Sample records for idaho chemical processing

  1. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect (OSTI)

    Griebenow, B.

    1996-03-01T23:59:59.000Z

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  2. Chemical analysis quality assurance at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

    1985-01-01T23:59:59.000Z

    The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

  3. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long- term management of the high- level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant a t the Idaho National Engineering Laboratory.

  4. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    SciTech Connect (OSTI)

    Patterson, M.W. [Westinghouse Idaho Nuclear Co., Idaho Falls, ID (United States); Thompson, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-01-01T23:59:59.000Z

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities.

  5. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Schindler, R.E.

    1995-03-01T23:59:59.000Z

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed.

  6. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    SciTech Connect (OSTI)

    Susan Stacy; Julie Braun

    2006-12-01T23:59:59.000Z

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  7. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    SciTech Connect (OSTI)

    Patterson, M.W.

    1994-10-01T23:59:59.000Z

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  8. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  9. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R. [and others

    1996-07-01T23:59:59.000Z

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  10. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables.

  11. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company related to Work Process Deficiencies at the Test Reactor Area and Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory,...

  12. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  13. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Idaho Technologies Company related to Unplanned Internal Radiation Exposures at the Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory,...

  14. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    SciTech Connect (OSTI)

    Baum, Jeffrey

    2014-03-10T23:59:59.000Z

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  15. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baum, Jeffrey

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  16. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01T23:59:59.000Z

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  17. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect (OSTI)

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01T23:59:59.000Z

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  18. Chemical process hazards analysis

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  19. The Use of Chemical and Physical Properties for Characterization of Strontium Distribution Coefficients at the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    J. J. Rosentreter; R. Nieves; J. Kalivas; J. P. Rousseau; R. C. Bartholomay

    1999-06-01T23:59:59.000Z

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (Kds) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experimental techniques were used to determine experimental Kds of 20 surficial-sediment samples from the INEEL. The Kds describe the distribution of a solute between the solution and solid phase. A best-fit model was obtained using a four-variable data set consisting of surface area, manganese oxide concentration, specific conductance, and pH. Application of the model to an independent split of the data resulted in an average relative error of prediction of 20 percent and a correlation coefficient of 0.921 between predicted and observed strontium Kds. Chemical and physical characteristics of the solution and sediment that could successfully predict the Kd values were identified. Prediction variable select ion was limited to variables which are either easily determined or have available tabulated characteristics. The selection criterion could circumvent the need for time- and labor-intensive laboratory experiments and provide an alternate faster method for estimating strontium Kds.

  20. Idaho Administrator's Memorandum on Transfer Processing Policies and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC Transmission JumpInformation 03 -Procedures

  1. FAQS Reference Guide- Chemical Processing

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

  2. Process Intensification - Chemical Sector Focus

    Broader source: Energy.gov (indexed) [DOE]

    cost and risk in chemical manufacturing facilities. 24 25 At the core of PI is the optimization of process performance by focusing on molecular level kinetics, 26...

  3. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01T23:59:59.000Z

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  4. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01T23:59:59.000Z

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  5. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22T23:59:59.000Z

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  6. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, Robert S. (Richland, WA); Drost, M. Kevin (Richland, WA); Call, Charles J. (Pasco, WA); Birmingham, Joseph G. (Richland, WA); McDonald, Carolyn Evans (Richland, WA); Kurath, Dean E. (Benton County, WA); Friedrich, Michele (Prosser, WA)

    1998-01-01T23:59:59.000Z

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  7. Dimension Reduction of Chemical Process Simulation Data

    E-Print Network [OSTI]

    Truemper, Klaus

    of a laminar methane/air combustion process described by 29 chemical species, 3 thermodynamic properties] for the computational effort carried out for some 3-dimensional models. Reduced chemical schemes, for example, ILDM-based memory as well. These chemical schemes are based on an analysis of chemical pathways that identifies

  8. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-11-24T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  9. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77389)

    1987-01-01T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  10. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77379)

    1987-01-01T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  11. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-06-23T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  12. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

    1999-10-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  13. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

    1999-09-30T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  14. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  15. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  16. Major Modification Determination Process Utilized for Proposed Idaho National Laboratory Projects

    SciTech Connect (OSTI)

    Michael A. Lehto, Ph.D.; Boyd D. Christensen

    2008-05-01T23:59:59.000Z

    Over the past three years, several new projects with the potential for major modifications to existing facilities have been considered for implementation at the Idaho National Laboratory (INL). These projects were designated to take place in existing nuclear facilities with existing documented safety analyses. 10 CFR 830.206 requires the contractor for a major modification to a Hazard Category 1, 2, or 3 nuclear facility to obtain Department of Energy (DOE) approval for the nuclear facility design criteria to be used for preparation of a preliminary documented safety analysis (PDSA), as well as creation and approval of the PDSA, before the contractor can procure materials or components or begin construction on the project. Given the significant effort and expense of preparation and approval of a PDSA, a major modification determination for new projects is warranted to determine if the rigorous requirements of a major modification are actually required. Furthermore, performing a major modification determination helps to ensure that important safety aspects of a project are appropriately considered prior to modification construction or equipment procurement. The projects considered for major modification status at the INL included: treatment and packaging of unirradiated, sodium-bonded highly enriched uranium (HEU) fuel and miscellaneous casting scrap in the Materials and Fuels Complex (MFC) Fuel Manufacturing Facility (FMF); post irradiation examination of Advance Fuel Cycle Initiative (AFCI) fuel in the MFC Analytical Laboratory (AL); the Advanced Test Reactor (ATR) gas test loop (GTL); and the hydraulic shuttle irradiation system (HSIS) at ATR. The major modification determinations for three of the proposed projects resulted in a negative major modification. On the other hand, the major modification determination for the GTL project concluded that the project would require a major modification. This paper discusses the process, methods, and considerations used by the INL for the four major modification determinations. Three of the four major modification determinations discussed herein were completed using the guidance specified in the draft of DOE STD-1189, “Integration of Safety into the Design Process.” DOE-STD-1189 was released as a draft document in March 2007 and provides guidance for integrating safety considerations into the early design activities for constructing new facilities or making modifications to existing nuclear facilities. The fourth major modification determination was prepared prior to the existence of DOE STD-1189 and was evaluated solely by the definition of a major modification given in 10 CFR 830.206. For all four projects, consideration was given to: • Facility hazard categorization change and material inventory • Facility footprint change with the potential to adversely affect credited safety function • New or changed processes resulting in a change to the safety basis • The use of new technology or equipment not approved for use in the facility • The need for new or revised safety basis controls • Hazards not previously evaluated in the safety basis.

  17. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  18. Microwave-enhanced chemical processes

    DOE Patents [OSTI]

    Varma, R.

    1990-06-19T23:59:59.000Z

    A process is disclosed for the disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400 C in the presence of microwave radiation for a time sufficient breaks the hydrocarbon chlorine bonds. Detoxification values in excess of 80 are provided and further detoxification of the bed is followed by additional disposal of toxic wastes. 1 figure.

  19. Chemical kinetics and oil shale process design

    SciTech Connect (OSTI)

    Burnham, A.K.

    1993-07-01T23:59:59.000Z

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  20. Chemical production processes and systems

    SciTech Connect (OSTI)

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17T23:59:59.000Z

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  1. Idaho's Energy Options

    SciTech Connect (OSTI)

    Robert M. Neilson

    2006-03-01T23:59:59.000Z

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  2. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  3. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    SciTech Connect (OSTI)

    Michael Pernice

    2010-09-01T23:59:59.000Z

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  4. Kraft recovery boiler physical and chemical processes

    SciTech Connect (OSTI)

    Adams, T.N.; Frederick, W.J. (Adams (Terry N.), Tacoma, WA (USA); Oregon State Univ., Corvallis, OR (USA). Dept. of Chemical Engineering)

    1988-01-01T23:59:59.000Z

    The focus of this book is on the recent research into the physical and chemical processes occurring in and around a black liquor recovery boiler. Almost all of the detailed technical information in this book has previously appeared in the open literature. The purpose here is not to present research for the first time, but to present it in a context of the other processes occurring in recovery boilers. Topics covered include: general characteristics of recovery boilers; black liquor thermal and transport properties; black liquor droplet formation and combustion; recovery boiler char bed processes; flow and mixing in Kraft recovery boilers; entrainment and carryover in recovery furnaces; fume formation and dust chemistry; deposits and boiler plugging; and recovery boiler thermal performance. 257 refs., 102 figs., 38 tabs.

  5. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    SciTech Connect (OSTI)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P. [and others

    1995-09-01T23:59:59.000Z

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  6. Researcher breaks new ground in understanding chemical reaction process

    E-Print Network [OSTI]

    Glaser, Rainer

    Researcher breaks new ground in understanding chemical reaction process Study of diazonium rewrites about a common, basic chemical process using diazonium ions as the example. These ions are used in nature. Now, a professor of chemistry has found that this chemical process has been incorrectly described

  7. Water information bulletin No. 30 geothermal investigations in Idaho

    SciTech Connect (OSTI)

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01T23:59:59.000Z

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  8. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  9. Idaho: basic data for thermal springs and wells as recorded in GEOTHERM, Part A

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-07-01T23:59:59.000Z

    All chemical data for geothermal fluids in Idaho available as of December 1981 is maintained on GEOTHERM, computerized information system. This report presents summaries and sources of records for Idaho. 7 refs. (ACR)

  10. Strontium Distribution Coefficients of Basalt and Sediment Infill Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    M. N. Pace; R. C. Bartholomay (USGS); J. J. Rosentreter (ISU)

    1999-07-01T23:59:59.000Z

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose of this study is to aid in assessing the variability of strontium Kds at the INEEL as part of an ongoing investigation of chemical transport of strontium-90 in the Snake River Plain aquifer. Batch experimental techniques were used to determine Kds of six basalt core samples, five samples of sediment infill of vesicles and fractures, and six standard material samples. Analyses of data from these experiments indicate that the Kds of the sediment infill samples are significantly larger than those of the basalt samples. Quantification of such information is essential of furthering the understanding of transport processes of strontium-90 in the Snake River Plain aquifer and in similar environments.

  11. Developing and Integrating Sustainable Chemical Processes into Existing Petro-Chemical Plant Complexes

    E-Print Network [OSTI]

    Pike, Ralph W.

    Developing and Integrating Sustainable Chemical Processes into Existing Petro-Chemical Plant Complexes #12;Outline · Introduction to Sustainable Development · Research Vision · Biomass conversion of biotechnology in existing plant complex · Conclusions #12;Sustainability Sustainability refers to integrating

  12. Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie...

    Open Energy Info (EERE)

    Transport Modeling Approach Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie...

  13. CHEMICAL PROCESS RESEARCH AND DEVELOPMENT PROGRAM

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    Biomass Liquefaction Process Engineering Unit (PEU) S.from Coal Conversion Process Condensate Waters," Lawrenceand C. J. King, J. Separ. Process Technol. , ! • 36 (1979);

  14. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  15. Chemical process safety management within the Department of Energy

    SciTech Connect (OSTI)

    Piatt, J.A.

    1995-07-01T23:59:59.000Z

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA`s Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites.

  16. EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho.  The...

  17. Institute of Chemical Engineering and High Temperature Chemical Processes

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7OpenInnovative SolutionsInsource EnergyInstitute

  18. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

  19. CHEMICAL PROCESS RESEARCH AND DEVELOPMENT PROGRAM

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    material obtained by water extraction) were determined forproduct obtained by extraction with water. About 67% of theExtraction of Phenols from Coal Conversion Process Condensate Waters,"

  20. Chemical interaction matrix between reagents in a Purex based process

    SciTech Connect (OSTI)

    Brahman, R.K.; Hennessy, W.P. [Shaw AREVA MOX Services, LLC (United States); Paviet-Hartmann, P. [Idaho State University/Idaho National Laboratory (United States)

    2008-07-01T23:59:59.000Z

    The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague, France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.

  1. Decision support tools for environmentally conscious chemical process design

    E-Print Network [OSTI]

    Cano Ruiz, José Alejandro, 1969-

    1999-01-01T23:59:59.000Z

    The environment has emerged as an important determinant of the performance of the modern chemical industry. Process engineering in the 21st century needs to evolve to include environmental issues as part of the design ...

  2. Robust model-based fault diagnosis for chemical process systems

    E-Print Network [OSTI]

    Rajaraman, Srinivasan

    2006-08-16T23:59:59.000Z

    Fault detection and diagnosis have gained central importance in the chemical process industries over the past decade. This is due to several reasons, one of them being that copious amount of data is available from a large number of sensors...

  3. Robust model-based fault diagnosis for chemical process systems 

    E-Print Network [OSTI]

    Rajaraman, Srinivasan

    2006-08-16T23:59:59.000Z

    Fault detection and diagnosis have gained central importance in the chemical process industries over the past decade. This is due to several reasons, one of them being that copious amount of data is available from a large ...

  4. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    SciTech Connect (OSTI)

    Zamecnik, J.; Koopman, D.

    2012-04-09T23:59:59.000Z

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower retention of mercury in the slurry. Both recovery of mercury in the offgas system and removal (segregation + recovery) from the slurry correlate with slurry consistency. Higher slurry consistency results in better retention of Hg in the slurry (less segregation) and better recovery in the offgas system, but the relationships of recovery and retention with consistency are sludge dependent. Some correlation with slurry yield stress and acid stoichiometry was also found. Better retention of mercury in the slurry results in better recovery in the offgas system because the mercury in the slurry is stripped more easily than the segregated mercury at the bottom of the vessel. Although better retention gives better recovery, the time to reach a particular slurry mercury content (wt%) is longer than if the retention is poorer because the segregation is faster. The segregation of mercury is generally a faster process than stripping. The stripping factor (mass of water evaporated per mass of mercury stripped) of mercury at the start of boiling were found to be less than 1000 compared to the assumed design basis value of 750 (the theoretical factor is 250). However, within two hours, this value increased to at least 2000 lb water per lb Hg. For runs with higher mercury recovery in the offgas system, the stripping factor remained around 2000, but runs with low recovery had stripping factors of 4000 to 40,000. DWPF data shows similar trends with the stripping factor value increasing during boiling. These high values correspond to high segregation and low retention of mercury in the sludge. The stripping factor for a pure Hg metal bead in water was found to be about 10,000 lb/lb. About 10-36% of the total Hg evaporated in a SRAT cycle was refluxed back to the SRAT during formic acid addition and boiling. Mercury is dissolved as a result of nitric acid formation from absorption of NO{sub x}. The actual solubility of dissolved mercury in the acidic condensate is about 100 times higher than the actual concentrations measured. Mercury metal present in the MWWT from previous batch

  5. Analysis of chemical coal cleaning processes. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  6. The EPRI DFDX Chemical Decontamination Process

    SciTech Connect (OSTI)

    Bushart, S.; Wood, C. J.; Bradbury, D.; Elder, G.

    2003-02-25T23:59:59.000Z

    Decommissioning of retired nuclear plants and components demands the proper management of the process, both for economic reasons and for retaining public confidence in the continued use of nuclear power for electricity generation. The cost and ease of management of radioactively contaminated components can be greatly assisted by the application of decontamination technology. EPRI initiated a program of research and development work in collaboration with Bradtec, which has led to the ''EPRI DFD'' (Decontamination for Decommissioning) Process. The Process has been patented and licensed to six companies worldwide. The purpose of this process is to achieve efficient removal of radioactivity with minimum waste from retired nuclear components and plant systems. The process uses dilute fluoroboric acid with controlled oxidation potential. By removing all the outer scale and a thin layer of base metal from the surfaces, contamination can in many cases be reduced below the levels required to allow clearance (free-release) or recycle to form new components for the nuclear industry. This reduces the need for on-site storage or burial of large amounts of contaminated material at low level radioactive disposal facilities. An additional benefit is that residual radiation fields can be reduced by a large factor, which reduces the worker radiation exposure associated with decommissioning. Furthermore, this dose rate reduction improves the viability of early dismantlement following plant closure, as opposed to waiting for a prolonged period for radioactive decay to occur. The results obtained in early applications of the EPRI DFD process demonstrated the benefits of taking this approach (reference 1).

  7. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume One - Main Text and Appendices A and B

    SciTech Connect (OSTI)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01T23:59:59.000Z

    The laboratory investigation was performed to evaluate the feasibility of utilizing in situ chemical oxidation for remediating the secondary source of groundwater contaminants at the Idaho National Engineering and Environmental Laboratory (INEEL) Test Area North (TAN) Site. The study involved trichloroethene (TCE) contaminated media (groundwater, soil, and sludge) from TAN. The effectiveness of the selected oxidant, potassium permanganate (KMn0(sub4)), was evaluated at multiple oxidant and contaminant concentrations. Experiments were performed to determine the oxidant demand of each medium and the rate of TCE oxidation. The experiments were performed under highly controlled conditions (gas-tight reactors, constant 12C temperature). Multiple parameter were monitored over time including MN0(sub 4) and TCE concentrations and pH.

  8. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Two, Appendices C, D, and E

    SciTech Connect (OSTI)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01T23:59:59.000Z

    These appendices support the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-1371 l/Vol. This volume contains Appendices C-E. Appendix C is a compilation of all recorded data and mathematical calculations made to interpret the data. For the Task 3 and Task 4 work, the spreadsheet column definitions are included immediately before the actual spreadsheet pages and are listed as ''Sample Calculations/Column Definitions'' in the table of contents. Appendix D includes the chronological order in which the experiments were conducted and the final project costs through October 1998. Appendix E is a compilation of the monthly progress reports submitted to INEEL during the course of the project.

  9. Independent Oversight Focused Safety Management Evaluation, Idaho...

    Office of Environmental Management (EM)

    Focused Safety Management Evaluation, Idaho National Engineering and Environmental Laboratory - January 2001 Independent Oversight Focused Safety Management Evaluation, Idaho...

  10. Analysis Activities at Idaho National Engineering & Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Analysis Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's...

  11. Idaho Falls, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ Storage

  12. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  13. Idaho Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformation AbandonIdaho

  14. EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

  15. Chemical Process Modeling in Modelica Ali Baharev Arnold Neumaier

    E-Print Network [OSTI]

    Neumaier, Arnold

    Chemical Process Modeling in Modelica Ali Baharev Arnold Neumaier Fakultät für Mathematik an important role in the development of our novel optimization methods. Foundations of a Modelica library-product distillation were computed as a proof of concept. The Modelica source code is available at the project homepage

  16. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    SciTech Connect (OSTI)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30T23:59:59.000Z

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  17. Process for preparing a chemical compound enriched in isotope content

    DOE Patents [OSTI]

    Michaels, Edward D. (Spring Valley, OH)

    1982-01-01T23:59:59.000Z

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  18. Influence of surface coverage on the chemical desorption process

    SciTech Connect (OSTI)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07T23:59:59.000Z

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  19. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2005-07-01T23:59:59.000Z

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  20. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2004-11-01T23:59:59.000Z

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  1. Viscosified CO2 process: Chemical transport and other issues

    SciTech Connect (OSTI)

    Bae, J.H.

    1995-11-01T23:59:59.000Z

    Supercritical CO{sub 2} viscosified by two orders of magnitude using a commercial silicon polymer and toluene as cosolvent, was used in the laboratory corefloods and the results reported previously. More corefloods in Berea cores with pressure taps along the core were conducted to investigate the transport of chemicals in the core. In an attempt to reduce the chemical costs, different silicon polymers and hydrocarbon cosolvents were tried. The effect of methane on the solubility of polymers was also investigated. Scoping economic runs were made by modifying an actual economic analysis of a field CO{sub 2} project, which showed that chemical costs have to be reduced significantly for the process to be economic.

  2. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Idaho Chemical Processing Plant, Idaho Falls, ID (United States) Idaho National Engineering Laboratory, Idaho Falls, ID (United States) Idaho National Engineering and...

  3. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect (OSTI)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01T23:59:59.000Z

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  4. Process for converting cellulosic materials into fuels and chemicals

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Faison, Brendlyn D. (Knoxville, TN); Davison, Brian H. (Knoxville, TN); Woodward, Jonathan (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  5. Solar Processes for the Destruction of Hazardous Chemicals

    SciTech Connect (OSTI)

    Blake, D. M.

    1993-06-01T23:59:59.000Z

    Solar technologies are being developed to address a wide range of environmental problems. Sunlight plays a role in the passive destruction of hazardous substances in soil, water, and air. Development of processes that use solar energy to remediate environmental problems or to treat process wastes is underway in laboratories around the world. This paper reviews progress in understanding the role of solar photochemistry in removing man-made chemicals from the environment, and developing technology that uses solar photochemistry for this purpose in an efficient manner.

