Lixun Power

  13. Science Academy from Chevron Energy Technology Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office of Science

  14. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

    Broader source: Energy.gov [DOE]

    Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

  15. Eastern Kodak Company

    SciTech Connect (OSTI)

    Y.S. Tyan

    2009-06-30T23:59:59.000Z

    Lighting consumes more than 20% of electricity generated in the United States. Solid state lighting relies upon either inorganic or organic light-emitting diodes (OLEDs). OLED devices because of their thinness, fast response, excellent color, and efficiency could become the technology of choice for future lighting applications, provided progress is made to increase power efficiency and device lifetime and to develop cost-effective manufacturing processes. As a first step in this process, Eastman Kodak Company has demonstrated an OLED device architecture having an efficacy over 50 lm/W that exceeds the specifications of DOE Energy Star Program Requirements for Solid State Lighting. The project included work designed to optimize an OLED device, based on a stacked-OLED structure, with performance parameters of: low voltage; improved light extraction efficiency; improved internal quantum efficiency; and acceptable lifetime. The stated goal for the end of the project was delivery of an OLED device architecture, suitable for development into successful commercial products, having over 50 lum/W power efficiency and 10,000 hours lifetime at 1000 cd/m{sup 2}. During the project, Kodak developed and tested a tandem hybrid IES device made with a fluorescent blue emitter, a phosphorescent yellow emitter, and a phosphorescent red emitter in a stacked structure. The challenge was to find low voltage materials that do not absorb excessive amounts of emitted light when the extraction enhancement structure is applied. Because an extraction enhancement structure forces the emitted light to travel several times through the OLED layers before it is emitted, it exacerbates the absorption loss. A variety of ETL and HTL materials was investigated for application in the low voltage SSL device structure. Several of the materials were found to successfully yield low operating device voltages without incurring excessive absorption loss when the extraction enhancement structure was applied. An internal extraction layer comprises two essential components: a light extraction element (LEE) that does the actual extraction of emitted light and a light coupling layer (LCL) that allows the emitted light to interact with the extraction element. Modeling results show that the optical index of the LCL needs to be high, preferably higher than that of the organic layers with an n value of {approx}1.8. In addition, since the OLED structure needs to be built on top of it the LCL needs to be physically and chemically benign. As the project concluded, our focus was on the tandem hybrid device, which proved to be the more efficient architecture. Cost-efficient device fabrication will provide the next challenges with this device architecture in order to allow this architecture to be commercialized.

  16. CRAD, Radiological Controls- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Radiation Protection Program at the Idaho Accelerated Retrieval Project Phase II.

  17. advanced test idaho reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test idaho reactor First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 DISPERSAL AND HARVEST OF SAGE GROUSE...

  18. CRAD, Training- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Training Program at the Idaho Accelerated Retrieval Project Phase II.

  19. CRAD, Conduct of Operations- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2006 Commencement of Operations assessment of the Conduct of Operations program at the Idaho Accelerated Retrieval Project Phase II.

  20. CRAD, Fire Protection- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Fire Protection program at the Idaho Accelerated Retrieval Project Phase II.

  1. Water information bulletin No. 30 geothermal investigations in Idaho

    SciTech Connect (OSTI)

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01T23:59:59.000Z

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  2. CRAD, Emergency Management- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Emergency Management program at the Idaho Accelerated Retrieval Project Phase II.

  3. CRAD, Quality Assurance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Quality Assurance Program at the Idaho Accelerated Retrieval Project Phase II.

  4. Idaho National Laboratory Site Long-Term Stewardship Implementation Plan

    SciTech Connect (OSTI)

    B. E. Olaveson

    2006-07-27T23:59:59.000Z

    The U.S. Department of Energy has established long-term stewardship programs to protect human health and the environment at sites where residual contamination remains after site cleanup. At the Idaho National Laboratory Site, Comprehensive Environmental Response, Compensation, and Liability Act (CERLA) long-term stewardship activities performed under the aegis of regulatory agreements, the Federal Facility Agreement and Consent Order for the Idaho National Laboratory, and state and federal requirements are administered primarily under the direction of the Idaho Cleanup Project. It represents a subset of all on-going environmental activity at the Idaho National Laboratory Site. This plan provides a listing of applicable CERCLA long-term stewardship requirements and their planned and completed implementation goals. It proffers the Long-Term Stewardship Environmental Data Warehouse for Sitewide management of environmental data. This plan will be updated as needed over time, based on input from the U.S. Department of Energy, its cognizant subcontractors, and other local and regional stakeholders.

  5. EECBG Success Story: Boise, Idaho: Saving Money and Reducing Waste

    Broader source: Energy.gov [DOE]

    Thanks to a $1.2 million grant from the Department’s Energy Efficiency and Conservation Block Grant (EECBG) Program, the city of Boise, Idaho, will replace and install 1,450 LED streetlights by the end of this month. The project is projected to save $1.2 million over the next 15 years. Learn more .

  6. CRAD, Occupational Safety & Health- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene Program at the Idaho Accelerated Retrieval Project Phase II.

  7. CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

  8. CRAD, Maintenance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Maintenance program at the Idaho Accelerated Retrieval Project Phase II.

  9. CRAD, Safety Basis- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Safety Basis at the Idaho Accelerated Retrieval Project Phase II.

  10. CRAD, Criticality Safety- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Criticality Safety program at the Idaho Accelerated Retrieval Project Phase II.

  11. Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and...

