Powered by Deep Web Technologies
Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Idaho Model Watershed Project : Annual Report to the Bonneville Power Administration January 1, 1997 - December 31, 1997.  

SciTech Connect (OSTI)

The Model Watershed Project was initiated in the fall of 1992 with a grant from Bonneville Power Administration. The objective of this project is to protect, enhance and restore anadromous and resident fish habitat and achieve and maintain a balance between resource protection and resource use on a holistic watershed basis.

Bradbury, Allen; Slavin, Katie

1998-10-28T23:59:59.000Z

2

Watershed Modeling for Biofuels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

3

Asotin Creek Model Watershed Plan  

SciTech Connect (OSTI)

The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

1995-04-01T23:59:59.000Z

4

Watershed Management And Modeling Development and Application of  

E-Print Network [OSTI]

30% of ponds, lakes and reservoirs 40% of estuaries #12;Watershed Management And Modeling Sources-transpiration Elemental responses are integrated to determine system response #12;Watershed Management And ModelingWatershed Management And Modeling Development and Application of Watershed Models for Simulation

Sukop, Mike

6

Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.  

SciTech Connect (OSTI)

The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

Browne, Dave

1995-04-01T23:59:59.000Z

7

Modeling Harry's Brook Watershed Alexandra Konings, REU 2006 Tracing the Water  

E-Print Network [OSTI]

for Undergraduates, 2006 #12;Modeling Harry's Brook Watershed Alexandra Konings, REU 2006 Urban Hydrology Water's Storm Water Management Model (SWMM) Solves differential and algebraic equations involved in calculatingModeling Harry's Brook Watershed Alexandra Konings, REU 2006 Tracing the Water: Detailed Modeling

Petta, Jason

8

Great Lakes Spatially Distributed Watershed Model of Water and Materials Runoff Thomas E. Croley II  

E-Print Network [OSTI]

Great Lakes Spatially Distributed Watershed Model of Water and Materials Runoff Thomas E. Croley II.S. Environmental Protection Agency (EPA) has identified contaminated sediments, urban runoff and storm sewers there are no integrated spatially distributed physically based watershed-scale hydrological/water quality models available

9

Modeling Onsite Wastewater Treatment Systems in the Dickinson Bayou Watershed  

E-Print Network [OSTI]

Onsite wastewater treatment systems (OWTSs) are a commonly used means of wastewater treatment in the Dickinson Bayou watershed which is located between Houston and Galveston. The Dickinson Bayou is classified as "impaired" by the Texas Commission...

Forbis-Stokes, Aaron

2012-10-19T23:59:59.000Z

10

Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors  

SciTech Connect (OSTI)

Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.

Maurakis, Eugene G

2010-10-01T23:59:59.000Z

11

Coupling upland watershed and downstream waterbody hydrodynamic and water quality models  

E-Print Network [OSTI]

. Such models lack the capacity to simulate the hydrodynamics and water quality processes of larger waterCoupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins B. Debele & R. Srinivasan

12

Modeling Sediment and Wood Storage and Dynamics in Small Mountainous Watersheds  

E-Print Network [OSTI]

85 Modeling Sediment and Wood Storage and Dynamics in Small Mountainous Watersheds Stephen T controls on supply and transport of sediment and wood in a small (approximately two square kilometers) basin in the Oregon Coast Range, typical of streams at the interface between episodic sediment and wood

13

Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis  

SciTech Connect (OSTI)

This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

Suzette Payne

2007-08-01T23:59:59.000Z

14

Idaho Geological Survey and University of Idaho Explore for Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idaho Geological Survey and University of Idaho Explore for Geothermal Energy Idaho Geological Survey and University of Idaho Explore for Geothermal Energy January 11, 2013 -...

15

Idaho's Energy Options  

SciTech Connect (OSTI)

This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

Robert M. Neilson

2006-03-01T23:59:59.000Z

16

The Idaho National Engineering and Environmental Laboratory Source Water Assessment  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL's public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

Sehlke, G.

2003-03-17T23:59:59.000Z

17

The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed  

E-Print Network [OSTI]

AND ASSOCIATED MODELS DEVELOPED FOR THE PASO DEL NORTE WATERSHED MODFLOW – MODULAR Three-Dimensional Finite-Difference Groundwater FLOW Model MODFLOW is a modular, three-dimensional, finite-difference, groundwater flow model that numerically solves... the three-dimensional groundwater flow equation for a porous medium by using a finite-difference method (Harbaugh et al. 2000; McDonald and Harbaugh 1988). MODFLOW simulates steady and transient (nonsteady) flow in an irregularly shaped flow system...

Sheng, Zhuping; Tillery, Sue; King, Phillip J.; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

18

Non point source pollution modelling in the watershed managed by Integrated Conctructed Wetlands: A GIS approach.   

E-Print Network [OSTI]

The non-point source pollution has been recognised as main cause of eutrophication in Ireland (EPA Ireland, 2001). Integrated Constructed Wetland (ICW) is a management practice adopted in Annestown stream watershed, located in the south county...

Vyavahare, Nilesh

2008-12-05T23:59:59.000Z

19

Idaho Power- Net Metering  

Broader source: Energy.gov [DOE]

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

20

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

SciTech Connect (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

APPLICATION OF BAYESIAN AND GEOSTATISTICAL MODELING TO THE ENVIRONMENTAL MONITORING OF CS-137 AT THE IDAHO NATIONAL LABORATORY  

SciTech Connect (OSTI)

At the Idaho National Laboratory (INL) Cs-137 concentrations above the U.S. Environmental Protection Agency risk-based threshold of 0.23 pCi/g may increase the risk of human mortality due to cancer. As a leader in nuclear research, the INL has been conducting nuclear activities for decades. Elevated anthropogenic radionuclide levels including Cs-137 are a result of atmospheric weapons testing, the Chernobyl accident, and nuclear activities occurring at the INL site. Therefore environmental monitoring and long-term surveillance of Cs-137 is required to evaluate risk. However, due to the large land area involved, frequent and comprehensive monitoring is limited. Developing a spatial model that predicts Cs-137 concentrations at unsampled locations will enhance the spatial characterization of Cs-137 in surface soils, provide guidance for an efficient monitoring program, and pinpoint areas requiring mitigation strategies. The predictive model presented herein is based on applied geostatistics using a Bayesian analysis of environmental characteristics across the INL site, which provides kriging spatial maps of both Cs-137 estimates and prediction errors. Comparisons are presented of two different kriging methods, showing that the use of secondary information (i.e., environmental characteristics) can provide improved prediction performance in some areas of the INL site.

Kara G. Eby

2010-08-01T23:59:59.000Z

22

Calibration of Watershed Models using Cloud Computing Marty Humphrey, Norm Beekwilder  

E-Print Network [OSTI]

.e. runoff from agricultural and urban lands to water bodies. This difference in scope introduces-- Understanding hydrologic systems at the scale of large watersheds and river basins is critically important to society when faced with extreme events, such as floods and droughts, or with concerns about water quality

Humphrey, Marty

23

Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian liaisons to the KRN. As a result, restoration work is in the planning stages for Canadian tributaries that flow into the Moyie River in northern Idaho and the Yaak River in northwest Montana.

Munson, Bob; Munson, Vicki (Kootenai River Network, Libby, MT); Rogers, Rox (US Fish and Wildlife Service, Libby, MT)

2003-10-01T23:59:59.000Z

24

A comparative evaluation of conceptual models for the Snake River Plain aquifer at the Idaho Chemical Processing Plant, INEL  

SciTech Connect (OSTI)

Geologic and hydrologic data collected by the United States Geological Survey (USGS) are used to evaluate the existing ground water monitoring well network completed in the upper portion of the Snake River Plain aquifer (SRPA) beneath the Idaho Chemical Processing Plant (ICPP). The USGS data analyzed and compared in this study include: (a) lithologic, geophysical, and stratigraphic information, including the conceptual geologic models intrawell, ground water flow measurement (Tracejector tests) and (c) dedicated, submersible, sampling group elevations. Qualitative evaluation of these data indicate that the upper portion of the SRPA is both heterogeneous and anisotropic at the scale of the ICPP monitoring well network. Tracejector test results indicate that the hydraulic interconnection and spatial configuration of water-producing zones is extremely complex within the upper portion of the SRPA. The majority of ICPP monitoring wells currently are equipped to sample ground water only the upper lithostratigraphic intervals of the SRPA, primarily basalt flow groups E, EF, and F. Depth-specific hydrogeochemical sampling and analysis are necessary to determine if ground water quality varies significantly between the various lithostratigraphic units adjacent to individual sampling pumps.

Prahl, C.J.

1992-01-01T23:59:59.000Z

25

Modeling of the interactions between forest vegetation, disturbances, and sediment yields  

E-Print Network [OSTI]

Modeling of the interactions between forest vegetation, disturbances, and sediment yields Erkan on the frequency and magnitude of sediment delivery from a small watershed ($3.9 km2 ) in the Idaho batholith weathering and the divergence of diffusive sediment transport on hillslopes. Soil removal is due to episodic

Tarboton, David

26

The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

Johnson, R.O.

1996-05-01T23:59:59.000Z

27

Idaho National Laboratory Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor Sustainability Idaho Regional Optical Network LDRD Next Generation Nuclear Plant Docs...

28

Idaho National Laboratory Newsroom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

list of common INL acronyms and abbreviations. Page Contact Information: Nicole Stricker (208) 526-5955 Email Contact Feature Story Counting the ways Idaho National...

29

Idaho National Laboratory History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

30

Southeast Idaho History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

31

Southeast Idaho Geography  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

32

Southeast Idaho Attractions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

33

Southeast Idaho Area Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

34

Idaho Falls Attractions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

35

Idaho National Laboratory Today  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

36

EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho.  The...

37

Department of Environmental Conservation, University of Massachusetts-Amherst Concentration in Water, Wetlands and Watersheds 1  

E-Print Network [OSTI]

in Water, Wetlands and Watersheds 1 Environmental Conservation Graduate Program Water, Wetlands want scientific training in the multi-disciplinary field of water, wetlands and watershed conservation such as wetlands, hydrology, nonpoint source pollution, modeling, ecosystems, water resource management, watershed

Schweik, Charles M.

38

Flood forecasting with the A&M watershed model: a hydrometeorological study  

E-Print Network [OSTI]

'c 219R'? 67. 6R ' "' 66. 5R'w 204Rc o 205R' " ) 3PPR~? 450R' '" j 184R' '" 278R"'" 240R'""' 176R'" 15 I R "' 179R'" 227n'o 17 8R "c 150R"" 137R' "" 330R'? 298R''" ) 520Rwo 730Rcn ) 255R' " 426R' 'c Sal'man (1957) Shupiatskii (1957... procedure. The rain gage locations reporting valid data within or near the watershed boundary are identified. The rainfall measured by each gage is compared to the amount measured by the radar at the gage location. If the measured rainfall exceeds a...

Robinson, Cedric Glynn

1990-01-01T23:59:59.000Z

39

IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER  

Broader source: Energy.gov [DOE]

Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

40

Transport parameter determination and modeling of sodium and strontium plumes at the Idaho National Engineering Laboratory  

E-Print Network [OSTI]

finite-element method to model a case of chromium contamination with some success. Bobcrtson, '1974~ used au iterative, alternating- direction. inrplicit finite-difference scheme to solve the groundwater flow equation and a. nrodified method... the location of the INEL and generalized groundwater flow lines of the Snake River Plain aquifer [from Barraclough et al. , 1981). . 12 3. Map showing the major facilities and surface water features at the INEL [from Robertson et al. , 1974]. 4. Volcanic...

Londergan, John Thomas

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimal Operation of Large Agricultural Watersheds with Water Quality Restraints  

E-Print Network [OSTI]

. Nonpoint-source pollution (watersheds) is widely dispersed and not easily measured. Mathematical models are needed to predict nonpoint-source pollution as affected by watershed characteristics, land use, conservation practices, chemical fertilizers...

Williams, J. R.; Hann, R. W.

42

Independent Oversight Focused Safety Management Evaluation, Idaho...  

Office of Environmental Management (EM)

Focused Safety Management Evaluation, Idaho National Engineering and Environmental Laboratory - January 2001 Independent Oversight Focused Safety Management Evaluation, Idaho...

43

Analysis Activities at Idaho National Engineering & Environmental...  

Broader source: Energy.gov (indexed) [DOE]

Analysis Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's...

44

EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

45

Idaho Watershed Advisory Groups Webpage | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar JumpObtain EPAFormAdvisory Groups Webpage

46

Application of the Green-Ampt infiltration equation to watershed modeling with estimated parameters  

E-Print Network [OSTI]

1988) John Storrs Warinner, B. S. , Oregon State University Chair of Advisory Committee: Dr. Wesley P. James A computer model was developed, based upon the Green-Ampt infiltration equation, to compute cumulative rainfall excess for a single, given...

Warinner, John Storrs

2012-06-07T23:59:59.000Z

47

UNIVERSITY OF IDAHO Robert Smith University of Idaho - Associate...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Robert Smith University of Idaho - Associate Vice President Center for Advanced Energy Studies - Associate Director Dr. Robert (Bob) Smith, Associate Vice-President for the...

48

Area Study prior to Companion Modelling to Integrate Multiple Interests in Upper Watershed Management of Northern Thailand  

E-Print Network [OSTI]

Management of Northern Thailand C. Barnaud*, G. Trébuil**, P. Dumrongrojwatthana***, J. Marie**** * CU of northern Thailand have long been accused of degrading the upper watersheds of the country's major basins communities and state agencies, calling for the need for adapted participatory methodologies to facilitate

Boyer, Edmond

49

Watershed Management Policy (Minnesota)  

Broader source: Energy.gov [DOE]

It is state policy to manage groundwater and surface water resources from the perspective of aquifers, watersheds, and river basins to achieve protection, preservation, enhancement, and restoration...

50

Melton Valley Watershed  

Broader source: Energy.gov (indexed) [DOE]

watershed. Wastes disposed in Melton Valley reside at a variety of locations, including solid waste landfills, trenches, liquid waste tanks and pipelines, surface structures,...

51

Idaho National Laboratory Driving Directions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

52

CRAD, Criticality Safety - Idaho Accelerated Retrieval Project...  

Broader source: Energy.gov (indexed) [DOE]

Criticality Safety - Idaho Accelerated Retrieval Project Phase II CRAD, Criticality Safety - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to...

53

CRAD, Occupational Safety & Health - Idaho Accelerated Retrieval...  

Broader source: Energy.gov (indexed) [DOE]

Occupational Safety & Health - Idaho Accelerated Retrieval Project Phase II CRAD, Occupational Safety & Health - Idaho Accelerated Retrieval Project Phase II February 2006 A...

54

Integrated Safety Management Workshop Registration, PIA, Idaho...  

Office of Environmental Management (EM)

Safety Management Workshop Registration, PIA, Idaho National Laboratory More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory...

55

Prong Features Detection of a 3D Model Based on the Watershed Algorithm Bing-Yu Chen  

E-Print Network [OSTI]

detection, the water level decreases iteratively from the maximum value. The decreas- ing level effects is not in the traversed set, it is a new prong feature. The pseudo code is as follows: e-mail:{joyce, liang}@cmlab.csie.ntu.edu.tw e-mail:robin@ntu.edu.tw e-mail:ming@csie.ntu.edu.tw Function watershed algorithm V =sort (S); //if

Ouhyoung, Ming

56

Idaho | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy Media Contact Brad$440IdahoFollowing

57

The Texas Watershed Steward Program  

E-Print Network [OSTI]

WATERSHED PROTECTION AND MANAGEMENT · Importance of Local Watershed Involvement · Forming and Sustaining: ­ 7 AICP CM hours (planners) ­ 7 TBPE CPEs (engineers) ­ 7 CCA CEUs (soil & water management) ­ 7Life Extension Service Watershed Protection Planning Short Course January 1216, 2009 WATERSHED MANAGEMENT · Local

58

Idaho Cleanup Contractor Surpasses Significant Safety Milestones  

Broader source: Energy.gov [DOE]

IDAHO FALLS, Idaho – For the second time in a little over a year, employees with DOE contractor CH2M-WG Idaho (CWI) supporting EM at the Idaho site have achieved 1 million hours without a recordable injury. They also worked more than 1.7 million hours without a lost work-time injury.

59

City of Idaho Falls, Idaho (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood, Kansas (Utility Company) JumpIdaho Falls, Idaho

60

aquifer idaho national: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and educators from all Idaho state universities; staff 30 Idaho Asphalt Conference October 24, 25, 2012 Attendee List Engineering Websites Summary: 52nd Idaho Asphalt...

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CRAD, Radiological Controls - Idaho MF-628 Drum Treatment Facility...  

Broader source: Energy.gov (indexed) [DOE]

Safety & Health - Idaho MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility CRAD, Conduct of Operations - Idaho MF-628 Drum Treatment Facility...

62

CRAD, Safety Basis - Idaho MF-628 Drum Treatment Facility | Department...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Occupational Safety & Health - Idaho MF-628 Drum Treatment Facility CRAD, Conduct of Operations - Idaho MF-628 Drum Treatment Facility CRAD, Management - Idaho...

63

CRAD, Management - Idaho MF-628 Drum Treatment Facility | Department...  

Broader source: Energy.gov (indexed) [DOE]

- Idaho MF-628 Drum Treatment Facility CRAD, Occupational Safety & Health - Idaho MF-628 Drum Treatment Facility CRAD, Conduct of Operations - Idaho MF-628 Drum Treatment Facility...

64

E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho...

65

Idaho National Laboratory Visitor Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In addition, DOE owns or leases laboratories and administrative offices in the city of Idaho Falls, some 25 miles east of the INL Site border. About 30 percent of INL's...

66

EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

67

Idaho - Access Management: Standards and Procedures for Highway...  

Open Energy Info (EERE)

EncroachmentsPermittingRegulatory GuidanceGuideHandbook Author Idaho Transportation Department Published Idaho Transportation Department, 042001 DOI Not Provided...

68

CRAD, Engineering - Idaho Accelerated Retrieval Project Phase...  

Broader source: Energy.gov (indexed) [DOE]

Engineering - Idaho Accelerated Retrieval Project Phase II CRAD, Engineering - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

69

CRAD, Management - Idaho Accelerated Retrieval Project Phase...  

Broader source: Energy.gov (indexed) [DOE]

Management - Idaho Accelerated Retrieval Project Phase II CRAD, Management - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

70

CRAD, Emergency Management - Idaho Accelerated Retrieval Project...  

Broader source: Energy.gov (indexed) [DOE]

Idaho Accelerated Retrieval Project Phase II CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

71

Idaho Administrator's Memorandum on Transfer Processing Policies...  

Open Energy Info (EERE)

Administrator's Memorandum on Transfer Processing Policies and Procedures Author Idaho Water Management Division Administrator Recipient Water Management Division Published...

72

Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed  

E-Print Network [OSTI]

Land Model (CLM) is the land component within the Community Earth System Model (CESM) (formerly known earth system model b

73

Wind River Watershed Restoration: 1999 Annual Report.  

SciTech Connect (OSTI)

This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education--Objective 8: Promote watershed stewardship among students, the community, private landowners, and local governments. Progress towards six of eight of these objectives is described within nine separate reports included in a four-volume document.

Connolly, Patrick J.

2001-09-01T23:59:59.000Z

74

CURRICULUM VITAE University of Idaho  

E-Print Network [OSTI]

: Professor of Fish and Wildlife Resources DEPARTMENT AND CAMPUS ZIP: Fish and Wildlife Resources, 1136 OFFICE and Research Appointments: July 1998-present, Professor, Department of Fish and Wildlife Resources, University of Idaho 1990-June 1998, Associate Professor, Department of Fish and Wildlife Resources, University

75

Grays River Watershed and Biological Assessment Final Report 2006.  

SciTech Connect (OSTI)

The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

2008-02-04T23:59:59.000Z

76

Grays River Watershed and Biological Assessment, 2006 Final Report.  

SciTech Connect (OSTI)

The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

May, Christopher; Geist, David [Pacific Northwest National Laboratory

2007-04-01T23:59:59.000Z

77

Idaho Operations Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I i I 1272014 1 guiding the development of, and validating computer models of fuel and core behavior. DOE expects the final environmental assessment to be issued as early as...

78

Idaho Power- Irrigation Efficiency Rewards Rebate Program  

Broader source: Energy.gov [DOE]

Through Idaho Power's Irrigation Efficiency Rewards program, agricultural irrigation customers qualify to receive an incentive for a portion of the cost to install a new, more efficient irrigation...