  6. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    SciTech Connect (OSTI)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05T23:59:59.000Z

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  7. Comparison of the efficiency of a thermo-chemical process to that of a fuel cell process when both involve the same chemical reaction

    E-Print Network [OSTI]

    Bulusu, Seshu Periah

    2009-05-15T23:59:59.000Z

    This work assesses if a plausible theoretical thermo-chemical scheme can be conceived of, that is capable of extracting work from chemical reactants which can be compared with work produced by a fuel cell, when both processes are supplied...

  8. Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J. [Idaho Univ., Moscow, ID (United States)

    1993-05-01T23:59:59.000Z

    This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho`s INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ``Data`` section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ``Data`` section does not include actual values or data.

  9. PYROPROCESSING PROGRESS AT IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Solbrig, Chuck; B. R. Westphal; Johnson, T.; Li, S.; Marsden, K.; Goff, K. M.

    2007-09-01T23:59:59.000Z

    At the end of May 2007, 830 and 2600 kilograms of EBR-II driver and blanket metal fuel have been treated by a pyroprocess since spent fuel operations began in June 1996. A new metal waste furnace has completed out-of-cell testing and is being installed in the Hot Fuel Examination Facility. Also, ceramic waste process development and qualification is progressing so integrated nuclear fuel separations and high level waste processes will exist at Idaho National Laboratory. These operations have provided important scale-up and performance data on engineering scale operations. Idaho National Laboratory is also increasing their laboratory scale capabilities so new process improvements and new concepts can be tested before implementation at engineering scale. This paper provides an overview of recent achievements and provides the interested reader references for more details.

  10. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect (OSTI)

    Olszewski, M.; Zaltash, A.

    1995-03-01T23:59:59.000Z

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  11. Integrated Safety Management Workshop Registration, PIA, Idaho...

    Office of Environmental Management (EM)

    Idaho National Laboratory More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory PIA - INL Education Programs Business...

  12. FAQS Qualification Card - Chemical Processing | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |ExelonFAQ:Department of EnergyChemical Processing

  13. Strontium Distribution Coefficients of Surficial and Sedimentary Interbed Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    M. J. Liszewski (USGS); J. J. Rosentreter (ISU); K. E. Miller (USGS); R. C. Bartholomay (USGS)

    1998-04-01T23:59:59.000Z

    The transport and fate of waste constituents in geologic media is dependent on physical and chemical processes that govern the distribution of constituents between the solid, geologic, stationary phase and an aqueous, mobile phase. This distribution often is quantified, at thermodynamic equilibrium by an empirically determined parameter called the distribution coefficient (Kd). Kd's can be used effectively to summarize the chemical factors that affect transport efficiency of ground-water constituents. Strontium distribution coefficients (Kd's) were measured for 21 surficial and 17 sedimentary interbed samples collected from sediment cores from selected sites at the Idaho National Engineering and Environmental Laboratory (INEEL) to help assess the variability of strontium Kd's at the INEEL as part of an ongoing investigation of strontium chemical-transport properties. Batch experimental techniques were used to determine strontium Kd's of the sediments. Measured strontium Kd's of th e surficial and interbedded sediments ranged from 26{+-}1 to 328{+-}41 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial and interbedded sediments at the INEEL. Some of this variability can be attributed to physical and chemical properties of the sediment; other variability may be due to compositional changes in the equilibrated solutions after being mixed with the sediment.

  14. Process for converting cellulosic materials into fuels and chemicals

    DOE Patents [OSTI]

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20T23:59:59.000Z

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  15. Idaho_Amsterdam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power - Idaho

  16. Idaho_Arkoosh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power - IdahoMitch

  17. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01T23:59:59.000Z

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  18. Idaho Cleanup Contractor Surpasses Significant Safety Milestones

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – For the second time in a little over a year, employees with DOE contractor CH2M-WG Idaho (CWI) supporting EM at the Idaho site have achieved 1 million hours without a recordable injury. They also worked more than 1.7 million hours without a lost work-time injury.

  19. Real-time growth rate metrology for a tungsten chemical vapor deposition process by acoustic sensing

    E-Print Network [OSTI]

    Rubloff, Gary W.

    to a production-scale tungsten chemical vapor deposition cluster tool for in situ process sensing. Process gasesReal-time growth rate metrology for a tungsten chemical vapor deposition process by acoustic to achieve run-to-run process control of the deposited tungsten film thickness. © 2001 American Vacuum

  20. E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho...

  1. aquifer idaho national: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and educators from all Idaho state universities; staff 30 Idaho Asphalt Conference October 24, 25, 2012 Attendee List Engineering Websites Summary: 52nd Idaho Asphalt...

  2. Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility...

    Office of Environmental Management (EM)

    Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho...

  3. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01T23:59:59.000Z

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  4. Material and Chemical Processing (Concentrated Solar) (4 Activities...

    Broader source: Energy.gov (indexed) [DOE]

    chemical reactions, and to treat materials for increased hardness and resistance to corrosion. The activities are: Can sunlight break down different kinds of plastics? Can...

  5. Industrial application of geothermal energy in Southeast Idaho

    SciTech Connect (OSTI)

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01T23:59:59.000Z

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  6. Idaho - Access Management: Standards and Procedures for Highway...

    Open Energy Info (EERE)

    EncroachmentsPermittingRegulatory GuidanceGuideHandbook Author Idaho Transportation Department Published Idaho Transportation Department, 042001 DOI Not Provided...

  7. Occupational Medical Surveillance System (OMSS) PIA, Idaho National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (OMSS) PIA, Idaho National Laboratory More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System...

  8. ATMOSPHERIC SOURCE TERMS FOR THE IDAHO CHEMICAL

    E-Print Network [OSTI]

    .................................................................. 2-25 2.7.3 Description of the Scrubber

  9. Control and optimization system and method for chemical looping processes

    DOE Patents [OSTI]

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2014-06-24T23:59:59.000Z

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  10. Idaho NPDES Permits Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho

  11. Idaho/Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolid WasteIdahoTransmissionHeader.png Roadmap

  12. Idaho/Transmission/Summary | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎ | Transmission JumpIdaho, the

  13. Idaho/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎ | Transmission JumpIdaho,

  14. National toxicology program chemical nomination and selection process

    SciTech Connect (OSTI)

    Selkirk, J.K. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)

    1990-12-31T23:59:59.000Z

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  15. CRAD, Engineering - Idaho Accelerated Retrieval Project Phase...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Idaho Accelerated Retrieval Project Phase II CRAD, Engineering - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

  16. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRICCHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRICprocess Boeing solar receiver [5J Internal detail of Boeing solar receiver [5J . 2.4 Heat

  17. Effect of chemical mechanical planarization processing conditions on polyurethane pad properties

    E-Print Network [OSTI]

    Ng, Grace Siu-Yee, 1980-

    2003-01-01T23:59:59.000Z

    Chemical Mechanical Planarization (CMP) is a vital process used in the semiconductor industry to isolate and connect individual transistors on a chip. However, many of the fundamental mechanisms of the process are yet to ...

  18. Heavy element radionuclides (Pu, Np, U) and {sup 137}Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming

    SciTech Connect (OSTI)

    Beasley, T.M.; Rivera, W. Jr. [Dept. of Energy, New York, NY (United States). Environmental Measurements Lab.; Kelley, J.M.; Bond, L.A. [Pacific Northwest National Lab., Richland, WA (United States); Liszewski, M.J. [Bureau of Reclamation (United States); Orlandini, K.A. [Argonne National Lab., IL (United States)

    1998-10-01T23:59:59.000Z

    The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of {sup 237}Np and {sup 137}Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that {sup 241}Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of {sup 236}U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and {sup 238}Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated.

  19. IDAHO WATER USER RECOMMENDATIONS MAINSTEM PLAN

    E-Print Network [OSTI]

    IDAHO WATER USER RECOMMENDATIONS ON THE MAINSTEM PLAN COLUMBIA RIVER BASIN FISH AND WILDLIFE PROGRAM SUBMITTED ON BEHALF OF THE COMMITTEE OF NINE AND THE IDAHO WATER USERS ASSOCIATION JUNE 15, 2001 and Flow Augmentation Policy in the Columbia River Basin #12;1 IDAHO WATER USER RECOMMENDATIONS

  20. Laser studies of chemical reaction and collision processes

    SciTech Connect (OSTI)

    Flynn, G. [Columbia Univ., New York, NY (United States)

    1993-12-01T23:59:59.000Z

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  1. Strontium distribution coefficients of surficial sediment samples from the Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Liszewski, M.J.; Miller, K.E. [Geological Survey, Idaho Falls, ID (United States); Rosentreter, J.J. [Idaho State Univ., Idaho Falls, ID (United States)

    1997-05-01T23:59:59.000Z

    Strontium distribution coefficients (K{sub d}`s) were measured for 20 surficial sediment samples collected from selected sites at the Idaho national Engineering Laboratory (INEL). The measurements were made to help assess the variability of strontium K{sub d}`s found at the INEL as part of an ongoing investigation of strontium chemical transport properties of surficial and interbedded sediments at the INEL. The investigation is being conducted by the US Geological Survey and Idaho State University in cooperation with the US Department of Energy. Batch experimental techniques wee used to determine K{sub d}`s of surficial sediments using a synthesized aqueous solution representative of wastewater in waste disposal ponds at the INEL. Strontium K{sub d}`s of the 20 surficial sediments ranged from 36 {+-} 1 to 275 {+-} 6 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial sediments at the INEL. Some of this variability can be attributed to physical and chemical properties of the sediment itself; however, the remainder of the variability may be due to compositional changes in the equilibrated solutions after being mixed with the sediment.

  2. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    SciTech Connect (OSTI)

    Wiersma, B.

    2011-08-24T23:59:59.000Z

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than in the PUREX/oxalic acid environment. (3) The corrosion rates for PUREX/8 wt.% oxalic acid were greater than or equal to those observed for the PUREX/2.5 wt.% oxalic acid. No localized corrosion was observed in the tests with the 8 wt.% oxalic acid. Testing with HM/8 wt.% oxalic acid simulant was not performed. Thus, a comparison with the results with 2.5 wt.% oxalic acid, where the corrosion rate was 88 mpy and localized corrosion was observed at 75 C, cannot be made. (4) The corrosion rates in 1 and 2.5 wt.% oxalic acid solutions were temperature dependent: (a) At 50 C, the corrosion rates ranged between 90 to 140 mpy over the 30 day test period. The corrosion rates were higher under stagnant conditions. (b) At 75 C, the initial corrosion rates were as high as 300 mpy during the first day of exposure. The corrosion rates increased with agitation. However, once the passive ferrous oxalate film formed, the corrosion rate decreased dramatically to less than 20 mpy over the 30 day test period. This rate was independent of agitation. (5) Electrochemical testing indicated that for oxalic acid/sludge simulant mixtures the cathodic reaction has transport controlled reaction kinetics. The literature suggests that the dissolution of the sludge produces a di-oxalatoferrate ion that is reduced at the cathodic sites. The cathodic reaction does not appear to involve hydrogen evolution. On the other hand, electrochemical tests demonstrated that the cathodic reaction for corrosion of carbon steel in pure oxalic acid involves hydrogen evolution. (6) Agitation of the oxalic acid/sludge simulant mixtures typically resulted in a higher corrosion rates for both acid concentrations. The transport of the ferrous ion away from the metal surface results in a less protective ferrous oxalate film. (7) A mercury containing species along with aluminum, silicon and iron oxides was observed on the interior of the pits formed in the HM/2.5 wt.% oxalic acid simulant at 75 C. The pitting rates in the agitated and non-agitated solution were 2 mils/day and 1 mil/day, respectively. A mechanism

  3. CURRICULUM VITAE University of Idaho

    E-Print Network [OSTI]

    : Professor of Fish and Wildlife Resources DEPARTMENT AND CAMPUS ZIP: Fish and Wildlife Resources, 1136 OFFICE and Research Appointments: July 1998-present, Professor, Department of Fish and Wildlife Resources, University of Idaho 1990-June 1998, Associate Professor, Department of Fish and Wildlife Resources, University

  4. PARTITIONING OF GADOLINIUM IN THE CHEMICAL PROCESSING CELL

    SciTech Connect (OSTI)

    Reboul, S.; Best, D.; Stone, M.; Click, D.

    2011-04-27T23:59:59.000Z

    A combination of short-term beaker tests and longer-duration Sludge Receipt and Adjustment Tank (SRAT) simulations were performed to investigate the relative partitioning behaviors of gadolinium and iron under conditions applicable to the Chemical Processing Cell (CPC). The testing was performed utilizing non-radioactive simple Fe-Gd slurries, non-radioactive Sludge Batch 6 simulant slurries, and a radioactive real-waste slurry representative of Sludge Batch 7 material. The testing focused on the following range of conditions: (a) Fe:Gd ratios of 25-100; (b) pH values of 2-6; (c) acidification via addition of nitric, formic, and glycolic acids; (d) temperatures of {approx}93 C and {approx}22 C; and (e) oxalate concentrations of <100 mg/kg and {approx}10,000 mg/kg. The purpose of the testing was to provide data for assessing the potential use of gadolinium as a supplemental neutron poison when dispositioning excess plutonium. Understanding of the partitioning behavior of gadolinium in the CPC was the first step in assessing gadolinium's potential applicability. Significant fractions of gadolinium partitioned to the liquid-phase at pH values of 4.0 and below, regardless of the Fe:Gd ratio. In SRAT simulations targeting nitric and formic acid additions of 150% acid stoichiometry, the pH dropped to a minimum of 3.5-4.0, and the maximum fractions of gadolinium and iron partitioning to solution were both {approx}20%. In contrast, in a SRAT simulation utilizing a nitric and formic acid addition under atypical conditions (due to an anomalously low insoluble solids content), the pH dropped to a minimum of 3.7, and the maximum fractions of gadolinium and iron partitioning to solution were {approx}60% and {approx}70%, respectively. When glycolic acid was used in combination with nitric and formic acids at 100% acid stoichiometry, the pH dropped to a minimum of 3.6-4.0, and the maximum fractions of gadolinium and iron partitioning to solution were 60-80% and 3-5%, respectively. Thus, the presence of glycolic acid increased dissolution of gadolinium, but decreased dissolution of iron. In beaker tests, the fractions of gadolinium partitioning to solution were all less than the minimum detection limits at pH 6, on the order of a few percent at pH 4, and ranging from 70-90% at pH 2. In contrast, the fractions of iron partitioning to solution were all less than the minimum detection limits at pH 6, {le} 0.04% at pH 4, and {le} 0.9% at pH 2. A possible explanation for the small magnitude of these fractions (as compared to the fractions observed in the SRAT simulations) was incomplete equilibrium, due to the short duration (30 minutes) of the beaker tests. As demonstrated by the SRAT simulations, the typical partitioning equilibration time was on the order of hours. The Fe:Gd ratio appeared to impact the extent of liquid-phase conditions under certain conditions, although the exact relationship was not clear. Temperature impacts on the liquid-phase gadolinium concentrations were modest, with liquid phase concentrations typically increasing about 25% as temperatures rose from {approx}22 C to {approx}93 C. The presence of high concentrations of oxalate did not appear to change the liquid-phase gadolinium concentrations - however, it did increase the liquid-phase iron concentrations (from being undetectable to being detectable but still minor). Additional gadolinium partitioning testing is recommended. Of greatest usefulness will be SRAT simulations focusing on a wider range of acid addition scenarios and alternate sludge compositions, particularly those specific to future sludge batches where addition of excess plutonium is being considered.

  5. The Radiance Process: Water and Chemical Free Cleaning 

    E-Print Network [OSTI]

    Robison, J. H.

    1998-01-01T23:59:59.000Z

    Radiance Services Company manages a new technology called the Radiance Process®, a dry non-toxic technology for surface cleaning. The Radiance Process received the National Pollution Prevention Roundtable's 1997 Most Valuable Pollution Prevention...

  6. Integrated Design of Chemical Processes and Utility Systems

    E-Print Network [OSTI]

    Linnhoff, B.

    , etc.) and to the task of interfacing processes with their utility systems (furnaces, steam levels, turbines, etc.)...

  7. Chemical Processing in High-Pressure Aqueous Environments. 7...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass Feedstocks."Industrial and Engineering Chemistry Research 43(9):1999-2004. Authors: DC...

  8. Antarctic glaciers and rock weathering: Exploring chemical and mineralogy processes within the blue ice fields

    E-Print Network [OSTI]

    Guo, Zaoyang

    Antarctic glaciers and rock weathering: Exploring chemical and mineralogy processes within the blue of Geographical and Earth Sciences, we will determine the mineralogy and chemical composition of a suite mineralogy, porosity & permeability)? · Does the volume of weathering products and their mineralogy

  9. Modeling and Optimization of Next Generation Feedstock Development for Chemical Process

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Modeling and Optimization of Next Generation Feedstock Development for Chemical Process Industry -Glutamic acid Anaerobic digestion mass Cellulose Biogas Bio oil Gasoline Diesel Butanol Dimethyl ether,Oil Polyol Biodiesel Glycerin Naphtha and Diesel Liquefaction / d h l Thermo chemical Protein Protein

  10. Idaho National Laboratory Quarterly Performance Analysis

    SciTech Connect (OSTI)

    Lisbeth Mitchell

    2014-11-01T23:59:59.000Z

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  11. Developing system-based leading indicators for proactive risk management in the chemical processing industry

    E-Print Network [OSTI]

    Khawaji, Ibrahim A. (Ibrahim Abdullah)

    2012-01-01T23:59:59.000Z

    The chemical processing industry has faced challenges with achieving improvements in safety performance, and accidents continue to occur. When accidents occur, they usually have a confluence of multiple factors, suggesting ...

  12. Review of Chemical Processes for the Synthesis of Sodium Borohydride Millennium Cell Inc.

    E-Print Network [OSTI]

    Review of Chemical Processes for the Synthesis of Sodium Borohydride Millennium Cell Inc. Prepared........................................................................................... 6 Methane (or Natural Gas) as Reducing Agent remained the same since it became commercial in the 1950s and is based on synthetic pathways developed

  13. Development of a Fast and Detailed Model of Urban-Scale Chemical and Physical Processing

    E-Print Network [OSTI]

    Prinn, Ronald G.

    A reduced form metamodel has been produced to simulate the effects of physical, chemical, and meteorological processing of highly reactive trace species in hypothetical urban areas, which is capable of efficiently simulating ...

  14. Using design of experiments to improve a batch chemical process

    E-Print Network [OSTI]

    Hill, Andrew, S.M. (Andrew James). Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    Novartis Vaccines and Diagnostics has made a strong commitment to manufacturing seasonal influenza vaccines through their cell culture technology called Optaflu®. The goal of this project is to improve overall process yield ...

  15. ADCHEM 2006 International Symposium on Advanced Control of Chemical Processes

    E-Print Network [OSTI]

    Skogestad, Sigurd

    the Kaibel column, a fully thermally coupled distillation column for the separation of four products for optimal operation is investigated. Keywords: Process control, Distillation, Control structure design ­ April 2-5, 2006 STABILIZING CONTROL OF AN INTEGRATED 4-PRODUCT KAIBEL COLUMN Jens Strandberg and Sigurd

  16. Functionalized sorbent for chemical separations and sequential forming process

    DOE Patents [OSTI]

    Fryxell, Glen E. (Kennewick, WA); Zemanian, Thomas S. (Richland, WA)

    2012-03-20T23:59:59.000Z

    A highly functionalized sorbent and sequential process for making are disclosed. The sorbent includes organic short-length amino silanes and organic oligomeric polyfunctional amino silanes that are dispersed within pores of a porous support that form a 3-dimensional structure containing highly functionalized active binding sites for sorption of analytes.

  17. PROCESS MODELING AND CONTROL The Department of Chemical Engineering

    E-Print Network [OSTI]

    Lightsey, Glenn

    economic performance · MIMO (vs. SISO) models · Nonlinear (vs. linear) models · Stochastic variables.D. Graduates (2005 - 2008) Student/Supervisor Destination E. Hale (JQ) Ph.D. (8/05) NREL R. Chong (TFE) M.S. (8 (Emerson Process Management) · J. Lee (postdoc) ­ Various topics in multivariable control (e.g., multiloop

  18. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    SciTech Connect (OSTI)

    Koopman, D. C.

    2004-12-31T23:59:59.000Z

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed experimental work, additional data analysis, and future modeling programs. These proposals have led to recent investigations into the mercury issue and the effect of co-precipitating noble metals which will be documented in two separate reports. SRS hydrogen generation work since 2002 will also be collected and summarized in a future report on the effect of noble metal-sludge matrix interactions on hydrogen generation. Other potential factors for experimental investigation include sludge composition variations related to both the washing process and to the insoluble species with particular attention given to the role of silver and to improving the understanding of the interaction of nitrite ion with the noble metals.

