National Library of Energy BETA

Sample records for icis asian chemical

  1. EVAPORATION OF ICY PLANETESIMALS DUE TO BOW SHOCKS

    SciTech Connect (OSTI)

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)] [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Miura, Hitoshi [Department of Earth Sciences, Tohoku University, Sendai 980-8578 (Japan)] [Department of Earth Sciences, Tohoku University, Sendai 980-8578 (Japan); Nagasawa, Makiko; Nakamoto, Taishi [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)] [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2013-02-20

    We present the novel concept of evaporation of planetesimals as a result of bow shocks associated with planetesimals orbiting with supersonic velocities relative to the gas in a protoplanetary disk. We evaluate the evaporation rates of the planetesimals based on a simple model describing planetesimal heating and evaporation by the bow shock. We find that icy planetesimals with radius {approx}>100 km evaporate efficiently even outside the snow line in the stage of planetary oligarchic growth, where strong bow shocks are produced by gravitational perturbations from protoplanets. The obtained results suggest that the formation of gas giant planets is suppressed owing to insufficient accretion of icy planetesimals onto the protoplanet within the {approx}<5 AU disk region.

  2. Icy Cirrus Clouds to Be Studied This Spring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Icy Cirrus Clouds to Be Studied This Spring Mid-latitude cirrus clouds, which are composed solely of ice crystals, will be the focus of an intensive operational period (IOP) in April and May 2004 at the ARM Climate Research Facility (ACRF) SGP site. Researchers will be probing the clouds with aircraft-based instruments to gather detailed information about the clouds' physical characteristics. To make measurements in cirrus clouds, which generally form in the atmosphere at and above 20,000 feet

  3. MHK Projects/Icy Passage Tidal Energy Project | Open Energy Informatio...

    Open Energy Info (EERE)

    Icy Passage Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","t...

  4. Asian natural gas

    SciTech Connect (OSTI)

    Klass, D.L. ); Ohashi, T. )

    1989-01-01

    This book presents an overview of the present status and future development in Asia of domestic and export markets for natural gas and to describes gas utilization technologies that will help these markets grow. A perspective of natural gas transmission, transport, distribution, and utilization is presented. The papers in this book are organized under several topics. The topics are : Asian natural gas markets, Technology of natural gas export projects, Technology of domestic natural gas projects, and Natural gas utilization in power generation, air conditioning, and other applications.

  5. Tersus Asian Renewables | Open Energy Information

    Open Energy Info (EERE)

    energy Product: Tersus Asian Renewables is focusing on investments in wind, biomass and clean coal, principally in China and India. References: Tersus Asian Renewables1 This...

  6. Low Emissions Asian Development (LEAD) Program - Bangladesh ...

    Open Energy Info (EERE)

    Low Emissions Asian Development (LEAD) Program - Bangladesh Redirect page Jump to: navigation, search REDIRECT Low Emissions Asian Development (LEAD) Program Retrieved from...

  7. Asian Age Enterprise Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Asian Age Enterprise Ltd Place: Dhaka, Bangladesh Zip: 1000 Product: Bangladeshi private project developer. References: Asian Age...

  8. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koziol, Lucas; Goldman, Nir

    2015-04-21

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extendedmore » structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Lastly, our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.« less

  9. Asian Energy Security

    SciTech Connect (OSTI)

    Peter Hayes, PhD

    2003-12-01

    OAK-B135 In the Asian Energy Security (AES) Project, Nautilus Institute works together with a network of collaborating groups from the countries of Northeast Asia to evaluate the energy security implications of different national and regional energy ''paths''. The goal of the Asia Energy Security project is to illuminate energy paths--and the energy policy choices that might help to bring them about--that result in a higher degree of energy security for the region and for the world as a whole, that is, to identify energy paths that are ''robust'' in meeting many different energy security and development objectives, while also offering flexibility in the face of uncertainty. In work to date, Nautilus has carefully assembled a network of colleagues from the countries of the region, trained them together as a group in the use of a common, flexible, and transparent energy and environmental analysis planning software tool (LEAP, the Long-range Energy Alternatives Planning system), and worked with them to prepare base-year energy sector models for each country. To date, complete data sets and models for ''Business as Usual'' (BAU) energy paths have been compiled for China, Japan, the Republic of Korea, and the Democratic Peoples' Republic of Korea. A partial data set and BAU path has been compiled for the Russian Far East, and a data set is being started in Mongolia, where a team of researchers has just joined the AES project. In several countries, ''Alternative'' energy paths have been developed as well, or partially elaborated. National energy sector developments, progress on national LEAP modeling, additional LEAP training, and planning for the next phase of the AES project were the topics of a recent (early November) workshop held in Vancouver, British Columbia. With funding from the Department of Energy, Nautilus is poised to build upon the successes of the project to date with a coordinated international effort to research the energy security ramifications of

  10. Asian American Pacific Islander Heritage Month

    Broader source: Energy.gov [DOE]

    Generations of Asian Americans and Pacific Islanders (AAPIs) have helped make America what it is today. Their histories recall bitter hardships and proud accomplishments -- from the laborers who...

  11. Low Emission Asian Development (LEAD) Program | Open Energy Informatio...

    Open Energy Info (EERE)

    Low Emission Asian Development (LEAD) Program Redirect page Jump to: navigation, search REDIRECT Low Emissions Asian Development (LEAD) Program Retrieved from "http:...

  12. SIZE AND SURFACE AREA OF ICY DUST AGGREGATES AFTER A HEATING EVENT AT A PROTOPLANETARY NEBULA

    SciTech Connect (OSTI)

    Sirono, Sin-iti

    2013-03-01

    The activity of a young star rises abruptly during an FU Orionis outburst. This event causes a temporary temperature increase in the protoplanetary nebula. H{sub 2}O icy grains are sublimated by this event, and silicate cores embedded inside the ice are ejected. During the high-temperature phase, the silicate grains coagulate to form silicate core aggregates. After the heating event, the temperature drops, and the ice recondenses onto the aggregates. I determined numerically the size distribution of the ice-covered aggregates. The size of the aggregates exceeds 10 {mu}m around the snow line. Because of the migration of the ice to large aggregates, only a small fraction of the silicate core aggregate is covered with H{sub 2}O ice. After the heating event, the surface of an ice-covered aggregate is totally covered by silicate core aggregates. This might reduce the fragmentation velocity of aggregates when they collide. It is possible that the covering silicate cores shield the UV radiation field which induces photodissociation of H{sub 2}O ice. This effect may cause the shortage of cold H{sub 2}O vapor observed by Herschel.

  13. RAPID COAGULATION OF POROUS DUST AGGREGATES OUTSIDE THE SNOW LINE: A PATHWAY TO SUCCESSFUL ICY PLANETESIMAL FORMATION

    SciTech Connect (OSTI)

    Okuzumi, Satoshi; Kobayashi, Hiroshi [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan); Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Wada, Koji, E-mail: okuzumi@nagoya-u.jp [Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Chiba 275-0016 (Japan)

    2012-06-20

    Rapid orbital drift of macroscopic dust particles is one of the major obstacles to planetesimal formation in protoplanetary disks. We re-examine this problem by considering the porosity evolution of dust aggregates. We apply a porosity model based on recent N-body simulations of aggregate collisions, which allows us to study the porosity change upon collision for a wide range of impact energies. As a first step, we neglect collisional fragmentation and instead focus on dust evolution outside the snow line, where the fragmentation has been suggested to be less significant than inside the snow line because of the high sticking efficiency of icy particles. We show that dust particles can evolve into highly porous aggregates (with internal densities of much less than 0.1 g cm{sup -3}) even if collisional compression is taken into account. We also show that the high porosity triggers significant acceleration in collisional growth. This acceleration is a natural consequence of the particles' aerodynamical properties at low Knudsen numbers, i.e., at particle radii larger than the mean free path of the gas molecules. Thanks to this rapid growth, the highly porous aggregates are found to overcome the radial drift barrier at orbital radii less than 10 AU (assuming the minimum-mass solar nebula model). This suggests that, if collisional fragmentation is truly insignificant, formation of icy planetesimals is possible via direct collisional growth of submicron-sized icy particles.

  14. Celebrating Asian American Pacific Islander Heritage Month at the Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department | Department of Energy Celebrating Asian American Pacific Islander Heritage Month at the Energy Department Celebrating Asian American Pacific Islander Heritage Month at the Energy Department May 1, 2014 - 4:22pm Addthis Celebrating Asian American Pacific Islander Heritage Month at the Energy Department Each May we celebrate Asian American and Pacific Islander Heritage Month, honoring the accomplishments of Asian Americans, Native Hawaiians, and Pacific Islanders at the Energy

  15. Asian American Government Executives Network (AAGEN), Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Asian American Government Executives Network (AAGEN), Annual Leadership Development Training June 16, 2016 7:30AM to 4:00PM EDT Location: Crystal City Double Tree Hotel, 300 Army ...

  16. Feasibility Study of a Nuclear-Stirling Power Plant for the Jupiter Icy Moons Orbiter

    SciTech Connect (OSTI)

    Schmitz, Paul C.; Schreiber, Jeffrey G.; Penswick, L. Barry

    2005-02-06

    NASA is undertaking the design of a new spacecraft to explore the planet Jupiter and its three moons Calisto, Ganymede and Europa. This proposed mission, known as Jupiter Icy Moons Orbiter (JIMO) would use a nuclear reactor and an associated electrical generation system (Reactor Power Plant - RPP) to provide power to the spacecraft. The JIMO spacecraft is envisioned to use this power for science and communications as well as Electric Propulsion (EP). Among other potential power-generating concepts, previous studies have considered Thermoelectric and Brayton power conversion systems, coupled to a liquid metal reactor for the JIMO mission. This paper will explore trades in system mass and radiator area for a nuclear reactor power conversion system, however this study will focus on Stirling power conversion. Stirling convertors have a long heritage operating in both power generation and the cooler industry, and are currently in use in a wide variety of applications. The Stirling convertor modeled in this study is based upon the Component Test Power Convertor design that was designed and operated successfully under the Civil Space Technology Initiative for use with the SP-100 nuclear reactor in the 1980's and early 1990's. The baseline RPP considered in this study consists of four dual-opposed Stirling convertors connected to the reactor by a liquid lithium loop. The study design is such that two of the four convertors would operate at any time to generate the 100 kWe while the others are held in reserve. For this study the Stirling convertors hot-side temperature is 1050 K, would operate at a temperature ratio of 2.4 for a minimum mass system and would have a system efficiency of 29%. The Stirling convertor would generate high voltage (400 volt), 100 Hz single phase AC that is supplied to the Power Management and Distribution system. The waste heat is removed from the Stirling convertors by a flowing liquid sodium-potassium eutectic and then rejected by a shared

  17. A Presidential Proclamation - Asian American and Pacific Islander...

    Office of Environmental Management (EM)

    ... I call upon all Americans to visit www.WhiteHouse.govAAPI andwww.AsianPacificHeritage.gov to learn more about the history of Asian Americans and Pacific Islanders, and to observe ...

  18. CelebrAsian 30th Annual Procurement Conference

    Broader source: Energy.gov [DOE]

    On June 3-5, 2015, the US Pan Asian American Chamber of Commerce (USPAACC) will celebrate its 30th birthday through the annual CelebrAsian Procurement Conference

  19. Asian American and Pacific Islander Heritage Month Program

    Broader source: Energy.gov [DOE]

    Asian Pacific American Heritage Month is a celebration of the culture, traditions, and history of Asian Americans and Pacific Islanders in the United States. Join the Energy Department for the...

  20. Clean Air Initiative for Asian Cities | Open Energy Information

    Open Energy Info (EERE)

    "The Clean Air Initiative for Asian Cities (CAI-Asia) promotes innovative ways to improve air quality in Asian cities by sharing experiences and building partnerships. CAI-Asia was...

  1. A Presidential Proclamation - Asian American and Pacific Islander Heritage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Month | Department of Energy A Presidential Proclamation - Asian American and Pacific Islander Heritage Month A Presidential Proclamation - Asian American and Pacific Islander Heritage Month May 1, 2013 - 9:25am Addthis A Presidential Proclamation - Asian American and Pacific Islander Heritage Month BY THE PRESIDENT OF THE UNITED STATES OF AMERICA A PROCLAMATION Each May, our Nation comes together to recount the ways Asian Americans and Pacific Islanders (AAPIs) helped forge our country. We

  2. Asian American and Pacific Islander Heritage Month

    Broader source: Energy.gov [DOE]

    A celebration of Asians and Pacific Islanders in the United States. The month of May was chosen to commemorate the immigration of the first Japanese to the United States on May 7, 1843, and to mark the anniversary of the completion of the transcontinental railroad on May 10, 1869. The majority of the workers who laid the tracks were Chinese immigrants.

  3. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  4. 2013 Asian American & Pacific Islander Heritage Month Resources...

    Office of Environmental Management (EM)

    ... year 2000 through 2010. Policy Priorities Info-graphic: A detailed illustration of the ... For more information, please contact: White House Initiative on Asian American and Pacific ...

  5. Federal Asian Pacific American Council - New Mexico Chapter Albuquerqu...

    National Nuclear Security Administration (NNSA)

    Asian Pacific American Council - New Mexico Chapter Albuquerque, NM | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  6. Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical Engineering HomeTag:Chemical ...

  7. Energy conservation in typical Asian countries

    SciTech Connect (OSTI)

    Yang, M.; Rumsey, P.

    1997-06-01

    Various policies and programs have been created to promote energy conservation in Asia. Energy conservation centers, energy conservation standards and labeling, commercial building codes, industrial energy use regulations, and utility demand-side management (DSM) are but a few of them. This article attempts to analyze the roles of these different policies and programs in seven typical Asian countries: China, Indonesia, Japan, Pakistan, South Korea, the Philippines, and Thailand. The conclusions show that the two most important features behind the success policies and programs are (1) government policy support and (2) long-run self-sustainability of financial support to the programs.

  8. Sandia Energy - Asian-American Engineer of the Year (AAEOY) Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asian-American Engineer of the Year (AAEOY) Awards Home Photo Capabilities News News & Events Research & Capabilities Materials Science Highlights - Energy Research Asian-American...

  9. Asian American Engineer of the Year honors three Sandia Employees

    Broader source: Energy.gov [DOE]

    Hongyou Fan, Ming Lau and Rekha Rao, scientists at Sandia National Laboratories, have received the Asian American Engineer of the Year Award (AAEOY), Sandia reported today. They are among 19 people...

  10. Closing Event- Asian American and Pacific Islander Heritage Month

    Broader source: Energy.gov [DOE]

    Invited speakers from Congress, the federal government, and DOE will speak about Asian American and Pacific Islander programs and policy at the Department, and their contributions to the DOE...