79

Enforcement Letter, Lockheed Martin Idaho Technologies Company...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

related to a Repetitive Problem with Instrument Operability at the Idaho National Engineering and Environmental Laboratory On August 4, 1998, the U.S. Department of Energy...

80

Idaho Falls Power- Residential Weatherization Loan Program  

Broader source: Energy.gov [DOE]

Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an...

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Idaho Legislative Interim Committee, Energy, Environment, and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Studies: a critical early step in establishing an effective partnership with Idaho universities * Reinvigorating federal support for nuclear science and engineering...

82

Independent Oversight Assessment, Idaho Cleanup Project Sodium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bearing Waste Treatment Project - November 2012 November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project This...

83

Idaho Power- Large Commercial Custom Efficiency Program  

Broader source: Energy.gov [DOE]

Large commercial and industrial Idaho Power customers that reduce energy usage through more efficient electrical commercial and industrial processes may qualify for an incentive that is the lesser...

84

Enterprise Assessments Targeted Review, Idaho Site AMWTP Report...  

Energy Savers [EERE]

program (FPP) at the Idaho Site. The AMWTP is established to retrieve, characterize, treat, and package transuranic waste currently stored at the Idaho Site. The AMWTP includes...

85

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...  

Office of Environmental Management (EM)

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer...

86

Idaho Power- Easy Upgrades for Simple Retrofits Rebate Program  

Broader source: Energy.gov [DOE]

Idaho Power offers incentives for its commercial and industrial customers in Idaho and Oregon to upgrade to more efficient equipment in facilities. They provide incentives for lighting equipment...

87

EIS-0290: Idaho National Engineering and Environmental Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

90: Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project (AMWTP) EIS-0290: Idaho National Engineering and Environmental Laboratory...

88

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...  

Office of Environmental Management (EM)

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

89

Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...  

Broader source: Energy.gov (indexed) [DOE]

February 27, 1997 Issued to Lockheed Martin Idaho Technologies Company related to Unplanned Internal Radiation Exposures at the Chemical Processing Plant at the Idaho National...

90

UNIVERSITY OF IDAHO Hasan Jamil Computer Science Department ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

academic positions in Michigan, Mississippi, Canada and Australia. At the University of Idaho he holds a joint appointment with Idaho National Laboratory. His office is in the...

91

IDAHO NATIONAL LABORATORY PROGRAM TO OBTAIN BENCHMARK DATA ON THE FLOW PHENOMENA IN A SCALED MODEL OF A PRISMATIC GAS-COOLED REACTOR LOWER PLENUM FOR THE VALIDATION OF CFD CODES  

SciTech Connect (OSTI)

The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a typical prismatic gas-cooled (GCR) reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A detailed description of the model, scaling, the experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that are presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic GCR design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements reveal undeveloped, non-uniform flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and charts that describe the component flows at specific regions in the model. Information on inlet flow is also presented.

Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

2008-09-01T23:59:59.000Z

92

Idaho Settlement Agreement Signed at Idaho National Laboratory | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment of Energy ReportingIanIdaho1i f th Hi

93

A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas  

E-Print Network [OSTI]

best management practices (BMPs) have been implemented through Water Quality Management Plans (WQMPs; Best management practices Software availability Name of the software: Soil and Water Assessment Tool. doi:10.1016/j.envsoft.2005.05.013 www.elsevier.com/locate/envsoft Environmental Modelling & Software

94

Idaho Science, Technology, Engineering and Mathematics Overview  

ScienceCinema (OSTI)

Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

95

Idaho Science, Technology, Engineering and Mathematics Overview  

SciTech Connect (OSTI)

Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

None

2011-01-01T23:59:59.000Z

96

University of Idaho 2009 GRADUATING SENIOR SURVEY  

E-Print Network [OSTI]

University of Idaho 2009 GRADUATING SENIOR SURVEY Class of 2008-2009 Core Programs UI % SBOE Core at the University of Idaho? 1 2 62 35 1 2 64 33 scientific principles and methods 9 24 36 30 9 24 38 29 9 26 35 30 Use computers and other technologies 8 22

O'Laughlin, Jay

97

University of Idaho 2009 GRADUATING SENIOR SURVEY  

E-Print Network [OSTI]

1 University of Idaho 2009 GRADUATING SENIOR SURVEY Class of 2008-09 Number of respondents n = 1370 are you with the quality of the education you received at the University of Idaho? 1 2 62 35 Q-2 effectively 4 20 45 31 Communicate well orally 5 20 45 30 Apply scientific principles and methods 9 24 36 30

O'Laughlin, Jay

98

Idaho Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy Media Contact Brad$440Idaho National

99

Idaho_AmericanFallsRockland  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLtheIndustry |MentoringFacilityIdahoWind

100

Department of Energy Idaho - Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The Desert Southwest RegionInside ID Inside IdahoLinks

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Recovery Act State Memos Idaho  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09 SectionGeorgia For questionsIdaho For

102

Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds  

SciTech Connect (OSTI)

On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

None available

1999-07-29T23:59:59.000Z

103

The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part II Availability of Flow and Water Quality Data for the Rio Grande Project Area  

E-Print Network [OSTI]

Cruces, NM 88003 (575) 646-4337 i i Acknowledgement This document and the underlying pr oject activities detailed in this report reflect the joint efforts of many people working with the Paso del Norte Watershed Council (PdNWC). The authors... wish to acknowledge and extend our grat itude to the U.S. Army Corps of Engineers for the generous financial support extende d to the PdNWC for development of the Coordinated Water Resources Database and Model Developm ent Project (called Project...

Tillery, Sue; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

2009-01-01T23:59:59.000Z

104

Southern Region Watershed Management Project  

E-Print Network [OSTI]

Coordinators and the organization, management and activities of the Southern Region Water Quality Planning1 Southern Region Watershed Management Project September 15, 2000 to September 14, 2005 Terminal responding to water quality and conservation issues with educational assistance, technology development

105

The Texas Watershed Steward Program  

E-Print Network [OSTI]

San Antonio Bay Other April 2011 Victoria Victoria Urban Watersheds in City of Temple Other May 2011 Pecos River 1 WPP August 2011 Pecos Reeves Pecos River 2 WPP August 2011 Sheffield Pecos Concho River

106

Independent Oversight Inspection, Idaho National Laboratory- June 2005  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory Advanced Test Reactor

107

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment  

Broader source: Energy.gov [DOE]

Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

108

U.S. hydropower resource assessment for Idaho  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

Conner, A.M.; Francfort, J.E.

1998-08-01T23:59:59.000Z

109

Retrofitting the Streetlights in Boise, Idaho  

ScienceCinema (OSTI)

Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and local quality of life.

Young, Clay; Oliver, LeAnn; Bieter, David; Johnson, Michael; Oldemeyer, Neal

2013-05-29T23:59:59.000Z

110

Preliminary Notice of Violation, International Isotopes Idaho...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ventilation Filters at the Test Reactor Area Hot Cell Facility at the Idaho National Engineering and Environmental Laboratory, On May 19, 2000, the U.S. Department of Energy issued...

111

Important Idaho habitat now protected through purchase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

River Wildlife Management Area just got bigger thanks to the 4.2 million purchase of Hammer Flat. The City of Boise, Idaho Department of Fish and Game, and the Bonneville Power...

112

Retrofitting the Streetlights in Boise, Idaho  

Broader source: Energy.gov [DOE]

Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and...

113

CRAD, Radiological Controls - Idaho Accelerated Retrieval Project...  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Retrieval Project Phase II CRAD, Radiological Controls - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal...

114

Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information IDS ClimateIceland-NRELBoise, IdahoIdaho:

115

Energy Incentive Programs, Idaho | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica,Idaho Energy Incentive Programs, Idaho Updated

116

Grays River Watershed Geomorphic Analysis  

SciTech Connect (OSTI)

This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

Geist, David R.

2005-04-30T23:59:59.000Z

117

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site  

Broader source: Energy.gov [DOE]

IDAHO FALLS, Idaho – EM and contractor CH2M-WG, IDAHO, LLC (CWI) made significant progress in 2013 dispositioning transuranic (TRU) waste and helping ship it out of Idaho.

118

Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). Version 1.0  

SciTech Connect (OSTI)

This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG&G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

Bandy, P.J.; Hall, L.F.

1993-03-01T23:59:59.000Z

119

Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). [Contaminant transport computer codes  

SciTech Connect (OSTI)

This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

Bandy, P.J.; Hall, L.F.

1993-03-01T23:59:59.000Z

120

Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach  

SciTech Connect (OSTI)

This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

Coty, J

2009-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Walker Branch Watershed Ecosystems Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

These projects have all contributed to a more complete understanding of how forest watersheds function and have provided insights into the solution of energy-related problems associated with air pollution, contaminant transport, and forest nutrient dynamics. This is one of a few sites in the world characterized by long-term, intensive environmental studies. The Walker Branch Watershed website at http://walkerbranch.ornl.gov/ provides maps, photographs, and data on climate, precipitation, atmospheric deposition, stream discharge and runoff, stream chemistry, and vegetation. [Taken from http://walkerbranch.ornl.gov/ABOUTAAA.HTM

122

EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory  

Broader source: Energy.gov [DOE]

This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

123

WATERSHED EDUCATION PROGRAM The Watershed Education Program (WEP)  

E-Print Network [OSTI]

of watershed hydrology Lake and river systems Urban and rural runoff Best management practices Aquatic leaders, citizens, and natural resource professionals with knowledge and tools to make informed water and land use decisions to protect and restore the integrity of Minnesota's lakes, rivers, streams

Netoff, Theoden

124

The Watershed Management Approach  

E-Print Network [OSTI]

phosphorus loading by 25 percent or to develop a computer model that ac- curately predicts nitrogen and phosphorus loadings for a particular lake. What are water quality models? Water quality models use personal computers and mathematics to represent natural...

Persyn, Russell A.; Griffin, Molly; Williams, Amy T.; Wolfe, Clint

2008-08-11T23:59:59.000Z

125

Independent Study in Idaho ISI Course BSU Course NOTES  

E-Print Network [OSTI]

Independent Study in Idaho ISI Course BSU Course NOTES Updated 03/2012 Boise State University Administration #12;Independent Study in Idaho ISI Course BSU Course NOTES Updated 03/2012 Boise State University

Barrash, Warren

126

Idaho Power- Rebate Advantage for New Manufactured Homes  

Broader source: Energy.gov [DOE]

Idaho Power is offering a $1000 sales rebate to customers who purchase a new ENERGY STAR all-electric manufactured home and connect that home to an Idaho Power residential account. In addition, the...

127

CRAD, Engineering - Idaho MF-628 Drum Treatment Facility | Department...  

Broader source: Energy.gov (indexed) [DOE]

Engineering - Idaho MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line...

128

Idaho Power- Easy Upgrades for Simple Retrofits Rebate Program  

Broader source: Energy.gov [DOE]

Idaho Power offers incentives for its commercial and industrial customers in Idaho and Oregon to upgrade to more efficient equipment in their facilities. They provide rebates for lighting equipment...

129

Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...  

Broader source: Energy.gov (indexed) [DOE]

at the Test Reactor Area and Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory, (EA-97-09) On September 19, 1997, the U.S. Department...

130

CRAD, Safety Basis - Idaho Accelerated Retrieval Project Phase...  

Broader source: Energy.gov (indexed) [DOE]

Idaho Accelerated Retrieval Project Phase II CRAD, Safety Basis - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line...

131

High Water Heating Bills on Lockdown at Idaho Jail | Department...  

Broader source: Energy.gov (indexed) [DOE]

High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail August 19, 2010 - 12:05pm Addthis The Blaine County Public Safety Facility...

132

EA-1913: Springfield Sockeye Hatchery Program, Springfield, Bingham County, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal by DOE’s Bonneville Power Administration to fund the Idaho Department of Fish and Game (IDFG) to modify existing facilities at the Springfield Hatchery, located in Bingham County, Idaho.

133

Distributed Wind Energy in Idaho  

SciTech Connect (OSTI)

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

134

Achieving TMDL Goals in Imparied Watersheds through Manure Export in Turfgrass Sod  

E-Print Network [OSTI]

. Model Calibration: Flow: Sediment: Phosphorous Organic: Mineral: Future and Ongoing Research: References of Turfgrass Production Sites for Phosphorous Removal from an Impaired Watershed. Unpublished. M.S. Texas A

Mukhtar, Saqib

135

Voluntary Protection Program Onsite Review, Idaho Cleanup Project- October 2010  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Idaho Cleanup Project is continuing to perform at a level deserving DOE-VPP Star recognition.

136

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL...

137

Idaho National Laboratory Cultural Resource Management Plan  

SciTech Connect (OSTI)

As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

Julie Braun Williams

2013-02-01T23:59:59.000Z

138

Evaluation of inorganic phosphate content of overland runoff from a rural watershed  

E-Print Network [OSTI]

Soil Tests and Phosphate Potential Curves. . 71 Storm Events Encountered. Runoff Water Iluality. . . CONCLUSION REFERENCES APPENDICIES Appendix A. Variables Used in Text Appendix B. Phosphate Model Subroutines Listing. VITA 81 88 99 101 106... the watershed under consideration had undergone change such as urbanization or a shift from forested to cleared. Lawson identified 18 watershed modifications which would change water- shed characteristics and subsequently model empirical constants. He...

Cepeda, William Lohr

1974-01-01T23:59:59.000Z

139

EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the U.S. Department of Energy's Idaho National Engineering Laboratory's proposal to remove 344 canisters of Three Mile Island core debris and...

140

Water Quality Monitoring in the Buck Creek Watershed and Facilitation of Buck Creek Watershed Partnership  

E-Print Network [OSTI]

around well-publicized events in the watershed including the two watershed partnership meetings and the announcement of the Texas Environmental Excellence Award winners. www.buckcreek.tamu.edu Educational Programming Providing educational...

Gregory, L.; Dyer, P.

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SWAT TO IDENTIFY WATERSHED MANAGEMENT OPTIONS: (ANJENI WATERSHED, BLUE NILE BASIN, ETHIOPIA)  

E-Print Network [OSTI]

SWAT TO IDENTIFY WATERSHED MANAGEMENT OPTIONS: (ANJENI WATERSHED, BLUE NILE BASIN, ETHIOPIA Biniam Biruk Ashagre #12;ABSTRACT Ethiopia is known for its wealth of natural resources. These result Basin, Ethiopia) #12;iv This study is dedicated to my

Walter, M.Todd

142

Watershed Assessment Program Team  

E-Print Network [OSTI]

­ Proposal to model urban storm-water control practices · Teach advanced graduate course ­ BASINS and SWAT · Monitoring Activities · Modeling Activities · Remote Sensing / GIS · Sources of Funding · What do We Need · Much more monitoring being done by cities and local governments ­ Source water assessment work done

143

Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho  

SciTech Connect (OSTI)

Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 – 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

Michael L. Abbott; Jeffrey J. Einerson

2007-12-01T23:59:59.000Z

144

Boise, Idaho: Saving Money and Reducing Waste  

Broader source: Energy.gov [DOE]

Thanks to a $1.2 million grant from the Department’s Energy Efficiency and Conservation Block Grant (EECBG) Program, the city of Boise, Idaho, will replace and install 1,450 LED streetlights by the end of this month. The project is projected to save $1.2 million over the next 15 years.

145

Texas Watershed Planning Short Course Final Report  

E-Print Network [OSTI]

the effectiveness of NPS outreach in Texas to reduce NPS and stormwater pollution, improve water quality on a priority watershed basis, and facilitate greater NPS TMDL and watershed-based plan implementation. #30;e Key EPA Internet Tools for Watershed Management... of protecting and restoring water quality from NPS pollution by providing training to water resource professionals in Texas, which will provide those individuals with knowledge and tools to 1) support the implementation of state, regional, and local programs...

Wagner, Kevin

146

Upper White River Watershed Alliance Upper White River Watershed Alliance (UWRWA)  

E-Print Network [OSTI]

Upper White River Watershed Alliance Upper White River Watershed Alliance (UWRWA) P.O. Box 2065 integrity of the White River ecosystem. To successfully accomplish the vision of UWRWA, a 16-county was formed. It exists to improve and protect water quality on a watershed basis in the larger Upper White

147

Idaho National Laboratory Cultural Resource Management Plan  

SciTech Connect (OSTI)

As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

Lowrey, Diana Lee

2011-02-01T23:59:59.000Z

148

Idaho National Laboratory Cultural Resource Management Plan  

SciTech Connect (OSTI)

As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

Lowrey, Diana Lee

2009-02-01T23:59:59.000Z

149

Climate Change Vulnerability Assessment for Idaho National Laboratory  

SciTech Connect (OSTI)

The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

2014-10-01T23:59:59.000Z

150

Watershed Analysis1 Alan Gallegos2  

E-Print Network [OSTI]

Watershed Analysis1 Alan Gallegos2 Abstract Watershed analyses and assessments for the Kings River delivery attributable to roads indicate concern for several stream reaches as well. The Kings River Sustainable Forest Ecosystems Project area is located in Fresno County, approximately 32 air miles northeast

Standiford, Richard B.

151

Watershed Science/Hydrology Graduate Schools  

E-Print Network [OSTI]

Watershed Science/Hydrology Graduate Schools University of Arizona Tucson, Arizona 95721://www.ag.arizona.edu/srnr/academicprograms/watershedresources/graduatestudies.html University of California, Davis Davis, California 95616 Program: Hydrologic Sciences http://www.warnercnr.colostate.edu/frws/watershed/graduate/index.html University of Florida Gainesville, Florida 326118140 Programs: Hydrologic Science http

152

Agriculture and Natural Resources Arkansas Watersheds  

E-Print Network [OSTI]

provide the natural catchment boundaries for isolating geographical areas with similar hydrological Environmental Protection Agency (EPA) defines a watershed as "the area of land where all of the waterAgriculture and Natural Resources FSA9521 Arkansas Watersheds Mike Daniels Professor

153

EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long- term management of the high- level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant a t the Idaho National Engineering Laboratory.

154

Idaho Fish Screening Improvements Final Status Report.  

SciTech Connect (OSTI)

This project funds two Idaho Department of Fish and Game (IDFG) fish habitat biologists to develop, secure funding for, and implement on-the-ground fish habitat improvement projects in the lower Clearwater River drainage and the upper Salmon River drainage. This report summarizes project activity during the first year of funding. The Clearwater Region fish habitat biologist began work on January 28, 2008 and the Salmon Region habitat biologist began on February 11, 2008.

Leitzinger, Eric J.

2008-11-12T23:59:59.000Z

155

Riggins, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue RidgeUniversity ofGeothermalRiggins, Idaho: Energy

156

Idaho/Transmission/Summary | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar JumpObtainTransmission/AgencyState'sIdaho,

157

Idaho Chemical Processing Plant Process Efficiency improvements  

SciTech Connect (OSTI)

In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

Griebenow, B.

1996-03-01T23:59:59.000Z

158

Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The  

E-Print Network [OSTI]

HIGHLIGHTS Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The state's growers produce about 30% of the U.S. potato crop, but the Idaho potato industry is more than potato fields. Idaho frozen

O'Laughlin, Jay

159

Idaho Site Closes Out Decontamination and Decommissioning Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. The Engineering Test Reactor vessel is shown...

160

DOE's Idaho National Lab Issues Request for Proposals for Engineering...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy's Idaho National Laboratory today issued a Request for Proposals (RFP) for engineering services in support of development of NGNP. This RFP is for pre-conceptual...

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Manchester Software 1099 Reporting PIA, Idaho National Laboratory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1099 Reporting PIA, Idaho National Laboratory More Documents & Publications PIA - INL PeopleSoft - Human Resource System Energy Employees' Occupational Illness Compensation...

162

Voluntary Protection Program Onsite Review, Idaho National Laboratory- October 2009  

Broader source: Energy.gov [DOE]

Evaluation to determine whether the Idaho National Laboratory is continuing to perform at a level deserving DOE-VPP Star recognition.

163

Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Quality Assurance, Emergency Communications, and other issues at the Idaho National Engineering and Environmental laboratory, (EA-1999-07) On August 18, 1999, the U.S. Department...

164

EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho...  

Office of Environmental Management (EM)

Transmission Line, Oregon and Idaho SUMMARY The Bureau of Land Management and the U.S. Forest Service are preparing, with DOE's Bonneville Power Administration (BPA) as a...

165

Idaho Public Utilities Commission Approves Neal Hot Springs Power...  

Open Energy Info (EERE)

Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities...

166

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup...  

Office of Environmental Management (EM)

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment March 28, 2013 - 12:00pm Addthis CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley...

