Sample records for id code operator

  1. T ID CODE I

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich5 | NUMBER 1 | MARCHT ID CODE I

  2. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID Operations

  3. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID

  4. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26, 2013

  5. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,

  6. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5, 2013

  7. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5,

  8. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5,6,

  9. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5,6,27,

  10. On the logical operators of quantum codes

    E-Print Network [OSTI]

    Mark M. Wilde

    2009-03-30T23:59:59.000Z

    I show how applying a symplectic Gram-Schmidt orthogonalization to the normalizer of a quantum code gives a different way of determining the code's logical operators. This approach may be more natural in the setting where we produce a quantum code from classical codes because the generator matrices of the classical codes form the normalizer of the resulting quantum code. This technique is particularly useful in determining the logical operators of an entanglement-assisted code produced from two classical binary codes or from one classical quaternary code. Finally, this approach gives additional formulas for computing the amount of entanglement that an entanglement-assisted code requires.

  11. Microsoft Word - 140602DOE-ID_OperationsSummary.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanupShipping Form3 - March, 2014 DOE-ID

  12. Generating Code for High-Level Operations through Code Composition

    E-Print Network [OSTI]

    Generating Code for High-Level Operations through Code Composition James M. Stichnoth August 1997 of the authors and should not be interpreted as necessarily representing the official policies or endorsements: Compilers, code generation, parallelism, communication generation #12;Abstract A traditional compiler

  13. Student ID: 2013 Code 2014 Code Unit Prerequisite Corequisite Program Rules

    E-Print Network [OSTI]

    Liley, David

    2014 Code Unit Prerequisite Corequisite HDID311 DID30002 Socially Responsible Design Studio DID20002 & DID20005 HDID311 DID30002 Socially Responsible Design Studio DID20002 & DID20005 HDID312 DID30003

  14. Stingray / Skate / Angel Shark Species Description Observer code:________________________ Vessel Code: ________________ Trip ID: _______________

    E-Print Network [OSTI]

    spines How many? Pelvic fin lobes Dorsal fins Pairs rostral teeth Nearer to pelvic fin than tail tip Nearer to tail tip then pelvic fin None First dorsal fin (check one) VentralStingray / Skate / Angel Shark Species Description Observer code:________________________ Vessel

  15. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I I. CONTRA'T ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1'CONTRA'T ID CODE

  16. 1. CONTRACT ID CODE PAGES AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    E-Print Network [OSTI]

    of Offers 0 is extended. D is nOl extended. Offers must acknowledge receipt of Ihis amendmenl priDr ID) By completing Uems 8 and 15, and relurnlng copies cllhe amendmenl; (b) By acknowledging receipt 01 a reference 10 Ihe solicitation and amelldmanl numbers. FAILURE OF YOUR ACKNOWLEDGEMENT TO BE RECEIVED

  17. Verification of unfold error estimates in the unfold operator code

    SciTech Connect (OSTI)

    Fehl, D.L.; Biggs, F. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    1997-01-01T23:59:59.000Z

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}

  18. U-208: HP Operations Agent Bugs Let Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    Two vulnerabilities were reported in HP Operations Agent. A remote user can execute arbitrary code on the target system

  19. 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 OF2 AMENDMENT OF

  20. Insertion of operation-and-indicate instructions for optimized SIMD code

    DOE Patents [OSTI]

    Eichenberger, Alexander E; Gara, Alan; Gschwind, Michael K

    2013-06-04T23:59:59.000Z

    Mechanisms are provided for inserting indicated instructions for tracking and indicating exceptions in the execution of vectorized code. A portion of first code is received for compilation. The portion of first code is analyzed to identify non-speculative instructions performing designated non-speculative operations in the first code that are candidates for replacement by replacement operation-and-indicate instructions that perform the designated non-speculative operations and further perform an indication operation for indicating any exception conditions corresponding to special exception values present in vector register inputs to the replacement operation-and-indicate instructions. The replacement is performed and second code is generated based on the replacement of the at least one non-speculative instruction. The data processing system executing the compiled code is configured to store special exception values in vector output registers, in response to a speculative instruction generating an exception condition, without initiating exception handling.

  1. APS Beamline 6-ID-D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MM-Group Home MMG Advisory Committees 6-ID-D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the...

  2. Beamline 4-ID-D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Home Recent Publications Beamline Info Optics Instrumentation Software User Info FAQs Beamline 4-ID-D Beamline 4-ID-D is operated by the Magnetic Materials Group in the X-ray...

  3. Quantum operations and codes beyond the Stabilizer-Clifford framework

    E-Print Network [OSTI]

    Zeng, Bei, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The discovery of quantum error-correcting codes (QECCs) and the theory of fault-tolerant quantum computation (FTQC) have greatly improved the long-term prospects for quantum communication and computation technology. ...

  4. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I ' CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1' CONTRACT ID

  5. APS Beamline 6-ID-D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the Magnetic Materials Group in the X-ray Science...

  6. Threshold analysis with fault-tolerant operations for nonbinary quantum error correcting codes

    E-Print Network [OSTI]

    Kanungo, Aparna

    2005-11-01T23:59:59.000Z

    Quantum error correcting codes have been introduced to encode the data bits in extra redundant bits in order to accommodate errors and correct them. However, due to the delicate nature of the quantum states or faulty gate operations, there is a...

  7. A midloop operation benchmark test of the RELAP5/MOD3.2 code

    E-Print Network [OSTI]

    Luedeke, Thomas Paul

    1997-01-01T23:59:59.000Z

    A midloop operation test was performed in 1992 at the BETHSY Integral Test Facility in Grenoble, France. The purpose of this experiment was to produce data that could be used to assess the performance of thermal hydraulic codes under the conditions...

  8. II.CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia CorporationNuclearQuestions WhatNNSANo.I I n1

  9. Student ID: 2013 Code 2014 Code

    E-Print Network [OSTI]

    Liley, David

    40002 Design-led Innovation: Research Project (25cps) AND SDF401H DDD40011 Swinburne Design Factory Project (Design) (25cps) SDF402H DDD40004 Swinburne Design Factory Project (Design) 2 (25cps) SDF401 DDD40010 Swinburne Design Factory Project HDST001 DDD20025 Design Study Tour SDF402H DDD40004 Swinburne

  10. An Extended Network Coding Opportunity Discovery Scheme in Wireless Networks

    E-Print Network [OSTI]

    Zhao, Yunlong; Iwai, Masayuki; Sezaki, Kaoru; Tobe, Yoshito; 10.5121/ijcnc.2012.4106

    2012-01-01T23:59:59.000Z

    Network coding is known as a promising approach to improve wireless network performance. How to discover the coding opportunity in relay nodes is really important for it. There are more coding chances, there are more times it can improve network throughput by network coding operation. In this paper, an extended network coding opportunity discovery scheme (ExCODE) is proposed, which is realized by appending the current node ID and all its 1-hop neighbors' IDs to the packet. ExCODE enables the next hop relay node to know which nodes else have already overheard the packet, so it can discover the potential coding opportunities as much as possible. ExCODE expands the region of discovering coding chance to n-hops, and have more opportunities to execute network coding operation in each relay node. At last, we implement ExCODE over the AODV protocol, and efficiency of the proposed mechanism is demonstrated with NS2 simulations, compared to the existing coding opportunity discovery scheme.

  11. Microsoft Word - 2013 (05-22-13) DOE-ID Operations Summary-13 7 Working.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanupShipping Form3 A LCF U ser S urveyMay

  12. Map ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy Manufacturing Energy andYou areID 90 Map

  13. Code Compaction of an Operating System Kernel Haifeng He, John Trimble, Somu Perianayagam, Saumya Debray, Gregory Andrews

    E-Print Network [OSTI]

    Debray, Saumya

    -purpose operating systems on embedded platforms. The problem is complicated by the fact that kernel code tends imple- mentation of our ideas on an Intel x86 platform, applied to a Linux kernel that has been will typically not have a mouse interface); at the software end, they usually support a fixed set of applications

  14. Usage Codes Observer code Vessel code Trip ID

    E-Print Network [OSTI]

    . propellers: No. blades: Model Kw: Power (Kw) Ducted propeller? Y / N Tonnage: GT / NT / GRT / NRT Broken/day): Transmission (gear box) Y / N Sonar Y / N Y / N Y / N GPS buoys Y / N ADCP (current profiler) Radio buoys Present? Raft Y / N Y / N Speedboats Y / N Ring stripper? How many? Engine power (hp): Registration Make

  15. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan

  16. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013

  17. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013November 1, 2014 -

  18. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013November 1, 2014

  19. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013November 1, 20147,

  20. 27-ID and 35-ID Construction Schedule | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27-ID and 35-ID Past 27-ID and 35-ID Installation schedule for the sector 27 Control room. Receive materials on Friday March 10, 2014 Installation starts on Monday March 10, 2014...

  1. Beamline 29-ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (29-ID): The Intermediate Energy X-Ray (IEX) beamline 29-ID is currently under commissioning and construction. The general user program is expected to start in 2015. This...

  2. Texas A&M NetID Authentication Domain Access Request For help with completing this form, contact IT Infrastructure & Operations at idm-support@tamu.edu.

    E-Print Network [OSTI]

    For IT Infrastructure & Operations Use Only Notes: Signatures: ITIO Director Signature Date CISO Signature Date Date

  3. A midloop operation benchmark test of the RELAP5/MOD3.2 code 

    E-Print Network [OSTI]

    Luedeke, Thomas Paul

    1997-01-01T23:59:59.000Z

    of low pressure and decay heat. The specific scenario of the test involved the loss of the residual heat removal system in a midloop operation with manways vents open in the pressurizer and at the steam generator. In participation with the International...

  4. Loss-tolerant operations in parity-code linear optics quantum computing

    E-Print Network [OSTI]

    A. J. F. Hayes; A. Gilchrist; T. C. Ralph

    2007-07-06T23:59:59.000Z

    A heavy focus for optical quantum computing is the introduction of error-correction, and the minimisation of resource requirements. We detail a complete encoding and manipulation scheme designed for linear optics quantum computing, incorporating scalable operations and loss-tolerant architecture.

  5. Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes

    E-Print Network [OSTI]

    Beni Yoshida

    2011-04-03T23:59:59.000Z

    Searches for possible new quantum phases and classifications of quantum phases have been central problems in physics. Yet, they are indeed challenging problems due to the computational difficulties in analyzing quantum many-body systems and the lack of a general framework for classifications. While frustration-free Hamiltonians, which appear as fixed point Hamiltonians of renormalization group transformations, may serve as representatives of quantum phases, it is still difficult to analyze and classify quantum phases of arbitrary frustration-free Hamiltonians exhaustively. Here, we address these problems by sharpening our considerations to a certain subclass of frustration-free Hamiltonians, called stabilizer Hamiltonians, which have been actively studied in quantum information science. We propose a model of frustration-free Hamiltonians which covers a large class of physically realistic stabilizer Hamiltonians, constrained to only three physical conditions; the locality of interaction terms, translation symmetries and scale symmetries, meaning that the number of ground states does not grow with the system size. We show that quantum phases arising in two-dimensional models can be classified exactly through certain quantum coding theoretical operators, called logical operators, by proving that two models with topologically distinct shapes of logical operators are always separated by quantum phase transitions.

  6. MagRad: A code to optimize the operation of superconducting magnets in a radiation environment

    SciTech Connect (OSTI)

    Yeaw, C.T.

    1995-12-31T23:59:59.000Z

    A powerful computational tool, called MagRad, has been developed which optimizes magnet design for operation in radiation fields. Specifically, MagRad has been used for the analysis and design modification of the cable-in-conduit conductors of the TF magnet systems in fusion reactor designs. Since the TF magnets must operate in a radiation environment which damages the material components of the conductor and degrades their performance, the optimization of conductor design must account not only for start-up magnet performance, but also shut-down performance. The degradation in performance consists primarily of three effects: reduced stability margin of the conductor; a transition out of the well-cooled operating regime; and an increased maximum quench temperature attained in the conductor. Full analysis of the magnet performance over the lifetime of the reactor includes: radiation damage to the conductor, stability, protection, steady state heat removal, shielding effectiveness, optimal annealing schedules, and finally costing of the magnet and reactor. Free variables include primary and secondary conductor geometric and compositional parameters, as well as fusion reactor parameters. A means of dealing with the radiation damage to the conductor, namely high temperature superconductor anneals, is proposed, examined, and demonstrated to be both technically feasible and cost effective. Additionally, two relevant reactor designs (ITER CDA and ARIES-II/IV) have been analyzed. Upon addition of pure copper strands to the cable, the ITER CDA TF magnet design was found to be marginally acceptable, although much room for both performance improvement and cost reduction exists. A cost reduction of 10-15% of the capital cost of the reactor can be achieved by adopting a suitable superconductor annealing schedule. In both of these reactor analyses, the performance predictive capability of MagRad and its associated costing techniques have been demonstrated.

  7. .. 1. CONTRACT ID CODE PAGE OF PAGES

    E-Print Network [OSTI]

    for receipt of Offers D is extended, D is not extended. Offers must acknowledge receipt of this amendment: (a) By completing Items 8 and 15 . and returning copies of the amendment; (b) By acknowledging includes a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGEMENT

  8. 11. CONTRACT ID CODE IPAG~ OF PAGES

    E-Print Network [OSTI]

    -AC05-76RL01830 Modification M957 SF-30 Continuation Page Page 2 of2 The Department of Energy (DOE Privacy Program [M957] 2. Revise Part Ill, Section J - Appendix E - Standards of Performance-Based Fee FY

  9. 1. CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less is more:culturingProtonAPRIL/MAY 2013

  10. Recent Improvement of Measurement Instrumentation to Supervise Nuclear Operations and to Contribute Input Data to 3D Simulation Code - 13289

    SciTech Connect (OSTI)

    Mahe, Charly; Chabal, Caroline [CEA, Nuclear Energy Division, Fuel Technology Development Unit, Simulation and Dismantling Technique Laboratory, Marcoule Center, BP 17171, 30207 Bagnols / Ceze (France)] [CEA, Nuclear Energy Division, Fuel Technology Development Unit, Simulation and Dismantling Technique Laboratory, Marcoule Center, BP 17171, 30207 Bagnols / Ceze (France)

    2013-07-01T23:59:59.000Z

    The CEA has developed many compact characterization tools to follow sensitive operations in a nuclear environment. Usually, these devices are made to carry out radiological inventories, to prepare nuclear interventions or to supervise some special operations. These in situ measurement techniques mainly take place at different stages of clean-up operations and decommissioning projects, but they are also in use to supervise sensitive operations when the nuclear plant is still operating. In addition to this, such tools are often associated with robots to access very highly radioactive areas, and thus can be used in accident situations. Last but not least, the radiological data collected can be entered in 3D calculation codes used to simulate the doses absorbed by workers in real time during operations in a nuclear environment. Faced with these ever-greater needs, nuclear measurement instrumentation always has to involve on-going improvement processes. Firstly, this paper will describe the latest developments and results obtained in both gamma and alpha imaging techniques. The gamma camera has been used by the CEA since the 1990's and several changes have made this device more sensitive, more compact and more competitive for nuclear plant operations. It is used to quickly identify hot spots, locating irradiating sources from 50 keV to 1500 keV. Several examples from a wide field of applications will be presented, together with the very latest developments. The alpha camera is a new camera used to see invisible alpha contamination on several kinds of surfaces. The latest results obtained allow real time supervision of a glove box cleaning operation (for {sup 241}Am contamination). The detection principle as well as the main trials and results obtained will be presented. Secondly, this paper will focus on in situ gamma spectrometry methods developed by the CEA with compact gamma spectrometry probes (CdZnTe, LaBr{sub 3}, NaI, etc.). The radiological data collected is used to quantify the activity of hot spots and can also then be entered in 3D models of nuclear plants to simulate intervention scenarios. Recent developments and results will be presented regarding this. Finally, thanks to a large amount of feedback, the interest of using complementary measurements will be discussed. In fact, the recent use of 3D simulation codes requires very accurate knowledge of nuclear plant radiological data. The use of coupled devices such as imaging devices, (gamma and alpha cameras), gamma spectrometry, dose rate mapping, collimated / un-collimated measurements and many other physical values gives an approach to the radiological knowledge of a process or plant with the lowest possible uncertainty. In line with this, the paper will conclude with the future developments and trials that could be assessed in that field of application. (authors)

  11. Quantum convolutional stabilizer codes

    E-Print Network [OSTI]

    Chinthamani, Neelima

    2004-09-30T23:59:59.000Z

    Quantum error correction codes were introduced as a means to protect quantum information from decoherance and operational errors. Based on their approach to error control, error correcting codes can be divided into two different classes: block codes...

  12. DOE/ID-Number

    Energy Savers [EERE]

    Report UCRL-ID-133846. Walker, J.S. 2009. The Road to Yucca Mountain. Berkeley, CA: University of California Press. Warner, D.L. 1972. Survey of Industrial Waste Injection...

  13. Shark Species Description Observer code:________________________ Vessel Code: ________________ Trip ID: _______________

    E-Print Network [OSTI]

    Long snout Eyes visible from top of head Dorsal fin spines Interdorsal ridge Anal fin Caudal keel Precaudal pit Pectoral fin placement relative to 1st dorsal fin & if so, how many): How many? Dorsal fin Gill slits length height 2nd dorsal fin Length 2

  14. Approved Module Information for BN1135, 2014/5 Module Title/Name: Principles of Operations Management Module Code: BN1135

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    the role of quality management and TQM for improving the quality of a firm?s products and services operations? Quality Management ? Why quality is so important? ? What does quality mean? ? TQM & Continuous Management Module Code: BN1135 School: Aston Business School Module Type: Standard Module New Module

  15. 4-ID-D optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-ID-D Beamline Optics A schetch of the major optical components for beam line 4-ID-D are shown above. All these components located in the B-station upstream from the D...

  16. Encoding Subsystem Codes

    E-Print Network [OSTI]

    Pradeep Kiran Sarvepalli; Andreas Klappenecker

    2008-06-30T23:59:59.000Z

    In this paper we investigate the encoding of operator quantum error correcting codes i.e. subsystem codes. We show that encoding of subsystem codes can be reduced to encoding of a related stabilizer code making it possible to use all the known results on encoding of stabilizer codes. Along the way we also show how Clifford codes can be encoded. We also show that gauge qubits can be exploited to reduce the encoding complexity.

  17. Student ID: 2013 Code 2014 Code Unit PrerequisiteCorequisite 2013 Code 2014 Code Unit

    E-Print Network [OSTI]

    Liley, David

    and Directing: Short Film Production FTV10004 FTV20002 HDFTV212* FTV20002 Cinematography and Lighting: Film Effects Production HDFTV224* FTV20004 Cinematography and Lighting: Broadcast Video FTV10008 FTV20010 HDFTV

  18. Contribution ID : 133 The TAG Collector -A Tool for Atlas

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CHEP04 Contribution ID : 133 The TAG Collector - A Tool for Atlas Code Release Management Thursday 30 Sep 2004 at 10:00 (00h00') The Tag Collector is a web interfaced database application for release distributed geographically. The Tag Collector was designed and implemented during the summer of 2001

  19. Homological stabilizer codes

    SciTech Connect (OSTI)

    Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com

    2013-03-15T23:59:59.000Z

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  20. Data ID Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDaniel WoodID Service First DOI

  1. Graph Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Salman Beigi; Isaac Chuang; Markus Grassl; Peter Shor; Bei Zeng

    2010-02-03T23:59:59.000Z

    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code, and every codeword stabilized code can be described by a graph and a classical code. For the construction of good quantum codes of relatively large block length, concatenated quantum codes and their generalizations play an important role. We develop a systematic method for constructing concatenated quantum codes based on "graph concatenation", where graphs representing the inner and outer codes are concatenated via a simple graph operation called "generalized local complementation." Our method applies to both binary and non-binary concatenated quantum codes as well as their generalizations.

  2. ID-69 Sodium drain experiments

    SciTech Connect (OSTI)

    Johnston, D.C.