  19. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-30T23:59:59.000Z

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  20. IDAHO RECOVERY ACT SNAPSHOT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SNAPSHOT Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  1. Idaho Falls Power- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an...

  2. Preliminary Notice of Violation, International Isotopes Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    to Work Planning and Control Deficiencies associated with Replacement of Exhaust Ventilation Filters at the Test Reactor Area Hot Cell Facility at the Idaho National...

  3. Enforcement Letter, Lockheed Martin Idaho Technologies Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    related to a Repetitive Problem with Instrument Operability at the Idaho National Engineering and Environmental Laboratory On August 4, 1998, the U.S. Department of Energy...

  4. Idaho Power- Irrigation Efficiency Rewards Rebate Program

    Broader source: Energy.gov [DOE]

    Through Idaho Power's Irrigation Efficiency Rewards program, agricultural irrigation customers qualify to receive an incentive for a portion of the cost to install a new, more efficient irrigation...

  5. Oxygen Enrichment in the Process and Chemical Industries

    E-Print Network [OSTI]

    Milne, R. T.

    1984-01-01T23:59:59.000Z

    . The gases may also be shipped as pure cryogenic liquids in special insulated transports to customers remote from the plant. The availability of pure oxygen (typically 99.5%) in large quantities at a reasonable cost provided a stimulus..., the average selling price of oxygen has declined steadily as a result of refinements in the production technology, and development of important markets for nitrogen and argon, once regarded as mere by-products of the air separation process. The cost...

  6. EA-0437: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant, Idaho National Engineering Laboratory

  7. Green alternatives to toxic release inventory (TRI) chemicals in the process industry

    SciTech Connect (OSTI)

    Ahmed, I.; Baron, J.; Hamilton, C. [Booz-Allen & Hamilton Inc., McLean, VA (United States)

    1995-12-01T23:59:59.000Z

    Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

  8. No Chemical, Zero Bleed Cooling Tower Water Treatment Process

    E-Print Network [OSTI]

    Coke, A. L.

    solubility and begin the scale inhibition process. This also descales existing scale build-up in the system. Ozone is manufactured from ambient air and injected into the bypass system through a venturi type injector. This kills algae, slime and bacteria... piping walls which i~ the primary cause of scale build up. Ozone plays no part in eliminating this primary cause of sCaling. Minerals that cause scale build up in heated and chilled systems are primarily calcium and magnesium ions. These ions...

  9. Battelle Energy Alliance - Idaho National Lab, October 2009

    Broader source: Energy.gov (indexed) [DOE]

    and lead a National University Consortium, as well as the three Idaho research universities of the Idaho University Consortium in support of nuclear research and related...

  10. Department of Energy Designates the Idaho National Laboratory...

    Energy Savers [EERE]

    Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National...

  11. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus...

    Energy Savers [EERE]

    AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results The Vehicle...

  12. Voluntary Protection Program Onsite Review, IDAHO NATIONAL LABORATORY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IDAHO NATIONAL LABORATORY Battelle Energy Alliance, LLC May 2006 Voluntary Protection Program Onsite Review, IDAHO NATIONAL LABORATORY Battelle Energy Alliance, LLC May 2006 May...

  13. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

    Office of Environmental Management (EM)

    Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

  14. Idaho National Engineering Laboratory: Annual report, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities.

  15. Electronic processes in fast thermite chemical reactions: A first-principles molecular dynamics study

    E-Print Network [OSTI]

    Southern California, University of

    Electronic processes in fast thermite chemical reactions: A first-principles molecular dynamics composites. We have investigated the thermite reaction of Fe2O3 with aluminum by molecular dynamics as thermite reaction, is widely utilized in the synthesis and processing of materials 1 . In addition

  16. Treatment of liquid radioactive waste using combination of chemical processes with ultrafiltration

    SciTech Connect (OSTI)

    Zabrodsky, V.N.; Davidov, Y.P.; Toropov, I.G.; Glushko, A.S. [Academy of Sciences of Belarus, Minsk (Belarus). Inst. of Radioecological Problems; Efremenkov, V.M. [State Committee on Supervision of Industrial and Nuclear Safety, Minsk (Belarus)

    1993-12-31T23:59:59.000Z

    A combination of chemical processes and ultrafiltration was used for treatment of liquid radioactive wastes containing Cs, Sr, Pu by using large amounts of surfactants and complexing substances. The nature of carriers and conditions of complete separation of Cs and Sr are reported. The mechanisms of the processes are discussed.

  17. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    SciTech Connect (OSTI)

    Koopman, David

    2010-04-28T23:59:59.000Z

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry, and significant mercury was not accounted for in the highest acid run. Coalescence of elemental mercury droplets in the mercury water wash tank (MWWT) appeared to degrade with increasing stoichiometry. Observations were made of mercury scale formation in the SRAT condenser and MWWT. A tacky mercury amalgam with Rh, Pd, and Cu, plus some Ru and Ca formed on the impeller at 159% acid. It contained a significant fraction of the available Pd, Cu, and Rh as well as about 25% of the total mercury charged. Free (elemental) mercury was found in all of the SME products. Ammonia scrubbers were used during the tests to capture off-gas ammonia for material balance purposes. Significant ammonium ion formation was again observed during the SRAT cycle, and ammonia gas entered the off-gas as the pH rose during boiling. Ammonium ion production was lower than in the SB6 Phase II and the qualification simulant testing. Similar ammonium ion formation was seen in the ARP/MCU simulation as in the 120% flowsheet run. A slightly higher pH caused most of the ammonium to vaporize and collect in the ammonia scrubber reflux solution. Two periods of foaminess were noted. Neither required additional antifoam to control the foam growth. A steady foam layer formed during reflux in the 120% acid run. It was about an inch thick, but was 2-3 times more volume of bubbles than is typically seen during reflux. A similar foam layer also was seen during caustic boiling of the simulant during the ARP addition. While frequently seen with the radioactive sludge, foaminess during caustic boiling with simulants has been relatively rare. Two further flowsheet tests were performed and will be documented separately. One test was to evaluate the impact of process conditions that match current DWPF operation (lower rates). The second test was to evaluate the impact of SRAT/SME processing on the rheology of a modified Phase III simulant that had been made five times more viscous using ultrasonication.

  18. Idaho County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPoint Hot SpringsIdahoCounty,

  19. Idaho Settlement Agreement Signed at Idaho National Laboratory | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1i f th

  20. Processing electric arc furnace dust into saleable chemical products

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The modern steel industry uses electric arc furnace (EAF) technology to manufacture steel. A major drawback of this technology is the production of EAF dust, which is listed by the U.S. Environmental Protection Agency as a hazardous waste under the Resource Conservation and Recovery Act. The annual disposal of approximately 0.65 million tons of EAF dust in the United States and Canada is an expensive, unresolved problem for the steel industry. EAF dust byproducts are generated during the manufacturing process by a variety of mechanisms. The dust consists of various metals (e.g., zinc, lead, cadmium) that occur as vapors at 1,600{degrees}C (EAF hearth temperature); these vapors are condensed and collected in a baghouse. The production of one ton of steel will generate approximately 25 pounds of EAF dust as a byproduct, which is currently disposed of in landfills.

  1. Method of manipulating the chemical properties of water to improve the effectiveness of a desired chemical process

    DOE Patents [OSTI]

    Hawthorne, Steven B. (Grand Forks, ND); Miller, David J. (Grand Forks, ND); Yang, Yu (Greenville, NC); Lagadec, Arnaud Jean-Marie (Grand Forks, ND)

    1999-01-01T23:59:59.000Z

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired chemical process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from nonaqueous liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, and removing organics from water using activated carbon or other suitable sorbents.

  2. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions

    E-Print Network [OSTI]

    Kirol, L.

    ADVANCED CHEMICAL HEAT PUMPS USING LIQUID-VAPOR REACTIONS LANCE KIROL Senior Program Specialist Idaho National Engineering Laboratory Idaho Falls, Idaho . ABSTRACT Chemical heat pumps utilizing liquid-vapor reactions can be configured... in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynam...

  3. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    SciTech Connect (OSTI)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

    2008-02-29T23:59:59.000Z

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  4. Process and continuous apparatus for chemical conversion of materials

    DOE Patents [OSTI]

    Rugg, Barry (New York, NY); Stanton, Robert (Ramsey, NJ)

    1983-01-01T23:59:59.000Z

    A process and apparatus for the acid hydrolysis of waste cellulose to glucose of the type wherein waste cellulose is continuously fed into an inlet port of a twin screw extruder, water is continuously fed into reaction zone in the extruder, downstream of the inlet port, the cellulose is continuously reacted with water in the presence of an acid catalyst at elevated temperature and pressure in the reaction zone while being continuously conveyed to an outlet port of the extruder having a given diameter and the reacted cellulose is discharged from the extruder while the elevated temperature and pressure in the reaction zone is maintained. The elevated pressure is maintained by forming a dynamic seal zone at the upstream end of the reaction and continuously discharging the reacted material downstream of the outlet port at a predetermined volume rate of flow to maintain the pressure by passing the discharge through an orifice pipe having a smaller diameter than the given diameter of the outlet port.

  5. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  6. Idaho Site | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandardsIdaho National Laboratory Advance

  7. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPoint Hot SpringsIdaho

  8. Idaho_AmericanFallsRockland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power - Idaho Wind

  9. Effect of chemical peeling on the processing quality of long-green mild chile (Capasicum annuum)

    E-Print Network [OSTI]

    Tillman, Richard Erland

    1980-01-01T23:59:59.000Z

    EFFECT OF CHEMICAL PEELING ON THE PROCESSING QUALITY OF LONG-GREEN MILD CHILE (CAPAS ICUM ANNUUM) A Thesis by RICHARD ERLAND TILLMAN Submitted to the Graduate College of Texas AfM University 1n Partial fulf1llment of the requirement... for the degree of MASTER OF SCIENCE December 1980 Major Subject: Food Sc1ence and Technology EFFECT OF CHEMICAL PEELING ON THE PROCESSING QUALITY OF LONG-GREEN MILD CHILE (CAPASICUM ANNUUM) A THESIS by RICHARD ERLAND TILLMAN Approved as to style...

  10. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    2007-06-01T23:59:59.000Z

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  11. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Broader source: Energy.gov [DOE]

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  12. Independent Oversight Inspection, Idaho National Laboratory- August 2007

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory's Materials and Fuels Complex

  13. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOE Patents [OSTI]

    Michaels, E.D.

    1981-02-25T23:59:59.000Z

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  14. Geophysical Investigations of Archaeological Resources in Southern Idaho

    SciTech Connect (OSTI)

    Brenda Ringe Pace; Gail Heath; Clark Scott; Carlan McDaniel

    2005-10-01T23:59:59.000Z

    At the Idaho National Laboratory and other locations across southern Idaho, geophysical tools are being used to discover, map, and evaluate archaeological sites. A variety of settings are being explored to expand the library of geophysical signatures relevant to archaeology in the region. Current targets of interest include: prehistoric archaeological features in open areas as well as lava tube caves, historical structures and activity areas, and emigrant travel paths. We draw from a comprehensive, state of the art geophysical instrumentation pool to support this work. Equipment and facilities include ground penetrating radar, electromagnetic and magnetic sensors, multiple resistivity instruments, advanced positioning instrumentation, state of the art processing and data analysis software, and laboratory facilities for controlled experiments.

  15. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOE Patents [OSTI]

    Lackey, Jr., Walter J. (Oak Ridge, TN); Caputo, Anthony J. (Knoxville, TN)

    1986-01-01T23:59:59.000Z

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  16. Chemical and physical processes in Tank 241-SY-101: A preliminary report

    SciTech Connect (OSTI)

    Not Available

    1991-02-01T23:59:59.000Z

    Since 1942, chemical and radioactive waste have been stored in underground tanks at the Hanford Site. In March 1981 one of the double shell tanks, 241-SY-101 (called 101-SY), began venting large quantities of gas, primarily hydrogen and nitrous oxide. Because of the potential for explosion Westinghouse Hanford Company and the US Department of Energy realized the need for knowledge about the processes occurring in this tank that lead to generation of the gases. In June 1990, the Pacific Northwest Laboratory began assembling a Tank Waste Science Panel to develop a better understanding of the processes occurring the Tank 101-SY. This knowledge is necessary to provide a technically defensible basis for the safety analyses, which will allow the tank contents to be sampled, as well as for the future remediation of the tank and its contents. The Panel concluded that the data available on Tank 101-SY are insufficient to allow the critical chemical and physical processes giving rise to gas formation and release to be unambiguously identified. To provide the needed information the Panel recommends that Tank 101-SY by physically and chemically characterized as fully as possible and as expeditiously as safety considerations allow, and laboratory studies and modeling efforts be undertaken the chemical and physical processes involved in gas generation and release. Finally, the Panel recommends that no remediation steps be taken until there is a better understanding of the chemical and physical phenomena occurring in Tank 101-SY. Premature remediation steps may only serve to compound the problem. Furthermore, such steps may change the chemical and physical characteristics of the tank and prevent a true understanding of the phenomena involved. As a consequence, similar problems in other tanks on the site may not be adequately addressed. 17 refs., 3 figs., 1 tab.

  17. Error-Control and Digitalization Concepts for Chemical and Biomolecular Information Processing Systems

    E-Print Network [OSTI]

    Vladimir Privman

    2010-04-26T23:59:59.000Z

    We consider approaches for controlling the buildup of noise by design of gates for chemical and biomolecular computing, in order to realize stable, scalable networks for multi-step information processing. Solvable rate-equation models are introduced and used to illustrate several recently developed concepts and methodologies. We also outline future challenges and possible research directions.

  18. The Quantitative Assessment of Risk Caused By Fire and Explosion in Chemical Process Industry

    E-Print Network [OSTI]

    Boyer, Edmond

    The Quantitative Assessment of Risk Caused By Fire and Explosion in Chemical Process Industry Farid by the domino effect are the most destructive accidents related to industrial plants. Fire and explosion; Quantitative risk assessment; Explosions; Fires; Storage areas. 1. Introduction The accidents caused

  19. Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic acid Ester)

    SciTech Connect (OSTI)

    Dr. Sharon Shoemaker

    2004-09-03T23:59:59.000Z

    The development of commercial boi-based processes and products derived from agricultural waste biomass has the potential for significant impact on the economy and security of our nation. Adding value, rather than disposing of the waste of agriculture, can solve an environmental problem and reduce our dependence on foreign sources of fossil fuel for production of chemicals, materials and fuels.

  20. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01T23:59:59.000Z

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  1. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 1: Final report

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This report describes and summarizes a probabilistic evaluation of ground motions for the Idaho National Engineering Laboratory (INEL). The purpose of this evaluation is to provide a basis for updating the seismic design criteria for the INEL. In this study, site-specific seismic hazard curves were developed for seven facility sites as prescribed by DOE Standards 1022-93 and 1023-96. These sites include the: Advanced Test Reactor (ATR); Argonne National Laboratory West (ANL); Idaho Chemical Processing Plant (ICPP or CPP); Power Burst Facility (PBF); Radioactive Waste Management Complex (RWMC); Naval Reactor Facility (NRF); and Test Area North (TAN). The results, probabilistic peak ground accelerations and uniform hazard spectra, contained in this report are not to be used for purposes of seismic design at INEL. A subsequent study will be performed to translate the results of this probabilistic seismic hazard analysis to site-specific seismic design values for the INEL as per the requirements of DOE Standard 1020-94. These site-specific seismic design values will be incorporated into the INEL Architectural and Engineering Standards.

  2. Improved process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOE Patents [OSTI]

    Lackey, W.J. Jr.; Caputo, A.J.

    1984-09-07T23:59:59.000Z

    A specially designed apparatus provides a steep thermal gradient across the thickness of fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  3. Retrofitting the Streetlights in Boise, Idaho

    ScienceCinema (OSTI)

    Young, Clay; Oliver, LeAnn; Bieter, David; Johnson, Michael; Oldemeyer, Neal

    2013-05-29T23:59:59.000Z

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and local quality of life.

  4. Alternative Fuels Data Center: Idaho Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Idaho, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  5. Retrofitting the Streetlights in Boise, Idaho

    Broader source: Energy.gov [DOE]

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and...

  6. DATA RECOVERY EFFORTS AT IDAHO NATIONAL LABORATORY, OAK RIDGE NATIONAL LABORATORY, AND SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Richard Metcalf; Saleem Salaymeh; Michael Ehinger

    2010-07-01T23:59:59.000Z

    Abstract was already submitted. Could not find the previous number. Would be fine with attaching/update of old number. Abstract Below: Modern nuclear facilities will have significant process monitoring capability for their operators. These systems will also be used for domestic safeguards applications, which has led to research over new diversion-detection algorithms. Curiously missing from these efforts are verification and validation data sets. A tri-laboratory project to locate the existing data sets and recover their data has yielded three major potential sources of data. The first is recovery of the process monitoring data of the Idaho Chemical Processing Plant, which now has a distributable package for algorithm developers. The second data set is extensive sampling and process data from Savannah River National Laboratory’s F- and H-canyon sites. Finally, high fidelity data from the start-up tests at the Barnwell Reprocessing Facility is in recovery. This paper details the data sets and compares their relative attributes.

  7. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA)

    1994-01-01T23:59:59.000Z

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  8. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOE Patents [OSTI]

    Chang, S.G.

    1994-07-26T23:59:59.000Z

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  9. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    SciTech Connect (OSTI)

    Lisbeth A. Mitchell

    2013-11-01T23:59:59.000Z

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  10. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    SciTech Connect (OSTI)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01T23:59:59.000Z

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  11. Improving Process Control Immunity to Supply Voltage Sags in Petroleum and Chemical Industries

    E-Print Network [OSTI]

    Mansoor, A.; Dorr, D.; Olson, G.

    IMPROVING PROCESS CONTROL IMMUNITY TO SUPPLY VOLTAGE SAGS IN PETROLEUM AND CHEMICAL INDUSTRIES Douglas Dorr and Arshad Mansoor EPRI Power Electronics Applications Center Knoxville, TN ABSTRACT In the modem industrial facility, many... by EPRI's Power Quality Test Facility clearly shows that CVT's are an excellent solution for voltage sag problems when they are sized properly. The optimum sizing is achieved when the CVT is loaded to no more than about 40 Figure 3. Batteryless UPS...

  12. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    SciTech Connect (OSTI)

    Brown, A.

    2014-04-27T23:59:59.000Z

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  13. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  14. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01T23:59:59.000Z

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  15. Jerome County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson, Iowa:Jerome County, Idaho: Energy

  16. Idaho DEQ Storage Tanks Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ Storage Tanks Webpage

  17. Idaho DEQ Waste Management and Permitting Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ Storage Tanks

  18. Idaho Dredge and Fill Permits Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ Storage TanksPermits

  19. Idaho IC 61-119, Electrical Corporation Definition | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ StorageObtain

  20. Idaho IC 67-6512 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQInformation 7-6508,12

  1. Idaho Instructions for Filing Proof of Beneficial Use | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQInformationProof

  2. Idaho Instructions for Filing an Application for Permit to Appropriate |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQInformationProofOpen

  3. Idaho On-Site Wastewater Systems Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformation Abandon a

  4. Idaho Permit to Construct Application Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformation Abandon

  5. Idaho Right-of-Way Encroachment Application and Permit - Other

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformationForm 204)

  6. Idaho Rules of Civil Procedure | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformationForm

  7. Idaho Section 319 Grant Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformationFormApplication

  8. Idaho Underground Injection Control Program Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolid Waste WebpageInformation Idaho

  9. Idaho/Transmission/Agency Links | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolid WasteIdahoTransmissionHeader.png

  10. Fremont County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show MapFredericksburgIdaho: Energy Resources

  11. Garden City, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy ResourcesGang Mills, NewIdaho: Energy

  12. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    SciTech Connect (OSTI)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10T23:59:59.000Z

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  13. High Water Heating Bills on Lockdown at Idaho Jail | Department...

    Broader source: Energy.gov (indexed) [DOE]

    High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail August 19, 2010 - 12:05pm Addthis The Blaine County Public Safety Facility...

  14. areas southwestern idaho: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agency University of Idaho Other university students 34 Michael Kyte, University of Idaho Marshall Comstock, Mayor, City of Moscow 9:00 am 12;12; Kyte, Michael 104 College of...

  15. CRAD, Engineering - Idaho MF-628 Drum Treatment Facility | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Idaho MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line...

  16. Idaho: Nez Perce Tribe Energy-Efficient Facilities Upgrade |...

    Energy Savers [EERE]

    Idaho: Nez Perce Tribe Energy-Efficient Facilities Upgrade Idaho: Nez Perce Tribe Energy-Efficient Facilities Upgrade November 8, 2013 - 12:00am Addthis Utilizing 67,000 of EERE's...

