National Library of Energy BETA

Sample records for icp solar technologies

  1. ICP Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:Hydrothermally Deposited RockLLC44ICM Inc Jump to:ICP

  2. EPOD Solar Wales Ltd formerly ICP Solar Technologies Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreaforInformationBrownfieldsEPIR Technologies

  3. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  4. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.

  5. 2010 Solar Technologies Market Report

    E-Print Network [OSTI]

    2010 Solar Technologies Market Report NOVEMBER 2011 #12;ii #12;iii 2010 Solar Technologies Market Solar Power ........................1 1.1 Global Installed PV Capacity ........................................................................................................................................18 2 Industry Trends, Photovoltaic and Concentrating Solar Power ...........................21 2.1 PV

  6. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    which uses solar energy to generate electricity." Like otherwhich uses solar energy to generate electricity” qualifiesenergy technologies, solar PV creates the most jobs per unit of electricity

  7. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  8. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Department of Energy. Solar Energy Technologies Program.U.S. DOE. (2009). DOE Solar Energy Technologies Program. FY2.6 References The American Solar Energy Society (ASES) and

  9. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Solar Completes 10MW Thin Film Solar Power Plant for SempraT. ; (2008) Concentrating Solar Power—Technology, Cost, and2009). “Concentrating solar power plants of the southwest

  10. Implementing Solar Technologies at Airports

    SciTech Connect (OSTI)

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  11. 2010 Solar Technologies Market Report

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  12. Solar Technology Center

    SciTech Connect (OSTI)

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  13. Solar Fundamentals Volume 1: Technology

    Broader source: Energy.gov [DOE]

    This report is one component of a multi-part series publication to assist in educating th'se seeking to become more familiar with the solar industry. This volume introduces solar technologies, explaining each technology’s applications, the components that make up a photovoltaic system, and how they can be used to optimize energy generation. This report explains solar insolation and how it impacts energy generation in illustrating where solar energy is a viable option. A final section highlights important considerations in solar project siting to maximize system production and avoid unexpected project development challenges.

  14. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  15. Alternative Energy Technologies Solar Power

    E-Print Network [OSTI]

    Scott, Christopher

    #12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible gauges, gas sensors. Light-emitting diodes (LED's) Power amplifiers for cell phones Indium Gallium #12

  16. Modeling Solar Energy Technology Evolution breakout session ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Solar Energy Technology Evolution breakout session Modeling Solar Energy Technology Evolution breakout session This presentation summarizes the information given on the...

  17. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  18. 2008 Solar Technologies Market Report

    SciTech Connect (OSTI)

    none,

    2010-01-29

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts.

  19. The Solar Photovoltaics Technology Conflict between

    E-Print Network [OSTI]

    Deutch, John

    A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY #12;#12;A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John

  20. The Solar Photovoltaics Technology Conflict between

    E-Print Network [OSTI]

    Deutch, John

    A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY #12;#12;A REPORT fOR THE MIT fUTURE Of SOLAR ENERGY STUDY A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John

  1. Solar Energy Technologies Program: Market Transformation

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram

  2. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    2007). Global Concentrated Solar Power Markets andLLC. (2007). Global Concentrated Solar Power Markets and

  3. 2008 Solar Technologies Market Report

    SciTech Connect (OSTI)

    Price, S.; Margolis, R.; Barbose, G.; Bartlett, J.; Cory, K.; Couture, T.; DeCesaro, J.; Denholm, P.; Drury, E.; Frickel, M.; Hemmeline, C.; Mendelsohn, T.; Ong, S.; Pak, A.; Poole, L.; Peterman, C.; Schwabe, P.; Soni, A.; Speer, B.; Wiser, R.; Zuboy, J.; James, T.

    2010-01-01

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts. Highlights of this report include: (1) The global PV industry has seen impressive growth rates in cell/module production during the past decade, with a 10-year compound annual growth rate (CAGR) of 46% and a 5-year CAGR of 56% through 2008. (2) Thin-film PV technologies have grown faster than crystalline silicon over the past 5 years, with a 10-year CAGR of 47% and a 5-year CAGR of 87% for thin-film shipments through 2008. (3) Global installed PV capacity increased by 6.0 GW in 2008, a 152% increase over 2.4 GW installed in 2007. (4) The United States installed 0.34 GW of PV capacity in 2008, a 63% increase over 0.21 GW in 2007. (5) Global average PV module prices dropped 23% from $4.75/W in 1998 to $3.65/W in 2008. (6) Federal legislation, including the Emergency Economic Stabilization Act of 2008 (EESA, October 2008) and the American Recovery and Reinvestment Act (ARRA, February 2009), is providing unprecedented levels of support for the U.S. solar industry. (7) In 2008, global private-sector investment in solar energy technology topped $16 billion, including almost $4 billion invested in the United States. (8) Solar PV market forecasts made in early 2009 anticipate global PV production and demand to increase fourfold between 2008 and 2012, reaching roughly 20 GW of production and demand by 2012. (9) Globally, about 13 GW of CSP was announced or proposed through 2015, based on forecasts made in mid-2009. Regional market shares for the 13 GW are about 51% in the United States, 33% in Spain, 8% in the Middle East and North Africa, and 8% in Australasia, Europe, and South Africa. Of the 6.5-GW project pipeline in the United States, 4.3 GW have power purchase agreements (PPAs). The PPAs comprise 41% parabolic trough, 40% power tower, and 19% dish-engine systems.

  4. Solar Energy Technologies Program Newsletter - July 2009

    SciTech Connect (OSTI)

    2009-07-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  5. Solar Energy Technologies Program Newsletter - September 2009

    SciTech Connect (OSTI)

    2009-10-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  6. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    IRS 2009). 57 By funding amount, solar accounted for 21% orto 2008. In addition, funding to solar companies increasedfor solar installation technicians by providing funding to

  7. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    10MW Thin Film Solar Power Plant for Sempra Generation. ”2009). “Concentrating solar power plants of the southwest1.11. Concentrating solar power plants of the southwest

  8. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    National Laboratories Solar Renewable Energy CertificateCSP Of all the renewable resources, solar is by far the mostal. New Jersey announced its Solar Renewable Energy Credit

  9. Solar Window Technology for BIPV or

    E-Print Network [OSTI]

    Painter, Kevin

    Solar Window Technology for BIPV or BAPV Energy Systems Problem this technology solves: Using of Solar energy considerably, photovoltaic or PV material is still a major $ cost/unit of energy produced concentrating photovoltaic system using a minimal area of expensive PV material. The technology is readily

  10. Solar Decathlon Technology Spotlight: Structural Insulated Panels...

    Broader source: Energy.gov (indexed) [DOE]

    spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Structural insulated panels (SIPs) are prefabricated...

  11. Pennsylvania Company Develops Solar Cell Printing Technology

    Broader source: Energy.gov [DOE]

    The technology uses Plextronics’ conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

  12. Recording of SERC Monitoring Technologies- Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt.

  13. Enabling Thin Silicon Solar Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely...

  14. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    www.eere.energy.gov/solar/photovoltaics_program.html DOEConcentrating Solar Power and Utility Scale Photovoltaics in1 year. 3.2.1. Solar Resource for PV Photovoltaics can take

  15. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    generated by the Nevada Solar One plant is about $0.18/kWh (SEGS IX APS Saguaro Nevada Solar One Total Location Daggett,I - IX APS Saguaro Nevada Solar One PS10 Puertollano Plant

  16. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Industry Update. ” Solar Outlook. Issue SO2009-1. Palo Alto,Outlook.. 105 5.1 Private Investment in SolarOutlook This chapter provides information on trends in private investment in solar

  17. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Looking back—sizing the 2008 solar market. ” pp. 88–93.Iberdrola launches its first solar thermal power plant. ”Analysis of a future solar market, management summary. Bonn,

  18. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    back—sizing the 2008 solar market. ” pp. 88–93. Bradford,Analysis of a future solar market, management summary. Bonn,Sherwood, L. (2009). U.S. Solar Market Trends 2008. Latham,

  19. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    GW of cumulative installed solar capacity by 2025 (Wiser andon the aggregate capacity of solar installed in each utilitySolar Power . 1 1.1 Global Installed PV Capacity

  20. Environmental aspects of solar energy technologies

    SciTech Connect (OSTI)

    Strojan, C.L.

    1980-09-01

    Solar energy technologies have environmental effects, and these may be positive or negative compared with current ways of producing energy. In this respect, solar energy technologies are no different from other energy systems. Where solar energy technologies differ is that no unresolvable technological problems (e.g., CO/sub 2/ emissions) or sociopolitical barriers (e.g., waste disposal, catastrophic accidents) have been identified. This report reviews some of the environmental aspects of solar energy technologies and ongoing research designed to identify and resolve potential environmental concerns. It is important to continue research and assessment of environmental aspects of solar energy to ensure that unanticipated problems do not arise. It is also important that the knowledge gained through such environmental research be incorporated into technology development programs and policy initiatives.

  1. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Solar Deployment . 96 4.3.1 Third-Party Power Purchase Agreementparty power purchase agreement financing, customer solarthird-party power purchase agreement (PPA), the solar lease,

  2. Applications of solar reforming technology

    SciTech Connect (OSTI)

    Spiewak, I.; Tyner, C.E.; Langnickel, U.

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  3. Exploratory Research for New Solar Electric Technologies

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2005-01-01

    We will review highlights of exploratory research for new PV technologies funded by the DOE Solar Energy Technologies Program through NREL and its Photovoltaic Exploratory Research Project. The goal for this effort is highlighted in the beginning of the Solar Program Multi-Year Technical Plan by Secretary of Energy Spencer Abraham's challenge to leapfrog the status quo by pursuing research having the potential to create breakthroughs. The ultimate goal is to create solar electric technologies for achieving electricity costs below 5 cents/kWh. Exploratory research includes work on advanced photovoltaic technologies (organic and ultra-high efficiency solar cells for solar concentrators) as well as innovative approaches to emerging and mature technologies (e.g., crystalline silicon).

  4. Energy Department Announces New Concentrating Solar Power Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power...

  5. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    in Albuquerque, New Mexico. Barclays. (2009). Solar Energysolar development on the public lands of six states (Arizona, California, Colorado, New Mexico,Solar Power. United States Senate Committee on Energy and Natural Resources Field Hearing in Albuquerque, New Mexico.

  6. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    cost data for grid-connected, customer-sited PV installations in the Unites States from a number of solar

  7. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Energy Savers [EERE]

    High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal &...

  8. GCL Solar Energy Technology Holdings formerly GCL Silicon aka...

    Open Energy Info (EERE)

    GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name: GCL Solar Energy Technology Holdings (formerly GCL...

  9. Advanced Heat/Mass Exchanger Technology for Geothermal and solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HeatMass Exchanger Technology for Geothermal and solar Renewable Energy Systems Advanced HeatMass Exchanger Technology for Geothermal and solar Renewable Energy Systems Advanced...

  10. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Latham, NY: Interstate Renewable Energy Council (IREC).http://irecusa.org/irec-programs/publications-reports/.Renewable Energy Council (IREC); North Carolina Solar

  11. Monitoring SERC TechnologiesSolar Photovoltaics

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory's Market Transformation Center electrical engineer Peter McNutt about Solar Photovoltaics and how to properly monitor its installation.

  12. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    internal only). Koenig, R. ; Speer, B. Property Assessedtechnical report). Kollins, K. ; Speer, B. ; Cory, K. SolarSentech, Inc), Bethany Speer (NREL), Ryan Wiser (LBNL), and

  13. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    in Albuquerque, New Mexico. Barclays. (2009). Solar Energysolar development on the public lands of six states (Arizona, California, Colorado, New Mexico,

  14. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Multijunction cells use multiple layers of semiconductoralso second generation) is the multijunction PV cell.metamorphic multijunction solar cell. The Concentrating

  15. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Photovoltaics subprogram 84 invests in technologies across the development pipeline that demonstrate progress

  16. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Electricity for the U.S. NREL Report TP-670-44073. Golden,Navigant Consulting, Inc. NREL. (2009). “Concentrating solarRenewable Energy Laboratory. NREL Report no. TP-6A2-46713.

  17. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    London: New Energy Finance. CSP Today. (May 12, 2009). “covers global and U.S. PV and CSP industry trends. Sectionwww.eere.energy.gov/solar/pdfs/csp_water_study.pdf. U.S.

  18. Applications of Solar Technology for Catastrophe Response,

    SciTech Connect (OSTI)

    A. Deering; J.P. Thornton.

    1999-02-17

    This report presents the issues of solar technology as it relates to preparing for and recovering from disasters, including suggestions on how to collaborate with the utility industry and how to develop educational programs for businesses and consumers. The document emphasizes pre-disaster planning and mitigation alternatives and discusses how energy efficiency and renewable technologies can contribute to reducing insurance losses.

  19. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    relatively low residential PV costs in Japan is that a largeavenue to reducing lifetime PV cost. The data, however, are2009). PV Technology, Production, and Cost, 2009 Forecast:

  20. 2008 Solar Technologies Market Report: January 2010

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    This report focuses on the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report provides an overview of global and U.S. installation trends. It also presents production and shipment data, material and supply chain issues, and solar industry employment trends. It also presents cost, price, and performance trends; and discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. The final chapter provides data on private investment trends and near-term market forecasts.

  1. Trony Solar Corporation formerly Shenzhen Trony Science Technology...

    Open Energy Info (EERE)

    Trony Solar Corporation formerly Shenzhen Trony Science Technology Development Co Ltd Jump to: navigation, search Name: Trony Solar Corporation (formerly Shenzhen Trony Science &...

  2. Breakthrough Cutting Technology Promises to Reduce Solar Costs

    Broader source: Energy.gov [DOE]

    Silicon Genesis advancing the field of solar energy by developing a process that will virtually eliminate all waste when cutting materials needed to implement solar technology.

  3. NREL: Technology Deployment - Solar Decathlon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -Being Replicated AcrossSolar Soft Costs

  4. Building design guidelines for solar energy technologies

    SciTech Connect (OSTI)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

  5. DOE Solar Energy Technologies Program: Overview and Highlights

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

  6. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  7. And the Award Goes to... Silicon Ink Solar Technology Supported...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator...