    1996-09-19T23:59:59.000Z

    This paper describes experiments to determine the sodium retention and drainage from the two key areas of an ID-69. This information is then used as the initiation point for guidelines of how to proceed with washing an ID-69 in the IEM Cell Sodium Removal System.

  3. Approved Module Information for BN3322, 2014/5 Module Title/Name: International Operations Module Code: BN3322

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    of this module is structured in a manner to make its practical applicability clear to students. Tutorials@aston.ac.uk Telephone Number Not Specified Office Not Specified Additional Module Tutor(s): Christopher Owen. LevelApproved Module Information for BN3322, 2014/5 Module Title/Name: International Operations Module

  4. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08T23:59:59.000Z

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  5. Codeword stabilized quantum codes on subsystems

    E-Print Network [OSTI]

    Jeonghwan Shin; Jun Heo; Todd A. Brun

    2012-08-29T23:59:59.000Z

    Codeword stabilized quantum codes provide a unified approach to constructing quantum error-correcting codes, including both additive and non-additive quantum codes. Standard codeword stabilized quantum codes encode quantum information into subspaces. The more general notion of encoding quantum information into a subsystem is known as an operator (or subsystem) quantum error correcting code. Most operator codes studied to date are based in the usual stabilizer formalism. We introduce operator quantum codes based on the codeword stabilized quantum code framework. Based on the necessary and sufficient conditions for operator quantum error correction, we derive a error correction condition for operator codeword stabilized quantum codes. Based on this condition, the word operators of a operator codeword stabilized quantum code are constructed from a set of classical binary errors induced by generators of the gauge group. We use this scheme to construct examples of both additive and non-additive codes that encode quantum information into a subsystem.

  6. Bull Test ID 1118 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1118 2013 Florida Bull Test #12;Bull Test ID 1119 2013 Florida Bull Test #12;Bull Test ID 1120 2013 Florida Bull Test #12;Bull Test ID 1121 2013 Florida Bull Test #12;Bull Test ID 1122 2013 Florida Bull Test #12;Bull Test ID 1123 2013 Florida Bull Test #12;Bull Test ID 1124 2013 Florida

  7. Bull Test ID 1181 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1181 2013 Florida Bull Test #12;Bull Test ID 1182 2013 Florida Bull Test #12;Bull Test ID 1183 2013 Florida Bull Test #12;Bull Test ID 1184 2013 Florida Bull Test #12;Bull Test ID 1185 2013 Florida Bull Test #12;Bull Test ID 1186 2013 Florida Bull Test #12;Bull Test ID 1187 2013 Florida

  8. Bull Test ID 1098 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1098 2013 Florida Bull Test #12;Bull Test ID 1099 2013 Florida Bull Test #12;Bull Test ID 1100 2013 Florida Bull Test #12;Bull Test ID 1101 2013 Florida Bull Test #12;Bull Test ID 1102 2013 Florida Bull Test #12;Bull Test ID 1103 2013 Florida Bull Test #12;Bull Test ID 1104 2013 Florida

  9. Bull Test ID 1160 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1160 2013 Florida Bull Test #12;Bull Test ID 1161 2013 Florida Bull Test #12;Bull Test ID 1162 2013 Florida Bull Test #12;Bull Test ID 1163 2013 Florida Bull Test #12;Bull Test ID 1164 2013 Florida Bull Test #12;Bull Test ID 1165 2013 Florida Bull Test #12;Bull Test ID 1166 2013 Florida

  10. Bull Test ID 1140 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1140 2013 Florida Bull Test #12;Bull Test ID 1141 2013 Florida Bull Test #12;Bull Test ID 1142 2013 Florida Bull Test #12;Bull Test ID 1143 2013 Florida Bull Test #12;Bull Test ID 1144 2013 Florida Bull Test #12;Bull Test ID 1145 2013 Florida Bull Test #12;Bull Test ID 1146 2013 Florida

  11. Code Description Code Description

    E-Print Network [OSTI]

    Leave* 5127 Officials 5217 Faculty Sick Leave Payment 5124 Personal Service Contracts 5211 Research Services Contracts Scholarships & Fellowships Faculty Fringe Contract Services #12;Banner Account Code

  12. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PW Procedure Writers PWR Pressurized Water Reactor RHR Reactor Heat Removal RCS Reactor Cooling System RMS Radiation Monitoring System RO Reactor Operator RSF Remote Shutdown...

  13. Distributed control of coded networks

    E-Print Network [OSTI]

    Zhao, Fang, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    The introduction of network coding has the potential to revolutionize the way people operate networks. For the benefits of network coding to be realized, distributed solutions are needed for various network problems. In ...

  14. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J. (Albuquerque, NM); Dalton, Larry J. (Bernalillo, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  15. APS Beamline 6-ID-B,C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x-ray scattering studies of materials. The beamline has 2 end-stations: 6-ID-B: Psi -Diffractomter & In-Field Studies 6-ID-C: UHV in-situ growth Recent Research Highlights...

  16. Quantum stabilizer codes and beyond

    E-Print Network [OSTI]

    Pradeep Kiran Sarvepalli

    2008-10-14T23:59:59.000Z

    The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. This dissertation makes a threefold contribution to the mathematical theory of quantum error-correcting codes. Firstly, it extends the framework of an important class of quantum codes -- nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work establishes a close link between subsystem codes and classical codes showing that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels.

  17. Homological Product Codes

    E-Print Network [OSTI]

    Sergey Bravyi; Matthew B. Hastings

    2013-11-04T23:59:59.000Z

    Quantum codes with low-weight stabilizers known as LDPC codes have been actively studied recently due to their simple syndrome readout circuits and potential applications in fault-tolerant quantum computing. However, all families of quantum LDPC codes known to this date suffer from a poor distance scaling limited by the square-root of the code length. This is in a sharp contrast with the classical case where good families of LDPC codes are known that combine constant encoding rate and linear distance. Here we propose the first family of good quantum codes with low-weight stabilizers. The new codes have a constant encoding rate, linear distance, and stabilizers acting on at most $\\sqrt{n}$ qubits, where $n$ is the code length. For comparison, all previously known families of good quantum codes have stabilizers of linear weight. Our proof combines two techniques: randomized constructions of good quantum codes and the homological product operation from algebraic topology. We conjecture that similar methods can produce good stabilizer codes with stabilizer weight $n^a$ for any $a>0$. Finally, we apply the homological product to construct new small codes with low-weight stabilizers.

  18. REQUEST FOR ADVANCE Employee Name: SU ID #

    E-Print Network [OSTI]

    Carter, John

    (RINA 219) Fax: 206-398-4402 Email: bixlers@seattleu.edu FOR OFFICIAL USE ONLY SU ID #: Previous Request

  19. Bull Test ID 1077 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    14th Annual Florida Bull Test #12;Bull Test ID 1077 2013 Florida Bull Test #12;Bull Test ID 1078 2013 Florida Bull Test #12;Bull Test ID 1079 2013 Florida Bull Test #12;Bull Test ID 1080 2013 Florida Bull Test #12;Bull Test ID 1081 2013 Florida Bull Test #12;Bull Test ID 1082 2013 Florida Bull Test #12

  20. ID SYSTEM DEBIT ACCOUNT Payroll Deduction Form

    E-Print Network [OSTI]

    Karsai, Istvan

    ID SYSTEM DEBIT ACCOUNT Payroll Deduction Form This is my authorization for the ETSU Payroll Department to make a monthly deduction from my paycheck to be deposited to my ETSU ID System Debit Card 37614-0611 PHONE: 423/439-8316 http://www.etsu.edu/students/univcent/id.htm e-mail ­ IDBUCS@etsu.edu #12;

  1. DOWNSTREAM MOVEMENT OF SALMON IDS

    E-Print Network [OSTI]

    DOWNSTREAM MOVEMENT OF SALMON IDS AT BONNEVILLE DAM Marine Biological Laboratory APR 1 7 1958 WOODS Washington, D. C January 1958 #12;ABSTRACT At Bonneville Deun most downstream-migrant salmonlds were ca TABLES 1. Hourly catches of downstream-migrant seLLmonids in 1952. Each hour represents the suomation

  2. San Francisco Building Code Amendments to the

    E-Print Network [OSTI]

    Green Building Standards Code 2010 California Residential Code Operative date: January 1, 2011 #12;2 #121 2010 San Francisco Building Code Amendments to the 2010 California Building Code 2010 California;3 CHAPTER 1 SCOPE AND ADMINISTRATION DIVISION I CALIFORNIA ADMINISTRATION No San Francisco Building Code

  3. Spinal codes

    E-Print Network [OSTI]

    Perry, Jonathan, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Spinal codes are a new class of rateless codes that enable wireless networks to cope with time-varying channel conditions in a natural way, without requiring any explicit bit rate selection. The key idea in the code is the ...

  4. , 1. CONTRACT ID CODE IPAG~ O F PAGES

    E-Print Network [OSTI]

    is extended, O is not extended. Offers must acknowledge receipt of this amendment prior to the hour and date and 15, and returning copies of the amendment; (b) By acknowledging receipt of this amendment on each to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGEMENT TO BE RECEIVED AT THE PLACE DESIGNATED

  5. 11 . CONT RACT ID CODE IPAG~ OF PAGES

    E-Print Network [OSTI]

    is extended, 0 is not ex1ended. Offers must acknowledge receipt of this amendment prior to the hour and date and 15, and returning copies of the amendment; (b) By acknowledging receipt of this amendment on each to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGEMENT TO BE RECEIVED AT THE PLACE DESIGNATED

  6. UCRL-ID-117240 CHEETAH: A Next Generation Thermochemical Code

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgram | Department HomeDialoguet e d N a

  7. AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I '. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 PageMI54 I

  8. Microsoft Word - DOE-ID-INL-14-046.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTIONR1DETERMINATIODOE0ID

  9. Microsoft Word - DOE-ID-INL-14-048.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTIONR1DETERMINATIODOE0ID8

  10. Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2012-05-10T23:59:59.000Z

    Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO{sub 2} cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO{sub 2}. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO{sub 2} heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO{sub 2}-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO{sub 2} turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO{sub 2} cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO{sub 2} cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO{sub 2} cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO{sub 2} cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall cycle performance. Therefore, the single-shaft

  11. REQUEST FOR TRAVEL AUTHORIZATION Document ID #

    E-Print Network [OSTI]

    Texas at Austin, University of

    REQUEST FOR TRAVEL AUTHORIZATION Document ID # Name: UTEID: Travel Dates: Begin: End: Destination," please allow one month for processssing. Helpful Information: Navigant (Travel Management) (512

  12. Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report

    SciTech Connect (OSTI)

    Eugene S. Grecheck

    2010-11-30T23:59:59.000Z

    This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision on building a new nuclear power plant at the North Anna site.

  13. Reporting Tools Course ID: FMS121

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Reporting Tools Course ID: FMS121 PS Query 03/31/2009 © 2009 Northwestern University FMS121 0 Introduction to Query For Query Developers Query is an ad-hoc reporting tool that allows you to retrieve data will have access to both query viewer and query manager pages. #12;Reporting Tools Course ID: FMS121 PS

  14. Reporting Tools Course ID: FMS121

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Reporting Tools Course ID: FMS121 PS Query 03/31/2009 © 2009 Northwestern University FMS121 0 Introduction to Query For Query Viewers Query is an ad-hoc reporting tool that allows you to retrieve data will have access to both query viewer and query manager pages. #12;Reporting Tools Course ID: FMS121 PS

  15. Durability of Diesel Engine Particulate Filters (Agreement ID...

    Broader source: Energy.gov (indexed) [DOE]

    Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

  16. ID BUC$ EQUIPMENT REQUEST FORM CAMPUS EVENT PAYMENT OPTION

    E-Print Network [OSTI]

    Karsai, Istvan

    ID BUC$ EQUIPMENT REQUEST FORM CAMPUS EVENT PAYMENT OPTION FOR ETSU ORGANIZATIONS Name ID BUC$. ETSU account transfer or a check requested? o ETSU Account

  17. Date Created: 4/11/2012 11:57:00 AM Page 1 Initiate a Template-Based Hire Term Certain (Sessional) with Existing Empl ID

    E-Print Network [OSTI]

    Calgary, University of

    the UCHR_NAME_BIRTH Search without SIN link. Enter criteria and view results 3. On the Search Criteria page, click Search Result Code Lookup button. Select UCHR_STANDARD. For example, enter the employee will begin the template by entering the Empl ID, Job Effective Date and Reason Code for the Term Certain

  18. Code constructions and code families for nonbinary quantum stabilizer code

    E-Print Network [OSTI]

    Ketkar, Avanti Ulhas

    2005-11-01T23:59:59.000Z

    Stabilizer codes form a special class of quantum error correcting codes. Nonbinary quantum stabilizer codes are studied in this thesis. A lot of work on binary quantum stabilizer codes has been done. Nonbinary stabilizer codes have received much...

  19. Expanding Robust HCCI Operation (Delphi CRADA)

    Broader source: Energy.gov (indexed) [DOE]

    Expanding Robust HCCI Operation A CRADA project with Delphi Automotive Systems Project ID: ACE053 2011 U.S. DOE Hydrogen and Vehicle Technologies Program Annual Merit Review and...

  20. Holographic codes

    E-Print Network [OSTI]

    Latorre, Jose I

    2015-01-01T23:59:59.000Z

    There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

  1. Holographic codes

    E-Print Network [OSTI]

    Jose I. Latorre; German Sierra

    2015-02-23T23:59:59.000Z

    There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

  2. Texas A&M NetID Lifecycle Management for Texas A&M University Employees and Retirees

    E-Print Network [OSTI]

    record status affects inclusion/exclusion of a record in the data feed to the TAMU Identity Management, employee status code `U' has been added for new employee base records added from the UIN manager programTexas A&M NetID Lifecycle Management for Texas A&M University Employees and Retirees This document

  3. Course Code: Course Title

    E-Print Network [OSTI]

    Painter, Kevin

    - Frameworks; Decision Making Development life-cycle of a software system Bi-directional influence between-Critical Systems; Technology & Society. Brave New Worlds - Co-operative Computing; eLife. Learning OutcomesCourse Code: F29PD Course Title: Professional Development Course Co-ordinator: Sandy Jean

  4. Shark Species Description Observer name/code:________________________ Vessel Code: ________________ Trip ID: _______________

    E-Print Network [OSTI]

    for presence/absence Present Absent Anal fin Flat body Long snout Dorsal fin spines Eyes visible from top of head Keel present between 1st & 2nd dorsal fin Head with lateral, bladelike expansions Anterior nasal flaps formed into barbels How many? Dorsal fin Gill slits Caudal fin (tail) shape (circle one) Head

  5. Id-1 and Id-2 genes and products as markers of epithelial cancer

    SciTech Connect (OSTI)

    Desprez, Pierre-Yves (El Cerrito, CA); Campisi, Judith (Berkeley, CA)

    2011-10-04T23:59:59.000Z

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  6. Id-1 and Id-2 genes and products as markers of epithelial cancer

    DOE Patents [OSTI]

    Desprez, Pierre-Yves (El Cerrito, CA); Campisi, Judith (Berkeley, CA)

    2008-09-30T23:59:59.000Z

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  7. Montana Coal Mining Code (Montana)

    Broader source: Energy.gov [DOE]

    The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

  8. Fuel cycle code, "FUELMOVE III"

    E-Print Network [OSTI]

    Sovka, Jerry Alois

    1963-01-01T23:59:59.000Z

    Further modifications to the fuel cycle code FUELMOVE are described which were made in an attempt to obtain results for reflected reactors operated under batch, outin, and bidirectional fueling schemes. Numerical methods ...

  9. UT-B ID 201102665 Technology Summary

    E-Print Network [OSTI]

    Pennycook, Steve

    also enable users to evaluate future energy technologies, including renewable energies. Advantages users to evaluate future energy technologies including renewables Potential Applications · UtilityUT-B ID 201102665 06.2012 Technology Summary Promoting energy efficiency is a primary focus

  10. ____________________Rowan ID# K. Bryant 3/2013

    E-Print Network [OSTI]

    Rusu, Adrian

    ____________________Rowan ID# K. Bryant 3/2013 Private/Alternative Education Loan Understanding receipt) the form to: Cooper Medical School of Rowan University, Office of Financial Aid Kyhna Bryant

  11. Document ID: POLUMITPUR01702 Information Technology

    E-Print Network [OSTI]

    Shyu, Mei-Ling

    Document ID: POLUMITPUR01702 Information Technology Supersedes: POLUMITPUR01701 Effective Date: 02 Sep 2014 Page 1 of 5 Document Title: Purchasing Computerized Systems/Software Applications Miletic Manager ­ Quality Assurance Research Compliance and Quality Assurance Made revisions based

  12. Kentucky WRI Pilot Test Universal ID

    E-Print Network [OSTI]

    screening deployment experience · Significant cost savings to FMCSA ·Enabling technology already deployedKentucky WRI Pilot Test ­ Universal ID Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 #12;·Utilizes existing automated screening system ·Uses assorted

  13. JOB DESCRIPTION Requisition ID 4206BR

    E-Print Network [OSTI]

    general office and administrative policies. · May supervise lower level staff members. · Schedules in accordance with established procedures. · Performs research and/or statistical analyses and assistsJOB DESCRIPTION Requisition ID 4206BR ASU Job Title Administrative Secretary Job Title

  14. RENEWABLE ENERGY FROM SWINE WASTE Bingjun He, University of Idaho, Moscow, ID 1

    E-Print Network [OSTI]

    He, Brian

    RENEWABLE ENERGY FROM SWINE WASTE Bingjun He, University of Idaho, Moscow, ID 1 Yuanhui Zhang, Ted waste and to produce renewable energy from swine manure. Experimental results showed that operating were also studied. Typical oil yield of the TCC process ranged from 60% to 65% on the input volatile

  15. Data Mining-based Intrusion Detectors: An Overview of the Columbia IDS Project

    E-Print Network [OSTI]

    Yang, Junfeng

    Data Mining-based Intrusion Detectors: An Overview of the Columbia IDS Project Salvatore J. Stolfo by sensing a misuse or a breach of a security policy and alerting operators to an ongoing (or, at least on a weekly basis reporting that malicious users still succeed in attacking systems with sometimes devastating

  16. Alarm Code Request Office of Physical Security

    E-Print Network [OSTI]

    Moore, Paul A.

    Alarm Code Request Office of Physical Security 101 Campus Operations Bowling Green State University Bowling Green, Ohio 43403 (419) 3727661 lockalarm@bgsu.edu By signing this authorization

  17. 2010 Annual Planning Summary for Idaho Operations Office (ID) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09 SPRof Energy Idaho

  18. 2011 Annual Planning Summary for Idaho Operations Office (ID) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy More Documents &Departmentof Energy

  19. High Performance “Reach” Codes

    E-Print Network [OSTI]

    Edelson, J.

    2011-01-01T23:59:59.000Z

    Jim Edelson New Buildings Institute A Growing Role for Codes and Stretch Codes in Utility Programs Clean Air Through Energy Efficiency November 9, 2011 ESL-KT-11-11-39 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 New Buildings Institute ESL..., Nov. 7 ? 9, 2011 ?31? Flavors of Codes ? Building Codes Construction Codes Energy Codes Stretch or Reach Energy Codes Above-code programs Green or Sustainability Codes Model Codes ?Existing Building? Codes Outcome-Based Codes ESL-KT-11...

  20. Two Optimal One-Error-Correcting Codes of Length 13 That Are Not Doubly Shortened Perfect Codes

    E-Print Network [OSTI]

    Östergćrd, Patric R J

    2009-01-01T23:59:59.000Z

    The doubly shortened perfect codes of length 13 are classified utilizing the classification of perfect codes in [P.R.J. \\"Osterg{\\aa}rd and O. Pottonen, The perfect binary one-error-correcting codes of length 15: Part I--Classification, IEEE Trans. Inform. Theory, to appear]; there are 117821 such (13,512,3) codes. By applying a switching operation to those codes, two more (13,512,3) codes are obtained, which are then not doubly shortened perfect codes.