  17. Independent Study in Idaho ISI Course BSU Course NOTES

    E-Print Network [OSTI]

    Barrash, Warren

    Independent Study in Idaho ISI Course BSU Course NOTES Updated 03/2012 Boise State University Administration #12;Independent Study in Idaho ISI Course BSU Course NOTES Updated 03/2012 Boise State University

  18. Idaho Power- Rebate Advantage for New Manufactured Homes

    Broader source: Energy.gov [DOE]

    Idaho Power is offering a $1000 sales rebate to customers who purchase a new ENERGY STAR all-electric manufactured home and connect that home to an Idaho Power residential account. In addition, the...

  19. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    SciTech Connect (OSTI)

    Seymour, R.G.

    1995-06-07T23:59:59.000Z

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

  20. Voluntary Protection Program Onsite Review, Idaho Cleanup Project- October 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Idaho Cleanup Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  1. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31T23:59:59.000Z

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  2. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOE Patents [OSTI]

    Holzrichter, John F. (Berkeley, CA); Siekhaus, Wigbert J. (Berkeley, CA)

    1997-01-01T23:59:59.000Z

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule.

  3. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOE Patents [OSTI]

    Holzrichter, J.F.; Siekhaus, W.J.

    1997-04-15T23:59:59.000Z

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule. 6 figs.

  4. Process Integration of Industrial Heat Pumps

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    PROCESS INTEGRATION OF INDUSTRIAL HEAT PUMPS* S. J. Priebe EG&G Idaho, Inc. Idaho Falls, Idaho ABSTRACT The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated... properly relative to the process pinch and the unit operations in the process. The shape of the grand composite curve, the type of heat ?pump drive, and the kind of heat pump cycle were examined to determine their effects on the placement of industrial...

  5. High Level Waste Tank Closure Project at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Wessman, D. L.; Quigley, K. D.

    2002-02-27T23:59:59.000Z

    The Department of Energy, Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities.

  6. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.

  7. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    SciTech Connect (OSTI)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13T23:59:59.000Z

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  8. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Julie Braun Williams

    2013-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  9. Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT Power LimitedIdaTech UK JumpIdahoIdaho:

  10. Chemical recovery process using break up steam control to prevent smelt explosions

    DOE Patents [OSTI]

    Kohl, Arthur L. (Woodland Hills, CA); Stewart, Albert E. (Eagle Rock, CA)

    1988-08-02T23:59:59.000Z

    An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.

  11. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  12. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, S.K.

    2000-05-30T23:59:59.000Z

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  13. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect (OSTI)

    S. K. Zohner

    1999-10-01T23:59:59.000Z

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  14. RENEWABLE ENERGY FROM SWINE WASTE Bingjun He, University of Idaho, Moscow, ID 1

    E-Print Network [OSTI]

    He, Brian

    RENEWABLE ENERGY FROM SWINE WASTE Bingjun He, University of Idaho, Moscow, ID 1 Yuanhui Zhang, Ted waste and to produce renewable energy from swine manure. Experimental results showed that operating were also studied. Typical oil yield of the TCC process ranged from 60% to 65% on the input volatile

  15. EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Idaho National Engineering Laboratory's proposal to remove 344 canisters of Three Mile Island core debris and...

  16. Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes

    SciTech Connect (OSTI)

    Seright, R.S.; Martin, F.D.

    1991-11-01T23:59:59.000Z

    This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

  17. Microwave-assisted chemical process for treatment of hazardous waste: Annual report

    SciTech Connect (OSTI)

    Varma, R.; Nandi, S.P.; Cleaveland, D.C.

    1987-10-01T23:59:59.000Z

    Microwave energy provides rapid in situ uniform heating and can be used to initiate chemical processes at moderate temperatures. We investigate the technical feasibility of microwave-assisted chemical processes for detoxification of liquid hazardous waste. Trichloroethylene, a major constituent of waste streams, was selected for this detoxification study. Experiments were performed to investigate the oxidative degradation of trichloroethylene over active carbons (with and without catalysts) in air streams with microwave in situ heating, and to examine the feasibility of regenerating the used carbons. This study established that trichloroethylene in a vapor stream can be adsorbed at room temperature on active carbon beds that are loaded with Cu and Cr catalysts. When the bed is heated by a microwave radiation to moderate temperatures (<400/sup 0/C) while a moist air stream is passed through it, the trichloroethylene is readily converted into less-noxious products such as HCl, CO, CO/sub 2/ and C/sub 2/H/sub 2/Cl/sub 2/. Conversion higher than 80% was observed. Furthermore, the used carbon bed can be conveniently regenerated by microwave heating while a moist-N/sub 2/ or moist-air stream is passed through the bed. 4 refs., 5 figs., 10 tabs.

  18. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2011-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  19. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2009-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  20. Model-Based Control of Nonlinear Systems Subject to Sensor Data Losses: A Chemical Process Case Study

    E-Print Network [OSTI]

    Sontag, Eduardo

    Model-Based Control of Nonlinear Systems Subject to Sensor Data Losses: A Chemical Process Case, Los Angeles, CA 90095-1592, USA, davidmps@ucla.edu, pdc@seas.ucla.edu. Controller Process x Data feedback control of nonlinear uncertain systems subject to sensor data losses. We compare three different

  1. Fundamentals of High Pressure Combustion Chapter in High Pressure Processes in Chemical Engineering, Edited by Maximillian Lackner,

    E-Print Network [OSTI]

    Miller, Richard S.

    [2]. Furthermore, gas turbine combustion pres- sures have been increasing at a near linear rateFundamentals of High Pressure Combustion Chapter in High Pressure Processes in Chemical Engineering of the following chapter is to present an overview of the fundamentals of combustion processes in high pressure

  2. K. S. Telang, R. W. Pike, F. C. Knopf, J. R. Hopper, J. Saleh, S. Waghchoure, S. C. Hedge and T. A. Hertwig,"An Advanced Process Analysis System for Improving Chemical and Refinery Processes," Computers and Chemical Engineering, Vol. 23, p. S727-730 (1999

    E-Print Network [OSTI]

    Pike, Ralph W.

    . Hertwig,"An Advanced Process Analysis System for Improving Chemical and Refinery Processes," Computers Chemical and Refinery Processes K. S. Telang, X. Chen, R. W. Pike and F. C. Knopf Louisiana State and refineries for process improvements. The system integrates programs for on-line optimization, chemical

  3. A study of heat transfer and particle motion relative to the modified chemical vapor deposition process

    SciTech Connect (OSTI)

    Choi, M.; Greif, R. (Univ. of California, Berkeley (United States)); Baum, H.R. (National Inst. of Standards and Technology, Gaithersburg, MD (United States))

    1989-11-01T23:59:59.000Z

    Heat transfer and particle motion relative to the modified chemical vapor deposition process have been studied for general values of the torch speed. Three-dimensional temperature fields have been obtained over the entire cross section of the tube and the effects of tube rotation and localized torch heating in the axial and circumferential directions have been studied. The particle trajectories have been calculated from a formulation that includes the contributions from forced flow, i.e., Poiseuille flow in the axial direction, rigid body rotation about the tube axis, and thermophoretic contributions in the axial, radial, and angular directions. The particle trajectories are helices and are shown to be strongly dependent on the tube rotation.

  4. Method of manipulating the chemical properties of water to improve the effectiveness of a desired process

    DOE Patents [OSTI]

    Hawthorne, Steven B. (Grand Forks, ND); Miller, David J. (Grand Forks, ND); Lagadec, Arnaud Jean-Marie (Grand Forks, ND); Hammond, Peter James (York, GB); Clifford, Anthony Alan (Leeds, GB)

    2002-01-01T23:59:59.000Z

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, removing organics from water using activated carbon or other suitable sorbents, and degrading various compounds.

  5. Process for hydrocracking carbonaceous material to provide fuels or chemical feed stock

    DOE Patents [OSTI]

    Duncan, Dennis A. (Downers Grove, IL)

    1980-01-01T23:59:59.000Z

    A process is disclosed for hydrocracking coal or other carbonaceous material to produce various aromatic hydrocarbons including benzene, toluene, xylene, ethylbenzene, phenol and cresols in variable relative concentrations while maintaining a near constant maximum temperature. Variations in relative aromatic concentrations are achieved by changing the kinetic severity of the hydrocracking reaction by altering the temperature profile up to and quenching from the final hydrocracking temperature. The relative concentration of benzene to the alkyl and hydroxyl aromatics is increased by imposing increased kinetic severity above that corresponding to constant heating rate followed by immediate quenching at about the same rate to below the temperature at which dehydroxylation and dealkylation reactions appreciably occur. Similarly phenols, cresols and xylenes are produced in enhanced concentrations by adjusting the temperature profile to provide a reduced kinetic severity relative to that employed when high benzene concentrations are desired. These variations in concentrations can be used to produce desired materials for chemical feed stocks or for fuels.

  6. Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2005-06-30T23:59:59.000Z

    In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

  7. Process for the conversion of and aqueous biomass hydrolyzate into fuels or chemicals by the selective removal of fermentation inhibitors

    DOE Patents [OSTI]

    Hames, Bonnie R. (Westminster, CO); Sluiter, Amie D. (Arvada, CO); Hayward, Tammy K. (Broomfield, CO); Nagle, Nicholas J. (Broomfield, CO)

    2004-05-18T23:59:59.000Z

    A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.

  8. Idaho National Laboratory Quarterly Performance Analysis - 3rd Quarter FY2014

    SciTech Connect (OSTI)

    Lisbeth A. Mitchell

    2014-09-01T23:59:59.000Z

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other non-reportable issues identified at INL from July 2013 through June 2014.

  9. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    SciTech Connect (OSTI)

    Lisbeth A. Mitchell

    2014-06-01T23:59:59.000Z

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  10. Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study

    SciTech Connect (OSTI)

    Christopher Orme

    2012-08-01T23:59:59.000Z

    Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

  11. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    1999-06-01T23:59:59.000Z

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  12. Automated microreactor system for reaction development and online optimization of chemical processes

    E-Print Network [OSTI]

    McMullen, Jonathan Patrick

    2010-01-01T23:59:59.000Z

    Developing the optimal conditions for chemical reactions that are common in fine chemical and pharmaceutics is a difficult and expensive task. Because syntheses in these fields have multiple reaction pathways, a significant ...

  13. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    SciTech Connect (OSTI)

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12T23:59:59.000Z

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  14. EIS-0136: Special Isotope Separation Project Idaho National Engineering Laboratory, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to provide environmental input to the decision to construct the Special Isotope Separation Project which would allow for the processing of existing fuel-grade plutonium into weapons-grade plutonium using the Atomic Laser Isotope Separation process.

  15. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    SciTech Connect (OSTI)

    Moller, Nancy; Weare J. H.

    2008-05-29T23:59:59.000Z

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and/or injected fluids is critical to predict important chemical behaviors affecting fluid flow, such as mineral precipitation/dissolution reactions. We successfully achieved the project goal and objectives by demonstrating the ability of our modeling technology to correctly predict the complex pH dependent solution chemistry of the Al3+ cation and its hydrolysis species: Al(OH)2+, Al(OH)2+, Al(OH)30, and Al(OH)4- as well as the solubility of common aluminum hydroxide and aluminosilicate minerals in aqueous brines containing components (Na, K, Cl) commonly dominating hydrothermal fluids. In the sodium chloride system, where experimental data for model parameterization are most plentiful, the model extends to 300°C. Determining the stability fields of aluminum species that control the solubility of aluminum-containing minerals as a function of temperature and composition has been a major objective of research in hydrothermal chemistry.

  16. Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The

    E-Print Network [OSTI]

    O'Laughlin, Jay

    HIGHLIGHTS Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The state's growers produce about 30% of the U.S. potato crop, but the Idaho potato industry is more than potato fields. Idaho frozen

  17. Investigation of chemical looping combustion by solid fuels. 1. Process analysis

    SciTech Connect (OSTI)

    Yan Cao; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

    2006-10-15T23:59:59.000Z

    This paper is the first in a series of two, where we present the concept of a CLC process of solid fuels using a circulating fluidized bed with three loop seals. The riser of this circulating fluidized bed was used as the oxidizer of the oxygen carrier; one of the loop seals was used as the reducer of the oxygen carrier and the separator for ash and oxygen carrier, and the other two loop seals were used for pressure balance in the solid recycle process. Pressure profiles of recycled solids using this process are presented in detail. For the development of an oxygen carrier, we focused on the establishment of a theoretical frame of oxygen transfer capability, reaction enthalpy, a chemical equilibrium, and kinetics. Analysis results indicated that Cu-, Ni-, and Co-based oxygen carriers may be the optimum oxygen carriers for the CLC of solid fuels. Thermodynamic analysis indicated that CO{sub 2} can be concentrated and purified to at least 99% purity for the gas-solid reaction mode or even higher for the solid-solid reaction mode on the basis of the selected oxygen carriers. A Cu-based oxygen carrier is the choice that has the potential to make the reducer self-sustaining or autothermal because of its exothermic nature during reduction. This would be beneficial for simplifying the operation of the reducer. The tendency of the Cu-based oxygen carriers to agglomerate can be eliminated by decreasing the operating temperature in the CLC system. In the second part of the series, we will evaluate the reduction kinetics of selected Cu-based oxygen carriers by coal and other 'opportunity solid fuels' using a simultaneous differential scanning calorimetry-thermogravimetric analysis to simulate a microreactor, using an X-ray diffractometer and a scanning electron microscope to characterize the solid residues, and a thermogravimetric analysis coupled with mass spectra to characterize the evolved gas compositions. 46 refs., 5 figs., 2 tabs.

  18. Idaho Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Memo Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  19. Idaho Falls Power- Commercial Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power is offering a zero interest loan program to qualifying commercial customers to install efficient lighting and other energy conservation measures. The building must receive its...

  20. Idaho Falls Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers rebates to eligible customers on energy efficient HVAC measures and weatherization upgrades. Rebates are available on heat pumps, new manufactured homes and insulation....

  1. Idaho Falls Power- Commercial Energy Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    In addition to loan programs, Idaho Falls Power offers rebates for customers meeting certain criteria. An energy audit will inspect the following measures and recommend upgrades as needed:...

  2. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    Matthew Shirk Idaho National Laboratory 16 May 2012 VSS021 This presentation does not contain any proprietary, confidential, or otherwise restricted information INLMIS-12-25036...

  3. Small Business Opportunities at the Idaho National Laboratory...

    Office of Environmental Management (EM)

    - Nuclear Energy Idaho Operations Office Office of Nuclear Energy (NE) Advance nuclear power as a resource capable of meeting the Nation's energy, environmental, and national...

  4. Idaho Operations Office: American Recovery and Reinvestment Act Update

    ScienceCinema (OSTI)

    Provencher, Rick

    2012-06-14T23:59:59.000Z

    An update from Idaho National Laboratory, Rick Provencher addresses the progress that has been made due to the American Recovery and Reinvestment Act.

  5. Technical Qualification Program Self-Assessment Report - Idaho...

    Office of Environmental Management (EM)

    - Idaho Operations Office - 2014 This TQP self-assessment was performed by a review team with extensive assessment experience. The team lead has participated on past TQP...

  6. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering...

    Energy Savers [EERE]

    03: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs EIS-0203: Spent Nuclear Fuel Management and...

  7. EIS-0290: Idaho National Engineering and Environmental Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Regarding Remote-Handled Transuranic Waste Identified in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental...

  8. Reconnaissance geothermal exploration at Raft River, Idaho from...

    Open Energy Info (EERE)

    exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Reconnaissance geothermal...

  9. Voluntary Protection Program Onsite Review, Idaho National Laboratory- October 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Idaho National Laboratory is continuing to perform at a level deserving DOE-VPP Star recognition.

  10. Curtis Smith, Diego Mandelli, Cristian Rabiti Idaho National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A case study in the interaction of mechanistic and probabilistic safety analysis Curtis Smith, Diego Mandelli, Cristian Rabiti Idaho National Laboratory (INL) RISMC strategic goals...

  11. Idaho Site Closes Out Decontamination and Decommissioning Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. The Engineering Test Reactor vessel is shown...

  12. Idaho Public Utilities Commission Approves Neal Hot Springs Power...

    Open Energy Info (EERE)

    Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves...

  13. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Quality Assurance, Emergency Communications, and other issues at the Idaho National Engineering and Environmental laboratory, (EA-1999-07) On August 18, 1999, the U.S. Department...

  14. Independent Oversight Review of the Idaho National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    DOE-ID DOE Idaho Operations Office DR Damage Ratio DSA Documented Safety Analysis DU Depleted Uranium EBA Evaluation Basis Accident EBE Evaluation Basis Earthquake ECAR...

  15. Once nearly extinct, Idaho sockeye regaining fitness advantage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the wild once more. A newly published analysis by the Idaho Department of Fish and Game and the Northwest Fisheries Science Center shows endangered Snake River...

  16. Freedom of Information and Privacy Act Database PIA, Idaho Operations...

    Office of Environmental Management (EM)

    Office More Documents & Publications PIA - Security Clearance Work Tracking and Budget System TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory...

  17. Occupational Injury & Illness System (01&15) PIA, Idaho National...

    Office of Environmental Management (EM)

    Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Occupational Medicine - Assistant PIA, Idaho National Laboratory VisitDosimBadgeTrckg-PIA.pdf...

  18. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...

    Office of Environmental Management (EM)

    Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars...

  19. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Lockheed Martin Idaho Technologies Company, related to Unauthorized Disabling of the Seismic Scram Subsystem and Surveillance Deficiencies at the Advanced Test Reactor Critical...

  20. Geothermal investigations in Idaho. Part 1. Geochemistry and...

    Open Energy Info (EERE)

    in Idaho. Part 1. Geochemistry and geologic setting of selected thermal waters Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal investigations...

  1. Idaho - Idaho Dept. of Lands - Application for Easement | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC Transmission JumpInformation 03 - Rights

  2. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    SciTech Connect (OSTI)

    Bennecke, W.M.

    1996-10-01T23:59:59.000Z

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well.

  3. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    SciTech Connect (OSTI)

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A. [Oak Ridge National Lab., TN (US); Egidi, P.V.; Mather, S.K. [Oak Ridge Inst. for Science and Education, Grand Junction, CO (United States)

    1993-07-01T23:59:59.000Z

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site`s compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building`s interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor`s report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for {sup 60}Co were below the detection limit. The highest {sup 137}Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g.

  4. Determination of residual monomers resulting from the chemical polymerization process of dental materials

    SciTech Connect (OSTI)

    Boboia, S. [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca, Romania and Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania)] [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca, Romania and Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania); Moldovan, M. [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca (Romania)] [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca (Romania); Ardelean, I. [Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania)] [Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania)

    2013-11-13T23:59:59.000Z

    The residual monomer present in post-polymerized dental materials encourages premature degradation of the reconstructed tooth. That is why the residual monomer should be quantified in a simple, fast, accurate and reproducible manner. In our work we propose such an approach for accurate determination of the residual monomer in dental materials which is based on low-field nuclear magnetic resonance (NMR) relaxometry. The results of the NMR approach are compared with those of the high performance liquid chromatography (HPLC) technique. The samples under study contain the main monomers (2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane and triethylene glycol dimethacrylate) constituting the liquid phase of most dental materials and an initiator. Two samples were analyzed with different ratios of chemical initiation systems: N,N-dimethyl-p-toluide: benzoyl peroxide (1:2 and 0.7:1.2). The results obtained by both techniques highlight that by reducing the initiator the polymerization process slows down and the amount of residual monomer reduces. This prevents the premature degradation of the dental fillings and consequently the reduction of the biomaterial resistance.

  5. Degree Requirements for B.S. in Chemical Engineering at Wayne State University Product and Process Engineering Option

    E-Print Network [OSTI]

    Berdichevsky, Victor

    4 B E 2100 ­ Basic Engineering III: Probability and Statistics in Engineering for Engineering: Materials Science for Engg. Applications 3 B E 1310 ­ Basic Engineering II: Materials Science for EnggDegree Requirements for B.S. in Chemical Engineering at Wayne State University Product and Process

  6. THE JOURNAL OF CHEMICAL PHYSICS 138, 114105 (2013) Reorganization energy of electron transfer processes in ionic fluids

    E-Print Network [OSTI]

    Song, Xueyu

    2013-01-01T23:59:59.000Z

    solutions. Thus any reliable theoretical understanding of electron transfer reactions in ionic fluidsTHE JOURNAL OF CHEMICAL PHYSICS 138, 114105 (2013) Reorganization energy of electron transfer; published online 15 March 2013) The reorganization energy of electron transfer processes in ionic fluids

  7. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes - May 2008

    Fuel Cell Technologies Publication and Product Library (EERE)

    Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report: Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen

  8. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    Benson, Charles; Wilson, Robert

    2014-04-30T23:59:59.000Z

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the project’s technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

  9. Idaho Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    facing the State of Idaho. These projects addressed a wide range of physical, engineering and social subject to increased nutrient loads in northern Idaho; the regional economic demand for irrigation water Rathdrum Prairie Aquifer Project Basic Information Title: Award No. 04HQAG0205 Initial Model Development

  10. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  11. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

  12. Idaho National Laboratory Experimental Research In High Temperature Electrolysis For Hydrogen And Syngas Production

    SciTech Connect (OSTI)

    Carl M. Stoots; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2008-09-01T23:59:59.000Z

    The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO2 feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to ~15 kW testing capacity (H2 production rate based upon lower heating value).