  8. Photovoltaics: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  9. Market Transformation: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  10. Test of a solar crop dryer Danish Technological Institute

    E-Print Network [OSTI]

    Test of a solar crop dryer Danish Technological Institute Danish Institute of Agricultural Sciences Aidt Miljø A/S SEC-R-6 #12;Test of a solar crop dryer Søren Østergaard Jensen Danish Technological/S January 2001 #12;Preface The report describes the tests carried out on a solar crop dryer. The work

  11. Solar thermal powered desalination: membrane versus distillation technologies

    E-Print Network [OSTI]

    thermal energy (e.g. Koschikowski et al, 2003): #12;Solar thermal powered desalination: reviewSolar thermal powered desalination: membrane versus distillation technologies G. Burgess and K considered to be the desalination technology most suited to integration with concentrating solar thermal

  12. Solar-Assisted Technology Provides Heat for California Industries

    E-Print Network [OSTI]

    Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

  13. Sestar Technologies, LLC Revolutionar y Solar Energy Products

    E-Print Network [OSTI]

    Jawitz, James W.

    Sestar Technologies, LLC Revolutionar y Solar Energy Products Sestar Technologies, LLC (SESTAR) is developing revolutionary solar energy products that will be integral components in the ultimate solution to the world's current and future energy pro- grams. It will lead to paradigm shifts in a number of solar

  14. Chemical technology news from across RSC Publishing. Printing solar panels

    E-Print Network [OSTI]

    Rogers, John A.

    Publishing Chemical technology news from across RSC Publishing. Printing solar panels 22 January size) silicon microcells that connect together to form flexible solar panels. By stamping hundreds solar panels 2/8/2010http://www.rsc.org/Publishing/ChemTech/Volume/2010/02/printing_solar.asp #12;Page 2

  15. Promotion of solar box cooker technology

    SciTech Connect (OSTI)

    Stibravy, R.

    1992-09-01

    Over 1.5 billion people are affected by fuel wood shortage, according to the UN Food and Agricultural Organization. Meanwhile solar cookers are under-exploited. The author presents one version of this technology and discusses how it may be promoted world-wide. The increased use of non fossil fuel energy is essential world-wide in combating global warming trends, preserving the environment, conserving resources and achieving sustainable development. The Solar Box Cooker (SBC) - a box within a box - uses an easily available source of such energy that is also renewable (in contrast to energy that, once used, is not, such as oil, coal, gas, wood). It is also readily available for the developing world, and for much of the developed world too.

  16. Advancing Solar Through Photovoltaic Technology Innovations ...

    Broader source: Energy.gov (indexed) [DOE]

    At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL...

  17. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2011-02-11

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  18. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  19. Brookhaven National Laboratory's low cost solar technology

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1984-09-01

    The problems identified in early study - cost, architectural compatibility, and reliability - were not likely to be solved with conventional practices in the solar industry. BNL then embarked upon an iterative development process towards a solution founded on the methodology which establish a set of key guidelines for the research. With the derivation of cost goals ($5 to $6 per square foot, installed) and performance targets (consistent with conventional technology) it was considered important to use sophisticated industrial product development technologies to achieve the desired results. The normal industrial practice to reduce cost, for example, is to reduce material intensity, strive for simplicity in design and apply as much mass production as possible. This approach revealed the potential of polymer films as a basic construction material for solar collectors. Further refinements to reduce cost were developed, including the perfection of a non-pressurized absorber/heat exchanger and the adaptability of a printable optical selective surface. Additional significant advantages were acquired through application of a monocoque construction technique borrowed from the aircraft industry. The procedures used, including important support from industry to help identify materials and guide fabrication techniques, eventually resulted in construction and successful testing of a thin polymer film solar collector. To achieve the overall objectives of viable solar economics some system concepts have been explored by BNL. Consistent with the cost goals mentioned, it is believed that the low pressure designs pursued will be successful. Designs for the storage tank and distribution system that have been pursued include the use of polymer film lined sheet metal for the storage tanks and plastic pipe.

  20. Prism Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology JumpWilliam County,| OpenEIPrism Solar

  1. Premier Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhonoSolar and WindPrayag GreenTechnologies

  2. Jiangsu Soudai Solar Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun Solar Technology Co Ltd

  3. Thin Film Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies Jump to: navigation, search Name: Thin

  4. American Solar Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergyAmeriPower LLCAmericanTechnology Jump to:

  5. Expansion and Improvement of Solar Water Heating Technology in...

    Open Energy Info (EERE)

    Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place: Beijing, Beijing Municipality, China...

  6. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.Concentrations for Photovoltaic Technologies A dissertationThirteenth IEEE Photovoltaic Specialists Conference- 1978—

  7. Solar Cells, Wound Repair Winning GVC Technologies | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells, Wound Repair Winning GVC Technologies March 26, 2010 Graduate student teams from the University of Arkansas and the University of Maryland earned first place in the...

  8. Solar Energy Technologies Program Newsletter-March 2009

    SciTech Connect (OSTI)

    2009-03-03

    The March 2009 edition of the Solar Energy Technologies Program newsletter summarizes the activities for the past three months, funding opportunities, and upcoming events.

  9. Silicon Ink Technology Offers Path to Higher Efficiency Solar...

    Office of Environmental Management (EM)

    analysis. Partnering with National Labs Brings Cutting Edge Technology to Market Thin film solar panels produced by General Electric's PrimeStar in Arvada, Colorado | Image...

  10. Vehicle Technologies Office Merit Review 2014: EV Project: Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the EV project: solar-assisted charging demo....

  11. ICP-PECVD PRODUCTION TOOL FOR INDUSTRIAL AlOX AND Si-BASED PASSIVATION LAYERS B.F.P. Roos1

    E-Print Network [OSTI]

    TECHNOLOGIES AG, Hanauer Landstrasse 103, D-63796 Kahl am Main, Germany 2 Institute for Solar Energy ResearchICP-PECVD PRODUCTION TOOL FOR INDUSTRIAL AlOX AND Si-BASED PASSIVATION LAYERS B.F.P. Roos1 , T Hamelin (ISFH), Am Ohrberg 1, D-31860 Emmerthal, Germany Correspondent author: bjoern

  12. Revitalizing American Competitiveness in Solar Technologies ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the SunShot program, including goals, management structure, funding and various solar energy initiatives, including GEARED, SUNPATH II and the creation of a new solar energy...

  13. A survey of thin-film solar photovoltaic industry & technologies

    E-Print Network [OSTI]

    Grama, Sorin

    2007-01-01

    A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

  14. Solar Sail Technology for Nanosatellites Michael D. Souder

    E-Print Network [OSTI]

    West, Matthew

    Solar Sail Technology for Nanosatellites Michael D. Souder Stanford University, Stanford, CA, 94305, USA Matthew West University of Illinois, Urbana, IL, 61801, USA Solar sailing is an attractive means. This allows a solar sail spacecraft to accomplish new classes of missions that would otherwise require

  15. Solar thermal powered desalination: membrane versus distillation technologies

    E-Print Network [OSTI]

    . The daily desalinated water output per square metre of solar collector area is estimated for a number suited to integration with concentrating solar thermal concentrating collectors on a medium to largeSolar thermal powered desalination: membrane versus distillation technologies G. Burgess and K

  16. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect (OSTI)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  17. ICP-MS Workshop

    SciTech Connect (OSTI)

    Carman, April J.; Eiden, Gregory C.

    2014-11-01

    This is a short document that explains the materials that will be transmitted to LLNL and DNN HQ regarding the ICP-MS Workshop held at PNNL June 17-19th. The goal of the information is to pass on to LLNL information regarding the planning and preparations for the Workshop at PNNL in preparation of the SIMS workshop at LLNL.

  18. A general framework for the assessment of solar fuel technologies

    SciTech Connect (OSTI)

    Herron, JA; Kim, J; Upadhye, AA; Huber, GW; Maravelias, CT

    2015-01-01

    The conversion of carbon dioxide and water into fuels in a solar refinery presents a potential solution for reducing greenhouse gas emissions, while providing a sustainable source of fuels and chemicals. Towards realizing such a solar refinery, there are many technological advances that must be met in terms of capturing and sourcing the feedstocks (namely CO2, H2O, and solar energy) and in catalytically converting CO2 and H2O. In the first part of this paper, we review the state-of-the-art in solar energy collection and conversion to solar utilities (heat, electricity, and as a photon source for photo-chemical reactions), CO2 capture and separation technology, and non-biological methods for converting CO2 and H2O to fuels. The two principal methods for CO2 conversion include (1) catalytic conversion using solar-derived hydrogen and (2) direct reduction of CO2 using H2O and solar energy. Both hydrogen production and direct CO2 reduction can be performed electro-catalytically, photo-electrochemically, photo-catalytically, and thermochemically. All four of these methods are discussed. In the second part of this paper, we utilize process modeling to assess the energy efficiency and economic feasibility of a generic solar refinery. The analysis demonstrates that the realization of a solar refinery is contingent upon significant technological improvements in all areas described above (solar energy capture and conversion, CO2 capture, and catalytic conversion processes).

  19. SolarBridge Technologies: Helping Solar Modules Speak the Language...

    Broader source: Energy.gov (indexed) [DOE]

    into grid-friendly alternating current (AC). SolarBridge will partner with a U.S.-based PV module manufacturer to provide a cost-reduced AC module with a preinstalled...

  20. Long-term goals for solar thermal technology

    SciTech Connect (OSTI)

    Williams, T.A.; Dirks, J.A.; Brown, D.R.

    1985-05-01

    This document describes long-term performance and cost goals for three solar thermal technologies. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of $0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  1. Technological assessment of light-trapping technology for thin-film Si solar cell

    E-Print Network [OSTI]

    Susantyoko, Rahmat Agung

    2009-01-01

    The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

  2. Breakout Session: Disruptive Solar Technologies: Frontiers in...

    Broader source: Energy.gov (indexed) [DOE]

    PV and CSP landscape today hold the potential to greatly impact the future of solar energy conversion. This session will highlight new techniques, processes, materials, and...

  3. SunLab: Advancing Concentrating Solar Power Technology

    SciTech Connect (OSTI)

    1998-11-24

    Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

  4. Solar Energy Technologies Program Newsletter - First Quarter 2010

    SciTech Connect (OSTI)

    2010-04-22

    The first quarter 2010 edition of the Solar Energy Technologies Program newsletter summarizes the activities for the past three months, funding opportunities, highlights from the national labs, and upcoming events.

  5. Solar Energy Technologies Program Newsletter - Fourth Quarter 2009

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2009-12-31

    The Fourth Quarter 2009 edition of the Solar Energy Technologies Program newsletter summarizes the activities for the past three months, funding opportunities, highlights from the national labs, and upcoming events.

  6. Silicon Ink Technology Offers Path to Higher Efficiency Solar...

    Broader source: Energy.gov (indexed) [DOE]

    Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost Partnering with Sunnyvale-based Innovalight, which was acquired by DuPont in July 2011, EERE...

  7. Emerging High-Efficiency Low-Cost Solar Cell Technologies

    E-Print Network [OSTI]

    McGehee, Michael

    J. of Photovoltaics, 2 (2012) p. 303. Si GaAs #12;Why thin film GaAs;Gallium Arsenide · The 1.4 eV band gap is ideal for solar cells. · High quality films are grownEmerging High-Efficiency Low-Cost Solar Cell Technologies Mike McGehee Materials Science

  8. DOE Solar Energy Technologies Program FY 2005 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  9. DOE Solar Energy Technologies Program FY 2006 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  10. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  11. DOE Solar Energy Technologies Program 2007 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  12. Modeling Solar Energy Technology Evolution breakout session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Evolution What is a question we could ask about technology evolution, which when answered could yield deep insight into how to spur innovation? Introductory question...

  13. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  14. Open workshop on solar technologies. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    The deliberations, conclusions, and recommendations of six panels asked to provide advice to the Department of Energy on the subject of solar energy are detailed. Approximately 60 invited panelists and 120 observers met in three panels devoted to Solar Energy and Cities and three panels on Solar Energy and Employment. The day-and-one-half meeting occurred at the Department of Energy's Forrestal Building headquarters in Washington, DC, on 23 and 24 October 1979. Introductory speeches by seven experts, excerpts from the succeeding two half-days of discussion, the final reports for the panel chairpersons, and subsequent discussion and questioning are included. Approximately 125 findings and recommendations were developed by the six panels covering a wide variety of topics. Major recurring themes were recommendations for increased funding, federal program improvement, conservation, outreach programs, small business funding, and solar training programs. Detailed responses from the Department of Energy have been prepared for all recommendations and are contained in a companion volume.

  15. Project Profile: Flexible Assembly Solar Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BrightSource Energy logo BrightSource Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and deploying an automated collector-assembly...

  16. Implementations of electric vehicle system based on solar energy in Singapore assessment of solar thermal technologies

    E-Print Network [OSTI]

    Liu, Xiaogang, M. Eng. Massachusetts Institute of Technology

    2009-01-01

    To build an electric car plus renewable energy system for Singapore, solar thermal technologies were investigated in this report in the hope to find a suitable "green" energy source for this small island country. Among all ...

  17. Research and Development Needs for Building-Integrated Solar Technologies

    SciTech Connect (OSTI)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  18. Appendix I - GPRA06 solar energy technologies program documentation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    This appendix provides detailed information on the assumptions and methods employed to estimate the benefits of EERE’s Solar Energy Technologies Program. The benefits analysis for the Solar Program utilized both NEMS and MARKAL as the analytical tools for estimating the Program’s benefits. As will be discussed below, a number of assumptions and structural modifications to the models were made in order to represent the suite of solar technologies funded by the program as accurately as possible (Photovoltaics, Concentrating Solar Power and Solar Water Heating). Many of the assumptions used in the FY06 analysis are the same as or similar to those employed in the FY05 analysis; however, two key changes are important to highlight up-front. First, the AEO2004 analysis used a new set of reference case assumptions with respect to photovoltaic technology cost reductions. The new sets of reference case assumptions are very similar to the Solar Program’s targets for PV. This shift in assumptions necessitated developing a new approach for estimating the baseline (i.e., no program) input assumptions for PV. Second, the FY06 analysis included CSP technology benefits – CSP benefits were not included in the FY05 analysis.