  1. CURRICULUM CODE: 611 & 613 MINOR CODE 061 DEGREE CODE: 31

    E-Print Network [OSTI]

    Qiu, Weigang

    CURRICULUM CODE: 611 & 613 MINOR CODE 061 DEGREE CODE: 31 DAAF 12/09 Hunter College of the City Stamp THIS AUDIT IS NOT OFFICIAL UNTIL APPROVED BY THE OFFICE OF THE REGISTRAR DEGREE AUDIT UNIT Student Specialization Section #12;CURRICULUM CODE: 611 & 613 MINOR CODE 061 DEGREE CODE: 31 DAAF 12/09 *****A SEPARATE

  2. CURRICULUM CODE_611 & 613 MINOR CODE 062 DEGREE CODE _31_

    E-Print Network [OSTI]

    Qiu, Weigang

    CURRICULUM CODE_611 & 613 MINOR CODE 062 DEGREE CODE _31_ 1/24/2006 Hunter College of the City-mail address Department Stamp THIS AUDIT IS NOT OFFICIAL UNTIL APPROVED BY THE OFFICE OF THE REGISTRAR, DEGREE Section Only For January 2010 Graduate #12;CURRICULUM CODE_611 & 613 MINOR CODE 062 DEGREE CODE _31_ 1

  3. Using closures for code generation Marc Feeley

    E-Print Network [OSTI]

    Feeley, Marc

    which offers the advantages of an interpreter with the speed of compiled code. Code generation relies - environment (i.e. the set of current variable bindings). This operation is called closure. We speakUsing closures for code generation Marc Feeley Guy Lapalme DÂŽepartement d'informatique et de

  4. San Francisco Building Code Amendments to the

    E-Print Network [OSTI]

    1 2010 San Francisco Building Code Amendments to the 2010 California Green Building Standards Code not pertain to energy) Operative date: January 1, 2011 #12;139 Chapter 13C GREEN BUILDING REQUIREMENTS shall be known as the California San Francisco Green Building Standards Code and may be cited

  5. LFSC - Linac Feedback Simulation Code

    SciTech Connect (OSTI)

    Ivanov, Valentin; /Fermilab

    2008-05-01T23:59:59.000Z

    The computer program LFSC (Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  6. UM ID NUMBER RSMAS General

    E-Print Network [OSTI]

    Miami, University of

    ROSENSTIEL SCHOOL OF MARINE & ATMOSPHERIC SCIENCE (RSMAS) 2013-2014 VEHICLE REGISTRATION & PARKING PERMIT and agrees to abide by it. In exchange for parking privileges and permission to operate a motor vehicle any vehicle parked in violation of its parking regulations to be towed to a place determined

  7. ID Nom Prnom Groupe 11206695 ABDOU CHAFIN B

    E-Print Network [OSTI]

    Mironescu, Petru

    ID Nom Prénom Groupe 11206695 ABDOU CHAFIN B 11207912 ABDOU-RAZACK AIDIDE D 11207680 ACOLATSE REGIS

  8. Optimal IDS Sensor Placement And Alert Prioritization Using Attack Graphs

    E-Print Network [OSTI]

    Noel, Steven

    1 Optimal IDS Sensor Placement And Alert Prioritization Using Attack Graphs Steven Noel and Sushil optimally place intrusion detection system (IDS) sensors and prioritize IDS alerts using attack graph. The set of all such paths through the network constitutes an attack graph, which we aggregate according

  9. Article ID #eqr106 REPLACEMENT STRATEGIES

    E-Print Network [OSTI]

    Popova, Elmira

    Article ID #eqr106 REPLACEMENT STRATEGIES Elmira Popova Associate Professor, Department)-296-5795 e-mail: popovai@seattleu.edu Corresponding Contributor: Elmira Popova Keywords: Replacement Policies define what is a replacement policy for a system that fails randomly in time and its main characteristics

  10. Master Project Assessment Form Student: ID number

    E-Print Network [OSTI]

    Franssen, Michael

    Master Project Assessment Form Student: ID number: Master Program: Graduation supervisor Graduation presentation Defense Execution of the project Grade Signature of supervisor Date * Hand in at the student administration (MF 3.068) together with an official result form (uitslagbon) #12;"Master Project

  11. Entanglement boosts quantum turbo codes

    E-Print Network [OSTI]

    Wilde, Mark M

    2010-01-01T23:59:59.000Z

    One of the unexpected breakdowns in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for a quantum turbo code to have an unbounded minimum distance and for its iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm gives a theoretical and practical "turbo boost" to these codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties, and simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 5.5 dB beyond that of standard quantum turbo codes. Entanglement is the resource that enables a convolutional encoder to satisfy both properties because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them. We give several examples o...

  12. LAYNE, HOSPEDALES, GONG: RE-ID: HUNTING ATTRIBUTES IN THE WILD 1 Re-id: Hunting Attributes in the Wild

    E-Print Network [OSTI]

    Gong, Shaogang

    LAYNE, HOSPEDALES, GONG: RE-ID: HUNTING ATTRIBUTES IN THE WILD 1 Re-id: Hunting Attributes in the Wild Ryan Layne r.d.c.layne@qmul.ac.uk Timothy M. Hospedales t.hospedales@qmul.ac.uk Shaogang Gong s.gong, HOSPEDALES, GONG: RE-ID: HUNTING ATTRIBUTES IN THE WILD Much re-identification research breaks down into two

  13. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Vehicle and Infrastructure Codes and Standards Citations

    E-Print Network [OSTI]

    , Use, and Handling · 705 Testing of Hydrogen Piping Systems NFPA 52, Vehicular Gaseous Fuel Systems International Fuel Gas Code (International Code Council, 2009) · 101.2.1 Gaseous Hydrogen Systems · 704 Piping NFPA 52, Vehicular Gaseous Fuel Systems Code (National Fire Protection Association, 2010) · 5

  14. Date Created: 4/11/2012 11:49:00 AM Page 1 Initiate a Template-Based Hire Term Certain (Sessional) No Empl ID AC0047

    E-Print Network [OSTI]

    Calgary, University of

    link. Enter criteria and view results 3. On the Search Criteria page, click Search Result Code LookupDate Created: 4/11/2012 11:49:00 AM Page 1 Initiate a Template-Based Hire ­ Term Certain (Sessional Resources PeopleSoft You have performed a Search/Match to confirm that the instructor has no Empl ID (see

  15. Date Created: 4/11/2012 11:54:00 AM Page 1 Initiate a Template-Based Hire Term Certain (Sessional) with Existing Empl ID

    E-Print Network [OSTI]

    Calgary, University of

    _NAME_BIRTH Search without SIN link. Enter criteria and view results 3. On the Search Criteria page, click Search by entering the Empl ID, Job Effective Date and Reason Code for the Term Certain (Sessional) hire. The Empl IDDate Created: 4/11/2012 11:54:00 AM Page 1 Initiate a Template-Based Hire ­ Term Certain (Sessional

  16. Date Created: 4/19/2012 4:07:00 PM Page 1 Initiate a Template-Based Hire Term Certain (Sessional) No Empl ID AC0046

    E-Print Network [OSTI]

    Calgary, University of

    link. Enter criteria and view results 3. On the Search Criteria page, click Search Result Code LookupDate Created: 4/19/2012 4:07:00 PM Page 1 Initiate a Template-Based Hire ­ Term Certain (Sessional PeopleSoft You have performed a Search/Match to confirm that the instructor has no Empl ID (see

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code.

  18. Generalized concatenated quantum codes

    E-Print Network [OSTI]

    Grassl, Markus

    We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using ...

  19. Inside-Outside ID: 00050001778e 0

    E-Print Network [OSTI]

    Shirai, Kiyoaki

    EDR 1 EDR EDR 1 Inside-Outside [2, 3] [1] EDR [5, 6] 2 2 EDR · ( ) · ( ) 1 EDR ID: 00050001778e 0 2222 1 @@@@@ 2 3 šš rr hhhhh 4 $$$$ 5 šš 6 44 1: EDR 1 1 1 · " " " " [ ] #12;1: 6 5 4 5 6 3 2 3 1 2 4 0 1 · " " : EDR " " " " [ ] · " " : " " " " · " " : " " [ ] · " " : EDR

  20. Concatenated Conjugate Codes

    E-Print Network [OSTI]

    Mitsuru Hamada

    2006-10-31T23:59:59.000Z

    A conjugate code pair is defined as a pair of linear codes either of which contains the dual of the other. A conjugate code pair represents the essential structure of the corresponding Calderbank-Shor-Steane (CSS) quantum code. It is known that conjugate code pairs are applicable to (quantum) cryptography. We give a construction method for efficiently decodable conjugate code pairs.

  1. CURRICULUM CODE 308 DEGREE CODE _40

    E-Print Network [OSTI]

    Qiu, Weigang

    CURRICULUM CODE 308 DEGREE CODE _40 Hunter College of the City University of New York - Office Print) E-mail address OES Stamp THIS AUDIT IS NOT OFFICIAL UNTIL APPROVED BY THE OFFICE OF THE REGISTRAR Specialization Section #12;CURRICULUM CODE_308_ DEGREE CODE _40__ Course Prefix & Number Course Title Credits

  2. Field Experience/Internship Proposal Student's Name:_____________________________________ ID#:_____________________

    E-Print Network [OSTI]

    New Hampshire, University of

    Field Experience/Internship Proposal Student's Name:_____________________________________ ID:________________________ Email:______________________________________________ Internship Site Supervisor's Name and Title:___________________________________________________________ Course Information (Internship/Field Experience/Independent Study) (Where applicable) Course name

  3. ,"Eastport, ID Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Eastport, ID...

  4. Copyright 2004 Auto-ID Labs, All Rights Reserved The Auto-ID Labs

    E-Print Network [OSTI]

    Brock, David

    Reserved Several Types of Webs · The Web of Information HTML and the World Wide Web · The Web of Things-ID Labs, All Rights Reserved A Special Word of Thanks to my Colleagues · Stuart J. Allen - Professor Reserved A Special Word of Thanks to my Colleagues (continued) · Nhat-So Lam ­ Family Retail Business

  5. Half-Product Codes

    E-Print Network [OSTI]

    Emmadi, Santosh Kumar

    2014-12-11T23:59:59.000Z

    A class of codes, half-product codes, derived from product codes, is characterized. These codes have the implementation advantages of product codes and possess a special structural property which leads them to have larger (at least 3/2 times more...

  6. Priority coding for control room alarms

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1994-01-01T23:59:59.000Z

    Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

  7. DOE-ID Mission and Vision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan by(formerlyand5,ReadingID

  8. Data ID Service | DOE Data Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDaniel WoodID Service First

  9. Property:DSIRE/Id | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolve Jump to: navigation, search PropertyDtAddId

  10. Id-1 and Id-2 genes and products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    SciTech Connect (OSTI)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-09-30T23:59:59.000Z

    A method for treatment and amelioration of breast, cervical, ovarian, endometrial, squamous cells, prostate cancer and melanoma in a patient comprising targeting Id-1 or Id-2 gene expression with a delivery vehicle comprising a product which modulates Id-1 or Id-2 expression.

  11. A role for transcriptional regulator Id2 in natural killer T cells

    E-Print Network [OSTI]

    Monticelli, Laurel Anne

    2008-01-01T23:59:59.000Z

    proteins (Id) 14-16 . Id proteins lack the DNA bindingto analyze protein expression directly. Due to the lack of aprotein-2 (Id2) fail to develop natural killer cells, CD8? + dendritic cells, ?? IELs, Langerhans cells, and lack

  12. accident code interfaces: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operating systems 5 Flavour Les Houches Accord: Interfacing Flavour related Codes HEP - Experiment (arXiv) Summary: We present the Flavour Les Houches Accord (FLHA)...

  13. List of codes Language abbreviation codes

    E-Print Network [OSTI]

    Portugal MT Malta GR Greece SE Sweden TR Turkey Country codes for the ERASMUS Institutional Identification codes A Austria IR L Ireland BG Bulgaria LV Latvia B Belgium IS Iceland CY Cyprus MT Malta D Germany L

  14. Generalized Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Grassl, Markus

    We show how good quantum error-correcting codes can be constructed using generalized concatenation. The inner codes are quantum codes, the outer codes can be linear or nonlinear classical codes. Many new good codes are ...

  15. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2009 S.B. 1182 created the Oklahoma Uniform Building Code Commission. The 11-member Commission was given the power to conduct rulemaking processes to adopt new building codes. The codes adopted...

  17. Codeword Stabilized Quantum Codes

    E-Print Network [OSTI]

    Andrew Cross; Graeme Smith; John A. Smolin; Bei Zeng

    2007-09-27T23:59:59.000Z

    We present a unifying approach to quantum error correcting code design that encompasses additive (stabilizer) codes, as well as all known examples of nonadditive codes with good parameters. We use this framework to generate new codes with superior parameters to any previously known. In particular, we find ((10,18,3)) and ((10,20,3)) codes. We also show how to construct encoding circuits for all codes within our framework.

  18. Generalized Concatenated Quantum Codes

    E-Print Network [OSTI]

    Markus Grassl; Peter Shor; Graeme Smith; John Smolin; Bei Zeng

    2009-01-09T23:59:59.000Z

    We introduce the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of new single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length, but also asymptotically achieve the quantum Hamming bound for large block length.

  19. Efficient DHT attack mitigation through peers' ID distribution

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Efficient DHT attack mitigation through peers' ID distribution Thibault Cholez, Isabelle Chrisment.festor}@loria.fr Abstract--We present a new solution to protect the widely deployed KAD DHT against localized attacks which DHT attacks by comparing real peers' ID distributions to the theoretical one thanks to the Kullback

  20. On optimal constacyclic codes

    E-Print Network [OSTI]

    Giuliano G. La Guardia

    2013-11-11T23:59:59.000Z

    In this paper we investigate the class of constacyclic codes, which is a natural generalization of the class of cyclic and negacyclic codes. This class of codes is interesting in the sense that it contains codes with good or even optimal parameters. In this light, we propose constructions of families of classical block and convolutional maximum-distance-separable (MDS) constacyclic codes, as well as families of asymmetric quantum MDS codes derived from (classical-block) constacyclic codes. These results are mainly derived from the investigation of suitable properties on cyclotomic cosets of these corresponding codes.

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. These codes may be voluntarily adopted at the local level. Local jurisdictions...

  2. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2011-09-01T23:59:59.000Z

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  3. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2010-09-01T23:59:59.000Z

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  4. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2012-09-01T23:59:59.000Z

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  5. On concentric spherical codes and permutation codes with multiple initial codewords

    E-Print Network [OSTI]

    Nguyen, Ha Quy

    Permutation codes are a class of structured vector quantizers with a computationally-simple encoding procedure. In this paper, we provide an extension that preserves the computational simplicity but yields improved operational ...

  6. Generalized Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Markus Grassl; Peter W. Shor; Bei Zeng

    2009-05-04T23:59:59.000Z

    We show how good quantum error-correcting codes can be constructed using generalized concatenation. The inner codes are quantum codes, the outer codes can be linear or nonlinear classical codes. Many new good codes are found, including both stabilizer codes as well as so-called nonadditive codes.

  7. Property:RAPID/Contact/ID8/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/Organization RAPID/Contact/ID8/Position RAPID/Contact/ID8/Name

  8. Property:RAPID/Contact/ID8/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/PhoneID7/Phone"ID8/Name"

  9. Graph concatenation for quantum codes

    E-Print Network [OSTI]

    Beigi, Salman

    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code and every codeword stabilized code can be described by a graph and a classical code. For the ...

  10. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Stationary and Portable Fuel Cell Systems Codes and Standards Citations

    E-Print Network [OSTI]

    of Stationary Fuel Cell Power Systems (National Fire Protection Association 2007) · 6.4.1 Gaseous Hydrogen · 502 Required Systems · 510 Hazardous Exhaust Systems NFPA 55, Compressed Gases and Cryogenic Fluids Permitted · 7.3 Exhaust Systems Compressed Hydrogen Gas Storage International Building Code (International

  11. CONCATENATED CODES BASED ON MULTIDIMENSIONAL PARITY-CHECK CODES AND TURBO CODES

    E-Print Network [OSTI]

    Wong, Tan F.

    CONCATENATED CODES BASED ON MULTIDIMENSIONAL PARITY-CHECK CODES AND TURBO CODES John M. Shea, Florida Abstract--Turbo-codes provide communications near capac- ity when very large interleavers (and parity-check code can be used as an outer code with a turbo code as an inner code in a serial

  12. Quantum computing by color-code lattice surgery

    E-Print Network [OSTI]

    Andrew J. Landahl; Ciaran Ryan-Anderson

    2014-07-18T23:59:59.000Z

    We demonstrate how to use lattice surgery to enact a universal set of fault-tolerant quantum operations with color codes. Along the way, we also improve existing surface-code lattice-surgery methods. Lattice-surgery methods use fewer qubits and the same time or less than associated defect-braiding methods. Furthermore, per code distance, color-code lattice surgery uses approximately half the qubits and the same time or less than surface-code lattice surgery. Color-code lattice surgery can also implement the Hadamard and phase gates in a single transversal step---much faster than surface-code lattice surgery can. Against uncorrelated circuit-level depolarizing noise, color-code lattice surgery uses fewer qubits to achieve the same degree of fault-tolerant error suppression as surface-code lattice surgery when the noise rate is low enough and the error suppression demand is high enough.

  13. Operation and Maintenance

    E-Print Network [OSTI]

    van Hemmen, J. Leo

    in this Publication is provided as is and has been prepared solely for the purpose of evaluating data center designOperation and Maintenance InRowź RD Air Cooled ACRD100 ACRD101 #12;This manual is available assumes no liability for damages, violations of codes, improper installation, system failures, or any

  14. H id lb U i it G Heidelberg University, Germany

    E-Print Network [OSTI]

    Fischer, Wolfgang

    H id lb U i it G Topics: Heidelberg University, Germany Talks on 15th of July 2011 Neue Universität-Ming University and Heidelberg University 14. ­ 15. July 2011 Heidelberg University, Germany #12;NYMU - HD 2011 2

  15. Dissertation Checklist Coversheet Created June 2014 Student Name: Student ID

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Dissertation Checklist Coversheet Created June 2014 Student Name: Student ID: Program: Supervisor's Name: Dissertation Defence Checklist Coversheet Office of Graduate Programs (OGP) University supervisory committee member has read the dissertation and agreed that it is examinable. Completed GR364

  16. Dissertation Checklist Coversheet Revised Nov 2014 Student Name: Student ID

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Dissertation Checklist Coversheet Revised Nov 2014 Student Name: Student ID: Program: Supervisor's Name: Dissertation Defence Checklist Coversheet Office of Graduate Programs (OGP) University supervisory committee member has read the dissertation and agreed that it is examinable. Completed GR364

  17. Joint Source-Channel Coding via Turbo Codes

    E-Print Network [OSTI]

    Alajaji, Fady

    Joint Source-Channel Coding via Turbo Codes by Guang-Chong Zhu A dissertation submitted coding. One of the most exciting break- throughs in channel coding is the invention of Turbo codes, whose- tigate three joint source-channel coding issues in the context of Turbo codes. In the #12;rst part

  18. Unfolding the color code

    E-Print Network [OSTI]

    Aleksander Kubica; Beni Yoshida; Fernando Pastawski

    2015-03-06T23:59:59.000Z

    The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. Here we show that the color code on a $d$-dimensional closed manifold is equivalent to multiple decoupled copies of the $d$-dimensional toric code up to local unitary transformations and adding or removing ancilla qubits. Our result not only generalizes the proven equivalence for $d=2$, but also provides an explicit recipe of how to decouple independent components of the color code, highlighting the importance of colorability in the construction of the code. Moreover, for the $d$-dimensional color code with $d+1$ boundaries of $d+1$ distinct colors, we find that the code is equivalent to multiple copies of the $d$-dimensional toric code which are attached along a $(d-1)$-dimensional boundary. In particular, for $d=2$, we show that the (triangular) color code with boundaries is equivalent to the (folded) toric code with boundaries. We also find that the $d$-dimensional toric code admits logical non-Pauli gates from the $d$-th level of the Clifford hierarchy, and thus saturates the bound by Bravyi and K\\"{o}nig. In particular, we show that the $d$-qubit control-$Z$ logical gate can be fault-tolerantly implemented on the stack of $d$ copies of the toric code by a local unitary transformation.