167

Idaho Falls Power- Commercial Energy Conservation Loan Program  

Broader source: Energy.gov [DOE]

Idaho Falls Power is offering a zero interest loan program to qualifying commercial customers to install efficient lighting and other energy conservation measures. The building must receive its...

168

Idaho Falls Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Idaho Falls Power offers rebates to eligible customers on energy efficient HVAC measures and weatherization upgrades. Rebates are available on heat pumps, new manufactured homes and insulation....

169

Idaho Falls Power- Commercial Energy Conservation Rebate Program  

Broader source: Energy.gov [DOE]

In addition to loan programs, Idaho Falls Power offers rebates for customers meeting certain criteria. An energy audit will inspect the following measures and recommend upgrades as needed:...

170

Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Lockheed Martin Idaho Technologies Company, related to Unauthorized Disabling of the Seismic Scram Subsystem and Surveillance Deficiencies at the Advanced Test Reactor Critical...

171

Small Business Opportunities at the Idaho National Laboratory...  

Energy Savers [EERE]

- Nuclear Energy Idaho Operations Office Office of Nuclear Energy (NE) Advance nuclear power as a resource capable of meeting the Nation's energy, environmental, and national...

172

Reconnaissance geothermal exploration at Raft River, Idaho from...  

Open Energy Info (EERE)

exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Reconnaissance geothermal...

173

Experience INL K-12 Opportunities At Idaho National Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INL K-12 Opportunities At Idaho National Laboratory, students and teachers do more than just read about science and technology. They experience it firsthand through INL's various...

174

Curtis Smith, Diego Mandelli, Cristian Rabiti Idaho National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A case study in the interaction of mechanistic and probabilistic safety analysis Curtis Smith, Diego Mandelli, Cristian Rabiti Idaho National Laboratory (INL) RISMC strategic goals...

175

Once nearly extinct, Idaho sockeye regaining fitness advantage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the wild once more. A newly published analysis by the Idaho Department of Fish and Game and the Northwest Fisheries Science Center shows endangered Snake River...

176

Oversight Reports - Idaho Cleanup Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Sodium Bearing Waste Treatment Project - November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project...

177

Freedom of Information and Privacy Act Database PIA, Idaho Operations...  

Energy Savers [EERE]

Freedom of Information and Privacy Act Database PIA, Idaho Operations Office More Documents & Publications PIA - Security Clearance Work Tracking and Budget System TRAIN-PIA.pdf...

178

Idaho Operations Office: American Recovery and Reinvestment Act Update  

ScienceCinema (OSTI)

An update from Idaho National Laboratory, Rick Provencher addresses the progress that has been made due to the American Recovery and Reinvestment Act.

Provencher, Rick

2012-06-14T23:59:59.000Z

179

Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.  

SciTech Connect (OSTI)

The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

Johnson, Bradley J.

2000-01-01T23:59:59.000Z

180

Preliminary Notice of Violation, CH2M-Washington Group Idaho...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex - Accelerated Retrieval Project at the Idaho National...

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...  

Office of Environmental Management (EM)

: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition...

182

E-Print Network 3.0 - area idaho 1990-93 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of 65 in Idaho have a ... Source: Kyte, Michael - National Institute for Advanced Transportation Technology & Department of Civil Engineering, University of Idaho Collection:...

183

Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho  

SciTech Connect (OSTI)

An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site`s compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building`s interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor`s report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for {sup 60}Co were below the detection limit. The highest {sup 137}Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g.

Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A. [Oak Ridge National Lab., TN (US); Egidi, P.V.; Mather, S.K. [Oak Ridge Inst. for Science and Education, Grand Junction, CO (United States)

1993-07-01T23:59:59.000Z

184

Historical narratives of Big Chico Creek Watershed Alliance and Butte Creek Watershed Conservancy  

E-Print Network [OSTI]

King and Mike Matz LA227 December 19, 2003 Abstract This study analyzes the histories of two non-governmental watershed organizations in Butte County, California:

King, Mary Ann; Matz, Mike

2003-01-01T23:59:59.000Z

185

UNIVERSITY OF IDAHO 2007-2008 HERI Faculty Survey  

E-Print Network [OSTI]

1 of 5 UNIVERSITY OF IDAHO 2007-2008 HERI Faculty Survey Faculty Responses Full-Time Undergraduate Encourage students to become agents of social change Public Universities University of Idaho #12;5 of 5 2008 alternative solutions to a problem Look up scientific research articles and resources Explore topics

O'Laughlin, Jay

186

Idaho National Engineering Laboratory site development plan  

SciTech Connect (OSTI)

This plan briefly describes the 20-year outlook for the Idaho National Engineering Laboratory (INEL). Missions, workloads, worker populations, facilities, land, and other resources necessary to fulfill the 20-year site development vision for the INEL are addressed. In addition, the plan examines factors that could enhance or deter new or expanded missions at the INEL. And finally, the plan discusses specific site development issues facing the INEL, possible solutions, resources required to resolve these issues, and the anticipated impacts if these issues remain unresolved.

Not Available

1994-09-01T23:59:59.000Z

187

THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE  

SciTech Connect (OSTI)

A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

Glen R. Longhurst

2007-12-01T23:59:59.000Z

188

PacifiCorp (Idaho) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLC Place:Ferry County JumpPVDAQ Jump to:Idaho

189

Tetonia, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:Innovation & SolutionsKentucky) JumpTetonia, Idaho:

190

Kooskia, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutz eKodiak,Kooskia, Idaho: Energy

191

Buhl, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) JumpNREL BiofuelsBrowseJumpBuhl, Idaho:

192

BLM Idaho State Office | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance Documents Website Jump to:Idaho State

193

Boise, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE ISJumpSphere CorpBlundellIdaho: Energy

194

DOE-Idaho's Packaging and Transportation Perspective  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2ConsolidatedDepartment2-93 JANUARY6.1148-2002i5-975504-95Idaho's

195

IDAHO RECOVERY ACT SNAPSHOT | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of EnergyKickoff MeetingIDAHO RECOVERY ACT

196

Idaho Transportation Department | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIIIDrive LtdINDEXIcyneneP.O. Box Logo:Idaho

197

A watershed blueprint: Partners work together  

E-Print Network [OSTI]

Colorado Watershed,? he said. ?The storm drain markers and road signs are part of the partnership?s ongoing efforts to restore and protect the watershed.? A recently finished project, Education of Best Management Practices in the Arroyo Colorado... projects directed toward carrying out the WPP and restoring the arroyo. In addition to the implementation project, other projects monitor agricul- tural runoff to evaluate effects of implementing best management practices; educate farmers...

Wythe, Kathy

2011-01-01T23:59:59.000Z

198

Techniques for remotely sensing watershed runoff potential  

E-Print Network [OSTI]

Techniques for Remotely Sensing Watershed Runoff Potential. (August 1978) Jerry Don Walker, B. S. , Texas ASM University Directed by: Dr. Bruce J. Blanchard The Soil Conservation Service runoff equation is widely used for predicting the watershed runoff... cases, no outflow occurs through the spillway of an overdes1gned structure. Since evaporation losses are high 1n these areas, the salinity of the water stored in the structure gradually increases with time. With insufficient flow through...

Walker, Jerry Don

1978-01-01T23:59:59.000Z

199

Test of APEX for Nine Forested Watersheds in East Texas X. Wang,* A. Saleh, M. W. McBroom, J. R. Williams, and L. Yin  

E-Print Network [OSTI]

with best management practices (BMPs) in forested watersheds due to the limited number of and cost and policy alternatives for managing water quality and quantity from intensive silvicultural practices of conducting watershed monitoring. The Agricultural Policy/ Environmental eXtender (APEX) model was field

200

EA-1954: Resumption of Transient Testing of Nuclear Fuels and Materials at the Idaho National Laboratory, Idaho  

Broader source: Energy.gov [DOE]

This Environmental Assessment (EA) evaluates U.S. Department of Energy (DOE) activities associated with its proposal to resume testing of nuclear fuels and materials under transient high-power test conditions at the Transient Reactor Test (TREAT) Facility at the Idaho National Laboratory. The State of Idaho and Shoshone-Bannock Tribes are cooperating agencies.

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Idaho Supplementation Studies : 1993 Annual Report.  

SciTech Connect (OSTI)

Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon, Oncorhynchus tshawytscha, in Idaho as part of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. The objectives are to: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; and (3) determine which supplementation strategies provide the quickest and highest response in natural production without adverse effects on productivity. Field work began in 1991 with the collection of baseline data from treatment and some control streams. Full implementation began in 1992 with baseline data collection on treatment and control streams and releases of supplementation fish into several treatment streams. Field methods included snorkeling to estimate chinook salmon parr populations, PIT tagging summer parr to estimate parr-to-smolt survival, multiple redd counts to estimate spawning escapement and collect carcass information. Screw traps were used to trap and PIT tag outmigrating chinook salmon during the spring and fall outmigration. Weirs were used to trap and enumerate returning adult salmon in select drainages.

Leitzinger, Eric J.; Plaster, Kurtis; Hassemer, Peter

1996-12-01T23:59:59.000Z

202

Brush Management/Water Yield Feasibility Study for Four Watersheds In Texas  

E-Print Network [OSTI]

, 2000) in which 8 watersheds were analyzed. Landsat 7 satellite imagery was used to classify land use, and the 1:24,000 scale digital elevation model (DEM) was used to delineate watershed boundaries and subbasins. SWAT was calibrated to measured stream... modeling by the USDA-ARS, including development of CREAMS (Knisel, 1980), SWRRB (Williams et al., 1985; Arnold et al., 1990), and ROTO (Arnold et al., 1995b). SWAT was developed to predict the impact of climate and management (e.g. vegetative changes...

Bednarz, Steven T.; Dybala, Tim; Amonett, Carl; Muttiah, Ranjan S.; Rosenthal, Wes; Srinivasan, Raghavan; Arnold, Jeff G.

2003-01-01T23:59:59.000Z

203

Flathead River Focus Watershed Coordinator, 2005-2006 Annual Report.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2006-05-01T23:59:59.000Z

204

Flathead River Focus Watershed Coordinator, 2002 Annual Report.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NPPC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2003-04-01T23:59:59.000Z

205

Flathead River Focus Watershed Coordinator, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2006-06-26T23:59:59.000Z

206

Flathead River Focus Watershed Coordinator, 2003-2004 Annual Report.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2004-06-01T23:59:59.000Z

207

Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1997  

SciTech Connect (OSTI)

The results of the various monitoring programs for 1997 indicated that radioactivity from the Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.2 person-rem (2 x 10-3 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0005% of the estimated 43,700 person-rem (437 person-Sv) population dose from background radioactivity.

R. B. Evans; D. Roush; R. W. Brooks; D. B. Martin

1998-08-01T23:59:59.000Z

208

Idaho National Engineering Laboratory Waste Management Operations Roadmap Document  

SciTech Connect (OSTI)

At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

Bullock, M.

1992-04-01T23:59:59.000Z

209

Protect and Restore Mill Creek Watershed : Annual Report CY 2005.  

SciTech Connect (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

210

Idaho National Laboratory Site Environmental Monitoring Plan  

SciTech Connect (OSTI)

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2010-10-01T23:59:59.000Z

211

Idaho National Laboratory Site Environmental Monitoring Plan  

SciTech Connect (OSTI)

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2012-08-01T23:59:59.000Z

212

Idaho National Laboratory Quarterly Performance Analysis  

SciTech Connect (OSTI)

This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

Lisbeth Mitchell

2014-11-01T23:59:59.000Z

213

Idaho National Laboratory Environmental Monitoring Plan  

SciTech Connect (OSTI)

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2008-04-01T23:59:59.000Z

214

Assistant Professor of Wildland Watershed Hydrology University of California, Berkeley  

E-Print Network [OSTI]

Assistant Professor of Wildland Watershed Hydrology University of California, Berkeley The faculty invites applications for a tenure-track, academic year appointment in Wildland Watershed Hydrology recognized research program in landscape-scale watershed hydrology related to the fields of climatology

Silver, Whendee

215

Audit Report VEHICLE FLEET MANAGEMENT AT THE IDAHO NATIONALENGINEERING...  

Broader source: Energy.gov (indexed) [DOE]

In a prior report, Audit of Light Vehicle Fleet Management at the Idaho National Engineering Laboratory, WR-B-93-7, September 29, 1993, the Office of Inspector General...

216

Idaho Falls Power- Energy Efficient Heat Pump Loan Program  

Broader source: Energy.gov [DOE]

Idaho Falls Power offers zero interest loans to all eligible customers for the purchase and installation of energy efficient heat pumps. The Heat Pump Program applies to heating or cooling in...

217

NEZ PERCE SOIL AND WATER CONSERVATION DISTRICT CULDESAC, IDAHO 83524  

E-Print Network [OSTI]

of Culdesac, McGregor Company, and the Idaho Soil Conservation Commission. In addition, the District has of the wetland and sod bio-logs that are installed our projects. This results in more on-the-ground projects

218

Idaho's Advanced Mixed Waste Treatment Project Details 2013Accomplish...  

Energy Savers [EERE]

Articles A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Innovative Technique Accelerates Waste Disposal at Idaho Site Only the...

219

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect (OSTI)

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

220

Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Company, related to a Radioactive Material Release at the Idaho National Engineering and Environmental Laboratory, (EA-98-04) On June 4, 1998, the U.S. Department of...

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Idaho Falls Power- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Idaho Falls Power's Energy Efficiency Loan Program offers zero interest loans for qualifying customers to purchase and install efficient electric appliances. The program will loan up to 100% of the...

222

Idaho Application for Permit to Convert a Geothermal Injection...  

Open Energy Info (EERE)

navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal Injection Well - Form 4003-3 Form Type ApplicationNotice Form...

223

Idaho Application for Permit to Construct Modify or Maintain...  

Open Energy Info (EERE)

LibraryAdd to library Legal Document- RegulationRegulation: Idaho Application for Permit to Construct Modify or Maintain an Injection Well - Form 42-39-1Legal Published NA...

224

Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment  

Broader source: Energy.gov [DOE]

For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment...

225

Idaho National Engineering Laboratory installation roadmap assumptions document. Revision 1  

SciTech Connect (OSTI)

This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL.

Not Available

1993-05-01T23:59:59.000Z

226

Idaho National Laboratory FY12 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

Kimberly Frerichs

2013-03-01T23:59:59.000Z

227

Idaho National Laboratory's FY11 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

Kimberly Frerichs

2012-03-01T23:59:59.000Z

228

Pesticide use in Kentucky reservoir watershed  

SciTech Connect (OSTI)

This report summarizes information on the types, uses, and amounts of pesticides applied to Kentucky Reservoir and its immediate watershed. Estimates for the quantities and types of the various pesticides used are based primarily on the land uses in the watershed. A listing of commonly used pesticides is included describing their uses, mode of action, and potential toxicological effects. This report will inform the the public and the Kentucky Reservoir Water Resources Task Force of the general extent of pesticide usage and is not an assessment of pesticide impacts. 10 refs., 5 figs., 9 tabs.

Butkus, S.R.

1988-06-01T23:59:59.000Z

229

Tiger Team assessment of the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

Not Available

1991-08-01T23:59:59.000Z

230

Tiger Team assessment of the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

Not Available

1991-08-01T23:59:59.000Z

231

Tiger Team assessment of the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

Not Available

1991-08-01T23:59:59.000Z

232

Determining watershed response in data poor environments with remotely sensed small reservoirs  

E-Print Network [OSTI]

synthetic aperture radar satellite images. The model is based on the Thornthwaite-Mather procedure of water supplies at the local level, but may reduce the overall yield from a watershed. In the Volta basin by remotely measuring their surface areas and converting these measure- ments to volume estimates

Walter, M.Todd

233

Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana  

SciTech Connect (OSTI)

This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

Not Available

1988-09-01T23:59:59.000Z

234

SWAT Modeling of the Arroyo Colorado Watershed  

E-Print Network [OSTI]

phosphorus, nitrate nitrogen, ammonia nitrogen, total nitrogen, and dissolved oxygen, using data from 2000–2009. The simulated loads or concentrations of the selected water quality constituents generally matched the measured counterparts available...

Kannan, N.

235

The Regional Watershed Spreadsheet Model (RWSM)  

E-Print Network [OSTI]

WI Presenting on work developed by: The Small Tributaries Loading Strategy Workgroup BASMAA * SFEI Estimates #12;10. Improved Loads Estimates Small Tribs Small Tribs In-Bay Erosion Large Rivers PCBs Loads of this plan... Hydro Sed Cu Hg PCB Se Diox PBDE OC Pest Hydro Sed Cu Hg PCB Se Diox PBDE OC PestStep 1 2 3 4 5

236

Idaho National Laboratory Site Pollution Prevention Plan  

SciTech Connect (OSTI)

It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

E. D. Sellers

2007-03-01T23:59:59.000Z

237

Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.  

SciTech Connect (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

238

Bacterial Monitoring for the Buck Creek Watershed  

E-Print Network [OSTI]

The “Bacterial Monitoring for the Buck Creek Watershed” project was developed in response to the creek’s listing on the Texas Water Quality Inventory and 303(d) List due to a bacterial impairment and subsequent total maximum daily load (TMDL...

239

BEE 473. Watershed Engineering Fall Semester 2007  

E-Print Network [OSTI]

Engineering requirements for Engineering Laboratory and Design Elective Prerequisites: Fluid Mechanics (eBEE 473. Watershed Engineering Fall Semester 2007 Credit: 3 hours Catalogue description representative of real-life engineering problems and will involve as much hands-on experience as possible. Some

Walter, M.Todd

240

Idaho Supplementation Studies : 1994 Annual Report.  

SciTech Connect (OSTI)

This work was the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Adult and jack chinook salmon escapement were indexed by redd counts and weir returns. Escapement in 1994 was low and in some cases approached the lowest on record. Although stream flow conditions and parr abundance were conducive to precise parr population estimates, some streams continued to exhibit wide confidence intervals. Different methods used to calculate the estimates yielded inconsistent results with regard to increasing or decreasing the population estimate and improving the precision of the estimates. No single method appeared definitively better for all streams. Emigrant traps captured 78,138 chinook salmon fry, parr, and smolts in 1994. Application of a weekly trap efficiency adjusted for stream flow produced emigration estimates that were up to 30% larger than when a seasonal trap efficiency was used. Detection rates for smolts tagged in some streams were similar to detection rates for parr tagged during the fall of the previous year. This was unexpected because overwinter mortality usually results in a lower detection rate for fall-tagged fish. Low escapement in 1994 severely hampered Idaho Supplementation Studies (ISS) broodstock development. The inability to develop local broodstocks for supplementation is the most important factor threatening the implementation of the ISS.

Nemeth, Doug; Plaster, Kurtis; Apperson, Kimberly A.

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Idaho Operations Office: Technology summary, June 1994  

SciTech Connect (OSTI)

This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Idaho Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. OTD programs are designed to make new, innovative, and more cost-effective technologies available for transfer to DOE environmental restoration and waste management end-users. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD`s technology development programs address three major problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

Not Available

1994-06-01T23:59:59.000Z

242

Idaho National Laboratory Site Environmental Monitoring Plan  

SciTech Connect (OSTI)

This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

Jenifer Nordstrom

2014-02-01T23:59:59.000Z

243

Strontium distribution coefficients of surficial sediment samples from the Idaho National Engineering Laboratory, Idaho  

SciTech Connect (OSTI)

Strontium distribution coefficients (K{sub d}`s) were measured for 20 surficial sediment samples collected from selected sites at the Idaho national Engineering Laboratory (INEL). The measurements were made to help assess the variability of strontium K{sub d}`s found at the INEL as part of an ongoing investigation of strontium chemical transport properties of surficial and interbedded sediments at the INEL. The investigation is being conducted by the US Geological Survey and Idaho State University in cooperation with the US Department of Energy. Batch experimental techniques wee used to determine K{sub d}`s of surficial sediments using a synthesized aqueous solution representative of wastewater in waste disposal ponds at the INEL. Strontium K{sub d}`s of the 20 surficial sediments ranged from 36 {+-} 1 to 275 {+-} 6 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial sediments at the INEL. Some of this variability can be attributed to physical and chemical properties of the sediment itself; however, the remainder of the variability may be due to compositional changes in the equilibrated solutions after being mixed with the sediment.