  12. Vehicle Technologies Office Merit Review 2015: 12 Volt Auxiliary Load On-road Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 12 volt auxiliary...

  13. Idaho National Laboratory (INL) Sitewide Institutional Controls Plan

    SciTech Connect (OSTI)

    W. L. Jolley

    2006-07-27T23:59:59.000Z

    On November 9, 2002, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and the Idaho Department of Environmental Quality approved the Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites, which requires a Sitewide Institutional Controls Plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. The revision is needed to provide an update as remedial actions are completed and new areas of concern are found. This Sitewide Institutional Controls Plan is based on guidance in the May 3, 1999, EPA Region 10 Final Policy on the Use of Institutional Controls at Federal Facilities; the September 29, 2000, EPA guidance Institutional Controls: A Site Manager's Guide to Identifying, Evaluating, and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups; and the April 9, 2003, DOE Policy 454.1, "Use of Institutional Controls." These policies establish measures that ensure short- and long-term effectiveness of institutional controls that protect human health and the environment at federal facility sites undergoing remedial action pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or corrective action pursuant to the Resource Conservation and Recovery Act (RCRA). The site-specific institutional controls currently in place at the Idaho National Laboratory are documented in this Sitewide Institutional Controls Plan. This plan is being updated, along with the Idaho National Engineering and Environmental Laboratory Comprehensive Facilities and Land Use Plan, to reflect the progress of remedial activities and changes in CERCLA sites.

  14. Assessment of the Geothermal System Near Stanley, Idaho

    SciTech Connect (OSTI)

    Trent Armstrong; John Welhan; Mike McCurry

    2012-06-01T23:59:59.000Z

    The City of Stanley, Idaho (population 63) is situated in the Salmon River valley of the central Idaho highlands. Due to its location and elevation (6270 feet amsl) it is one of the coldest locales in the continental U.S., on average experiencing frost 290 days of the year as well as 60 days of below zero (oF) temperatures. Because of high snowfall (76 inches on average) and the fact that it is at the terminus of its rural grid, the city also frequently endures extended power outages during the winter. To evaluate its options for reducing heating costs and possible local power generation, the city obtained a rural development grant from the USDA and commissioned a feasibility study through author Roy Mink to determine whether a comprehensive site characterization and/or test drilling program was warranted. Geoscience students and faculty at Idaho State University (ISU), together with scientists from the Idaho Geological Survey (IGS) and Idaho National Laboratory (INL) conducted three field data collection campaigns between June, 2011 and November, 2012 with the assistance of author Beckwith who arranged for food, lodging and local property access throughout the field campaigns. Some of the information collected by ISU and the IGS were compiled by author Mink and Boise State University in a series of progress reports (Makovsky et al., 2011a, b, c, d). This communication summarizes all of the data collected by ISU including data that were compiled as part of the IGS’s effort for the National Geothermal Data System’s (NGDS) data compilation project funded by the Department of Energy and coordinated by the Arizona Geological Survey.

  15. University of Idaho, U.S. Department of Agriculture, and Idaho counties cooperating. To enrich education through diversity, the University of Idaho is an equal opportunity/affirmative action employer and educational institution.

    E-Print Network [OSTI]

    O'Laughlin, Jay

    -based education, not new product updates. Program Outcomes The Burley seminar is attended by over 100 applica education through diversity, the University of Idaho is an equal opportunity/affirmative action employer and educational institution. The Situation Idaho Statue Title 22 Section 34 defines the law for pesticides

  16. Institut Eurecom1 Institut Eurecom research is partially supported by its industrial members: BMW Group Research & Technology BMW Group

    E-Print Network [OSTI]

    Gesbert, David

    : BMW Group Research & Technology ­ BMW Group Company, Bouygues Telecom, Cisco Systems, France Telecom

  17. Company Level Imports Archives

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21Company Level Imports Company Level

  18. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect (OSTI)

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01T23:59:59.000Z

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  19. High Temperature Solid-Oxide Electrolyzer 2500 Hour Test Results At The Idaho National Laboratory

    SciTech Connect (OSTI)

    Carl Stoots; James O'Brien; Stephen Herring; Keith Condie; Lisa Moore-McAteer; Joseph J. Hartvigsen; Dennis Larsen

    2009-11-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This paper will provide a summary of experimental results to date for this ongoing test.

  20. HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY

    SciTech Connect (OSTI)

    Quigley, K.D.; Wessman, D

    2003-02-27T23:59:59.000Z

    The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank -specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has cleaned tanks to meet RCRA clean closure standards and DOE closure performance measures. Design, development, and testing of tank grouting delivery equipment were completed in October 2002. The system incorporates lessons learned from closures at other DOE facilities. The grout will be used to displace the tank residuals remaining after the cleaning is complete. To maximize heel displacement to the discharge pump, grout was placed in a sequence of five positions utilizing two riser locations. The project is evaluating the use of six positions to optimize the residuals removed. After the heel has been removed and the residuals stabilized, the tank, piping, and secondary containment will be grouted.

  1. Methodology to manage process technology innovation

    E-Print Network [OSTI]

    Schweizer, Daniel

    2010-01-01T23:59:59.000Z

    The research conducted for this thesis was performed at "Company X", a U.S.-based engineered goods manufacturer. This project focused on the company's Advanced Manufacturing group and its process technology development ...

  2. Near-Zero NOx Technology

    E-Print Network [OSTI]

    Utzinger, M.