  19. List decoding of subspace codes and rank-metric codes

    E-Print Network [OSTI]

    Mahdavifar, Hessam

    2012-01-01T23:59:59.000Z

    2.2.2 Koetter-Kschischang Codes . . . . . . . . . . . .of Subspace Codes . . . . . . . . . . . . . . 2.3.1 OverviewList-decodable Codes of Arbitrary Dimension . . . . . . .

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  1. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  2. Compiling Codes on Euclid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High...

  3. Coding AuthentiCity

    E-Print Network [OSTI]

    Mercier, Rachel Havens

    2008-01-01T23:59:59.000Z

    This thesis analyzes the impact of form-based codes, focusing on two research questions: (1) What is the underlying motivation for adopting a form-based code? (2) What motivations have the most significant impact on ...

  4. Introduction to Algebraic Codes

    E-Print Network [OSTI]

    for health care. These self-correcting codes that occur in nature might be better than all of. our coding theory based on algebra or algebraic geometry. It is a myth

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

  7. Cellulases and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang (Athens, GA); Ljungdahl, Lars G. (Athens, GA); Chen, Huizhong (Lawrenceville, GA)

    2001-02-20T23:59:59.000Z

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The New Jersey Uniform Construction Code Act provides that model codes and standards publications shall not be adopted more frequently than once every three years. However, a revision or amendment...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  11. Coding for Cooperative Communications

    E-Print Network [OSTI]

    Uppal, Momin Ayub

    2011-10-21T23:59:59.000Z

    of SWCNSQ based CF relaying as a performance benchmark, we will present a practical code design using low-density parity-check (LDPC) codes for error protection at the source, and nested scalar quantization plus irregular repeat-accumulate (IRA) codes... develop and design practical coding strategies which perform very close to the infor- mation theoretic limits. The cooperative communication channels we consider are: (a) The Gaussian re- lay channel, (b) the quasi-static fading relay channel, (c...

  12. 11. CONTRACT ID CODE PAGE OF PAGES I AMENDMENT OF SOLICITATION...

    National Nuclear Security Administration (NNSA)

    of Energy NNSAY-12 Site Office NNSAY-12 Site Office P.O. Box 2050 P.O. Box 2050 Building 9704-2 Building 9704-2 Oak Ridge TN 37831 Oak Ridge TN 37831 8. NAME AND ADDRESS OF...

  13. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE

    E-Print Network [OSTI]

    to replace Appendix E, FY 2007 Performance Evaluation and Measurement Plan and replace it with the new Appendix E, FY 2008 Performance Evaluation and Measurement Plan, also it replaces Appendix B, FY 2007 Small

  14. EXCEPTION TO SF 30, APPROVED BY NARS 5/79 1. CONTRACT ID CODE PAGE OF

    E-Print Network [OSTI]

    Wechsler, Risa H.

    of this modification is to incorporate the FY2009 Contractor Performance Evaluation and Measurement Plan (PEMP

  15. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE

    E-Print Network [OSTI]

    and Measurement Plan with Appendix E, FY 201 3 Performance Evaluation and Measurement Plan. This modification APPENDIX E STANDARDS OF PERFORMANCE-BASED FEE FY 2013 BATTELLE PERFORMANCE EVALUATION AND MEASUREMENT PLAN EVALUATION AND MEASUREMENT PLAN FOR MANAGEMENT

  16. \\1. CONTRACT ID CODE OF PAGES-I PAGE AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    E-Print Network [OSTI]

    .243 #12;Continuation of Block 14 Contract No. DE·AC05-76RL01830 Modification No. M494 SF-3D Continuation of Energy Pacific Northwest Site Office P. O. Box 350 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR.r;: ~intl. ... I16A. NAME AND TITLE OF CONTRACTING OFFICER (TvPB or print) Michael Kluse · j 11 j(,,1 Jewel

  17. AMENDMENT OF SOLIC ITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    E-Print Network [OSTI]

    for receipt of Offers 0 is extended, 0 is not extended. Offers must acknowledge receipt of this amendment: (a) By completing Items 8 and 15, and returning copies of the amendment: (b) By acknowledging receipt a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGEMENT TO BE RECEIVED

  18. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE

    E-Print Network [OSTI]

    . is not extended. Offers must acknowledge receipt of this amendment prior to the hour and date specified copies of the amendment; (b) By acknowledging receipt of this amendment on each copy of the offer and amendment numbers. FAILURE OF YOUR ACKNOWLEDGEMENT TO BE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIPT

  19. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE PAGE

    E-Print Network [OSTI]

    for receipt of Offers is extended, is not extended. Offers must acknowledge receipt of this amendment prior) By completing Items 8 and 15, and returning _copies of the amendment; (b) By acknowledging receipt a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGEMENT TO BE RECEIVED

  20. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE

    E-Print Network [OSTI]

    for receipt of Offers D is extended, 0 is not extended. Offers must acknowledge receipt of this amendment: (a) By completing Items 8 and 15 , and returning copies of the amendment; (b) By acknowledging includes a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGEMENT

  1. AMEN DMENT OF SOLICITATION/MODIFICATION OF CONTRACT r· CONTRACT ID CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALSALSfeed-image

  2. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1.CNTAT ID CODE PAGE "OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch

  3. AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OF CONTRACT 1 OTATI OEP AE 2..CNRC 3DCDE PAGE OFI

  4. AMENDMENT OF SOUCITATIONIMODIFICATION OF CONTRACT 1. CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OF CONTRACT 1 OTATI OEP AE 2..CNRC 3DCDE

  5. 11. CONTRACT ID CODE PAGE OF PAGES I AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 OF2 AMENDMENT

  6. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 Page 1 ofl PAGE

  7. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 Page 1 ofl PAGEI

  8. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 Page 1 ofl

  9. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 Page 1 ofll PAGE

  10. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 Page 1 ofll

  11. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 Page 1 ofll1

  12. AMENDMENT OF SOLICITATIONIMODIFICATlON OF CONTRACT ( I- CONTRACT ID CODE PAGE I OF 2

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 PageMI54 I( I-

  13. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT ( I. ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 PageMI54Babcock(

  14. AMENDMENT OF SOlLICITATION/MODIFICATlON OF CONTRACT I I. CONTRACr ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1'CONTRA'T

  15. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT /1. CONTRACT ID CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol. 364MODIFICA CONTRACT

  16. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol. 364MODIFICA

  17. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1.CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol. 364MODIFICA 3OTATI OE

  18. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol. 364MODIFICA 3OTATI OE I

  19. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE 1 PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol. 364MODIFICA 3OTATI OE I1

  20. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT \1. CONTRACT ID CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol. 364MODIFICA 3OTATI OEID

  1. AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT 1. CONTRACT ID CODE P AE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol. 364MODIFICA 3OTATI OF

  2. 1,CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATION/MODIFICATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less is more:culturingProtonAPRIL/MAY 2013 inside

  3. 1. CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I11 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less is more:culturingProtonAPRIL/MAY 2013Ap5,sval 2700042

  4. 1. CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I111 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less is more:culturingProtonAPRIL/MAY 2013Ap5,sval 2700042AMENDMENT

  5. 1. CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT II11 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less is more:culturingProtonAPRIL/MAY 2013Ap5,sval 2700042AMENDMENT

  6. Understanding Perception Through Neural 'Codes'

    E-Print Network [OSTI]

    Freeman, Walter J III

    2011-01-01T23:59:59.000Z

    Perception Through Neural ‘Codes’. In: Special Issue on “Perception Through Neural ‘Codes’. In: Special Issue on “Perception Through Neural ‘Codes’. In: Special Issue on “

  7. A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer

    SciTech Connect (OSTI)

    Samuel, E.A.; Murphy, K.R.; Demian, A.

    1989-11-01T23:59:59.000Z

    A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

  8. Shortened Turbo Codes

    E-Print Network [OSTI]

    David J.C. MacKay

    Simple arguments suggest that shortened codes must have distance properties equal to or better than those of their parent codes, and that they should be equally practical to decode. This relationship holds true in the case of low density generator codes and low density parity check codes. We investigate the properties of shortened turbo codes. I. Motivation for Shortening In our previous work on codes based on very sparse matrices we have observed that while codes with a low density generator matrix [1] are asymptotically bad, codes with a low density parity check matrix [2] are asymptotically good [3, 4, 5]. One way of viewing the relationship between low density generator matrix codes and low density parity check matrix codes is that one obtains a low density parity check matrix by taking the M \\Theta N parity check matrix [P IM ] of a (N; K) low density generator matrix code and chopping off its right-most M columns (where M = N \\Gamma K), to yield an M \\Theta K matrix [P], which...

  9. The Building Codes Assistance Project (BCAP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2Energy InformationAshden AwardsTheCodes

  10. Hanford Meteorological Station computer codes: Volume 1, The GEN computer code

    SciTech Connect (OSTI)

    Buck, J.W.; Andrews, G.L.

    1987-07-01T23:59:59.000Z

    The Hanford Meteorological Station, operated by Pacific Northwest Laboratory, issues general weather forecasts twice a day. The GEN computer code is used to archive the 24-hour forecasts and apply quality assurance checks to the forecast data. This code accesses an input file, which contains the date and hour of the previous forecast, and an output file, which contains 24-hour forecasts for the current month. As part of the program, a data entry form consisting of 14 fields that describe various weather conditions must be filled in. The information on the form is appended to the current 24-hour monthly forecast file, which provides an archive for the 24-hour general weather forecasts. This report consists of several volumes documenting the various computer codes used at the Hanford Meteorological Station. This volume describes the implementation and operation of the GEN computer code at the station.

  11. Banner Index Codes The Index code is a data-entry shortcut for the Fund code, Org code, and Program code in Banner

    E-Print Network [OSTI]

    Banner Index Codes The Index code is a data-entry shortcut for the Fund code, Org code, and Program code in Banner Finance (FO-P's). Implementation of the Index has greatly decreased data entry coding ­ Account (object) - Program (FOAP) code numbers on any of your accounting forms (Contracts, Purchase Orders

  12. Report on a workshop concerning code validation

    SciTech Connect (OSTI)

    none,

    1996-12-01T23:59:59.000Z

    The design of wind turbine components is becoming more critical as turbines become lighter and more dynamically active. Computer codes that will reliably predict turbine dynamic response are, therefore, more necessary than before. However, predicting the dynamic response of very slender rotating structures that operate in turbulent winds is not a simple matter. Even so, codes for this purpose have been developed and tested in North America and in Europe, and it is important to disseminate information on this subject. The purpose of this workshop was to allow those involved in the wind energy industry in the US to assess the progress invalidation of the codes most commonly used for structural/aero-elastic wind turbine simulation. The theme of the workshop was, ``How do we know it`s right``? This was the question that participants were encouraged to ask themselves throughout the meeting in order to avoid the temptation of presenting information in a less-than-critical atmosphere. Other questions posed at the meeting are: What is the proof that the codes used can truthfully represent the field data? At what steps were the codes tested against known solutions, or against reliable field data? How should the designer or user validate results? What computer resources are needed? How do codes being used in Europe compare with those used in the US? How does the code used affect industry certification? What can be expected in the future?

  13. Sandia National Laboratories: Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Codes Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar thermochemical...

  14. Tokamak Systems Code

    SciTech Connect (OSTI)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01T23:59:59.000Z

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  15. Property:RAPID/Contact/ID3/Phone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to:EmailID3/Organization

  16. Property:RAPID/Contact/ID7/Phone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/PhoneID7/Phone" Showing 2

  17. Property:RAPID/Contact/ID7/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/PhoneID7/Phone" Showing

  18. Property:RAPID/Contact/ID8/Email | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/PhoneID7/Phone"

  19. RAPID/Roadmap/13-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ID-a <

  20. RAPID/Roadmap/14-ID-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-d <

  1. Surface code quantum computing by lattice surgery

    E-Print Network [OSTI]

    Clare Horsman; Austin G. Fowler; Simon Devitt; Rodney Van Meter

    2013-02-21T23:59:59.000Z

    In recent years, surface codes have become a leading method for quantum error correction in theoretical large scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural 2-dimensional nearest neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect- based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance 3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D.

  2. The use of codes to connect mental and material aspects of brain functionComment on: â??Natural world physical, brain operational, and mind phenomenal spaceâ??timeâ? by A.A. Fingelkurts, A.A. Fingelkurts and C.F.H. Neves

    E-Print Network [OSTI]

    Freeman, Walter J.

    2010-01-01T23:59:59.000Z

    locate/plrev Comment The use of codes to connect mental andElectrocorticogram (ECoG); Neural codes; Perception Theconceive in terms of neural codes [1]. As neurobiolo- gists

  3. MA 261 EXAM II Fall 2001 Page 1/6 NAME STUDENT ID ...

    E-Print Network [OSTI]

    1910-20-20T23:59:59.000Z

    I.D.# is your 9 digit ID (probably your social security number). Also write your name at the top of ... information about the nature of f(1, -1). D. fxx(1, -1)fyy(1, -1) < 0.

  4. Chart of Accounts Dictionary -Coding Guide EXPENDITURES

    E-Print Network [OSTI]

    Northern British Columbia, University of

    of Entries Code Vehicle Repair, Maintenance, Operation The following accounts are used to record expenses related to UNBC mobile equipment. Includes all licensed and unlicensed motorized vehicles (cars, trucks, vans, ATV's, boats, forklifts), non-motorized vehicles (trailers, campers, etc) and vehicle equipment

  5. NL Industries, Inc EPA ID#: NJD061843249

    E-Print Network [OSTI]

    recycled lead from spent automotive batteries. The batteries were drained of sulfuric acid, crushed The 44-acre NL Industries site is a former secondary lead smelting facility that operated from 1972 and then processed for lead recovery at the smelting facility. The plastic and rubber waste materials resulting from

  6. SMART Podium ID422w Interactive

    E-Print Network [OSTI]

    If you register your SMART product, we'll notify you of new features and software upgrade. Register is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy or disassemble the interactive pen display. You risk electrical shock from the high voltage inside the casing

  7. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

  8. Efficiency Improvement of an IPMSM using Maximum Efficiency Operating Strategy

    E-Print Network [OSTI]

    Paderborn, UniversitÀt

    synchronous machines PMSM. Both current components id and iq have to be chosen dependent upon the actual components. Reference [2] investigated the optimum efficiency operation of a PMSM, which shows that the performance can be increased by field weakening. A loss minimization control of PMSM was investigated in [3

  9. On Cooperative Coding for Narrowband PLC Networks Lutz Lampea

    E-Print Network [OSTI]

    Lampe, Lutz

    On Cooperative Coding for Narrowband PLC Networks Lutz Lampea and A.J. Han Vinckb a line communications (PLC) is an old data-communication concept that has received renewed interest coding methods for LF NB PLC systems operating in low- voltage access networks. Keywords: Power line

  10. TidFP: Mining Frequent Patterns in Different Databases with Transaction ID

    E-Print Network [OSTI]

    Ezeife, Christie

    techniques as well as sequential mining. Keywords: Data mining, Transaction id, Frequent PatternsTidFP: Mining Frequent Patterns in Different Databases with Transaction ID C.I. Ezeife and Dan) are unique and would not usually be frequent, mining frequent patterns with transaction ids, show- ing

  11. Reed-Muller Codes: Spherically-Punctured Codes and Decoding Algorithms

    E-Print Network [OSTI]

    Kapralova, Olga

    2013-01-01T23:59:59.000Z

    Linear codes . . . . . . . . . . . . . . . . . . . . . . .3.3 Code parameters . . . . . . . . . . . . . .of linear codes . . . . . . . . . . . . 1.5 Reed-Muller

  12. Simple scheme for encoding and decoding a qubit in unknown state for various topological codes

    E-Print Network [OSTI]

    Justyna ?odyga; Pawe? Mazurek; Andrzej Grudka; Micha? Horodecki

    2014-11-29T23:59:59.000Z

    We present a scheme for encoding and decoding an unknown state for CSS codes, based on syndrome measurements. We illustrate our method by means of Kitaev toric code, defected-lattice code, topological subsystem code and Haah 3D code. The protocol is local whenever in a given code the crossings between the logical operators consist of next neighbour pairs, which holds for the above codes. For subsystem code we also present scheme in a noisy case, where we allow for bit and phase-flip errors on qubits as well as state preparation and syndrome measurement errors. Similar scheme can be built for two other codes. We show that the fidelity of the protected qubit in the noisy scenario in a large code size limit is of $1-\\mathcal{O}(p)$, where $p$ is a probability of error on a single qubit. Regarding Haah code we provide noiseless scheme, leaving the noisy case as an open problem.

  13. Energy-Aware Hardware Implementation of Network Coding

    E-Print Network [OSTI]

    Angelopoulos, Georgios

    In the last few years, Network Coding (NC) has been shown to provide several advantages, both in theory and in practice. However, its applicability to battery-operated systems under strict power constraints has not been ...

  14. Article ID: Query Translation on the Fly in Deep Web

    E-Print Network [OSTI]

    Article ID: Query Translation on the Fly in Deep Web Integration Jiang Fangjiao, Jia Linlin, Meng users to access the desired information, many researches have dedicated to the Deep Web (i.e. Web databases) integration. We focus on query translation which is an important part of the Deep Web integration

  15. ORNL 2010-G01074/jcn UT-B ID 200301298

    E-Print Network [OSTI]

    ORNL 2010-G01074/jcn UT-B ID 200301298 Super Energy Saver Heat Pump Technology Summary ORNL heat pumps, inventing a super energy saver heat pump. This invention significantly improves heating of the hybrid phase change material in the heat pump cycle. The material combines Group I and II halides

  16. Bachelor of Science, Geophysics, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Geophysics, 2013-2014 Name ID# Date General Degree Requirements Residency with Lab 4 COMPSCI 115 Introduction to C 2 GEOPH 201 Seeing the Unseen: an Introduction to Geophysics 4 GEOPH 300 Physics of the Earth 3 GEOPH 305 Applied Geophysics 3 GEOPH 420 Geophysical Applications

  17. Introduction to Health and Social Care (ID:250)

    E-Print Network [OSTI]

    Harman, Neal.A.

    Introduction to Health and Social Care (ID:250) Outline This is a day event which will be designed will be given short talks from different staff about the various health and social care courses on offer details Learning outcomes: · The different health and social care courses offered at Swansea University

  18. Hindawi Publishing Corporation Volume 2012, Article ID 507894, 8 pages

    E-Print Network [OSTI]

    Barbas III, Carlos F.

    is properly cited. Sickle cell disease (SCD) and -thalassemia patients are phenotypically normal if they carry]. Sickle cell disease (SCD) and -thalassemia patients are phenotypically normal if they carry compensatoryHindawi Publishing Corporation Anemia Volume 2012, Article ID 507894, 8 pages doi:10

  19. ORNL 2012-G00212/tcc UT-B ID 200902214

    E-Print Network [OSTI]

    Pennycook, Steve

    Technology Summary Glass used in building materials (curtain walls), windshields, goggles, glasses, opticalORNL 2012-G00212/tcc UT-B ID 200902214 08.2012 Superhydrophobic Transparent Glass Thin Films researchers have invented a method to produce durable, superhydrophobic, antireflective glass thin films

  20. Exam 1 Phys 105 Section______Fall 2002 Name__________________________________ ID

    E-Print Network [OSTI]

    Gary, Dale E.