Liszewski, M.J.; Miller, K.E. [Geological Survey, Idaho Falls, ID (United States); Rosentreter, J.J. [Idaho State Univ., Idaho Falls, ID (United States)

1997-05-01T23:59:59.000Z

244

The Use of Chemical and Physical Properties for Characterization of Strontium Distribution Coefficients at the Idaho National Engineering and Environmental Laboratory, Idaho  

SciTech Connect (OSTI)

The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (Kds) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experimental techniques were used to determine experimental Kds of 20 surficial-sediment samples from the INEEL. The Kds describe the distribution of a solute between the solution and solid phase. A best-fit model was obtained using a four-variable data set consisting of surface area, manganese oxide concentration, specific conductance, and pH. Application of the model to an independent split of the data resulted in an average relative error of prediction of 20 percent and a correlation coefficient of 0.921 between predicted and observed strontium Kds. Chemical and physical characteristics of the solution and sediment that could successfully predict the Kd values were identified. Prediction variable select ion was limited to variables which are either easily determined or have available tabulated characteristics. The selection criterion could circumvent the need for time- and labor-intensive laboratory experiments and provide an alternate faster method for estimating strontium Kds.

J. J. Rosentreter; R. Nieves; J. Kalivas; J. P. Rousseau; R. C. Bartholomay

1999-06-01T23:59:59.000Z

245

Third annual Walker Branch Watershed research symposium. Program and abstracts  

SciTech Connect (OSTI)

The methods and concepts of watershed research, originally applied in an experimental or monitoring mode to relatively small catchments, are increasingly being used at larger scales and for specific applied problems. Research at Oak Ridge National Laboratory, the Tennessee Valley Authority, the US Forest Service, and other agencies and institutions participating in this symposium reflects research over a broad range of spatial scales that is being integrated through large-scale experiments along with computer modeling and graphical interfaces. These research projects address the basic atmospheric, geophysical, biogeochemical, and biological processes that regulate the responses of forested ecosystems to natural environmental variation and anthropogenic stresses. Regional and global issues addressed by presentations include emissions of carbon dioxide, methane, and other hydrocarbons; deposition of sulfate, nitrate, and mercury; land-use changes; biological diversity; droughts; and water quality. The reports presented in this symposium illustrate a wide range of methods and approaches and focus more on concepts and techniques than on a specific physical site. Sites and projects that have contributed research results to this symposium include Walker Branch Watershed (DOE), the Coweeta Hydrologic Laboratory and LTER site (USFS and NSF), Great Smoky Mountains National Park (research funded by NPS, TVA, and EPRI), Imnavait Creek, Alaska (DOE), the TVA-Norris Whole-tree Facility (TVA and EPRI), and DOE`s Biomass Program.

Not Available

1992-03-01T23:59:59.000Z

246

Idaho: basic data for thermal springs and wells as recorded in GEOTHERM, Part A  

SciTech Connect (OSTI)

All chemical data for geothermal fluids in Idaho available as of December 1981 is maintained on GEOTHERM, computerized information system. This report presents summaries and sources of records for Idaho. 7 refs. (ACR)

Bliss, J.D.

1983-07-01T23:59:59.000Z

247

SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,  

E-Print Network [OSTI]

SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595

US Army Corps of Engineers

248

U.S. Department of Energy Idaho National Engineering and Environmental...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Program Final...

249

Current Reactor Physics Benchmark Activities at the Idaho National Laboratory  

SciTech Connect (OSTI)

The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

2011-11-01T23:59:59.000Z

250

Industrial application of geothermal energy in Southeast Idaho  

SciTech Connect (OSTI)

Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

1980-02-01T23:59:59.000Z

251

Small Log Conference Creating Capacity to Compete Coeur d'Alene, Idaho, USA, 1 April 2005  

E-Print Network [OSTI]

. Growing the market #12;Small Log Conference ­ Creating Capacity to Compete Coeur d'Alene, Idaho, USA, 1 Capacity to Compete Coeur d'Alene, Idaho, USA, 1 April 2005 F A O I. Forest products markets #12;Small LogSmall Log Conference ­ Creating Capacity to Compete Coeur d'Alene, Idaho, USA, 1 April 2005 F A O

252

March 2005 Page 1 of 2 CDCResearchInvolvingRadiationReleasesfromtheIdahoNational  

E-Print Network [OSTI]

is the Idaho National Laboratory? The Idaho National Laboratory (INL) is on the upper Snake River Plain radioactive materials released from INL during its operating history? In 1991, the Idaho National Engineering doses from airborne releases over the operating history of the INL were small compared to doses from

253

Idaho Site’s Cold War Cleanup Takes Center Stage in Publication  

Broader source: Energy.gov [DOE]

IDAHO FALLS, Idaho – An association with more than 29,000 members featured an in-depth article on EM’s extensive Cold War legacy cleanup at the Idaho site in the current issue of its publication, The Military Engineer.

254

Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho`s INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ``Data`` section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ``Data`` section does not include actual values or data.

Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J. [Idaho Univ., Moscow, ID (United States)

1993-05-01T23:59:59.000Z

255

Idaho Supplementation Studies, 1991-1992 Annual Report.  

SciTech Connect (OSTI)

Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon Oncorhynchus tshawytscha in Idaho. The objectives are to monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation and; determine which supplementation strategies (broodstock and release stage) provide the quickest effects on and highest response in natural production without adverse productivity.

Leitzinger, Eric J.; Bowles, Edward C.; Plaster, Kurtis (Idaho Department of Fish and Game, Boise, ID)

1993-10-01T23:59:59.000Z

256

Gravity interpretation of the northern Overthrust Belt, Idaho and Wyoming  

E-Print Network [OSTI]

sequence thickness westward from about 15 miles (2a. l km) east of the Idaho-Wyoming State line, to a site of maximum deposition somewhere in the west (Armstrong and Oriel, 1965). In western Wyoming, Drdovic-ian rocks are represented by the Upper... 1n southeastern Idaho by the Laketown Dolomite. The lim1ted geoqraph1c extent of the Silurian is considered to be the result of subsequent erosion rather than non-deposition (Armstrong and Oriel, 1965). In western Wyoming, the Devonian age rocks...

Silver, Wendy Ilene

1979-01-01T23:59:59.000Z

257

Idaho National Laboratory - WAG-1 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment of Energy ReportingIanIdaho1 Idaho

258

Idaho National Laboratory - WAG-2 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment of Energy ReportingIanIdaho1 Idaho2

259

Idaho National Laboratory - WAG-3 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment of Energy ReportingIanIdaho1 Idaho23

260

Idaho National Laboratory - WAG-4 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment of Energy ReportingIanIdaho1 Idaho234

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Idaho - Rankings - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID4,2,"Alabama","Alabama","Electric6"10 IBM Corporation SmartIdahoIdaho

262

Idaho Cleanup Project grows its workforce to complete ARRA work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLtheIndustry | Department ofT.IanIdahoIdaho

263

Idaho Students Learning Lessons on Energy Efficiency | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About Us Ian Kalin - Director of the EnergyIdahoIdaho

264

Idaho State Historic Preservation Programmatic Agreement | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National2 DOEIdaho Site Idaho

265

Idaho Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National11-12, 2005Idaho Regions NationalIdaho

266

Jocko River Watershed conservation easement protects trout habitat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6.25 acre habitat acquisition in Montana's Jocko River Watershed for fish habitat mitigation (see map). Located in Lake County in northwestern Montana, this property was selected...

267

Watershed Scale Evaluation of the Sustainability and Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Crop Production: Watershed Scale Evaluation of the Sustainability and Productivity of Dedicated Energy Crop and Woody Biomass Operations DOE Bioenergy Technologies...

268

Understanding Nutrient Loading to the Coastal Zone from Urban Watersheds  

E-Print Network [OSTI]

with Land Use in the Carpinteria Valley, California.TIONS: Speaker: Carpinteria Creek Watershed Coalition annualand Forecasts for Carpinteria Creek", Lions' Club,

Robinson, Timothy H.

2005-01-01T23:59:59.000Z

269

E-Print Network 3.0 - area watershed management Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: area watershed management Page: << < 1 2 3 4 5 > >> 1 Environmental and Resource Studies Program Department of Geography Summary: Watershed...

270

Production System Planning for Natural Resource Conservation in a Micro-Watershed  

E-Print Network [OSTI]

Production System Planning for Natural Resource Conservationa case study watershed. Production Systems Planning (PSP) isWatershed Management, Production Systems Planning (PSP)

Ramakrishna, Nallathiga

2003-01-01T23:59:59.000Z

271

EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs  

Broader source: Energy.gov [DOE]

Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

272

CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

273

CRAD, Maintenance- Idaho Accelerated Retrieval Project Phase II  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Maintenance program at the Idaho Accelerated Retrieval Project Phase II.

274

CRAD, Criticality Safety- Idaho Accelerated Retrieval Project Phase II  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Criticality Safety program at the Idaho Accelerated Retrieval Project Phase II.

275

CRAD, Conduct of Operations- Idaho Accelerated Retrieval Project Phase II  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2006 Commencement of Operations assessment of the Conduct of Operations program at the Idaho Accelerated Retrieval Project Phase II.

276

CRAD, Training- Idaho Accelerated Retrieval Project Phase II  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Training Program at the Idaho Accelerated Retrieval Project Phase II.

277

CRAD, Fire Protection- Idaho Accelerated Retrieval Project Phase II  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Fire Protection program at the Idaho Accelerated Retrieval Project Phase II.

278

Water information bulletin No. 30 geothermal investigations in Idaho  

SciTech Connect (OSTI)

There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

1980-06-01T23:59:59.000Z

279

Spatial distribution of eruptive centers about the Idaho National Laboratory  

E-Print Network [OSTI]

volcanic hazard assessment. The Idaho National Laboratory (INL) comprises several nuclear facilities, in- cluding the oldest power reactor in the world (see Chapman et al., Chapter 1, this volume). The INL of volcanism in the central ESRP at and near the INL is important due to the presence of nuclear reactors

Wetmore, Paul H.

280

Successful neural network projects at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs.

Cordes, G.A.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Idaho National Laboratory Site Long-Term Stewardship Implementation Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy has established long-term stewardship programs to protect human health and the environment at sites where residual contamination remains after site cleanup. At the Idaho National Laboratory Site, Comprehensive Environmental Response, Compensation, and Liability Act (CERLA) long-term stewardship activities performed under the aegis of regulatory agreements, the Federal Facility Agreement and Consent Order for the Idaho National Laboratory, and state and federal requirements are administered primarily under the direction of the Idaho Cleanup Project. It represents a subset of all on-going environmental activity at the Idaho National Laboratory Site. This plan provides a listing of applicable CERCLA long-term stewardship requirements and their planned and completed implementation goals. It proffers the Long-Term Stewardship Environmental Data Warehouse for Sitewide management of environmental data. This plan will be updated as needed over time, based on input from the U.S. Department of Energy, its cognizant subcontractors, and other local and regional stakeholders.

B. E. Olaveson

2006-07-27T23:59:59.000Z

282

Idaho National Laboratory Small Business Program Vision & Opportunity  

E-Print Network [OSTI]

­ Focus on the Mission GNEP ­ Global Nuclear Energy Partnership Generation IV Nuclear Energy Systems Studies Nuclear Programs Energy Security Global Security Homeland Security National Defense A leader · Idaho National Laboratory ­ Overview and Vision ­ Primary Programs · INL Small Business Program ­ Vision

283

CRAD, Radiological Controls- Idaho Accelerated Retrieval Project Phase II  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Radiation Protection Program at the Idaho Accelerated Retrieval Project Phase II.

284

EECBG Success Story: Boise, Idaho: Saving Money and Reducing Waste  

Broader source: Energy.gov [DOE]

Thanks to a $1.2 million grant from the Department’s Energy Efficiency and Conservation Block Grant (EECBG) Program, the city of Boise, Idaho, will replace and install 1,450 LED streetlights by the end of this month. The project is projected to save $1.2 million over the next 15 years. Learn more .

285

CRAD, Emergency Management- Idaho Accelerated Retrieval Project Phase II  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Emergency Management program at the Idaho Accelerated Retrieval Project Phase II.

286

CRAD, Occupational Safety & Health- Idaho Accelerated Retrieval Project Phase II  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene Program at the Idaho Accelerated Retrieval Project Phase II.

287

CRAD, Quality Assurance- Idaho Accelerated Retrieval Project Phase II  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Quality Assurance Program at the Idaho Accelerated Retrieval Project Phase II.

288

Assessment of the Geothermal System Near Stanley, Idaho  

SciTech Connect (OSTI)

The City of Stanley, Idaho (population 63) is situated in the Salmon River valley of the central Idaho highlands. Due to its location and elevation (6270 feet amsl) it is one of the coldest locales in the continental U.S., on average experiencing frost 290 days of the year as well as 60 days of below zero (oF) temperatures. Because of high snowfall (76 inches on average) and the fact that it is at the terminus of its rural grid, the city also frequently endures extended power outages during the winter. To evaluate its options for reducing heating costs and possible local power generation, the city obtained a rural development grant from the USDA and commissioned a feasibility study through author Roy Mink to determine whether a comprehensive site characterization and/or test drilling program was warranted. Geoscience students and faculty at Idaho State University (ISU), together with scientists from the Idaho Geological Survey (IGS) and Idaho National Laboratory (INL) conducted three field data collection campaigns between June, 2011 and November, 2012 with the assistance of author Beckwith who arranged for food, lodging and local property access throughout the field campaigns. Some of the information collected by ISU and the IGS were compiled by author Mink and Boise State University in a series of progress reports (Makovsky et al., 2011a, b, c, d). This communication summarizes all of the data collected by ISU including data that were compiled as part of the IGS’s effort for the National Geothermal Data System’s (NGDS) data compilation project funded by the Department of Energy and coordinated by the Arizona Geological Survey.

Trent Armstrong; John Welhan; Mike McCurry

2012-06-01T23:59:59.000Z

289

Idaho National Laboratory (INL) Sitewide Institutional Controls Plan  

SciTech Connect (OSTI)

On November 9, 2002, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and the Idaho Department of Environmental Quality approved the Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites, which requires a Sitewide Institutional Controls Plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. The revision is needed to provide an update as remedial actions are completed and new areas of concern are found. This Sitewide Institutional Controls Plan is based on guidance in the May 3, 1999, EPA Region 10 Final Policy on the Use of Institutional Controls at Federal Facilities; the September 29, 2000, EPA guidance Institutional Controls: A Site Manager's Guide to Identifying, Evaluating, and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups; and the April 9, 2003, DOE Policy 454.1, "Use of Institutional Controls." These policies establish measures that ensure short- and long-term effectiveness of institutional controls that protect human health and the environment at federal facility sites undergoing remedial action pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or corrective action pursuant to the Resource Conservation and Recovery Act (RCRA). The site-specific institutional controls currently in place at the Idaho National Laboratory are documented in this Sitewide Institutional Controls Plan. This plan is being updated, along with the Idaho National Engineering and Environmental Laboratory Comprehensive Facilities and Land Use Plan, to reflect the progress of remedial activities and changes in CERCLA sites.

W. L. Jolley

2006-07-27T23:59:59.000Z

290

Rangeland Watershed Management for Texans: Increasing Bare Ground Indicates Poor Watershed Health  

E-Print Network [OSTI]

; the more variable the landscape within a unit, the more tran- sects are needed. There will be obvious seasonal changes in vegetative cover because of plant growth and death Increasing Bare Ground Indicates Poor Watershed Health K. Brian Hays, Barron S...

Hays, K. Brian

2000-10-30T23:59:59.000Z

291

Coming to a watershed near you!: Texas Watershed Steward educates stakeholders across the state  

E-Print Network [OSTI]

, assistant professor and AgriLife Extension water resources specialist. ] Story by Leslie Jordan tx H2O | pg. 12 The TWS team created the program in response to federal and state strategies regarding watersheds. According to the U.S. Environmental...

Jordan, Leslie

2009-01-01T23:59:59.000Z

292

Kootenai River Focus Watershed Coordination, 2001-2002 Annual Report.  

SciTech Connect (OSTI)

The 2001-2002 Kootenai River Network Annual Report reflects the organization's defined set of goals and objectives, and how by accomplishing these goals, we continue to meet the needs of communities and landowners throughout the Kootenai River Basin by protecting the resource. Our completed and ongoing projects throughout the watershed reflect the cooperation and support received and needed to accomplish the rehabilitation and restoration of critical habitat. They show that our mission of facilitation through collaboration with public and private interests can lead to improved resource management, the restoration of water quality and the preservation of pristine aquatic resources. Our vision to empower local citizens and groups from two states, one province, two countries and affected tribal nations to collaborate in natural resource management within the basin is largely successful due to the engagement of the basin's residents--the landowners, town government, local interest groups, businesses and agency representatives who live and work here. We are proof that forging these types of cooperative relationships, such as those exhibited by the Kootenai River subbasin planning process, leads to a sense of entitlement--that the quality of the river and its resources enriches our quality of life. Communication is essential in maintaining these relationships. Allowing ourselves to network and receive ideas and information, as well as to produce quality, accessible research data such as KRIS, shared with like organizations and individuals, is the hallmark of this facilitative organization. We are fortunate in the ability to contribute such information, and continue to strive to meet the standards and the needs of those who seek us out as a model for watershed rehabilitative planning and restoration. Sharing includes maintaining active, ongoing lines of communication with the public we serve--through our web site, quarterly newsletter, public presentations and stream table education--at every opportunity. We continue to seek ideas to guide us as we grow. We want to enlarge that sense of ownership that the river does indeed run through it, and belongs to us all. Through a continued and common effort, we hope to carry forward the good work and the momentum that underscores our intent. We are proud to report our accomplishments of this past year because they reflect our renewed sense of purpose. In alliance with diverse citizen groups, individuals, business, industry and tribal and government water resource management agencies, we strive to continue to protect and restore the beauty and integrity that is the Kootenai River watershed.

Kruse, Gretchen (Kootenai River Network, Libby, MT)

2002-07-01T23:59:59.000Z

293

University of Idaho, U.S. Department of Agriculture, and Idaho counties cooperating. To enrich education through diversity, the University of Idaho is an equal opportunity/affirmative action employer and educational institution.  

E-Print Network [OSTI]

-based education, not new product updates. Program Outcomes The Burley seminar is attended by over 100 applica education through diversity, the University of Idaho is an equal opportunity/affirmative action employer and educational institution. The Situation Idaho Statue Title 22 Section 34 defines the law for pesticides

O'Laughlin, Jay

294

Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1  

SciTech Connect (OSTI)

This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

J. Simonds

2006-09-01T23:59:59.000Z

295

Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry  

SciTech Connect (OSTI)

The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

2014-02-01T23:59:59.000Z

296

ENVIRONMENTAL QUALITY OF WILMINGTON AND NEW HANOVER COUNTY WATERSHEDS  

E-Print Network [OSTI]

, total nitrogen, orthophosphate and total phosphorus. Several water quality parameters indicatedENVIRONMENTAL QUALITY OF WILMINGTON AND NEW HANOVER COUNTY WATERSHEDS 2004-2005 by Michael A Hanover County Tidal Creeks Project and Year 7 of the Wilmington Watersheds Project. Water quality data

Mallin, Michael

297

Pecos River Watershed Protection Plan Update  

E-Print Network [OSTI]

that connects the pump, distribution tank and holding ponds. As of April 15, 2013, three of the ponds were completed and have been lined with a synthetic liner to prevent seepage and leakage as this was a major problem in early projects. Pecos River WPP...Pecos River Watershed Protection Plan Update Funding Provided by the Texas State Soil and Water Conservation Board through a Clean Water Act §319(h) Nonpoint Source Grant from the U.S Environmental Protection Agency TR-447 October 2013 Pecos River...

Gregory, L.; Hauck, L.; Blumenthal, B.; Brown, M.; Porter, A.

2013-01-01T23:59:59.000Z

298

Bethel Valley Watershed | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy and NaturalBethel Valley Watershed. Topics include: * The

299

PROGRESS TOWARD DEVELOPMENT OF A GIS BASED WATER QUALITY MANAGEMENT TOOL FOR SMALL RURAL WATERSHEDS: MODIFICATION AND  

E-Print Network [OSTI]

for the Palouse Region of the Pacific Northwest. We apply and modify the Soil Moisture Routing (SMR) model which in the Palouse Region provided that saturated hydraulic conductivities determined in the laboratory are adjusted University are developing a GIS-based problem-solving tool for small rural watersheds in the Palouse Region

Walter, M.Todd

300

Evaluation of the hot-dry-rock geothermal potential of an area near Mountain Home, Idaho  

SciTech Connect (OSTI)

Evaluation of an area near Mountain Home, Idaho, was performed to assess the hot dry rock (HDR) potential of the prospect. The techniques reported include telluric and gravity profiling, passive seismic, hydrology and water chemistry surveys, and lineament analysis. Gravity and telluric surveys were unsuccessful in locating fractures buried beneath recent volcanics and sediments of the plain because density and conductivity contrasts were insufficient. Gravity modeling indicated areas where granite was not likely to be within drilling depth, and telluric profiling revealed an area in the northwest part of the prospect where higher conductivity suggested the presence of fractures or water or both, thereby making it unsuitable for HDR. Water geochemistry indicated that (hot water) reservoir temperatures do not exceed 100/sup 0/C. An area in the east central part of the prospect was delineated as most favorable for HDR development. Temperature is expected to be 200/sup 0/C at 3-km depth, and granitic rock of the Idaho Batholith should be intersected at 2- to 3-km depth.