  11. Asian American Pacific Islander Heritage Month - HQ | Department...

    Energy Savers [EERE]

    Ambassador to the Minorities in Energy Initiative; and Rosie Abriam, President and CEO of the Center for Asian Pacific American Women. Contact Gloria.Smith@hq.doe.gov; 202-586-8383

  12. Asian American and Pacific Islander Heritage Women @ Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Asian American and Pacific Islander Heritage Women @ Energy Asian American and Pacific Islander Heritage Women @ Energy May 3, 2013 - 11:49am Addthis Xin Sun 1 of 12 Xin Sun Creativity, insight, and application are the hallmarks of Dr. Xin Sun's applied mechanics and computational materials research at Pacific Northwest National Laboratory. Her advances in lightweight and high-strength materials (including steels) and modeling are vital to energy efficiency and renewable energy and

  13. Coagulation calculations of icy planet formation around 0.1-0.5 M {sub ?} stars: Super-Earths from large planetesimals

    SciTech Connect (OSTI)

    Kenyon, Scott J.; Bromley, Benjamin C. E-mail: bromley@physics.utah.edu

    2014-01-01

    We investigate formation mechanisms for icy super-Earth-mass planets orbiting at 2-20 AU around 0.1-0.5 M {sub ?} stars. A large ensemble of coagulation calculations demonstrates a new formation channel: disks composed of large planetesimals with radii of 30-300 km form super-Earths on timescales of ?1 Gyr. In other gas-poor disks, a collisional cascade grinds planetesimals to dust before the largest planets reach super-Earth masses. Once icy Earth-mass planets form, they migrate through the leftover swarm of planetesimals at rates of 0.01-1 AU Myr{sup 1}. On timescales of 10 Myr to 1 Gyr, many of these planets migrate through the disk of leftover planetesimals from semimajor axes of 5-10 AU to 1-2 AU. A few percent of super-Earths might migrate to semimajor axes of 0.1-0.2 AU. When the disk has an initial mass comparable with the minimum-mass solar nebula, scaled to the mass of the central star, the predicted frequency of super-Earths matches the observed frequency.

  14. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science Chemical Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Actinide Chemistry» Modeling and Simulation in the Chemical Sciences» Synthetic and Mechanistic Chemistry» Chemistry for Measurement and Detection Science» Chemical Researcher Jeff Pietryga shows two vials of different-size nanocrystals, each

  15. Chemical Recycling | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Recycling Chemical Recycling

  16. Fast Out of the Gate: How Developing Asian Countries can Prepare...

    Open Energy Info (EERE)

    (Redirected from Fast Out of the Gate: How Developing Asian Countries can Prepare to Access International Green Growth Financing)...

  17. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An Overview

    SciTech Connect (OSTI)

    Li, Zhanqing; Li, C.; Chen, H.; Tsay, S. C.; Holben, B. N.; Huang, J.; Li, B.; Maring, H.; Qian, Yun; Shi, Guangyu; Xia, X.; Yin, Y.; Zheng, Y.; Zhuang, G.

    2011-02-01

    As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas. Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and Impact on Regional Climate (EAST-AIRC). The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF10 China), the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE). The former two are US-China collaborative projects and the latter is a part of the China’s National Basic Research program (or often referred to as “973 project”). Routine meteorological data of China are also employed in some studies. The wealth of general and specialized measurements lead to extensive and close-up investigations of the optical, physical and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation and transport mechanisms; horizontal, vertical and temporal variations; direct and indirect effects and interactions with the East Asian monsoon system. Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc. In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.

  18. Chemical microsensors

    DOE Patents [OSTI]

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

  19. Chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2001-01-01

    A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

  20. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  1. Chemical sensors

    DOE Patents [OSTI]

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1991-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

  2. Final Report on the Proposal to Provide Asian Science and Technology Information

    SciTech Connect (OSTI)

    Kahaner, David K.

    2003-07-23

    The Asian Technology Information Program (ATIP) conducted a seven-month Asian science and technology information program for the Office:of Energy Research (ER), U.S: Department of Energy (DOE.) The seven-month program consists of 1) monitoring, analyzing, and dissemiuating science and technology trends and developments associated with Asian high performance computing and communications (HPC), networking, and associated topics, 2) access to ATIP's annual series of Asian S&T reports for ER and HPC related personnel and, 3) supporting DOE and ER designated visits to Asia to study and assess Asian HPC.

  3. Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. <a href

  4. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  5. Chemical sensors

    DOE Patents [OSTI]

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1992-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

  6. Robust pipeline construction plans threatened by spreading Asian crisis

    SciTech Connect (OSTI)

    True, W.R.

    1998-02-09

    Prospects for worldwide pipeline construction, viewed by operators as 1998 began, were very bright. But as the Asian financial crisis spreads and becomes more entrenched, it casts doubts on previously bullish petroleum and natural gas demand forecasts. These forecasts underpin pipeline operators` plans for new construction. Plans for petroleum (oil, condensate, and NGL) and natural gas pipeline installation during the year show a 27% jump over those announced a year ago for 1997 alone. Plans for construction beyond 1998, however, are off from what was envisioned a year ago, by nearly 17%. More than 67,000 miles of crude oil, product, and natural gas pipeline are planned for 1998 and beyond. The latest Oil and Gas Journal pipeline construction data indicate these trends. The data are derived from a survey of world pipeline operators, industry sources, and published information. But the data behind these trends were submitted before the full effects of the Asian financial crisis had begun to emerge. And, at presstime, industry forecasts for oil and gas demand among formerly booming Asian economies were being trimmed.

  7. Chemical Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical 'Sponges' Could Make Chemo Safer Chemical 'Sponges' Could Make Chemo Safer July 8, 2016 - 4:22pm Addthis A sample of a polymer-based membrane material created at Berkeley Lab. It’s designed to soak up cancer drugs and limit their side effects. | Photo by Roy Kaltschmidt, Berkeley Lab. A sample of a polymer-based membrane material created at Berkeley Lab. It's designed to soak up cancer drugs and limit their side effects. | Photo by Roy Kaltschmidt, Berkeley Lab. Glenn Roberts Jr.

  8. Chemical Occurrences

    Broader source: Energy.gov [DOE]

    Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

  9. 2013 Asian American & Pacific Islander Heritage Month Resources and Theme |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2013 Asian American & Pacific Islander Heritage Month Resources and Theme 2013 Asian American & Pacific Islander Heritage Month Resources and Theme April 3, 2013 - 1:43pm Addthis Save the date for the Asian Pacific American Heritage Month Family Day at the Smithsonian! This year it will be at the National Museum of American History on Saturday, May 4, 2013. More details to come. Save the date for the Asian Pacific American Heritage Month Family Day at the

  10. Our Commitment to Asian American and Pacific Islanders at the Department of Energy

    Broader source: Energy.gov [DOE]

    Today we were honored to celebrate Asian American and Pacific Islander (AAPI) month, recognizing the significant contributions of AAPI individuals in securing our clean energy future, and the work...

  11. Impact of East Asian Summer Monsoon on the Air Quality over China: View from space

    SciTech Connect (OSTI)

    Zhao, Chun; Wang, Yuhang; Yang, Qing; Fu, Rong; Cunnold, Derek; Choi, Yunsoo

    2010-05-04

    Tropospheric O3 columns retrieved from OMI and MLS measurements, CO columns from MOPITT, and tropospheric O3 and CO concentrations from TES from May to August in 2006 are analyzed using the Regional chEmical and trAnsport Model (REAM) to investigate the impact of the East Asian summer monsoon on the air quality over China. The observed and simulated migrations of O3 and CO are in good agreement, demonstrating that the summer monsoon significantly affects the air quality over southeastern China and this influence extends to central East China from June to July. Enhancements of CO and O3 over southeastern China disappear after the onset of the summer monsoon and re-emerge in August after the monsoon wanes. The pre-monsoon high O3 concentrations over southern China are due to photochemical production from pollutant emissions and the O3 transport from the stratosphere. In the summer monsoon season, the O3 concentrations are relatively low over monsoon-affected regions because of the transport of marine air masses and weak photochemical activity. We find that the monsoon system strongly modulates the pollution problem over a large portion of East China in summer, depending on its strength and tempo-spatial extension. Model results also suggest that transport from the stratosphere and long-range transport from East China and South/Central Asia all make significant contributions to O3 enhancements over West China. Satellite observations provide valuable information for investigating the monsoon impact on air quality, particularly for the regions with limited in situ measurements.

  12. Microfluidic chemical reaction circuits

    DOE Patents [OSTI]

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  13. Bibliography of information sources on East Asian energy

    SciTech Connect (OSTI)

    Salosis, J.

    1982-11-01

    The first section of this bibliography is a subject index by title to sources of information on East Asian energy. The countries considered were: Brunei, the PRC, Taiwan, Hong Kong, Indonesia, Japan, the Koreas, Malaysia, the Philippines, Singapore, Thailand and Vietnam. If the geographic coverage by any source is restricted to a particular country and was not indicated by the title, a country abbreviation in parentheses was added. Titles that include the term data base are computerized. The second section contains the Title Index which lists each printed publication alphabetically with frequency of publication and the US$ price for a yearly air mail subscription. The publisher or distribution office is listed below the title. The Data Base Index lists computerized sources with the author and the vendor providing either online access or tapes. No prices have been quoted in this section because of the wide range of methods in use and the impossibility of running benchmarks for this study. The Address Index lists the publishers, data base authors and vendors alphabetically.

  14. Chemical Management System

    Energy Science and Technology Software Center (OSTI)

    1998-10-30

    CMS provides an inventory of all chemicals on order or being held in the laboratory, to provide a specific location for all chemical containers, to ensure that health and safety regulatory codes are being upheld, and to provide PNNL staff with hazardous chemical information to better manage their inventories. CMS is comprised of five major modules: 1) chemical purchasing, 2) chemical inventory, 3) chemical names, properties, and hazard groups, 4) reporting, and 5) system administration.

  15. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  16. Chemical & Engineering News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical & Engineering News Home...

  17. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes...

  18. Multimedia regulated chemicals

    SciTech Connect (OSTI)

    Lee, C.C.; Huffman, G.L.; Mao, Y.L.

    1999-10-01

    This article examines those chemicals that are listed in either environmental laws or regulations. Its objective is to help readers determine which laws regulate what types of chemicals and which types of chemicals are regulated by what laws. It is multimedia in scope, describing the various chemicals that are regulated in the different media (i.e., air, water, or land).

  19. Chemical Management Contacts

    Broader source: Energy.gov [DOE]

    Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

  20. Potential for biomass electricity in four Asian countries

    SciTech Connect (OSTI)

    Kinoshita, C.M.; Turn, S.Q.; Tantlinger, J.; Kaya, M.

    1997-12-31

    Of all forms of renewable energy, biomass offers the best near-term opportunity for supplying a significant portion of the world`s need for electric power. Biomass is especially competitive when fuel supply costs are partially defrayed as production activities associated with the processing of another product, e.g., sugar, rice, or vegetable oil. Not only do such processing situations provide cost savings, they also generate very large supplies of fuel and therefore can contribute significantly to the local energy mix. Access to ample supplies of competitively-priced biomass feedstocks is only one of several factors needed to encourage the use of biomass for power generation; equally important is a healthy market for electricity, i.e., need for large blocks of additional power and sufficient strength in the economy to attract investment in new capacity. Worldwide, the Asia-Pacific region is projected to have the greatest need for new generating capacity in the next decade and shows the highest rate of economic growth, making it an attractive market for biomass power. Also critical to the expansion of bioenergy is the adoption of positive, stable policies on energy production, distribution, and sale, that encourage the generation and use of electricity from biomass. The aforementioned three factors--adequate biomass supplies, increasing demand for electricity, and supportive policies--are examined for four Asian countries, the Philippines, Thailand, Malaysia, and Indonesia. Information presented for each of the four countries include the types and amounts of bioresidues and their associated electric power generation potential; present and future supplies and demand for electricity; and existing or planned government and utility policies that could impact the generation and use of biomass power.

  1. PINS chemical identification software

    DOE Patents [OSTI]

    Caffrey, Augustine J.; Krebs, Kennth M.

    2004-09-14

    An apparatus and method for identifying a chemical compound. A neutron source delivers neutrons into the chemical compound. The nuclei of chemical elements constituting the chemical compound emit gamma rays upon interaction with the neutrons. The gamma rays are characteristic of the chemical elements constituting the chemical compound. A spectrum of the gamma rays is generated having a detection count and an energy scale. The energy scale is calibrated by comparing peaks in the spectrum to energies of pre-selected chemical elements in the spectrum. A least-squares fit completes the calibration. The chemical elements constituting the chemical compound can be readily determined, which then allows for identification of the chemical compound.

  2. Chemical Sciences Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling and Simulation in the Chemical Sciences Capabilities Modeling and simulation help us transform chemical data into meaningful information: * Develop remote-sensors that detect nuclear materials * Perform large- or small-scaled process modeling * Simulate new chemicals with tailored properties for diverse applications * Analyze chemical reaction rates for complex modeling needs * Examine chemical-sciences data and modeling for nuclear forensics * Analyze high explosive data and perform

  3. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants,

  4. Chemical Industry Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  5. Capacitive chemical sensor

    DOE Patents [OSTI]

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  6. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  7. Chemicals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ace013_pitz_2010_o.pdf (1.44 MB) More Documents & Publications Chemical Kinetics Research on HCCI and Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion

    Discusses detailed chemical kinetics mechanisms for complex hydrocarbon fuels and

  8. 2. Chemical Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Lecture) Chung K. Law Robert H. Goddard Professor Princeton University Princeton-CEFRC-Combustion Institute Summer School on Combustion June 20-24, 2016 1 Day 1: Chemical Thermodynamics and Kinetics 1. Chemical Thermodynamics * Chemical equilibrium * Energy conservation & adiabatic flame temp., T ad 2. Chemical Kinetics * Reaction rates and approximations * Theories of reaction rates * Straight and branched chain reactions 3. Oxidation Mechanisms of Fuels * Hydrogen, CO, hydrocarbons 2 1.

  9. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  10. ITP Chemicals: Chemical Industry of the Future: New Biocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential Tools for a ... TECHNOLOGY VISION 2020: The U.S. Chemical Industry Gasoline Biodesulfurization Fact Sheet ...

  11. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process ... ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying ...

  12. Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California

    SciTech Connect (OSTI)

    Ewing, Stephanie A.; Christensen, John N.; Brown, Shaun T.; Vancuren, Richard A.; Cliff, Steven S.; DePaolo, Donald J.

    2010-10-25

    During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29 Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models.

  13. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical ...

  14. Field emission chemical sensor

    DOE Patents [OSTI]

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  15. CAMD Cleanroom Chemical List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAMD Cleanroom Chemical List Chemicals on this list are routine use chemicals in the CAMD Cleanroom and are available to users for general use. All others (*) are approved for use in the cleanroom but are not provided by CAMD. You must purchase from your department and store at the facility. If there are any other chemicals that you need to use that are not on this list, contact the Safety Director, Dr. Lorraine Day, day@lsu.edu, 225-578-4616 for approval. Resists Developers *AZ 1505 *AZ 1512

  16. Apparatus for chemical synthesis

    DOE Patents [OSTI]

    Kong, Peter C.; Herring, J. Stephen; Grandy, Jon D.

    2011-05-10

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  17. Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina citri) (7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Saha, Surya [Cornell University

    2013-02-12

    Surya Saha on "Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina citri)" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  18. Tortuous path chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  19. A survey of Asian life scientists :the state of biosciences, laboratory biosecurity, and biosafety in Asia.