  19. Shunda SolarE Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformationShoshone County, Idaho:Shreveport,ShrubSolarE

  20. Compound Solar Technology CompSolar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusComposite keys? Home >Solar

  1. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  2. Solar Energy Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectDataSecretaryDepartment ofLocal GovernmentTennesseeSolar EnergySolar

  3. Solar Manufacturing Technology 2 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergySolar Flare Activity CloselyofSolar

  4. Polycrystalline Thin Film Solar Cell Technologies: Preprint

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    Rapid progress is being made by CdTe and CIGS-based thin-film PV technologies in entering commercial markets.

  5. Energizing American Competitiveness in Solar Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    production of single crystal silicon using directional solidification. To compete in the clean energy race, inventing new technologies is not enough. We have to make them to sell...

  6. High temperature solar thermal technology: The North Africa Market

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  7. Telio Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information DixieGeothermalTelio Solar

  8. Breakout Session: Disruptive Solar Technologies: Frontiers in New Materials and Approaches

    Broader source: Energy.gov [DOE]

    Disruptive solar technologies entering the PV and CSP landscape today hold the potential to greatly impact the future of solar energy conversion. This session will highlight new techniques,...

  9. Solar Technology Acceleration Centre SolarTAC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery TechnologySocovoltaicCorporation Ltd JumpJoseAcceleration

  10. THE DEVELOPMENT AND COMMERCIALIZATION OF SOLAR PV TECHNOLOGY IN THE OIL Jonatan Pinksea,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    THE DEVELOPMENT AND COMMERCIALIZATION OF SOLAR PV TECHNOLOGY IN THE OIL INDUSTRY Jonatan Pinksea regarding solar PV technology investments, a renewable energy technology that has seen explosive growth towards the development and commercialization of solar PV technology. To investigate this, a multiple case

  11. Ener Solar Technology srl | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, New York:Corporation JumpEncapEndicottEner Solar

  12. Industrial Solar Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAnd CentralWorld Bank ClimateResearchSolar

  13. Solar Manufacturing Technology | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergySolar Flare Activity

  14. NREL: Learning - Solar Photovoltaic Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhoto of theSolarHydrogenPhotovoltaic

  15. NREL: Technology Deployment - Solar Technical Assistance Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolar EnergyEffort FEMA Leading Clean

  16. Solar Thermal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performedValley |Solar PowerofThermal »

  17. TOPCAT Solar Cell Alignment & Energy Concentration Technology

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-03-12

    This technology is a new technique for parabolic trough mirror alignment based on the use of an innovative Theoretical Overlay Photographic (TOP) approach. It is a variation of current methods used on parabolic dish systems and involves overlay of theoretical images of the Heat Collection Element (HCE) in the mirrors onto carefully surveyed photographic images and adjustment of mirror alignment until they match....

  18. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    1.1 Solar Energy . . . . . . . . .glass-?lms. Solar Energy Materials and Solar Cells, 33(4):concentrator. Solar Energy Materials and Solar Cells, 93(8):

  19. An Overview of Solar Cell Technology Mike McGehee

    E-Print Network [OSTI]

    McGehee, Michael

    An Overview of Solar Cell Technology Mike McGehee Materials Science and Engineering Global Climate;Primary Photovoltaic (PV) Markets Residential Rooftop Commercial Rooftop Ground mounted (Usually 2 utility scale) #12;How cheap does PV need to be to compete w/ coal? June 2008 #12;Installed System Price

  20. DOE Solar Energy Technologies Program FY 2005 Annual Report

    SciTech Connect (OSTI)

    Sutula, Raymond A.

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  1. An Overview of Solar Cell Technology Mike McGehee

    E-Print Network [OSTI]

    McGehee, Michael

    #12;Multijunctions: The Road to Higher Efficiencies Higher-efficiency MJ cells require new materialsAn Overview of Solar Cell Technology Mike McGehee Materials Science and Engineering Global Climate. · The industry is now well over $40 B/yr. #12;There are many approaches to making PV cells and experts do

  2. A compendium of solar dish/Stirling technology

    SciTech Connect (OSTI)

    Stine, W.B.; Diver, R.B.

    1994-01-01

    This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology -- the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.

  3. Software and codes for analysis of concentrating solar power technologies.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei

    2008-12-01

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  4. DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE to Provide Up to 17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to 17.6 Million for Solar Photovoltaic Technology Development September 29, 2008...

  5. NREL: Concentrating Solar Power Research - Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemicalPilotDataResearchTechnology

  6. Solar Technologies Installations Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery TechnologySocovoltaicCorporation Ltd JumpJose

  7. Jiangsu Yangguang Solar Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun Solar Technology Co LtdSumecSolar

  8. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    glass-?lms. Solar Energy Materials and Solar Cells, 33(4):concentrator. Solar Energy Materials and Solar Cells, 93(8):concentrator. Solar Energy Materials and Solar Cells, 91(1):

  9. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    for generating low-cost solar power, LSC development facesand lowering the cost, luminescent solar concentrations (cells. Using solar concentrators, the cost of solar energy

  10. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    1.1 Solar Energy . . . . . . . . .Ho?mann. Photovoltaic Solar Energy Gen- eration. Opticalon ?uorescent glass-?lms. Solar Energy Materials and Solar

  11. Science and Technology of BOREXINO: A Real Time Detector for Low Energy Solar Neutrinos SOLAR NEUTRINOS

    E-Print Network [OSTI]

    Borexino Collaboration; G. Alimonti

    2000-12-11

    BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics.

  12. Potential displacement of petroleum imports by solar energy technologies

    SciTech Connect (OSTI)

    DeLeon, P.; Jackson, B.L.; McNown, R.F.; Mahrenholz, G.J.

    1980-05-01

    The United States currently imports close to half of its petroleum requirements. This report delineates the economic, social, and political costs of such a foreign oil dependency. These costs are often intangible, but combined they clearly constitute a greater price for imported petroleum than the strictly economic cost. If we can assume that imported oil imposes significant socioeconomic costs upon the American economy and society, one way to reduce these costs is to develop alternative, domestic energy sources - such as solar energy technologies - which can displace foreign petroleum. The second half of this report estimates that by the year 2000, solar energy technologies can displace 3.6 quads of petroleum. This figure includes solar energy applications in utilities, industrial and agricultural process heat, and transportation. The estimate can be treated as a lower bound; if the United States were to achieve the proposed goal of 20 quads by 2000, the amount of displaced oil probably would be greater. Although all the displaced oil would not be imported, the reduction in imported petroleum would relieve many of the conditions that increase the present cost of foreign oil to the American consumer.

  13. RFID TECHNOLOGY FOR AVI: FIELD DEMONSTRATION OF A WIRELESS SOLAR POWERED E-ZPASS1

    E-Print Network [OSTI]

    Mitchell, John E.

    - 1 - RFID TECHNOLOGY FOR AVI: FIELD DEMONSTRATION OF A WIRELESS SOLAR POWERED E-ZPASS®1 TAG READER solar powered E-ZPass tag readers were deployed and tested at two locations in upstate New York). EQUIPMENT AND TECHNOLOGY The wireless, solar powered E-ZPass tag readers were developed and deployed by RPI

  14. SOLAR COOKER UTILIZING SATELLITE DISH TECHNOLOGY Mechanical Engineering Department , Philadelphia University, Amman Jordan, e-mail

    E-Print Network [OSTI]

    SOLAR COOKER UTILIZING SATELLITE DISH TECHNOLOGY A. Saleh1 A. Badran2 1 Mechanical Engineering dish­type solar cooker was built and tested utilizing satellite dish technology. A common satellite-TV dish was utilized as a solar cooker after covering it with a highly­reflective aluminum foil, which

  15. Big Bear Solar Observatory -New Jersey Institute of Technology 2005 Greetings

    E-Print Network [OSTI]

    Big Bear Solar Observatory - New Jersey Institute of Technology 2005 Greetings The Center for Solar-Terrestrial Reasearch (CSTR) at New Jersey Institute of Technology operates Big Bear Solar Observatory (BBSO), which provides a unique and precise measure of the Earth's reflectance (a critical climate parameter since

  16. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    ing ?uorescent dye for solar energy conversion based on aimprove the the solar energy conversion e?ciency. Outputcheaper solar energy concentration and conversion methods,

  17. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    by one-sun solar simulator. . . . . . . . . . . . . . .two kinds of solar concentrators, one is based on geomet-to utilize the whole solar spectrum, one of the methods is

  18. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  19. NREL: Technology Transfer - The Quest for Inexpensive Silicon Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -BeingFuture for SolarTechnologyNew AmberThe

  20. Hareon Solar Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co LtdGuntherGreensHareon Solar Technology Co

  1. Jiangsu Huilun Solar Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun Solar Technology Co Ltd Jump to:

  2. Jiangxi Risun Solar Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun Solar TechnologyAvon

  3. Sichuan Apollo Solar Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology Co LtdOhio:ZhangjiaduBhavaniSichuan Apollo Solar

  4. Inner Mongolia Riyue Solar Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTLTechnologySA JumpEnergeticasRiyue Solar Technology

  5. New solar cell technology captures high-energy photons more efficientl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (click to enlarge) Argonne's Center for Nanoscale Materials (click to enlarge) New solar cell technology captures high-energy photons more efficiently By Jared Sagoff *...

  6. Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Funding Opportunity

    Broader source: Energy.gov [DOE]

    The Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) program supports projects that evaluate the degradation and failure mechanisms of concentrating...

  7. SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery TechnologySocovoltaicCorporation LtdTrackerSolarCAPOpen

  8. Renewable energy technologies for federal facilities: Solar water heating

    SciTech Connect (OSTI)

    1996-05-01

    This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

  9. Advanced Materials and Nano Technology for Solar Cells

    E-Print Network [OSTI]

    Han, Tao

    2014-01-01

    http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.CdTe and CIGS thin-film solar cells: highlights and4.57) Eduardo Lorenzo (1994). Solar Electricity: Engineering

  10. Solar energy and conservation technologies for Caribbean Tourist Facilities (CTF)

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and US conservation and renewable energy industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies. 3 refs.

  11. Advanced Materials and Nano Technology for Solar Cells

    E-Print Network [OSTI]

    Han, Tao

    2014-01-01

    price has been reduced by 3/4. 1.2.2 SOLAR CELL CLASSIFICATION Generally, solar cells achieve the Photovoltaic

  12. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    are like multi-junction solar cells [GH05]. Fourth, dyes canof the solar spectrum like multi-junction cells to improve

  13. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    collectors to harness the energy. Passive solar techniques include orienting a build- ing to the Sun,

  14. Solar Energy Technologies Program FY08 Annual Report

    SciTech Connect (OSTI)

    none,

    2009-05-01

    These reports chronicle the research and development (R&D) results of the Solar Program for the fiscal year. In particular, the report describes R&D performed by the Program's national laboratories and its university and industry partners within PV R&D, Solar Thermal R&D, which encompasses solar water heating and concentrating solar power (CSP), and other subprograms.

  15. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    SciTech Connect (OSTI)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  16. SunShot Technology to Market “Incubator 11, SolarMat 4”

    Broader source: Energy.gov [DOE]

    The SunShot Technology to Market funding program brings highly impactful solar energy technologies and solutions to the marketplace through technology research, development, and demonstration that overcomes technical, institutional, and market challenges. Historically, annual funding opportunities have been separated by stage of technology development (Incubator, SolarMaT, and SUNPATH). For the first time, these funding opportunities have been combined into a single funding opportunity with the goal of bringing disruptive innovation to the solar industry in the near term that will take root in the U.S.

  17. CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology

    E-Print Network [OSTI]

    CERN Video Productions; Marion Viguier

    2012-01-01

    CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology

  18. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  19. China Singyes Solar Technologies Holdings Ltd formerly known...

    Open Energy Info (EERE)

    Singyes is a curtain wall engineering company that has partnered with Solar Thin Films to build solar module capacity in China for the domestic BIPV market. Coordinates: 22.277,...

  20. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    convert solar energy directly into electricity. A PV cell isSolar energy is a prominent renewable source of electricitysolar energy will become a very prominent renewable source of electricity.

  1. In Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar panels and a styl-

    E-Print Network [OSTI]

    Goodman, Robert M.

    with a discussion about technology and nature. A field of solar panels to produce economic revenue to consider technology and energy, a Solar Garden exists among the panels. In contrast, an Asian-inspired PondIn Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar

  2. Showcasing Solar Technologies from San José Companies at the Tech Museum of Innovation

    Broader source: Energy.gov [DOE]

    In May 2007, the City of San José won a Solar America Showcase award from the US Department of Energy. This award offers technical assistance to help the City realize its ambitious solar technology deployment goals on large buildings and complexes mainly in the revitalized downtown area. In July 2007, a DOE Tiger Team — led by Cécile Warner of the National Renewable Energy Laboratory (NREL) — met with numerous city officials to discuss the City’s solar plans in detail and visit the various sites under consideration for solar technology adoption.

  3. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    SciTech Connect (OSTI)

    Dinetta, L.C.; Hannon, M.H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

  4. Solar America Cities Awards, Solar Energy Technologies Program, Fact Sheet, March 2009

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    This publication represents an ongoing effort to support outreach activities through the Solar America Cities program. The two-page fact sheet offers an overview of the SAC program and lists specific resources for more information on developing solar programs.

  5. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    the manufacturing of solar cells and photovoltaic arrays hasfor providing us Photovoltaic cells, lumines- cent materialsthe currently available photovoltaic cells. The property of

  6. And the Award Goes to... Silicon Ink Solar Technology Supported...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a novel path to producing solar cells with higher conversion efficiencies at lower cost. A pair of presenters approach the microphone carrying a sealed envelope, a faint drum...

  7. New World Record Achieved in Solar Cell Technology | Department...

    Broader source: Energy.gov (indexed) [DOE]

    a concentrator solar cell produced by Boeing-Spectrolab has recently achieved a world-record conversion efficiency of 40.7 percent, establishing a new milestone in...

  8. Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    Broader source: Energy.gov [DOE]

    As part of this project, new solar forecasting technology will be developed that leverages big data processing, deep machine learning, and cloud modeling integrated in a universal platform with an...