Arney, B.H.; Goff, F.

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

In Summary: Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1997  

SciTech Connect (OSTI)

Scientists from the Environmental Science and Research Foundation, Lockheed Martin Idaho Technologies Company, the US Geological Survey, and other INEEL contractors monitored the environment on and around the INEEL to find contaminants attributable to the INEEL. During 1997, exposures from the INEEL to the public were found to be negligible. Pathways by which INEEL contaminants might reach people were monitored. These included air, precipitation, water, locally grown food (wheat, milk, potatoes, and lettuce), livestock, game animals, and direct radiation. Results from samples collected to monitor these pathways often contain radioactivity from natural sources and nuclear weapons testing carried out in the 1950s and 1960s, termed ''background radioactivity.'' According to the results obtained in 1997, radioactivity from operations at the INEEL could not be distinguished from this background radioactivity in the regions surrounding the INEEL. Because radioactivity from t! he INEEL wa s not detected by offsite environmental surveillance methods, computer models were used to estimate a radiation dose to people. The hypothetical maximum individual dose from the INEEL was calculated to be 0.03 millirem. That is 0.008 percent of an average person's annual dose from background radiation in southeast Idaho.

R. G. Mitchell; D. E. Roush, Jr.; R. B. Evans

1998-10-01T23:59:59.000Z

302

In Summary: Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1998  

SciTech Connect (OSTI)

Scientists from the Environmental Science and Research Foundation, Lockheed Martin Idaho Technologies Company (LMITCO), the US Geological Survey, the Naval Nuclear Propulsion Program Naval Reactors Facility, Argonne National Laboratory-West, and others monitored the environment on and around the INEEL to find contaminants attributable to the INEEL. During 1998, exposures from the INEEL to the public were found to be negligible. The US Department of Energy (DOE) and LMITCO made progress in developing and implementing a site-wide Environmental Management System. This system provides an underlying structure to make the management of environmental activities at the INEEL more systematic and predictable. Pathways by which INEEL contaminants might reach people off the INEEL were monitored. These included air, precipitation, water, locally grown food (milk, lettuce, wheat, and potatoes), livestock, game animals, soil, and direct ionizing radiation. Results from samples collected to monitor these pathways often contain ''background radioactivity,'' which is radioactivity from natural sources and nuclear weapons tests carried out between 1945 and 1980. According to results obtained in 1998, radioactivity from operations at the INEEL could not be distinguished from this background radioactivity in the regions surrounding the INEEL. Because radioactivity from the INEEL was not detected by offsite environmental surveillance methods, computer models were used to estimate the radiation dose to the public. The hypothetical maximum dose to an individual from INEEL operations was calculated to be 0.08 millirem. That is 0.002 percent of an average person's annual dose of 360 millirem from natural background radiation in southeast Idaho.

A. A. Luft; R. B. Evans; T. Saffle; R. G. Mitchell; D. B. Martin

2000-06-01T23:59:59.000Z

303

Idaho National Laboratory Feature Story Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

next generation of nuclear plant workers 10092014 - International summer school trains nuclear professionals in modeling and safety analysis 09292014 - Interns get...

304

Geophysical Investigations of Archaeological Resources in Southern Idaho  

SciTech Connect (OSTI)

At the Idaho National Laboratory and other locations across southern Idaho, geophysical tools are being used to discover, map, and evaluate archaeological sites. A variety of settings are being explored to expand the library of geophysical signatures relevant to archaeology in the region. Current targets of interest include: prehistoric archaeological features in open areas as well as lava tube caves, historical structures and activity areas, and emigrant travel paths. We draw from a comprehensive, state of the art geophysical instrumentation pool to support this work. Equipment and facilities include ground penetrating radar, electromagnetic and magnetic sensors, multiple resistivity instruments, advanced positioning instrumentation, state of the art processing and data analysis software, and laboratory facilities for controlled experiments.

Brenda Ringe Pace; Gail Heath; Clark Scott; Carlan McDaniel

2005-10-01T23:59:59.000Z

305

Prehistoric Rock Structures of the Idaho National Laboratory  

SciTech Connect (OSTI)

Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

Brenda R Pace

2007-04-01T23:59:59.000Z

306

Geothermal resource assessment of Idaho Springs, Colorado. Resource series 16  

SciTech Connect (OSTI)

Located in the Front Range of the Rocky Mountains approximately 30 miles west of Denver, in the community of Idaho Springs, are a series of thermal springs and wells. The temperature of these waters ranges from a low of 68/sup 0/F (20/sup 0/C) to a high of 127/sup 0/F (53/sup 0/C). To define the hydrothermal conditions of the Idaho Springs region in 1980, an investigation consisting of electrical geophysical surveys, soil mercury geochemical surveys, and reconnaissance geological and hydrogeological investigations was made. Due to topographic and cultural restrictions, the investigation was limited to the immediate area surrounding the thermal springs at the Indian Springs Resort. The bedrock of the region is faulted and fractured metamorphosed Precambrian gneisses and schists, locally intruded by Tertiary age plutons and dikes. The investigation showed that the thermal waters most likely are fault controlled and the thermal area does not have a large areal extent.

Repplier, F.N.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

307

Idaho National Engineering Laboratory installation roadmap document. Revision 1  

SciTech Connect (OSTI)

The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

Not Available

1993-05-30T23:59:59.000Z

308

Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

We assessed the relationships between specific stream attributes and Yellowstone cutthroat trout Oncorhynchus clarki bouvieri distribution and biomass at 773 stream reaches (averaging 100 m in length) throughout the Upper Snake River Basin in Idaho, in an effort to identify possible limiting factors. Because limiting factors were expected to vary across the range of cutthroat trout distribution in Idaho, separate logistic and multiple regression models were developed for each of the nine major river drainages to relate stream conditions to occurrence and biomass of cutthroat trout. Adequate stream flow to measure fish and habitat existed at 566 sites, and of those, Yellowstone cutthroat trout were present at 322 sites, while rainbow trout O. mykiss (or rainbow x cutthroat hybrids) and brook trout Salvelinus fontinalis occurred at 108 and 181 sites, respectively. In general, cutthroat trout presence at a specific site within a drainage was associated with a higher percentage of public property, higher elevation, more gravel and less fine substrate, and more upright riparian vegetation. However, there was much variation between drainages in the direction and magnitude of the relationships between stream characteristics and Yellowstone cutthroat trout occurrence and biomass, and in model strength. This was especially true for biomass models, in which we were able to develop models for only five drainages that explained more than 50% of the variation in cutthroat trout biomass. Sample size appeared to affect the strength of the biomass models, with a higher explanation of biomass variation in drainages with lower sample sizes. The occurrence of nonnative salmonids was not strongly related to cutthroat trout occurrence, but their widespread distribution and apparent ability to displace native cutthroat trout suggest they may nevertheless pose the largest threat to long-term cutthroat trout persistence in the Upper Snake River Basin.

Meyer, Kevin A.; Lamansky, Jr., James A. (Idaho Department of Fish and Game, Boise, ID)

2004-03-01T23:59:59.000Z

309

2011 Annual Planning Summary for Idaho Operations Office (ID) | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) | Department ofof Energy Idaho

310

DOE Honors Idaho Facility with Safety Award | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5QualityDOEDOEHonors Idaho

311

Idaho Power Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information IDS ClimateIceland-NRELBoise, Idaho

312

City of Rupert, Idaho (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic NationalElectric) JumpRupert, Idaho (Utility

313

Idaho National Laboratory Testing of Advanced Technology Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National Laboratory

314

Idaho Waste Retrieval Facility Begins New Role | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National2 DOEIdaho Site

315

Idaho - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquidsnuclear Contract price: The deliveryallHigherIdaho -

316

City of Burley, Idaho (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (Utility Company) Jump to: navigation, searchBryan,Burley, Idaho

317

City of Minidoka, Idaho (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood,Martinsville, VirginiaMiamiMinidoka, Idaho (Utility

318

Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.  

SciTech Connect (OSTI)

The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

Runyon, John

2002-08-01T23:59:59.000Z

319

Subtask 1.18 - A Decision Tool for Watershed-Based Effluent Trading  

SciTech Connect (OSTI)

Handling produced water in an economical and environmentally sound manner is vital to coalbed methane (CBM) development, which is expected to increase up to 60% in the next 10-15 years as the demand for natural gas increases. Current produced water-handling methods (e.g., shallow reinjection and infiltration impoundments) are too costly when implemented on a well-by-well basis. A watershed-based effluent credit trading approach may be a means of managing produced water at reduced cost while meeting or surpassing water quality regulations. This market-based approach allows for improved water quality management by enabling industrial, agricultural, and municipal discharge facilities to meet water quality permit requirements by purchasing pollutant reduction credits from other entities within the same watershed. An evaluation of this concept was conducted for the Powder River Basin (PRB) of Montana and Wyoming by the Energy & Environmental Research Center (EERC). To conduct this assessment, the EERC collected and evaluated existing water quality information and developed the appropriate tools needed to assess the environmental and economic feasibility of specific trading scenarios. The accomplishments of this study include (1) an exploration of the available PRB water quantity and quality data using advanced statistical techniques, (2) development of an integrated water quality model that predicts the impacts of CBM produced water on stream salinity and sodicity, (3) development of an economic model that estimates costs and benefits from implementing potential trading options, (4) evaluation of hypothetical trading scenarios between select watersheds of the PRB, and (5) communication of the project concept and results to key state and federal agencies, industry representatives, and stakeholders of the PRB. The preliminary results of a basinwide assessment indicate that up to $684 million could be saved basinwide without compromising water quality as a result of implementing a watershed-based credit-trading approach.

Xixi Wang; Bethany A. Kurz; Marc D. Kurz

2006-11-30T23:59:59.000Z

320

Chemical analysis quality assurance at the Idaho Chemical Processing Plant  

SciTech Connect (OSTI)

The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

THE HIGH-TEMPERATURE ELECTROLYSIS PROGRAM AT THE IDAHO NATIONAL LABORATORY: OBSERVATIONS ON PERFORMANCE DEGRADATION  

SciTech Connect (OSTI)

This paper presents an overview of the high-temperature electrolysis research and development program at the Idaho National Laboratory, with selected observations of electrolysis cell degradation at the single-cell, small stack and large facility scales. The objective of the INL program is to address the technical and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. In the envisioned application, high-temperature electrolysis would be coupled to an advanced nuclear reactor for efficient large-scale non-fossil non-greenhouse-gas hydrogen production. The program supports a broad range of activities including small bench-scale experiments, larger scale technology demonstrations, detailed computational fluid dynamic modeling, and system modeling. A summary of the current status of these activities and future plans will be provided, with a focus on the problem of cell and stack degradation.

J. E. O'Brien; C. M. Stoots; J. S. Herring; K. G. Condie; G. K. Housley

2009-06-01T23:59:59.000Z

322

EA-1901: Kootenai River White Sturgeon and Burbot Hatcheries Project, Bonners Ferry, Boundary County, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal for DOE’s Bonneville Power Administration to support the Kootenai Tribe of Idaho’s construction of a new hatchery on property owned by the Tribe at the confluence of the Moyie and Kootenai Rivers, approximately eight miles upstream from Bonners Ferry, Idaho. The proposed location of the new hatchery facility is currently the site of the Twin Rivers Canyon Resort.

323

Simulating infiltration tests in fractured basalt at the Box Canyon Site, Idaho  

SciTech Connect (OSTI)

The results of a series of ponded infiltration tests in variably saturated fractured basalt at Box Canyon, Idaho, were used to build confidence in conceptual and numerical modeling approaches used to simulate infiltration in fractured rock. Specifically, we constructed a dual-permeability model using TOUGH2 to represent both the matrix and fracture continua of the upper basalt flow at the Box Canyon site. A consistent set of hydrogeological parameters was obtained by calibrating the model to infiltration front arrival times in the fracture continuum as inferred from bromide samples collected from fracture/borehole intersections observed during the infiltrating tests. These parameters included the permeability of the fracture and matrix continua, the interfacial area between the fracture and matrix continua, and the porosity of the fracture continuum. To calibrate the model, we multiplied the fracture-matrix interfacial area by a factor between 0.1 and 0.01 to reduce imbibition of water from the fracture continuum into the matrix continuum during the infiltration tests. Furthermore, the porosity of the fracture continuum, as calculated using the fracture aperture inferred from pneumatic-test permeabilities, was increased by a factor of 50 yielding porosity values for the upper basalt flow in the range of 0.01 to 0.02. The fracture-continuum porosity was a highly sensitive parameter controlling the arrival times of the simulated infiltration fronts. Porosity values are consistent with those determined during the Large-Scale Aquifer Pumping and Infiltration Test at the Idaho National Engineering and Environmental Laboratory.

Unger, Andre J.A.; Faybishenko, Boris; Bodvarsson, Gudmundur S.; Simmons, Ardyth M.

2003-04-01T23:59:59.000Z

324

Deep drilling data, Raft River geothermal area, Idaho-Raft River...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

325

E-Print Network 3.0 - areas southwestern idaho Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in a Changing Climate Project Summary Summary: to competitiveness and targets Ecosystem Health, an area of major significance to Idaho as identified by the Governor......

326

E-Print Network 3.0 - advanced test idaho reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

our citizens. definition Policy research at Boise State... Center for the Study of Aging Social Science Research Center Frank Church Institute Idaho Center... .S....

327

Microsoft Word - DOE-ID-13-081 Idaho EC B3-6.doc  

Broader source: Energy.gov (indexed) [DOE]

1 SECTION A. Project Title: Innovative Elution Processes for Recovering Uranium and Transition Metals from Amidoxime- based Sorbents - University of Idaho SECTION B. Project...

328

Geothermal alteration of basaltic core from the Snake River Plain, Idaho.  

E-Print Network [OSTI]

?? The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is… (more)

Sant, Christopher J.

2013-01-01T23:59:59.000Z

329

E-Print Network 3.0 - area idaho raft Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

area idaho raft Page: << < 1 2 3 4 5 > >> 1 PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31...

330

Voluntary Protection Program Onsite Review, Battelle Energy Alliance LLC, Idaho National Laboratory – September 2013  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Battelle Energy Alliance LLC, Idaho National Laboratory is performing at a level deserving DOE-VPP Star recognition.

331

Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014  

Broader source: Energy.gov [DOE]

Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

332

A unifying framework for watershed thermodynamics: balance equations for mass,  

E-Print Network [OSTI]

A unifying framework for watershed thermodynamics: balance equations for mass, momentum, energy Hassanizadehb a Centre for Water Research, Department of Environmental Engineering, The University of Western Australia, 6907 Nedlands, Australia b Department of Water Management, Environmental and Sanitary Engineering

Hassanizadeh, S. Majid

333

Quantification of NPS Pollution Loads Within Pennsylvania Watersheds  

E-Print Network [OSTI]

Quantification of NPS Pollution Loads Within Pennsylvania Watersheds Final Report for Task 9 - BLWC for Atmospheric Deposition .................................... 2.4.5 Data Analyses for Urban Storm Runoff-Agricultural Fertilization ...................................................... 3.4 Atmospheric Deposition

Guiltinan, Mark

334

Pinole Creek Watershed Sediment Source Assessment: A sediment budget approach highlighting watershed-scale sediment-related processes and supply to the Bay  

E-Print Network [OSTI]

Pinole Creek Watershed Sediment Source Assessment: A sediment budget approach highlighting watershed-scale sediment-related processes and supply to the Bay Pearce,S.1 ,McKee,L.1 ,Arnold,C.2 ,and,landowners,stakeholders,agencies and regula- tors are facing many watershed-scale sediment-related issues such as erosion,degraded water

335

Lesson 1: Data Types and Watershed Populations In this first lesson, you will discover some information about each of the two watersheds  

E-Print Network [OSTI]

of people per block. This is a good summary of how many people are in the watershed and where they live the condition of the watersheds regarding how people are currently living on and using the land. We will use Arc watershed (2000 census), the population density (average number of people per hectare), and to visualize how

336

An economic evaluation of the Green Creek Watershed Project  

E-Print Network [OSTI]

can never be given their true value. TABLE OF CONTENTS Chapter Page INTRODUCTION Statement of the Problem Purpose of the Study Objectives II. BENEFIT-COST ANALYSIS III DESCRIPTION OF THE AREA AND THE FLOOD PROBLEH IV. PROCEDURE AND NETEODOLOGY...: DISCOUNTING PROCEDURES 64 74 VITA LlST CF TABLES Table Page Completion Schedule of Flood Water Retarding Structures 17 Design Features of Flood Mater Retarding Structures Green Creek Watershed Project 18 3. Rainfall Record - Green Creek Watershed...

Gray, Roy Mack

2012-06-07T23:59:59.000Z

337

A postdevelopmental evaluation of Langford Creek Watershed Project  

E-Print Network [OSTI]

Evaluation of Benefits and Costs Viewpoint of the Analysis 7 8 9 11 III DESCRIPTION OF T?. 'AREA AND THE FLOOD PROBLEM ~ ~ 12 PROCEDURES AND METHODOLOGY ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 24 Determination of Costs Determination of Benefits Comparison of Results... of small watershed projects by providing informa- tion beneficial for planning procedures and tools for project evaluation. Multiple purpose watersheds . (agricultural land and water management; fish, wildlife and recreational development; municipal...

Rico, Luis

2012-06-07T23:59:59.000Z

338

Public Service Announcements for the Arroyo Colorado Watershed  

E-Print Network [OSTI]

COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-396 2011 Public Service Announcements for the Arroyo Colorado Watershed Final Report By T. Allen Berthold Texas Water Resources Institute Prepared... for Texas General Land Office March 2011 Texas Water Resources Institute Technical Report No. 396 Texas A&M University System College Station, Texas 77843-2118 Public Service Announcements for the Arroyo Colorado Watershed By T...

Berthold, Allen

339

Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout in streams using electrofishing. Although the success of electrofishing removal projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. We evaluated the effectiveness of a three-year removal project in reducing brook trout and enhancing native salmonids in 7.8 km of an Idaho stream and looked for brook trout compensatory responses such as decreased natural mortality, increased growth, increased fecundity at length, or earlier maturation. Due to underestimates of the distribution of brook trout in the first year and personnel shortages in the third year, the multiagency watershed advisory group that performed the project fully treated the stream (i.e. multipass removals over the entire stream) in only one year. In 1998, 1999, and 2000, a total of 1,401, 1,241, and 890 brook trout were removed, respectively. For 1999 and 2000, an estimated 88 and 79% of the total number of brook trout in the stream were removed. For the section of stream that was treated in all years, the abundance of age-1 and older brook trout decreased by 85% from 1998 to 2003. In the same area, the abundance of age-0 brook trout decreased 86% from 1998 to 1999 but by 2003 had rebounded to near the original abundance. Abundance of native redband trout Oncorhynchus mykiss decreased for age-1 and older fish but did not change significantly for age-0 fish. Despite high rates of removal, total annual survival rate for brook trout increased from 0.08 {+-} 0.02 in 1998 to 0.20 {+-} 0.04 in 1999 and 0.21 {+-} 0.04 in 2000. Growth of age-0 brook trout was significantly higher in 2000 (the year after their abundance was lowest) compared to other years, and growth of age-1 and age-2 brook trout was significantly lower following the initial removal years but recovered by 2003. Few other brook trout demographic parameters changed appreciably over the course of the project. Electrofishing removals required 210 person-days of effort. Despite experiencing slight changes in abundance, growth, and survival, brook trout in Pikes Fork appeared little affected by three years of intensive removal efforts, most likely because mortality within the population was high prior to initiation of the project such that the removal efforts merely replaced natural mortality with exploitation.

Meyer, Kevin A.; Lamansky, Jr., James A. (Idaho Department of Fish and Game, Boise, ID)

2005-08-01T23:59:59.000Z

340

Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)  

Broader source: Energy.gov [DOE]

Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

SciTech Connect (OSTI)

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01T23:59:59.000Z

342

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect (OSTI)

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

343

2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

Meachum, T.R.; Lewis, M.G.