    Exam 1 Phys 105 Section______Fall 2002 Name__________________________________ ID: Closed book exam each. Work out problems are 4 points each. Passing of the exam requires at least 50% of the maximum an expression, a t2 /2 where a is acceleration and t is time. The dimension of this expression in the SI system

  1. https://doyouliveunited.org 1. Enter you user ID

    E-Print Network [OSTI]

    Search' button. 7. Enter you search terms for the agency of your choice and click on `Search'. #12;httpshttps://doyouliveunited.org 1. Enter you user ID: your email address Enter your password: welcome be different then the options listed here. 5. For a payroll pledge, enter the amount per pay or the total

  2. Bachelor of Applied Science, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Writing and Research 3 CID BAS 300 Communication in the Applied Sciences 3 UF 100 Intellectual FoundationsBachelor of Applied Science, 2014-2015 Name ID# Date General Degree Requirements Residency: Total 3 UF 200 Civic and Ethical Foundations 3 FF BAS 400 Capstone in Applied Sciences 3 DLM Mathematics 3

  3. Bachelor of Applied Science, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Writing and Research 3 CID BAS 300 Communication in the Applied Sciences 3 UF 100 Intellectual FoundationsBachelor of Applied Science, 2012-2013 Name ID# Date General Degree Requirements Residency: Total 3 UF 200 Civic and Ethical Foundations 3 FF BAS 400 Capstone in Applied Sciences 3 DLM Mathematics 3

  4. Bachelor of Applied Science, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Writing and Research 3 CID BAS 300 Communication in the Applied Sciences 3 UF 100 Intellectual FoundationsBachelor of Applied Science, 2013-2014 Name ID# Date General Degree Requirements Residency: Total 3 UF 200 Civic and Ethical Foundations 3 FF BAS 400 Capstone in Applied Sciences 3 DLM Mathematics 3

  5. UW China Hong Kong Entrance Scholarship University of Waterloo ID#

    E-Print Network [OSTI]

    Le Roy, Robert J.

    UW ­ China Hong Kong Entrance Scholarship Name: University of Waterloo ID#: Program Applied of Waterloo who currently lives in or who previously lived in Hong Kong or mainland China. Candidates must also intend to return to Hong Kong or China after graduation. Selection will be based on academic

  6. ORNL 2010-G01078/jcn UT-B ID 201002389

    E-Print Network [OSTI]

    Pennycook, Steve

    ORNL 2010-G01078/jcn UT-B ID 201002389 Energy Saving Absorption Heat Pump Water Heater Technology Summary ORNL's new absorption heat pump and water heater technology offers substantial energy savings and can reduce the use of fossil fuels by buildings. While conventional heat pump water heater designs

  7. Wet-Nanotechnology: fl id t NIUnanofluids at NIU

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    .kostic.niu.edu 4 Mechanical Engineering NORTHERN ILLINOIS UNIVERSITY #12;One Step Nanofluid Production ImprovementOne-Step Nanofluid Production Improvement Insulated and vertically-adjustable boat- heater evaporator NIU with i fl id heater evaporatorLaboratoryLaboratory S.S. ChoiChoi J. Hull,J. Hull, and othersand others

  8. Universal space-time codes from demultiplexed trellis codes

    E-Print Network [OSTI]

    Kose, Cenk; Wesel, R D

    2006-01-01T23:59:59.000Z

    and A. R. Calderbank, “Space-time codes for high data ratePerformance criteria and code construction,” IEEE Trans.of space–time trellis codes,” IEEE Trans. Commun. , vol. 51,

  9. Relation Between Surface Codes and Hypermap-Homology Quantum Codes

    E-Print Network [OSTI]

    Pradeep Sarvepalli

    2014-03-14T23:59:59.000Z

    Recently, a new class of quantum codes based on hypermaps were proposed. These codes are obtained from embeddings of hypergraphs as opposed to surface codes which are obtained from the embeddings of graphs. It is natural to compare these two classes of codes and their relation to each other. In this context two related questions are addressed in this paper: Can the parameters of hypermap-homology codes be superior to those of surface codes and what is precisely the relation between these two classes of quantum codes? We show that a canonical hypermap code is identical to a surface code while a noncanonical hypermap code can be transformed to a surface code by CNOT gates alone. Our approach is constructive; we construct the related surface code and the transformation involving CNOT gates.

  10. Operations & Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations and Maintenance Operations OASIS: OATI (Note: this site is not hosted by Western and requires a digital certificate and login for full access.) Contact Information...

  11. Operations & Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rates Operations & Maintenance Operations OASIS: WACM (Note: this site is not hosted by Western and requires a digital certificate and login for full access.) wesTTrans Common...

  12. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N. (ed.)

    1985-05-01T23:59:59.000Z

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  13. Certification plan for safety and PRA codes

    SciTech Connect (OSTI)

    Toffer, H.; Crowe, R.D. (Westinghouse Hanford Co., Richland, WA (United States)); Ades, M.J. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1990-05-01T23:59:59.000Z

    A certification plan for computer codes used in Safety Analyses and Probabilistic Risk Assessment (PRA) for the operation of the Savannah River Site (SRS) reactors has been prepared. An action matrix, checklists, and a time schedule have been included in the plan. These items identify what is required to achieve certification of the codes. A list of Safety Analysis and Probabilistic Risk Assessment (SA PRA) computer codes covered by the certification plan has been assembled. A description of each of the codes was provided in Reference 4. The action matrix for the configuration control plan identifies code specific requirements that need to be met to achieve the certification plan's objectives. The checklist covers the specific procedures that are required to support the configuration control effort and supplement the software life cycle procedures based on QAP 20-1 (Reference 7). A qualification checklist for users establishes the minimum prerequisites and training for achieving levels of proficiency in using configuration controlled codes for critical parameter calculations.

  14. Certification plan for safety and PRA codes

    SciTech Connect (OSTI)

    Toffer, H.; Crowe, R.D. [Westinghouse Hanford Co., Richland, WA (United States); Ades, M.J. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1990-05-01T23:59:59.000Z

    A certification plan for computer codes used in Safety Analyses and Probabilistic Risk Assessment (PRA) for the operation of the Savannah River Site (SRS) reactors has been prepared. An action matrix, checklists, and a time schedule have been included in the plan. These items identify what is required to achieve certification of the codes. A list of Safety Analysis and Probabilistic Risk Assessment (SA&PRA) computer codes covered by the certification plan has been assembled. A description of each of the codes was provided in Reference 4. The action matrix for the configuration control plan identifies code specific requirements that need to be met to achieve the certification plan`s objectives. The checklist covers the specific procedures that are required to support the configuration control effort and supplement the software life cycle procedures based on QAP 20-1 (Reference 7). A qualification checklist for users establishes the minimum prerequisites and training for achieving levels of proficiency in using configuration controlled codes for critical parameter calculations.

  15. Final Report: DOE/ID/14215

    SciTech Connect (OSTI)

    Kenneth Bryden; J. Richard Hess; Thomas Ulrich; Robert Zemetra

    2008-08-18T23:59:59.000Z

    The proposed straw separation system developed in the research project harvests the large internode sections of the straw which has the greater potential as a feedstock for lignocellulosic ethanol production while leaving the chaff and nodes in the field. This strategy ensures sustainable agriculture by preventing the depletion of soil minerals, and it restores organic matter to the soil in amounts and particle sizes that accommodate farmers’ needs to keep tillage and fertilizer costs low. A ton of these nutrient-rich plant tissues contains as much as $10.55 worth of fertilizer (economic and energy benefits), in terms of nitrogen, phosphorus, potassium, and other nutrients provided to the soil when incorporated by tillage instead of being burned. Biomass conversion to fermentable sugars for the purpose of producing fuels, chemicals, and other industrial products is well understood. Most bioenergy strategies rely on low-cost fermentable sugars for sustainability and economic viability in the marketplace. Exploitation of the “whole crop”—specifically, wheat straw or other plant material currently regarded as residue or waste—is a practical approach for obtaining a reliable and low-cost source of sugars. However, industrial-scale production of sugars from wheat straw, while technically feasible, is plagued by obstacles related to capital costs, energy consumption, waste streams, production logistics, and the quality of the biomass feedstock. Currently available separation options with combine harvesters are not able to achieve sufficient separation of the straw/stover and chaff streams to realize the full potential of selective harvest. Since ethanol yield is a function of feedstock structural carbohydrate content, biomass anatomical fractions of higher product yield can have a significant beneficial impact on minimum ethanol selling price. To address this advanced biomass separation computation engineering models were developed to more effectively and efficiently engineer high-fidelity and high throughput separation systems for biomass components. INL and Iowa State University developed a computational modeling strategy for simulating multi-phase flow with an integrated solver using various computational fluid dynamics (CFD) codes. ISU set up a classic multi-phase test problem to be solved by the various CFD codes. The benchmark case was based on experimental data for bubble gas holdup and bed expansion for a gas/solid fluidized bed. Preliminary fluidization experiments identified some unexpected fluidization behavior, where rather than the bed uniformly fluidizing, a “blow out” would occur where a hole would open up in the bed through which the air would preferentially flow, resulting in erratic fluidization. To improve understanding of this phenomena and aid in building a design tool, improved computational tools were developed. The virtual engineering techniques developed were tested and utilized to design a separation baffle in a CNH combine. A computational engineering approach involving modeling, analysis, and simulation was used in the form of virtual engineering to design a baffle separator capable of accomplishing the high-fidelity residue separation established by the performance targets. Through the use of the virtual engineering model, baffle designs were simulated to (1) determine the effect of the baffle on the airflow of the combine cleaning system, and (2) predict the effectiveness of the baffle in separating the residue streams. A baffle design was selected based on the virtual engineering modeling, built into the INL selective harvest test combine. The result of the baffle changes improved the crop separation capability of the combine, enabling downstream improvement in composition and theoretical ethanol yield. In addition, the positive results from the application of the virtual engineering tools to the CNH combine design resulted in further application of these tools to other INL areas of research. INL and the University of Idaho identified, characterized, and modified a key plant biosynt

  16. Rateless Codes for AVC Models

    E-Print Network [OSTI]

    Sarwate, A D; Gastpar, M

    2010-01-01T23:59:59.000Z

    2004. [7] M. Luby, “LT codes,” in Proc. 43rd Ann. IEEE Symp.8] A. Shokrollahi, “Fountain codes,” in Proc. 41st AllertonChannel capacities for list codes,” J. Appl. Probabil. ,

  17. Unequal Error Protection Turbo Codes

    E-Print Network [OSTI]

    Henkel, Werner

    Unequal Error Protection Turbo Codes Diploma Thesis Neele von Deetzen Arbeitsbereich Nachrichtentechnik School of Engineering and Science Bremen, February 28th, 2005 #12;Unequal Error Protection Turbo Convolutional Codes / Turbo Codes 18 3.1 Structure

  18. User`s manual for SNL-SAND-II code

    SciTech Connect (OSTI)

    Griffin, P.J.; Kelly, J.G. [Sandia National Labs., Albuquerque, NM (United States); VanDenburg, J.W. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

    1994-04-01T23:59:59.000Z

    Sandia National Laboratories, in the process of characterizing the neutron environments at its reactor facilities, has developed an enhanced version of W. McElroy`s original SAND-II code. The enhanced input, output, and plotting interfaces make the code much easier to use. The basic physics and operation of the code remain unchanged. Important code enhancements include the interfaces to the latest ENDF/B-VI and IRDF-90 dosimetry-quality cross sections and the ability to use silicon displacement-sensitive devices as dosimetry sensors.

  19. Transmutation Fuel Performance Code Conceptual Design

    SciTech Connect (OSTI)

    Gregory K. Miller; Pavel G. Medvedev

    2007-03-01T23:59:59.000Z

    One of the objectives of the Global Nuclear Energy Partnership (GNEP) is to facilitate the licensing and operation of Advanced Recycle Reactors (ARRs) for transmutation of the transuranic elements (TRU) present in spent fuel. A fuel performance code will be an essential element in the licensing process ensuring that behavior of the transmutation fuel elements in the reactor is understood and predictable. Even more important in the near term, a fuel performance code will assist substantially in the fuels research and development, design, irradiation testing and interpretation of the post-irradiation examination results.

  20. CBP PHASE I CODE INTEGRATION

    SciTech Connect (OSTI)

    Smith, F.; Brown, K.; Flach, G.; Sarkar, S.

    2011-09-30T23:59:59.000Z

    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and credible set of software tools to predict the structural, hydraulic, and chemical performance of cement barriers used in nuclear applications over extended time frames (greater than 100 years for operating facilities and greater than 1000 years for waste management). The simulation tools will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems including waste forms, containment structures, entombments, and environmental remediation. These cementitious materials are exposed to dynamic environmental conditions that cause changes in material properties via (i) aging, (ii) chloride attack, (iii) sulfate attack, (iv) carbonation, (v) oxidation, and (vi) primary constituent leaching. A set of state-of-the-art software tools has been selected as a starting point to capture these important aging and degradation phenomena. Integration of existing software developed by the CBP partner organizations was determined to be the quickest method of meeting the CBP goal of providing a computational tool that improves the prediction of the long-term behavior of cementitious materials. These partner codes were selected based on their maturity and ability to address the problems outlined above. The GoldSim Monte Carlo simulation program (GTG 2010a, GTG 2010b) was chosen as the code integration platform (Brown & Flach 2009b). GoldSim (current Version 10.5) is a Windows based graphical object-oriented computer program that provides a flexible environment for model development (Brown & Flach 2009b). The linking of GoldSim to external codes has previously been successfully demonstrated (Eary 2007, Mattie et al. 2007). GoldSim is capable of performing deterministic and probabilistic simulations and of modeling radioactive decay and constituent transport. As part of the CBP project, a general Dynamic Link Library (DLL) interface was developed to link GoldSim with external codes (Smith III et al. 2010). The DLL uses a list of code inputs provided by GoldSim to create an input file for the external application, runs the external code, and returns a list of outputs (read from files created by the external application) back to GoldSim. In this way GoldSim provides: (1) a unified user interface to the applications, (2) the capability of coupling selected codes in a synergistic manner, and (3) the capability of performing probabilistic uncertainty analysis with the codes. GoldSim is made available by the GoldSim Technology Group as a free 'Player' version that allows running but not editing GoldSim models. The player version makes the software readily available to a wider community of users that would wish to use the CBP application but do not have a license for GoldSim.

  1. Quantum Error Correcting Subsystem Codes From Two Classical Linear Codes

    E-Print Network [OSTI]

    Dave Bacon; Andrea Casaccino

    2006-10-17T23:59:59.000Z

    The essential insight of quantum error correction was that quantum information can be protected by suitably encoding this quantum information across multiple independently erred quantum systems. Recently it was realized that, since the most general method for encoding quantum information is to encode it into a subsystem, there exists a novel form of quantum error correction beyond the traditional quantum error correcting subspace codes. These new quantum error correcting subsystem codes differ from subspace codes in that their quantum correcting routines can be considerably simpler than related subspace codes. Here we present a class of quantum error correcting subsystem codes constructed from two classical linear codes. These codes are the subsystem versions of the quantum error correcting subspace codes which are generalizations of Shor's original quantum error correcting subspace codes. For every Shor-type code, the codes we present give a considerable savings in the number of stabilizer measurements needed in their error recovery routines.

  2. No Code: Null Programs

    E-Print Network [OSTI]

    Montfort, Nick

    2014-06-05T23:59:59.000Z

    To continue the productive discussion of uninscribed artworks in Craig Dworkin’s No Medium, this report discusses, in detail, those computer programs that have no code, and are thus empty or null. Several specific examples ...

  3. Climate Code Foundation

    E-Print Network [OSTI]

    Barnes, Nick; Jones, David

    2011-07-05T23:59:59.000Z

    Climate Code Foundation - who are we? A non-profit organisation founded in August 2010; our goal is to promote the public understanding of climate science, by increasing the visibility and clarity of the software used in climate science...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  5. Quantum error control codes

    E-Print Network [OSTI]

    Abdelhamid Awad Aly Ahmed, Sala

    2008-10-10T23:59:59.000Z

    QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major... Subject: Computer Science QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

  6. A Construction of Quantum Stabilizer Codes Based on Syndrome Assignment by Classical Parity-Check Matrices

    E-Print Network [OSTI]

    Ching-Yi Lai; Chung-Chin Lu

    2007-12-02T23:59:59.000Z

    In quantum coding theory, stabilizer codes are probably the most important class of quantum codes. They are regarded as the quantum analogue of the classical linear codes and the properties of stabilizer codes have been carefully studied in the literature. In this paper, a new but simple construction of stabilizer codes is proposed based on syndrome assignment by classical parity-check matrices. This method reduces the construction of quantum stabilizer codes to the construction of classical parity-check matrices that satisfy a specific commutative condition. The quantum stabilizer codes from this construction have a larger set of correctable error operators than expected. Its (asymptotic) coding efficiency is comparable to that of CSS codes. A class of quantum Reed-Muller codes is constructed, which have a larger set of correctable error operators than that of the quantum Reed-Muller codes developed previously in the literature. Quantum stabilizer codes inspired by classical quadratic residue codes are also constructed and some of which are optimal in terms of their coding parameters.

  7. Nested Quantum Error Correction Codes

    E-Print Network [OSTI]

    Zhuo Wang; Kai Sun; Hen Fan; Vlatko Vedral

    2009-09-28T23:59:59.000Z

    The theory of quantum error correction was established more than a decade ago as the primary tool for fighting decoherence in quantum information processing. Although great progress has already been made in this field, limited methods are available in constructing new quantum error correction codes from old codes. Here we exhibit a simple and general method to construct new quantum error correction codes by nesting certain quantum codes together. The problem of finding long quantum error correction codes is reduced to that of searching several short length quantum codes with certain properties. Our method works for all length and all distance codes, and is quite efficient to construct optimal or near optimal codes. Two main known methods in constructing new codes from old codes in quantum error-correction theory, the concatenating and pasting, can be understood in the framework of nested quantum error correction codes.

  8. Accumulate-Repeat-Accumulate Codes: Systematic Codes Achieving the Binary

    E-Print Network [OSTI]

    Sason, Igal

    Accumulate-Repeat-Accumulate Codes: Systematic Codes Achieving the Binary Erasure Channel Capacity@ee.technion.ac.il Abstract The paper introduces ensembles of accumulate-repeat-accumulate (ARA) codes which asymp- totically by the first capacity-achieving ensembles of ir- regular repeat-accumulate (IRA) codes with bounded complexity

  9. Code: A Lightweight and Flexible Mobile Code Toolkit

    E-Print Network [OSTI]

    Picco, Gian Pietro

    evaluation of mobile code technology does not exist yet, some studies already evidenced that the powerful of client­server and mobile code in reducing the network traffic generated by management. The theoreticalŻCode: A Lightweight and Flexible Mobile Code Toolkit Gian Pietro Picco Dip. Automatica e

  10. Analyses to support development of risk-informed separation distances for hydrogen codes and standards.

    SciTech Connect (OSTI)

    LaChance, Jeffrey L.; Houf, William G. (Sandia National Laboratories, Livermore, CA); Fluer, Inc., Paso Robels, CA; Fluer, Larry (Fluer, Inc., Paso Robels, CA); Middleton, Bobby

    2009-03-01T23:59:59.000Z

    The development of a set of safety codes and standards for hydrogen facilities is necessary to ensure they are designed and operated safely. To help ensure that a hydrogen facility meets an acceptable level of risk, code and standard development organizations are tilizing risk-informed concepts in developing hydrogen codes and standards.

  11. Web: http://dust.ess.uci.edu/prp/prp ids/prp ids.pdf NASA International Polar Year (IPY) Proposal Submitted: April 17, 2006

    E-Print Network [OSTI]

    Zender, Charles

    Web: http://dust.ess.uci.edu/prp/prp ids/prp ids.pdf NASA International Polar Year (IPY) Proposal Researchers and Postdocs on CRY- OLIST and on ESS Website. 6. 20070723: Registered for SPAC Workshop for potential collaborators/contributors: 1. Use CVS to obtain source to this proposal: cvs -d :ext:esmf.ess

  12. Applying Fuzzy ID3 Decision Tree for Software Effort Estimation

    E-Print Network [OSTI]

    Elyassami, Sanaa

    2011-01-01T23:59:59.000Z

    Web Effort Estimation is a process of predicting the efforts and cost in terms of money, schedule and staff for any software project system. Many estimation models have been proposed over the last three decades and it is believed that it is a must for the purpose of: Budgeting, risk analysis, project planning and control, and project improvement investment analysis. In this paper, we investigate the use of Fuzzy ID3 decision tree for software cost estimation; it is designed by integrating the principles of ID3 decision tree and the fuzzy set-theoretic concepts, enabling the model to handle uncertain and imprecise data when describing the software projects, which can improve greatly the accuracy of obtained estimates. MMRE and Pred are used as measures of prediction accuracy for this study. A series of experiments is reported using two different software projects datasets namely, Tukutuku and COCOMO'81 datasets. The results are compared with those produced by the crisp version of the ID3 decision tree.