  9. ICP (Institutional Conservation Program) monitoring

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    The following pages present the final report of activities undertaken by Carpenter Environmental Associates, Inc. (CEA) in carrying out its contractual obligations for the New York Support Office of the US Department of Energy. The contract calls for the field monitoring/review of DOE grants to schools and hospitals under the Institutional Conservation Program (ICP). This final report is the result of a review of statistics and findings gathered over the period of the contract, which included monitoring visits to 50 grantees in New York State and New Jersey. The report is intended to highlight aspects of the monitoring project and to make recommendations. This report is organized into four sections: Section 1 details the steps taken by CEA in organizing and implementing the review; Section 2 presents program statistics; Section 3 discusses monitoring review concerns, implementation issues and commonly observed problems/accomplishments; and Section 4 lists recommendations. Taken as a whole, this final report is intended to convey a complete picture of CEA's activities under this contract. 25 tabs.,

  10. Solar America Initiative (SAI) PV Technology Incubator Program: Preprint

    SciTech Connect (OSTI)

    Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

    2008-05-01

    The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

  11. SUNSHOT INITIATIVE Solar Energy Technologies Office U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics 66 Communications 69 Plant Performance and Reliability 70 Technology to Market 74 Technology Commercialization and Business Innovation 76 Manufacturing: Innovation...

  12. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    improvement, the device performance is approaching the thermodynamic limit of similar to 28% for single- junction Si solar cells.improvement by PbS near infrared QDs due to the broaden absorption spectrum and near infrared emission properties for PV solar cells.

  13. Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

  14. SolarEdge Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergyCompany LimitedSolar/WindSolarCraftSolarEdge

  15. "Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994.

    E-Print Network [OSTI]

    Noble, William Stafford

    "Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy and Technology. Shyam S. Nandwani, ed. July 12-15, 1994. pp. 240-247. 1 DIFFUSION OF INNOVATION: SOLAR OVEN USE of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking

  16. DOE Outlines Research Needed to Improve Solar Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    To help achieve the Bush Administration's goal of increased use of solar and other renewable forms of energy, the Department of Energy's (DOE) Office of Science has released a...

  17. Concentrating Solar Power Program Technology Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2001-04-01

    Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

  18. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Adam Schaut Philip Smith

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough archi

  19. Solar Energy Technologies Program - Growing Solar Power Industry Brightens Job Market (Green Jobs)

    SciTech Connect (OSTI)

    2010-04-01

    U.S. solar power capacity is expanding rapidly as part of the national initiative to double renewable energy resources in three years. This growth is helping to generate many new, well-paid jobs in solar power for American workers.

  20. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  1. SolarBridge Technologies: Helping Solar Modules Speak the Language of the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideoSolar Decathlon 2015:Solar6Energy Grid |

  2. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  3. Low-cost thin-material solar technology, the key to a viable energy alternative

    SciTech Connect (OSTI)

    Wilhelm, W.G.; Ripel, B.D.

    1985-08-01

    The creation of a solar technology based on a dramatic reduction in material intensity and greater simplicity of design is the result of a cost-guided research approach. It takes advantage of a progressive material science based on polymer films and unique construction methods that optimize material requirements, performance and durability. The current level of technical maturity has revealed a solar collector design that has the potential for a dramatic reduction in installed cost while maintaining high thermal performance and durability. In addition, the same methodology has guided total solar system designs with similar economies and performance advantages.

  4. Penetration and air-emission-reduction benefits of solar technologies in the electric utilities

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1981-01-01

    The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

  5. Trony Solar Corporation formerly Shenzhen Trony Science Technology

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail CanyonsourceRiverTriggRoadmapSolar

  6. SolarMission Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergyCompanySolarLab Jump to: navigation,

  7. Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

    SciTech Connect (OSTI)

    Martin, P.M.; Affinito, J.D.; Gross, M.E.; Bennett, W.D.

    1995-03-01

    The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  8. Chapter 1.03: Solar Photovoltaics Technology: No Longer an Outlier

    SciTech Connect (OSTI)

    Kazmerski, L. L.

    2012-01-01

    The status and future technology, market, and industry opportunities for solar photovoltaics are examined and discussed. The co-importance of both policy and technology investments for the future markets and competitiveness of this solar approach is emphasized. This paper underscores the technology side, with a comprehensive overview and insights to technical, policy, market, industry and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy economy. The requirement to venture from near-term and evolutionary approaches into disruptive and revolutionary technology pathways is argued for our needs in the mid-term (the next 10-15 years) and the long-term (beyond the first quarter of this century).

  9. Sunworld Solar Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLan SolarKoreaSuntechnicsSunwatt

  10. Biomass and Solar Technologies Lauded - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.HelpReport) |Biomass and Solar

  11. Shanghai ST Solar Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low EmissionTianhong Silicon MaterialNewHuiyang NewJTUST Solar

  12. Johanna Solar Technology GmbH JST | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills, Pennsylvania:Huayang SolarJleyshon's blog

  13. Energy Secretary Announces $13 Million to Expand Solar Energy Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavings Performance Contracting (ESPC) is|

  14. NREL: Technology Deployment - Portland, Oregon Grassroots Solarize Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -Being Replicated Across theDrives Down Solar

  15. NREL: Technology Deployment - Solar Deployment and Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -Being Replicated AcrossSolar Soft

  16. NREL-Solar Technologies Market Report | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFE BateriasInternational WindJump to:Solar

  17. Solar Energy Technologies FY'14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectDataSecretaryDepartment ofLocal GovernmentTennesseeSolar Energy Resource

  18. MHK Technologies/Sea Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMIS D E < MHKSPERBOYSea Solar Power

  19. Zhejiang RICH Solar Technology Corporation Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxiHydropowerCoRICH Solar

  20. Guangxi Chengjiyongxin Solar Technology Engineering Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL SolarGateMingyang Wind Power

  1. Considerations for Solar Energy Technologies to Make Progress Towards Grid Price Parity

    SciTech Connect (OSTI)

    Woodhouse, Michael; Fu, Ran; Chung, Donald; Horowitz, Kelsey; Remo, Timothy; Feldman, David; Margolis, Robert

    2015-11-07

    In this seminar the component costs for solar photovoltaics module and system prices will be highlighted. As a basis for comparison to other renewable and traditional energy options, the metric of focus will be total lifecycle cost-of-energy (LCOE). Several innovations to traditional photovoltaics technologies (including crystalline silicon, CdTe, and CIGS) and developing technologies (including organics and perovskites) that may close the gaps in LCOE will be discussed.

  2. Solar Applied Materials Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery TechnologySocovoltaic Systems JumpSolana Beach,Technology

  3. SolarMax Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery TechnologySocovoltaicCorporationTechnology Inc Jump to:

  4. Economic evaluation of solar-only and hybrid power towers using molten salt technology

    SciTech Connect (OSTI)

    Kolb, G.J.

    1996-12-01

    Several hybrid and solar-only configurations for molten-salt power towers were evaluated with a simple economic model, appropriate for screening analysis. The solar specific aspects of these plants were highlighted. In general, hybrid power towers were shown to be economically superior to solar-only plants with the same field size. Furthermore, the power-booster hybrid approach was generally preferred over the fuel-saver hybrid approach. Using today`s power tower technology, economic viability for the solar power-boost occurs at fuel costs in the neighborhood of $2.60/MBtu to $4.40/ MBtu (low heating value) depending on whether coal-based or gas-turbine-based technology is being offset. The cost Of CO[sub 2] avoidance was also calculated for solar cases in which the fossil fuel cost was too low for solar to be economically viable. The avoidance costs are competitive with other proposed methods of removing CO[sub 2] from fossil-fired power plants.

  5. Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology

    SciTech Connect (OSTI)

    Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M.

    2010-09-15

    Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

  6. Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS

    SciTech Connect (OSTI)

    Dion, Michael P.; Liezers, Martin; Farmer, Orville T.; Miller, Brian W.; Morley, Shannon M.; Barinaga, Charles J.; Eiden, Gregory C.

    2015-01-01

    We report results of a novel technique using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) as a method of source preparation for alpha spectrometry. This method produced thin, contaminant free 241Am samples which yielded extraordinary energy resolution which appear to be at the lower limit of the detection technology used in this research.

  7. IN-LINE HIGH-RATE DEPOSITION OF ALUMINUM ONTO RISE SOLAR CELLS BY ELECTRON BEAM TECHNOLOGY

    E-Print Network [OSTI]

    IN-LINE HIGH-RATE DEPOSITION OF ALUMINUM ONTO RISE SOLAR CELLS BY ELECTRON BEAM TECHNOLOGY Jens , Ruediger Meyer 3 1) Fraunhofer Institute for Electron Beam and Plasma Technology (FEP), Winterbergstr. 28 Through (RISE EWT) solar cells by electron beam high-rate evaporation of aluminum. In stationary

  8. Applications of Solar Technology for Catastrophe Response, Claims Management, and Loss Prevention

    SciTech Connect (OSTI)

    Deering, A.; Thornton, J.P.

    1999-02-17

    Today's insurance industry strongly emphasizes developing cost-effective hazard mitigation programs, increasing and retaining commercial and residential customers through better service, educating customers on their exposure and vulnerabilities to natural disasters, collaborating with government agencies and emergency management organizations, and exploring the use of new technologies to reduce the financial impact of disasters. In June of 1998, the National Renewable Energy Laboratory (NREL) and the National Association of Independent Insurers (NAII) sponsored a seminar titled, ''Solar Technology and the Insurance Industry.'' Presentations were made by insurance company representatives, insurance trade groups, government and state emergency management organizations, and technology specialists. The meeting was attended by insurers, brokers, emergency managers, and consultants from more than 25 US companies. Leading insurers from the personal line and commercial carriers were shown how solar technology can be used in underwriting, claims, catastrophe response, loss control, and risk management. Attendees requested a follow-up report on solar technology, cost, and applications in disasters, including suggestions on how to collaborate with the utility industry and how to develop educational programs for business and consumers. This report will address these issues, with an emphasis on pre-disaster planning and mitigation alternatives. It will also discuss how energy efficiency and renewable technologies can contribute to reducing insurance losses.

  9. Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies

    SciTech Connect (OSTI)

    Kutscher, C.F.

    1981-03-01

    Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

  10. Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

  11. 2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D

    SciTech Connect (OSTI)

    McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

    2010-11-01

    The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

  12. Los Alamos Quantum Dots for Solar, Display Technology

    SciTech Connect (OSTI)

    Klimov, Victor

    2015-04-13

    Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology – quantum dot displays – employed, for example, in the newest generation of e-readers and video monitors.

  13. Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes

    SciTech Connect (OSTI)

    Gordon, Kelly L.; Gilbride, Theresa L.

    2008-05-22

    This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

  14. Solar Green Technology S p A SGT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergy InformationDepotGreen Technology S p A SGT

  15. Solar Photovoltaic Technologies Available for Licensing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top Scientific ImpactTechnologiesEnergy.gov »Portal

  16. Solar Thermal Technologies Available for Licensing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top Scientific ImpactTechnologiesEnergy.gov

  17. Shandong Sunvim Solar Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology Co Ltd Jump to: navigation, search Name:Lusa

  18. Shanghai Prairiesun Solar Technology Co Ltd Shansheng | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology Co Ltd Jump to:Technical PhysicsHydrogen

  19. Beijing Four Seasons Solar Power Technology Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, SouthBeckerPark,EEDT Technology Trade Co

  20. Solar | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar SHARE Solar ORNL's Solar Technologies program supports the U.S. Department of Energy (DOE) Solar Energy Technologies Office - SunShot Initiative goal to make solar energy...

  1. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  2. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    International Solar Energy, Loc, and Solar Energy Soci. offor Selective Absorption of Solar Energy and the Method ofthe Department of Energy's Solar Total Energy lity Sandia

  3. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    Design Package for Solar Collector and Solar Pump",from Flat Plate Solar Collectors, Phase 2", N78 21624 (J, L, Russell, Jr" "Solar Collector Field Subsystem, Program

  4. Dish/Stirling systems: Overview of an emerging commercial solar thermal electric technology

    SciTech Connect (OSTI)

    Strachan, J.W.; Diver, R.B.; Estrada, C.

    1995-11-01

    Dish/Stirling is a solar thermal electric technology which couples parabolic, point-focusing solar collectors and heat engines which employ the Stirling thermodynamic cycle. Since the late 1970s, the development of Dish/Stirling systems intended for commercial use has been in progress in Germany, Japan, and the US. In the next several years it is expected that one or more commercial systems will enter the market place. This paper provides a general overview of this emerging technology, including: a description of the fundamental principles of operation of Dish/Stirling systems; a presentation of the major components of the systems (concentrator, receiver, engine/alternator, and controls); an overview of the actual systems under development around the world, with a discussion of some of the technical issues and challenges facing the Dish/Stirling developers. A brief discussion is also presented of potential applications for small Dish/Stirling systems in northern Mexico.

  5. Use of Municipal Assistance Programs to Advance the Adoption of Solar Technologies (Note: Real One)

    Broader source: Energy.gov [DOE]

    This report serves as a tool for municipalities and organizations that are exploring programs to facilitate the installation of solar energy technologies at the local level. The report discusses programs being implemented in Berkeley, San Francisco, and Madison. Program design considerations, lessons learned from program administrators, and recommendations to consider when designing a municipal assistance program are included, but no program design is prescribed. Recommendations should be customized to serve the needs of a specific market.

  6. Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels

    E-Print Network [OSTI]

    Chen, Heidi Qianyi

    2012-01-01

    This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential solar PV panels ...

  7. ICP (Institutional Conservation Program) monitoring: Final report

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The following pages present the Final Report of activities undertaken by Arawak in carrying out its contractual obligations for the New York Support Office of US Department of Energy. The contract calls for the field monitoring/review of DOE grants to schools and hospitals under the Institutional Conservation Program (ICP). This Final Report is the result of a review of statistics and findings gathered over the period of the contract, which included monitoring visits to 78 grantees in New York State and New Jersey. The report is intended to highlight aspects of the monitoring project and to make recommendations.