    SciTech Connect (OSTI)

    Gaudioso, Jennifer Marie

    2006-02-01

    Over 300 Asian life scientists were surveyed to provide insight into work with infectious agents. This report provides the reader with a more complete understanding of the current practices employed to study infectious agents by laboratories located in Asian countries--segmented by level of biotechnology sophistication. The respondents have a variety of research objectives and study over 60 different pathogens and toxins. Many of the respondents indicated that their work was hampered by lack of adequate resources and the difficulty of accessing critical resources. The survey results also demonstrate that there appears to be better awareness of laboratory biosafety issues compared to laboratory biosecurity. Perhaps not surprisingly, many of these researchers work with pathogens and toxins under less stringent laboratory biosafety and biosecurity conditions than would be typical for laboratories in the West.

  20. Coupled land-ocean-atmosphere processes and South Asian monsoon variability

    SciTech Connect (OSTI)

    Meehl, G.A.

    1994-10-14

    Results from a global coupled ocean-atmosphere climate model and a model with specified tropical convective heating anomalies show that the South Asian monsoon was an active part of the tropical biennial oscillation (TBO). Convective heating anomalies over Africa and the western Pacific Ocean associated with the TBO altered the simulated pattern of atmospheric circulation for the Northern Hemisphere winter mid-latitude over Asia. This alteration in the mid-latitude circulation maintained temperature anomalies over South Asia through winter and helped set up the land-sea temperature contrast for subsequent monsoon development. South Asian snow cover contributed to monsoon strength but was symptomatic of the larger scale alteration in the mid-latitude atmospheric circulation pattern. 36 refs., 5 figs.

  1. Sandia's Dr. Jeffrey Tsao Is Recognized as an Asian-American Engineer of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Year Dr. Jeffrey Tsao Is Recognized as an Asian-American Engineer of the Year - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  2. Final report on the proposal to provide Asian science and technology information.

    SciTech Connect (OSTI)

    Lopez, Wallace H.

    2003-06-19

    The focus of this program, was to address those scientific, technical, market, and policy activities which are supported/conducted by Japanese and other relevant Asian organizations pursing research, development and/or manufacturing in high performance computing and communications (HPC), networking, and related sectors, as well as, relevant specialized end applications. The scope of the programs and activities were focused on establishing direct and timely analyses of relevant scientific and technical trend and developments.

  3. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  4. Selecting chemical treatment programs

    SciTech Connect (OSTI)

    Miller, J.E. )

    1988-09-01

    Many process equipment performance and reliability problems can be solved economically by the proper selection and application of chemical treatment programs. It is important to choose an experienced chemical vendor and to work closely with the vendor to develop a good chemical treatment program. This requires devoting sufficient manpower to ensure that the treatment program development is thorough and timely. After the treatment program is installed, the system operation and performance should be routinely monitored to ensure that expected benefits are achieved and unexpected problems do not develop.

  5. Enhanced Chemical Cleaning

    SciTech Connect (OSTI)

    Spires, Renee H.

    2010-11-01

    Renee Spires, Project Manager at Savannah River Remediation, opens Session 3 (Accelerated Waste Retrieval and Closure: Key Technologies) at the 2010 EM Waste Processing Technical Exchange with a talk on enhanced chemical cleaning.

  6. Chemicals from coal

    SciTech Connect (OSTI)

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  7. Chemical Diagnostics and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CDE Chemical Diagnostics and Engineering We support stockpile manufacturing, surveillance, applied and basic energy sciences, threat reduction, public health, the environment, and space exploration. Contact Us Group Leader Peter Stark Deputy Group Leader Tom Yoshida Group Office (505) 667-5740 X-Ray Photoelectron Spectroscopy X-Ray Photoelectron Spectroscopy The Chemical Diagnostics and Engineering (C-CDE) Group combines engineering design with routine analytical services and state-of-the-art

  8. American Chemical Society Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as American Chemical Society Fellows August 7, 2014 Chamberlin and Porterfield named ACS Fellows LOS ALAMOS, N.M., Aug. 7, 2014-Rebecca Chamberlin and Donivan Porterfield, both of Los Alamos National Laboratory's Actinide Analytical Chemistry group, have been selected as a 2014 Fellows of the American Chemical Society (ACS). Rebecca Chamberlin An inorganic chemist and radiochemist, Chamberlin is currently the co-principal investigator for development of novel microreactor-based systems

  9. 2. Chemical Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chung K. Law Robert H. Goddard Professor Princeton University Princeton-CEFRC-Combustion Institute Summer School on Combustion June 20-24, 2016 1 What is Combustion? * Study of chemically reacting flows with highly exothermic, temperature-sensitive reactions A Laminar Bunsen Flame A Turbulent Jet Flame Combustion is A Multi-physics & Multi-scale Science * Combustion is a multi- physics science, embodying two major branches of nonlinear science: - Chemical kinetics - Fluid mechanics *

  10. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary Report, December 2006 | Department of Energy Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary Report, December 2006 ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical

  11. Biological and Chemical Security

    SciTech Connect (OSTI)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defense Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.

  12. Process Intensification - Chemical Sector Focus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ..................................................................................................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................................. 5 5 2.1 Chemical Industry Focus

  13. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, S.P.

    1999-03-02

    A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

  14. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, Steve P.

    1999-03-02

    A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

  15. Equilibria in Chemical Systems

    Energy Science and Technology Software Center (OSTI)

    1992-01-01

    SOLGASMIX-PV calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressuremore » can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available.« less

  16. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  17. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  18. Category:Chemical Logging | Open Energy Information

    Open Energy Info (EERE)

    Chemical Logging Jump to: navigation, search Geothermalpower.jpg Looking for the Chemical Logging page? For detailed information on Chemical Logging, click here. Category:Chemical...

  19. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    SciTech Connect (OSTI)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  20. Chemical Supply Chain Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACCapabilitiesChemical Supply Chain Analysis content top Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants, and complexes could be impacted? In which regions of the country?

  1. What are the Starting Points? Evaluating Base-Year Assumptions in the Asian Modeling Exercise

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Waldhoff, Stephanie; Clarke, Leon E.; Fujimori, Shinichiro

    2012-12-01

    A common feature of model inter-comparison efforts is that the base year numbers for important parameters such as population and GDP can differ substantially across models. This paper explores the sources and implications of this variation in Asian countries across the models participating in the Asian Modeling Exercise (AME). Because the models do not all have a common base year, each team was required to provide data for 2005 for comparison purposes. This paper compares the year 2005 information for different models, noting the degree of variation in important parameters, including population, GDP, primary energy, electricity, and CO2 emissions. It then explores the difference in these key parameters across different sources of base-year information. The analysis confirms that the sources provide different values for many key parameters. This variation across data sources and additional reasons why models might provide different base-year numbers, including differences in regional definitions, differences in model base year, and differences in GDP transformation methodologies, are then discussed in the context of the AME scenarios. Finally, the paper explores the implications of base-year variation on long-term model results.

  2. Electro-Chemical Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro-Chemical Processes - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  3. 2. Chemical Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Lecture) Chung K. Law Robert H. Goddard Professor Princeton University Princeton-CEFRC-Combustion Institute Summer School on Combustion June 20-24, 2016 1 Day 4: Laminar Premixed Flames 1. The standard premixed flame 1. Phenomenological and asymptotic analyses 2. Parametric dependence 3. Chemical structure 2. Limit phenomena 1. The S-curve concept 2. Extinction through volumetric heat loss 3. Aerodynamics of flames 1. Hydrodynamic stretch 2. Flame stretch 3. Flamefront instabilities 2 1. The

  4. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    SciTech Connect (OSTI)

    Simmons, F

    2007-03-19

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.

  5. Devices for collecting chemical compounds

    DOE Patents [OSTI]

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  6. Chemical Processing Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6-2010 February 2010 DOE STANDARD CHEMICAL PROCESSING QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1176-2010 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/ns/techstds DOE-STD-1176-2010 iv INTENTIONALLY BLANK DOE-STD-1176-2010 v

  7. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, George R.; Peter, Frank J.; Butler, Michael A.

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  8. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  9. Chemical kinetics modeling

    SciTech Connect (OSTI)

    Westbrook, C.K.; Pitz, W.J.

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  10. Chemical sensor system

    DOE Patents [OSTI]

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2002-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  11. LLNL Chemical Kinetics Modeling Group

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  12. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  13. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  14. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  15. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  16. Petroleum product pricing in Asian developing countries: Lessons from the past and future issues

    SciTech Connect (OSTI)

    Bhattacharyya, S.C.

    1997-09-01

    This paper looks at the pricing of petroleum products in ten Asian developing countries using a data series for 1973--1992. Prices of petroleum products are compared with international prices. Differential prices are measured with respect to diesel prices. It is found that energy prices are used as instruments for revenue earnings. Pricing policies vary widely among countries and neighbors have different fuel prices. Countries try to align the local prices of petroleum products in line with international prices but with a lag of 1--2 years. The wave of liberalization and privatization is sweeping many developing countries. Additionally, environmental issues are gaining importance even in developing countries. The paper also discusses these emerging issues that need to be taken into account in the petroleum product pricing.

  17. Impact of cloud radiative heating on East Asian summer monsoon circulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; Qian, Yun

    2015-07-17

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore » different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less

  18. Impact of cloud radiative heating on East Asian summer monsoon circulation

    SciTech Connect (OSTI)

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; Qian, Yun

    2015-07-17

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. the different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.

  19. Feasibility of irradiating Washington fruits and vegetables for Asian export markets

    SciTech Connect (OSTI)

    Eakin, D.E.; Hazelton, R.F.; Young, J.K.; Prenguber, B.A.; O'Rourke, A.D.; Heim, M.N.

    1987-05-01

    US agricultural export marketing opportunities are limited by the existence of trade barriers in many overseas countries. For example, Japan and South Korea do not permit the importation of apples due to their stated concern over codling moth infestation. One of the purposes of this study was to evaluate the potential of exporting irradiated fruits and vegetables from Washington State to overcome existing trade barriers and prevent the establishment of future barriers. The Asian countries specifically evaluated in this study are Japan, Hong Kong and Singapore. Another purpose of this project was to determine the feasibility of locating an irradiation facility in Washington State. Advantages that irradiated agricultural products would bring in terms of price and quality in export markets were also evaluated.

  20. Volatile chemical reagent detector

    DOE Patents [OSTI]

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  1. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  2. Corsicana Chemical Company | Open Energy Information

    Open Energy Info (EERE)

    Corsicana Chemical Company Jump to: navigation, search Name: Corsicana Chemical Company Place: Corsicana, Texas Zip: 75110 Product: Chemical company and biodiesel producer in...

  3. Atlanta Chemical Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name: Atlanta Chemical Engineering LLC Place: Marietta, Georgia Country: United...

  4. chemical_methods | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Methods Chemical methods focus mainly on alkaline-surfactant-polymer (ASP) processes that involve the injection of micellar-polymers into the reservoir. Chemical flooding ...

  5. Shanghai TL Chemical Company | Open Energy Information

    Open Energy Info (EERE)

    Shanghai TL Chemical Company Place: Shanghai, China Zip: 200240 Product: Focuses on novel chemical structure PEM and PE Resin, PEM FC materials and parts, Key chemical...

  6. Gas phase chemical detection with an integrated chemical analysis system

    SciTech Connect (OSTI)

    CASALNUOVO,STEPHEN A.; FRYE-MASON,GREGORY CHARLES; KOTTENSTETTE,RICHARD; HELLER,EDWIN J.; MATZKE,CAROLYN M.; LEWIS,PATRICK R.; MANGINELL,RONALD P.; BACA,ALBERT G.; HIETALA,VINCENT M.

    2000-04-12

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample preconcentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described.

  7. Gas Phase Chemical Detection with an Integrated Chemical Analysis System

    SciTech Connect (OSTI)

    Baca, Albert G.; Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Susan L.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carloyn M.; Reno, John L.; Sasaki, Darryl Y.; Schubert, W. Kent

    1999-07-08

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample concentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described. The design and performance of novel micromachined acoustic wave devices, with the potential for improved chemical sensitivity, are also described.

  8. Gas chemical complex to be built at Seidi

    SciTech Connect (OSTI)

    Alperowicz, N.

    1992-12-23

    Turkmenistan, the Central Asian republic of the CIS, is preparing to set up its first petrochemical complex as part of an industrialization program. Sources in Ashkhabad say the gas authority, Turkmengaz, has signed a letter of intent with TPL (Rome) to build a gas cracker and polyethylene (PE) units. Promoted by the deputy prime minister of Turkmenistan, Nazar Soyunov, the complex is expected to be built at Seidi, near an existing oil refinery. Feedstock will be natural gas supplied by Turkmengaz. It is understood that two processes - from BP Chemicals and Phillips - are being considered for PE production. Total PE capacity will be 200,000 m.t./year. An additional plant, making 10,000 m.t./year of the PE comonomer butene-1, is also planned. Turkmengaz is looking for a quick return on investment and hopes to export 150,000 m.t./year of PE to Western Europe, the Turkic region, and Southeast Asia. The contact is expected to be signed as soon as financing has been raised. The complex has been estimated to require investment of $1 billion. Basic engineering on the cracker, which will use KTI (Zoetermeer, the Netherlands) furnaces, has been completed.

  9. ARM - Measurement - Inorganic chemical composition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsInorganic chemical composition ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Inorganic chemical composition The chemical composition of an aerosol, with the exception of those with hydrocarbons, and usually including carbides, oxides of carbon, metallic carbonates, carbon sulfur compounds, and carbon nitrogen compounds. Categories Aerosols Instruments The above measurement is

  10. Chemical Stockpile Disposal Program

    SciTech Connect (OSTI)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  11. Enhancing chemical reactions

    DOE Patents [OSTI]

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  12. Chemical substructure analysis in toxicology

    SciTech Connect (OSTI)

    Beauchamp, R.O. Jr.

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  13. FAQS Reference Guide- Chemical Processing

    Office of Energy Efficiency and Renewable Energy (EERE)

    This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

  14. Chemical Looping | Open Energy Information

    Open Energy Info (EERE)

    to convert fossil fuels to electricity and provide carbon capture without significant efficiency or cost penalties. Chemical looping combustion is very similar to oxy-fuel...

  15. Chemical Logging | Open Energy Information

    Open Energy Info (EERE)

    concentrations.1 Use in Geothermal Exploration During a chemical logging study at the Raft River Geothermal Test Site, returned drilling fluid samples were collected every...

  16. Future projection of mean and variability of the Asian Summer Monsoon and Indian Ocean Climate systems

    SciTech Connect (OSTI)

    Annamalai, H

    2014-09-15

    The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observations and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical

  17. FAQS Gap Analysis Qualification Card - Chemical Processing |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Processing FAQS Gap Analysis Qualification Card - Chemical Processing Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences ...

  18. Multidimensional simulation and chemical kinetics development...

    Office of Environmental Management (EM)

    Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Multidimensional simulation and chemical kinetics development for high ...

  19. Chemical Management Volume 3 of 3 - Consolidated Chemical User...

    Office of Environmental Management (EM)

    ... Code NFPA 45 (2004), Standard on Fire Protection for Laboratories Using Chemicals NFPA 51 (1997), Standard for the Design and Installation of Oxygen-Fuel Gas Systems NFPA 55 ...