  13. Laser-based processing of polymer nanocomposites for chemical sensing applications

    E-Print Network [OSTI]

    Fitz-Gerald, James M.

    materials involves polymer-carbon composites for chemical sensing technologies. An example is the carbon-polymer chemiresis- tor, a device in which a carbon black-polymer composite is deposited between two or four used to fabricate polymer/carbon nanocomposite thin films for use in chemical sensors chemiresistors

  14. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-12-01T23:59:59.000Z

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  15. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect (OSTI)

    Reiser, Dudley W.

    1986-01-01T23:59:59.000Z

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  16. Almo, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo, Idaho: Energy Resources Jump to:

  17. Categorical Exclusion Determinations: Idaho | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 CategoricalIdaho Categorical Exclusion Determinations:

  18. Idaho Treatment Group AMWTP Fact Sheet

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on Armed ServicesDepartment of linkof Energy IDAHO

  19. DOE-Idaho's Packaging and Transportation Perspective

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly3010-94 December 1994 DOE27-99 June 1999Idaho's

  20. Kooskia, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: Energy ResourcesKooskia, Idaho: Energy

  1. Idaho State Historical Society | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho State Board of

  2. Idaho Transportation Department | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho State Board

  3. Idaho/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho Statesource History

  4. Idaho/Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho Statesource

  5. Moscow, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr) JumpMorro Bay,Moscow, Idaho:

  6. Banks, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagleyBangladesh: EnergyBanks, Idaho:

  7. Meridian, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls,Mccoy GeothermalEnergieprojekte GmbH JumpIdaho:

  8. Council, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core AnalysisCouncil, Idaho: Energy Resources Jump to:

  9. Boise, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotionBoca Del Mar,EnergyBoise, Idaho:

  10. Idaho Power Co (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT Power LimitedIdaTech UK JumpIdaho Power

  11. EFFICIENT PARALLELIZATION OF STOCHASTIC SIMULATION ALGORITHM FOR CHEMICALLY REACTING SYSTEMS ON THE GRAPHICS PROCESSING UNIT

    E-Print Network [OSTI]

    Li, Hong; Petzold, Linda

    2009-01-01T23:59:59.000Z

    REACTING SYSTEMS ON THE GRAPHICS PROCESSING UNIT H. Li ? L.The current generation of graphics processing units (GPU) issystems on the low cost graphics processing unit (GPU)

  12. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Institute of Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical...

  13. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    SciTech Connect (OSTI)

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02T23:59:59.000Z

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  14. Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2007-09-30T23:59:59.000Z

    The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that has already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.

  15. EA-1954: Resumption of Transient Testing of Nuclear Fuels and Materials at the Idaho National Laboratory, Idaho

    Broader source: Energy.gov [DOE]

    This Environmental Assessment (EA) evaluates U.S. Department of Energy (DOE) activities associated with its proposal to resume testing of nuclear fuels and materials under transient high-power test conditions at the Transient Reactor Test (TREAT) Facility at the Idaho National Laboratory. The State of Idaho and Shoshone-Bannock Tribes are cooperating agencies.

  16. Group Member Names: ________________________________________________ Scenario: You are the owner of a potato plant in Idaho. You have recently won a contract

    E-Print Network [OSTI]

    Provancher, William

    : ________________________________________________ ________________________________________________ ________________________________________________ Scenario: You are the owner of a potato plant in Idaho. You have recently won a contract to supply McDonald's with potatoes. McDonald's requires their suppliers to precut and freeze the potatoes before shipping to their distributing center. Your potato plant does not currently have a process for precutting and freezing potatoes

  17. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    SciTech Connect (OSTI)

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23T23:59:59.000Z

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  18. Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes

    E-Print Network [OSTI]

    Mistry, Karan Hemant

    Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies driven by different combinations of heat, work, and chemical energy. This paper ...

  19. Theoretical and experimental studies of heterogeneous chemical processes leading to stratospheric ozone depletion

    E-Print Network [OSTI]

    Mantz, Yves André, 1974-

    2002-01-01T23:59:59.000Z

    The microscopic chemical mechanisms of heterogeneous reactions involving HC on crystalline ice and nitric acid trihydrate (NAT) are of fundamental interest to physical chemists, because such reactions yield "active" chlorine ...

  20. Techniques for Probing the Processes by Which Microwaves Interact with Chemical and Biological Systems 

    E-Print Network [OSTI]

    Kay, Philip E

    2007-01-01T23:59:59.000Z

    Microwave heating is a relatively mature field and is theoretically well understood. However, recently there has been debate as to whether microwaves can interact with chemical and biological systems by means other than ...

  1. Quantitative Determination of Chemical Processes by Dynamic Nuclear Polarization Enhanced Nuclear Magnetic Resonance Spectroscopy

    E-Print Network [OSTI]

    Zeng, Haifeng

    2012-07-16T23:59:59.000Z

    . The binding of fluorinated ligands to the protease trypsin was studied through the observation of various NMR parameter changes, such as line width, signal intensity and chemical shift of the ligands. Intermolecular polarization transfer from hyperpolarized...

  2. Development of a relational chemical process safety database and applications to safety improvements

    E-Print Network [OSTI]

    Al-Qurashi, Fahad

    2000-01-01T23:59:59.000Z

    Industrial accidents still show a major concern to both the public and the environment. It has been a governmental objective to minimize these accidents. Several rules and regulations have emerged to reduce the impacts of chemical releases...

  3. Continuous-flow study and scale-up of conventionally difficult chemical processes

    E-Print Network [OSTI]

    Zaborenko, Nikolay

    2010-01-01T23:59:59.000Z

    Microfluidic systems provide valuable tools for exploring, studying, and optimizing organic syntheses. The small scales and fast transport rates allow for faster experiments and lower amounts of chemicals to be used, ...

  4. Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013

    Broader source: Energy.gov [DOE]

    On Monday, February 12, 2013, a principal investigator at the Idaho National Laboratory (INL) Engineering Demonstration Facility (IEDF) was testing the system configuration of experimental process involving liquid sodium carbonate. An unanticipated event occurred that resulted in the ejection of the 900° C liquid sodium carbonate from the system. The ejected liquid came into contact with the principal investigator and caused multiple second and third degree burn injuries to approximately 10 percent of his body. The Office of Health, Safety and Security (HSS) Site Lead for the Idaho Site shadowed the accident investigation team assembled by the contractor in an effort to independently verify that a rigorous, thorough, and unbiased investigation was taking place, and to maintain awareness of the events surrounding the accident

  5. Computational fluid dynamics modeling of chemical looping combustion process with calcium sulphate oxygen carrier - article no. A19

    SciTech Connect (OSTI)

    Baosheng Jin; Rui Xiao; Zhongyi Deng; Qilei Song [Southeast University (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

    2009-07-01T23:59:59.000Z

    To concentrate CO{sub 2} in combustion processes by efficient and energy-saving ways is a first and very important step for its sequestration. Chemical looping combustion (CLC) could easily achieve this goal. A chemical-looping combustion system consists of a fuel reactor and an air reactor. Two reactors in the form of interconnected fluidized beds are used in the process: (1) a fuel reactor where the oxygen carrier is reduced by reaction with the fuel, and (2) an air reactor where the reduced oxygen carrier from the fuel reactor is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, while the outlet gas stream from the air reactor contains only N{sub 2} and some unused O{sub 2}. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. Until now, there is little literature about mathematical modeling of chemical-looping combustion using the computational fluid dynamics (CFD) approach. In this work, the reaction kinetic model of the fuel reactor (CaSO{sub 4}+ H{sub 2}) is developed by means of the commercial code FLUENT and the effects of partial pressure of H{sub 2} (concentration of H{sub 2}) on chemical looping combustion performance are also studied. The results show that the concentration of H{sub 2} could enhance the CLC performance.

  6. ChBE 4505/4525 Chemical Process Design/Biochemical Process Design Basic Curriculum and Learning Outcomes.

    E-Print Network [OSTI]

    Sherrill, David

    Outcomes. Credit: 3-0-3 Instructor: Matthew J. Realff Textbook: Product & Process Design Principles, Third Edition, Wiley 2009. W.D. Seider, J.D. Seader, D.R. Lewin, S. Widagdo, Catalog Description: Principles Phen. II (ChBE 3210), Kinetics & Reactor Design (ChBE 4300), and separation processes (ChBE 3225

  7. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  8. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  9. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    SciTech Connect (OSTI)

    John S. Irving; R. P. Breckenridge

    1992-12-01T23:59:59.000Z

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface flows can occur as a result of severe cattle grazing along riparian areas and deltas. Groundwater and springs also feed the lake, and are likely critical for oxygen supply during winter stratification. During the winter of 1991, Henrys Lake experienced low dissolved oxygen levels resulting in large fish kills. It is thought that thick ice cover combined with an increase in nutrient loads created conditions resulting in poor water quality. The Idaho Department of Health and Welfare, DEQ is currently conducting a study to determine the water quality of Henrys Lake, the sources contributing to its deterioration, and potential remedial actions to correct problem areas.

  10. Process/Engineering Co-Simulation of Oxy-Combustion and Chemical Looping Combustion

    SciTech Connect (OSTI)

    Sloan, David

    2012-12-31T23:59:59.000Z

    Over the past several years, the DOE has sponsored various funded programs, collectively referred to as Advanced Process Engineering Co-Simulator (APECS) programs, which have targeted the development of a steady-state simulator for advanced power plants. The simulator allows the DOE and its contractors to systematically evaluate various power plant concepts, either for preliminary conceptual design or detailed final design. One of the novel and powerful characteristics of the simulator is that it is designed to couple a hierarchy of plant-level and equipment-level models that have varying levels of fidelity and computational speed suitable. For example, the simulator may be used to couple the cycle analysis software Aspen Plus? (marketed by Aspen Technology, Inc.) with an equipment item on the process flowsheet modeled with the FLUENT? computational fluid dynamics (CFD) code (marketed by ANSYS Inc.). An important enhancement to the APECS toolkit has been the creation of computationally efficient reduced-order models (ROMs) based on information generated from high-fidelity CFD models. The overarching goal of the present DOE program has been to advance and apply APECS to an overlapping advanced carbon capture technology applications area and a dense-phase, chemical looping (CL) applications area. The specific objectives of the project are to (1) develop ROMs for dense-phase computations using the ROM Builder (based on the regression ROM methodology plus principal component analysis (PCA) for contour plots), and (2) demonstrate commercial-scale, oxyfired (OF), circulating fluidized bed (CFB) co-simulations, as well as CL combustion cosimulations, using the ROM and APECS tool kit. The overall intent of the program is to enhance the APECS toolkit so that it is capable of providing dense-phase riser co-simulations using a CAPEOPEN (CO)-compliant ROM, constructed using the ROM Builder, for CL and oxy-fired CFB systems. As the prime contractor, Alstom Power has the responsibility to demonstrate the capabilities of the enhanced APECS tool to simulate commercial-scale OF CFB and CL combustion co-simulations, both of which involve the time-dependent, dense-phase submodels in the FLUENT? code. ANSYS Inc., as a subcontractor, bears the responsibility to enhance the APECS tool kit for the dense-phase submodel applications, and to assist in the development of specific User-Defined Functions (UDFs) necessary for the particle-phase reactions. In April of 2012, Alstom was notified that the workscope would be curtailed after the end of the budget period. Alstom and the DOE agreed to a revised workscope. The technical work was originally encompassed by Tasks 3 and 4. Task 3, associated with the OF CFB applications area, was curtailed, and Task 4, associated with the CL applications area, was eliminated. Only a portion of Task 3 has been completed. Consequently, this report constitutes a final report for that body of work that was accomplished through May of 2012, in accordance with the workscope revisions.

  11. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOE Patents [OSTI]

    Efthimion, Philip C. (Bedminister, NJ); Helfritch, Dennis J. (Flemington, NJ)

    1989-11-28T23:59:59.000Z

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  12. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01T23:59:59.000Z

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  13. Idaho National Laboratory Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2008-04-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  14. Idaho National Laboratory Research & Development Impacts

    SciTech Connect (OSTI)

    Nicole Stricker

    2015-01-01T23:59:59.000Z

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  15. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2010-10-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  16. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2012-08-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  17. Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

    1999-10-01T23:59:59.000Z

    The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

  18. Computer-Aided Process Engineering Center Department of Chemical and Biochemical Engineering

    E-Print Network [OSTI]

    Mosegaard, Klaus

    of a distillation column (Karsten Clement) Product design and solvent selection/design (Rafiqul Gani) Modelling design and control of dividing wall distillation column (Gürkan Sin/Rafiqul Gani) Risk assessment/Simulation, Synthesis, Design, Analysis and Control/Operation for Chemical, Petrochemical, Pharmaceutical, Agrochemical

  19. Development of a spatially controllable chemical vapor deposition reactor with combinatorial processing capabilities

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Development of a spatially controllable chemical vapor deposition reactor with combinatorial these limitations, a novel CVD reactor system has been developed that can explicitly control the spatial profile flexibility, we introduced a new CVD reactor concept that enables control of film deposition characteristics

  20. Integrating Chemical Hazard Assessment into the Design of Inherently Safer Processes

    E-Print Network [OSTI]

    Lu, Yuan

    2012-02-14T23:59:59.000Z

    Thermodynamics and Hazard Evaluation CART Calculated Adiabatic Reaction Temperature NFPA National Fire Protection Association EP Explosion Potential TMR Time to maximum rate ix ix SADT Self Accelerating Decomposition Temperature CSB U......................................................................................... 18 2.3 Computational quantum chemistry simulation ................................................ 20 2.4 Classification systems for reactive chemicals .................................................. 21 2.4.1 Reaction hazard...

  1. Chemical Addition prior to Membrane Processes for Natural Organic Matter (NOM) Removal 

    E-Print Network [OSTI]

    Schäfer, Andrea; Fane, Anthony G.; Waite, T. D.

    1998-01-01T23:59:59.000Z

    Membrane processes for surface water treatment include microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF), depending on the target material to be removed and the limiting process economics. MF will remove ...

  2. Idaho Application for Permit to Convert a Geothermal Injection...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal Injection Well - Form 4003-3 Form Type ApplicationNotice Form...

  3. Idaho Application for Permit to Construct Modify or Maintain...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- RegulationRegulation: Idaho Application for Permit to Construct Modify or Maintain an Injection Well - Form 42-39-1Legal Published NA...

  4. Idaho Falls Power- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power's Energy Efficiency Loan Program offers zero interest loans for qualifying customers to purchase and install efficient electric appliances. The program will loan up to 100% of the...

  5. NEZ PERCE SOIL AND WATER CONSERVATION DISTRICT CULDESAC, IDAHO 83524

    E-Print Network [OSTI]

    of Culdesac, McGregor Company, and the Idaho Soil Conservation Commission. In addition, the District has of the wetland and sod bio-logs that are installed our projects. This results in more on-the-ground projects

  6. Mission Need Statement: Idaho Spent Fuel Facility Project

    SciTech Connect (OSTI)

    Barbara Beller

    2007-09-01T23:59:59.000Z

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  7. Idaho Falls Power- Energy Efficient Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers zero interest loans to all eligible customers for the purchase and installation of energy efficient heat pumps. The Heat Pump Program applies to heating or cooling in...

  8. Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming, Missouri...

    Broader source: Energy.gov (indexed) [DOE]

    in the Mountain West and emerging opportunities in the President's all-of-the-above energy strategy. He will also tour the Human Systems Simulation Laboratory at the Idaho...

  9. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Company, related to a Radioactive Material Release at the Idaho National Engineering and Environmental Laboratory, (EA-98-04) On June 4, 1998, the U.S. Department of...

  10. Idaho Right-of-Way Encroachment Application and Permit - Other...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Right-of-Way Encroachment Application and Permit - Other Encroachments Form Type ApplicationNotice...

  11. Idaho Power Develops Renewable Integration Tool for More Cost...

    Broader source: Energy.gov (indexed) [DOE]

    developed a Renewables Integration Tool (RIT) that enables grid operators to use wind energy more cost-effectively to serve electricity customers in Idaho and Oregon. The tool was...

  12. Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment

    Broader source: Energy.gov [DOE]

    For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment...

  13. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

    2012-07-26T23:59:59.000Z

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

  14. Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass

    E-Print Network [OSTI]

    Gasification of Wet Biomass Feedstocks Douglas C. Elliott,* Gary G. Neuenschwander, Todd R. Hart, R. Scott the preliminary results of continuous-flow reactor studies with wet biomass feedstocks using new catalyst systems of con- tinuous reactor tests with biomass feedstocks provide preliminary short-term processing results,8

  15. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2013-03-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  16. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2012-03-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  17. Finding of no significant impact for the interim action for cleanup of Pit 9 at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0854, for an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The proposed action would be conducted at Pit 9, Operable Unit 7--10, located at the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). The proposed action consists of construction of retrieval and processing buildings, excavation and retrieval of wastes from Pit 9, selective physical separation and chemical extraction, and stabilization of wastes either through thermal processing or by forming a stabilized concentrate. The proposed action would involve limited waste treatment process testing and full-scale waste treatment processing for cleaning up pre-1970 Transuranic (TRU) wastes in Pit 9. The purpose of this interim action is to expedite the overall cleanup at the RWMC and to reduce the risks associated with potential migration of Pit 9 wastes to the Snake River Plain Aquifer.

  18. A process for the chemical preparation of high-field ZnO varistors

    DOE Patents [OSTI]

    Brooks, R.A.; Dosch, R.G.; Tuttle, B.A.

    1986-02-19T23:59:59.000Z

    Chemical preparation techniques involving co-precipitation of metals are used to provide microstructural characteristics necessary in order to produce ZnO varistors and their precursors for high field applications. The varistors produced have homogeneous and/or uniform dopant distributions and a submicron average grain size with a narrow size distribution. Precursor powders are prepared via chemical precipitation techniques and varistors made by sintering uniaxially and/or isostatically pressed pellets. Using these methods, varistors were made which were suitable for high-power applications, having values of breakdown field, E/sub B/, in the 10 to 100 kV/cm range, ..cap alpha.. > 30 and densities in the range of 65 to 99% of theoretical, depending on both composition and sintering temperature.

  19. Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report

    SciTech Connect (OSTI)

    No name listed on publication

    2011-08-01T23:59:59.000Z

    Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

  20. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  1. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  2. Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Butner, Scott S.; Zacher, Alan H.; Engelhard, Mark H.; Young, James S.; McCready, David E.

    2004-07-01T23:59:59.000Z

    Through the use of a metal catalyst, gasification of wet biomass can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In the pressurized-water environment (20 MPa) near-total conversion of the organic structure of biomass to gases has been accomplished in the presence of a ruthenium metal catalyst. The process is essentially steam reforming as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high-levels of methane, as dictated by thermodynamic equilibrium. Biomass trace components cause processing difficulties using the fixed catalyst bed tubular reactor system. Results are described for both bench-scale and scaled-up reactor systems.

  3. Energy Efficient Refinery Process Developed with U.S. D.O.E. Support

    E-Print Network [OSTI]

    Mings, W. J.

    1983-01-01T23:59:59.000Z

    ENERGY EFFICIENT REFINERY PROCESS DEVELOPED WITH U.S. D.O.E. SUPPORT Walter J. Mings, P.E. EG&G Idaho, Inc. Idaho Falls, Idaho Abstract The United States Department of Energy histori cally has encouraged private efforts to develop en ergy... with potential for extensive industrial energy savings. INTRODUCTION An innovative energy saving refinery process (also called the catalytic distillation process) for pro ducing MTBE (Methyl Tertiary Butyl Ether) was devel oped by two Houston companies...

  4. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  5. What can I do with a degree in Chemical and Process Engineering?

    E-Print Network [OSTI]

    Hickman, Mark

    , wood into paper products, crude oil into petrol, sugar into ethanol, waste water into clean water and waste products into usable energy. They work in areas such as oil and gas, renewable energy, biofuel and process engineers are concerned with transforming bulk raw materials into processed, marketable products

  6. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15T23:59:59.000Z

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  7. Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository

    SciTech Connect (OSTI)

    Xu, T.; Senger, R.; Finsterle, S.