    2008-01-01T23:59:59.000Z

    Miura Boiler is a world leader in boiler technology with manufacturing facilities in Japan, China, Korea, Taiwan and Brantford, Ontario. The company, which began operations in 1927, is committed to technologies that save fuel, reduce harmful...

  3. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS

    SciTech Connect (OSTI)

    X, Zhang; J. E. O'Brien; R. C. O'Brien; J. J. Hartvigsen; G. Tao; N. Petigny

    2012-07-01T23:59:59.000Z

    High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

  4. No Company Is An Island

    E-Print Network [OSTI]

    Maddox, A.

    No company is an island. Utilities and their industrial customers are discovering that collaboration can breed opportunity while isolation can lead to ruin. Inter company relationships have changed over recent years and HL&P and its customers...

  5. Benham Companies ESCO Qualification Sheet

    Broader source: Energy.gov [DOE]

    Document outlines the energy service company (ESCO) qualifications for Leidos Engineering (part of Benham Companies) in relation to the U.S. Department of Energy's (DOE) energy savings performance contracts (ESPC).

  6. Geothermal resource assessment of Idaho Springs, Colorado. Resource series 16

    SciTech Connect (OSTI)

    Repplier, F.N.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01T23:59:59.000Z

    Located in the Front Range of the Rocky Mountains approximately 30 miles west of Denver, in the community of Idaho Springs, are a series of thermal springs and wells. The temperature of these waters ranges from a low of 68/sup 0/F (20/sup 0/C) to a high of 127/sup 0/F (53/sup 0/C). To define the hydrothermal conditions of the Idaho Springs region in 1980, an investigation consisting of electrical geophysical surveys, soil mercury geochemical surveys, and reconnaissance geological and hydrogeological investigations was made. Due to topographic and cultural restrictions, the investigation was limited to the immediate area surrounding the thermal springs at the Indian Springs Resort. The bedrock of the region is faulted and fractured metamorphosed Precambrian gneisses and schists, locally intruded by Tertiary age plutons and dikes. The investigation showed that the thermal waters most likely are fault controlled and the thermal area does not have a large areal extent.

  7. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-30T23:59:59.000Z

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  8. U.S. hydropower resource assessment for Idaho

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

  9. Geophysical Investigations of Archaeological Resources in Southern Idaho

    SciTech Connect (OSTI)

    Brenda Ringe Pace; Gail Heath; Clark Scott; Carlan McDaniel

    2005-10-01T23:59:59.000Z

    At the Idaho National Laboratory and other locations across southern Idaho, geophysical tools are being used to discover, map, and evaluate archaeological sites. A variety of settings are being explored to expand the library of geophysical signatures relevant to archaeology in the region. Current targets of interest include: prehistoric archaeological features in open areas as well as lava tube caves, historical structures and activity areas, and emigrant travel paths. We draw from a comprehensive, state of the art geophysical instrumentation pool to support this work. Equipment and facilities include ground penetrating radar, electromagnetic and magnetic sensors, multiple resistivity instruments, advanced positioning instrumentation, state of the art processing and data analysis software, and laboratory facilities for controlled experiments.

  10. Mexico-Climate Technology Initiative Private Financing Advisory...

    Open Energy Info (EERE)

    Climate Technology Initiative Private Financing Advisory Network (CTI PFAN) Name Mexico-Climate Technology Initiative Private Financing Advisory Network (CTI PFAN) AgencyCompany...

  11. Energy Department Announces New Concentrating Solar Power Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    approach to American energy, these SunShot investments will help American companies and technologies advance cutting-edge solar technologies that will help U.S....

  12. EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management and the U.S. Forest Service are preparing, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, an EIS that evaluates the potential environmental impacts of a proposal to construct about 305 miles of 500-kV transmission line from northeast Oregon to southwest Idaho. BPA’s proposed action is to partially fund part the transmission line.

  13. Sustainable Energy Resources for Consumers (SERC) Idaho Highlight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic SafetyGeothermal/Ground-Source Heat Pumps | Department Idaho

  14. Technology Catalogue. First edition

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  15. Idaho National Laboratory News Release Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventyTechnologies |InformationnifNews

  16. EA-1901: Kootenai River White Sturgeon and Burbot Hatcheries Project, Bonners Ferry, Boundary County, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for DOE’s Bonneville Power Administration to support the Kootenai Tribe of Idaho’s construction of a new hatchery on property owned by the Tribe at the confluence of the Moyie and Kootenai Rivers, approximately eight miles upstream from Bonners Ferry, Idaho. The proposed location of the new hatchery facility is currently the site of the Twin Rivers Canyon Resort.

  17. Strontium Distribution Coefficients of Basalt and Sediment Infill Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    M. N. Pace; R. C. Bartholomay (USGS); J. J. Rosentreter (ISU)

    1999-07-01T23:59:59.000Z

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose of this study is to aid in assessing the variability of strontium Kds at the INEEL as part of an ongoing investigation of chemical transport of strontium-90 in the Snake River Plain aquifer. Batch experimental techniques were used to determine Kds of six basalt core samples, five samples of sediment infill of vesicles and fractures, and six standard material samples. Analyses of data from these experiments indicate that the Kds of the sediment infill samples are significantly larger than those of the basalt samples. Quantification of such information is essential of furthering the understanding of transport processes of strontium-90 in the Snake River Plain aquifer and in similar environments.