  20. Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents

    DOE Patents [OSTI]

    Yang, Xiaoguang; Swanson, Basil I.

    2001-11-13

    An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.

  1. Method of forming a chemical composition

    DOE Patents [OSTI]

    Bingham, Dennis N.; Wilding, Bruce M.; Klingler, Kerry M.; Zollinger, William T.; Wendt, Kraig M.

    2007-10-09

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  2. Non-planar chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Adkins, Douglas R.; Sokolowski, Sara S.; Lewis, Patrick R.

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  3. Chemical microreactor and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan

    2011-08-09

    A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

  4. Mass-sensitive chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Adkins, Douglas R.; Lewis, Patrick R.

    2007-01-30

    A microfabricated mass-sensitive chemical preconcentrator actively measures the mass of a sample on an acoustic microbalance during the collection process. The microbalance comprises a chemically sensitive interface for collecting the sample thereon and an acoustic-based physical transducer that provides an electrical output that is proportional to the mass of the collected sample. The acoustic microbalance preferably comprises a pivot plate resonator. A resistive heating element can be disposed on the chemically sensitive interface to rapidly heat and release the collected sample for further analysis. Therefore, the mass-sensitive chemical preconcentrator can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  5. Chemical Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. <a href

  6. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1996-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  7. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1996-12-31

    Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

  8. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  9. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1993-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  10. Integrated Chemical Geothermometry System for Geothermal Exploration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chemical Geothermometry System for Geothermal Exploration Integrated Chemical Geothermometry System for Geothermal Exploration DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids. tracers_spycher_integrated_chemical.pdf (272.32 KB) More Documents & Publications Integrated Chemical Geothermometry System for Geothermal Exploration

  11. Comparison of Tarim and central Asian FSU basins, I: Phanerozoic paleogeography

    SciTech Connect (OSTI)

    Heubeck, C.; Shangyou N. )

    1996-01-01

    Large amounts of previously unpublished data on the petroleum geology of the FSU's Central Asian Republics and of China's Tarim region have found their way into the western public domain in the past few years. These data provide for the first time the opportunity to merge detailed stratigraphic, tectonic, and paleogeographic studies done during the past decades on both sides of the FSU-Chinese border and to place the results in a plate-tectonic and palinspastically restored reference frame. Major tectonic events affecting the active post-Silurian south-facing margin of Asia between the Caspian Sea and Tarim include (1) the collapse of the Kazakhstan arc fragments (ca. 400-300 Ma); (2) collision of YiIi with Tarim (ca. 375 Ma); (3) consolidation of the Turan Platform from pre-existing basement blocks (ca. 280-220 Ma), (4) collision of Tarim/Yili with the Kazakhstan arcs (ca. 260 Ma); (5) stabilization of a south-facing Triassic active margin (ca. 250 - 200 Ma); (6) accretion of Cimmeria (ca. 200 Ma) and associated reactivation events in Turan, Syr-Darja, and Tarim; (7) reactivation and modification of intracontinental structures during the collision of central Asia with India (ca. 55 Ma to present) and with the Arabian platform (ca. 25 Ma). Periodic large-scale flooding of denuded continental platforms (Turan, Tadjik) during sea-level highstands is recorded in the Jurassic, Mid-Late Cretaceous, and the Early Tertiary, resulting in extensive tracts of restricted marine sedimentary systems and marine incursions deep into central Asia (SW Tarim, Kuche Depression, Fergana, Turgay). Mesozoic-Cenozoic source rocks are sensitive to rapid lateral facies changes, and understanding their distribution requires detailed stratigraphic analysis. The attempted synthesis of data from China and the FSU with plate-tectonic concepts allows the transfer and testing of play concepts and hydrocarbons systems across the FSU-Chinese border.

  12. Chemical incident economic impact analysis methodology. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Chemical incident economic impact analysis methodology. Citation Details In-Document Search Title: Chemical incident economic impact analysis methodology. You are accessing a ...

  13. Dainippon Ink Chemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Dainippon Ink & Chemicals Inc Place: Tokyo, Tokyo, Japan Zip: 103-8233 Product: Japanese diversified chemical company that primarily...

  14. Mitsui Chemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Mitsui Chemicals Inc Place: Tokyo, Tokyo, Japan Zip: 105-7117 Sector: Solar Product: Chemicals maker including plastics, industrial...

  15. MECS 2006 - Chemicals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    documents Manufacturing Energy and Carbon Footprint Chemicals (121.71 KB) More Documents & Publications Chemicals (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  16. Hanwha Chemical Corp | Open Energy Information

    Open Energy Info (EERE)

    Chemical Corp Jump to: navigation, search Name: Hanwha Chemical Corp Place: Seoul, Seoul, Korea (Republic) Zip: 100-797 Product: Korea-based manufacturer of synthetic resins and...

  17. Silicon Chemical Corp SCC | Open Energy Information

    Open Energy Info (EERE)

    Corp SCC Jump to: navigation, search Name: Silicon Chemical Corp (SCC) Place: Vancouver, Washington State Zip: 98687 Product: US manufacturer of polysilicon and silicon chemical...

  18. Heilongjiang Fengrui Chemical Group | Open Energy Information

    Open Energy Info (EERE)

    Fengrui Chemical Group Jump to: navigation, search Name: Heilongjiang Fengrui Chemical Group Place: Shuangyashan, Heilongjiang Province, China Product: A Chinese bioethanol...

  19. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalysts for maximum selectivity and efficiency in a wide range of chemical processes. ... The measurements generated chemical contour maps for the species present. Quantitative ...

  20. Dow Chemical Co | Open Energy Information

    Open Energy Info (EERE)

    search Name: Dow Chemical Co Place: Midland, Michigan Zip: 48674 Sector: Hydro, Hydrogen Product: Michigan-based global chemical, plastic and agricultural products maker,...

  1. Fuels and Chemicals from Lignocellulosic Biomass: Valorization...

    Office of Scientific and Technical Information (OSTI)

    Fuels and Chemicals from Lignocellulosic Biomass: Valorization of Lignin. Citation Details In-Document Search Title: Fuels and Chemicals from Lignocellulosic Biomass: Valorization ...

  2. Keeping Tabs on the World's Dangerous Chemicals

    Broader source: Energy.gov [DOE]

    Sandia chemical engineer Nancy Jackson has worked in laboratories around the world to help ensure that chemicals are used safely and kept secure.

  3. Chemical Safety Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For Additional Information Contact: Bill R. McArthur Chemical Management Tools Chemical Compatibility Material Safety Data Sheets Protective Action Criteria (PAC) with AEGLs, ...

  4. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles ...

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most ...

  6. Thomas selected as American Chemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas selected as ACS Fellow Thomas selected as American Chemical Society Fellow Kimberly ... first Los Alamos researcher to be named a Fellow of the American Chemical Society (ACS). ...

  7. Nanomechanical Sensor Detects and Identifies Chemical Analytes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanomechanical Sensor Detects and Identifies Chemical Analytes Oak Ridge National ... It can also quickly identify a potentially harmful chemical. The invention's sensitivity ...

  8. Mr. Robert Muller, Manager General Chemical Corporation

    Office of Legacy Management (LM)

    S 1997 Mr. Robert Muller, Manager General Chemical Corporation 6300 Philadelphia Pike ... Mr. D. T. Murphy of Allied Chemical Corporation, Delaware Valley Works in Marcus Hook, was ...

  9. Plutonium-238 Production Chemical Processing Evaluations (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Plutonium-238 Production Chemical Processing Evaluations Citation Details In-Document Search Title: Plutonium-238 Production Chemical Processing Evaluations Authors: ...

  10. Uncoated microcantilevers as chemical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G.

    2001-01-01

    A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.

  11. Chemical Hygiene and Safety Plan

    SciTech Connect (OSTI)

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  12. Chemical sciences, annual report 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The Chemical Sciences Division (CSD) is one of eleven research Divisions of the Lawrence Berkeley Laboratory, a DOE National Laboratory. In FY 1993, the Division made considerable progress on developing two end-stations and a beamline to advance combustion dynamics at the Advanced Light Source (ALS). In support of DOE`s national role in combustion research and chemical science, the beamline effort will enable researchers from around the world to make fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients, and in understanding the dynamics of elementary chemical reactions. The Division has continued to place a strong emphasis on full compliance with environmental health and safety guidelines and regulations and has made progress in technology transfer to industry. Finally, the Division has begun a new program in advanced battery research and development that should help strengthen industrial competitiveness both at home and abroad.

  13. The chemical industry, by country

    SciTech Connect (OSTI)

    Not Available

    1995-03-01

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  14. Method for producing chemical energy

    DOE Patents [OSTI]

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  15. Chemical Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Inventory Use the following dropdown menus to filter the results for chemical records. To reset the results clear the entries and click "update". Facility - Any - SSRL LCLS Building - Any - 120 131 999 Room - Any - 109 113 209 257 Storage Area Storage Category Apply Title Facility Building Room Storage Area Storage Category Available to All Qty. Size Units Responsible Person 1,3-cyclohexadiene SSRL 131 209 CI L No 1 25 milliliters (ml) Tsu-Chien Weng 1,4- dioxane SSRL 120 257

  16. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, Robert C. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  17. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  18. High energy chemical laser system

    DOE Patents [OSTI]

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  19. Method of producing a chemical hydride

    DOE Patents [OSTI]

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  20. Chemicals (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemicals (2010 MECS) Chemicals (2010 MECS) Manufacturing Energy and Carbon Footprint for Chemicals Sector (NAICS 325) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Chemicals (125.4 KB) More Documents & Publications All Manufacturing (2010 MECS) Cement (2010 MECS) Computers, Electronics and Electrical Equipment

  1. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  2. Apparatus and methods for detecting chemical permeation

    DOE Patents [OSTI]

    Vo-Dinh, Tuan

    1994-01-01

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  3. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    SciTech Connect (OSTI)

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  4. Olefin recovery via chemical absorption

    SciTech Connect (OSTI)

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  5. chemicals | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemicals Overview Key end products from coal gasification include hydrogen (and synthetic natural gas as a closely related product), electric power, fuels (mainly diesel fuel and gasoline), and fertilizer (which hinges on the large quantities of ammonia produced from gasification). In the context of liquid fuels, methanol can be added as an end product; in some locations (China in particular) methanol is a heavily-used fuel blending stock and feedstock for methyl tert-butyl ether (MTBE)

  6. Chemical Physics | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics FWP/Project Description: Project Leader(s): James Evans, Mark Gordon Principal Investigators: James Evans, Mark Gordon, Klaus Ruedenberg, Theresa Windus Key Scientific Personnel: Da-Jiang Liu, Michael Schmidt. The theoretical Chemical Physics program at Ames Laboratory supports integrated efforts in electronic structure theory and non-equilibrium statistical mechanical & multiscale modeling. The primary focus is on the development and especially application of methods that enable the

  7. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, Charles A.; McAtee, Richard E.

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  8. Chemical vapor deposition of sialon

    DOE Patents [OSTI]

    Landingham, R.L.; Casey, A.W.

    A laminated composite and a method for forming the composite by chemical vapor deposition are described. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200/sup 0/C; and impinging a gas containing N/sub 2/, SiCl/sub 4/, and AlCl/sub 3/ on the surface.

  9. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  10. Passive in-situ chemical sensor

    SciTech Connect (OSTI)

    Morrell, Jonathan S.; Ripley, Edward B.

    2012-02-14

    A chemical sensor for assessing a chemical of interest. In typical embodiments the chemical sensor includes a first thermocouple and second thermocouple. A reactive component is typically disposed proximal to the second thermal couple, and is selected to react with the chemical of interest and generate a temperature variation that may be detected by a comparison of a temperature sensed by the second thermocouple compared with a concurrent temperature detected by the first thermocouple. Further disclosed is a method for assessing a chemical of interest and a method for identifying a reaction temperature for a chemical of interest in a system.

  11. Chemical tracking at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Costain, D.B.

    1994-04-01

    EG&G Rocky Flats, Inc., has developed a chemical tracking system to support compliance with the Emergency Planning and community Right-to-Know Act (EPCRA) at the Rocky Flats Plant. This system, referred to as the EPCRA Chemical Control system (ECCS), uses bar code technology to uniquely identify and track the receipt, distribution, and use of chemicals. Chemical inventories are conducted using hand-held electronic scanners to update a site wide chemical database on a VAX 6000 computer. Information from the ECCS supports preparation of the EPCRA Tier II and Form R reports on chemical storage and use.

  12. ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Environmental Profile of the U.S. Chemical Industry, May 2000 ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical Industry, May 2000 PDF icon ...

  13. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    SciTech Connect (OSTI)

    Qian, Yun; Flanner, M. G.; Leung, Lai-Yung R.; Wang, Weiguo

    2011-03-02

    The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating extensively at a speed faster than any other part of the world. In this study a series of experiments with a global climate model are designed to simulate black carbon (BC) and dust in snow and their radiative forcing and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow, respectively, on the snowpack over the TP, as well as their subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 k/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. The aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0oC averaged over the TP and reduces snowpack over the TP more than that induced by pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere during spring. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net

  14. Parametric Sensitivity Analysis for the Asian Summer Monsoon Precipitation Simulation in the Beijing Climate Center AGCM Version 2.1

    SciTech Connect (OSTI)

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Wu, Tongwen; Huang, Anning; Fang, Yongjie

    2015-07-15

    In this study, we apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM version 2.1 (BCC_AGCM2.1). Our results show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, e.g. increased precipitation over the equator Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic Meiyu distribution over Eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It shows the simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs. over ocean in observation) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean-western Pacific tele-connection as observed. Our model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.

  15. Tanaka Chemical Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: Tanaka Chemical Corp Place: Fukui-shi, Fukui, Japan Zip: 910-3131 Product: Japanese chemical manufactuerer with a focus on materials for...

  16. Searching for the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Searching for the Solar System's Chemical Recipe Searching for the Solar System's Chemical Recipe Print Wednesday, 20 February 2013 00:00 The ratio of isotopes in elements like ...

  17. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Print To study the origins of different ... of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic ...

  18. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Studying the Solar System's Chemical Recipe Print Tuesday, 26 March 2013 00:00 To study the origins of different isotope ratios among ...

  19. Chemical vapor deposition of sialon

    DOE Patents [OSTI]

    Landingham, Richard L.; Casey, Alton W.

    1982-01-01

    A laminated composite and a method for forming the composite by chemical vapor deposition. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200.degree. C.; and impinging a gas containing in a flowing atmosphere of air N.sub.2, SiCl.sub.4, and AlCl.sub.3 on the surface.

  20. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  1. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, Robert S.; Drost, M. Kevin; Call, Charles J.; Birmingham, Joseph G.; McDonald, Carolyn Evans; Kurath, Dean E.; Friedrich, Michele

    1998-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  2. Chemical kinetics and combustion modeling

    SciTech Connect (OSTI)

    Miller, J.A.

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  3. CRAD, Chemical Management Implementation- June 30, 2011

    Broader source: Energy.gov [DOE]

    Chemical Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 45-31, Rev. 1)

  4. Chemical Free Water Analysis with Nanoelectrode Arrays

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-06-05

    Electrochemical analysis is a highly sensitive, chemically selective method for identifying and quantifying many different chemicals in water.  Previous art required  field samples be transported to a laboratory where additional chemicals would be added before the analysis could be performed.  Sandia National Laboratories has invented an electrochemical analysis method that has eliminated the need to add chemicals to the testing process while increasing the...