2003-02-20T23:59:59.000Z

344

2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

Teresa R. Meachum

2004-02-01T23:59:59.000Z

345

SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,  

E-Print Network [OSTI]

SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595 to, NEPA and Section 401 of the Federal Water Pollution Control Act (33 U.S.C. 1341). #12;

US Army Corps of Engineers

346

SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,  

E-Print Network [OSTI]

SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH environmental assistance to non-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah Act of 1969 (42 U.S.C. 4321-4347; hereinafter "NEPA") and Section 401 of the Federal Water Pollution

US Army Corps of Engineers

347

CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho  

SciTech Connect (OSTI)

This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

Baum, Jeffrey

2014-03-10T23:59:59.000Z

348

Cyberinfrastructure Development for the Western Consortium of Idaho, Nevada, and New Mexico Project Summary  

E-Print Network [OSTI]

Cyberinfrastructure Development for the Western Consortium of Idaho, Nevada, and New Mexico Project natural resources, disturbance regimes, and the region's economies and citizens. In 2008, Idaho, Nevada of the scientific challenge and subsequent ramifications for science, education, and economic development Project

Walden, Von P.

349

CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

Baum, Jeffrey

350

SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,  

E-Print Network [OSTI]

SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH 102 of the Energy and Water Development Appropriations Act, 2006, Public Law 109-103. 15 July 2009 for Idaho, rural Nevada, and rural Utah. In addition, text was added at each location of Note 7 to address

US Army Corps of Engineers

351

Amity Elementary School, Boise, Idaho. Final technical report  

SciTech Connect (OSTI)

The design, predicted system performance, operation and maintenance instructions, and wiring and piping schematic diagrams for the recently installed active/passive solar space and hot water system for the Amity Elementary School in Boise, Idaho, are presented. 370 sq. ft. of single-glazed Solecor collectors supply the domestic hot water system and 1830 sq. ft. of collectors are utilized in the space heating system. Tanks provide hot water storage. The earth-covered school building contains 51,400 gross sq. ft. Component specifications are included. (WHK)

Not Available

1980-01-01T23:59:59.000Z

352

Kootenai County, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutz eKodiak,Kooskia, Idaho: Energy°

353

Idaho National Engineering Laboratory Consent Order, June 14, 2000 Summary  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment of Energy ReportingIan KalinIdaho

354

Idaho National Engineering Laboratory Consent Order, November 1, 1995  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment of Energy ReportingIan KalinIdaho

355

Idaho National Laboratory Description, Chellenges, Technology, Issues, and Needs  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment of Energy ReportingIanIdaho1i f th Hi h

356

Idaho waste treatment facility startup testing suspended to evaluate system  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment of Energy ReportingIanIdaho1i f

357

Idaho's Advanced Mixed Waste Treatment Project Details 2013  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment of Energy ReportingIanIdaho1i

358

Idaho - Compare - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID4,2,"Alabama","Alabama","Electric6"10 IBM Corporation SmartIdaho

359

2012 Annual Planning Summary for Idaho Operations Office | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) |the FuelEnergyEnergy Idaho

360

Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (Million Cubic Feet) Idaho Natural

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Idaho Sends First Offsite Waste to New Mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE HQ FFAREWELLDOE Idaho

362

DOE, State of Idaho Sign Agreement on Nuclear Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State of Idaho Sign

363

Human Resources at Idaho National Laboratory | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortalAllBPAHydrazide Chemistry,AmesIdaho

364

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLtheIndustry |MentoringFacilityIdaho Waste

365

Idaho National Laboratory Testing of Advanced Technology Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National LaboratoryDepartment of

366

Idaho Petroleum Reduction Leadership Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National2 DOE Hydrogen and Fuel

367

Idaho Petroleum Reduction Leadership Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National2 DOE Hydrogen and Fuel1

368

Idaho Petroleum Reduction Leadership Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National2 DOE Hydrogen and Fuel10

369

Trip Report: Idaho National Laboratory Citizens Advisory Board Meeting  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartmentStorageDepartment of Energy SeventhIdaho

370

Department of Energy Idaho - Inside DOE-ID  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The Desert Southwest RegionInside ID Inside Idaho

371

City of Albion, Idaho (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLake SouthChroma ATEEnergy LLC Place:Akutan,Albion, Idaho

372

City of Declo, Idaho (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyoming (UtilityDeclo, Idaho (Utility Company) Jump

373

Idaho Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National11-12, 2005Idaho Regions National

374

Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance  

SciTech Connect (OSTI)

The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and how we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.

Travis L. Mcling

2010-10-01T23:59:59.000Z

375

Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014  

SciTech Connect (OSTI)

The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

Alan Giesbrecht

2014-05-01T23:59:59.000Z

376

Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1998  

SciTech Connect (OSTI)

The results of the various monitoring programs for 1998 indicated that radioactivity from the DOE's Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. Gross alpha and gross beta measurements, used as a screening technique for air filters, were investigated by making statistical comparisons between onsite or boundary location concentrations and the distant community group concentrations. Gross alpha activities were generally higher at distant locations than at boundary and onsite locations. Air samples were also analyzed for specific radionuclides. Some human-made radionuclides were detected at offsite locations, but most were near the minimum detectable concentration and their presence was attributable to natural sources, worldwide fallout, and statistical variations in the analytical results rather than to INEEL operations. Low concentrations of 137Cs were found in muscle tissue and liver of some game animals and sheep. These levels were mostly consistent with background concentrations measured in animals sampled onsite and offsite in recent years. Ionizing radiation measured simultaneously at the INEEL boundary and distant locations using environmental dosimeters were similar and showed only background levels. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.08 person-rem (8 x 10-4 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0002 percent of the estimated 43,7 00 person-rem (437 person-Sv) population dose from background radioactivity.

T. R. Saffle; R. G. Mitchell; R. B. Evans; D. B. Martin

2000-07-01T23:59:59.000Z

377

MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY  

SciTech Connect (OSTI)

Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

2008-10-01T23:59:59.000Z

378

Idaho National Laboratory Cultural Resource Management Annual Report FY 2007  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

Julie Braun; Hollie Gilbert; Dino Lowrey; Clayton Marler; Brenda Pace

2008-03-01T23:59:59.000Z

379

Idaho National Laboratory Cultural Resource Management Annual Report FY 2006  

SciTech Connect (OSTI)

The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

Clayton F. Marler; Julie Braun; Hollie Gilbert; Dino Lowrey; Brenda Ringe Pace

2007-04-01T23:59:59.000Z

380

Idaho field experiment 1981. Volume 2: measurement data  

SciTech Connect (OSTI)

The 1981 Idaho Field Experiment was conducted in southeastern Idaho over the upper Snake River Plain. Nine test-day case studies were conducted between July 15 and 30, 1981. Releases of SF/sub 6/ gaseous tracer were made for 8-hour periods from 46m above ground. Tracer was sampled hourly, for 12 sequential hours, at about 100 locations within an area 24km square. Also, a single total integrated sample of about 30 hours duration was collected at approximately 100 sites within an area 48 by 72km square (using 6km spacings). Extensive tower profiles of meteorology at the release point were collected. RAWINSONDES, RABALS and PIBALS were collected at 3 to 5 sites. Horizontal, low-altitude winds were monitored using the INEL MESONET. SF/sub 6/ tracer plume releases were marked with co-located oil fog releases and bi-hourly sequential launches of tetroon pairs. Aerial LIDAR observations of the oil fog plume and airborne samples of SF/sub 6/ were collected. High altitude aerial photographs of daytime plumes were collected. Volume II lists the data in tabular form or cites the special supplemental reports by other participating contractors. While the primary user file and the data archive are maintained on 9 track/1600 cpi magnetic tapes, listings of the individual values are provided for the user who either cannot utilize the tapes or wishes to preview the data. The accuracies and quality of these data are described.

Start, G E; Sagendorf, J F; Ackermann, G R; Cate, J H; Hukari, N F; Dickson, C R

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Idaho National Laboratory's FY13 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Kimberly Frerichs

2014-03-01T23:59:59.000Z

382

Emerald Lake Watershed study: Introduction and site description  

SciTech Connect (OSTI)

The Emerald Lake Watershed study was organized to investigate the effects of acidic deposition on high-elevation watersheds and surface waters of the Sierra Nevada, California. Some of the results of this comprehensive study of aquatic and terrestrial ecosystems at a small, headwater basin are presented in four papers in this series. The watershed study site is in Sequoia National Park, on the western slope of the Sierra Nevada. This glacial cirque is located in the upper Marble Fork of the Kaweah River. This 120-ha watershed ranges from Alta Peak (3,416 m) down to Emerald Lake (2,400 m). Most of the watershed surface area is exposed granite and granodiorite rocks, with limited coverage (about 20%) by thin, acidic soils. The hydrology of the basin is dominated by snowmelt runoff during March-June. Emerald Lake, a glacial tarn, is 2.72 ha in area, with a maximum depth of 10.5 m. Surface waters are poorly buffered and dominated by calcium and bicarbonate. Most of the yearly precipitation falls as dilute snow (pH5.2-5.4), with acidic rain storms sampled during May-October.

Tonnessen, K.A. (California Air Resources Board, Sacramento (United States))

1991-07-01T23:59:59.000Z

383

Investigation of Coupled Hydrologic and Geochemical Impacts of Wildfire on Southern California Watersheds  

E-Print Network [OSTI]

Water is routed through the reach network to the watershed outlet using storage routing, or kinematic wave

Burke, Megan Patricia

2012-01-01T23:59:59.000Z

384

Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho  

SciTech Connect (OSTI)

The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal.

Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

1997-05-01T23:59:59.000Z

385

CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.  

SciTech Connect (OSTI)

The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy, and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.

Childs, Allen B.

2000-08-01T23:59:59.000Z

386

Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project  

SciTech Connect (OSTI)

This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

A. B. Culp

2007-01-26T23:59:59.000Z

387

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009  

SciTech Connect (OSTI)

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

Brenda R. Pace; Julie B. Braun

2009-10-01T23:59:59.000Z

388

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010  

SciTech Connect (OSTI)

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

INL Cultural Resource Management Office

2010-10-01T23:59:59.000Z

389

MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_  

SciTech Connect (OSTI)

Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

2009-11-01T23:59:59.000Z

390

Epidemiologic surveillance. Annual report for Idaho National Engineering Laboratory 1994  

SciTech Connect (OSTI)

Epidemiologic surveillance at DOE facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, the 1994 morbidity data for the Idaho National Engineering Laboratory are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 17-85 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and pay status; (2) the absences per person, diagnoses per absence, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

NONE

1994-12-31T23:59:59.000Z

391

RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)  

SciTech Connect (OSTI)

--Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

Kelly Lively; Stephen Johnson; Eric Clarke

2014-07-01T23:59:59.000Z

392

Environmental Cleanup of the Idaho National Laboratory Status Report  

SciTech Connect (OSTI)

This paper describes the status of the cleanup of the U.S. Department of Energy's Idaho National Laboratory site (INL). On May 1, 2005 CH2M.WG Idaho, LLC (CWI) began its 7-year, $2.4 billion cleanup of the INL. When the work is completed, 3,406,871 liters (900,000 gallons) of sodium-bearing waste will have been treated; 15 high-level waste tanks will have been grouted and Resource Conservation and Recovery Act (RCRA)- closed; more than 200 facilities will have been demolished or disposed of, including three reactors, several spent fuel basins, and hot cells; thousands of containers of buried transuranic waste will have been retrieved; more than 8,000 cubic meters (10,464 cubic yards) of contact-handled transuranic waste and more than 500 cubic meters (654 cubic yards) of remote-handled transuranic waste will have been characterized, packaged, and shipped offsite; almost 200 release sites and voluntary consent order tank systems will have been remediated; and 3,178 units of spent fuel will have been moved from wet to dry storage. In 2007, CWI began the construction of the Integrated Waste Treatment Unit that will treat the sodium-bearing waste for eventual disposal; removed and disposed the 112-ton Engineering Test Reactor vessel; demolished all significant radiological facilities at Test Area North; continued the exhumation of buried transuranic wastes from the Subsurface Disposal Area at the Radioactive Waste Management Complex; shipped the first of hundreds of containers of remote-handled transuranic waste to the Waste Isolation Pilot Plant; disposed of thousands of cubic meters of low-level and low-level mixed radioactive wastes both onsite and offsite while meeting all regulatory cleanup objectives. (author)

Schubert, A.L. [CH2M.WG Idaho, LLC, Idaho Falls, Idaho (United States)

2008-07-01T23:59:59.000Z

393

Idaho Steelhead Monitoring and Evaluation Studies : Annual Progress Report 2007.  

SciTech Connect (OSTI)

The goal of Idaho Steelhead Monitoring and Evaluation Studies is to collect monitoring data to evaluate wild and natural steelhead populations in the Clearwater and Salmon river drainages. During 2007, intensive population data were collected in Fish Creek (Lochsa River tributary) and Rapid River (Little Salmon River tributary); extensive data were collected in other selected spawning tributaries. Weirs were operated in Fish Creek and Rapid River to estimate adult escapement and to collect samples for age determination and genetic analysis. Snorkel surveys were conducted in Fish Creek, Rapid River, and Boulder Creek (Little Salmon River tributary) to estimate parr density. Screw traps were operated in Fish Creek, Rapid River, Secesh River, and Big Creek to estimate juvenile emigrant abundance, to tag fish for survival estimation, and to collect samples for age determination and genetic analysis. The estimated wild adult steelhead escapement in Fish Creek was 81 fish and in Rapid River was 32 fish. We estimate that juvenile emigration was 24,127 fish from Fish Creek; 5,632 fish from Rapid River; and 43,674 fish from Big Creek. The Secesh trap was pulled for an extended period due to wildfires, so we did not estimate emigrant abundance for that location. In cooperation with Idaho Supplementation Studies, trap tenders PIT tagged 25,618 steelhead juveniles at 18 screw trap sites in the Clearwater and Salmon river drainages. To estimate age composition, 143 adult steelhead and 5,082 juvenile steelhead scale samples were collected. At the time of this report, 114 adult and 1,642 juvenile samples have been aged. Project personnel collected genetic samples from 122 adults and 839 juveniles. We sent 678 genetic samples to the IDFG Eagle Fish Genetics Laboratory for analysis. Water temperature was recorded at 37 locations in the Clearwater and Salmon river drainages.

Copeland, Timothy; Putnam, Scott

2008-12-01T23:59:59.000Z

394

THE FALLACY OF UPPER SNAKE FLOW AUGMENTATION THERE IS NO NEED TO DRAIN IDAHO FOR SALMON  

E-Print Network [OSTI]

APPENDIX 1 THE FALLACY OF UPPER SNAKE FLOW AUGMENTATION THERE IS NO NEED TO DRAIN IDAHO FOR SALMON.......................................................................................................................... 7 Historical Stream Flow Records........................................................................................................ 13 Fish Survival and Upper Snake Flow Augmentation

395

EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho  

Broader source: Energy.gov [DOE]

Bonneville Power Administration prepared an environmental assessment to analyze the potential effects of a proposal to restore wetland and riparian (riverbank) habitat and to reduce erosion in the Clark Fork River delta located in Bonner County, Idaho.

396

IDAPA 31.01.01 - Rules of Procedure of the Idaho Public Utilities...  

Open Energy Info (EERE)

.01 - Rules of Procedure of the Idaho Public Utilities Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA...

397

Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

398

Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho  

SciTech Connect (OSTI)

Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

Glaspey, Douglas J.

2008-01-30T23:59:59.000Z

399

Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report  

SciTech Connect (OSTI)

This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

Stirrup, T.S.

1993-06-01T23:59:59.000Z

400

A Geyser of Energy Savings in Idaho: Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Idaho demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,  

E-Print Network [OSTI]

SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595 of the Water Resources

US Army Corps of Engineers

402

Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study  

SciTech Connect (OSTI)

Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

Christopher Orme

2012-08-01T23:59:59.000Z

403

Nine Elements of Watershed Based Plans for EPA Section 319  

E-Print Network [OSTI]

Watershed Protection Plan Feb 2008 #12;a.) Identify sources and causes for impairment (load duration curve of concern Uhland sub-area Confidence intervals from regression analysis of load duration curve Management knowledge of: the nature and source of the WQ problem, the pollutant load reductions needed to meet WQS

404

Simple approaches for measuring dry atmospheric nitrogen deposition to watersheds  

E-Print Network [OSTI]

'' and spatial variations of gaseous dry N deposition (i.e., nitrogen dioxide (NO2) and ammonia (NH3)), thoughSimple approaches for measuring dry atmospheric nitrogen deposition to watersheds Heather E. Golden the effects of atmospheric nitrogen (N) deposition on surface water quality requires accurate accounts

Elliott, Emily M.

405

Watershed Management: An Evaluation of the Mullen Slough Capital Improvement  

E-Print Network [OSTI]

and Action Plan King County, Washington, USA by Fiona Murray McNair B.Sc. McGill University 1995 RESEARCH Capital Improvement Project Study and Action Plan, King County, Washington, USA Examining Committee:_______________________________ #12;iii Abstract A watershed management process, for a sub-basin in King County, WA is examined

406

Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program  

SciTech Connect (OSTI)

Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

1999-03-01T23:59:59.000Z

407

AIR-DEPOSITED POLLUTION IN THE ANACOSTIA RIVER WATERSHED  

E-Print Network [OSTI]

) provides a summary of major scientific reports on air pollution and public health. The reports includeAIR-DEPOSITED POLLUTION IN THE ANACOSTIA RIVER WATERSHED Annual Progress Report for FY 2005 through the US Department of Interior #12;PROGRESS REPORT: AIR-DEPOSITED POLLUTION IN THE ANACOSTIA RIVER

District of Columbia, University of the

408

ENVIRONMENTAL QUALITY OF WILMINGTON AND NEW HANOVER COUNTY WATERSHEDS  

E-Print Network [OSTI]

to a significant increase in total phosphorus. Several water quality parameters indicated a subsequent worseningENVIRONMENTAL QUALITY OF WILMINGTON AND NEW HANOVER COUNTY WATERSHEDS 2005-2006 by Michael A: The City of Wilmington, New Hanover County and the US EPA 319 Program (through NC Division of Water quality

Mallin, Michael

409

University of Tennessee Institute of Agriculture Tennessee Watershed  

E-Print Network [OSTI]

.state.tn.us/environment/wpc/wshed1.htm Watts Bar Watershed McMinn Monroe Pond Creek #12;University of Tennessee Institute of Agriculture Water Quality in Pond Creek 35.6 miles of Mud Creek, Greasy Branch and Pond Creek listed on 2002? #12;University of Tennessee Institute of Agriculture Pond Creek · Pasture based beef and dairy

410

CAN INTEGRATED WATERSHED MANAGEMENT BRING GREATER FOOD SECURITY IN ETHIOPIA?  