  18. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

  19. U.S. Department of Energy Idaho National Engineering and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Waste HistoryDescription From 1970 through the early 1980's the Idaho National Engineering and Environmental Laboratory (INEEL) accepted over 65,000 cubic meters of...

  20. Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

  1. Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste

    SciTech Connect (OSTI)

    Barnes, C.M.; Lauerhass, L.; Olson, A.L.; Taylor, D.D.; Valentine, J.H.; Lockie, K.A. (DOE- ID)

    2002-01-16T23:59:59.000Z

    The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

  2. Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste

    SciTech Connect (OSTI)

    Barnes, Charles Marshall; Lauerhass, Lance; Olson, Arlin Leland; Taylor, Dean Dalton; Valentine, James Henry; Lockie, Keith Andrew

    2002-02-01T23:59:59.000Z

    The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

  3. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Butterworth, St.W. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States)

    2008-07-01T23:59:59.000Z

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  4. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States); Suttora, L.C. [U.S. Department of Energy, Washington, D.C. (United States); Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Stanisich, N. [Portage Environmental, Inc., Idaho Falls, ID (United States)

    2007-07-01T23:59:59.000Z

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  5. MERCURY REMOVAL FROM DOE SOLID MIXED WASTE USING THE GEMEP(sm) TECHNOLOGY

    SciTech Connect (OSTI)

    None

    1999-03-01T23:59:59.000Z

    Under the sponsorship of the Federal Energy Technology Center (FETC), Metcalf and Eddy (M and E), in association with General Electric Corporate Research and Development Center (GE-CRD), Colorado Minerals Research Institute (CMRI), and Oak Ridge National Laboratory (ORNL), conducted laboratory-scale and bench-scale tests of the General Electric Mercury Extraction Process technology on two mercury-contaminated mixed solid wastes from U. S. Department of Energy sites: sediment from the East Fork of Poplar Creek, Oak Ridge (samples supplied by Oak Ridge National Laboratory), and drummed soils from Idaho National Environmental and Engineering Laboratory (INEEL). Fluorescent lamps provided by GE-CRD were also studied. The GEMEP technology, invented and patented by the General Electric Company, uses an extraction solution composed of aqueous potassium iodide plus iodine to remove mercury from soils and other wastes. The extraction solution is regenerated by chemical oxidation and reused, after the solubilized mercury is removed from solution by reducing it to the metallic state. The results of the laboratory- and bench-scale testing conducted for this project included: (1) GEMEP extraction tests to optimize extraction conditions and determine the extent of co-extraction of radionuclides; (2) pre-screening (pre-segregation) tests to determine if initial separation steps could be used effectively to reduce the volume of material needing GEMEP extraction; and (3) demonstration of the complete extraction, mercury recovery, and iodine recovery and regeneration process (known as locked-cycle testing).

  6. Sandia technology & entrepreneurs improve Lasik

    ScienceCinema (OSTI)

    Neal, Dan; Turner, Tim

    2014-02-26T23:59:59.000Z

    Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

  7. Idaho National Laboratory Directed Research and Development FY-2009

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research focus at the INL. These sections begin with the DOE-NE Nuclear Science and Technology mission support area,

  8. Evaluation of S-101 course ``Supervisors` Orientation to Occupational Safety in DOE`` taught in Idaho Falls, Idaho, June 23, 1992--June 26, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, ``Supervisors` Orientation to Occupational Safety in DOE``, (S-101) which was conducted June 23---26 at Idaho Falls Engineering Laboratory, in Idaho Falls, Idaho. Section 1.1 and 1.2 of this report summarizes the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees` written comments. Numeric course ratings were generally positive and show that the course material and instruction were very effective. Written comments supported the positive numeric ratings. The course content and knowledge gained by the trainees exceeded most of the students` expectations of the course.

  9. Evaluation of S-101 course Supervisors' Orientation to Occupational Safety in DOE'' taught in Idaho Falls, Idaho, June 23, 1992--June 26, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Supervisors' Orientation to Occupational Safety in DOE'', (S-101) which was conducted June 23---26 at Idaho Falls Engineering Laboratory, in Idaho Falls, Idaho. Section 1.1 and 1.2 of this report summarizes the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees' written comments. Numeric course ratings were generally positive and show that the course material and instruction were very effective. Written comments supported the positive numeric ratings. The course content and knowledge gained by the trainees exceeded most of the students' expectations of the course.

  10. Regional companies eye growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved JustificationBio-Inspired PowerRegional companies eye

  11. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    Microturbines: What is a Microturbine? ” OIT’s Industrial1999c. Summary of the Microturbine Technology Summit:s Emerging Companies; Microturbine Firm Hopes IPO Generates

  12. Sodium-Bearing Waste Treatment, Applied Technology Plan

    SciTech Connect (OSTI)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01T23:59:59.000Z

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  13. Assessment of selected furnace technologies for RWMC waste

    SciTech Connect (OSTI)

    Batdorf, J.; Gillins, R. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-03-01T23:59:59.000Z

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

  14. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Photovoltaics Spain S L REPS Renewable Energies and Photovoltaics Spain S L REPS Spain Solar Spanish solar project developer The firm is a subsidiary of Norwegian energy company...

  15. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    significantly better heating efficiency than conventional coiled wire elements A O Smith A O Smith Wisconsin Efficiency Solar Wisconsin based based company that makes both...