  13. Code Transformations for Energy-Efficient Device Management

    E-Print Network [OSTI]

    Bianchini, Ricardo

    transformations that increase device idle times and inform the operating system about the length of each upcoming, or both. Recent advances in fast, low-power microproces- sors and their use in battery-operated computersCode Transformations for Energy-Efficient Device Management Taliver Heath, Eduardo Pinheiro, Jerry

  14. A real-time implementation of G.726 with tree coding

    E-Print Network [OSTI]

    Kokes, Mark Gavin

    1997-01-01T23:59:59.000Z

    . Hybrid Coding 1. Multipulse Coding . 2. Regular Pulse Excited Coding 3. Codebook Excited Linear Predictive Coding . 4. Multiband Excitation Coding III ITU-T G. 726 (ADPCM) A. Overview. B. Adaptive Qusntizer C. Adaptive Predictor IV TREE CODING... of operation for real-time G. 726 application VI UDP packet contents 56 LIST OF FIGURES FIGURE Page I Speech codec comparisons 2 DPCM encoder/decoder pair 3 A double band subband codec 10 12 4 Vocoder speech production model 15 5 Simple LPC vocoder 17...

  15. MHD Generation Code

    E-Print Network [OSTI]

    Frutos-Alfaro, Francisco

    2015-01-01T23:59:59.000Z

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.

  16. Cyclic simplex coded OTDR SNR enhancement of coded optical time domain reflectometry using cyclic simplex codes

    E-Print Network [OSTI]

    Park, Namkyoo

    Cyclic simplex coded OTDR SNR enhancement of coded optical time domain reflectometry using cyclic simplex codes *, , , e-mail : nkpark@plaza.snu.ac.kr Abstract: We propose and experimentally demonstrate the performance improvement of a coded optical time domain reflectometry using cyclic simplex

  17. Extended quantum color coding

    SciTech Connect (OSTI)

    Hayashi, A.; Hashimoto, T.; Horibe, M. [Department of Applied Physics, Fukui University, Fukui 910-8507 (Japan)

    2005-01-01T23:59:59.000Z

    The quantum color coding scheme proposed by Korff and Kempe [e-print quant-ph/0405086] is easily extended so that the color coding quantum system is allowed to be entangled with an extra auxiliary quantum system. It is shown that in the extended scheme we need only {approx}2{radical}(N) quantum colors to order N objects in large N limit, whereas {approx}N/e quantum colors are required in the original nonextended version. The maximum success probability has asymptotics expressed by the Tracy-Widom distribution of the largest eigenvalue of a random Gaussian unitary ensemble (GUE) matrix.

  18. CONCEPT computer code

    SciTech Connect (OSTI)

    Delene, J.

    1984-01-01T23:59:59.000Z

    CONCEPT is a computer code that will provide conceptual capital investment cost estimates for nuclear and coal-fired power plants. The code can develop an estimate for construction at any point in time. Any unit size within the range of about 400 to 1300 MW electric may be selected. Any of 23 reference site locations across the United States and Canada may be selected. PWR, BWR, and coal-fired plants burning high-sulfur and low-sulfur coal can be estimated. Multiple-unit plants can be estimated. Costs due to escalation/inflation and interest during construction are calculated.

  19. Coding for Transmission Coding for Compression Bonus Section CMPSCI 240: Reasoning about Uncertainty

    E-Print Network [OSTI]

    McGregor, Andrew

    Coding for Transmission Coding for Compression Bonus Section CMPSCI 240: Reasoning about: April 29, 2014 #12;Coding for Transmission Coding for Compression Bonus Section Information Theory. #12;Coding for Transmission Coding for Compression Bonus Section Encoding Messages with Redundancy

  20. The Woodland Carbon Code

    E-Print Network [OSTI]

    The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

  1. Chaotic Turbo Codes

    E-Print Network [OSTI]

    S. Adrian Barbulescu; Andrew Guidi; Steven S. Pietrobon

    This paper describes a new class of codes, chaotic turbo codes. They were born from a symbiosis between a chaotical digital encoder and a turbo code. This paper investigates the most important properties of both chaotic digital encoders and turbo encoders in order to understand how the two complement each other. A Chaotic Turbo Encoder is then described and initial results will be presented. I. INTRODUCTION A chaotic digital encoder was defined for the first time in [1] as a non--linear digital filter with finite precision (8 bits) which behaves in a quasi--chaotic fashion, both with zero and nonzero input sequences. A simple chaotic encoder is shown in Figure 1 [1]. D Y k X k LCIRC D Figure 1: Chaotic Digital Encoder Mapper L L L L L L 1 The main features of chaotic digital encoders that are used in this paper are: # The system is digital which makes possible its integration with a turbo code. # The output of a chaotic digital encoder with arbitrary inputs has a broad...

  2. Idaho National Laboratory Supervisory Control and Data Acquisition Intrusion Detection System (SCADA IDS)

    SciTech Connect (OSTI)

    Jared Verba; Michael Milvich

    2008-05-01T23:59:59.000Z

    Current Intrusion Detection System (IDS) technology is not suited to be widely deployed inside a Supervisory, Control and Data Acquisition (SCADA) environment. Anomaly- and signature-based IDS technologies have developed methods to cover information technology-based networks activity and protocols effectively. However, these IDS technologies do not include the fine protocol granularity required to ensure network security inside an environment with weak protocols lacking authentication and encryption. By implementing a more specific and more intelligent packet inspection mechanism, tailored traffic flow analysis, and unique packet tampering detection, IDS technology developed specifically for SCADA environments can be deployed with confidence in detecting malicious activity.

  3. Erasure Techniques in MRD codes

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache; R. Sujatha; R. S. Raja Durai

    2012-05-03T23:59:59.000Z

    This book is organized into six chapters. The first chapter introduces the basic algebraic structures essential to make this book a self contained one. Algebraic linear codes and their basic properties are discussed in chapter two. In chapter three the authors study the basic properties of erasure decoding in maximum rank distance codes. Some decoding techniques about MRD codes are described and discussed in chapter four of this book. Rank distance codes with complementary duals and MRD codes with complementary duals are introduced and their applications are discussed. Chapter five introduces the notion of integer rank distance codes. The final chapter introduces some concatenation techniques.

  4. REDUCED-COMPLEXITY DECODING FOR CONCATENATED CODES BASED ON RECTANGULAR PARITY-CHECK CODES AND TURBO CODES

    E-Print Network [OSTI]

    Wong, Tan F.

    AND TURBO CODES John M. Shea and Tan F. Wong University of Florida Department of Electrical and Computer-check code (RPCC) with a turbo code. These concatenated codes are referred to as RPCC+turbo codes. RPCC+turbo codes have been shown to significantly outperform turbo codes in several scenarios [1],[2]. One

  5. Surface codes: Towards practical large-scale quantum computation

    E-Print Network [OSTI]

    Austin G. Fowler; Matteo Mariantoni; John M. Martinis; Andrew N. Cleland

    2012-10-27T23:59:59.000Z

    This article provides an introduction to surface code quantum computing. We first estimate the size and speed of a surface code quantum computer. We then introduce the concept of the stabilizer, using two qubits, and extend this concept to stabilizers acting on a two-dimensional array of physical qubits, on which we implement the surface code. We next describe how logical qubits are formed in the surface code array and give numerical estimates of their fault-tolerance. We outline how logical qubits are physically moved on the array, how qubit braid transformations are constructed, and how a braid between two logical qubits is equivalent to a controlled-NOT. We then describe the single-qubit Hadamard, S and T operators, completing the set of required gates for a universal quantum computer. We conclude by briefly discussing physical implementations of the surface code. We include a number of appendices in which we provide supplementary information to the main text.

  6. Coded modulation with Low Density Parity Check codes

    E-Print Network [OSTI]

    Narayanaswami, Ravi

    2001-01-01T23:59:59.000Z

    This thesis proposes the design of Low Density Parity Check (LDPC) codes for cases where coded modulation is used. We design these codes by extending the idea of Density Evolution (DE) that has been introduced as a powerful tool to analyze LDPC...

  7. Department of Energy Idaho - Inside DOE-ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevantDOEDelegations Current ByCommonInside ID

  8. RAPID/Roadmap/14-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutionsPublicQuanlightR3(2)3-AK-aNV-aCA-eeb

  9. RAPID/Roadmap/14-ID-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatory and

  10. RAPID/Roadmap/15-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPIDaUT-a <bfa

  11. RAPID/Roadmap/19-ID-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche < RAPID‎

  12. RAPID/Roadmap/3-ID-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <

  13. RAPID/Roadmap/5-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <ca

  14. RAPID/Roadmap/7-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searcheWA-aHI-a <a <

  15. RAPID/Roadmap/8-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation,c < RAPID‎ | Roadmapca

  16. RAPID/Roadmap/8-ID-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation,c < RAPID‎ | Roadmapcae

  17. Property:RAPID/Contact/ID1/Organization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/Organization Property Type

  18. Property:RAPID/Contact/ID1/Phone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/Organization Property

  19. Property:RAPID/Contact/ID1/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/Organization

  20. Property:RAPID/Contact/ID1/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/OrganizationProperty Edit

  1. Property:RAPID/Contact/ID2/Email | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/OrganizationProperty

  2. Property:RAPID/Contact/ID2/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/OrganizationPropertyProperty

  3. Property:RAPID/Contact/ID2/Phone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to: navigation, search

  4. Property:RAPID/Contact/ID2/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to: navigation,

  5. Property:RAPID/Contact/ID2/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to:

  6. Property:RAPID/Contact/ID3/Email | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to:Email Property Type

  7. Property:RAPID/Contact/ID3/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to:Email Property

  8. Property:RAPID/Contact/ID3/Organization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to:Email

  9. Property:RAPID/Contact/ID3/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump

  10. Property:RAPID/Contact/ID3/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages using this

  11. Property:RAPID/Contact/ID5/Email | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages using

  12. Property:RAPID/Contact/ID5/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages usingBill Steele +

  13. Property:RAPID/Contact/ID5/Organization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages usingBill Steele

  14. Property:RAPID/Contact/ID5/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages usingBill

  15. Property:RAPID/Contact/ID5/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages

  16. Property:RAPID/Contact/ID6/Email | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone JumppagesType Email

  17. Property:RAPID/Contact/ID6/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone JumppagesType EmailThis

  18. Property:RAPID/Contact/ID6/Organization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone JumppagesType EmailThis5

  19. Property:RAPID/Contact/ID6/Phone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone JumppagesType

  20. Property:RAPID/Contact/ID6/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone JumppagesTypeString

  1. Property:RAPID/Contact/ID7/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone

  2. RAPID/Roadmap/12-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ | Roadmap Jump

  3. RAPID/Roadmap/14-ID-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a

  4. RAPID/Roadmap/19-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-acCA-bfID-a <

  5. RAPID/Roadmap/20-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-e <20 <-ID-a <

  6. RAPID/Roadmap/3-ID-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b < RAPID‎ |

  7. RAPID/Roadmap/3-ID-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b < RAPID‎

  8. RAPID/Roadmap/3-ID-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <

  9. RAPID/Roadmap/4-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <aibHI-a

  10. RAPID/Roadmap/6-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <b <a <

  11. RAPID/Roadmap/6-ID-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <b <a

  12. RAPID/Roadmap/6-ID-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <b <ac

  13. Module title Operations Management Module code INT3603

    E-Print Network [OSTI]

    Mumby, Peter J.

    systems in both services and manufacturing, including total quality management, process and project, including total quality management, process and project planning, control and productivity will be the core the management issues surrounding Total Quality Management and its implications ILO: Discipline-specific skills 6

  14. Multiclass learning with simplex coding

    E-Print Network [OSTI]

    Mroueh, Youssef

    In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows us to generalize to multiple classes a relaxation approach commonly ...

  15. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  16. Benchmarking of Neutron Production of Heavy-Ion Transport Codes

    SciTech Connect (OSTI)

    Remec, Igor [ORNL; Ronningen, Reginald M. [Michigan State University, East Lansing; Heilbronn, Lawrence [University of Tennessee, Knoxville (UTK)

    2012-01-01T23:59:59.000Z

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.

  17. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  18. HUDU: The Hanford Unified Dose Utility computer code

    SciTech Connect (OSTI)

    Scherpelz, R.I.

    1991-02-01T23:59:59.000Z

    The Hanford Unified Dose Utility (HUDU) computer program was developed to provide rapid initial assessment of radiological emergency situations. The HUDU code uses a straight-line Gaussian atmospheric dispersion model to estimate the transport of radionuclides released from an accident site. For dose points on the plume centerline, it calculates internal doses due to inhalation and external doses due to exposure to the plume. The program incorporates a number of features unique to the Hanford Site (operated by the US Department of Energy), including a library of source terms derived from various facilities' safety analysis reports. The HUDU code was designed to run on an IBM-PC or compatible personal computer. The user interface was designed for fast and easy operation with minimal user training. The theoretical basis and mathematical models used in the HUDU computer code are described, as are the computer code itself and the data libraries used. Detailed instructions for operating the code are also included. Appendices to the report contain descriptions of the program modules, listings of HUDU's data library, and descriptions of the verification tests that were run as part of the code development. 14 refs., 19 figs., 2 tabs.

  19. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.

  20. MELCOR computer code manuals

    SciTech Connect (OSTI)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01T23:59:59.000Z

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  1. Travel Codes Traveler Is Employee

    E-Print Network [OSTI]

    Arnold, Jonathan

    Travel Codes Traveler Is Employee: 64100-Domestic Travel 64150-Mileage 64200-International Travel Supplies & Expense Codes 71410-Office Supplies 71430-Lab/Research Supplies (dollar value of each item less Charges Equipment Codes 84320-Equipment (non-computer & peripherals) with a cost of $5,000.00 or more per

  2. Rotationally invariant multilevel block codes

    E-Print Network [OSTI]

    Kulandaivelu, Anita

    1993-01-01T23:59:59.000Z

    The objective of this thesis is to evaluate the performance of block codes that are designed to be rotationally invariant, in a multilevel coding scheme, over a channel modelled to be white gaussian noise. Also, the use of non-binary codes...

  3. Design of proximity detecting codes

    E-Print Network [OSTI]

    Perisetty, Srinivas

    1997-01-01T23:59:59.000Z

    delay insensitive, codes like unordered codes have been proposed. Although these codes are delay insensitive, the receiver still has to wait for all the 1s in the transmitted data to be received before sending an acknowledge signal to the sender. A new...

  4. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  5. Energy Codes and Standards: Facilities

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2007-01-01T23:59:59.000Z

    Energy codes and standards play a vital role in the marketplace by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. This article covers basic knowledge of codes and standards; development processes of each; adoption, implementation, and enforcement of energy codes and standards; and voluntary energy efficiency programs.

  6. PERFORMANCE EVALUATION OF TURBO CODES

    E-Print Network [OSTI]

    Alajaji, Fady

    PERFORMANCE EVALUATION OF TURBO CODES by Guangchong Zhu A project submitted to the Department named ``Turbo codes'' which claims an extraordinary performance with reasonable decoding complexity. In this project, we begin with a study on the structure and principle of Turbo codes. We then investigate

  7. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  8. 2013 Reporting Unit Codes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2013 Reporting Unit Codes 2013 Reporting Unit Codes CFC Reporting Unit Codes 2013.pdf More Documents & Publications EA-0372: Final Environmental Assessment Alignment: Achieving...

  9. Error Floors of LDPC Codes and Related Topics

    E-Print Network [OSTI]

    Butler, Brian K.

    Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.2 LDPC Codes . . . . . . . .2.1 Binary Linear Block Codes . . . . . . .

  10. The visualization of data and the user-interface in the Auto-ID World

    E-Print Network [OSTI]

    Chandrasekhar, Chaitra

    2005-01-01T23:59:59.000Z

    This thesis proposes a framework for user interface (UI) design in the Auto-ID world. The thesis includes the examination of issues related to visualizing data to the user from a top-down perspective in the Auto-ID World. ...

  11. Femtosecond dark-field imaging with an X-ray free electron laser (CXIDB ID 19)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Martin, A. V.

    This data was collected as part of the same experiment as the data deposited in [ID16](id-16.html). Experiment details are given in [Loh, N.D. et al.](http://dx.doi.org/10.1038/nature11222)

  12. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  13. System for loading executable code into volatile memory in a downhole tool

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Bartholomew, David B. (Springville, UT); Johnson, Monte L. (Orem, UT)

    2007-09-25T23:59:59.000Z

    A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.

  14. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    SciTech Connect (OSTI)

    Kurooka, Hisanori, E-mail: hkurooka@u-fukui.ac.jp [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan) [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Research and Education Program for Life Science, University of Fukui, Fukui (Japan); Sugai, Manabu [Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto (Japan)] [Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto (Japan); Mori, Kentaro [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)] [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yokota, Yoshifumi, E-mail: yokota@u-fukui.ac.jp [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan) [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Research and Education Program for Life Science, University of Fukui, Fukui (Japan)

    2013-04-19T23:59:59.000Z

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite.

  15. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    SciTech Connect (OSTI)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19T23:59:59.000Z

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  16. Coccinelle 1D: A one-dimensional neutron kinetic code using time-step size control

    SciTech Connect (OSTI)

    Engrand, P.R.; Effantin, M.E.; Gherchanoc, J. [Electricite de France, Clamart (France); Larive, B. [Electricite de France, Villeurbanne (France)

    1995-12-31T23:59:59.000Z

    COCCINELLE 1D is a one-dimensional neutron kinetic code that has been adapted from Electricite de France (EDF)`s core design code : COCCINELLE. The aim of this work is to integrate a code, derived from COCCINELLE and therefore taking advantage of most of its developments, into EDF`s Pressurized Water Reactors (PWR) simulation tools. The neutronic model of COCCINELLE ID has been optimized so that the code executes as rapidly as possible. In particular, a fast and stable kinetic method has been implemented: the Generalized Runge-Kutta (GRK) method together with its associated time-step size control. Moreover, efforts have been made to structure the code such that it could be easily integrated into any PWR simulation tool. Results show that the code executes at a rate faster than real-time on several test cases, and that, once integrated in a PWR simulation tool, the system is in good agreement with an experimental transient, that is a 3-hour load follow transient.

  17. NREL Supports Development of New National Code for Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    On December 14, 2010, the National Fire Protection Association (NFPA) issued a new national code for hydrogen technologies - NFPA 2 Hydrogen Technologies Code - which covers critical applications and operations such as hydrogen dispensing, production, and storage. The new code consolidates existing hydrogen-related NFPA codes and standards requirements into a single document and also introduces new requirements. This consolidation makes it easier for users to prepare code-compliant permit applications and to review/approve these applications. The National Renewable Energy Laboratory helped support the development of NFPA 2 on behalf of the U.S. Department of Energy Fuel Cell Technologies Program.

  18. K-Means+ID3: A Novel Method for Supervised Anomaly Detection by Cascading K-Means

    E-Print Network [OSTI]

    Phoha, Vir V.

    K-Means+ID3: A Novel Method for Supervised Anomaly Detection by Cascading K-Means Clustering and ID. Balagani Abstract--In this paper, we present "K-Means+ID3," a method to cascade k-Means clustering network, an active electronic circuit, and a mechanical mass- beam system. The k-Means clustering method

  19. 4 Code of Colorado Regulations (CCR) 723-3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission | OpenDevelopment GuideMexico || OpenCode

  20. Tex. Water Code, Title 2, Chapter 11 Water Rights | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement IncDrillbe niceOpenWyoming:Tex. Water Code,

  1. Coding for Transmission Coding for Compression Bonus Section CMPSCI 240: Reasoning about Uncertainty

    E-Print Network [OSTI]

    McGregor, Andrew

    Coding for Transmission Coding for Compression Bonus Section CMPSCI 240: Reasoning about 1, 2013 #12;Coding for Transmission Coding for Compression Bonus Section Information Theory Encoding for Transmission Coding for Compression Bonus Section Encoding Messages with Redundancy: Error Correcting Suppose

  2. SPAM: A Microcode Based Tool for Tracing Operating System Events Stephen W. Melvin

    E-Print Network [OSTI]

    Patt, Yale

    modifications to a VAX 8600, that traces operating system events as a sideeffect to normal execution. This trace System Performance Analysis using Microcode). It is based on microcode modifications to a VAX 8600 which instruction counts, microsecond counts, processor mode and process and user IDS. Because the VAX architecture

  3. High Temperature Gas Reactors: Assessment of Applicable Codes and Standards

    SciTech Connect (OSTI)

    McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

    2011-10-31T23:59:59.000Z

    Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC allows the owner of the facility to select the preferred designation, and that either designation can be acceptable.