  8. Affordable Solar Energy Solar Powder is a solar-energy company that has developed an innovative technology that will set a new

    E-Print Network [OSTI]

    Jawitz, James W.

    and distribute high-efficiency, high yield, low cost solar panels. The company is making green energy more and selenium. CIGS was chosen because of its high cell efficiency, high energy yield, and now with Solar Powder-powder that is mixed with a secret Solar Powder solvent to allow for liquid application. Solar Powder solar panels can

  9. Evaluation of remedial alternatives for the Solar Ponds Plume, Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Hranac, K.C.; Chromec, F.W.; Fiehweg, R.; Hopkins, J.

    1998-07-01

    This paper describes the process used to select a remedial alternative for handling contaminated groundwater emanating from the Solar Evaporation Ponds (Solar Ponds) at the Rocky Flats Environmental Technology Site (RFETS) and prevent it from reaching the nearest surface water body, North Walnut Creek. Preliminary results of field investigations conducted to provide additional information for the alternatives analysis are also presented. The contaminated groundwater is referred to as the Solar Ponds Plume (SPP). The primary contaminants in the SPP are nitrate and uranium; however, some metals exceed the site action levels at several locations and volatile organic compounds, originating from other sources, also have been detected. Currently the SPP, local surface water runoff, and infiltrated precipitation are collected by a trench system located downgradient of the Solar Ponds and pumped to three storage tanks. The water (two to three million gallons annually) is then pumped to an on-site treatment plant for evaporation at an approximate cost of $7.57 per liter.

  10. Department of Energy responses to panel recommendations from the open workshop on solar technologies

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    This document is a companion to the Proceedings of the Open Workshop on Solar Technologies, 23 and 24 October 1979, Washington, DC. That document reported the findings and conclusions of six panels on the policies of the Department of Energy (DOE) on solar energy and its relationships to cities and employment. The present document provides DOE responses to each panel's recommendations. Sixty individuals from a wide variety of backgrounds agreed to take part in the deliberations of the six panels. There were three panels on solar energy in the cities and three on solar energy and employment. A significant portion of the participants represented public interest groups; lesser numbers were from government and industry. Interested persons were publicly invited to observe. About 120 additional persons responded, bringing the total to 180 participants. Appendices include: (1) a selected guide to federal energy and education assistance; (2) resources for community energy programs and community energy assistance, by state; and (3) summary and data on federal energy education, extension, and information activities. (WHK)

  11. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    For large-scale solar energy conversion a conventional steammay be useful solar energy conversion when approprifor solar energy storage and conversion. Ci references.

  12. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    F. Uno, "High Efficiency Solar Panel (HESP)! ', N78 10572,High Efficiency, Long Life Terrestrial Solar Panel", 7 8Ncapabilities, the efficiency of the solar panels, co-

  13. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    Eval and Solar Collector Various Coatings, Substrateof Various Coatings, Substrate Materials and Solar Collectorl'Optimiz ctive Coatings for Solar Collectors", N77-11529,

  14. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    of Various Coatings, Substrate Materials and Solar Collectorl'Optimiz ctive Coatings for Solar Collectors", N77-11529,on High Efficiency Solar Collector Coatings", N77 -30286,

  15. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    Panel " , SPIE 68, Solar Energy Utilization, (1975) p. 169.for Selective Absorption of Solar Energy and the Method ofwith Application to Solar Energy System Design" ,N77 19708 (

  16. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    Tests of Collectors of Thermal Solar Energy A Flat PlatePerformance sts of Collectors of Solar Thermal Energy, AOptical & Thermal Characteristics of a Solar Collector with

  17. Operating Procedures for the SAMCO ICP RIE System

    E-Print Network [OSTI]

    Reif, Rafael

    1 Operating Procedures for the SAMCO ICP RIE System General Overview: The purpose of the SAMCO semiconductors using chlorine containing etch gases. To accomplish this objective, the ICP-RIE system utilizes high- density plasma that is created through the use of two RF power supplies. In addition, the system

  18. Jiangsu Jiasheng Photovoltaic Technology Co Ltd aka JS Solar Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun Solar Technology Co Ltd Jump to:Energy

  19. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    S, Perkins, If Sun 'Tracking Solar Energy Collector ll , N77Application to Collector Design ll , Sharing the Sun, SolarT. Hollands, "Solar Collectors ' ! , Sharing the Sun. Solar

  20. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    associated wi the DOE/New Mexico Solar Irrigation Project.Solar Total Energy lity Sandia Laboratories, Albuquerque. New Mexico,

  1. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology

    SciTech Connect (OSTI)

    Vernon, S.M. )

    1993-04-01

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  2. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  3. Connectable solar air collectors Solar Energy Centre Denmark

    E-Print Network [OSTI]

    Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren Østergaard Jensen Miroslav Bosanac Solar Energy Centre Søren Østergaard Jensen and Miroslav Bosanac Solar Energy Centre, Danish Technological Institute

  4. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  5. Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209

    SciTech Connect (OSTI)

    Sopori, B.

    2013-03-01

    NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

  6. Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP)

    Broader source: Energy.gov [DOE]

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  7. Solar Powering Your Community: A Guide for Local Governments, 2nd Edition (Fact Sheet), Solar Energy Technologies Program (SETP)

    Broader source: Energy.gov [DOE]

    This fact sheet outlines the content of the second edition of the DOE publication Solar Powering Your Local Community: A Guide for Local Governments.

  8. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    of Collectors of Thermal Solar Energy A Flat Plate Collectorsts of Collectors of Solar Thermal Energy, A Steel Flat Platof Thin Film, Solar Thermal Energy Converters", N7728613, PB

  9. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    of a Freeze ToLerant Solar Water Heater Using C ross Linkedof a Freeze Tolerant Solar Water Heater Using Crosslinkeda Freeze-Tolerant Solar Water Heater Using Crosslinked

  10. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    of a Freeze ToLerant Solar Water Heater Using C ross Linkedof a Freeze Tolerant Solar Water Heater Using CrosslinkedJ Mueller, ! 'Low Cos t Solar Air Heater tl , N78 20639 D-31

  11. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    and D. F. Frazine, "Mirror Panel Solar Absorptance Test", ADLong Life Terrestrial Solar Panel", 7 8N 24649, DOE/ JPLUno, "High Efficiency Solar Panel (HESP)! ', N78 10572, AD A

  12. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    Section 4) A. PASSIVE SOLAR DESIGN B. HEA T PIPES C. INSU LAreviews). D-15 A. PASSIVE SOLAR DESIGN J D, Balcomb, J. Cois valuable for pas- sive solar designs of buried or bermed

  13. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    Thermal Energy Storage for Solar Power Plant", 11th IECEC (off-peak energy storage~ solar power plants and otherEnergy Storage Concept Definition Study for Solar Brayton Power Plants",

  14. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    s! ', SPIE VoL 85, Optics in Solar Energy Utilization II (Coatings", Spie 85, Optics in Solar Energy if UtilizationCollectors", Spie 85, Optics in Solar Energy Utilization

  15. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    only for large - scale solar power plant type applica- tionsEnergy Storage for Solar Power Plant", 11th IECEC (1976), J,energy storage~ solar power plants and other preliminary

  16. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    Long Life Terrestrial Solar Panel", 7 8N 24649, DOE/ JPLUno, "High Efficiency Solar Panel (HESP)! ', N78 10572, AD AOptically table for Flat Solar Panels", N78 17477 (1977). J.

  17. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    sts of Collectors of Solar Thermal Energy, A Steel Flat Platof Thin Film, Solar Thermal Energy Converters", N7728613, PBcharacteristics a solar thermal energy utili ng water l1ed

  18. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    Problems in Solar, Nuclear and Storage of Energy", N78-Heat Transfer in Solar Energy Storage", ASME Paper 77-HT·-1976). ':' tion to Solar Heat Storage Systemsl! s N772665 3)

  19. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-06-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  20. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-05-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  1. Acciona Solar Technology Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-10-384

    SciTech Connect (OSTI)

    Mehos, M. S.

    2014-01-01

    Under this agreement, NREL will work with Acciona to conduct joint testing, evaluation, and data collection related to Acciona's solar technologies and systems. This work includes, but is not limited to, testing and evaluation of solar component and system technologies, data collection and monitoring, performance evaluation, reliability testing, and analysis. This work will be conducted at Acciona's Nevada Solar One (NSO) power plant and NREL test facilities. Specific projects will be developed on a task order basis. Each task order will identify the name of the project and deliverables to be produced under the task order. Each task order will delineate an estimated completion date based on a project's schedule. Any reports developed under this CRADA must be reviewed by both NREL and Acciona and approved by each organization prior to publication of results or documents.

  2. Rapid Deposition Technology Holds the Key for the World's Largest Solar Manufacturer (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Thanks in part to years of collaboration with the National Renewable Energy Laboratory (NREL), a manufacturer of thin-film solar modules has grown from a small garage-type operation to become the world's largest manufacturer of solar modules. First Solar, Inc. now manufactures cadmium telluride (CdTe) solar modules throughout the world, but it began in Ohio as a small company called Solar Cells, Inc.

  3. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies Technologies

  4. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnology /newsroom/_assets/images/s-icon.png Technology

  5. Reaching Grid Parity Using BP Solar Crystalline Silicon Technology: A Systems Class Application

    SciTech Connect (OSTI)

    Cunningham, Daniel W; Wohlgemuth, John; Carlson, David E; Clark, Roger F; Gleaton, Mark; Posbic, John P; Zahler, James

    2010-12-06

    The primary target market for this program was the residential and commercial PV markets, drawing on BP Solar's premium product and service offerings, brand and marketing strength, and unique routes to market. These two markets were chosen because: (1) in 2005 they represented more than 50% of the overall US PV market; (2) they are the two markets that will likely meet grid parity first; and (3) they are the two market segments in which product development can lead to the added value necessary to generate market growth before reaching grid parity. Federal investment in this program resulted in substantial progress toward the DOE TPP target, providing significant advancements in the following areas: (1) Lower component costs particularly the modules and inverters. (2) Increased availability and lower cost of silicon feedstock. (3) Product specifically developed for residential and commercial applications. (4) Reducing the cost of installation through optimization of the products. (5) Increased value of electricity in mid-term to drive volume increases, via the green grid technology. (6) Large scale manufacture of PV products in the US, generating increased US employment in manufacturing and installation. To achieve these goals BP Solar assembled a team that included suppliers of critical materials, automated equipment developers/manufacturers, inverter and other BOS manufacturers, a utility company, and University research groups. The program addressed all aspects of the crystalline silicon PV business from raw materials (particularly silicon feedstock) through installation of the system on the customers site. By involving the material and equipment vendors, we ensured that supplies of silicon feedstock and other PV specific materials like encapsulation materials (EVA and cover glass) will be available in the quantities required to meet the DOE goals of 5 to 10 GW of installed US PV by 2015 and at the prices necessary for PV systems to reach grid parity in 2015. This final technical report highlights the accomplishments of the BP Solar technical team from 2006 to the end of the project in February 2010. All the main contributors and team members are recognized for this accomplishment and their endeavors are recorded in the twelve main tasks described here.

  6. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    data and an analysis the heat transfer characteristics a solar thermal energydata on the performance of materials in operational solar energysolar energy systems is hindered by the 1 of an adequate data

  7. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    Energy Study: Sun Light Energy Study: Solar RadiationS, Perkins, If Sun 'Tracking Solar Energy Collector ll , N77L. Berger, "The Sun, a New Source of Energy", AD B 026689,

  8. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    Solar Power Plant", 11th IECEC (1976), J, Wang, 'I, Schmugge and D, Williams, IIDielectric Constants of Soils at Microwave

  9. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    and L. J. MueHe 1', "Low Cost Solar Air Heate r", C 00/2929-gene rally useful for low-cost solar systems, These requireThis report describes a low-cost solar home heati system to

  10. Financing end-use solar technologies in a restructured electricity industry: Comparing the cost of public policies

    SciTech Connect (OSTI)

    Jones, E.; Eto, J.

    1997-09-01

    Renewable energy technologies are capital intensive. Successful public policies for promoting renewable energy must address the significant resources needed to finance them. Public policies to support financing for renewable energy technologies must pay special attention to interactions with federal, state, and local taxes. These interactions are important because they can dramatically increase or decrease the effectiveness of a policy, and they determine the total cost of a policy to society as a whole. This report describes a comparative analysis of the cost of public policies to support financing for two end-use solar technologies: residential solar domestic hot water heating (SDHW) and residential rooftop photovoltaic (PV) systems. The analysis focuses on the cost of the technologies under five different ownership and financing scenarios. Four scenarios involve leasing the technologies to homeowners in return for a payment that is determined by the financing requirements of each form of ownership. For each scenario, the authors examine nine public policies that might be used to lower the cost of these technologies: investment tax credits (federal and state), production tax credits (federal and state), production incentives, low-interest loans, grants (taxable and two types of nontaxable), direct customer payments, property and sales tax reductions, and accelerated depreciation.

  11. Progress toward technology transition of GaInP{sub 2}/GaAs/Ge multijunction solar cells

    SciTech Connect (OSTI)

    Keener, D.N.; Marvin, D.C.; Brinker, D.J.; Curtis, H.B.; Price, P.M.

    1997-12-31

    The objective of the joint WL/PL/NASA Multijunction Solar Cell Manufacturing Technology (ManTech) Program is to scale up high efficiency GaInP{sub 2}/GaAs/Ge multijunction solar cells to production size, quantity, and yield while limiting the production cost/Watt ($/W) to 15% over GaAs cells. Progress made by the program contractors, Spectrolab and TECSTAR, include, respectively, best cell efficiencies of 25.76% and 24.7% and establishment of 24.2% and 23.8% lot average efficiency baseline designs. The paper also presents side-by-side testing results collected by Phillips Laboratory and NASA Lewis on Phase 1 deliverable cells, which shows compliance with program objectives. Cell performance, pre- and post-radiation, and temperature coefficient results on initial production GaInP{sub 2}/GaAs/Ge solar cells will be presented.

  12. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    solar energy . . . . . . . . . . . . . . . . . . . . . . . . . .Basic research needs for solar energy utilization. Technicalelectricity technology. Solar Energy 76(1-3), 19 – 31. Solar

  13. Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation

    SciTech Connect (OSTI)

    Macknick, J.; Beatty, B.; Hill, G.