  16. Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

  17. A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry

    E-Print Network [OSTI]

    Pilip-Florea, Shadrach Jay

    2012-01-01T23:59:59.000Z

    Richardson, Mark 2009. Siemens Water Technologies Company2011. www. 3news.co.nz Siemens Water Technologies, 2012.conglomerations, US Filter, now Siemens Water Technologies

  18. area idaho 1990-93: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    idaho 1990-93 First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Idaho Natural Areas Network: Chuck...

  19. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595 to, NEPA and Section 401 of the Federal Water Pollution Control Act (33 U.S.C. 1341). #12;

  20. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH environmental assistance to non-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah Act of 1969 (42 U.S.C. 4321-4347; hereinafter "NEPA") and Section 401 of the Federal Water Pollution

  1. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH for providing environmental assistance to non-Federal interests in Idaho, Montana, rural Nevada, New Mexico Pollution Control Act (33 U.S.C. 1341). Compliance with all applicable environmental laws and regulations

  2. A Bibliography of Genealogical Resources at the University of Idaho Library Where to Start Searching

    E-Print Network [OSTI]

    O'Laughlin, Jay

    A Bibliography of Genealogical Resources at the University of Idaho Library Where to Start a subject search of su: Latah County Genealogy. More family histories and general guides to early settlers: Whitman County Genealogy. For many more Idaho Genealogical resources, and also for other states, try

  3. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    SciTech Connect (OSTI)

    Baum, Jeffrey

    2014-03-10T23:59:59.000Z

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  4. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baum, Jeffrey

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  5. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2003-02-20T23:59:59.000Z

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  6. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Teresa R. Meachum

    2004-02-01T23:59:59.000Z

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  7. Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho

    SciTech Connect (OSTI)

    Michael L. Abbott; Jeffrey J. Einerson

    2007-12-01T23:59:59.000Z

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 – 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

  8. Shallow faults mapped with seismic reflections: Lost River Fault, Idaho

    E-Print Network [OSTI]

    Mubarik, Ali; Miller, Richard D.; Steeples, Don W.

    1991-09-01T23:59:59.000Z

    stations 132 and 160. Total bedrock dis?lace- ment interpreted along this seismic survey line is approxa- mately 6 m, representing 4 to 6 times more displacement than is observed on either the common offset refraction section or at the surface..., vol. A, U.S. Geological Survey Open-file Report 85-290, 182-194, 1985. Crone, A. J., and M. N. Macbette, Surface faulting accompa- nying the Borah Peak earthquake, central Idaho, Geology, 12, 664-667, 1984. Crone, A. J., M. N. Macbette, M. G...

  9. Amity Elementary School, Boise, Idaho. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The design, predicted system performance, operation and maintenance instructions, and wiring and piping schematic diagrams for the recently installed active/passive solar space and hot water system for the Amity Elementary School in Boise, Idaho, are presented. 370 sq. ft. of single-glazed Solecor collectors supply the domestic hot water system and 1830 sq. ft. of collectors are utilized in the space heating system. Tanks provide hot water storage. The earth-covered school building contains 51,400 gross sq. ft. Component specifications are included. (WHK)

  10. PRIVACY IMPACT ASSESSMENT: IDAHO NATIONAL LABORATORY-TRAIN PIA

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5 Accretion-of-Duties POLICYSpecialistPOlicyIDAHO NATIONAL

  11. EM Highlights Idaho Site's 2014 Accomplishments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM Highlights Advisory Board ContributionsIdaho

  12. Latah County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development JumpLars EnviroLatah County, Idaho:

  13. DOE Honors Idaho Facility with Safety Award | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million) Go toHonors Idaho

  14. White Bird, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: Energy Resources Jump to: navigation, search

  15. Caribou County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreen BioEnergy LLCCaribou County, Idaho: Energy

  16. Cassia County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri: Energy ResourcesCounty, Idaho: Energy

  17. Idaho Students Learning Lessons on Energy Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandardsIdaho National Laboratory

  18. Idaho's Advanced Mixed Waste Treatment Project Details 2013

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandardsIdaho NationalAccomplishments |

  19. 2012 Annual Planning Summary for Idaho Operations Office | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1 through2DepartmentEnergy Idaho

  20. Jerome County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson, Iowa:Jerome County, Idaho: Energy

  1. Kootenai County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: Energy ResourcesKooskia, Idaho:

  2. Idaho Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet) Idaho

  3. Idaho Natural Gas Underground Storage Injections All Operators (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet) IdahoCubic

  4. Idaho State Board of Land Commissioners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho State Board of Land

  5. Idaho's 1st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho State

  6. Idaho/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho

  7. Update: Idaho National Laboratory Goes Google | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success|SustainableDepartment ofASHRAE 90.1Update: Idaho

  8. Idaho DEQ Storage Tanks Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ Storage Tanks Webpage

  9. Idaho DEQ Waste Management and Permitting Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ Storage Tanks

  10. Idaho Dredge and Fill Permits Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ Storage TanksPermits

  11. Idaho IC 61-119, Electrical Corporation Definition | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ StorageObtain

  12. Idaho IC 67-6512 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQInformation 7-6508,12

  13. Idaho Instructions for Filing Proof of Beneficial Use | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQInformationProof

  14. Idaho Instructions for Filing an Application for Permit to Appropriate |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQInformationProofOpen

  15. Idaho On-Site Wastewater Systems Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformation Abandon a

  16. Idaho Permit to Construct Application Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformation Abandon

  17. Idaho Right-of-Way Encroachment Application and Permit - Other

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformationForm 204)