    2011-02-01T23:59:59.000Z

    After closure of an underground nuclear waste repository, the decay of radionuclides will raise temperature in the repository, and the bentonite buffer will resaturate by water inflow from the surrounding host rock. The perturbations from these thermal and hydrological processes are expected to dissipate within hundreds to a few thousand years. Here, we investigate coupled thermal-hydro-chemical processes and their effects on the short-term performance of a potential nuclear waste repository located in a clay formation. Using a simplified geometric configuration and abstracted hydraulic parameters of the clayey formation, we examine geochemical processes, coupled with thermo-hydrologic phenomena, and potential changes in porosity near the waste container during the early thermal period. The developed models were used for evaluating the mineral alterations and potential changes in porosity of the buffer, which can affect the repository performance. The results indicate that mineral alteration and associated changes in porosity induced by early thermal and hydrological processes are relatively small and are expected to not significantly affect flow and transport properties. Chlorite precipitation was obtained in all simulation cases. A maximum of one percent volume fraction of chlorite could be formed, whose process may reduce swelling and sorption capacity of bentonite clay, affecting the performance of the repository. llitisation process was not obtained from the present simulations.

  8. Process for preparing chemically modified micas for removal of cesium salts from aqueous solution

    DOE Patents [OSTI]

    Yates, Stephen Frederic (1539 S. Kennicott Dr., Arlington Heights, IL 60005); DeFilippi, Irene (208 E. Edgewood La., Palatine, IL 60067); Gaita, Romulus (6646 Davis Rd., Morton Grove, IL 60053); Clearfield, Abraham (Department of Chemistry, Texas A& M University, College Station, TX 77843); Bortun, Lyudmila (Department of Chemistry, Texas A& M University, College Station, TX 77843); Bortun, Anatoly (Department of Chemistry, Texas A& M University, College Station, TX 77843)

    2000-09-05T23:59:59.000Z

    A chemically modified mica composite formed by heating a trioctahedral mica in an aqueous solution of sodium chloride having a concentration of at least 1 mole/liter at a temperature greater than 180 degrees Centigrade for at least 20 hours, thereby replacing exchangeable ions in the mica with sodium. Formation is accomplished at temperatures and pressures which are easily accessed by industrial equipment. The reagent employed is inexpensive and non-hazardous, and generates a precipitate which is readily separated from the modified mica.

  9. Idaho National Laboratory Site Pollution Prevention Plan

    SciTech Connect (OSTI)

    E. D. Sellers

    2007-03-01T23:59:59.000Z

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

  10. Update on Ultrasonic Thermometry Development at Idaho National Laboratory

    SciTech Connect (OSTI)

    Joshua Daw; Joy Rempe; John Crepeau

    2012-07-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has initiated an effort to evaluate the viability of using ultrasonic thermometry technology as an improved sensor for detecting temperature during irradiation testing of advanced fuels proposed within the Fuel Cycle Research and Development (FCR&D) program sponsored by the U.S. Department of Energy (US DOE). Ultrasonic thermometers (UTs) work on the principle that the speed at which sound travels through a material (acoustic velocity) is dependent on the temperature of the material. UTs have several advantages over other types of temperature sensors . UTs can be made very small, as the sensor consists only of a small diameter rod which may or may not require a sheath. Measurements may be made up to very high temperature (near the melting point of the sensor material) and, as no electrical insulation is required, shunting effects observed in traditional high temperature thermocouple applications are avoided. Most attractive, however, is the ability to introduce multiple acoustic discontinuities into the sensor, as this enables temperature profiling with a single sensor. The current paper presents initial results from FCR&D UT development efforts. These developments include improved methods for fabricating magnetostrictive transducers and joining them to waveguides, characterization of candidate sensor materials appropriate for use in FCR&D fuels irradiations (both ceramic fuels in inert gas and sodium bonded metallic fuels), enhanced signal processing techniques, and tests to determine potential accuracy and resolution.

  11. Process sensing and metrology in gate oxide growth by rapid thermal chemical vapor deposition from SiH4 and N2O

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Process sensing and metrology in gate oxide growth by rapid thermal chemical vapor deposition from for Advanced Electronic Materials Processing, North Carolina State University, Raleigh, North Carolina 27695-7920 Received 7 January 1999; accepted 21 May 1999 Active sampling mass spectrometry has been used for process

  12. Risk Measures Constituting Risk Metrics for Decision Making in the Chemical Process Industry

    E-Print Network [OSTI]

    Prem, Katherine

    2012-02-14T23:59:59.000Z

    monetization. Predicting incidents as leading metrics is pivotal to improving plant processes and, for individual and societal safety in the vicinity of the plant (portfolio). From this study it can be concluded that the comprehensive judgments of all the risks...

  13. Method and apparatus for laser/plasma chemical processing of substrates

    DOE Patents [OSTI]

    Gee, J.M.; Hargis, P.J. Jr.

    1984-07-21T23:59:59.000Z

    A process for the modification of substrate surfaces is described, wherein etching or deposition at a surface occurs only in the presence of both reactive species and a directed beam of coherent light.

  14. Development and application of chemical tools for investigating dynamic processes in cell migration

    E-Print Network [OSTI]

    Goguen, Brenda Nicole

    2011-01-01T23:59:59.000Z

    Cell migration is a dynamic process essential for many fundamental physiological functions, including wound repair and the immune response. Migration relies on precisely orchestrated events that are regulated in a spatially ...

  15. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2014-02-01T23:59:59.000Z

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  16. The origins of light and heavy r-process elements identified by chemical tagging of metal-poor stars

    E-Print Network [OSTI]

    Tsujimoto, Takuji

    2014-01-01T23:59:59.000Z

    Growing interests in neutron star (NS) mergers as the origin of r-process elements have sprouted since the discovery of evidence for the ejection of these elements from a short-duration gamma-ray burst. The hypothesis of a NS merger origin is reinforced by a theoretical update of nucleosynthesis in NS mergers successful in yielding r-process nuclides with A>130. On the other hand, whether the origin of light r-process elements are associated with nucleosynthesis in NS merger events remains unclear. We find a signature of nucleosynthesis in NS mergers from peculiar chemical abundances of stars belonging to the Galactic globular cluster M15. This finding combined with the recent nucleosynthesis results implies a potential diversity of nucleosynthesis in NS mergers. Based on these considerations, we are successful in the interpretation of an observed correlation between [light r-process/Eu] and [Eu/Fe] among Galactic halo stars and accordingly narrow down the role of supernova nucleosynthesis in the r-process pr...

  17. Energy 32 (2007) 335343 Minimizing the entropy production in a chemical process

    E-Print Network [OSTI]

    Kjelstrup, Signe

    2007-01-01T23:59:59.000Z

    , a partial condenser, two tray distillation columns and a handful of heat exchangers and compressors and the two distillation columns. Although several simplifying assumptions were made for computational reasons designed for dehydrogenation of propane. The process consists of 21 units, including a plug-flow reactor

  18. Flowsheet optimization with implicit models and complex cost and size functions using Chemical Process Simulators.

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    of the paths between unit operations, or choices of different technologies among them. Along the history of the flowsheet, recycle structure of the flowsheet, general structure of the separation system, (vapor and liquid recovery), and heat integration. If the process becomes unprofitable as the design proceeds, the search

  19. Chemical Engineering and Processing 43 (2004) 149160 Minimum superficial gas velocity for onset of foaming

    E-Print Network [OSTI]

    Pilon, Laurent

    ; Foam fractionation; Slag foaming; Glass foam 1. Introduction Semi-batch foams or pneumatic foams protein concentration [2]. In food processes or in glass melting furnaces, foam is unde- sirable since of foaming Laurent Pilona,, Raymond Viskantab a Mechanical and Aerospace Engineering Department, University

  20. Radiological survey of the radioactive sands and residues at Lowman, Idaho

    SciTech Connect (OSTI)

    Haywood, F.F.; Burden, J.E.; Ellis, B.S.; Loy, E.T.; Shinpaugh, W.H.

    1980-08-01T23:59:59.000Z

    No uranium ore milling was performed at the Lowman site, which is located approximately 0.8 km northeast of the town of Lowman, Idaho. Nevertheless, approximately 80,000 metric tons of radioactive sands and residues from upgrading of heavy minerals by physical processing methods remain on the site grounds. Measurements of external gamma radiation 1 m above the surface showed exposure rates up to 2.4 mR/hr on site, but the exposure rate off site quickly dropped to the background level in all directions. Analysis of surface soil and sediment samples for /sup 226/Ra and /sup 232/Th indicated a limited spread of radioactive material.

  1. Idaho National Laboratory 2013-2022 Ten-Year Site Plan

    SciTech Connect (OSTI)

    Calvin Ozaki; Sheryl L. Morton; Elizabeth A. Connell; William T. Buyers; Craig L. Jacobson; Charles T. Mullen; Christopher P. Ischay; Ernest L. Fossum; Robert D. Logan

    2011-06-01T23:59:59.000Z

    The Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of transforming the laboratory to meet Department of Energy (DOE) national nuclear research and development (R&D) goals, as outlined in DOE strategic plans. The plan links R&D mission goals and INL core capabilities with infrastructure requirements (single- and multi-program), establishs the 10-year end-state vision for INL complexes, and identifies and prioritizes infrastructure needs and capability gaps. The TYSP serves as the basis for documenting and justifying infrastructure investments proposed as part of the FY 2013 budget formulation process.

  2. I.C. 67-52 - Idaho Administrative Procedure Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat ofEnergy52 - Idaho Administrative

  3. I.C. 68-52 - Idaho Administrative Procedure Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat ofEnergy52 - IdahoProcedure Act Jump

  4. Idaho How to Obtain EPA ID Number Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ StorageObtain EPA ID

  5. Idaho IC 42-4002, Geothermal Resources Act Definitions | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ StorageObtain EPA

  6. Idaho IC 61-1701, Legislative Purposes and Findings for the Siting of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ StorageObtainCertain

  7. Idaho IC 61-526, Certificate of Convenience and Necessity | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ

  8. Idaho IC 67-6508, Planning Duties for Local Land Use | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQInformation 7-6508,

  9. Idaho IC Title 42, Irrigation and Drainage - Water Rights and Reclamation |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQInformation

  10. Idaho Instruction for Filing a Request for Extension of Time to Submit

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQInformationProof of

  11. Idaho Notice of Intent to Abandon a Well (DWR Form 4007) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformation Abandon a Well

  12. Idaho Report of Abandonment of a Well (DWR Form 4009) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformation

  13. Idaho Request for Extension of Time to Submit Proof of Beneficial Use (DWR

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformationForm 204) |

  14. Idaho Right-of-Way Encroachment Application and Permit for Utilities | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdahoInformationForm 204)Energy

  15. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    SciTech Connect (OSTI)

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12T23:59:59.000Z

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline (octane or decane) at low temperature and ambient pressure via treatment with a TAML activator and hydrogen peroxide in a two-phase system consisting of the fuel as the first phase and a water/tertiary butanol second phase. The DBTs are oxidized to sulphones (or sulfoxides), which then completely extract into the water/t-butanol phase. Treatment of commercial diesel spiked with DBT under the same conditions results in compete DBT oxidation. In contrast with the octane and decane experiments, removal to the water/t-butanol phase is not yet complete and is being further optimized. Analysis by the sulfur specific GC-FPD technique suggests that >70% sulfur compounds are removed from unspiked diesel after one treatment. Further treatments are being investigated. The GC-FPD results will be checked by total sulfur analysis methodology.

  16. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595

  17. Physical features of accumulation and distribution processes of small disperse coal dust precipitations and absorbed radioactive chemical elements in iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

    2012-01-01T23:59:59.000Z

    The physical features of absorption process of radioactive chemical elements and their isotopes in the iodine air filters of the type of AU-1500 at the nuclear power plants are researched. It is shown that the non-homogenous spatial distribution of absorbed radioactive chemical elements and their isotopes in the iodine air filter, probed by the gamma-activation analysis method, is well correlated with the spatial distribution of small disperse coal dust precipitations in the iodine air filter. This circumstance points out to an important role by the small disperse coal dust fractions of absorber in the absorption process of radioactive chemical elements and their isotopes in the iodine air filter. The physical origins of characteristic interaction between the radioactive chemical elements and the accumulated small disperse coal dust precipitations in an iodine air filter are considered. The analysis of influence by the researched physical processes on the technical characteristics and functionality of iodine ...

  18. Idaho HWMA/RCRA Closure Plan for Idaho Nuclear Technology and Engineering Center Tanks WM-182 and WM-183 - Rev. 2

    SciTech Connect (OSTI)

    Evans, Susan Kay; unknown

    2000-12-01T23:59:59.000Z

    This document presents the plan for the closure of the Idaho Nuclear Technology and Engineering Center Tank Farm Facility tanks WM-182 and WM-183 in accordance with Idaho Hazardous Waste Management Act/Resource Conservation and Recovery Act interim status closure requirements. Closure of these two tanks is the first in a series of closures leading to the final closure of the eleven 300,000-gal tanks in the Tank Farm Facility. As such, closure of tanks WM-182 and WM-183 will serve as a proof-of-process demonstration of the waste removal, decontamination, and sampling techniques for the closure of the remaining Tank Farm Facility tanks. Such an approach is required because of the complexity and uniqueness of the Tank Farm Facility closure. This plan describes the closure units, objectives, and compliance strategy as well as the operational history and current status of the tanks. Decontamination, closure activities, and sampling and analysis will be performed with the goal of achieving clean closure of the tanks. Coordination with other regulatory requirements, such as U.S. Department of Energy closure requirements, is also discussed.

  19. U.S. Department of Energy Idaho National Engineering and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Program Final...

  20. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

    2011-11-01T23:59:59.000Z

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  1. Training Reciprocity Achieves Greater Consistency, Saves Time and Money for Idaho, Other DOE Sites

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – Contracting companies supporting EM’s cleanup program at the Idaho site volunteered to be among the first to use a new DOE training reciprocity program designed to bring more consistency to health and safety training across the complex, reduce redundancy and realize savings and other efficiencies.

  2. Idaho Site’s Cold War Cleanup Takes Center Stage in Publication

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An association with more than 29,000 members featured an in-depth article on EM’s extensive Cold War legacy cleanup at the Idaho site in the current issue of its publication, The Military Engineer.

  3. The production of fuels and chemicals from food processing wastes using a novel fermenter separator

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01T23:59:59.000Z

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  4. Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes

    DOE Patents [OSTI]

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-05-28T23:59:59.000Z

    The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

  5. Analysis of buoyancy and tube rotation relative to the modified chemical vapor deposition process

    SciTech Connect (OSTI)

    Choi, M.; Lin, Y.T.; Greif, R. (Univ. of California, Berkeley (USA))

    1990-11-01T23:59:59.000Z

    The secondary flows resulting from buoyancy effects in respect to the MCVD process have been studied in a rotating horizontal tube using a perturbation analysis. The three-dimensional secondary flow fields have been determined at several axial locations in a tube whose temperature varies in both the axial and circumferential directions for different rotational speeds. For small rotational speeds, buoyancy and axial convection are dominant and the secondary flow patterns are different in the regions near and far from the torch. For moderate rotational speeds, the effects of buoyancy, axial and angular convection are all important in the region far from the torch where there is a spiraling secondary flow. For large rotational speeds, only buoyancy and angular convection effects are important and no spiraling secondary motions occurs far downstream. Compared with thermophoresis, the important role of buoyancy in determining particle trajectories in MCVD is presented. As the rotational speed increases, the importance of the secondary flow decreases and the thermophoretic contribution vecomes more important. It is noted that thermophoresis is considered to be the main cause of particle deposition in the MCVD process.

  6. Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes

    SciTech Connect (OSTI)

    Weiss, Theodor; Nowak, Martin; Zielasek, Volkmar, E-mail: zielasek@uni-bremen.de; Bäumer, Marcus [Institut für Angewandte und Physikalische Chemie, Universität Bremen, Leobener Straße UFT, D-28359 Bremen (Germany); Mundloch, Udo; Kohse-Höinghaus, Katharina [Physikalische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld (Germany)

    2014-10-15T23:59:59.000Z

    Optimizing thin film deposition techniques requires contamination-free transfer from the reactor into an ultrahigh vacuum (UHV) chamber for surface science analysis. A very compact, multifunctional Chemical Vapor Deposition (CVD) reactor for direct attachment to any typical UHV system for thin film analysis was designed and built. Besides compactness, fast, easy, and at the same time ultimately clean sample transfer between reactor and UHV was a major goal. It was achieved by a combination of sample manipulation parts, sample heater, and a shutter mechanism designed to fit all into a NW38 Conflat six-ways cross. The present reactor design is versatile to be employed for all commonly employed variants of CVD, including Atomic Layer Deposition. A demonstration of the functionality of the system is provided. First results of the setup (attached to an Omicron Multiprobe x-ray photoelectron spectroscopy system) on the temperature dependence of Pulsed Spray Evaporation-CVD of Ni films from Ni acetylacetonate as the precursor demonstrate the reactor performance and illustrate the importance of clean sample transfer without breaking vacuum in order to obtain unambiguous results on the quality of CVD-grown thin Ni films. The widely applicable design holds promise for future systematic studies of the fundamental processes during chemical vapor deposition or atomic layer deposition.

  7. Idaho, Navy, DOE agree on shipments to, from INEL

    SciTech Connect (OSTI)

    Tompkins, B.

    1995-12-01T23:59:59.000Z

    This report describes aspects of a legal agreement between the U.S. Navy, the state of Idaho, and the United States Department of Energy (US DOE) regarding shipments of radioactive wastes. The agreement will allow for the shipment of 244 spent fuel shipments from the Fort St Vrain facility in Colorado, if a repository or interim storage facility outside Idaho is open and accepting spent fuel from INEL. The number of shipments to the INEL will be limited to 1133, instead of the 1940 originally planned. The Navy will be allowed 575 total shipments through the year 2035.

  8. Idaho Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdaho Regions National Science Bowl®Idaho

  9. Idaho National Laboratory - WAG-1 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho

  10. Idaho National Laboratory - WAG-2 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho2

  11. Idaho National Laboratory - WAG-3 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho23

  12. Idaho National Laboratory - WAG-4 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 JulyE, EXEMPTION| Department ofIdaho1 Idaho234

  13. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    SciTech Connect (OSTI)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28T23:59:59.000Z

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  14. TREATMENT TANK OFF-GAS TESTING FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    SciTech Connect (OSTI)

    Wiersma, B.

    2011-08-29T23:59:59.000Z

    The purpose of this activity was to provide a bounding estimate of the volume of hydrogen gas generated during Enhanced Chemical Cleaning (ECC) of residual sludge remaining in a Type I or Type II treatment tank as well as to provide results independent of the sludge volume in the waste tank to be cleaned. Previous testing to support Chemical Cleaning was based on a 20:1 oxalic acid to sludge ratio. Hydrogen gas evolution is the primary safety concern. Sealed vessel coupon tests were performed to estimate the hydrogen generation rate due to corrosion of carbon steel by 2.5 wt.% oxalic acid. These tests determined the maximum instantaneous hydrogen generation rate, the rate at which the generation rate decays, and the total hydrogen generated. These values were quantified based on a small scale methodology similar to the one described in WSRC-STI-2007-00209, Rev. 0. The measured rates support identified Safety Class functions. The tests were performed with ASTM A285 Grade C carbon steel coupons. Bounding conditions were determined for the solution environment. The oxalic acid concentration was 2.5 wt.% and the test temperature was 75 C. The test solution was agitated and contained no sludge simulant. Duplicate tests were performed and showed excellent reproducibility for the hydrogen generation rate and total hydrogen generated. The results showed that the hydrogen generation rate was initially high, but decayed rapidly within a couple of days. A statistical model was developed to predict the instantaneous hydrogen generation rate as a function of exposure time by combining both sets of data. An upper bound on the maximum hydrogen generation rate was determined from the upper 95% confidence limit. The upper bound confidence limit for the hydrogen generation rate is represented by the following equation. ln (G{sub v}) = -8.22-0.0584 t + 0.0002 t{sup 2}. This equation should be utilized to estimate the instantaneous hydrogen generation rate per unit surface area, G{sub v}, at a given time, t. The units for G{sub v} and t are ft{sup 3}/ft{sup 2}/min and hours, respectively. The total volume of hydrogen gas generated during the test was calculated from the model equation. An upper bound on the total gas generated was determined from the upper 95% confidence limit. The upper bound limit on the total hydrogen generated during the 163 hour test was 0.332 ft{sup 3}/ft{sup 2}. The maximum instantaneous hydrogen generation rate for this scenario is greater than that previously measured in the 8 wt.% oxalic acid tests due to both the absence of sludge in the test (i.e., greater than 20:1 ratio of acid to sludge) and the use of polished coupons (vs. mill scale coupons). However, due to passivation of the carbon steel surface, the corrosion rate decays by an order of magnitude within the first three days of exposure such that the instantaneous hydrogen generation rates are less than that previously measure in the 8 wt.% oxalic acid tests. While the results of these tests are bounding, the conditions used in this study may not be representative of the ECC flowsheet, and the applicability of these results to the flowsheet should be evaluated for the following reasons: (1) The absence of sludge results in higher instantaneous hydrogen generation rates than when the sludge is present; and (2) Polished coupons do not represent the condition of the carbon steel interior of the tank, which are covered with mill scale. Based on lower instantaneous corrosion rates measured on mill scale coupons exposed to oxalic acid, lower instantaneous hydrogen generation rates are expected for the tank interior than measured on the polished coupons. Corrosion rates were determined from the coupon tests and also calculated from the measured hydrogen generation rates. Excellent agreement was achieved between the time averaged corrosion rate calculated from the hydrogen generation rates and the corrosion rates determined from the coupon tests. The corrosion rates were on the order of 18 to 28 mpy. Good agreement was also observed between the maximum instantaneo

  15. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan K.