    2013-12-01

    Large-scale solar facilities have the potential to contribute significantly to national electricity production. Many solar installations are large-scale or utility-scale, with a capacity over 1 MW and connected directly to the electric grid. Large-scale solar facilities offer an opportunity to achieve economies of scale in solar deployment, yet there have been concerns about the amount of land required for solar projects and the impact of solar projects on local habitat. During the site preparation phase for utility-scale solar facilities, developers often grade land and remove all vegetation to minimize installation and operational costs, prevent plants from shading panels, and minimize potential fire or wildlife risks. However, the common site preparation practice of removing vegetation can be avoided in certain circumstances, and there have been successful examples where solar facilities have been co-located with agricultural operations or have native vegetation growing beneath the panels. In this study we outline some of the impacts that large-scale solar facilities can have on the local environment, provide examples of installations where impacts have been minimized through co-location with vegetation, characterize the types of co-location, and give an overview of the potential benefits from co-location of solar energy projects and vegetation. The varieties of co-location can be replicated or modified for site-specific use at other solar energy installations around the world. We conclude with opportunities to improve upon our understanding of ways to reduce the environmental impacts of large-scale solar installations.

  14. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    solar heating and cooling. lEW: This book has data on thermasolar collector fur use on buildings. E-194 APPENDIX F TA P- 3 THERMA

  15. Historical Analysis of Investment in Solar Energy Technologies (2000-2007)

    SciTech Connect (OSTI)

    Jennings, C. E.; Margolis, R. M.; Bartlett, J. E.

    2008-12-01

    The solar energy industry experienced unprecedented growth in the eight years from 2000 to 2007, with explosive growth occurring in the latter half of this period. From 2004 to 2007, global private sector investment in solar energy increased by almost twenty-fold, marking a dramatic increase in the short span of four years. This paper examines the timing, magnitude, focus and location of various forms of investment in the solar energy sector. It analyzes their trends to provide an understanding of the growth of the solar industry during the past eight years and to identify emerging themes in this rapidly evolving industry.

  16. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This is a presentation by Yiping Liu from Sporian Microsystems at the 2013 SunShot Concentrating Solar Power Program Review.

  17. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  18. Photovoltaic (PV)energy conversion is a rapidly growing technology for converting solar energy into electricity. The current production is over 20

    E-Print Network [OSTI]

    Tsymbal, Evgeny Y.

    Photovoltaic (PV)energy conversion is a rapidly growing technology for converting solar energy polymers, is making rapid strides towards becoming the low cost material of choice for PV energy conversion

  19. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  20. Solar Innovator | Alta Devices

    SciTech Connect (OSTI)

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  1. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01

    Optimum tilt of a solar collector, Solar & Wind Technology,and orientation for solar collector in Brunei Darussalam,Optimum tilt angle for solar collectors. , Energy Sources,

  2. Solar | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sources Renewables Solar Solar July 13, 2015 The New York City College of Technology is weatherproofing its house, called DURA, at a Brooklyn Navy Yard construction...

  3. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  4. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    SciTech Connect (OSTI)

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  5. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    Study: Sky Brightness Energy Study: Sun Light Energy Study:S, Perkins, If Sun 'Tracking Solar Energy Collector ll , N77L. Berger, "The Sun, a New Source of Energy", AD B 026689,

  6. Deconstructing Solar Photovoltaic Pricing: The Role of Market Structure, Technology and Policy

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) system prices in the United States are considerably different both across geographic locations and within a given location. Variances in price may arise due to state and federal policies, differences in market structure, and other factors that influence demand and costs. This paper examines the relative importance of such factors on the stability of solar PV system prices in the United States using a detailed dataset of roughly 100,000 recent residential and small commercial installations. The paper finds that PV system prices differ based on characteristics of the systems. More interestingly, evidence suggests that search costs and imperfect competition affect solar PV pricing. Installer density substantially lowers prices, while regions with relatively generous financial incentives for solar PV are associated with higher prices.

  7. Solar Energy Technologies FY'14 Budget At-a-Glance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideoSolar Decathlon 2015: Build itEnergySolar

  8. Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry

    E-Print Network [OSTI]

    Wright, Janelle N., 1978-

    2003-01-01

    I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

  9. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect (OSTI)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  10. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    storage in solar thermal applications," Applied Energy, pp.of Non-Tracking Solar Thermal Technology," 2011. [26] R.C. Y. Zhao, "A review of solar collectors and thermal energy

  11. Basic research needs and priorities in solar energy. Volume II. Technology crosscuts for DOE

    SciTech Connect (OSTI)

    Jayadev, J S; Roessner, D [eds.] eds.

    1980-01-01

    Priorities for basic research important to the future developments of solar energy are idenified, described, and recommended. SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas-and, within each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: crucial, important, and needed. A narrative accompanying the description of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

  12. Solar Energy Technologies Office FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideoSolar Decathlon 2015: Build itEnergySolarU.S.

  13. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-05-01

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore »of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. The SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  14. Solar Policy Environment: Pittsburgh

    Broader source: Energy.gov [DOE]

    In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

  15. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  16. Hypermodular Distributed Solar Power Satellites -- Exploring a Technology Option for Near-Term LEO Demonstration and GLPO Full-Scale Plants

    E-Print Network [OSTI]

    Leitgab, Martin

    2013-01-01

    This paper presents a new and innovative design for scaleable space solar power systems based on satellite self-assembly and microwave spatial power combination. Lower system cost of utility-scale space solar power is achieved by independence of yet-to-be-built in-space assembly and transportation infrastructure. Using current and expected near-term technology, this study explores a design for near-term space solar power low-Earth orbit demonstrators and for mid-term utility-scale power plants in geosynchronous Laplace plane orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

  17. Shen Zhen Bico Solar Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low EmissionTianhongKansas:InformationZhen Bico Solar

  18. Basic research needs and priorities in solar energy. Volume I. Executive summary. Technology crosscuts for DOE

    SciTech Connect (OSTI)

    Jayadev, T S; Roessner, D [eds.] eds.

    1980-01-01

    This report identifies, describes, and recommends priorities for basic research important to the future development of solar energy. In response to a request from the US Department of Energy, SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. SERI scientists relied heavily on the opinions of scientists polled, but weighted their own recommendations and opinions equally. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The Scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas and, wintin each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: Crucial, important, and needed. A narrative accompanying the descripton of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

  19. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    and Renewable Energy (Solar Energy Technologies Program) andand Renewable Energy (Solar Energy Technologies Program) andand Renewable Energy (Solar Energy Technologies Program) and

  20. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Efficiency and Renewable Energy (Solar Energy TechnologiesEfficiency and Renewable Energy (Solar Energy TechnologiesEfficiency and Renewable Energy (Solar Energy Technologies

  1. Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01

    E?ciency and Renewable Energy Solar Energy TechnologiesE?ciency and Renewable Energy (Solar Energy TechnologiesE?ciency and Renewable Energy, Solar Energy Technologies

  2. ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE

    E-Print Network [OSTI]

    Davidson, M.

    2010-01-01

    of Photovoltaic Solar Energy Conversion, Brown University,technologies. Most solar energy conversion technologiesare obvious examples. solar energy conversion may accentuate

  3. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    solar cells,” Advanced Energy Materials, 2011, 1(5), 771-collecting grids,? Solar Energy Materials and Solar Cells,laboratory stability studies,” Energy Technology, 2014. [

  4. Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the EV project:...

  5. Early growth technology analysis : case studies in solar energy and geothermal energy

    E-Print Network [OSTI]

    Kaya Firat, Ayse

    2010-01-01

    Public and private organizations try to forecast the future of technological developments and allocate funds accordingly. Based on our interviews with experts from MIT's Entrepreneurship Center, Sloan School of Management, ...

  6. NREL Solar Technology Will Warm Air at 'Home' - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News Releases | NRELScientistNRELNREL Solar

  7. Lien Ze day Solar Hunan Science and Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp. Place:day Solar Hunan

  8. SolarBridge Technologies formerly SmartSpark Energy Systems | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSloughInfra IncInformation SolarBridge

  9. Solar Energy Technologies Office FY 2015 Budget At-A-Glance | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergy Small|EnergyWakeEnergy Solar

  10. Apollo Solar Energy Technology Holdings Ltd former RBI Holdings Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDateSA JumpSolar PVInformationBP

  11. Advancing Clean Energy Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

  12. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    point of use and one installed to the grid; solar technologyconcentrator solar technology in 2005 [13], one of only a

  13. Passive Solar Building Design and Solar Thermal Space Heating Webinar

    Broader source: Energy.gov [DOE]

    Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

  14. BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH

    E-Print Network [OSTI]

    BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH Faculty Position in Solar Physics, New Jersey Institute of Technology A tenure track faculty position in solar physics is available of NJIT's program in solar physics, visit http://solar.njit.edu. Applicants are required to have a Ph

  15. Solar Technology Validation Project - Hualapai Valley Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-02

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-07-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  16. Solar Technology Validation Project - Southwest Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-08

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  17. Research & Development Needs for Building-Integrated Solar Technologie...

    Office of Environmental Management (EM)

    Needs for Building-Integrated Solar Technologies Research & Development Needs for Building-Integrated Solar Technologies The Building Technologies Office (BTO) has identified...

  18. Foundational Solar Resource Research (Poster)

    SciTech Connect (OSTI)

    Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  19. Solar Radiation Research Laboratory (Poster)

    SciTech Connect (OSTI)

    Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  20. Energy 101: Concentrating Solar Power

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity.

  1. Solar Blog | Department of Energy

    Office of Environmental Management (EM)

    Solar Bridges to Energy Security Despite great recent advances in lowering the cost of solar energy, this technology is not yet affordable for every segment of the population....

  2. Region Solar Inc Solar Inc California Renewable Energy Solar...

    Open Energy Info (EERE)

    North Lexington Massachusetts Solar Developer of technologies for enhancing PV efficiency including new cell wiring and wafer packaging systems http www tech com Soltech Inc...

  3. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01

    2004) “Advances in solar thermal electricity technology”.1: Comparison of the pros and cons for various solar thermalof Three Concentrating Solar Thermal Units Designed with

  4. ECr Technologies Inc formerly GeoSolar Energy Corporation | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreaforInformation ECr Technologies Inc formerly

  5. Qinhuangdao Rising Solar Energy Science and Technology Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE IncScience and Technology Co Ltd Jump

  6. N-Terminal Phosphorylation Sites of Herpes Simplex Virus 1 ICP0 Differentially Regulate Its Activities and Enhance Viral Replication

    E-Print Network [OSTI]

    Mostafa, Heba H.; Thompson, Thornton W.; Davido, David J.

    2013-02-01

    The herpes simplex virus 1 (HSV-1) infected cell protein 0 (ICP0) is an immediate-early phosphoprotein that transactivates viral gene expression. Evidence suggests that phosphorylation regulates the functions of ICP0, and ...

  7. The effect of laser pulse duration on ICP-MS signal intensity, elemental fractionation, and detection limits

    E-Print Network [OSTI]

    Harilal, S. S.

    and alloys,7,8 geology,9 archaeology,6,10 biological samples,11 radioactive waste anal- ysis,9 etc-stoichiometric ICP-MS results, can occur during laser ablation, during transport from the ablation chamber to the ICP

  8. How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

    1982-01-01

    A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

  9. (Solar energy technology transfer, Guatemala City, Guatemala and Tegucigalpa, Honduras, August 20--August 30, 1989)

    SciTech Connect (OSTI)

    Waddle, D.B.

    1989-09-05

    I travelled to Guatemala City, Guatemala and to Tegucigalpa, Honduras to gather information regarding the possibility of transferring photovoltaic technology for rural household uses in each respective country. Meetings were held with US government officials in each country mission (USAID and the commercial attaches); with utility officials; cooperative managers; and PVO's. The overall response was very positive; two of the electric utilities interviewed would like to begin program design immediately. A coffee cooperative with 38,000 members also expressed a keen interest in putting into place a program similar to the photovoltaic household energy program established in the Dominican Republic. The purpose of the trip was to establish lines of communication with perspective project cooperators; that objective was accomplished.

  10. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    2. Graztel, M. Solar Energy Conversion by Dye-Sensitized17. M. Grätzel, Solar Energy Conversion by Dye-Sensitizedas a low-cost solar energy conversion technology. 1.3.2

  11. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    potential as a low-cost solar energy conversion technology.Grätzel. A Low-Cost, High-Efficiency Solar Cell Based on Dye1) reducing the cost of solar cells by depositing

  12. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    there is a great deal of interest in thin-film solar cells.Thin-film solar cells are made from a variety oflimitation in all thin-film solar cell technologies is that

  13. Solar Energy Materials & Solar Cells 90 (2006) 34073415 High-efficiency flexible CdTe solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    2006-01-01

    Solar Energy Materials & Solar Cells 90 (2006) 3407­3415 High-efficiency flexible CdTe solar cells: Solar cells; Thin films; CdTe; Flexible solar cells; Space solar cells; Solar energy ARTICLE IN PRESS for Renewable Energy Systems and Technology), Department of Electronic and Electrical Engineering, Loughborough

  14. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    for multijunction cells," in 2009 34th IEEE Photovoltaicmultijunction solar cell (Cyrium Technologies). The photovoltaic

  15. Concentrating Solar Power Commercial Application Study

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Concentrating Solar Power Technologies............................................... 7 Parabolic Troughs of water consumed by concentrating solar power systems." Because of the huge solar resource available

  16. Anchorage Solar Tour

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in Fairbanks, Mat Su, Kenai, and Anchorage.

  17. REAP Anchorage Solar Tour

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in...

  18. Hybrid solar collector using nonimaging optics and photovoltaic components

    E-Print Network [OSTI]

    2015-01-01

    thermal hybrid solar technology," Applied Energy, 87(2),thermal hybrid solar technology," Applied Energy, 87(2),thermal system, solar PVT collector, nonimaging optics, GaAs, solar energy,

  19. EE580 Solar Cells Todd J. Kaiser

    E-Print Network [OSTI]

    Kaiser, Todd J.