  18. Idaho Rules of Civil Procedure | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformationForm

  19. Idaho Section 319 Grant Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformationFormApplication

  20. Idaho Underground Injection Control Program Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolid Waste WebpageInformation Idaho

  1. Idaho/Transmission/Agency Links | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolid WasteIdahoTransmissionHeader.png

  2. 2010 Annual Planning Summary for Idaho Operations Office (ID) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09 SPRof Energy Idaho

  3. Soda Springs, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSoda Springs, Idaho: Energy Resources

  4. DOE Idaho Sends First Offsite Waste to New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT Page8 DOEDOE Idaho Sends

  5. DOE Idaho site reaches 20-year cleanup milestone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT Page8 DOEDOE Idaho

  6. Drilling for Geothermal Resources Rules - Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: EnergyDrewDrilling FluidsIdaho Jump to:

  7. Oneida County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice ofInformationOnChip PowerIdaho: Energy

  8. Idaho Cleanup Project grows its workforce to complete ARRA work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | National NuclearIWTUBoF: IXPUGIdahoIdaho

  9. Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoring Program31,2010Idaho

  10. Idaho Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdaho Regions National Science Bowl®

  11. Alternative Fuels Data Center: Idaho Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.TierIdaho County Employs FFVs and IdleFuels

  12. Idaho's Advanced Mixed Waste Treatment Project Details 2013

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform at the Department ofImproper UseIdaho

  13. Bannock County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont: EnergyclockBankIdaho: Energy

  14. Benewah County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County, Ohio:Bendersville, Pennsylvania:Idaho:

  15. Bingham County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark, Arizona:Jump to:Bingham County, Idaho:

  16. Bonner County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotionBocaBondBonner County, Idaho: Energy

  17. RAPID/Geothermal/Land Access/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <WashingtonHawaii <Idaho

  18. Fremont County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show MapFredericksburgIdaho: Energy Resources

  19. Garden City, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy ResourcesGang Mills, NewIdaho: Energy

  20. Idaho National Engineering Laboratory Consent Order, June 14, 2000 Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department of ConsentIdaho

  1. Idaho National Engineering Laboratory Consent Order, November 1, 1995

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department of ConsentIdaho

  2. Idaho Site Closes Out Decontamination and Decommissioning Project about

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1i f$440

  3. Clearwater County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpot Energy Jump to:Idaho: Energy

  4. Idaho - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15BOE Reserve ClassDataENERGY I0Idaho

  5. Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance

    SciTech Connect (OSTI)

    Travis L. Mcling

    2010-10-01T23:59:59.000Z

    The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and how we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.

  6. Kansas Certified Development Companies (Kansas)

    Broader source: Energy.gov [DOE]

    Kansas Certified Development Companies (CDC) assist businesses by developing loan packages that meet the financial need of a project. These packages often contain multiple sources of project...

  7. Regulations For Gas Companies (Tennessee)

    Broader source: Energy.gov [DOE]

    The Regulations for Gas Companies, implemented by the Tennessee Regulatory Authority (Authority) outline the standards for metering, distribution and electricity generation for utilities using gas....

  8. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  9. Application and Technology Requirements for Heat Pumps at the Process Industries

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    APPLICATION AND TECHNOLOGY REQUIREMENTS FOR HEAT PUMPS AT THE PROCESS INDUSTRIESl Stephen Priebe Engineering Specialist EG&G Idaho, Inc. Idaho Falls, ID There are basically three categories of equip ment used to manage heat energy flows... in an indus trial process. First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat through the process up the temperature gra dient. Third, heat engines are used to convert...

  10. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect (OSTI)

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31T23:59:59.000Z

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  11. System Upgrades at the Advanced Test Reactor Help Ensure that Nuclear Energy Research Continues at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Craig Wise

    2011-12-01T23:59:59.000Z

    Fully operational in 1967, the Advanced Test Reactor (ATR) is a first-of-its-kind materials test reactor. Located on the Idaho National Laboratory’s desert site, this reactor remains at the forefront of nuclear science, producing extremely high neutron irradiation in a relatively short time span. The Advanced Test Reactor is also the only U.S. reactor that can replicate multiple reactor environments concurrently. The Idaho National Laboratory and the Department of Energy recently invested over 13 million dollars to replace three of ATR’s instrumentation and control systems. The new systems offer the latest software and technology advancements, ensuring the availability of the reactor for future energy research. Engineers and project managers successfully completed the four year project in March while the ATR was in a scheduled maintenance outage. “These new systems represent state-of-the-art monitoring and annunciation capabilities,” said Don Feldman, ATR Station Manager. “They are comparable to systems currently used for advanced reactor designs planned for construction in the U.S. and in operation in some foreign countries.”

  12. Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014

    SciTech Connect (OSTI)

    Alan Giesbrecht

    2014-05-01T23:59:59.000Z

    The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

  13. Risk-Based Technology Assessment for Capital Equipment Acquisition Decisions in Small Firms

    E-Print Network [OSTI]

    Merriweather, Samuel P.

    2013-08-06T23:59:59.000Z

    purchases. However, these company leaders may not have adequate expertise in the operations of candidate technologies or may lack the understanding necessary to determine how new technologies may impact other company operations. Appropriate financial...