    2002-01-02T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  16. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan Keith

    2002-01-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  17. In situ chemical sensing in AlGaN/GaN high electron mobility transistor metalorganic chemical vapor deposition process for real-time

    E-Print Network [OSTI]

    Rubloff, Gary W.

    , Linthicum, Maryland 21090 Rinku Parikh and Raymond A. Adomaitis Department of Chemical Engineering materials have distinguished themselves to be key materials for future semiconductor de- vices aimed at high

  18. Evaluation of Machine Guarding pilot course taught in Idaho Falls, Idaho, June 23, 1992--June 25, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Machine Guarding which was conducted June 23--25 at the Westinghouse Idaho Nuclear Company, in Idaho Falls, Idaho. This class was the fourth pilot course taught. Also, this report summarize the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees` written comments. This class was conducted concurrently with a ``Supervisors Orientation to Occupational Safety in DOE`` class. This allowed the lead instructor to use two experts in the classes without additional cost. The experiment was successful, both from a standpoint of cost and quality. The same format (concurrent classes) will be used at the Nevada test site in October.

  19. Evaluation of Machine Guarding pilot course taught in Idaho Falls, Idaho, June 23, 1992--June 25, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Machine Guarding which was conducted June 23--25 at the Westinghouse Idaho Nuclear Company, in Idaho Falls, Idaho. This class was the fourth pilot course taught. Also, this report summarize the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees' written comments. This class was conducted concurrently with a Supervisors Orientation to Occupational Safety in DOE'' class. This allowed the lead instructor to use two experts in the classes without additional cost. The experiment was successful, both from a standpoint of cost and quality. The same format (concurrent classes) will be used at the Nevada test site in October.

  20. Electromagnetic pulse (EMP) survey of the Idaho State Emergency Operating Center, Boise, Idaho

    SciTech Connect (OSTI)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1992-02-01T23:59:59.000Z

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high- altitude electromagnetic pulses (HEMPs). This report was developed specifically for the Idaho State Emergency Operating Center (EOC) in Boise, Idaho. It is highly probable that there will be a heavy dependence upon high-frequency (hf) radio communications for long- haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, steps must be taken to protect the FNARS facilities against the effects of HEMP that are likely to be created in a nuclear confrontation. The solution must than be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. It is the intent of this report to define the particular hardening measures that will minimize the susceptibility of system components to HEMP effects. To the extent economically viable, protective actions have been recommended for implementation, along with necessary changes or additions, during the period of the FNARS upgrade program. This report addresses electromagnetic pulse (EMP) effects only and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe EMP conditions. The threatening environment will therefore be limited to HEMP situations.

  1. Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    SciTech Connect (OSTI)

    Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

    2003-12-01T23:59:59.000Z

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus adding additional evidence for the possibility of organic matter oxidation as the main source of bicarbonate. Model results indicate that pH and Eh are relatively stable. The dissolution-precipitation trends of hematite, pyrite and calcite also coincide with those indicated by the conceptual model. A thorough sensitivity analysis has been performed for the most relevant microbial parameters as well as for initial and boundary POC and DOC concentrations. The results of such analysis indicate that computed concentrations of bicarbonate, sulfate and DOC are sensitive to most of the microbial parameters, including specific growth rates, half-saturation constants, proportionality coefficients and yield coefficients. Model results, however, are less sensitive to the yield coefficient of DOC to iron-reducer bacteria. The sensitivity analysis indicates that changes in fermentation microbial parameters affect the growth of the iron-reducer, thus confirming the interconnection of both microbial processes. Computed concentrations of bicarbonate and sulfate are found to be sensitive to changes in the initial concentration of POC and the boundary concentration of DOC, but they lack sensitivity to the initial concentration of DOC and the boundary concentration of POC. The explanation for such result is related to the fact that POC has a low mobility due to its large molecular weight. DOC, however, can migrate downwards. Although a coupled hydro-bio-geochemical 1-D model can reproduce the observed ''unexpected'' increase of concentrations of bicarbonate and sulfate at a depth of 70 m, further modeling work is required in order to obtain a similar conclusion under the more realistic two dimensional conditions of the fracture zone.

  2. Finial Scientific/Technical Report: Application of a Circulating Fluidized Bed Process for the Chemical Looping Combustion of Solid Fuel

    SciTech Connect (OSTI)

    Dr. Wei-Ping Pan; Dr. John T. Riley

    2005-10-10T23:59:59.000Z

    Chemical Looping Combustion is a novel combustion technology for the inherent separation of the greenhouse gas, CO{sub 2}. In 1983, Richter and Knoche proposed reversible combustion, which utilized both the oxidation and reduction of metal. Metal associated with its oxidized form as an oxygen carrier was circulated between two reactors--oxidizer and reducer. In the reducer, the solid oxygen carrier reacts with the fuel to produce CO{sub 2}, H{sub 2}O and elemental metal only. Pure CO{sub 2} will be obtained in the exit gas stream from the reducer after H{sub 2}O is condensed. The pure CO{sub 2} is ready for subsequent sequestration. In the oxidizer, the elemental metal reacts with air to form metal oxide and separate oxygen from nitrogen. Only nitrogen and some unused oxygen are emitted from the oxidizer. The advantage of CLC compared to normal combustion is that CO{sub 2} is not diluted with nitrogen but obtained in a relatively pure form without any energy needed for separation. In addition to the energy-free purification of CO{sub 2}, the CLC process also provides two other benefits. First, NO{sub x} formation can be largely eliminated. Secondly, the thermal efficiency of a CLC system is very high. Presently, the CLC process has only been used with natural gas. An oxygen carrier based on an energy balance analysis and thermodynamics analysis was selected. Copper (Cu) seems to be the best choice for the CLC system for solid fuels. From this project, the mechanisms of CuO reduction by solid fuels may be as follows: (1) If pyrolysis products of solid fuels are available, reduction of CuO could start at about 400 C or less. (2) If pyrolysis products of solid fuels are unavailable and the reduction temperature is lower, reduction of CuO could occur at an onset temperature of about 500 C, char gasification reactivity in CO{sub 2} was lower at lower temperatures. (3) If pyrolysis products of solid fuels are unavailable and the reduction temperature is higher than 750 C, all reaction reactivities were improved, especially the CO{sub 2} gasification reactivity of char. Thus, the reduction of CuO by the gasification product CO could proceed quickly. Based on the results obtained, the following coal characteristics would be desirable for the Chemical Looping Combustion process: high volatile matter with a high reactivity of the char produced. PRB coal meets these criteria while being comparatively less expensive and also very abundant. The high moisture content present in PRB coal might also increase the reactivity for char gasification through the development of pore structure and specific surface area in the char during pyrolysis. Biomass materials are also suitable, considering the reaction mechanism of CLC system of solid fuels. The feasibility of the chemical looping combustion process of solid fuels was verified by focusing on PRB coal and biomass. Based on PRB coal as the preferred solid fuel in the development of the CLC system, the mass, energy and system in a dual reactor recirculation system has been determined. In the Cu oxidation tests, it was confirmed that the heating rate is the most important effect on the Cu oxidation process. Lower heating rates and lower operational temperatures would result in incomplete conversion of Cu to CuO. Cu{sub 2}O may be the intermediate product. The operating temperature did not affect the reaction rate of the oxidation process. Under any operating conditions, the exothermic properties are clearly shown.

  3. Microfluidic chemical reaction circuits

    SciTech Connect (OSTI)

    Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

    2012-06-26T23:59:59.000Z

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  4. Computational Chemical Materials Engineering

    E-Print Network [OSTI]

    Home Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department through processing for improving their performance for engineering applications · Use and develop with usable ­ Chemical ­ Electronic ­ Optical ­ Magnetic ­ Transport, thermal and mechanical properties

  5. Spent graphite fuel element processing

    SciTech Connect (OSTI)

    Holder, N.D.; Olsen, C.W.

    1981-07-01T23:59:59.000Z

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  6. Fluid diversion and sweep improvement with chemical gels in oil recovery processes. Final report

    SciTech Connect (OSTI)

    Seright, R.S.; Martin, F.D.

    1992-09-01T23:59:59.000Z

    The objectives of this project were to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants were examined, including polymer-based gelants, a monomer-based gelant, and a colloidal-silica gelant. This research was directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work examined how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals included determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. During this three-year project, a number of theoretical analyses were performed to determine where gel treatments are expected to work best and where they are not expected to be effective. The most important, predictions from these analyses are presented. Undoubtedly, some of these predictions will be controversial. However, they do provide a starting point in establishing guidelines for the selection of field candidates for gel treatments. A logical next step is to seek field data that either confirm or contradict these predictions. The experimental work focused on four types of gels: (1) resorcinol-formaldehyde, (2) colloidal silica, (3) Cr{sup 3+}(chloride)-xanthan, and (4) Cr{sup 3+}(acetate)-polyacrylamide. All experiments were performed at 41{degrees}C.

  7. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    SciTech Connect (OSTI)

    Seright, F.S.; Martin, F.D.

    1991-04-01T23:59:59.000Z

    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  8. Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1987.

    SciTech Connect (OSTI)

    Petrosky, Charles E.; Holubetz, Terry B. (Idaho Dept. of Fish and Game, Boise, ID (USA)

    1988-04-01T23:59:59.000Z

    The Idaho Department of Fish and Game has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) in the Clearwater and Salmon River drainages over the last four years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed to use increased smolt production at full seeding as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on presence of adequate numbers of fish to document actual increases in fish production. The depressed nature of upriver anadromous stocks have precluded attainment of full benefit of any habitat project in Idaho. Partial benefit will be credited to the mitigation record in the interim period of run restoration. According to the BPA Work Plan, project implementors have the primary responsibility for measuring physical habitat and estimating habitat change. To date, Idaho habitat projects have been implemented primarily by the US Forest Service (USFS). The Shoshone-Bannock Tribes (SBT) have sponsored three projects (Bear Valley Mine, Yankee Fork, and the proposed East Fork Salmon River projects). IDFG implemented two barrier-removal projects (Johnson Creek and Boulder Creek) that the USFS was unable to sponsor at that time. The role of IDFG in physical habitat monitoring is primarily to link habitat quality and habitat change to changes in actual, or potential, fish production. Individual papers were processed separately for the data base.

  9. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

    Broader source: Energy.gov [DOE]

    Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

  10. Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste

    SciTech Connect (OSTI)

    Barnes, C.M.; Lauerhass, L.; Olson, A.L.; Taylor, D.D.; Valentine, J.H.; Lockie, K.A. (DOE- ID)

    2002-01-16T23:59:59.000Z

    The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

  11. Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste

    SciTech Connect (OSTI)

    Barnes, Charles Marshall; Lauerhass, Lance; Olson, Arlin Leland; Taylor, Dean Dalton; Valentine, James Henry; Lockie, Keith Andrew

    2002-02-01T23:59:59.000Z

    The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

  12. CRAD, Radiological Controls- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Radiation Protection Program at the Idaho Accelerated Retrieval Project Phase II.

  13. advanced test idaho reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test idaho reactor First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 DISPERSAL AND HARVEST OF SAGE GROUSE...

  14. CRAD, Training- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Training Program at the Idaho Accelerated Retrieval Project Phase II.

  15. CRAD, Conduct of Operations- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2006 Commencement of Operations assessment of the Conduct of Operations program at the Idaho Accelerated Retrieval Project Phase II.

  16. CRAD, Fire Protection- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Fire Protection program at the Idaho Accelerated Retrieval Project Phase II.

  17. Successful neural network projects at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Cordes, G.A.

    1991-01-01T23:59:59.000Z

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs.

  18. CRAD, Emergency Management- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Emergency Management program at the Idaho Accelerated Retrieval Project Phase II.

  19. CRAD, Quality Assurance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Quality Assurance Program at the Idaho Accelerated Retrieval Project Phase II.

  20. Idaho National Laboratory Site Long-Term Stewardship Implementation Plan

    SciTech Connect (OSTI)

    B. E. Olaveson

    2006-07-27T23:59:59.000Z

    The U.S. Department of Energy has established long-term stewardship programs to protect human health and the environment at sites where residual contamination remains after site cleanup. At the Idaho National Laboratory Site, Comprehensive Environmental Response, Compensation, and Liability Act (CERLA) long-term stewardship activities performed under the aegis of regulatory agreements, the Federal Facility Agreement and Consent Order for the Idaho National Laboratory, and state and federal requirements are administered primarily under the direction of the Idaho Cleanup Project. It represents a subset of all on-going environmental activity at the Idaho National Laboratory Site. This plan provides a listing of applicable CERCLA long-term stewardship requirements and their planned and completed implementation goals. It proffers the Long-Term Stewardship Environmental Data Warehouse for Sitewide management of environmental data. This plan will be updated as needed over time, based on input from the U.S. Department of Energy, its cognizant subcontractors, and other local and regional stakeholders.

  1. EECBG Success Story: Boise, Idaho: Saving Money and Reducing Waste

    Broader source: Energy.gov [DOE]

    Thanks to a $1.2 million grant from the Department’s Energy Efficiency and Conservation Block Grant (EECBG) Program, the city of Boise, Idaho, will replace and install 1,450 LED streetlights by the end of this month. The project is projected to save $1.2 million over the next 15 years. Learn more .

  2. CRAD, Occupational Safety & Health- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene Program at the Idaho Accelerated Retrieval Project Phase II.

  3. CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

  4. CRAD, Maintenance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Maintenance program at the Idaho Accelerated Retrieval Project Phase II.

  5. CRAD, Safety Basis- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Safety Basis at the Idaho Accelerated Retrieval Project Phase II.

  6. CRAD, Criticality Safety- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Criticality Safety program at the Idaho Accelerated Retrieval Project Phase II.

  7. Process improvement to the inspection readiness plan in chemical weapons convention challenge inspections. Master`s thesis

    SciTech Connect (OSTI)

    Triplett, W.M.

    1997-09-01T23:59:59.000Z

    This thesis identified current Information Technology initiatives to help improve the Navy`s Inspection Readiness Plan for Chemical Warfare Convention (CWC) Challenge Inspection. The CWC is an intensive inspection. The Challenge Inspection allows for a team of international inspectors to inspect a naval facility suspected of violating the CWC on very short notice. This thesis begins with a review of the CWC Challenge Inspection timeline. It then describes the Navy`s Inspection Readiness Plan for CWC Challenge Inspections as well as the Navy Tiger Team that is sent to naval facilities to assist the Commanding Officer and base personnel during inspections. One of the initiatives evaluated by this analysis is the use of videoconferencing. To ascertain the feasibility of using videoconferencing in the CWC Challenge Inspection process, this thesis reviews the current videoconferencing systems and standards, and the results of a questionnaire that was sent to various naval commands. This thesis concludes with recommendations for inclusion of videoconferencing and various other Information Technology initiatives in the CWC Challenge Inspection process.

  8. MANAGING SPENT NUCLEAR FUEL WASTES AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Hill, Thomas J

    2005-09-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy is in part due to the history of the INL as the National Reactor Testing Station, in part to its mission to recover highly enriched uranium from SNF and in part to it’s mission to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facility, some dating back 50 years in the site history. The success of the INL SNF program is measured by its ability to: 1) achieve safe existing storage, 2) continue to receive SNF from other locations, both foreign and domestic, 3) repackage SNF from wet storage to interim dry storage, and 4) prepare the SNF for dispositioning in a federal repository. Because of the diversity in the SNF and the facilities at the INL, the INL is addressing almost very condition that may exist in the SNF world. Many of solutions developed by the INL are applicable to other SNF storage sites as they develop their management strategy. The SNF being managed by the INL are in a variety of conditions, from intact assemblies to individual rods or plates to powders, rubble, and metallurgical mounts. Some of the fuel has been in wet storage for over forty years. The fuel is stored bare, or in metal cans and either wet under water or dry in vaults, caissons or casks. Inspections have shown varying degrees of corrosion and degradation of the fuel and the storage cans. Some of the fuel has been recanned under water, and the conditions of the fuel inside the second or third can are unknown. The fuel has been stored in one of 10 different facilities: five wet pools and one casks storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The wet pools range from forty years old to the most modern pool in the US Department of Energy (DOE) complex. The near-term objective is moving the fuel in the older wet storage facilities to interim dry storage facilities, thus permitting the shutdown and decommission of the older facilities. Two wet pool facilities, one at the Idaho Nuclear Technology and Engineering Center and the other at Test Area North, were targeted for initial SNF movements since these were some of the oldest at the INL. Because of the difference in the SNF materials different types of drying processes had to be developed. Passive drying, as is done with typical commercial SNF was not an option because on the condition of some of the fuel, the materials to be dried, and the low heat generation of some of the SNF. There were also size limitations in the existing facility. Active dry stations were designed to address the specific needs of the SNF and the facilities.

  9. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect (OSTI)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10T23:59:59.000Z

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  10. CRADA with International Polyol Chemicals, Inc. (IPCI) and Pacific Northwest National Laboratory (PNL-053): Process Optimization for Polyols Production from Glucose

    SciTech Connect (OSTI)

    Elliott, D.C.

    1997-01-01T23:59:59.000Z

    The objective of this CRADA is to provide sufficient process development to allow a decision for commercialization of the International Polyol Chemicals, Inc. (IPCI) process for production of polyols from glucose. This cooperative research allowed Pacific Northwest National Laboratory (PNNL) to focus its aqueous processing systems expertise on the IPCI process to facilitate process optimization. The project was part of the Department of Energy's (DOE/EE-OIT) Alternative Feedstocks Program (AFP). The project was a demonstration of the cooperative effort between the AFP and the Department of Agriculture's Alternative Agriculture Research Center, which was also funding IPCI research.

  11. Geothermal : A Regulatory Guide to Leasing, Permitting, and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    Bloomquist, R.Gordon

    1991-10-01T23:59:59.000Z

    The actual geothermal exploration and development may appear to be a simple and straightforward process in comparison to the legal and institutional maze which the developer must navigate in order to obtain all of the federal, state, and local leases, permits, licenses, and approvals necessary at each step in the process. Finally, and often most difficult, is obtaining a contract for the sale of thermal energy, brine, steam, or electricity. This guide is designed to help developers interested in developing geothermal resource sites in the Bonneville Power Administration Service Territory in the state of Idaho, Montana, Oregon, and Washington better understand the federal, state, and local institutional process, the roles and responsibilities of each agency, and how and when to make contact in order to obtain the necessary documents.

  12. THE CHEMICAL AND RADIATION RESISTANCE OF POLYPHENYLENE SULFIIDE AS ENCOUNTERED IN THE MODULAR CAUSTIC SIDE SOLVENT EXTRACTION PROCESSES

    SciTech Connect (OSTI)

    Fondeur, F.; Herman, D.; Poirier, M.; Fink, S.