  5. Chemical Hydrogen Storage Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage » Materials-Based Storage » Chemical Hydrogen Storage Materials Chemical Hydrogen Storage Materials The Fuel Cell Technologies Office's (FCTO's) chemical hydrogen storage materials research focuses on improving the volumetric and gravimetric capacity, transient performance, and efficient, cost-effective regeneration of the spent storage material. Technical Overview The category of chemical hydrogen storage materials generally refers to covalently bound hydrogen in either solid or

  6. Nanomechanical Sensor Detects and Identifies Chemical Analytes

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2012-09-26

    ORNL researchers developed a cost-efficient nanomechanical sensor that candetect chemicals adsorbed to a surface and then quickly analyze and identifythose chemicals. The device is a significant improvement over current detectiontechnologies, which are not able to perform reliable identification. Rapididentification of trace amounts of chemicals(e.g., polymers, explosives) is importantfor ensuring safety in pharmaceutical, transportation, and other sectors....

  7. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  8. Apparatus and methods for detecting chemical permeation

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1994-12-27

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation. The invention also relates to the fabrication of protective clothing materials. 13 figures.

  9. Chemical microreactor and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan

    2005-11-01

    A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.

  10. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, Kevin L.; Hannum, David W.; Conrad, Frank James

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  11. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  12. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  13. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  14. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  15. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  16. Lee Chung Yung Chemical Industry Corporation | Open Energy Information

    Open Energy Info (EERE)

    Chung Yung Chemical Industry Corporation Jump to: navigation, search Name: Lee Chung Yung Chemical Industry Corporation Place: Taipei, Taiwan Product: Chemical manufacturer...

  17. Spin-selective recombination kinetics of a model chemical magnetorecep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spin-selective recombination kinetics of a model chemical magnetoreceptor Authors: Maeda, ... recombination kinetics of a model chemical magnetoreceptor Source: Chemical ...

  18. Nuclear energy field fascinates David Parkinson, chemical engineer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear energy field fascinates David Parkinson, chemical engineer Nuclear energy field fascinates David Parkinson, chemical engineer Chemical engineer undergraduate designs and ...

  19. ITP Chemicals: Final Report: Evaluation of Alternative Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, ...

  20. T Plant, Chemical Separation Building | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manhattan Project Signature Facilities T Plant, Chemical Separation Building T Plant, Chemical Separation Building Photos of T-plant's construction and T-Plant's Chemical ...

  1. Toxic chemical considerations for tank farm releases

    SciTech Connect (OSTI)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  2. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  3. SOME CHEMICAL SAFETY ASPECTS AT LANL

    SciTech Connect (OSTI)

    J. LAUL

    2001-05-01

    Recently, the Department of Energy (DOE) and its contractors have begun activities to improve the quality and consistency of chemical safety programs throughout the DOE Complex. Several working groups have been formed to assemble a framework for systematically identifying and quantifying chemical hazards and managing chemical risks. At LANL, chemical safety program is implemented through Laboratory Implementation Requirements (LIRs), which are part of the Integrated Safety Management (ISM) plan that includes Safe Work Practices, emphasizing five core functions; define work, identify and analyze hazards, develop and implement controls, perform work safely, and ensure performance. Work is authorized in medium, low and minimal risk areas and not in high risk. Some chemical safety aspects are discussed in terms of chemical hazards and identification, screening, facility hazard categorization--Category A (high), Category B (moderate), and Category C (low), and their requirements in format and content in Authorization Safety Basis documents.

  4. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  6. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  7. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  8. Manager, International Chemical Threat Reduction Department, Sandia

    National Nuclear Security Administration (NNSA)

    National Laboratories | National Nuclear Security Administration | (NNSA) Manager, International Chemical Threat Reduction Department, Sandia National Laboratories Nancy B. Jackson Nancy Jackson Nancy B. Jackson, manager of the International Chemical Threat Reduction Department at Sandia National Laboratories, will be the American Chemical Society president in 2011 and will serve on the ACS Board of Directors during her presidential succession, which will run from 2010 to 2012. Jackson holds

  9. chemical_methods | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Methods Chemical methods focus mainly on alkaline-surfactant-polymer (ASP) processes that involve the injection of micellar-polymers into the reservoir. Chemical flooding reduces the interfacial tension between the in-place crude oil and the injected water, allowing the oil to be produced. Micellar fluids are composed largely of surfactants mixed with water. Goals of polymer floods are to shut off excess water in producing wells, and to improve sweep efficiency to produce more oil.

  10. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  11. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  12. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  13. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  14. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  15. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support,

  16. Distinctive properties of tabular solar chemical reactors

    SciTech Connect (OSTI)

    Meirovitch, E. )

    1991-01-01

    Concentrated sunlight that can be stored in the chemical bond by activating an endothermic reaction. This novel concept has been implemented recently with solar power captured in a central receiver equipped with chemical reactors. The related theory, presented in this report, singles out this interactive radiative-chemical system as distinctively stable thermodynamically, resilient to perturbations, internally regulatory and self-corrective. None of the thermochemical devices conceived so far bear all these attributes.

  17. Chemical Looping Combustion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Looping Combustion chemical-looping-combustion.jpg An economical option for using our abundant, domestic coal resources while eliminating CO2 emissions may sound like science fiction, but NETL researchers are working to bring this technology of the future into the present. Chemical looping is the solution. This cost-effective indirect combustion technology has CO2 capture "built in," effectively eradicating greenhouse gas emissions from coal. Although still a few years away

  18. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Studying the Solar System's Chemical Recipe Print Tuesday, 26 March 2013 00:00 To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three

  19. 2.3 Understanding Chemical Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/1/2011 2.3 Understanding Chemical Reactions The molecular features that influence the rate of chemical reactions were poorly understood until the mid- 1960s, when Dudley Herschbach and his postdoctoral student Yuan T. Lee began a series of experiments at Harvard University. With funding from the Office of Science and predecessor agencies, they explained in detail how chemical reactions take place, and solved the problem of how to observe the random directions and velocities of molecules in a

  20. 2005 Chemical Reactions at Surfaces

    SciTech Connect (OSTI)

    Cynthia M. Friend

    2006-03-14

    The Gordon Research Conference (GRC) on 2005 Chemical Reactions at Surfaces was held at Ventura Beach Marriott, Ventura California from February 13, 2005 through February 18, 2005. The Conference was well-attended with 124 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  1. Division Director, Chemical Sciences, Geosciences and Biosciences

    Broader source: Energy.gov [DOE]

    The Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division is seeking a motivated and highly qualified individual to...

  2. Predicting Pressure-Dependent Combustion Chemical Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Chemical Reactions HomeCapabilities, Computational Modeling & Simulation, CRF, Energy, ... in combus-tion and atmospheric chemistry that is expected to benefit auto and ...

  3. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006,...

  4. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even...

  6. Methods and compounds for chemical ligation

    DOE Patents [OSTI]

    Church, George M.; Sismour, A. Michael

    2013-07-09

    Compositions and methods for chemical ligation are provided. Methods for nucleic acid sequencing, nucleic acid assembly and nucleic acid synthesis are also provided.

  7. Chemical Design Inc CDI | Open Energy Information

    Open Energy Info (EERE)

    Design Inc CDI Jump to: navigation, search Name: Chemical Design Inc (CDI) Place: Lockport, New York Zip: 14094 Product: US-based engineer of separation and purification plants;...

  8. Workshop: Synchrotron Applications in Chemical Catalysis | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications in Chemical Catalysis Tuesday, October 25, 2011 - 8:00am 2011 SSRLLCLS Annual Users Conference This workshop, part of the 2011 SSRLLCLS Annual Users...

  9. Sanyo Chemical Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Jump to: navigation, search Name: Sanyo Chemical Industries Place: Tokyo, Japan Zip: 103-0023 Product: String representation "Sanyo is a petr ... uction process." is...

  10. Dudley Herschbach: Chemical Reactions and Molecular Beams

    Office of Scientific and Technical Information (OSTI)

    As a co-recipient of the 1986 Nobel Prize in Chemistry, 'Dudley Herschbach was cited for ... Dudley R. Herschbach, Harvard Department of Chemistry and Chemical Biology Teaching ...

  11. Method and apparatus for chemical synthesis

    DOE Patents [OSTI]

    Kong; Peter C. , Herring; J. Stephen , Grandy; Jon D.

    2007-12-04

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  12. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets,...

  13. Characterization of Chemical Properties, Unit Cell Parameters...

    Office of Scientific and Technical Information (OSTI)

    They have been characterized by a variety of chemical and physical measurement methods: X-ray fluorescence (XRF), gravimetry, instrumental neutron activation analysis (INAA), ...

  14. Chemically stabilized ionomers containing inorganic fillers

    DOE Patents [OSTI]

    Roelofs, Mark Gerrit

    2013-12-31

    Ionomeric polymers that are chemically stabilized and contain inorganic fillers are prepared, and show reduced degradation. The ionomers care useful in membranes and electrochemical cells.

  15. Rejuvenating Permeable Reactive Barriers by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

  16. FAQS Qualification Card - Chemical Processing | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs is a set of common Functional Area Qualification Standards (FAQS) and ... More Documents & Publications FAQS Gap Analysis Qualification Card - Chemical Processing ...

  17. Chemical Management (Volume 3 of 3)

    Office of Environmental Management (EM)

    ... NFPA 30 (2000), "Flammable and Combustible Liquids Code". NFPA 45 (2000), "Standard on Fire Protection for Laboratories Using Chemicals". NFPA 51 (1997), "Standard for the Design ...

  18. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  19. Handbook of environmental data on organic chemicals

    SciTech Connect (OSTI)

    Verschueren, K.

    1983-01-01

    This text presents essential data on over 2,000 organic chemicals: synonyms, formulas, properties; effects on plants, animals, people, air, water.

  20. Air Products Chemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    Air Products & Chemicals Inc Place: Allentown, Pennsylvania Zip: 18195 Sector: Hydro, Hydrogen, Services Product: A global supplier of merchant hydrogen with a portfolio of...

  1. Fuels and Chemicals from Lignocellulosic Biomass: Valorization...

    Office of Scientific and Technical Information (OSTI)

    Biomass: Valorization of Lignin Mike Kent Deconstruction Division Joint BioEnergy Institute Outline 1. Introduction: -fuels and chemicals from Ngnocellulosic biomass -need ...

  2. Batteryless Chemical Detection - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deployable chemical sensors for military, industrial, and environmental applications. ... small enough to serve in unique situations ranging from military to medical applications. ...

  3. Microbend fiber-optic chemical sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2002-01-01

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  4. WEBINAR: MODULAR CHEMICAL PROCESS INTENSIFICATION INSTITUTE FOR...

    Broader source: Energy.gov (indexed) [DOE]

    The Energy Department's Office of Energy Efficiency and Renewable Energy will conduct an informational webinar for the Modular Chemical Process Intensification Institute for Clean ...

  5. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Consumption Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption This case ...

  6. Tortuous path chemical preconcentrator (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. ...

  7. Chemical Characterization of Individual Particles and Residuals...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Chemical Characterization of Individual ... Collected On Board Research Aircraft in the ISDAC ... inorganic or black carbon cores coated by organic materials. ...

  8. Inventure Chemical Technology | Open Energy Information

    Open Energy Info (EERE)

    Technology Jump to: navigation, search Name: Inventure Chemical Technology Address: P.O. Box 530 Place: Gig Harbor, Washington Zip: 98335 Region: Pacific Northwest Area Sector:...

  9. Distinct effects of anthropogenic aerosols on the East Asian summer monsoon between multidecadal strong and weak monsoon stages

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xie, Xiaoning; Wang, Hongli; Liu, Xiaodong; Li, Jiandong; Wang, Zhaosheng; Liu, Yangang

    2016-06-18

    Industrial emissions of anthropogenic aerosols over East Asia have greatly increased in recent decades, and so the interactions between atmospheric aerosols and the East Asian summer monsoon (EASM) have attracted enormous attention. In order to further understand the aerosol-EASM interaction, we investigate the impacts of anthropogenic aerosols on the EASM during the multidecadal strong (1950–1977) and weak (1978–2000) EASM stages using the Community Atmospheric Model 5.1. Numerical experiments are conducted for the whole period, including the two different EASM stages, with present day (PD, year 2000) and preindustrial (PI, year 1850) aerosol emissions, as well as the observed time-varying aerosolmore » emissions. A comparison of the results from PD and PI shows that, with the increase in anthropogenic aerosols, the large-scale EASM intensity is weakened to a greater degree (-9.8%) during the weak EASM stage compared with the strong EASM stage (-4.4%). The increased anthropogenic aerosols also result in a significant reduction in precipitation over North China during the weak EASM stage, as opposed to a statistically insignificant change during the strong EASM stage. Because of greater aerosol loading and the larger sensitivity of the climate system during weak EASM stages, the aerosol effects are more significant during these EASM stages. Moreover, these results suggest that anthropogenic aerosols from the same aerosol emissions have distinct effects on the EASM and the associated precipitation between the multidecadal weak and strong EASM stages.« less

  10. The Asian Development Bank`s role in promoting cleaner production in the People`s Republic of China

    SciTech Connect (OSTI)

    Huq, A.; Lohani, B.N.; Jalal, K.F.; Ouano, E.A.R.

    1999-09-01

    The People`s Republic of China (PRC) has the fastest growing economy in the world and is the third largest producer and consumer of energy. At the same time, the PRC`s industrial sector contributes heavily to air and water pollution. Because of the linkages between the production and use of energy and environmental degradation, the PRC, with the active support of bilateral and multilateral aid agencies, including the Asian Development Bank (ADB), is adopting measures that link economic growth to improvements in the environment. The PRC is pursuing a two-pronged strategy that involves implementing priority investment programs and promoting economic reforms. The ADB`s experience shows that the concept of cleaner production (CP) has been widely accepted, but the widespread adoption of CP requires a new way of thinking and new management capacities. In this regard, the PRC is at an early stage of promoting CP, and inadequacies in coordination among relevant agencies remain a key obstacle. To support CP activities, the ADB is participating in a cluster of activities within China that include policy development, capacity building, and financing environmental investments. This article describes the ADB`s current efforts to promote CP in PRC and analyzes the effectiveness of those efforts.

  11. Chemical Transformation - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Transformation December 21, 2015, Research Highlights Redox Mediators that ... Read More Chemical Transformation Electrolyte Genome December 21, 2015, Research ...

  12. Chemical compatibility screening test results

    SciTech Connect (OSTI)

    Nigrey, P.J.; Dickens, T.G.

    1997-12-01

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.

  13. Excellence in biotechnology for fuels and chemicals

    SciTech Connect (OSTI)

    Neufeld, S.

    1999-04-23

    The Biotechnology Center for Fuels and Chemicals (BCFC) leads a national effort, in cooperation with industry, to develop innovative, market-driven biotechnologies for producing fuels and chemicals from renewable resources. The BCFC researchers focus on using bioprocesses to convert renewable biomass feedstocks into valuable products.