    7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 06 · Solar Cell Materials & Structures 1Montana State University: Solar Cells Lecture 6: Solar Cells Solar Cell Technologies · A) Crystalline Silicon · B) Thin Film · C) Group III-IV Cells 2Montana State University: Solar Cells Lecture 6: Solar

  20. Connectable solar air collectors Solar Energy Centre Denmark

    E-Print Network [OSTI]

    Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren Østergaard Jensen Miroslav Bosanac Solar Energy Centre for renewable energy of the Danish Energy Agency. The project group behind the project was: Solar Energy Centre

  1. MINICHANNEL-TUBE SOLAR THERMAL COLLECTORS FOR LOW TO MEDIUM TEMPERATURE APPLICATIONS

    E-Print Network [OSTI]

    Duong, Van Thuc

    2015-01-01

    of acceptance and usage of solar thermal technologies inCurrent solar thermal technologies: flat-plate, evacuatedcosts of conventional solar thermal collectors in California

  2. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01

    Research (2010), “U.S. Solar Market Insight: 2010 Year inof Energy (2010), “2008 Solar Technologies Market Report”.Energy (2010), “2008 Solar Technologies Market Report”. 43

  3. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    to be more suited to solar thermal energy sources. Airrenewable energy technologies in solar thermal and PV, andunit of solar thermal and solar electric energy from a DCS-

  4. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

  5. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    and solar energy . . . . . . . . . . . . . . . . . . . . . . . . . .Basic research needs for solar energy utilization. Technicalelectricity technology. Solar Energy 76(1-3), 19 – 31. Solar

  6. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    in ultrathin plasmonic solar cells," Optics Express, vol.Bailat, "Thin-film silicon solar cell technology," Progresstrapping in silicon thin film solar cells," Solar Energy,

  7. Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2011-01-01

    Optimum tilt of a solar collector, Solar & Wind Technology.and orientation for solar collector in Brunei Darussalam,Optimum tilt angle for solar collectors, Energy Sources.

  8. Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2011-01-01

    and orientation for solar collector in Brunei Darussalam,Optimum tilt angle for solar collectors, Energy Sources.Optimum tilt of a solar collector, Solar & Wind Technology.

  9. Laying the Foundation for a Solar America: The Million Solar Roofs Initiative

    SciTech Connect (OSTI)

    Strahs, G.; Tombari, C.

    2006-10-01

    As the U.S. Department of Energy's Solar Energy Technology Program embarks on the next phase of its technology acceptance efforts under the Solar America Initiative, there is merit to examining the program's previous market transformation effort, the Million Solar Roofs Initiative. Its goal was to transform markets for distributed solar technologies by facilitating the installation of solar systems.

  10. Solar Technology Validation Project - Loyola Marymount University: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-03

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  11. Solar Technology Validation Project - USS Data, LLC: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-04

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  12. Solar Technology Validation Project - RES Americas: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-11

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  13. Solar Technology Validation Project - Iberdrola Renewables, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-08-298-3

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  14. Solar Technology Validation Project - Solargen (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-06

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  15. Solar Technology Validation Project - Amonix, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-13

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  16. Glass particles produced by laser ablation for ICP-MS measurements

    E-Print Network [OSTI]

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2008-01-01

    Glass particles produced by laser ablation for ICP-MS266nm) was used to generate glass particles from two sets ofWhen the current data on glass were compared with the metal

  17. Chapter 7.22 SPTS ICP-SR Deep Reactive Ion Etch

    E-Print Network [OSTI]

    Healy, Kevin Edward

    Chapter 7.22 SPTS ICP-SR Deep Reactive Ion Etch (sts2) (584) 1.0 Equipment Purpose 1.1 The STS2 ICP to achieve high aspect ratios. The system can be used for deep Si trench etching of a single 6-inch (150 mm) substrate. The process chamber is configured for deep Si trench etching. The plasma is inductively coupled

  18. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    the current solar PV technology, even after adjusting forde?cit of the current solar PV technology with the potentialcost of installing solar PV technology today far exceeds the

  19. Solar power tower

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  20. Solar parabolic trough

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar parabolic trough section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  1. Solar dish engine

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Process in the Adoption of Solar Energy Systems." Journal ofthe diffusion of innovation: Solar energy technology in Sri2010. Washington, DC, Solar Energy Industries Association:

  3. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    and renewable energy technologies, solar photovoltaic (PV)National Renewable Energy Law New Solar Homes Partnershipand promote renewable energy, such as solar energy R&D and

  4. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    current solar PV technology with the potential environmentalsilicon solar PV, Margolis (2003) recognizes the potentialsite by solar PV panels, it does not account for potential

  5. Unmanned Untethered Submersible Technology Sept. 7-10, 1997 Some Design Considerations for a Solar Powered AUV;

    E-Print Network [OSTI]

    coupling, biogeochemical processes and cycles both natural and human induced, fisheries, and ecosystem prototype detailed in figure 2. In water testing and evaluation experiments are scheduled to begin Radiation; Concord NH (Source NREL database) SOLAR POWERED AUV SOLAR ARRAY R U D D E R thruster PRESSURE

  6. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on multi-scale, multiphysics approaches to understanding natural systems, "engineering the earth" with sensing and drilling technologies and characterizing geomaterials...

  7. Solar Policy Environment: Milwaukee

    Broader source: Energy.gov [DOE]

    The City of Milwaukee’s SAC Initiative, Milwaukee Shines, works to reduce informational, economic and procedural barriers to the widespread adoption of solar energy systems. While the City of Milwaukee and its partners have demonstrated commitment and experience in implementing solar technologies, Milwaukee Shines aims to enhance these efforts and make solar a viable alternative throughout the region.

  8. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel

  9. Concentrating Solar Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  10. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Broader source: Energy.gov (indexed) [DOE]

    targeted 'Solar Cogeneration' technologies to maximize energy generation & energy efficiency from the building's solar insolation resources. Project presents a novel, low-cost...

  11. With growing numbers of solar energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pending SOLAR GLARE HAZARD ANALYSIS TOOL (SGHAT) TECHNOLOGY SUMMARY Figure 1. Glare from solar panels viewed from an air traffic control tower. Figure 2. Screen image of glare...

  12. Solar Policy Environment: Berkeley

    Broader source: Energy.gov [DOE]

    The goals of this project are to (1) accelerate the adoption of solar technology at the local level by engaging the City, service providers, end users and regulators; (2) provide a model for other cities; and (3) promote solar technology among residents and local businesses.

  13. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008

  14. Solar Energy Materials & Solar Cells 90 (2006) 664677 Invited article

    E-Print Network [OSTI]

    Romeo, Alessandro

    2006-01-01

    Solar Energy Materials & Solar Cells 90 (2006) 664­677 Invited article Recent developments in evaporated CdTe solar cells G. Khrypunova , A. Romeob , F. Kurdesauc , D.L. Ba¨ tznerd , H. Zogge , A Abstract Recent developments in the technology of high vacuum evaporated CdTe solar cells are reviewed

  15. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992

    SciTech Connect (OSTI)

    Vernon, S.M.

    1993-04-01

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, {approximately} 1 {times} 10{sup 5} cm{sup {minus}5}, as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 {times}10{sup 7} cm{sup {minus}2}. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  16. Monitoring inspections of ICP program ECM and TA grantees. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    The activities undertaken to review DOE grants to schools, hospitals and municipalities under the Institutional Conservation Program (ICP) are reported. This Final Report is the result of a review of statistics and findings gathered over the period of the contract. It is intended to highlight aspects of the monitoring project and to make recommendations. This report is organized into four sections: the steps taken in organizing and implementing the review; statistics regarding the 92 grants reviewed; some of the common factors which fostered success or problems in the administration of the ICP grants; and recommendations.

  17. Solar: A Clean Energy Source for Utilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Summarizes the activities that the DOE Solar Energy Technologies Program conducts to collaborate with and benenfit utilities with the goal of accelerating solar technologies adoption by removing barriers to solar deployment.

  18. EK 408 Introduction to Clean Energy Generation and Storage Technologies

    E-Print Network [OSTI]

    Batteries Other storage technologies #12;7. Energy from the sun 2 weeks Solar radiation Solar collectors

  19. Solar variability of four sites across the state of Colorado

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2010-01-01

    and Technology 2005; 39: 1903– Denholm P, Margolis RM. Evaluating the limits of solar photovoltaics (PV)

  20. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

  1. Markets for concentrating solar power

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    The report describes the markets for concentrating solar power. As concentrating solar power technologies advance into the early stages of commercialization, their economic potential becomes more sharply defined and increasingly tangible.

  2. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  3. MICROANALYSIS OF SIDEROPHILE ELEMENTS IN FREMDLINGE USING LASER ABLATION ICP-MS. A. J. Campbell

    E-Print Network [OSTI]

    /Os ra- tios measured by neutron activation analysis, suggest that Fremdlinge within a single CAI may vein in Allende (CV3-oxidized). Experimental: The laser ablation system utilized a CETAC LSX-200 laser ablation peripheral with a Fin- nigan MAT Element ICP mass spectrometer [4, 5]. The isotopes monitored were

  4. Solar: A Clean Energy Source for Utilities

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  5. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  6. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter and Technologies R&D

  7. Approaches for Identifying Consumer Preferences for the Design of Technology Products: A Case Study of Residential Solar Panels

    E-Print Network [OSTI]

    Chen, Heidi Qianyi

    This paper investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential photovoltaic ...

  8. Economic On-Grid Solar Energy via Organic Thin Film Technology: 28 September 2007 - 27 October 2008

    SciTech Connect (OSTI)

    Laird, D.; Bernkopf, J.; Jian, S.; Krieg, J.; Li, S.; McGuiness, C.; Rossier, J.; Storch, M.; Ripnis, R.; Tuttle, R.; Woodworth, B.; Williams, S.

    2009-12-01

    Plextronics' PV Incubator goal was to take its organic photovoltaic technology from lab-scale and demonstrate a pathway to 3-W manufacturing capacity (~2010) and 7 cents/kWh LCOE by 2015.

  9. Solar Industry at Work | Laila Mattos

    ScienceCinema (OSTI)

    Mattos, Laila

    2013-05-29

    Laila Mattos, a technology manager at Alta Devices, talks about what it means to work for a "disruptive" solar company.

  10. Google Archives by Fiscal Year — Solar

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Solar Energy Technologies Office, retired Google Analytics profiles for the sites by fiscal year.

  11. Webtrends Archives by Fiscal Year — Solar

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Solar Energy Technologies Office / Sunshot sites, Webtrends archives by fiscal year.

  12. Solar Industry at Work | Laila Mattos

    SciTech Connect (OSTI)

    Mattos, Laila

    2012-01-01

    Laila Mattos, a technology manager at Alta Devices, talks about what it means to work for a "disruptive" solar company.

  13. DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research

    SciTech Connect (OSTI)

    Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

    2009-07-31

    General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

  14. Solar Policy Environment: New Orleans

    Broader source: Energy.gov [DOE]

    To use unprecedented rebuilding of the city of New Orleans is an opportunity for the Office of Recovery Management and its partners to encourage solar in New Orleans’ energy marketplace. While all Solar Cities grantees are undertaking market transformation activities that will both remove barriers to the adoption of solar technologies and reduce the cost of solar technologies, the reconstruction process affords New Orleans a window of opportunity to structurally alter the ways in which solar technologies are regulated, incentivized, produced, and consumed in the Greater New Orleans area.

  15. Power Electronics and Balance of System Hardware Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE is targeting solar technology improvements related to power electronics and balance of system (BOS) hardware technologies to reduce the installed cost of solar photovoltaic (PV) electricity and...

  16. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Energy Savers [EERE]

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

  17. Diversity in Science and Technology Advances National Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in...

  18. Project Profile: Novel Thermal Storage Technologies for Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh...

  19. NEW SOLAR HOMES PARTNERSHIP DRAFTGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP DRAFTGUIDEBOOK SEPTEMBER 2006 CEC-300 .................................................................. 4 A. Technology and System Ownership ................................................... 6 G. Estimated Performance Using Commission PV Calculator .................................. 6 H

  20. NEW SOLAR HOMES PARTNERSHIP COMMITTEEFINALGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP COMMITTEEFINALGUIDEBOOK NOVEMBER 2006 CEC .................................................................. 8 A. Technology and System Ownership ................................................. 10 G. Estimated Performance Using Commission PV Calculator ................................ 10 H

  1. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    Concentrating solar power technologies use mirrors to reflect sunshine, turning it into an intense beam that’s collected as heat.

  2. MINICHANNEL-TUBE SOLAR THERMAL COLLECTORS FOR LOW TO MEDIUM TEMPERATURE APPLICATIONS

    E-Print Network [OSTI]

    Duong, Van Thuc

    2015-01-01

    and thermal energy storage in solar thermal applications,91] F. Proske, Solar thermal energy technology and marketindefinitely. However, solar thermal energy is renewable and

  3. U.S. Departments of Energy and Interior Announce Site for Solar...

    Broader source: Energy.gov (indexed) [DOE]

    (pdf - 136kb). For more information on the Solar Energy Technologies Program and solar funding opportunities, please visit the Solar Program's website. Lean more...

  4. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    on solar energy deployment and retail electricity rates, (c)for solar energy projects in restructured electricitySolar Energy Technologies Program) and the Office of Electricity

  5. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

  6. Protecting Solar Rights in California Through an Exploration of the California Water Doctrine

    E-Print Network [OSTI]

    Fedman, Anna

    2011-01-01

    of photovoltaic (PV) solar panels, grows increasingly more Currently there are  solar panels on one percent of technology.   The number of solar panel installations maybe 

  7. MINICHANNEL-TUBE SOLAR THERMAL COLLECTORS FOR LOW TO MEDIUM TEMPERATURE APPLICATIONS

    E-Print Network [OSTI]

    Duong, Van Thuc

    2015-01-01

    91] F. Proske, Solar thermal energy technology and marketindefinitely. However, solar thermal energy is renewable andgas and propane. Solar thermal energy for water heating has

  8. Core/Shell heterojunction nanowire solar cell fabricated by lithographically patterned nanowire electrodeposition method

    E-Print Network [OSTI]

    Ghosh, Somnath

    2012-01-01

    thin-film solar cellsthin film technology. Thin film solar cells use an averagethinner than the c-Si. Thin film solar cell can be deposited

  9. Rooftop Solar PV & Firefighter Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  10. Basic research needs in seven energy-related technologies, conservation, conversion, transmission and storage, environmental fission, fossil, geothermal, and solar

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    This volume comprises seven studies performed by seven groups at seven national laboratories. The laboratories were selected because of their assigned lead roles in research pertaining to the respective technologies. Researches were requested to solicit views of other workers in the fields.