  14. An Overview of Project Planning for Hot-Isostatic Pressure Treatment of High-Level Waste Calcine for the Idaho Cleanup Project - 12289

    SciTech Connect (OSTI)

    Nenni, Joseph A.; Thompson, Theron J. [CH2M-WG Idaho, LLC, Idaho Cleanup Project, Idaho Falls, Idaho 83403 (United States)

    2012-07-01T23:59:59.000Z

    The Calcine Disposition Project is responsible for retrieval, treatment by hot-isostatic pressure, packaging, and disposal of highly radioactive calcine stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site in southeast Idaho. In the 2009 Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement the Department of Energy documented the selection of hot-isostatic pressure as the technology to treat the calcine. The Record of Decision specifies that the treatment results in a volume-reduced, monolithic waste form suitable for transport outside of Idaho by a target date of December 31, 2035. That target date is specified in the 1995 Idaho Settlement Agreement to treat and prepare the calcine for transport out of Idaho in exchange for allowing storage of Navy spent nuclear fuel at the INL Site. The project is completing the design of the calcine-treatment process and facility to comply with Record of Decision, Settlement Agreement, Idaho Department of Environmental Quality, and Department of Energy requirements. A systems engineering approach is being used to define the project mission and requirements, manage risks, and establish the safety basis for decision making in compliance with DOE O 413.3B, 'Program and Project Management for the Acquisition of Capital Assets'. The approach draws heavily on 'design-for-quality' tools to systematically add quality, predict design reliability, and manage variation in the earliest possible stages of design when it is most efficient. Use of these tools provides a standardized basis for interfacing systems to interact across system boundaries and promotes system integration on a facility-wide basis. A mass and energy model was developed to assist in the design of process equipment, determine material-flow parameters, and estimate process emissions. Data generated from failure modes and effects analysis and reliability, availability, maintainability, and inspectability analysis were incorporated into a time and motion model to validate and verify the capability to complete treatment of the calcine within the required schedule. The Calcine Disposition Project systems engineering approach, including use of industry-proven design-for-quality tools and quantitative assessment techniques, has strengthened the project's design capability to meet its intended mission in a safe, cost-effective, and timely manner. Use of these tools has been particularly helpful to the project in early design planning to manage variation; improve requirements and high-consequence risk management; and more effectively apply alternative, interface, failure mode, RAMI, and time and motion analyses at the earliest possible stages of design when their application is most efficient and cost effective. The project is using these tools to design and develop HIP treatment of highly radioactive calcine to produce a volume-reduced, monolithic waste form with immobilization of hazardous and radioactive constituents. (authors)

  15. IITB TECHNOLOGIES DIRECTOR'S MESSAGE

    E-Print Network [OSTI]

    Narayanan, H.

    is useful to companies who are looking to commercialise new technologies and bring them to the market place technologies under different themes of Healthcare, Energy & Environment, Information & Communication of Microelectronics Lab #12;INDEX 1 Healthcare 1.1 An Enlightening Device for Visually Impaired People

  16. Idaho National Laboratory's FY13 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2014-03-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  17. Climate Change Vulnerability Assessment for Idaho National Laboratory

    SciTech Connect (OSTI)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01T23:59:59.000Z

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  18. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01T23:59:59.000Z

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  19. Idaho National Laboratory Cultural Resource Management Annual Report FY 2007

    SciTech Connect (OSTI)

    Julie Braun; Hollie Gilbert; Dino Lowrey; Clayton Marler; Brenda Pace

    2008-03-01T23:59:59.000Z

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  20. Idaho National Laboratory Cultural Resource Management Annual Report FY 2006

    SciTech Connect (OSTI)

    Clayton F. Marler; Julie Braun; Hollie Gilbert; Dino Lowrey; Brenda Ringe Pace

    2007-04-01T23:59:59.000Z

    The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  1. Idaho field experiment 1981. Volume 2: measurement data

    SciTech Connect (OSTI)

    Start, G E; Sagendorf, J F; Ackermann, G R; Cate, J H; Hukari, N F; Dickson, C R

    1984-04-01T23:59:59.000Z

    The 1981 Idaho Field Experiment was conducted in southeastern Idaho over the upper Snake River Plain. Nine test-day case studies were conducted between July 15 and 30, 1981. Releases of SF/sub 6/ gaseous tracer were made for 8-hour periods from 46m above ground. Tracer was sampled hourly, for 12 sequential hours, at about 100 locations within an area 24km square. Also, a single total integrated sample of about 30 hours duration was collected at approximately 100 sites within an area 48 by 72km square (using 6km spacings). Extensive tower profiles of meteorology at the release point were collected. RAWINSONDES, RABALS and PIBALS were collected at 3 to 5 sites. Horizontal, low-altitude winds were monitored using the INEL MESONET. SF/sub 6/ tracer plume releases were marked with co-located oil fog releases and bi-hourly sequential launches of tetroon pairs. Aerial LIDAR observations of the oil fog plume and airborne samples of SF/sub 6/ were collected. High altitude aerial photographs of daytime plumes were collected. Volume II lists the data in tabular form or cites the special supplemental reports by other participating contractors. While the primary user file and the data archive are maintained on 9 track/1600 cpi magnetic tapes, listings of the individual values are provided for the user who either cannot utilize the tapes or wishes to preview the data. The accuracies and quality of these data are described.