  14. Chemical Safety Vulnerability Working Group Report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  15. Use and Misuse of Chemical Reactivity Spreadsheets

    SciTech Connect (OSTI)

    Simmons, F

    2005-09-20

    Misidentifying chemical hazards can have serious deleterious effects. Consequences of not identifying a chemical are obvious and include fires, explosions, injury to workers, etc. Consequences of identifying hazards that are really not present can be equally as bad. Misidentifying hazards can result in increased work with loss of productivity, increased expenses, utilization/consumption of scarce resources, and the potential to modify the work to include chemicals or processes that are actually more hazardous than those originally proposed. For these reasons, accurate hazard identification is critical to any safety program. Hazard identification in the world of chemistry is, at best, a daunting task. The knowing or understanding, of the reactions between any of approximately twelve million known chemicals that may be hazardous, is the reason for this task being so arduous. Other variables, such as adding other reactants/contaminants or changing conditions (e.g., temperature, pressure, or concentration), make hazard determination something many would construe as being more than impossibly difficult. Despite these complexities, people who do not have an extensive background in the chemical sciences can be called upon to perform chemical hazard identification. Because hazard identification in the area of chemical safety is so burdensome and because people with a wide variety of training are called upon to perform this work, tools are required to aid in chemical hazard identification. Many tools have been developed. Unfortunately, many of these tools are not seen as the limited resource that they are and are used inappropriately.

  16. Surface wave chemical detector using optical radiation

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  17. Chemical Sciences Division: Annual report 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

  18. Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response

    SciTech Connect (OSTI)

    Hauschild, Veronique; Watson, Annetta Paule

    2013-01-01

    Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facility recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.

  19. Chemicals Industry New Process Chemistry Roadmap

    SciTech Connect (OSTI)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  20. Chemically modified graphite for electrochemical cells

    DOE Patents [OSTI]

    Greinke, Ronald Alfred (Medina, OH); Lewis, Irwin Charles (Strongsville, OH)

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  1. Chemically modified graphite for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  2. Production of chemicals and fuels from biomass

    DOE Patents [OSTI]

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  3. How Do I Work with Chemicals?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do I Work with Chemicals? Print Planning In your experiment proposal, you must indicate whether you will be working with chemicals at the ALS. In the Experiment Safety Sheet (ESS), identify each chemical that you will be working with and let ALS This e-mail address is being protected from spambots. You need JavaScript enabled to view it know if any are flammable, toxic, engineered nanomaterials or reactive items. LBNL has an on-line MSDS database that can provide information for most

  4. How Do I Work with Chemicals?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do I Work with Chemicals? Print Planning In your experiment proposal, you must indicate whether you will be working with chemicals at the ALS. In the Experiment Safety Sheet (ESS), identify each chemical that you will be working with and let ALS This e-mail address is being protected from spambots. You need JavaScript enabled to view it know if any are flammable, toxic, engineered nanomaterials or reactive items. LBNL has an on-line MSDS database that can provide information for most

  5. Chemical safety: asking the right questions

    SciTech Connect (OSTI)

    Whyte, Helena M; Quigley, David; Freshwater, David

    2008-01-01

    Recent reports have shown that, despite efforts to the contrary, chemical accidents continue to occur at an unacceptable rate and there is no evidence that this rate is decreasing. Based on this observation, one can conclude that previous analyses have not accurately identified and implemented appropriate fixes to eliminate identified root causes for chemical events. Based on this, it is time to reevaluate chemical accident data with a fresh eye and determine (a) what corrective actions have already been identified but have not been implemented, (b) what other root causes may be involved, and (c) what new corrective actions should be taken to eliminate these newly identified root causes.

  6. How Do I Work with Chemicals?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do I Work with Chemicals? Print Planning In your experiment proposal, you must indicate whether you will be working with chemicals at the ALS. In the Experiment Safety Sheet (ESS), identify each chemical that you will be working with and let ALS This e-mail address is being protected from spambots. You need JavaScript enabled to view it know if any are flammable, toxic, engineered nanomaterials or reactive items. LBNL has an on-line MSDS database that can provide information for most

  7. How Do I Work with Chemicals?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do I Work with Chemicals? Print Planning In your experiment proposal, you must indicate whether you will be working with chemicals at the ALS. In the Experiment Safety Sheet (ESS), identify each chemical that you will be working with and let ALS This e-mail address is being protected from spambots. You need JavaScript enabled to view it know if any are flammable, toxic, engineered nanomaterials or reactive items. LBNL has an on-line MSDS database that can provide information for most

  8. How Do I Work with Chemicals?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do I Work with Chemicals? Print Planning In your experiment proposal, you must indicate whether you will be working with chemicals at the ALS. In the Experiment Safety Sheet (ESS), identify each chemical that you will be working with and let ALS This e-mail address is being protected from spambots. You need JavaScript enabled to view it know if any are flammable, toxic, engineered nanomaterials or reactive items. LBNL has an on-line MSDS database that can provide information for most

  9. Chemical preconcentrator with integral thermal flow sensor

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  10. Chemical Sciences Division annual report 1994

    SciTech Connect (OSTI)

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  11. CHEMICAL SAFETY: ASKING THE RIGHT QUESTIONS

    SciTech Connect (OSTI)

    Simmons, F

    2008-08-05

    Recent reports have shown that, despite efforts to the contrary, chemical accidents continue to occur at an unacceptable rate and there is no evidence that this rate is decreasing. Based on this observation, one can conclude that previous analyses have not accurately identified and implemented appropriate fixes to eliminate identified root causes for chemical events. Based on this, it is time to reevaluate chemical accident data with a fresh eye and determine (a) what corrective actions have already been identified but have not been implemented, (b) what other root causes may be involved, and (c) what new corrective actions should be taken to eliminate these newly identified root causes.

  12. The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose

    SciTech Connect (OSTI)

    Penza, M.; Jeremic, M.; Marrazzo, E.; Maggi, A.; Ciana, P.; Rando, G.; Grigolato, P.G.; Di Lorenzo, D.

    2011-08-15

    Exposure during early development to chemicals with hormonal action may be associated with weight gain during adulthood because of altered body homeostasis. It is known that organotins affect adipose mass when exposure occurs during fetal development, although no knowledge of effects are available for exposures after birth. Here we show that the environmental organotin tributyltin chloride (TBT) exerts adipogenic action when peripubertal and sexually mature mice are exposed to the chemical. The duration and extent of these effects depend on the sex and on the dose of the compound, and the effects are relevant at doses close to the estimated human intake (0.5 {mu}g/kg). At higher doses (50-500 {mu}g/kg), TBT also activated estrogen receptors (ERs) in adipose cells in vitro and in vivo, based on results from acute and longitudinal studies in ERE/luciferase reporter mice. In 3T3-L1 cells (which have no ERs), transiently transfected with the ERE-dependent reporter plus or minus ER{alpha} or ER{beta}, TBT (in a dose range of 1-100 nM) directly targets each ER subtype in a receptor-specific manner through a direct mechanism mediated by ER{alpha} in undifferentiated preadipocytic cells and by ER{beta} in differentiating adipocytes. The ER antagonist ICI-182,780 inhibits this effect. In summary, the results of this work suggest that TBT is adipogenic at all ages and in both sexes and that it might be an ER activator in fat cells. These findings might help to resolve the apparent paradox of an adipogenic chemical being also an estrogen receptor activator by showing that the two apparently opposite actions are separated by the different doses to which the organism is exposed. - Research Highlights: > The environmental organotin tributyltin chloride shows dose-dependent estrogenic and adipogenic activities in mice. > The duration and extent of these effects depend on the sex and the dose of the compound. > The estrogenic and adipogenic effects of TBT occur at doses closed to

  13. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.J. Kooyman, H.W. Zandbergen, C. Morin, B.M. Weckhuysen, and F.M.F. de Groot, "Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy," Nature...

  14. Chemical structure and dynamics: Annual report 1996

    SciTech Connect (OSTI)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  15. Linyi Gelon Chemical | Open Energy Information

    Open Energy Info (EERE)

    China Product: Shangdong based cathode materials (LiMn2O4 and LiFePO4) maker for Lithium secondary batteries. References: Linyi Gelon Chemical1 This article is a stub. You...

  16. Dow Chemical Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Dow Chemical Company Place: Midland, MI Zip: 48667 Website: www.dow.com Coordinates: 43.6039709, -84.2370999 Show Map Loading map......

  17. Collaborating for Multi-Scale Chemical Science

    SciTech Connect (OSTI)

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  18. Method And Apparatus For Detecting Chemical Binding

    DOE Patents [OSTI]

    Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Wells, Cyndi A.

    2005-02-22

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  19. Chemical sensor with oscillating cantilevered probe

    DOE Patents [OSTI]

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  20. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J.; Currier, Robert P.; Laia, Jr., Joseph R.; Barbero, Robert S.

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  1. Chemical structure and dynamics. Annual report 1995

    SciTech Connect (OSTI)

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  2. Chemical Hydrogen Storage Research and Development

    Broader source: Energy.gov [DOE]

    DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient regeneration systems for these irreversible hydrogen storage systems. Significant technical issues remain...

  3. Sensor for detecting and differentiating chemical analytes

    DOE Patents [OSTI]

    Yi, Dechang; Senesac, Lawrence R.; Thundat, Thomas G.

    2011-07-05

    A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.

  4. Method and apparatus for detecting chemical binding

    DOE Patents [OSTI]

    Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Wells, Cyndi A.

    2007-07-10

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  5. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  6. Annular gel reactor for chemical pattern formation

    DOE Patents [OSTI]

    Nosticzius, Zoltan; Horsthemke, Werner; McCormick, William D.; Swinney, Harry L.; Tam, Wing Y.

    1990-01-01

    The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.

  7. LANSCE | Lujan Center | Chemical & Sample Prep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Sample Preparation For general questions, please contact the Lujan Center Chemical and Sample Preparation Laboratory responsible: Charles Kelsey | ckelsey@lanl.gov | 505.665.5579 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact theLujan Center Experiment Coordinator: TBA Chemistry Laboratories High-Pressure Laboratory X-ray Laboratory Spectroscopy Laboratory Clean Room Laboratory Glove box - He atmosphere High-purity water Diamond

  8. Hobart named American Chemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hobart named American Chemical Society Fellow August 21, 2013 David Hobart, long-time Chemistry Division employee and current affiliate in the National Security Education Center (NSEC), has been elected to Fellow of the American Chemical Society (ACS). The ACS honored him for his significant contributions to f-element science. The f-elements are those that have electrons in their f orbitals (lanthanides and the actinides). The ACS noted that Hobart contributed the reduction potential for the

  9. Real time chemical exposure and risk monitor

    DOE Patents [OSTI]

    Thrall, Karla D.; Kenny, Donald V.; Endres, George W. R.; Sisk, Daniel R.

    1997-01-01

    The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose.

  10. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three decades, Mark Thiemens, Dean of the Division of Physical Sciences at UCSD,

  11. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three decades, Mark Thiemens, Dean of the Division of Physical Sciences at UCSD,

  12. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three decades, Mark Thiemens, Dean of the Division of Physical Sciences at UCSD,

  13. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three decades, Mark Thiemens, Dean of the Division of Physical Sciences at UCSD,

  14. Predicted thermochemistry for chemical conversions of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-hydroxymethylfurfural | Argonne Leadership Computing Facility Predicted thermochemistry for chemical conversions of 5-hydroxymethylfurfural Authors: Assary, R.S., Redfernb, P.C., Hammondd, J.R., Greeley, J., Curtiss, L.A. The thermochemistry of various chemical transformations of 5-hydroxy methyl furfural (HMF) were investigated using highly accurate Gaussian-4 (G4) theory. The conversion of HMF to nonane through aldol condensation, hydrogenation, and hydrogenolysis reactions was found to

  15. Expansion of ARAC for chemical releases

    SciTech Connect (OSTI)

    Baskett, R.L.; Blair, M.D.; Foster, C.S.; Taylor, A.G.

    1997-07-01

    In 1996 the Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) completed an effort to expand its national emergency response modeling system for chemical releases. Key components of the new capability include the integration of (1) an extensive chemical property database, (2) source modeling for tanks and evaporating pools, (3) denser-than-air dispersion, (4) public exposure guidelines, and (5) an interactive graphical user interface (GUI). Recent use and the future of the new capability are also discussed.

  16. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    SciTech Connect (OSTI)

    Horowitz, Jordan M.

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  17. DuPont Chemical Vapor Technical Report

    SciTech Connect (OSTI)

    MOORE, T.L.

    2003-10-03

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

  18. ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical Industry, May 2000

    Office of Energy Efficiency and Renewable Energy (EERE)

    Profiles about the ethylene chain, propylene chain, benzene-toulene-xylene chain, agricultural chemicals chain, chlor-alkali industry, and supporting processes

  19. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  20. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  1. Engineered Barrier System: Physical and Chemical Environment

    SciTech Connect (OSTI)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  2. Korea Research Institute of Chemical Technology KRICT | Open...

    Open Energy Info (EERE)

    of Chemical Technology KRICT Jump to: navigation, search Name: Korea Research Institute of Chemical Technology (KRICT) Place: Yooseong-gu, Daejeon, Korea (Republic) Zip: 305-600...

  3. Nova Chemicals Reliance Industries JV | Open Energy Information

    Open Energy Info (EERE)

    Product: Nova Chemicals has signed an agreement with Reliance Industries to construct energy efficient buildings in India. References: Nova Chemicals & Reliance Industries...

  4. Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion ...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion Citation Details In-Document Search Title: Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion Nanoscale ...

  5. Enabling Low Temperature Combustion Through Thermo-Chemical Recuperati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Through Thermo-Chemical Recuperation Enabling Low Temperature Combustion Through Thermo-Chemical Recuperation Poster presentation from the 2007 Diesel ...

  6. Chemical and isotopic characteristics of fluids within the Baca...

    Open Energy Info (EERE)

    by conductive reheating during downward movement. Chemical modeling using the EQ3NR computer code indicates chemical stability with the mineral assemblage quartz, albite, K-mica,...

  7. MSA Apparatus Construction for Chemical Equipment Ltd | Open...

    Open Energy Info (EERE)

    MSA Apparatus Construction for Chemical Equipment Ltd Jump to: navigation, search Name: MSA Apparatus Construction for Chemical Equipment Ltd Place: United Kingdom Sector: Hydro,...

  8. Overview of Detailed Chemical Speciation and Particle Sizing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detailed Chemical Speciation and Particle Sizing for Diesel Exhaust, Both Real Time and Filter Based Measurements Overview of Detailed Chemical Speciation and Particle Sizing for ...

  9. Brookhaven National Laboratory - Sr90 - Chemical Holes | Department...

    Office of Environmental Management (EM)

    - Chemical Holes Brookhaven National Laboratory - Sr90 - Chemical Holes January 1, 2014 - ... InstallationName, State: Brookhaven National Laboratory Responsible DOE Office: Office of ...

  10. Commercialization of Bio-Based Chemicals: A Successful Public...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Based Chemicals: A Successful Public-Private Partnership Commercialization of Bio-Based Chemicals: A Successful Public-Private Partnership Opening Plenary Session: Celebrating ...