  11. Solar Policy Environment: Seattle

    Broader source: Energy.gov [DOE]

    The objective of the Emerald City Solar Initiative is to overcome the barriers to widespread deployment of solar energy technology, dramatically increasing residential, commercial, City-owned, and community-scale solar energy use. The City has assembled a strong team of partners that have proven track records in the fields of public planning, renewable energy resource mapping, financial analysis, site analysis, education and outreach, policy analysis and advocacy, community organizing and renewable energy project development.

  12. As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and even solar thermal

    E-Print Network [OSTI]

    plant technology relies heavily on the Rankine cycle in coal, nuclear and even solar thermal powerAs the demand for power increases in populated areas, so will the demand for water. Current power the cooling power from radiation were developed and run. The results showed a cooling power of 35 W/m2

  13. Concentrating Solar Power Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator.

  14. Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01

    Solar Energy Technologies Program and O?ce of ElectricitySolar Energy Technologies Program) and by the O?ce of Electricity

  15. Evaluation of Ultra-Low Background Materials for Uranium and Thorium Using ICP-MS

    SciTech Connect (OSTI)

    Hoppe, Eric W.; Overman, Nicole R.; LaFerriere, Brian D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation and can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. Here we will discuss how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.

  16. Public Lecture Prospects for Solar

    E-Print Network [OSTI]

    Public Lecture Prospects for Solar Energy Utilization 4 p.m., October 8 100 Lindquist Hall Scientific lecture O Thermodynamically Efficient Solar Energy Concentration 2 p.m., October 7 128 Jabara Hall-Merced and director of the California Advanced Solar Technologies Institute. He invented the field of non

  17. Subsidizing Solar: The Case for an Environmental Goods and Services Carve-out from the Global Subsidies Regime

    E-Print Network [OSTI]

    Simmons, Zachary Scott

    2014-01-01

    clean energy technologies such as solar, wind, hydro andenergy technologies (including solar panels and gas and windtechnology-based industries (such as solar) or is available across the renewable energy sector (solar, wind,

  18. Battelle Memorial Institute Technologies Available for Licensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America...

  19. Federal Government Awards Multi-Agency Solar Power Purchase in...

    Energy Savers [EERE]

    of Solar to Federal Buildings in Washington, D.C. Federal Government Awards Multi-Agency Solar Power Purchase in California, Nevada California: SunShot-Supported Technology...

  20. Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 3

    Broader source: Energy.gov [DOE]

    This document details the Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 3: Solar Technology Options and Resource Assessment Question & Answer Session on August 15, 2012.

  1. Validation of the National Solar Radiation Database (NSRDB) ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ABSTRACT: Publicly accessible, high-quality, long-term, satellite-based solar resource data is foundational and critical to solar technologies to quantify system...

  2. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    of household energy technologies by installing solar systemssolar systems do not produce more gross energy than the householda solar system, households also become generators of energy

  3. Project Profile: High-Flux Microchannel Solar Receiver | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-temperature solar receivers by applying microchannel heat-transfer technology to solar-receiver design. The extremely high heat-transfer rates afforded by microchannels...

  4. Energy Department Announces $32 Million to Boost Solar Workforce...

    Broader source: Energy.gov (indexed) [DOE]

    Announces New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces 25 Million to Lower Cost of Concentrating Solar Power...

  5. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    solar and hybrid technologies represent a potential solutionon potential cost savings that will make solar coolingsolar collectors, even though there exists a huge potential

  6. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  7. Energy 101: Concentrating Solar Power

    SciTech Connect (OSTI)

    None

    2010-01-01

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  8. Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

    SciTech Connect (OSTI)

    Fatemi, H.

    2012-07-01

    Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

  9. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  10. Solar Radiation and Meteorological Data Support

    E-Print Network [OSTI]

    Homes, Christopher C.

    -9 2011March 8 9, 2011 #12;LISF Solar Radiation and Meteorological Sensor Network ·· Technology Needs:TechnologyCharacterize the solar resource potential for feasibility assessment of centralized PV solarfeasibility assessment of centralized PV solar gene ating facilities in the No theastgene ating facilities in the No theastgenerating

  11. ICP External

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSofNewsletterGuidingUpdateofMarch 21, 2012 ICEIWGSeptember 21,

  12. Powering Your Community With Solar: Overcoming Market and Implementati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot will work to bring down the full cost of solar-including the costs of solar cells and installation by focusing on four main pillars: 1. Technologies for solar cells and...

  13. Solar thermophotovoltaic efficiency potentials : surpassing photovoltaic device efficiencies

    E-Print Network [OSTI]

    Barnes, Kathryn M

    2012-01-01

    Solar energy has gained more attention in recent years due to increased concerns about the continued use of fossil fuels. Solar energy is a form of renewable energy, and solar energy technology does not release greenhouse ...

  14. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    chillers, energy storage, or solar-based technologies areand the huge solar thermal and heat storage system adoptionon expensive solar-based equipment and energy storage

  15. Study of the thermochemistry for oxygen production for a solar sulfur-ammonia

    E-Print Network [OSTI]

    Wang, Mimi Kai Wai

    2012-01-01

    to use concentrated solar thermal energy to power a costSolar-Thermal Water Splitting Technologies,” International Journal of Hydrogen Energy,Solar-Thermal Water Splitting Technologies,” International Journal of Hydrogen Energy,

  16. Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi

    E-Print Network [OSTI]

    Johnson, Eric E.

    Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi solar resource, studying different technology options, anticipating performance, and evaluating the economics of the solar power technologies. The NMSU team is evaluating the potential environmental impacts

  17. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01

    capacity. 9 The technology for the capture and conversion of solar energy into electricity using photovoltaic

  18. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  19. Solar Instructor Training Network Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    These frequently asked questions (FAQs) relate to the solar instructor training network. This project was launched by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP or...

  20. Solar Technology Validation Project - Tri-State G&T: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-12

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  1. Solar Technology Validation Project - Utah State Energy Program (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-09

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  2. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    renewable energy technologies, solar photovoltaic (PV) technologies hold significant potentialenergy consumption: Potential savings and environmental impact." Renewable andpotential new value stream from NEM solar is monetization of the renewable energy

  3. Secretary Chu Announces more than $200 Million for Solar and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    more than 200 Million for Solar and Water Power Technologies Secretary Chu Announces more than 200 Million for Solar and Water Power Technologies April 22, 2010 - 12:00am Addthis...

  4. DOE Announces $87 Million in Funding to Support Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces 87 Million in Funding to Support Solar Energy Technologies DOE Announces 87 Million in Funding to Support Solar Energy Technologies October 8, 2009 - 12:00am...

  5. Solar: A Clean Energy Source for Utilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  6. Solar Photovoltaic Capacity F t P f d P li

    E-Print Network [OSTI]

    6/19/2013 1 Solar Photovoltaic ­ Capacity F t P f d P li Generating Resources Advisory Committee Advisor Model (SAM), version 2013.1.15 Technology: Solar PV (PVWatts system model)Technology: Solar PV (MWh) (First year output, each year thereafter degrades 0.5%) 6 #12;6/19/2013 4 Shape of PNW Solar PV

  7. Safety and Security Technologies for Radioactive Material Shipments

    Office of Environmental Management (EM)

    Technologies Study Emerging Technologies Continued 7. Nanopiezoelectronics. 8. Plastic thin-film organic solar cells. 9. Container integrity. Safety & Security Technologies...

  8. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    borrower must be rural small business or agricultural producer * Technology: biomass, solar, wind, hydro, hydrogen, geothermal * Applications: equipment, construction,...

  9. 2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases for

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    technology such as concentrating solar power (CSP). PV project developers first need to identify photovoltaic (PV) or thermal solar. This paper focuses on PV but can surely be extended to thermal solar) for concentrated PV (CPV) technology. Once a site has been identified, the same developers along with engineering

  10. Research & Development Needs for Building-Integrated Solar Technologie...

    Broader source: Energy.gov (indexed) [DOE]

    Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its...

  11. Controlled Structure of Organic-Nanomaterial Solar Cells - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Structure of Organic-Nanomaterial Solar Cells Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryOrganic, polymer-based...

  12. Ideal Configuration For Nanoscale Solar Cells - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ideal Configuration For Nanoscale Solar Cells Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryThe standard design of excitonic...

  13. Solar Energy: Impacts & Management MeasuresSolar Energy: Impacts & Management Measures Vasilis Fthenakis

    E-Print Network [OSTI]

    1 Solar Energy: Impacts & Management MeasuresSolar Energy: Impacts & Management Measures Vasilis Solar Wildlife Society 17th Annual Conference, October 4, 1010, Snowbird, UT email: vmf@bnl.gov web: www-tax WACC High: 9.9% after-tax WACC Source: J. Lushetsky, Solar Technologies Program, DOE, 25th EUPV

  14. Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records

    E-Print Network [OSTI]

    Schrijver, Karel

    or less. [3] Solar events have an increasing potential to impact man- kind's technological infrastructureEstimating the frequency of extremely energetic solar events, based on solar, stellar, lunar powerful explosions on the Sun ­ in the form of bright flares, intense storms of solar energetic particles

  15. Technology Development for High-Efficiency Solar Cells and Modules Using Thin (<80 um) Single-Crystal Silicon Wafers Produced by Epitaxy: June 11, 2011 - April 30, 2013

    SciTech Connect (OSTI)

    Ravi, T. S.

    2013-05-01

    Final technical progress report of Crystal Solar subcontract NEU-31-40054-01. The objective of this 18-month program was to demonstrate the viability of high-efficiency thin (less than 80 um) monocrystalline silicon (Si) solar cells and modules with a low-cost epitaxial growth process.

  16. Enhanced Thermal Stability of W-Ni-Al[subscript 2]O[subscript 3] Cermet-Based Spectrally Selective Solar Absorbers with W Infrared Reflectors

    E-Print Network [OSTI]

    Cao, Feng

    Solar thermal technologies such as solar hot water and concentrated solar power trough systems rely on spectrally selective solar absorbers. These solar absorbers are designed to efficiently absorb the sunlight while ...

  17. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    pay for benefits from the renewable energy system only whilerenewable energy facilities, or accelerated tax-depreciation benefits.benefits, grants, the DOE loan guarantee program, clean renewable energy

  18. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    agency review of electric transmission facilities on federalagency review of electric transmission facilities on federalcomponents • Electric power transmission systems • Advanced

  19. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    of cumulative installed PV capacity in IEA countries throughGreentech Media. International Energy Agency (IEA). (2008).Survey report of selected IEA countries between 1992 and

  20. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Golden, CO: National Renewable Energy Laboratory. Denholm,Golden, CO: National Renewable Energy Laboratory (internalonly). Renewable Energy Policy Network for the 21 st

  1. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    gas plant (Global Environment Facility 2009), and similar planning is under way in Algeria and Egypt.

  2. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Note. London: New Energy Finance. CSP Today. (May 12,Reaction. London: New Energy Finance. Yahoo Finance. (2009).Note. London: New Energy Finance. Canada, S. ; Moore, L. ;

  3. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    negatively impact market adoption of PV modules both now andPV and CSP Federal policies and incentives play an important role in the commercialization and adoptionPV system cost, which makes it an important factor in market adoption.

  4. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    internal only). Renewable Energy Policy Network for the 21November 20, 2009. Renewable Energy Policy Network for theconducted by the Renewable Energy Policy Project (REPP) in

  5. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    2009b). “The residential power purchase agreement. ” Golden,94 Figure 4.9. The residential power purchaseTable 5.3. U.S. CSP Power Purchase Agreement Pipeline,

  6. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    2, pp. 58–73. NREL. (2009a). LCOE analysis for U.S. cities.35 Figure 3.1. LCOE for residential PV systems in severalkilowatt-hour vii LBNL LCD LCOE LSE M&A MACRS MENA MG-Si MOU

  7. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    How Many Jobs Can the Clean Energy Industry Generate in theAccessed November 2009. Clean Energy States Alliance. (2009). State Clean Energy Fund Support for Renewable Energy

  8. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Emissions Allowances, and Green Power Programs in Statethe Red Tape Out of Green Power: How to Overcome Permitting

  9. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    for end” nuclear fuel cycle energy efficiency, facilitiesefficiency, renewable energy, and advanced transmission and distribution as well as advanced nuclear

  10. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Off-grid Residential Photovoltaic Systems." Prog. Photovolt:of Residential Photovoltaic System Experience at Tucsonfor Residential Photovoltaic Systems. Fact Sheet. NREL

  11. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    J. (2005). "Operation and Maintenance Field Experience forOperations and Maintenance .69 3.7.1 PV Operations and Maintenance Not Including

  12. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Field Experience for Off-grid Residential Photovoltaicrespectively, while the off- grid market grew at 10- and 5-in 2007 to 13.1 GW in 2008. Off-grid capacity grew 24% from

  13. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    to Small-Scale Distributed Renewable Energy. Network for Newprocedures for distributed renewable energy systems. Adoptrequirements for distributed renewable energy systems. A

  14. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    to spread the cost of renewable energy systems over the longfinances the cost of renewable energy and energy efficiencyup-front system costs for a renewable energy system through

  15. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    and South Africa. Of the 6.5-GW project pipeline in theAfrica. It should be noted that the projects in the global pipeline

  16. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Darghouth, N. (2009). Tracking the Sun II. The Installedoptics and sophisticated sun-tracking systems, these cellstheir full report, “Tracking the Sun II. The Installed Cost

  17. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Energy Society building-integrated photovoltaics U.S. Bureaumounted and building-integrated photovoltaic (BIPV), and

  18. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    P. (2009). Photovoltaic Manufacturer Shipments, Capacity, &P. (2009). Photovoltaic Manufacturer Shipments, Capacity, &P. (2009). Photovoltaic Manufacturer Shipments, Capacity, &

  19. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    33 Figure 2.21. Polysilicon price projections through2.21. Polysilicon price projections through 2015 (Mehta andprojections, there is tremendous range in the demand estimates resulting from the uncertainty about policy incentives, electricity prices,

  20. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    projections, there is tremendous range in the demand estimates resulting from the uncertainty about policy incentives, electricity prices,