  4. Quantum serial turbo-codes

    E-Print Network [OSTI]

    David Poulin; Jean-Pierre Tillich; Harold Ollivier

    2009-06-10T23:59:59.000Z

    We present a theory of quantum serial turbo-codes, describe their iterative decoding algorithm, and study their performances numerically on a depolarization channel. Our construction offers several advantages over quantum LDPC codes. First, the Tanner graph used for decoding is free of 4-cycles that deteriorate the performances of iterative decoding. Secondly, the iterative decoder makes explicit use of the code's degeneracy. Finally, there is complete freedom in the code design in terms of length, rate, memory size, and interleaver choice. We define a quantum analogue of a state diagram that provides an efficient way to verify the properties of a quantum convolutional code, and in particular its recursiveness and the presence of catastrophic error propagation. We prove that all recursive quantum convolutional encoder have catastrophic error propagation. In our constructions, the convolutional codes have thus been chosen to be non-catastrophic and non-recursive. While the resulting families of turbo-codes have bounded minimum distance, from a pragmatic point of view the effective minimum distances of the codes that we have simulated are large enough not to degrade the iterative decoding performance up to reasonable word error rates and block sizes. With well chosen constituent convolutional codes, we observe an important reduction of the word error rate as the code length increases.

  5. Operations Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and EvaluationOperational ManagementCenterOperations

  6. Conjugate Codes and Applications to Cryptography

    E-Print Network [OSTI]

    Mitsuru Hamada

    2006-10-23T23:59:59.000Z

    A conjugate code pair is defined as a pair of linear codes such that one contains the dual of the other. The conjugate code pair represents the essential structure of the corresponding Calderbank-Shor-Steane (CSS) quantum code. It is argued that conjugate code pairs are applicable to quantum cryptography in order to motivate studies on conjugate code pairs.

  7. Turbo and LDPC Codes: Implementation, Simulation,

    E-Print Network [OSTI]

    Valenti, Matthew C.

    1 Turbo and LDPC Codes: Implementation, Simulation, and Standardization June 7, 2006 Matthew/7/2006 Turbo and LDPC Codes 2/133 Tutorial Overview Channel capacity Convolutional codes ­ the MAP algorithm Turbo codes ­ Standard binary turbo codes: UMTS and cdma2000 ­ Duobinary CRSC turbo codes: DVB

  8. Processing module operating methods, processing modules, and communications systems

    DOE Patents [OSTI]

    McCown, Steven Harvey; Derr, Kurt W.; Moore, Troy

    2014-09-09T23:59:59.000Z

    A processing module operating method includes using a processing module physically connected to a wireless communications device, requesting that the wireless communications device retrieve encrypted code from a web site and receiving the encrypted code from the wireless communications device. The wireless communications device is unable to decrypt the encrypted code. The method further includes using the processing module, decrypting the encrypted code, executing the decrypted code, and preventing the wireless communications device from accessing the decrypted code. Another processing module operating method includes using a processing module physically connected to a host device, executing an application within the processing module, allowing the application to exchange user interaction data communicated using a user interface of the host device with the host device, and allowing the application to use the host device as a communications device for exchanging information with a remote device distinct from the host device.

  9. A short Id2 protein fragment containing the nuclear export signal forms amyloid-like fibrils

    SciTech Connect (OSTI)

    Colombo, Noemi [Fakultaet fuer Chemie und Pharmazie, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg (Germany); Schroeder, Josef [Institut fuer Pathologie, Zentrales EM-Labor, Fakultaet fuer Medizin, Universitaet Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Cabrele, Chiara [Fakultaet fuer Chemie und Pharmazie, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg (Germany)]. E-mail: chiara.cabrele@chemie.uni-regensburg.de

    2006-07-21T23:59:59.000Z

    The negative regulator of DNA-binding/cell-differentiation Id2 is a small protein containing a central helix-loop-helix (HLH) motif and a C-terminal nuclear export signal (NES). Whereas the former is essential for Id2 dimerization and nuclear localization, the latter is responsible for the transport of Id2 from the nucleus to the cytoplasm. Whereas the isolated Id2 HLH motif is highly helical, large C-terminal Id2 fragments including the NES sequence are either unordered or aggregation-prone. To study the conformational properties of the isolated NES region, we synthesized the Id2 segment 103-124. The latter was insoluble in water and only temporarily soluble in water/alcohol mixtures, where it formed quickly precipitating {beta}-sheets. Introduction of a positively charged N-terminal tail prevented aggressive precipitation and led to aggregates consisting of long fibrils that bound thioflavin T. These results show an interesting structural aspect of the Id2 NES region, which might be of significance for both protein folding and function.

  10. AMENDMENT OF SOLIr ATI ON/MODIFI CATION OF CONTRACT 1. CONTRACT ID CODE PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OF CONTRACT 1 OTATI OEP AE 2..CNRC 3DCDE PAGESOLIr

  11. AMENDMENT OF SOLlClTATlONlMODlFlCATION OF CONTRACT 1 I . CONTR"CT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 PageMI54 I(

  12. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1' CONTRACT

  13. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I I, CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1' CONTRACTI,

  14. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I I. CONT" ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1'

  15. 1. CON'I'AC'r ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT II 11 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less is more:culturingProtonAPRIL/MAY 2013 inside1-on-1CON'I'AC'r

  16. 1. CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT I11 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less is more:culturingProtonAPRIL/MAY 2013Ap5,sval 2700042 1.

  17. 1. CONTRACT ID CODE PAGE of: PAGES AMENDM ENT OF SOLICITATION/MODIFICATION OF CONTRACT I -1 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less is more:culturingProtonAPRIL/MAY 2013Ap5,sval

  18. OM Code Requirements For MOVs -- OMN-1 and Appendix III

    SciTech Connect (OSTI)

    Kevin G. DeWall

    2011-08-01T23:59:59.000Z

    The purpose or scope of the ASME OM Code is to establish the requirements for pre-service and in-service testing of nuclear power plant components to assess their operational readiness. For MOVs this includes those that perform a specific function in shutting down a reactor to the safe shutdown condition, maintaining the safe shutdown condition, and mitigating the consequences of an accident. This paper will present a brief history of industry and regulatory activities related to MOVs and the development of Code requirements to address weaknesses in earlier versions of the OM Code. The paper will discuss the MOV requirements contained in the 2009 version of ASME OM Code, specifically Mandatory Appendix III and OMN-1, Revision 1.

  19. Code of a Tokamak Fusion Energy Facility ITER

    SciTech Connect (OSTI)

    Yasuhide Asada [Central Research Institute of Electric Power Industry - CRIEPI (Japan); Kenzo Miya [Keio University (Japan); Kazuhiko Hada; Eisuke Tada [Japan Atomic Energy Research Institute (Japan)

    2002-07-01T23:59:59.000Z

    The technical structural code for ITER (International Thermonuclear Experimental Fusion Reactor) and, as more generic applications, for D-T burning fusion power facilities (hereafter, Fusion Code) should be innovative because of their quite different features of safety and mechanical components from nuclear fission reactors, and the necessity of introducing several new fabrication and examination technologies. Introduction of such newly developed technologies as inspection-free automatic welding into the Fusion Code is rationalized by a pilot application of a new code concept of {sup s}ystem-based code for integrity{sup .} The code concept means an integration of element technical items necessary for construction, operation and maintenance of mechanical components of fusion power facilities into a single system to attain an optimization of the total margin of these components. Unique and innovative items of the Fusion Code are typically as follows: - Use of non-metals; - Cryogenic application; - New design margins on allowable stresses, and other new design rules; - Use of inspection-free automatic welding, and other newly developed fabrication technologies; - Graded approach of quality assurance standard to cover radiological safety-system components as well as non-safety-system components; - Consideration on replacement components. (authors)

  20. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  1. Nonbinary Codeword Stabilized Quantum Codes

    E-Print Network [OSTI]

    Xie Chen; Bei Zeng; Isaac L. Chuang

    2008-08-22T23:59:59.000Z

    The codeword stabilized (CWS) quantum codes formalism presents a unifying approach to both additive and nonadditive quantum error-correcting codes (arXiv:0708.1021 [quant-ph]), but only for binary states. Here we generalize the CWS framework to the nonbinary case (of both prime and nonprime dimension) and map the search for nonbinary quantum codes to a corresponding search problem for classical nonbinary codes with specific error patterns. We show that while the additivity properties of nonbinary CWS codes are similar to the binary case, the structural properties of the nonbinary codes differ substantially from the binary case, even for prime dimensions. In particular, we identify specific structure patterns of stabilizer groups, based on which efficient constructions might be possible for codes that encode more dimensions than any stabilizer codes of the same length and distance; similar methods cannot be applied in the binary case. Understanding of these structural properties can help prune the search space and facilitate the identification of good nonbinary CWS codes.

  2. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  3. Quantum Quasi-Cyclic LDPC Codes

    E-Print Network [OSTI]

    Manabu Hagiwara; Hideki Imai

    2010-08-28T23:59:59.000Z

    In this paper, a construction of a pair of "regular" quasi-cyclic LDPC codes as ingredient codes for a quantum error-correcting code is proposed. That is, we find quantum regular LDPC codes with various weight distributions. Furthermore our proposed codes have lots of variations for length, code rate. These codes are obtained by a descrete mathematical characterization for model matrices of quasi-cyclic LDPC codes. Our proposed codes achieve a bounded distance decoding (BDD) bound, or known as VG bound, and achieve a lower bound of the code length.

  4. Super Special Codes using Super Matrices

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache; K. Ilanthenral

    2010-06-30T23:59:59.000Z

    The new classes of super special codes are constructed in this book using the specially constructed super special vector spaces. These codes mainly use the super matrices. These codes can be realized as a special type of concatenated codes. This book has four chapters. In chapter one basic properties of codes and super matrices are given. A new type of super special vector space is constructed in chapter two of this book. Three new classes of super special codes namely, super special row code, super special column code and super special codes are introduced in chapter three. Applications of these codes are given in the final chapter.

  5. Oil and gas field code master list 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  6. Non-Residential Energy Code National and Regional Codes

    E-Print Network [OSTI]

    Non-Residential Energy Code Comparison National and Regional Codes David Baylon Mike Kennedy #12 2003 · ASHRAE 90.1 2001 & addenda · E-Benchmark Guidelines (NBI) #12;Approach · Comparison of the State;Approach (cont.) · Provisions compared ­ Lighting power ­ Lighting controls ­ Mechanical systems ­ Building

  7. Building and Facility Codes Code Building Location Bldg # Coordinates

    E-Print Network [OSTI]

    Russell, Lynn

    Building and Facility Codes Code Building Location Bldg # Coordinates APM Applied Physics & Mathematics Building Muir 249 F7 ASANT Asante Hall Eleanor Roosevelt 446 F5 BIO Biology Building Muir 259 F7 BIRCH Birch Aquarium SIO 2300 S-D7 BONN Bonner Hall Revelle 131 G8 BSB Biomedical Sciences Building

  8. Space time coded code division multiplexing on SC140 DSP

    E-Print Network [OSTI]

    Menon, Murali P

    2001-01-01T23:59:59.000Z

    The aim of this research is to design a high data rate wireless communication system for multi-path fading channels. Code-division multiplexing is proposed as a modulation scheme for a space-time coded multiple antenna system that would guarantee...

  9. Programs Beamlines Contact/GL Programs Beamlines Contact/GL Programs Beamlines Contact/GL Contact/GL Spectroscopy (SPC) 20ID S. Heald Inelastic and Nuclear 3ID T. Gog Imaging (IMG) 2BM F. DeCarlo S. Pasky

    E-Print Network [OSTI]

    Kemner, Ken

    /GL Spectroscopy (SPC) 20ID S. Heald Inelastic and Nuclear 3ID T. Gog Imaging (IMG) 2BM F. DeCarlo S. Pasky 9BM S

  10. On Constructing Homomorphic Encryption Schemes from Coding Theory

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    on Reed-Muller codes where for ” = 2 and ” = 3 and security levels between 80 and 128 bits, all operations Homomorphic encryption schemes are very useful cryptographic tools that en- able secure computation (PIR) [35], oblivious polynomial evalu- ation (OPE) [39], or multiparty computation [18]. The work

  11. 124 Home Power #84 August / September 2001 Code Corner

    E-Print Network [OSTI]

    Johnson, Eric E.

    by the Photovoltaic Systems Assistance Center, Sandia National Laboratories I n the Code Corner columns in HP76­83, I addressed the selection and sizing of conductors for renewable energy systems. How do we protect addressing these devices. We have sized the conductors in our system to operate within the rated temperature

  12. Operation Poorman

    SciTech Connect (OSTI)

    Pruvost, N.; Tsitouras, J.

    1981-03-18T23:59:59.000Z

    The objectives of Operation Poorman were to design and build a portable seismic system and to set up and use this system in a cold-weather environment. The equipment design uses current technology to achieve a low-power, lightweight system that is configured into three modules. The system was deployed in Alaska during wintertime, and the results provide a basis for specifying a mission-ready seismic verification system.

  13. Operating Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→ globalOPERATING PLAN

  14. Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→ globalOPERATING

  15. Regulations of the Arkansas Operating Air Permit Program (Arkansas)

    Broader source: Energy.gov [DOE]

    The Regulations of the Arkansas Air Operating Program are adopted in accordance with the provisions of Part UU of the Arkansas Water and Air Pollution Control Act, Arkansas Code Annotated 8-4-101,...

  16. Weight Distribution of a Class of Binary Linear Block Codes Formed from RCPC Codes

    E-Print Network [OSTI]

    Shen, Yushi Dr.; Cosman, Pamela C; Milstein, Laurence B

    2006-01-01T23:59:59.000Z

    formed from convolutional codes,” IEEE Trans. Commun. , vol.terminated convolutional codes,” IEEE Trans. Inform. Theory,decoding of linear block codes and related soft- decision

  17. Ch. 13 Transform Coding My Coverage is Different from the Book

    E-Print Network [OSTI]

    Fowler, Mark

    1 Ch. 13 Transform Coding My Coverage is Different from the Book #12;2 Overview Transform. Block Diagram of Transform Coding "Fig. A" Often (but not always!) done on a block-by-block basis: · Non-Overlapped Blocks (most common) · Overlapped Blocks #12;3 Transform as Linear Operator We'll view transforms

  18. Road Haulage of Round Timber Code of Practice Forestry Commission Policy

    E-Print Network [OSTI]

    Road Haulage of Round Timber Code of Practice Forestry Commission Policy It is Forest Enterprise and companies when they are operating on Forestry Commission land. The main road network in Forestry Commission. FC will be reviewing its policy with regard to the Road haulage of Round Timber Code of Practice

  19. Strategy for implementing stabilizer-based codes on solid-state qubits Tetsufumi Tanamoto,1

    E-Print Network [OSTI]

    Bruder, Christoph

    for the subsystem code [4­6], topo- logical [3, 7, 15], and Majorana codes [8]. On the ex- perimental side, Knill et = 1, . . . , l) are mutually commuting operators given by products of multiple Pauli matrices Xi, Yi [7], are given by products of more than two Pauli matrices. Therefore the corresponding stabilizer

  20. Introduction Space Time Codes Space Time Coding with Feedback New Thoughts Summary Space-Time Coding for Multi-Antenna

    E-Print Network [OSTI]

    Veeravalli, Venugopal

    Introduction Space Time Codes Space Time Coding with Feedback New Thoughts Summary Space 2007 #12;Introduction Space Time Codes Space Time Coding with Feedback New Thoughts Summary MIMO: Diversity vs Multiplexing Multiplexing Diversity Pictures taken from lectures notes on Space Time Coding

  1. Stabilizer Codes over Frobenius Rings

    E-Print Network [OSTI]

    Nadella, Sushma

    2012-07-16T23:59:59.000Z

    now, the methods for quantum error correction were mainly based on quantum codes that rely on the arithmetic in finite fields. In contrast, this thesis aims to develop a basic framework for quantum error correcting codes over a class of rings known...

  2. CONTROL ID: 1469463 TITLE: In Situ Techniques for Mineralogy and Geochemistry of Small Bodies

    E-Print Network [OSTI]

    Rossman. George R.

    CONTROL ID: 1469463 TITLE: In Situ Techniques for Mineralogy and Geochemistry of Small Bodies information about their formation histories and evolution. Combined geochemistry and mineralogy measurements measurement techniques that could provide microscopic mineralogy and isotope geochemistry. We will discuss

  3. Microsoft Word - DOE-ID-INL-12-028-1.doc

    Broader source: Energy.gov (indexed) [DOE]

    Energy (DOE-ID). The project would use a location near the northeast corner of the Test Area North (TAN) perimeter fence just north of the old TAN parking lot adjacent to the...

  4. *Name: Date of Birth: Banner/Student ID # Social Security # Phone: Cell

    E-Print Network [OSTI]

    Gering, Jon C.

    Transmitted Infection Anemia Eye Disease (excluding glasses) Joint Disease/Injury Sickle Cell Trait*Name: Date of Birth: Banner/Student ID # Social Security # Phone: Cell Permanent Address: Home Age, contact: Name Relationship: Phone: Day____________________ Eve____________________ Cell

  5. Orientation Permission to Treat Form Name of Student: Student ID: DOB

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    Orientation Permission to Treat Form Name of Student: Student ID: DOB: Emergency Contact Name/Restrictions: Permission to Treat: The person herein named is medically cleared and has permission to engage in all

  6. ______________________~~-www.lejacq.com ID:8430 SPOTLIGHT ON HEART FAILURE TRANSLATIONAL RESEARCH

    E-Print Network [OSTI]

    Hammock, Bruce D.

    ______________________~~-www.lejacq.com ID:8430 SPOTLIGHT ON HEART FAILURE TRANSLATIONAL RESEARCH of atherosclerotic plaque as well as infarct size associated with ischemic heart injury.2 An unexpected finding, how

  7. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 7)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    This is the fourth of five exposures of the same sample at different tilts. This one is at -15 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  8. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 4)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    This is the first of five exposures of the same sample at different tilts. This one is at +0 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  9. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 8)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    This is the fifth of five exposures of the same sample at different tilts. This one is at -30 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  10. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 5)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    This is the second of five exposures of the same sample at different tilts. This one is at +15 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  11. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 6)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    This is the third of five exposures of the same sample at different tilts. This one is at +30 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  12. CruzID Account Modification Form University of California, Santa Cruz

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    forms: http://its.ucsc.edu/accounts/forms.html) FIS (Banner) PPS NES Web AIS Removal requested for: FIS (Banner) PPS NES Web Data Warehouse AIS CruzID login name change request: Change Login Name: Please

  13. Experimental study of the interplay of channel and network coding in low power sensor applications

    E-Print Network [OSTI]

    Angelopoulos, Georgios

    In this paper, we evaluate the performance of random linear network coding (RLNC) in low data rate indoor sensor applications operating in the ISM frequency band. We also investigate the results of its synergy with forward ...