  11. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Atom-Efficient Chemical Transformations - an Energy Frontier Research Center The Institute for Atom-Efficient Chemical Transformations (IACT) employs a...

  12. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific roadblocks to U.S. energy security. Institute for Atom-Efficient Chemical Transformations The Institute for Atom-Efficient Chemical Transformations (IACT)...

  13. Materials Down Select Decisions Made Within DOE's Chemical Hydrogen...

    Office of Environmental Management (EM)

    Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center of Excellence Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center of ...

  14. Final Report for the DOE Chemical Hydrogen Storage Center of...

    Office of Environmental Management (EM)

    Final Report for the DOE Chemical Hydrogen Storage Center of Excellence Final Report for the DOE Chemical Hydrogen Storage Center of Excellence This technical report describes the ...

  15. Podolsky Chemical and Metallurgical Plant PCMP | Open Energy...

    Open Energy Info (EERE)

    Podolsky Chemical and Metallurgical Plant PCMP Jump to: navigation, search Name: Podolsky Chemical and Metallurgical Plant (PCMP) Place: Moscow, Russian Federation Zip: 142103...

  16. Zibo Baoyun Chemical Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zibo Baoyun Chemical Company Ltd Jump to: navigation, search Name: Zibo Baoyun Chemical Company Ltd Place: Zibo, Shandong Province, China Product: Chinese trichlorosilane producer...

  17. Consortium of Chemical International Ltd CCIL | Open Energy Informatio...

    Open Energy Info (EERE)

    of Chemical International Ltd CCIL Jump to: navigation, search Name: Consortium of Chemical International Ltd (CCIL) Place: New Delhi, Delhi (NCT), India Sector: Biomass Product:...

  18. Hawaii HEPCRA Hazardous Chemical Storage and Tier II Reporting...

    Open Energy Info (EERE)

    HEPCRA Hazardous Chemical Storage and Tier II Reporting Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii HEPCRA Hazardous Chemical...

  19. Polish Academy of Sciences Institute of Chemical Engineering...

    Open Energy Info (EERE)

    Polish Academy of Sciences Institute of Chemical Engineering Jump to: navigation, search Name: Polish Academy of Sciences: Institute of Chemical Engineering Place: Gliwice, Poland...

  20. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have ... The ability to image the chemical reactions in living cells in real time, especially in ...

  1. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Office of Environmental Management (EM)

    Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - ...

  2. Chemical Imaging and Dynamical Studies of Reactivity and Emergent...

    Office of Scientific and Technical Information (OSTI)

    Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex ... Title: Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in ...

  3. Lynden Archer receives chemical engineering award > EMC2 News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lynden Archer receives chemical engineering award August 6th, 2014 Lynden Archer, the William C. Hooey Director and Professor of Chemical and Biomolecular Engineering, has...

  4. New mechanism discovered for controlling ultracold chemical reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New mechanism for controlling ultracold chemical reactions New mechanism discovered for controlling ultracold chemical reactions Researchers have discovered a new interference ...

  5. Chemical stabilization of Hanford tank residual waste (Journal...

    Office of Scientific and Technical Information (OSTI)

    Chemical stabilization of Hanford tank residual waste Citation Details In-Document Search Title: Chemical stabilization of Hanford tank residual waste Authors: Cantrell, Kirk J. ; ...

  6. Direct Determination of the Chemical Bonding of Individual Impurities...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Direct Determination of the Chemical Bonding of Individual Impurities in Graphene Prev Next Title: Direct Determination of the Chemical ...

  7. Microcalibrator system for chemical signature and reagent delivery...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Microcalibrator system for chemical signature and reagent delivery. Citation Details In-Document Search Title: Microcalibrator system for chemical signature and ...

  8. Nanoscale Morphological and Chemical Changes of High Voltage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Morphological and Chemical Changes of High Voltage Lithium-Manganese Rich NMC ... must understand the evolution of chemical composition and morphology of battery ...

  9. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of ... Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization ...

  10. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial ...

  11. Chemical Doping Enhances Electronic Transport in Networks of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12, 2015, Research Highlights Chemical Doping Enhances Electronic Transport in ... Here, it is shown that upon chemical oxidation, hexabenzocoronenes (HBCs) enhance charge ...

  12. Evaluation of Pre- and Post-Redevelopment Groundwater Chemical...

    Office of Environmental Management (EM)

    Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses from LM ...

  13. Computer Modeling of Chemical and Geochemical Processes in High...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer modeling of chemical and geochemical processes in high ionic strength solutions ... in brine Computer modeling of chemical and geochemical processes in high ionic ...

  14. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Real-Time Chemical Imaging of Bacterial Biofilm Development Print Wednesday, 25 August 2010 00:00 Scientists have ...

  15. Experiment-Based Model for the Chemical Interactions between...

    Broader source: Energy.gov (indexed) [DOE]

    Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, ... Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission Fluid Chemical Impact of ...

  16. Chemical analysis of Wild-2 samples returned by Stardust (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Chemical analysis of Wild-2 samples returned by Stardust Citation Details In-Document Search Title: Chemical analysis of Wild-2 samples returned by Stardust Authors: ...

  17. Chemical Scientist Hendrik Bluhm Receives Bessel Research Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Scientist Hendrik Bluhm Receives Bessel Research Award Chemical Scientist Hendrik Bluhm Receives Bessel Research Award Print Friday, 24 May 2013 00:00 Hendrik Bluhm of the ...

  18. DOE Funding Leads to New Technology that is Revolutionizing Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Analysis Research funded by the DOE Office of Science has led to the commercialization of a new product, the Polyarc(tm) reactor, which is improving chemical ...

  19. Nanojunction Sensors for the Detection of chemical and Biological...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanojunction Sensors for the Detection of chemical and Biological Species DOE Grant ... gaps for various applications, including chemical and biological sensors, magnetoresistive ...

  20. Analysis and Reduction of Chemical Models under Uncertainty ...

    Office of Scientific and Technical Information (OSTI)

    Analysis and Reduction of Chemical Models under Uncertainty Citation Details In-Document Search Title: Analysis and Reduction of Chemical Models under Uncertainty Abstract not ...

  1. Chiral random matrix model at finite chemical potential: Characteristi...

    Office of Scientific and Technical Information (OSTI)

    Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality Prev Next Title: Chiral random matrix model at finite chemical ...

  2. The Formation of Pioneer Plant Projects in Chemical Processing...

    Office of Environmental Management (EM)

    The Formation of Pioneer Plant Projects in Chemical Processing Firms The Formation of Pioneer Plant Projects in Chemical Processing Firms This report should provide DOE and the ...

  3. The TSCA interagency testing committee`s approaches to screening and scoring chemicals and chemical groups: 1977-1983

    SciTech Connect (OSTI)

    Walker, J.D.

    1990-12-31

    This paper describes the TSCA interagency testing committee`s (ITC) approaches to screening and scoring chemicals and chemical groups between 1977 and 1983. During this time the ITC conducted five scoring exercises to select chemicals and chemical groups for detailed review and to determine which of these chemicals and chemical groups should be added to the TSCA Section 4(e) Priority Testing List. 29 refs., 1 fig., 2 tabs.

  4. DOE contractor's meeting on chemical toxicity

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metals Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session.

  5. Separations Needs for the Alternate Chemical Cycles

    SciTech Connect (OSTI)

    Frederick F. Stewart

    2007-05-01

    The bulk of the efforts for the development of a hydrogen production plant supported by the Nuclear Hydrogen Initiative (NHI) have been directed towards the sulfur-iodine (S-I) thermochemical cycle. However, it was judged prudent to re-investigate alternate chemical cycles in light of new developments and technical accomplishments derived from the current S-I work. This work analyzes the available data for the promising alternate chemical cycles to provide an understanding of their inherent chemical separations needs. None of the cycles analyzed have separations that are potential “show stoppers”; although some of the indicated separations will be challenging to perform. The majority of the separations involve processes that are either more achievable or more developed

  6. Engineering microbes for efficient production of chemicals

    SciTech Connect (OSTI)

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  7. Development of specialty chemicals from dimethyl ether

    SciTech Connect (OSTI)

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Dimethyl ether (DME) may be efficiently produced from coal-bases syngas in a high pressure, mechanically agitated slurry reactor. DME synthesis occurs in the liquid phase using a dual catalyst. By operating in a dual catalyst mode, DME may be converted from in-situ produced methanol resulting in higher methyl productivities and syngas conversions over methanol conversion alone. The feasibility of utilizing DME as a building block for more valuable specialty chemicals has been examined. A wide variety of petrochemicals may be produced from DME including light olefins, gasoline range hydrocarbons, oxygenates, and glycol precursors. These chemicals represent an important part of petroleum industries inventory of fine chemicals. Carbonylation, hydrocarbonylation, and oxidative dimerization are but a few of the reactions in which DME may undergo conversion. DME provides an additional route for the production of industrially important petrochemicals.

  8. Conformal chemically resistant coatings for microflow devices

    DOE Patents [OSTI]

    Folta, James A.; Zdeblick, Mark

    2003-05-13

    A process for coating the inside surfaces of silicon microflow devices, such as electrophoresis microchannels, with a low-stress, conformal (uniform) silicon nitride film which has the ability to uniformly coat deeply-recessed cavities with, for example, aspect ratios of up to 40:1 or higher. The silicon nitride coating allows extended exposure to caustic solutions. The coating enables a microflow device fabricated in silicon to be resistant to all classes of chemicals: acids, bases, and solvents. The process involves low-pressure (vacuum) chemical vapor deposition. The ultra-low-stress silicon nitride deposition process allows 1-2 .mu.m thick films without cracks, and so enables extended chemical protection of a silicon microflow device against caustics for up to 1 year. Tests have demonstrated the resistance of the films to caustic solutions at both ambient and elevated temperatures to 65.degree. C.

  9. Compact chemical energy system for seismic applications

    DOE Patents [OSTI]

    Engelke, Raymond P.; Hedges, Robert O.; Kammerman, Alan B.; Albright, James N.

    1998-01-01

    A chemical energy system is formed for producing detonations in a confined environment. An explosive mixture is formed from nitromethane (NM) and diethylenetriamine (DETA). A slapper detonator is arranged adjacent to the explosive mixture to initiate detonation of the mixture. NM and DETA are not classified as explosives when handled separately and can be safely transported and handled by workers in the field. In one aspect of the present invention, the chemicals are mixed at a location where an explosion is to occur. For application in a confined environment, the chemicals are mixed in an inflatable container to minimize storage space until it is desired to initiate an explosion. To enable an inflatable container to be used, at least 2.5 wt % DETA is used in the explosive mixture. A barrier is utilized that is formed of a carbon composite material to provide the appropriate barrel geometry and energy transmission to the explosive mixture from the slapper detonator system.

  10. Chemical and biological sensing using tuning forks

    DOE Patents [OSTI]

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  11. Chemical structure and dynamics. Annual report 1994

    SciTech Connect (OSTI)

    Colson, S.D.

    1995-07-01

    The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

  12. Chemical sensors technology development planning workshop

    SciTech Connect (OSTI)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R&D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R&D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts.

  13. Annual Report 1998: Chemical Structure and Dynamics

    SciTech Connect (OSTI)

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  14. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    SciTech Connect (OSTI)

    Malek, Ali; Balawender, Robert

    2015-02-07

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  15. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    SciTech Connect (OSTI)

    Pinnaduwage, Lal A; Thundat, Thomas G; Brown, Gilbert M; Hawk, John Eric; Boiadjiev, Vassil I

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  16. Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

  17. Replacement solvents for use in chemical synthesis

    DOE Patents [OSTI]

    Molnar, Linda K.; Hatton, T. Alan; Buchwald, Stephen L.

    2001-05-15

    Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

  18. Detection of electrophilic and nucleophilic chemical agents

    DOE Patents [OSTI]

    McElhanon, James R.; Shepodd, Timothy J.

    2014-08-12

    A "real time" method for detecting chemical agents generally and particularly electrophilic and nucleophilic species by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species. By bonding or otherwise attaching these precursor molecules to a surface or substrate they can be used in numerous applications.

  19. Real time chemical exposure and risk monitor

    DOE Patents [OSTI]

    Thrall, K.D.; Kenny, D.V.; Endres, G.W.R.; Sisk, D.R.

    1997-07-08

    The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose. 7 figs.

  20. Chemical vapor deposition of epitaxial silicon

    DOE Patents [OSTI]

    Berkman, Samuel

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  1. Collaboratory for Multiscale Chemical Science (CMCS)

    SciTech Connect (OSTI)

    Allison, Thomas C

    2012-07-03

    This document provides details of the contributions made by NIST to the Collaboratory for Multiscale Chemical Science (CMCS) project. In particular, efforts related to the provision of data (and software in support of that data) relevant to the combustion pilot project are described.

  2. Detection of Electrophilic and Nucleophilic Chemical Agents

    DOE Patents [OSTI]

    McElhanon, James R.; Shepodd, Timothy J.

    2008-11-11

    A "real time" method for detecting electrophilic and nucleophilic species generally by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species.

  3. Chemical segregation in metallic glass nanowires

    SciTech Connect (OSTI)

    Zhang, Qi; Li, Mo; Li, Qi-Kai

    2014-11-21

    Nanowires made of metallic glass have been actively pursued recently due to the superb and unique properties over those of the crystalline materials. The amorphous nanowires are synthesized either at high temperature or via mechanical disruption using focused ion beam. These processes have potential to cause significant changes in structure and chemical concentration, as well as formation of defect or imperfection, but little is known to date about the possibilities and mechanisms. Here, we report chemical segregation to surfaces and its mechanisms in metallic glass nanowires made of binary Cu and Zr elements from molecular dynamics simulation. Strong concentration deviation are found in the nanowires under the conditions similar to these in experiment via focused ion beam processing, hot imprinting, and casting by rapid cooling from liquid state. Our analysis indicates that non-uniform internal stress distribution is a major cause for the chemical segregation, especially at low temperatures. Extension is discussed for this observation to multicomponent metallic glass nanowires as well as the potential applications and side effects of the composition modulation. The finding also points to the possibility of the mechanical-chemical process that may occur in different settings such as fracture, cavitation, and foams where strong internal stress is present in small length scales.

  4. Chemical enhancement of metallized zinc anode performance

    SciTech Connect (OSTI)

    Bennett, J.

    1998-12-31

    Galvanic current delivered to reinforced concrete by a metallized zinc anode was studied relative to the humidity of its environment and periodic direct wetting. Current decreased quickly at low humidity to values unlikely to meet accepted cathodic protection criteria, but could be easily restored by direct wetting of the anode. Thirteen chemicals were screened for their ability to enhance galvanic current. Such chemicals, when applied to the exterior surface of the anode, are easily transported by capillary action to the anode-concrete interface where they serve to maintain the interface conductive and the zinc electrochemically active. The most effective chemicals were potassium and lithium bromide, acetate, chloride and nitrate, which increased galvanic current by a factor of 2--15, depending on relative humidity and chloride contamination of the concrete. This new technique is expected to greatly expand the number of concrete structures which can be protected by simple galvanic cathodic protection, The use of lithium-based chemicals together with metallized zinc anode is also proposed for mitigation of existing problems due to ASR. In this case, lithium which prevents or inhibits expansion due to ASR can be readily injected into the concrete. A new process, electrochemical maintenance of concrete (EMC), is also proposed to benefit reinforced concrete structures suffering from chloride-induced corrosion.