E-Print Network [OSTI]

CAN INTEGRATED WATERSHED MANAGEMENT BRING GREATER FOOD SECURITY IN ETHIOPIA? Oloro V. McHugh, Amy S, Ethiopia Gete Zeleke ARARI, Bahir Dar, Ethiopia Abstract: In the food insecure regions, short annual. Ethiopia's agricultural sector is driven by the subsistence strategies of smallholder farmers

Walter, M.Todd

411

An Overview of Project Planning for Hot-Isostatic Pressure Treatment of High-Level Waste Calcine for the Idaho Cleanup Project - 12289  

SciTech Connect (OSTI)

The Calcine Disposition Project is responsible for retrieval, treatment by hot-isostatic pressure, packaging, and disposal of highly radioactive calcine stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site in southeast Idaho. In the 2009 Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement the Department of Energy documented the selection of hot-isostatic pressure as the technology to treat the calcine. The Record of Decision specifies that the treatment results in a volume-reduced, monolithic waste form suitable for transport outside of Idaho by a target date of December 31, 2035. That target date is specified in the 1995 Idaho Settlement Agreement to treat and prepare the calcine for transport out of Idaho in exchange for allowing storage of Navy spent nuclear fuel at the INL Site. The project is completing the design of the calcine-treatment process and facility to comply with Record of Decision, Settlement Agreement, Idaho Department of Environmental Quality, and Department of Energy requirements. A systems engineering approach is being used to define the project mission and requirements, manage risks, and establish the safety basis for decision making in compliance with DOE O 413.3B, 'Program and Project Management for the Acquisition of Capital Assets'. The approach draws heavily on 'design-for-quality' tools to systematically add quality, predict design reliability, and manage variation in the earliest possible stages of design when it is most efficient. Use of these tools provides a standardized basis for interfacing systems to interact across system boundaries and promotes system integration on a facility-wide basis. A mass and energy model was developed to assist in the design of process equipment, determine material-flow parameters, and estimate process emissions. Data generated from failure modes and effects analysis and reliability, availability, maintainability, and inspectability analysis were incorporated into a time and motion model to validate and verify the capability to complete treatment of the calcine within the required schedule. The Calcine Disposition Project systems engineering approach, including use of industry-proven design-for-quality tools and quantitative assessment techniques, has strengthened the project's design capability to meet its intended mission in a safe, cost-effective, and timely manner. Use of these tools has been particularly helpful to the project in early design planning to manage variation; improve requirements and high-consequence risk management; and more effectively apply alternative, interface, failure mode, RAMI, and time and motion analyses at the earliest possible stages of design when their application is most efficient and cost effective. The project is using these tools to design and develop HIP treatment of highly radioactive calcine to produce a volume-reduced, monolithic waste form with immobilization of hazardous and radioactive constituents. (authors)

Nenni, Joseph A.; Thompson, Theron J. [CH2M-WG Idaho, LLC, Idaho Cleanup Project, Idaho Falls, Idaho 83403 (United States)

2012-07-01T23:59:59.000Z

412

Inventory of site-derived {sup 36}Cl in the Snake River plain aquifier, Idaho National Engineering Laboratory, Idaho  

SciTech Connect (OSTI)

Radioactive waste management practices at the U.S. Department of Energy`s Idaho National Engineering Laboratory (INEL) in Idaho have introduced {sup 36}Cl (T{sub 1/2} = 301,000 yr) into the Snake River Plain aquifer underlying the site. The {sup 36}Cl is believed to originate from neutron activation of stable {sup 35}Cl in nuclear fuels (principally) and in reactor cooling/process water. Wastewater releases of {sup 3}H at the INEL have been documented by the site operators for the period 1952 to 1988. During this time, approximately 1.2 PBq of {sup 3}H (30,000 Ci) were introduced to the subsurface through disposal wells and seepage ponds. By sampling a number of monitoring and production wells downgradient from points of introduction, {sup 3}H movement and dispersion in the groundwater have been documented by the U.S. Geological Survey. The present report uses these historical {sup 3}H release and monitoring data to choose hydrologic parameters (matrix porosity and plume penetration depth) that produce concordance between the {sup 3}H release estimates and the inventory calculated from measurements of {sup 3}H in the subsurface. These parameters are then applied to {sup 36}Cl isopleths to generate an estimated {sup 36}Cl inventory in the subsurface. Using assumptions about irradiation times, neutron fluxes, and total fuel processed, as little as 23 g of stable chloride impurity in fuel elements would be adequate to produce the amount of {sup 36}Cl estimated to be in the groundwaters underlying the site. The highest atom concentration of {sup 36}Cl measured onsite (222x10{sup 10} atoms 1{sup -1}) corresponds to an activity level of {approximately}4 pCi 1{sup -1} and represents 0.2 percent of the U.S. Environmental Protection Agency`s (EPA) drinking water standard for this radionuclide (2000 pCi 1{sup -1}).

Beasley, T.M.

1995-02-01T23:59:59.000Z

413

Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study  

SciTech Connect (OSTI)

The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities.

Patterson, M.W. [Westinghouse Idaho Nuclear Co., Idaho Falls, ID (United States); Thompson, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

1994-01-01T23:59:59.000Z

414

2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

Meachum, T.R.; Lewis, M.G.

2002-02-15T23:59:59.000Z

415

2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

Meachum, Teresa Ray; Lewis, Michael George

2002-02-01T23:59:59.000Z

416

Environmental resource document for the Idaho National Engineering Laboratory. Volume 2  

SciTech Connect (OSTI)

This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

Irving, J.S.

1993-07-01T23:59:59.000Z

417

Environmental resource document for the Idaho National Engineering Laboratory. Volume 1  

SciTech Connect (OSTI)

This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

Irving, J.S.

1993-07-01T23:59:59.000Z

418

EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho  

Broader source: Energy.gov [DOE]

Draft EA: Public Comment Period Ends 03/05/2015Bonneville Power Administration (BPA) is preparing an EA to assess the potential environmental impacts of funding the Kootenai Tribe of Idaho to restore portions of the Kootenai River near the town of Bonners Ferry, Idaho. The proposed project involves installing structures on the river banks, excavating areas in the river to create deeper pools, and developing and enhancing islands that would be planted with native vegetation.

419

Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho  

SciTech Connect (OSTI)

A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well.

Bennecke, W.M.

1996-10-01T23:59:59.000Z

420

Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.  

SciTech Connect (OSTI)

Populations of anadromous salmonids in the Snake River basin declined precipitously following the construction of hydroelectric dams in the Snake and Columbia rivers. Raymond (1988) documented a decrease in survival of emigrating steelhead trout Oncorhynchus mykiss and Chinook salmon O. tshawytscha from the Snake River following the construction of dams on the lower Snake River during the late 1960s and early 1970s. Although Raymond documented some improvements in survival through the early 1980s, anadromous populations remained depressed and declined even further during the 1990s (Petrosky et al. 2001; Good et al. 2005). The effect was disastrous for all anadromous salmonid species in the Snake River basin. Coho salmon O. kisutch were extirpated from the Snake River by 1986. Sockeye salmon O. nerka almost disappeared from the system and were declared under extreme risk of extinction by authority of the Endangered Species Act (ESA) in 1991. Chinook salmon were classified as threatened with extinction in 1992. Steelhead trout were also classified as threatened in 1997. Federal management agencies in the basin are required to mitigate for hydroelectric impacts and provide for recovery of all ESA-listed populations. In addition, the Idaho Department of Fish and Game (IDFG) has the long-term goal of preserving naturally reproducing salmon and steelhead populations and recovering them to levels that will provide a sustainable harvest (IDFG 2007). Management to achieve these goals requires an understanding of how salmonid populations function (McElhany et al. 2000) as well as regular status assessments. Key demographic parameters, such as population density, age composition, recruits per spawner, and survival rates must be estimated annually to make such assessments. These data will guide efforts to meet mitigation and recovery goals. The Idaho Natural Production Monitoring and Evaluation Project (INPMEP) was developed to provide this information to managers. The Snake River stocks of steelhead and spring/summer Chinook salmon still have significant natural reproduction and thus are the focal species for this project's investigations. The overall goal is to monitor the abundance, productivity, distribution, and stock-specific life history characteristics of naturally produced steelhead trout and Chinook salmon in Idaho (IDFG 2007). We have grouped project tasks into three objectives, as defined in our latest project proposal and most recent statement of work. The purpose of each objective involves enumerating or describing individuals within the various life stages of Snake River anadromous salmonids. By understanding the transitions between life stages and associated controlling factors, we hope to achieve a mechanistic understanding of stock-specific population dynamics. This understanding will improve mitigation and recovery efforts. Objective 1. Measure 2007 adult escapement and describe the age structure of the spawning run of naturally produced spring/summer Chinook salmon passing Lower Granite Dam. Objective 2. Monitor the juvenile production of Chinook salmon and steelhead trout for the major population groups (MPGs) within the Clearwater and Salmon subbasins. Objective 3. Evaluate life cycle survival and the freshwater productivity/production of Snake River spring/summer Chinook salmon. There are two components: update/refine a stock-recruit model and estimate aggregate smolt-to-adult survival. In this annual progress report, we present technical results for work done during 2007. Part 2 contains detailed results of INPMEP aging research and estimation of smolt-to-adult return rates for wild and naturally produced Chinook salmon (Objectives 1 and 3). Part 3 is a report on the ongoing development of a stock-recruit model for the freshwater phase of spring/summer Chinook salmon in the Snake River basin (Objective 3). Part 4 is a summary of the parr density data (Objective 2) collected in 2007 using the new site selection procedure. Data are maintained in computer databases housed at the IDFG Nampa Fisheries Research off

Copeland, Timothy; Johnson, June; Putnam, Scott

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sustainability of the Arroyo Colorado Watershed Partnership and Continued Implementation of the Arroyo Colorado Watershed Protection Plan Final Report  

E-Print Network [OSTI]

by the Arroyo Colorado Watershed Partnership (ACWP) to address these impairments over a 10-year implantation period. The ACWPP primarily addresses the low DO levels in the tidal segment of the AC. The goal of the ACWPP is to reduce the addition of pollutants...

Flores, J.; Berthold, A.

2014-01-01T23:59:59.000Z

422

Diurnal evapotranspiration estimates in the Walnut River Watershed.  

SciTech Connect (OSTI)

Evapotranspiration is an essential component of the surface hydrological balance, but obtaining accurate estimates of the water vapor flux over large terrestrial areas can be difficult because of the substantial temporal and spatial variability in surface moisture conditions that can occur. This variability is often very large in the Great Plains and other portions of the Mississippi River Basin. Nevertheless, variations in soil moisture content, groundwater levels, and runoff in streams and rivers cannot be fully assessed without some knowledge of evapotranspiration rates. Here, observations made at the Walnut River Watershed (WRW), which is near Wichita, Kansas, and has an area of approximately 5000 km{sup 2}, are used to improve and test a modeling system that estimates long-term evapotranspiration with use of satellite remote sensing data with limited surface measurements. The techniques may be applied to much larger areas. As is shown in Fig. 1, the WRW is located in the Red River Basin and is enclosed by the southern Great Plains Clouds and Radiation Testbed (CART) of the US Department of Energy's Atmospheric Radiation Measurement (ARM) program. The functional relationships involving the satellite data, surface parameters, and associated subgrid-scale fluxes are modeled in this study by the parameterization of subgrid-scale surface (PASS) fluxes scheme (Gao, 1995; Gao et al., 1998), which is used in a modified and improved form (PASS2). The advantage of this modeling system is that it can make effective use of satellite remote sensing data and can be run for large areas for which flux data do not exist and surface meteorological data are available from only a limited number of ground stations. In this study, the normalized difference vegetation index (NDVI) or simple ratio (SR) and surface brightness temperature at each pixel for the WRW were derived from advanced very high resolution radiometers data collected by a ground station at Argonne National Laboratory from the National Oceanic and Atmospheric Administration's NOAA-12 and NOAA-14 satellites. The satellite data were subjected to atmospheric corrections for three intensive observation days of the 1997 Cooperative Atmosphere-Surface Exchange Study (CASES-97) experiment, which was conducted in cooperation with the Argonne Boundary Layer Experiments (ABLE) effort and the ARM Program.

Song, J.

1998-10-05T23:59:59.000Z

423

EIS-0265-SA-57: Supplement Analysis  

Broader source: Energy.gov [DOE]

Watershed Management Program - Idaho Fish Screening Improvement (Champion, Iron, Fourth of July, Goat Creeks)

424

Multiobjective calibration and sensitivity of a distributed land surface water and energy balance model  

E-Print Network [OSTI]

identification and energy balance models on a tallgrassdata for surface energy balance evaluation of a semiaridWatershed. We are energy balance components over a semiarid

Houser, Paul R; Gupta, Hoshin V; Shuttleworth, W. James; Famiglietti, James S

2001-01-01T23:59:59.000Z

425

Recent Advances in Regional Climate System Modeling and Climate Change Analyses of Extreme Heat  

E-Print Network [OSTI]

California hydrology. J. Am. Water Resources Association 39,Land Surface and Ground Water Model for use in WatershedN.L. , 2003: California Water Resources Research, CEC Sept

Miller, Norman L.

2004-01-01T23:59:59.000Z

426

Great Western Malting Company geothermal project, Pocatello, Idaho. Final report  

SciTech Connect (OSTI)

The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

1981-12-23T23:59:59.000Z

427

Update on Ultrasonic Thermometry Development at Idaho National Laboratory  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) has initiated an effort to evaluate the viability of using ultrasonic thermometry technology as an improved sensor for detecting temperature during irradiation testing of advanced fuels proposed within the Fuel Cycle Research and Development (FCR&D) program sponsored by the U.S. Department of Energy (US DOE). Ultrasonic thermometers (UTs) work on the principle that the speed at which sound travels through a material (acoustic velocity) is dependent on the temperature of the material. UTs have several advantages over other types of temperature sensors . UTs can be made very small, as the sensor consists only of a small diameter rod which may or may not require a sheath. Measurements may be made up to very high temperature (near the melting point of the sensor material) and, as no electrical insulation is required, shunting effects observed in traditional high temperature thermocouple applications are avoided. Most attractive, however, is the ability to introduce multiple acoustic discontinuities into the sensor, as this enables temperature profiling with a single sensor. The current paper presents initial results from FCR&D UT development efforts. These developments include improved methods for fabricating magnetostrictive transducers and joining them to waveguides, characterization of candidate sensor materials appropriate for use in FCR&D fuels irradiations (both ceramic fuels in inert gas and sodium bonded metallic fuels), enhanced signal processing techniques, and tests to determine potential accuracy and resolution.

Joshua Daw; Joy Rempe; John Crepeau

2012-07-01T23:59:59.000Z

428

Idaho National Laboratory Vadose Zone Research Park Geohydrological Monitoring Results  

SciTech Connect (OSTI)

Vadose zone lithology, hydrological characterization of interbed sediments, and hydrological data from subsurface monitoring of Idaho Nuclear Technology and Engineering Center wastewater infiltration are presented. Three-dimensional subsurface lithology of the vadose zone beneath the Vadose Zone Research Park is represented in a 2 dimensional (2 D) diagram showing interpolated lithology between monitoring wells. Laboratory-measured values for saturated hydraulic conductivity and porosity are given for three major interbeds, denoted as the B BC interbed (20 to 35 m bls), the C D interbed (40 to 45 m bls), and the DE 1 2 interbed (55 to 65 m bls), along with an overall physical description of the sediments and geologic depositional environments. Pre-operational pore water pressure conditions are presented to show the presence and location of perched water zones before pond discharge at the New Percolation Ponds. Subsurface infiltration conditions during initial high-volume discharge are presented to show water arrival times and arrival sequences. Steady-state conditions are then presented to show formation and locations of perched water zones and recharge sources after several months of discharge to the New Percolation Ponds.

Kristine Baker

2006-01-01T23:59:59.000Z

429

Post Irradiation Capabilities at the Idaho National Laboratory  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

Schulthess, J.L.

2011-08-01T23:59:59.000Z

430

Post Irradiation Capabilities at the Idaho National Laboratory  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

2011-08-01T23:59:59.000Z

431

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008  

SciTech Connect (OSTI)

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

Brenda R. Pace

2009-01-01T23:59:59.000Z

432

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

Staiger, M. Daniel, Swenson, Michael C.

2011-09-01T23:59:59.000Z

433

Estimated Uncertainties in the Idaho National Laboratory Matched-Index-of-Refraction Lower Plenum Experiment  

SciTech Connect (OSTI)

The purpose of the fluid dynamics experiments in the MIR (Matched-Index-of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for typical Very High Temperature Reactor (VHTR) plenum geometries in the limiting case of negligible buoyancy and constant fluid properties. The experiments use optical techniques, primarily particle image velocimetry (PIV) in the INL MIR flow system. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The objective of the present report is to develop understanding of the magnitudes of experimental uncertainties in the results to be obtained in such experiments. Unheated MIR experiments are first steps when the geometry is complicated. One does not want to use a computational technique, which will not even handle constant properties properly. This report addresses the general background, requirements for benchmark databases, estimation of experimental uncertainties in mean velocities and turbulence quantities, the MIR experiment, PIV uncertainties, positioning uncertainties, and other contributing measurement uncertainties.

Donald M. McEligot; Hugh M. McIlroy, Jr.; Ryan C. Johnson

2007-11-01T23:59:59.000Z

434

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

435

Techniques for estimating flood hydrographs for ungaged urban watersheds  

SciTech Connect (OSTI)

The Clark Method, modified slightly, was used to develop a synthetic dimensionless hydrograph that can be used to estimate flood hydrographs for ungaged urban watersheds. Application of the technique results in a typical (average) flood hydrograph for a given peak discharge. Input necessary to apply the technique is an estimate of basin lagtime and the recurrence interval peak discharge. Equations for this purpose were obtained from a recent nationwide study on flood frequency in urban watersheds. A regression equation was developed which relates flood volumes to drainage area size, basin lagtime, and peak discharge. This equation is useful where storage of floodwater may be a part of design or flood prevention. 6 refs., 17 figs., 5 tabs.

Stricker, V.A.; Sauer, V.B.

1982-04-01T23:59:59.000Z

436

Course helps professionals develop watershed protection plans: Texas water resources professionals gather  

E-Print Network [OSTI]

tx H2O | pg. 6 Story by Ric Jensen Course helps professionals develop watershed protection plans | pg. 6 tx H2O | pg. 7 W ater resources professionals wanting training on watershed protection plan development are benefiting from a course... AgriLife Research, the River Systems Institute at Texas State University, Texas Institute for Applied Environmental Research at Tarleton State University, and the U.S. Environmental Protection Agency (EPA) to create the Texas Watershed Planning...

Jensen, Ric

2008-01-01T23:59:59.000Z

437

Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho  

SciTech Connect (OSTI)

J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. The average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.

Bridger Morrison

2014-09-01T23:59:59.000Z

438

Knowledge-based modeling using GIS: nonpoint source pollution application  

E-Print Network [OSTI]

loss over the watershed ANSI (2 inch event). . 58 V. l 1 Simulated effect of recommended BMPs on actual soil loss (2 inch event). 59 V. 12 Spatial distribution of the actual soil loss over the watershed ANSI (3 inch event) . . 60 V. 13 Simulated... Modeling Environment 29 IV MATERIALS AND METHODS 1 Inputs from AGNPS/GRASS Interface 33 2 Knowledge-based Approa. ch 35 2. 1 Study Area: Animal Science Watershed (ANSI) 35 2. 2 Identification 2. 3 Watershed Management using Best Management Practices...

Mohite, Mahendra P.

2012-06-07T23:59:59.000Z

439

TRACING THE CONTAMINANT HISTORY OF AN URBAN WATERSHED THROUGH AN EXAMINATION OF AQUATIC  

E-Print Network [OSTI]

TRACING THE CONTAMINANT HISTORY OF AN URBAN WATERSHED THROUGH AN EXAMINATION OF AQUATIC SEDIMENTS. A smaller organic contaminant database indicates sediment PAH levels exceed probable effect level criteria

440

E-Print Network 3.0 - asotin creek watershed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: ForemanCreek Manson Creek Mill Creek Malosky Creek...

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Potential impacts of global climate change on Tijuana River Watershed hydrology - An initial analysis  

E-Print Network [OSTI]

on Tijuana River Watershed hydrology - An initial analysis Achanges may impact the hydrology of the Tijuana Riverclimate changes might impact hydrology in the Tijuana River

Das, Tapash; Dettinger, Michael D; Cayan, Daniel R

2010-01-01T23:59:59.000Z

442

Assessment of Water Resources and Watershed Conditions in Moores Creek National Battlefield, North Carolina  

E-Print Network [OSTI]

Assessment of Water Resources and Watershed Conditions in Moores Creek National Battlefield, North Assessment of Park Water Resources.......................................................................25 resources........................................................................15 Biological resources

Mallin, Michael

443

Urban Retrofit: A Whole-Watershed Approach to Urban Stormwater Management  

E-Print Network [OSTI]

rainwater  catchment  cisterns     Derby/Po)er  Creek  Watershed:  Urban  Stormwater  for   managing  stormwater.  Rainwater  catchment  can  be  Stormwater  Management. ”   Capturing  rainwater  runoff  

Lithander, Becky

2012-01-01T23:59:59.000Z

444

Assessment of the Financial and Intellectual Value of a Research Library and its Application at the Idaho National Laboratory  

SciTech Connect (OSTI)

Over the last several decades, libraries across the nation have undergone dramatic budget cuts, despite being an important resource for regional and national economic growth and innovation. Numerous studies have attempted to show that libraries increase the intellectual level of users and contribute to the economic growth of communities through surveys and customer service data. Within this study, we have attempted to develop a more analytical method for assessing library performance, using the Idaho National Laboratory Research Library as a sample subject. We have developed a mathematical model to measure the financial value of a library’s material resources as well as its intellectual value to determine if the library is a positive contributor to the wider organization and community it serves.

Lynn E. Melander

2012-08-01T23:59:59.000Z

445

Evaluation of SWAT model - subdaily runoff prediction in Texas watersheds  

E-Print Network [OSTI]

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Raghavan Srinivasan Committee Members, Patricia Haan... contributions. I would like to first thank my advisor Dr. Raghavan Srinivasan for his immense support during all these years. He was always there for me to finish my tenure as a student. I would like to thank my committee members Dr. Patricia Haan and Dr...