    2011-06-30T23:59:59.000Z

    Polyphenylene sulfide (PPS) is a semicrystalline polymer with excellent engineering plastic properties and suitable processing temperatures. PPS can also be made containing branches (using a trifunctional monomer) and with crosslinked microstructure (when curing the monomer at high temperature in the presence of oxygen). PPS is made from the condensation reaction between para-dichlorobenzene and sodium sulfide with the assistance of a catalyst (to lower the activation barrier). The synthesis conditions for making PPS has evolved since its invention in the 1960's to the optimal conditions developed by the Philips Corporation in the 1970's. The resulting polymer consists of chemically stable molecular moieties such as benzene rings and ether like sulfur linkages between the aromatic rings. Polyphenylene sulfide (PPS) is extremely resistant to gamma irradiation, caustic solution, and dilute nitric acid. PPS is the material of construction for the coalescers used in the Modular Caustic-Side Solvent Extraction Unit (MCU). After applying the equivalent of 3.3 E8 rad (330 Mrad), or the equivalent of 11 years of gamma irradiation (assuming a stripping solution concentration of 7.5 Ci/gal), and several months of exposures to 3M caustic solution and caustic salt simulant, no dimensional changes nor chemical changes were detected in PPS whether the PPS was in fiber form or in a composite with E-glass fibers. However, PPS acts as a media for heterogeneous nucleation. In particular, PPS appears to favor aluminosilicate formation in saturated solutions of aluminum and silicon in caustic environments. Parallel testing, in progress, is examining the stability of PPS when exposed to the new solvent formulation under development for MCU. Preliminary data, after two months of exposure, demonstrates PPS is stable to the new solvent.

  13. Idaho National Laboratory (INL) Sitewide Institutional Controls Plan

    SciTech Connect (OSTI)

    W. L. Jolley

    2006-07-27T23:59:59.000Z

    On November 9, 2002, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and the Idaho Department of Environmental Quality approved the Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites, which requires a Sitewide Institutional Controls Plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. The revision is needed to provide an update as remedial actions are completed and new areas of concern are found. This Sitewide Institutional Controls Plan is based on guidance in the May 3, 1999, EPA Region 10 Final Policy on the Use of Institutional Controls at Federal Facilities; the September 29, 2000, EPA guidance Institutional Controls: A Site Manager's Guide to Identifying, Evaluating, and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups; and the April 9, 2003, DOE Policy 454.1, "Use of Institutional Controls." These policies establish measures that ensure short- and long-term effectiveness of institutional controls that protect human health and the environment at federal facility sites undergoing remedial action pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or corrective action pursuant to the Resource Conservation and Recovery Act (RCRA). The site-specific institutional controls currently in place at the Idaho National Laboratory are documented in this Sitewide Institutional Controls Plan. This plan is being updated, along with the Idaho National Engineering and Environmental Laboratory Comprehensive Facilities and Land Use Plan, to reflect the progress of remedial activities and changes in CERCLA sites.

  14. Assessment of the Geothermal System Near Stanley, Idaho

    SciTech Connect (OSTI)

    Trent Armstrong; John Welhan; Mike McCurry

    2012-06-01T23:59:59.000Z

    The City of Stanley, Idaho (population 63) is situated in the Salmon River valley of the central Idaho highlands. Due to its location and elevation (6270 feet amsl) it is one of the coldest locales in the continental U.S., on average experiencing frost 290 days of the year as well as 60 days of below zero (oF) temperatures. Because of high snowfall (76 inches on average) and the fact that it is at the terminus of its rural grid, the city also frequently endures extended power outages during the winter. To evaluate its options for reducing heating costs and possible local power generation, the city obtained a rural development grant from the USDA and commissioned a feasibility study through author Roy Mink to determine whether a comprehensive site characterization and/or test drilling program was warranted. Geoscience students and faculty at Idaho State University (ISU), together with scientists from the Idaho Geological Survey (IGS) and Idaho National Laboratory (INL) conducted three field data collection campaigns between June, 2011 and November, 2012 with the assistance of author Beckwith who arranged for food, lodging and local property access throughout the field campaigns. Some of the information collected by ISU and the IGS were compiled by author Mink and Boise State University in a series of progress reports (Makovsky et al., 2011a, b, c, d). This communication summarizes all of the data collected by ISU including data that were compiled as part of the IGS’s effort for the National Geothermal Data System’s (NGDS) data compilation project funded by the Department of Energy and coordinated by the Arizona Geological Survey.

  15. University of Idaho, U.S. Department of Agriculture, and Idaho counties cooperating. To enrich education through diversity, the University of Idaho is an equal opportunity/affirmative action employer and educational institution.

    E-Print Network [OSTI]

    O'Laughlin, Jay

    -based education, not new product updates. Program Outcomes The Burley seminar is attended by over 100 applica education through diversity, the University of Idaho is an equal opportunity/affirmative action employer and educational institution. The Situation Idaho Statue Title 22 Section 34 defines the law for pesticides

  16. Green Chemical Processing with

    E-Print Network [OSTI]

    Su, Xiao

    · biomaterials: contac lenses made of poly(hydroxyethyl methacrylate) (PHEMA) hydrogels · Advances in slow

  17. Chemical Processing Qualification Standard

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock & ProductionChapter 6 LosChelsea20106-2010

  18. NITRO-HYDROLYSIS: AN ENERGY EFFICIENT SOURCE REDUCTION AND CHEMICAL PRODUCTION PROCESS FOR WASTEWATER TREATMENT PLANT BIOSOLIDS

    SciTech Connect (OSTI)

    Klasson, KT

    2003-03-10T23:59:59.000Z

    The nitro-hydrolysis process has been demonstrated in the laboratory in batch tests on one municipal waste stream. This project was designed to take the next step toward commercialization for both industrial and municipal wastewater treatment facility (WWTF) by demonstrating the feasibility of the process on a small scale. In addition, a 1-lb/hr continuous treatment system was constructed at University of Tennessee to treat the Kuwahee WWTF (Knoxville, TN) sludge in future work. The nitro-hydrolysis work was conducted at University of Tennessee in the Chemical Engineering Department and the gas and liquid analysis were performed at Oak Ridge National Laboratory. Nitro-hydrolysis of sludge proved a very efficient way of reducing sludge volume, producing a treated solution which contained unreacted solids (probably inorganics such as sand and silt) that settled quickly. Formic acid was one of the main organic acid products of reaction when larger quantities of nitric acid were used in the nitrolysis. When less nitric acid was used formic acid was initially produced but was later consumed in the reactions. The other major organic acid produced was acetic acid which doubled in concentration during the reaction when larger quantities of nitric acid were used. Propionic acid and butyric acid were not produced or consumed in these experiments. It is projected that the commercial use of nitro-hydrolysis at municipal wastewater treatment plants alone would result in a total estimated energy savings of greater than 20 trillion Btu/yr. A net reduction of 415,000 metric tons of biosolids per year would be realized and an estimated annual cost reduction of $122M/yr.

  19. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    SciTech Connect (OSTI)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. John, E-mail: ajhart@mit.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-11-15T23:59:59.000Z

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes.

  20. XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings: Importance of adsorption processes

    SciTech Connect (OSTI)

    Morin, G.; Juillot, F.; Ildefonse, P.; Calas, G. [Univ. de Paris 6 et 7 (France). Lab. de Mineralogie-Cristallographie; Ostergren, J.D. [Stanford Univ., CA (United States). Dept. of Geological and Environmental Sciences; Brown, G.E. Jr. [Stanford Univ., CA (United States). Dept. of Geological and Environmental Sciences]|[Stanford Synchrotron Radiation Lab., CA (United States)

    1999-03-01T23:59:59.000Z

    The authors investigated smelter-contaminated soils from Evin-Malmaison, Nord-Pas-de-Calais, France, and mine tailings from Leadville, Colorado, U.S.A. Bulk Pb concentrations range from 460 to 1900 ppm in the topsoils at Evin-Malmaison site and from 6000 to 10,000 ppm in the tailings samples from the Leadville site. These concentrations necessarily raise human health and environmental concerns, but bioavailability and chemical lability of Pb in these materials vary dramatically and show little correlation with bulk concentrations. This study provides detailed information on the speciation of Pb in these materials. Emphasis is on the identification and characterization of poorly crystalline and/or fine-grained species, such as sorption complexes and poorly crystalline (co)precipitates, which are likely to control Pb bioavailability and mobility in these natural systems. In the Evin-Malmaison samples, direct spectroscopic evidence for Pb sorbed to humic acids was found, as well as to both manganese and iron (oxyhydr)oxides. In the Leadville samples, variations in Pb speciation with pH are consistent with predictions based on simplified model system studies of adsorption processes; specifically, the carbonate-buffered tailings with near-neutral pH contain up to 50% of total Pb as adsorption complexes on iron (oxyhydr)oxides, whereas Pb speciation in sulfide-rich low pH samples is dominated by Pb-bearing jarosites with no evidence for adsorbed Pb in these latter samples.

  1. Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center

    SciTech Connect (OSTI)

    M. D. Staiger; Michael Swenson; T. R. Thomas

    2004-05-01T23:59:59.000Z

    This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

  2. PH.D. PROJECT TOPICS IN CHEMICAL AND PROCESS ENGINEERING Potential research topics along with a brief description of them are given below. For more

    E-Print Network [OSTI]

    Mottram, Nigel

    is a big challenge we have to face. CO2 separation/capture is a key technology to re-use CO2 as a chemical measurements. 5. Modelling of a novel carbon capture process Supervisor: Dr. Martin Sweatman Email: martin.sweatman@strath.ac.uk Carbon capture is one of

  3. Materials and Processes for Direct Sun-to-Fuel Chemical Transformations Solar radiation can be used to drive heterogeneous electrochemical reactions at the

    E-Print Network [OSTI]

    Li, Mo

    Materials and Processes for Direct Sun-to-Fuel Chemical Transformations Solar radiation can be used and an efficient means for solar radiation delivery and trapping, poses a major challenge to the commercialization material with superior intrinsic properties, but a synergetic and intimately coupled combination of solar

  4. The conversion of solar energy to the chemical energy of organic compounds is a complex process that includes electron transport and

    E-Print Network [OSTI]

    Ehleringer, Jim

    The conversion of solar energy to the chemical energy of organic compounds is a complex process energy or photon units. Irradiance is the amount of energy that falls on a flat sensor of known area per and energy units for sunlight can be intercon- verted relatively easily, provided that the wavelength

  5. Chemical System Decontamination at PWR Power Stations Biblis A and B by Advanced System Decontamination by Oxidizing Chemistry (ASDOC-D) Process Technology - 13081

    SciTech Connect (OSTI)

    Loeb, Andreas; Runge, Hartmut; Stanke, Dieter [NIS Ingenieurgesellschaft mbH, Industriestrasse 13, 63755 Alzenau (Germany)] [NIS Ingenieurgesellschaft mbH, Industriestrasse 13, 63755 Alzenau (Germany); Bertholdt, Horst-Otto [NCT Consulting, Leonhardstrasse 16-18, 90443 Nuernberg (Germany)] [NCT Consulting, Leonhardstrasse 16-18, 90443 Nuernberg (Germany); Adams, Andreas; Impertro, Michael; Roesch, Josef [RWE Power, 68643 Biblis (Germany)] [RWE Power, 68643 Biblis (Germany)

    2013-07-01T23:59:59.000Z

    For chemical decontamination of PWR primary systems the so called ASDOC-D process has been developed and qualified at the German PWR power station Biblis. In comparison to other chemical decontamination processes ASDOC-D offers a number of advantages: - ASDOC-D does not require separate process equipment but is completely operated and controlled by the nuclear site installations. Feeding of chemical concentrates into the primary system is done by means of the site's dosing systems. Process control is performed by standard site instrumentation and analytics. - ASDOC-D safely prevents any formation and precipitation of insoluble constituents - Since ASDOC-D is operated without external equipment there is no need for installation of such equipment in high radioactive radiation surrounding. The radioactive exposure rate during process implementation and process performance may therefore be neglected in comparison to other chemical decontamination processes. - ASDOC-D does not require auxiliary hose connections which usually bear high leakage risk. The above mentioned technical advantages of ASDOC-D together with its cost-effectiveness gave rise to Biblis Power station to agree on testing ASDOC-D at the volume control system of PWR Biblis unit A. By involving the licensing authorities as well as expert examiners into this test ASDOC-D received the official qualification for primary system decontamination in German PWR. As a main outcome of the achieved results NIS received contracts for full primary system decontamination of both units Biblis A and B (each 1.200 MW) by end of 2012. (authors)

  6. Geothermal resource assessment of Idaho Springs, Colorado. Resource series 16

    SciTech Connect (OSTI)

    Repplier, F.N.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01T23:59:59.000Z

    Located in the Front Range of the Rocky Mountains approximately 30 miles west of Denver, in the community of Idaho Springs, are a series of thermal springs and wells. The temperature of these waters ranges from a low of 68/sup 0/F (20/sup 0/C) to a high of 127/sup 0/F (53/sup 0/C). To define the hydrothermal conditions of the Idaho Springs region in 1980, an investigation consisting of electrical geophysical surveys, soil mercury geochemical surveys, and reconnaissance geological and hydrogeological investigations was made. Due to topographic and cultural restrictions, the investigation was limited to the immediate area surrounding the thermal springs at the Indian Springs Resort. The bedrock of the region is faulted and fractured metamorphosed Precambrian gneisses and schists, locally intruded by Tertiary age plutons and dikes. The investigation showed that the thermal waters most likely are fault controlled and the thermal area does not have a large areal extent.

  7. U.S. hydropower resource assessment for Idaho

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

  8. Prehistoric Rock Structures of the Idaho National Laboratory

    SciTech Connect (OSTI)

    Brenda R Pace

    2007-04-01T23:59:59.000Z

    Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

  9. EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management and the U.S. Forest Service are preparing, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, an EIS that evaluates the potential environmental impacts of a proposal to construct about 305 miles of 500-kV transmission line from northeast Oregon to southwest Idaho. BPA’s proposed action is to partially fund part the transmission line.

  10. Sustainable Energy Resources for Consumers (SERC) Idaho Highlight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic SafetyGeothermal/Ground-Source Heat Pumps | Department Idaho

  11. EA-1901: Kootenai River White Sturgeon and Burbot Hatcheries Project, Bonners Ferry, Boundary County, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for DOE’s Bonneville Power Administration to support the Kootenai Tribe of Idaho’s construction of a new hatchery on property owned by the Tribe at the confluence of the Moyie and Kootenai Rivers, approximately eight miles upstream from Bonners Ferry, Idaho. The proposed location of the new hatchery facility is currently the site of the Twin Rivers Canyon Resort.

  12. Fully Funded PhD studentships in Chemical Engineering Fully-funded Scholarships are available for 2014-15 in the Department of Chemical and Process

    E-Print Network [OSTI]

    Mottram, Nigel

    , biotherapeutics engineering, bioprocessing, protein aggregation and assembly; Low carbon technology: Novel materials and processes related to carbon capture, hydrogen storage, energy storage, fuel cells remediation, gas adsorption and drug delivery; Biomolecular Engineering: Bioanalytical technologies

  13. Idaho National Laboratory Directed Research and Development FY-2009

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research focus at the INL. These sections begin with the DOE-NE Nuclear Science and Technology mission support area,

  14. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

  15. U.S. Department of Energy Idaho National Engineering and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Waste HistoryDescription From 1970 through the early 1980's the Idaho National Engineering and Environmental Laboratory (INEEL) accepted over 65,000 cubic meters of...

  16. Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

  17. HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY

    SciTech Connect (OSTI)

    Quigley, K.D.; Wessman, D

    2003-02-27T23:59:59.000Z

    The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank -specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has cleaned tanks to meet RCRA clean closure standards and DOE closure performance measures. Design, development, and testing of tank grouting delivery equipment were completed in October 2002. The system incorporates lessons learned from closures at other DOE facilities. The grout will be used to displace the tank residuals remaining after the cleaning is complete. To maximize heel displacement to the discharge pump, grout was placed in a sequence of five positions utilizing two riser locations. The project is evaluating the use of six positions to optimize the residuals removed. After the heel has been removed and the residuals stabilized, the tank, piping, and secondary containment will be grouted.

  18. Preliminary studies on physical and chemical processes in the subsurface system in the land reclaimed from the sea

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    . The current coastal urban population of 200 million is projected to almost double in the next 20 to 30 years will be gradually displaced by acidic groundwater. It is hypothesized that various chemical and physical reactions

  19. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary...

  20. Evaluation of S-101 course ``Supervisors` Orientation to Occupational Safety in DOE`` taught in Idaho Falls, Idaho, June 23, 1992--June 26, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, ``Supervisors` Orientation to Occupational Safety in DOE``, (S-101) which was conducted June 23---26 at Idaho Falls Engineering Laboratory, in Idaho Falls, Idaho. Section 1.1 and 1.2 of this report summarizes the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees` written comments. Numeric course ratings were generally positive and show that the course material and instruction were very effective. Written comments supported the positive numeric ratings. The course content and knowledge gained by the trainees exceeded most of the students` expectations of the course.

  1. Evaluation of S-101 course Supervisors' Orientation to Occupational Safety in DOE'' taught in Idaho Falls, Idaho, June 23, 1992--June 26, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Supervisors' Orientation to Occupational Safety in DOE'', (S-101) which was conducted June 23---26 at Idaho Falls Engineering Laboratory, in Idaho Falls, Idaho. Section 1.1 and 1.2 of this report summarizes the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees' written comments. Numeric course ratings were generally positive and show that the course material and instruction were very effective. Written comments supported the positive numeric ratings. The course content and knowledge gained by the trainees exceeded most of the students' expectations of the course.

  2. Precipitation of jarosite-type double salts from spent acid solutions from a chemical coal cleaning process

    SciTech Connect (OSTI)

    Norton, G.

    1990-09-21T23:59:59.000Z

    The precipitation of jarosite compounds to remove Na, K, Fe, and SO{sub 4}{sup 2{minus}} impurities from spent acid solutions from a chemical coal cleaning process was studied. Simple heating of model solutions containing Fe{sub 2}(SO{sub 4}){sub 3}, Na{sub 2}SO{sub 4}, and K{sub 2}SO{sub 4} caused jarosite (KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}) to form preferentially to natrojarosite (NaFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}). Virtually all of the K, about 90% of the Fe, and about 30% of the SO{sub 4}{sup 2{minus}} could be precipitated from those solutions at 95{degree}C, while little or no Na was removed. However, simple heating of model solutions containing only Fe{sub 2}(SO{sub 4}){sub 3} and Na{sub 2}SO{sub 4} up to 95{degree}C for {le}12 hours produced low yields of jarosite compounds, and the Fe concentration in the solution had to be increased to avoid the formation of undesirable Fe compounds. Precipitate yields could be increased dramatically in model solutions of Na{sub 2}SO{sub 4}/Fe{sub 2}(SO{sub 4}){sub 3} containing excess Fe by using either CaCO{sub 3}, Ca(OH){sub 2}, or ZnO to neutralize H{sub 2}SO{sub 4} released during hydrolysis of the Fe{sub 2}(SO{sub 4}){sub 3} and during the precipitation reactions. Results obtained from the studies with model solutions were applied to spent acids produced during laboratory countercurrent washing of coal which had been leached with a molten NaOH/KOH mixture. Results indicated that jarosite compounds can be precipitated effectively from spent acid solutions by heating for 6 hours at 80{degree}C while maintaining a pH of about 1.5 using CaCO{sub 3}.

  3. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.; Bates, S.O. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Thompson, L.E.; McGrail, B.P. (Pacific Northwest Lab., Richland, WA (United States))

    1991-08-01T23:59:59.000Z

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.

  4. Kamiah, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu,KaizenKalkaskaKamas,

  5. Ketchum, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: Energy

  6. Idaho Appellate Rules | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC Transmission JumpInformation 03

  7. Idaho Bath Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC Transmission JumpInformation 03Well

  8. Idaho Batholith Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC Transmission JumpInformation

  9. Idaho Solid Waste Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolid Waste Webpage Abstract This webpage

  10. Idaho TMDL Settlement Agreement | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolid Waste Webpage Abstract7-16003-3-Chapter

  11. Idaho Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolid Waste WebpageInformationGroupsWind

  12. Idaho/Transmission/Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎ | Transmission Jump to:

  13. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect (OSTI)

    J. C. Giglio; A. A. Jackson

    2012-03-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  14. Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

  15. area idaho 1990-93: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    idaho 1990-93 First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Idaho Natural Areas Network: Chuck...

  16. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595 to, NEPA and Section 401 of the Federal Water Pollution Control Act (33 U.S.C. 1341). #12;

  17. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH environmental assistance to non-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah Act of 1969 (42 U.S.C. 4321-4347; hereinafter "NEPA") and Section 401 of the Federal Water Pollution

  18. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH for providing environmental assistance to non-Federal interests in Idaho, Montana, rural Nevada, New Mexico Pollution Control Act (33 U.S.C. 1341). Compliance with all applicable environmental laws and regulations

  19. A Bibliography of Genealogical Resources at the University of Idaho Library Where to Start Searching

    E-Print Network [OSTI]

    O'Laughlin, Jay

    A Bibliography of Genealogical Resources at the University of Idaho Library Where to Start a subject search of su: Latah County Genealogy. More family histories and general guides to early settlers: Whitman County Genealogy. For many more Idaho Genealogical resources, and also for other states, try

  20. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2003-02-20T23:59:59.000Z

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.