  14. Operational Excellence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthis site » OpenOperational

  15. Operations Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→ globalOPERATING Who We

  16. On Quantum and Classical BCH Codes

    E-Print Network [OSTI]

    Salah A. Aly; Andreas Klappenecker; Pradeep Kiran Sarvepalli

    2006-04-14T23:59:59.000Z

    Classical BCH codes that contain their (Euclidean or Hermitian) dual codes can be used to construct quantum stabilizer codes; this correspondence studies the properties of such codes. It is shown that a BCH code of length n can contain its dual code only if its designed distance d=O(sqrt(n)), and the converse is proved in the case of narrow-sense codes. Furthermore, the dimension of narrow-sense BCH codes with small design distance is completely determined, and - consequently - the bounds on their minimum distance are improved. These results make it possible to determine the parameters of quantum BCH codes in terms of their design parameters.

  17. Stabilizer Formalism for Operator Quantum Error Correction

    E-Print Network [OSTI]

    Poulin, D

    2005-01-01T23:59:59.000Z

    Operator quantum error correction is a recently developed theory that provides a generalized framework for active error correction and passive error avoiding schemes. In this paper, we describe these codes in the language of the stabilizer formalism of standard quantum error correction theory. This is achieved by adding a "gauge" group to the standard stabilizer definition of a code. Gauge transformations leave the encoded information unchanged; their effect is absorbed by virtual gauge qubits that do not carry useful information. We illustrate the construction by identifying a gauge symmetry in Shor's 9-qubit code that allows us to remove 3 of its 8 stabilizer generators, leading to a simpler decoding procedure without affecting its essential properties. This opens the path to possible improvement of the error threshold of fault tolerant quantum computing. We also derive a modified Hamming bound that applies to all stabilizer codes, including degenerate ones.

  18. NHA HYDROGEN SAFETY CODES AND STANDARDS ACTIVITIES

    E-Print Network [OSTI]

    laboratories, code officials and model building code organizations to bring experts together in a focused and other information needed by the Code Officials to complete the development of these new codes needs to be disseminated to building code officials such as National Fire Protection Association (NFPA

  19. Remarkable Degenerate Quantum Stabilizer Codes Derived from Duadic Codes

    E-Print Network [OSTI]

    Salah A. Aly; Andreas Klappenecker; Pradeep Kiran Sarvepalli

    2006-01-18T23:59:59.000Z

    Good quantum codes, such as quantum MDS codes, are typically nondegenerate, meaning that errors of small weight require active error-correction, which is--paradoxically--itself prone to errors. Decoherence free subspaces, on the other hand, do not require active error correction, but perform poorly in terms of minimum distance. In this paper, examples of degenerate quantum codes are constructed that have better minimum distance than decoherence free subspaces and allow some errors of small weight that do not require active error correction. In particular, two new families of [[n,1,>= sqrt(n)

  20. Stabilizer Formalism for Operator Quantum Error Correction

    E-Print Network [OSTI]

    David Poulin

    2006-06-14T23:59:59.000Z

    Operator quantum error correction is a recently developed theory that provides a generalized framework for active error correction and passive error avoiding schemes. In this paper, we describe these codes in the stabilizer formalism of standard quantum error correction theory. This is achieved by adding a "gauge" group to the standard stabilizer definition of a code that defines an equivalence class between encoded states. Gauge transformations leave the encoded information unchanged; their effect is absorbed by virtual gauge qubits that do not carry useful information. We illustrate the construction by identifying a gauge symmetry in Shor's 9-qubit code that allows us to remove 4 of its 8 stabilizer generators, leading to a simpler decoding procedure and a wider class of logical operations without affecting its essential properties. This opens the path to possible improvements of the error threshold of fault-tolerant quantum computing.

  1. Surface code implementation of block code state distillation

    E-Print Network [OSTI]

    Austin G. Fowler; Simon J. Devitt; Cody Jones

    2013-01-29T23:59:59.000Z

    State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states |A>=(|0>+e^{i\\pi/4}|1>)/\\sqrt{2} produced a single improved |A> state given 15 input copies. New block code state distillation methods can produce k improved |A> states given 3k+8 input copies, potentially significantly reducing the overhead associated with state distillation. We construct an explicit surface code implementation of block code state distillation and quantitatively compare the overhead of this approach to the old. We find that, using the best available techniques, for parameters of practical interest, block code state distillation does not always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of three.

  2. Runtime Detection of C-Style Errors in UPC Code

    SciTech Connect (OSTI)

    Pirkelbauer, P; Liao, C; Panas, T; Quinlan, D

    2011-09-29T23:59:59.000Z

    Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the global address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.

  3. Final Technical Report: Hydrogen Codes and Standards Outreach

    SciTech Connect (OSTI)

    Hall, Karen I.

    2007-05-12T23:59:59.000Z

    This project contributed significantly to the development of new codes and standards, both domestically and internationally. The NHA collaborated with codes and standards development organizations to identify technical areas of expertise that would be required to produce the codes and standards that industry and DOE felt were required to facilitate commercialization of hydrogen and fuel cell technologies and infrastructure. NHA staff participated directly in technical committees and working groups where issues could be discussed with the appropriate industry groups. In other cases, the NHA recommended specific industry experts to serve on technical committees and working groups where the need for this specific industry expertise would be on-going, and where this approach was likely to contribute to timely completion of the effort. The project also facilitated dialog between codes and standards development organizations, hydrogen and fuel cell experts, the government and national labs, researchers, code officials, industry associations, as well as the public regarding the timeframes for needed codes and standards, industry consensus on technical issues, procedures for implementing changes, and general principles of hydrogen safety. The project facilitated hands-on learning, as participants in several NHA workshops and technical meetings were able to experience hydrogen vehicles, witness hydrogen refueling demonstrations, see metal hydride storage cartridges in operation, and view other hydrogen energy products.

  4. Cycling operation of fossil plants

    SciTech Connect (OSTI)

    Devendorf, D.; Kulczycky, T.G. (Niagara Mohawk Power Corp., Syracuse, NY (USA))

    1991-05-01T23:59:59.000Z

    A necessity for many utilities today is the cycling of their fossil units. Fossil plants with their higher fuel costs are being converted to cycling operation to accommodate daily load swings and to decrease the overall system fuel costs. For a large oil-fired unit, such as Oswego Steam Station Unit 5, millions of dollars can be saved annually in fuel costs if the unit operates in a two-shift mode. However, there are also penalties attributable to cycling operation which are associated with availability and thermal performance. The objectives of Niagara Mohawk Power Corporation were to minimize the losses in availability and performance, and the degradation in the life of the equipment by incorporating certain cycling modifications into the unit. The objective of this project was to evaluate the effectiveness of three of these cycling modifications: (1) the superheater and turbine bypass (Hot Restart System), (2) the use of variable pressure operation, and (3) the full-flow condensate polishing system. To meet this objective, Unit 5 was tested using the cycling modifications, and a dynamic mathematical model of this unit was developed using the Modular Modeling System (MMS) Code from EPRI. This model was used to evaluate various operating modes and to assist in the assessment of operating procedures. 15 refs., 41 figs., 22 tabs.

  5. Entanglement-assisted codeword stabilized quantum codes

    SciTech Connect (OSTI)

    Shin, Jeonghwan; Heo, Jun; Brun, Todd A. [School of Electrical Engineering, Korea University, Seoul (Korea, Republic of); Communication Sciences Institute, University of Southern California, Los Angeles, California 90089 (United States)

    2011-12-15T23:59:59.000Z

    Entangled qubits can increase the capacity of quantum error-correcting codes based on stabilizer codes. In addition, by using entanglement quantum stabilizer codes can be construct from classical linear codes that do not satisfy the dual-containing constraint. We show that it is possible to construct both additive and nonadditive quantum codes using the codeword stabilized quantum code framework. Nonadditive codes may offer improved performance over the more common stabilizer codes. Like other entanglement-assisted codes, the encoding procedure acts only on the qubits on Alice's side, and only these qubits are assumed to pass through the channel. However, errors in the codeword stabilized quantum code framework give rise to effective Z errors on Bob's side. We use this scheme to construct entanglement-assisted nonadditive quantum codes, in particular, ((5,16,2;1)) and ((7,4,5;4)) codes.

  6. Entanglement-assisted codeword stabilized quantum codes

    E-Print Network [OSTI]

    Jeonghwan Shin; Jun Heo; Todd A. Brun

    2011-09-15T23:59:59.000Z

    Entangled qubit can increase the capacity of quantum error correcting codes based on stabilizer codes. In addition, by using entanglement quantum stabilizer codes can be construct from classical linear codes that do not satisfy the dual-containing constraint. We show that it is possible to construct both additive and non-additive quantum codes using the codeword stabilized quantum code framework. Nonadditive codes may offer improved performance over the more common sta- bilizer codes. Like other entanglement-assisted codes, the encoding procedure acts only the qubits on Alice's side, and only these qubits are assumed to pass through the channel. However, errors the codeword stabilized quantum code framework gives rise to effective Z errors on Bob side. We use this scheme to construct new entanglement-assisted non-additive quantum codes, in particular, ((5,16,2;1)) and ((7,4,5;4)) codes.

  7. STDS91.COD: Grief and Mourning Codes

    E-Print Network [OSTI]

    Rosenblatt, Paul C.; Walsh, R. Patricia; Jackson, Douglas A.

    2011-01-01T23:59:59.000Z

    conflict 2000 Age of Marriage, Females (code book variable87) N Code NA Meaning Missing data Scores range from 8.2 toGRIEF AND MOURNING CODES Paul C. Rosenblatt Department of

  8. LDPC codes : structural analysis and decoding techniques

    E-Print Network [OSTI]

    Zhang, Xiaojie

    2012-01-01T23:59:59.000Z

    to Low-Density Parity-Check Codes 2.1 Representation of LDPC4.2 Error Floors of LDPC Codes . . . . . . . . . . . . . . .LP Decoding of LDPC Codes with Alternating Direction Method

  9. Codes for the fast SSS QR eigens

    E-Print Network [OSTI]

    Fortran 90 codes (zip file); Matlab codes (zip file). Please email. A fast O(n^2) time QR eigensolver for companion matrices/polynomials. Fortran 90 codes (zip ...

  10. DEPARTMENT CODE Department of Computer Science

    E-Print Network [OSTI]

    DEPARTMENT CODE Department of Computer Science College of Natural Sciences Colorado State and Amendment of this Code 19 #12;1 MISSION AND OBJECTIVES 3 Preamble This Code of the Department of Computer

  11. Example of Environmental Restoration Code of Accounts

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter describes the fundamental structure of an example remediation cost code system, lists and describes the Level 1 cost codes, and lists the Level 2 and Level 3 cost codes.

  12. Arkansas Underground Injection Control Code (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the...

  13. Correctable noise of Quantum Error Correcting Codes under adaptive concatenation

    E-Print Network [OSTI]

    Jesse Fern

    2008-02-27T23:59:59.000Z

    We examine the transformation of noise under a quantum error correcting code (QECC) concatenated repeatedly with itself, by analyzing the effects of a quantum channel after each level of concatenation using recovery operators that are optimally adapted to use error syndrome information from the previous levels of the code. We use the Shannon entropy of these channels to estimate the thresholds of correctable noise for QECCs and find considerable improvements under this adaptive concatenation. Similar methods could be used to increase quantum fault tolerant thresholds.

  14. Codeword Stabilized Quantum Codes and Their Error Correction

    E-Print Network [OSTI]

    Li, Yunfan

    2010-01-01T23:59:59.000Z

    5.1.4 Generic CWS codes . . . . . . . . . . .USt codes . . . . . . . . . . . . . . . . . . . . . .Quantum Codes 2.1 Notations . . . . . . . . . . . . . . 2.2

  15. Algebraic list-decoding of error-correcting codes

    E-Print Network [OSTI]

    Parvaresh, Farzad

    2007-01-01T23:59:59.000Z

    Solomon codes . . . . . . . . . . . . . . . 1.2.2 Guruswami-Simple trivariate codes and theirdecoding . . . . . . . . . . . . . 3.3.1 Code parameters and

  16. Budget/Object Codes -REVENUE Budget/Object Codes -REVENUE BUDGET/OBJECT BUDGET/OBJECT

    E-Print Network [OSTI]

    Selmic, Sandra

    Budget/Object Codes -REVENUE Budget/Object Codes - REVENUE BUDGET/OBJECT BUDGET/OBJECT BUDGET CODE DESCRIPTION BUDGET CODE DESCRIPTION 01 30 0101 On-Campus-Full Time 3001 Federal Program 0102 On APPROPRIATIONS #12;Budget/Object Codes -REVENUE Budget/Object Codes - REVENUE BUDGET/OBJECT BUDGET/OBJECT BUDGET

  17. ABAREX -- A neutron spherical optical-statistical-model code -- A user`s manual

    SciTech Connect (OSTI)

    Smith, A.B. [ed.; Lawson, R.D.

    1998-06-01T23:59:59.000Z

    The contemporary version of the neutron spherical optical-statistical-model code ABAREX is summarized with the objective of providing detailed operational guidance for the user. The physical concepts involved are very briefly outlined. The code is described in some detail and a number of explicit examples are given. With this document one should very quickly become fluent with the use of ABAREX. While the code has operated on a number of computing systems, this version is specifically tailored for the VAX/VMS work station and/or the IBM-compatible personal computer.

  18. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    practices among code officials. Stakeholders recommendboth applicants and code officials and help to inform thecomply with the code and code officials to enforce the new

  19. Gas Code of Conduct (Connecticut)

    Broader source: Energy.gov [DOE]

    The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote...

  20. Commercial Building Codes and Standards

    Broader source: Energy.gov [DOE]

    Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building...

  1. LATTICE: AN INTERACTIVE LATTICE COMPUTER CODE

    E-Print Network [OSTI]

    Staples, John

    2010-01-01T23:59:59.000Z

    4500-R65 I LATTICE AN INTERACTIVE LATTICE COMPUTER CODE Johnr LBL-4843 LATTICE An interactive lattice computer code Johncode which enables an interactive user to calculate the

  2. Building Energy Codes Collaborative Technical Assistance for...

    Energy Savers [EERE]

    State Energy Officials - 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes Project Reducing Energy Demand in Buildings Through State Energy Codes...

  3. Program School/ Career: Descripton ISIS Program Codes

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Program School/ Career: Descripton ISIS Program Codes Program Career: Descripton College School;Program School/ Career: Descripton ISIS Program Codes Program Career: Descripton College School/ College 1

  4. Building Energy Code | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the http:www.energycodes.govstates DOE and http:...

  5. Quantum stabilizer codes and beyond

    E-Print Network [OSTI]

    Sarvepalli, Pradeep Kiran

    2008-10-10T23:59:59.000Z

    QUANTUM STABILIZER CODES AND BEYOND A Dissertation by PRADEEP KIRAN SARVEPALLI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2008 Major... Subject: Computer Science QUANTUM STABILIZER CODES AND BEYOND A Dissertation by PRADEEP KIRAN SARVEPALLI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

  6. Edge equilibrium code for tokamaks

    SciTech Connect (OSTI)

    Li, Xujing [Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China)] [Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China); Zakharov, Leonid E. [Princeton Plasma Physics Laboratory Princeton, MS-27 P.O. Box 451, New Jersey (United States)] [Princeton Plasma Physics Laboratory Princeton, MS-27 P.O. Box 451, New Jersey (United States); Drozdov, Vladimir V. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2014-01-15T23:59:59.000Z

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  7. Graphical Quantum Error-Correcting Codes

    E-Print Network [OSTI]

    Sixia Yu; Qing Chen; C. H. Oh

    2007-09-12T23:59:59.000Z

    We introduce a purely graph-theoretical object, namely the coding clique, to construct quantum errorcorrecting codes. Almost all quantum codes constructed so far are stabilizer (additive) codes and the construction of nonadditive codes, which are potentially more efficient, is not as well understood as that of stabilizer codes. Our graphical approach provides a unified and classical way to construct both stabilizer and nonadditive codes. In particular we have explicitly constructed the optimal ((10,24,3)) code and a family of 1-error detecting nonadditive codes with the highest encoding rate so far. In the case of stabilizer codes a thorough search becomes tangible and we have classified all the extremal stabilizer codes up to 8 qubits.

  8. Property and Facilities Division REQUISITION FOR BOOKING A VEHICLE (http://www.pf.uq.edu.au/fleet-serv.html) PF322

    E-Print Network [OSTI]

    Blows, Mark

    Collection Vehicle Type (e.g. Sedan, Wagon, van) Vehicle Return Private Use* (Y/N) Business Unit UniFi Number Expense Account Project ID Free Form Tag Operational Unit Site Fund Code Function Expense Account Project#) Operational Unit Site Fund Code Function Expense Account Project ID Free Form Tag #12;

  9. SCDAP/RELAP5/MOD2 code manual

    SciTech Connect (OSTI)

    Allison, C.M.; Johnson, E.C. (eds.); Berna, G.A.; Cheng, T.C.; Hagrman, D.L.; Johnsen, G.W.; Kiser, D.M.; Miller, C.S.; Ransom, V.H.; Riemke, R.A.; Shieh, A.S.; Siefken, L.J.; Trapp, J.A.; Wagner, R.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-09-01T23:59:59.000Z

    The SCDAP/RELAP5 code has been developed for best-estimate transient simulation of light water reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, and the fission products and aerosols in the system during a severe accident transient as well as large and small break loss-of-coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. The modeling theory and associated numerical schemes are documented in Volumes I and II to acquaint the user with the modeling base and thus aid in effective use of the code.

  10. Microsoft Word - DOE-ID-INL-13-018.doc

    Broader source: Energy.gov (indexed) [DOE]

    will conduct the required tests in the Remote Analytical Laboratory (RAL) facility (Chemical Process Plant CPP-684) as a tenant in the CWI-operated facility. Included in this...

  11. Microsoft Word - DIOE-ID-INL-14-026.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanupShippingFacilityCAMDPhase Diagram of6

  12. Microsoft Word - DOE-ID-10-003.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanupShippingFacilityCAMDPhase Diagram263

  13. Microsoft Word - DOE-ID-10-004.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanupShippingFacilityCAMDPhase Diagram2634

  14. Microsoft Word - DOE-ID-10-005.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanupShippingFacilityCAMDPhase

  15. Microsoft Word - DOE-ID-11-015.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title: Acquisition of a 3 MV55

  16. Microsoft Word - DOE-ID-12-020.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title: Acquisition of a

  17. Microsoft Word - DOE-ID-14-007.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title: Acquisition7 SECTION6347

  18. Microsoft Word - DOE-ID-14-042.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title: Acquisition76 SECTION A.

  19. Microsoft Word - DOE-ID-14-047.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title: Acquisition76 SECTION

  20. Microsoft Word - DOE-ID-INL-10-017.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A. Project

  1. Microsoft Word - DOE-ID-INL-10-018.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A. Project8 SECTION

  2. Microsoft Word - DOE-ID-INL-10-019.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A. Project8 SECTION9

  3. Microsoft Word - DOE-ID-INL-10-020.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A. Project8 SECTION9

  4. Microsoft Word - DOE-ID-INL-10-021.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A. Project8

  5. Microsoft Word - DOE-ID-INL-11-001.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A. Project81 SECTION

  6. Microsoft Word - DOE-ID-INL-11-002.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A. Project81

  7. Microsoft Word - DOE-ID-INL-11-003.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A. Project813

  8. Microsoft Word - DOE-ID-INL-11-004.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A. Project81304

  9. Microsoft Word - DOE-ID-INL-11-005.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.

  10. Microsoft Word - DOE-ID-INL-11-006.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.6 SECTION A.

  11. Microsoft Word - DOE-ID-INL-11-007.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.6 SECTION

  12. Microsoft Word - DOE-ID-INL-11-008.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.6 SECTION8 SECTION

  13. Microsoft Word - DOE-ID-INL-11-009.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.6 SECTION8

  14. Microsoft Word - DOE-ID-INL-11-010.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.6 SECTION81-010

  15. Microsoft Word - DOE-ID-INL-11-011.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.6 SECTION81-0101

  16. Microsoft Word - DOE-ID-INL-11-012.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.6 SECTION81-01012

  17. Microsoft Word - DOE-ID-INL-11-013.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.6 SECTION81-010123

  18. Microsoft Word - DOE-ID-INL-11-014.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.6

  19. Microsoft Word - DOE-ID-INL-12-001.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.61 SECTION A.

  20. Microsoft Word - DOE-ID-INL-12-002.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTION A.61 SECTION A.2