Palanisamy, Bakkiyalakshmi

2007-09-17T23:59:59.000Z

446

Integration of stream and watershed data for hydrologic modeling  

E-Print Network [OSTI]

-resolution datasets are required, vector datasets have an advantage because they would present the same amount of information that raster would, but the vector file size increase is not as significant as that of raster. The evolution of DEMs suggests... can also be attributed with non-spatial information. Only features of one shape type can be collected together for storage. These storage types can be classified as file- based storage (e.g. shapefiles and coverages) or DBMS (Database Management...

Koka, Srikanth

2004-09-30T23:59:59.000Z

447

High-resolution, multi-scale modeling of watershed hydrology  

E-Print Network [OSTI]

Enrique R. Vivoni An Opportunity to Integrate Remote Sensing Observations, Field Data Collection distribution of topography, rainfall, soils, vegetation, meteorology, soil moisture. Field Data and Remote's Hydrologic and Energetic System: Water and Heat Storages and Transports over Many Time and Space Scales P ET

Vivoni, Enrique R.

448

MANAGING SPENT NUCLEAR FUEL WASTES AT THE IDAHO NATIONAL LABORATORY  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy is in part due to the history of the INL as the National Reactor Testing Station, in part to its mission to recover highly enriched uranium from SNF and in part to it’s mission to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facility, some dating back 50 years in the site history. The success of the INL SNF program is measured by its ability to: 1) achieve safe existing storage, 2) continue to receive SNF from other locations, both foreign and domestic, 3) repackage SNF from wet storage to interim dry storage, and 4) prepare the SNF for dispositioning in a federal repository. Because of the diversity in the SNF and the facilities at the INL, the INL is addressing almost very condition that may exist in the SNF world. Many of solutions developed by the INL are applicable to other SNF storage sites as they develop their management strategy. The SNF being managed by the INL are in a variety of conditions, from intact assemblies to individual rods or plates to powders, rubble, and metallurgical mounts. Some of the fuel has been in wet storage for over forty years. The fuel is stored bare, or in metal cans and either wet under water or dry in vaults, caissons or casks. Inspections have shown varying degrees of corrosion and degradation of the fuel and the storage cans. Some of the fuel has been recanned under water, and the conditions of the fuel inside the second or third can are unknown. The fuel has been stored in one of 10 different facilities: five wet pools and one casks storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The wet pools range from forty years old to the most modern pool in the US Department of Energy (DOE) complex. The near-term objective is moving the fuel in the older wet storage facilities to interim dry storage facilities, thus permitting the shutdown and decommission of the older facilities. Two wet pool facilities, one at the Idaho Nuclear Technology and Engineering Center and the other at Test Area North, were targeted for initial SNF movements since these were some of the oldest at the INL. Because of the difference in the SNF materials different types of drying processes had to be developed. Passive drying, as is done with typical commercial SNF was not an option because on the condition of some of the fuel, the materials to be dried, and the low heat generation of some of the SNF. There were also size limitations in the existing facility. Active dry stations were designed to address the specific needs of the SNF and the facilities.

Hill, Thomas J

2005-09-01T23:59:59.000Z

449

Idaho National Laboratory’s Greenhouse Gas FY08 Baseline  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

450

Managing Spent Nuclear Fuel at the Idaho National Laboratory  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy derives from the history of the INL as the National Reactor Testing Station, and from its mission to recover HEU from SNF and to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facilities, some 50 years old. SNF at INL has many forms—from intact assemblies down to metallurgical mounts, and some fuel has been wet stored for over 40 years. SNF is stored bare or in metal cans under water, or dry in vaults, caissons or casks. Inspection shows varying corrosion and degradation of the SNF and its storage cans. SNF has been stored in 10 different facilities: 5 pools, one cask storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The pools range in age from 40 years old to the most modern in the US Department of Energy (DOE) complex. The near-term objective is to move SNF from older pools to interim dry storage, allowing shutdown and decommissioning of the older facilities. This move involves drying methods that are dependent on fuel type. The long-term objective is to have INL SNF in safe dry storage and ready to be shipped to the National Repository. The unique features of the INL SNF requires special treatments and packaging to meet the proposed repository acceptance criteria and SNF will be repackaged in standardized canisters for shipment and disposal in the National Repository. Disposal will use the standardized canisters that can be co-disposed with High Level Waste glass logs to limit the total fissile material in a repository waste package. The DOE standardized canister also simplifies the repository handling of the multitude of DOE SNF sizes and shapes.

Thomas Hill; Denzel L. Fillmore

2005-10-01T23:59:59.000Z

451

Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report  

SciTech Connect (OSTI)

Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

No name listed on publication

2011-08-01T23:59:59.000Z

452

Idaho National Laboratory Cultural Resource Monitoring Report for 2013  

SciTech Connect (OSTI)

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resource recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.

Julie B. Williams; Brenda Pace

2013-10-01T23:59:59.000Z

453

Post Irradiation Capabilities at the Idaho National Laboratory  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability , these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

J. L. Schulthess; K. E. Rosenberg

2011-05-01T23:59:59.000Z

454

2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation  

SciTech Connect (OSTI)

The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

Meachum, Teresa Ray; Michael G. Lewis

2003-02-01T23:59:59.000Z

455

Redesignation Order No. 00-09.01-01 to the Manager of Department of Energy Idaho Operations Office  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Redesignation of the Manager of the Idaho Operations Office as the representative to perform as the "authorized representative," as that term is used in the NRC regulations at 10 CFR 72.16(b), and as name holder of the NRC license under 10 CFR 72 for the Idaho Spent Fuel Facility Independent Spent Fuel Storage Installation.

2006-05-12T23:59:59.000Z

456

High Level Waste Tank Closure Project at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The Department of Energy, Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities.

Wessman, D. L.; Quigley, K. D.

2002-02-27T23:59:59.000Z

457

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

SciTech Connect (OSTI)

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

Deborah L. Layton; Kimberly Frerichs

2011-12-01T23:59:59.000Z

458

2013 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 22)  

SciTech Connect (OSTI)

This 2013 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 22) provides water use information for production and potable water wells at the Idaho National Laboratory for Calendar Year 2013. It also provides detailed information for new, modified, and decommissioned wells and holes. Two new wells were drilled and completed in Calendar Year 2013. No modifications were performed on any wells. Seven wells were decommissioned in Calendar Year 2013. Detailed construction information for the new and decommissioned wells is provided. Location maps are included, provided survey information was available. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990) and the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003.

Mike Lewis

2014-06-01T23:59:59.000Z

459

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

SciTech Connect (OSTI)

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

Deborah L. Layton; Kimberly Frerichs

2010-07-01T23:59:59.000Z

460

2010 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 19)  

SciTech Connect (OSTI)

This 2010 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 19) provides water use information (monthly annual average and total annual volume) for production and potable water wells at the Idaho National Laboratory for Calendar Year 2010. It also provides detailed information for new, modified, and abandoned (decommissioned) wells and holes. Five new wells were drilled and completed in the latter part of Calendar Years 2009 and 2010. Two wells were modified in Calendar Year 2010 and 66 wells and boreholes reported as abandoned (decommissioned). Detailed construction information for the new and modified wells, along with abandonment information for older wells, is provided. Location maps are provided if survey information was available. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990) and the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003.

Mike Lewis

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

2011 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 20)  

SciTech Connect (OSTI)

This 2011 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 20) provides water use information (monthly annual average and total annual volume) for production and potable water wells at the Idaho National Laboratory for Calendar Year 2011. It also provides detailed information for new, modified, and abandoned (decommissioned) wells and holes. One new well was drilled and completed and one well was modified in Calendar Year 2011. A total of 14 wells and boreholes were reported as decommissioned. Detailed construction information for the new and modified wells is provided. Details are provided for the wells and boreholes that have been decommissioned, and if available, construction diagrams. Location maps are included, provided survey information was available. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990) and the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003.

Renee Bowser

2012-06-01T23:59:59.000Z

462

A Probabilistic Water Resources Assessment of the Paradise Creek Watershed Presented in Partial Fulfillment of the Requirements for the  

E-Print Network [OSTI]

A Probabilistic Water Resources Assessment of the Paradise Creek Watershed A Thesis Presented Probabilistic Water Resources Assessment of the Paradise Creek Watershed," has been reviewed in final form ____________________________________Date____________ Margrit von Braun #12;iii iii A Probabilistic Water Resources Assessment

Fiedler, Fritz R.

463

Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter  

SciTech Connect (OSTI)

This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

Lisbeth A. Mitchell

2013-11-01T23:59:59.000Z

464

Idaho Habitat/Natural Production Monitoring Part I, 1994 Annual Report.  

SciTech Connect (OSTI)

A total of 333 stream sections were sampled in 1994 to monitor in chinook salmon and steelhead trout parr populations in Idaho. Percent carry capacity and density estimates were summarized by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon. These data were also summarized by cells and subbasins as defined in Idaho Department of Fish and Game`s 1992-1996 Anadromous Fish Management Plan.

Hall-Griswold, Judy A.; Leitzinger, Eric J.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID

1995-11-01T23:59:59.000Z

465

Action Memorandum for General Decommissioning Activities under the Idaho Cleanup Project  

SciTech Connect (OSTI)

This Action Memorandum documents the selected alternative to perform general decommissioning activities at the Idaho National Laboratory (INL) under the Idaho Cleanup Project (ICP). Preparation of this Action Memorandum has been performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the "Superfund Amendments and Reauthorization Act of 1986", and in accordance with the "National Oil and Hazardous Substances Pollution Contingency Plan". An engineering evaluation/cost analysis (EE/CA) was prepared and released for public comment and evaluated alternatives to accomplish the decommissioning of excess buildings and structures whose missions havve been completed.

S. L. Reno

2006-10-26T23:59:59.000Z

466

Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1  

SciTech Connect (OSTI)

This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

Simonds, J.

2007-11-06T23:59:59.000Z

467

Long-term land use future scenarios for the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

In order to facilitate decision regarding environmental restoration activities at the Idaho National Engineering Laboratory (INEL), the United States Department of Energy, Idaho Operations Office (DOE-ID) conducted analyses to project reasonable future land use scenarios at the INEL for the next 100 years. The methodology for generating these scenarios included: review of existing DOE plans, policy statements, and mission statements pertaining to the INEL; review of surrounding land use characteristics and county developments policies; solicitation of input from local, county, state and federal planners, policy specialists, environmental professionals, and elected officials; and review of environmental and development constraints at the INEL site that could influence future land use.

NONE

1995-08-01T23:59:59.000Z

468

Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

1997-04-01T23:59:59.000Z

469

Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record  

SciTech Connect (OSTI)

This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

NONE

1997-12-31T23:59:59.000Z

470

Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.  

SciTech Connect (OSTI)

U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation species, and the allowance of normative processes such as fire occurrence. Implementation of these alternatives could generate an estimated minimum of 393 enhancement credits in 10 years. Longer-term benefits of protection and enhancement activities include increases in native species diversity and structural complexity in all cover types. While such benefits are not readily recognized by HEP models and reflected in the number of habitat units generated, they also provide dual benefits for fisheries resources. Implementation of the alternatives will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program.

Quaempts, Eric

2003-01-01T23:59:59.000Z

471

High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

Not Available

1993-06-01T23:59:59.000Z

472

Water information bulletin No. 30: geothermal investigations in Idaho. Part 11. Geological, hydrological, geochemical and geophysical investigations of the Nampa-Caldwell and adjacent areas, southwestern Idaho  

SciTech Connect (OSTI)

The area under study included approximately 925 sq km (357 sq mi) of the Nampa-Caldwell portion of Canyon County, an area within the central portion of the western Snake River Plain immediately west of Boise, Idaho. Geologic mapping, hydrologic, geochemical, geophysical, including detailed gravity and aeromagnetic surveys, were run to acquire needed data. In addition, existing magnetotelluric and reflection seismic data were purchased and reinterpreted in light of newly acquired data.

Mitchell, J.C. (ed.)

1981-12-01T23:59:59.000Z

473

Sediment storage and yield in an urbanized karst watershed Evan A. Harta,*, Stephen G. Schurgerb  

E-Print Network [OSTI]

Sediment storage and yield in an urbanized karst watershed Evan A. Harta,*, Stephen G. Schurgerb, sinkholes and other drainage features control the temporal and spatial pattern of sediment storage across the landscape. However, studies dealing with sedimentation in karst watersheds are scarce and the sediment

Hart, Evan

474

Seasonal controls on sediment delivery in a small coastal plain watershed, North Carolina, USA  

E-Print Network [OSTI]

Seasonal controls on sediment delivery in a small coastal plain watershed, North Carolina, USA of drainage ditch sedimentation and suspended sediment transport were used to construct a simple sediment to sediment dynamics in a small agricultural watershed in North Carolina. Results indicate that seasonal

Lecce, Scott A.

475

Restore McComas Meadows; Meadow Creek Watershed, 2005-2006 Annual Report.  

SciTech Connect (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads to reduce sediment input. During this contract period work was completed on two culvert replacement projects; Doe Creek and a tributary to Meadow Creek. Additionally construction was also completed for the ditch restoration project within McComas Meadows. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.

McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2006-07-01T23:59:59.000Z

476

The Relative Importance of Road Density and Physical Watershed Features in Determining Coastal Marsh Water  

E-Print Network [OSTI]

with overall Water Quality Index scores. Road density also showed positive correlations with total nitrate Marsh Water Quality in Georgian Bay Rachel DeCatanzaro Ă? Maja Cvetkovic Ă? Patricia Chow-Fraser Received and physical watershed features (watershed size, wetland cover, and bedrock type) on water quality in coastal

McMaster University

477

Impact of Onsite Wastewater Treatment Systems on Nitrogen and Baseflow in Urban Watersheds of Metropolitan Atlanta  

E-Print Network [OSTI]

Impact of Onsite Wastewater Treatment Systems on Nitrogen and Baseflow in Urban Watersheds 2401, Miller Plant Sciences Building Onsite wastewater treatment systems (OWTS) are widely used Septic Wastewater-Treatment Systems on Base Flow in Selected Watersheds in Gwinnett County, Georgia

Arnold, Jonathan

478

Ecological Impacts of Contaminants in an Urban Watershed DOE FRAP 1998-25  

E-Print Network [OSTI]

of metals on a "pristine" stream community. The Brunette watershed has concentrations of heavy metals largely absent from the Brunette River watershed were also those species most sensitive to heavy metal (Burnaby, BC) was studied as an example. We studied sediment chemistry, direct toxicity of sediments

479

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed  

E-Print Network [OSTI]

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed STAC Committee). 2013. Exploring the environmental effects of shale gas development in the Chesapeake Bay of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage

480

Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis  

E-Print Network [OSTI]

Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession 2002; accepted 23 April 2003 Abstract Insufficient sub-surface hydraulic data from watersheds often and in watersheds with low population densities because well-drilling to obtain the hydraulic data is expensive

Walter, M.Todd

Note: This page contains sample records for the topic "idaho model watershed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Bacterial Source Tracking to Support the Development and Implementation of Watershed Protection Plans for the Lampasas and Leon Rivers: Lampasas River Watershed Final Report  

E-Print Network [OSTI]

..................................................................................................... 14 Laboratory Procedures ........................................................................................ 14 Results ................................................................................................................. 15 Known... forming units (CFU) per 100 mL .................................................................................... 15 Table 6 Known source fecal samples collected in the Lampasas River Watershed . 17 Table 7 City, volume, and discharge location...

Gregory, L.; Casarez, E.; Truesdale, J.; Di Giovanni, G.; Owen, T; Wolfe, J.

2013-04-25T23:59:59.000Z

482

Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004  

SciTech Connect (OSTI)

Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

2004-09-14T23:59:59.000Z

483

Education of Best Management Practices in the Arroyo Colorado Watershed  

E-Print Network [OSTI]

.S. Enviro n me n t a l Protec t i o n Agency (EPA). Since the progra m? s incept i o n in 2005, Extens i o n educat e d agricu l t u r a l produc e r s on proper nutrien t manageme n t and product i o n techniq u e s , pr omot e d progra ms associ a t e... and mercury and PCBs in edible fish tissue. Figure 3. Land use in the Arroyo Colorado Watershed. In 1998 the Texas Commission on Environmental Quality (TCEQ) initiated an effort to develop a Total Maximum Daily Load (TMDL) for pollutants causing low...

484

Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report  

SciTech Connect (OSTI)

This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

Zohner, S.K.

2000-05-30T23:59:59.000Z

485

Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report  

SciTech Connect (OSTI)

This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

S. K. Zohner

1999-10-01T23:59:59.000Z

486

Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date  

SciTech Connect (OSTI)

This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

Randall, V.C.; Sims, A.M.

1993-08-01T23:59:59.000Z

487

Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report  

SciTech Connect (OSTI)

Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

Markham, O. D. [ed.

1983-06-01T23:59:59.000Z

488

Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data  

SciTech Connect (OSTI)

The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

NONE

1994-12-31T23:59:59.000Z

489

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

M. D. Staiger

2007-06-01T23:59:59.000Z

490

Graduate student opportunity in remote sensing of tree mortality at the University of Idaho.  

E-Print Network [OSTI]

Graduate student opportunity in remote sensing of tree mortality at the University of Idaho. Funding is available immediately for an M.S. or Ph.D. student to study forest die-offs related to climate change using remote sensing. Project objectives include developing methods for mapping tree mortality

Hicke, Jeffrey A.

491

EA-1980: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho  

Broader source: Energy.gov [DOE]

Bonneville Power Administration is preparing an EA to assess potential environmental impacts of proposed improvements to the access road system for its existing Spar Canyon-Round Valley Transmission Line located on Bureau of Land Management land in Custer County, Idaho.

492

University of Idaho, SRC Climbing Center Acknowledgement of Risk and Waiver of Liability  

E-Print Network [OSTI]

University of Idaho, SRC Climbing Center Acknowledgement of Risk and Waiver of Liability Signatures)Emergency contact: PHONE: CELL: Acknowledgement of Risk and Waiver of Liability Participant, and parent(s) / guardians of participant if participant is under 18 years of age, must read this Acknowledgement of Risk

Waits, Lisette

493

Introduction Irrigation is required for profitable commercial potato production in Idaho.  

E-Print Network [OSTI]

1 Introduction Irrigation is required for profitable commercial potato production in Idaho. Maximum limits throughout the growing season. Potatoes are often considered to be a high water use crop, when. This misconception arises from the fact that potatoes are sensitive to water stress compared to most other crops

O'Laughlin, Jay

494

Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report  

SciTech Connect (OSTI)

This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

NONE

1995-07-01T23:59:59.000Z

495

Western Field Ornithologists 34th Annual Meeting: Boise, Idaho, 10–13 September 2009  

E-Print Network [OSTI]

... WESTERN FIELD ORNITHOLOGISTS 34TH ANNUAL MEETING Boise, Idaho, 10–13 September 2009 Join us for WFO’s 34th annual ... Preparation of bird skins, how to write and submit a scientific paper to a journal, the art of listening for bird sounds, and ...

496

Postdoctoral Position at the University of Idaho: Evolution of drug resistance plasmid persistence in biofilms  

E-Print Network [OSTI]

Postdoctoral Position at the University of Idaho: Evolution of drug resistance plasmid persistence, and (iii) assume primary responsibility for preparing and publishing scientific papers for peer-reviewed journals, and for presenting findings at scientific conferences. The successful candidate will work under

Top, Eva

497

EIS-0500: Crystal Springs Hatchery Program; Bingham, Custer, and Lemhi Counties, Idaho  

Broader source: Energy.gov [DOE]

DOE’s Bonneville Power Administration is preparing an EIS that will assess potential environmental impacts of funding a proposal of the Shoshone-Bannock Tribes of the Fort Hall Reservation of Idaho to construct and operate a hatchery for spring/summer Chinook salmon in the Salmon River subbasin and Yellowstone cutthroat trout in the Upper Snake River subbasin on Fort Hall Reservation.

498

Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1993 and record to date  

SciTech Connect (OSTI)

This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1993. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

Sims, A.M.; Taylor, K.A.

1994-08-01T23:59:59.000Z

499

RENEWABLE ENERGY FROM SWINE WASTE Bingjun He, University of Idaho, Moscow, ID 1  

E-Print Network [OSTI]

RENEWABLE ENERGY FROM SWINE WASTE Bingjun He, University of Idaho, Moscow, ID 1 Yuanhui Zhang, Ted waste and to produce renewable energy from swine manure. Experimental results showed that operating, gasification, and liquefaction. Among the TCC processes, direct liquefaction is the most widely studied biomass

He, Brian

500

Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement  

SciTech Connect (OSTI)

In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

N /A

2005-06-30T23:59:59.000Z