  2. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    SciTech Connect (OSTI)

    Susan Stacy; Julie Braun

    2006-12-01T23:59:59.000Z

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  3. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    SciTech Connect (OSTI)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01T23:59:59.000Z

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  4. Aditya A. Shah Deere & Company,

    E-Print Network [OSTI]

    Aditya A. Shah Deere & Company, Dubuque, IA 52001 e-mail: shahadityaa@johndeere.com Christiaan J. J 30332 e-mail: chris.paredis@me.gatech.edu Roger Burkhart Deere & Company, Moline, IL 61265 e it to an example of a hydraulic log splitter. Based on this initial example, we discuss two advantages

  5. Task 11: Technology development integration. Semi-annual report, April 1, 1996--September 30, 1996

    SciTech Connect (OSTI)

    Musich, M.A.

    1997-05-01T23:59:59.000Z

    A review was conducted of three systems analysis (SA) studies performed by Lockheed Idaho Technologies Company (LITCO) on integrated thermal treatment systems (ITTSs) and integrated nonthermal treatment systems (INTSs) for the remediation of mixed low-level waste (MLLW) stored throughout the U.S. Department of Energy (DOE) weapons complex. The review was performed by an independent team led by the Energy & Environmental Research Center (EERC), including Science Applications International Corporation, the Waste Policy Institute (WPI), and Virginia Tech. The three studies reviewed were as follows: (1) Integrated Thermal Treatment System Study, Phase 1 - issued July 1994, (2) Integrated Thermal Treatment System Study, Phase 2 - issued February 1996, and (3) Integrated Nonthermal Treatment System Study - drafted March 1996. The three studies were commissioned by DOE to be SA studies of environmental management (EM) systems. The purpose of LITCO`s engineering evaluation of the MLLW treatment system alternatives was to help DOE in the prioritization of research, development, and demonstration activities for remediation technologies. The review of these three studies was structured to further aid DOE in its current and future decision-making processes. The methodology in the studies was compared to a sound systems engineering (SE) approach to help DOE determine which tasks still need to be accomplished to complete a thorough design/review.

  6. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  7. Developing strategies to capture value from emerging technologies

    E-Print Network [OSTI]

    Herren, Steven M. (Steven Matthew), 1971-

    2004-01-01T23:59:59.000Z

    The development of fundamentally new technology requires companies to carefully consider how they intend to profit from the commercialization of their ideas. Because companies pursuing disruptive innovations require new ...

  8. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    SciTech Connect (OSTI)

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01T23:59:59.000Z

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal.

  9. Crumpled graphene: Conductive inks made by startup company Vorbeck

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    Crumpled graphene: Conductive inks made by startup company Vorbeck Materials contain crumpled graphene. This atomic-force microscope image is colorized to show the topography of a piece of graphene Technology Review in English | en Espańol | auf Deutsch | in Italiano | Bringing Graphene to Market

  10. Companies Hiring by Majors Booth # Organization Name Majors Recruited

    E-Print Network [OSTI]

    Azevedo, Ricardo

    Pont Electrical,Mechanical,Chemical 83 Eaton Corporation Electrical,Mechanical #12;Companies Hiring by Majors),Computer & Systems,Industrial,Aerospace 106 BASF Corporation Electrical,Mechanical,Civil,Chemical 86 Bayer Technology Engineering Corporation Engineering 108 Conestoga-Rovers & Associates Engineering 3/4 Conoco

  11. Companies founded by faculty, staff and alumni of The Institute of Optics

    E-Print Network [OSTI]

    Companies founded by faculty, staff and alumni of The Institute of Optics LAST NAME FIRST NAME NAME OF COMPANY Savvy Optics Dema Bekz Corp. Amarel John Amarel Precision Anderson James Optics Technology In., Tropel Atkinson, III Leland G Gradient Lens Corp. Medox electro-optics MXR (Medox Research) Clark

  12. Smart Companies “Wake up” Night Shift Workers Make More Mistakes & More Prone to Accidents

    Broader source: Energy.gov [DOE]

    A study from Circadian Technologies, http://www.circadian.com/media/Press.html, a consulting firm which specializes in advising the nation's largest companies on how to manage their extended-hours operations, estimates that maintaining the practice may be costing companies a steep $206 billion annually -- $8,600 per worker.

  13. Sponsored by: National Association of Energy Service Companies Financing An Energy Upgrade

    E-Print Network [OSTI]

    , as companies found it cost effective to invest in new technology that used less energy. 1 of 8 1/10/2001 11 and financiers' increasing comfort level with energy upgrade initiatives means good news: It's easier to accessSponsored by: National Association of Energy Service Companies Financing An Energy Upgrade

  14. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  15. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  16. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    SciTech Connect (OSTI)

    A. B. Culp

    2007-01-26T23:59:59.000Z

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  17. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    HF ReEnergy has focused its most recent efforts on the desire to create grid quality electricity from landfill waste The company also plans to focus on making existing coal plants...

  18. The Business Case for Fuel Cells 2011: Energizing America's Top Companies

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report was developed by Fuel Cells 2000 with support from the Fuel Cell Technologies program. The report profiles nationally recognizable companies and corporations that are deploying or demonstr

  19. Non-linear revenue creating business platform for IT service companies using cloud computing

    E-Print Network [OSTI]

    Sinha, Prasanta, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    The Indian Information Technology (IT) & Business process outsourcing (BPO) companies are going through an inflection point. They have been growing revenue by over 20% on a yearly basis for the last decade. This revenue ...

  20. Managing agile information technology infrastructure

    E-Print Network [OSTI]

    Kalissery, Biju

    2007-01-01T23:59:59.000Z

    Information technology (IT) can be a key contributor for the successful implementation of business strategies. However, companies normally find it hard to synchronize their evolving business strategies with the capabilities ...