  5. Chemical kinetics and oil shale process design

    SciTech Connect (OSTI)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  6. Chemical Biological Emergency Management Information System

    Energy Science and Technology Software Center (OSTI)

    2004-06-15

    CB-EMIS is designed to provide information and analysis to transit system operators and emergency responders in the event of a chemical attack on a subway system. The software inforporates detector data, video images, train data, meteorological data, and above- and below-ground plume dispersion models, hight of the liquid level.

  7. Chemically bonded phospho-silicate ceramics

    DOE Patents [OSTI]

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  8. Chemical vapor deposition of mullite coatings

    DOE Patents [OSTI]

    Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  9. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect (OSTI)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  10. Low chemical concentrating steam generating cycle

    DOE Patents [OSTI]

    Mangus, James D. (Greensburg, PA)

    1983-01-01

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  11. Biosensor discovery of thyroxine transport disrupting chemicals

    SciTech Connect (OSTI)

    Marchesini, Gerardo R. Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J.

    2008-10-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds.

  12. Systems analysis of past, present, and future chemical terrorism scenarios.

    SciTech Connect (OSTI)

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  13. Identification of chemical hazards for security risk analysis activities.

    SciTech Connect (OSTI)

    Jaeger, Calvin Dell

    2005-01-01

    The presentation outline of this paper is: (1) How identification of chemical hazards fits into a security risk analysis approach; (2) Techniques for target identification; and (3) Identification of chemical hazards by different organizations. The summary is: (1) There are a number of different methodologies used within the chemical industry which identify chemical hazards: (a) Some develop a manual listing of potential targets based on published lists of hazardous chemicals or chemicals of concern, 'expert opinion' or known hazards. (b) Others develop a prioritized list based on chemicals found at a facility and consequence analysis (offsite release affecting population, theft of material, product tampering). (2) Identification of chemical hazards should include not only intrinsic properties of the chemicals but also potential reactive chemical hazards and potential use for activities off-site.

  14. Chemical reactor and method for chemically converting a first material into a second material

    DOE Patents [OSTI]

    Kong, Peter C.

    2008-04-08

    A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.

  15. Air Products & Chemicals, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Products & Chemicals, Inc. Air Products & Chemicals, Inc. Image courtesy of Air Products and Chemicals, Inc Image courtesy of Air Products and Chemicals, Inc APCI PORT ARTHUR ICCS PROJECT In October 2009, DOE selected the Air Products and Chemicals, Inc. (APCI) team to conduct one of 12 projects in Phase 1 of its Industrial Carbon Capture and Storage (ICCS) program. DOE again selected the project in June 2010 as one of three projects to receive continued (Phase 2) funding. In total,

  16. Bandwidth Study U.S. Chemical Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Manufacturing Bandwidth Study U.S. Chemical Manufacturing Chemicals.jpg Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing

  17. Chemical Transformation - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Transformation A second energy storage concept being pursued by JCESR is chemical transformation. This concept involves replacement of intercalation of the working ion at the anode and cathode with higher energy chemical bonds. Chemical transformation research is focused on replacing conventional intercalation of the working ion at the cathode with a true chemical reaction. On the basis of techno-economic modeling of the possible battery systems, we have chosen to focus our efforts on a

  18. Division of Chemical & Biological Sciences | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Biological Sciences [PHOTO]Laboratory-scale instrumentation for chemical analysis. The Division of Chemical and Biological Sciences is known for laboratory-scale instrumentation development for chemical analysis. Read about dynamic nuclear polarization (DNP) | Read about stimulation emission deplection (STED) [IMAGE]Imaging mass spectrometry Imaging mass spectrometry enables new understanding of the distribution of chemicals in plant materials. Read More [PHOTO] Previous Pause

  19. Multidimensional simulation and chemical kinetics development for high

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency clean combustion engines | Department of Energy Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Developing chemical kinetic mechanisms and applying them to simulating engine combustion processes. deer09_aceves.pdf (3.04 MB) More Documents & Publications Chemical Kinetic Research on HCCI & Diesel Fuels Chemical

  20. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  1. A New Approach to Modeling Aerosol Effects on East Asian Climate: Parametric Uncertainties Associated with Emissions, Cloud Microphysics and their Interactions

    SciTech Connect (OSTI)

    Yan, Huiping; Qian, Yun; Zhao, Chun; Wang, Hailong; Wang, Minghuai; Yang, Ben; Liu, Xiaohong; Fu, Qiang

    2015-09-16

    In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. The relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.

  2. Laser-based Sensors for Chemical Detection

    SciTech Connect (OSTI)

    Myers, Tanya L.; Phillips, Mark C.; Taubman, Matthew S.; Bernacki, Bruce E.; Schiffern, John T.; Cannon, Bret D.

    2010-05-10

    Stand-off detection of hazardous materials ensures that the responder is located at a safe distance from the suspected source. Remote detection and identification of hazardous materials can be accomplished using a highly sensitive and portable device, at significant distances downwind from the source or the threat. Optical sensing methods, in particular infrared absorption spectroscopy combined with quantum cascade lasers (QCLs), are highly suited for the detection of chemical substances since they enable rapid detection and are amenable for autonomous operation in a compact and rugged package. This talk will discuss the sensor systems developed at Pacific Northwest National Laboratory and will discuss the progress to reduce the size and power while maintaining sensitivity to enable stand-off detection of multiple chemicals.

  3. Amineborane Based Chemical Hydrogen Storage - Final Report

    SciTech Connect (OSTI)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also

  4. Polymers for Chemical Sensors Using Hydrosilylation Chemistry

    SciTech Connect (OSTI)

    Grate, Jay W.; Kaganove, Steven N.; Nelson, David A.

    2001-06-28

    Sorbent and functionalized polymers play a key role in a diverse set of fields, including chemical sensors, separation membranes, solid phase extraction techniques, and chromatography. Sorbent polymers are critical to a number of sensor array or "electronic nose" systems. The responses of the sensors in the array give rise to patterns that can be used to distinguish one compound from another, provided that a sufficiently diverse set of sensing materials is present in the array. Figure 1 illustrates the concept of several sensors, each with a different sensor coating, giving rise to variable responses to an analyte that appear as a pattern in bar graph format. Using hydrosilylation as the bond-forming reaction, we have developed a versatile and efficient approach to developing sorbent polymers with diverse interactive properties for sensor applications. Both the chemical and physical properties of these polymers are predictable and tunable by design.

  5. Microfabricated electrochemiluminescence cell for chemical reaction detection

    DOE Patents [OSTI]

    Northrup, M. Allen; Hsueh, Yun-Tai; Smith, Rosemary L.

    2003-01-01

    A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  6. A NEW GENERATION CHEMICAL FLOODING SIMULATOR

    SciTech Connect (OSTI)

    Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad

    2005-01-01

    The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art algorithms and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application. In this final report, we will detail our progress on Tasks 1 through 3 of the project.

  7. The chemical weapons conventional legal issues

    SciTech Connect (OSTI)

    Tanzman, E.A.

    1997-12-31

    Because the Chemical Weapons Convention (CWC) contains the best developed verification regime in multilaterial arms control history, some have raised concerns for the chemical industry that have legal implications. Chief among these are safeguarding confidential business information and protecting constitutional rights during inspections. This discussion will show how the CWC and proposed national implementing legislation work together to allay these concerns. Both concerns are legitimate. Confidential business information could be lost to a national government or the CWC governing body accidentially or purposely. The CWC regime of routine and challenge inspections are searches under the constitution and could, if abused, potentially conflict with recognized commercial privacy interests. Neither concern justifies opposition to the convention, but both need to be addressed in national implementing legislation. Proposed US legislation goes far in this direction, but can be improved.

  8. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOE Patents [OSTI]

    Colburn, J.W. Jr.

    1991-07-23

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  9. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOE Patents [OSTI]

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  10. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2000-03-31

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  11. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect (OSTI)

    Peter Tijrn

    2003-01-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  12. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    1999-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  13. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  14. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  15. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    2000-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  16. Workshop: Synchrotron Applications in Chemical Catalysis | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Synchrotron Applications in Chemical Catalysis Tuesday, October 25, 2011 - 8:00am 2011 SSRL/LCLS Annual Users Conference This workshop, part of the 2011 SSRL/LCLS Annual Users Conference, will focus on understanding processes in homogeneous (both biological and small molecule) and heterogeneous catalysis, using synchrotron-based methods. The workshop will cover more traditional applications (using XANES and EXAFS), as well as applications of XES, RIXS and

  17. Separation of uranium isotopes by chemical exchange

    DOE Patents [OSTI]

    Ogle, P.R. Jr.

    1974-02-26

    A chemical exchange method is provided for separating /sup 235/U from / sup 238/U comprising contacting a first phase containing UF/sub 6/ with a second phase containing a compound selected from the group consisting of NOUF/sub 6/, NOUF/sub 7/, and NO/sub 2/UF/sub 7/ until the U Fsub 6/ in the first phase becomes enriched in the /sup 235/U isotope. (Official Gazette)

  18. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2000-09-30

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  19. Alternative fuels and chemicals from synthesis gas

    SciTech Connect (OSTI)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  20. Chemical Analysis of Nanodomains | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Nanodomains FWP/Project Description: Project Leader(s): Emily Smith Principal Investigators: Jacob Petrich, Emily Smith, Javier Vela We seek to understand the basic principles that underlie energy-relevant chemical separations; develop analytical methods to improve the sensitivity, reliability, and productivity of analytical determinations; and to develop new approaches to analysis. Our research emphasizes instrumentation and technique development highly relevant to the main focus

  1. Renewable chemical feedstock - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Renewable chemical feedstock Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Coexpressing Escherichia coli Cyclopropane Synthase with Sterculia foetida Lysophosphatidic Acid Acyltransferase Enhances Cyclopropane Fatty Acid Accumulation (424 KB) <br type="_moz" /> Synthesis of cyclopropane fatty acids (CPFA) and illustrations of natural sources of CPFAs. Synthesis of cyclopropane fatty

  2. High Efficiency Modular Chemical Processes (HEMCP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ADVANCED MANUFACTURING OFFICE High Efficiency Modular Chemical Processes (HEMCP) Modular Process Intensification Framework for R&D Targets Advanced Manufacturing Office September 27, 2014 Dickson Ozokwelu, Technology Manager Presentation Outline 1. What is Process Intensification? 2. DOE's !pproach to Process Intensification 3. Opportunity for Cross-Cutting High-Impact Research 4. Goals of the Process Intensification Institute 5. Addressing the 5 EERE Core Questions 2 | Advanced

  3. Detailed Chemical Kinetic Modeling of Cyclohexane Oxidation

    SciTech Connect (OSTI)

    Silke, E J; Pitz, W J; Westbrook, C K; Ribaucour, M

    2006-11-10

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of cyclohexane at both low and high temperatures. Reaction rate constant rules are developed for the low temperature combustion of cyclohexane. These rules can be used for in chemical kinetic mechanisms for other cycloalkanes. Since cyclohexane produces only one type of cyclohexyl radical, much of the low temperature chemistry of cyclohexane is described in terms of one potential energy diagram showing the reaction of cyclohexyl radical + O{sub 2} through five, six and seven membered ring transition states. The direct elimination of cyclohexene and HO{sub 2} from RO{sub 2} is included in the treatment using a modified rate constant of Cavallotti et al. Published and unpublished data from the Lille rapid compression machine, as well as jet-stirred reactor data are used to validate the mechanism. The effect of heat loss is included in the simulations, an improvement on previous studies on cyclohexane. Calculations indicated that the production of 1,2-epoxycyclohexane observed in the experiments can not be simulated based on the current understanding of low temperature chemistry. Possible 'alternative' H-atom isomerizations leading to different products from the parent O{sub 2}QOOH radical were included in the low temperature chemical kinetic mechanism and were found to play a significant role.

  4. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    SciTech Connect (OSTI)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  5. Chemical inspectors: On the outside looking in

    SciTech Connect (OSTI)

    Smithson, A.E. )

    1991-10-01

    On July 15, the United States, supported by Britain, Australia, and Japan, proposed a new challenge inspection plan for the chemical weapons convention (CWC), which will prohibit the production, possession, use, and transfer of chemical weapons. The Bush administration claims this proposal has the same anytime, anywhere, with no right of refusal' challenge-inspection features George Bush first recommended in 1984 - as well as the latest in managed access,' aerial inspection, and use of sensing devices. But the proposal would let a challenged country stall for days without allowing inspectors to glimpse a suspected chemical-weapons site, and inspectors might never be able to step inside the gates of facilities where cheating is suspected. Countries considering joining the CWC must realize that the new US approach involves plenty of talk but little action. In fact, the US challenge-inspection plan falls so far short of the means needed to detect and deter prohibited activities that even Saddam Hussein and Muammar Khadafi may queue up to sign on the dotted line.

  6. Chemical reactions in reverse micelle systems

    DOE Patents [OSTI]

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  7. Chemical deposition methods using supercritical fluid solutions

    DOE Patents [OSTI]

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  8. Chemical Safety Vulnerability Working Group report. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  9. BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks

    Broader source: Energy.gov [DOE]

    Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project...

  10. Argonne researchers make new study of special type of chemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    make new study of special type of chemical bond By Jared Sagoff * September 29, 2014 Tweet EmailPrint Covalent bonds, one of the most common classes of chemical interactions, occur...

  11. InEnTec Chemical LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: InEnTec Chemical LLC Place: Florida Zip: 32003 Product: US-based plasma gasification technology developer. References: InEnTec Chemical LLC1...

  12. Hawaii Information Package for Chemical Inventory Form (HCIF...

    Open Energy Info (EERE)

    Information Package for Chemical Inventory Form (HCIF)Tier II Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Hawaii Information Package for Chemical...

  13. Dow Chemical Company-Oyster Creek VIII | Open Energy Information

    Open Energy Info (EERE)

    Dow Chemical Company-Oyster Creek VIII Jump to: navigation, search Name: Dow Chemical Company-Oyster Creek VIII Place: Texas Phone Number: 1 989-636-1000; 1 800-331-6451 Website:...

  14. Chemical pressure effects on structural, dielectric and magnetic...

    Office of Scientific and Technical Information (OSTI)

    Chemical pressure effects on structural, dielectric and magnetic properties of solid solutions Mnsub 3-xCosub xTeOsub 6 Citation Details In-Document Search Title: Chemical ...

  15. Choices related to chemical cleaning of fossil plant equipment

    SciTech Connect (OSTI)

    Shields, K.

    1995-01-01

    Choices faced by utility personnel responsible for cleanliness of steamside and waterside surfaces of fossil plant equipment are identified and discussed. Electric Power Research Institute (EPRI) guidelines for chemical cleaning are introduced. A chemical cleaning case history is presented.

  16. Stephen E. Zitney Named American Institute of Chemical Engineers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stephen E. Zitney Named American Institute of Chemical Engineers Fellow Morgantown, W.Va. ... (NETL) has been named as a Fellow by the American Institute of Chemical Engineers (AIChE). ...

  17. The Northeastern Center for Chemical Energy Storage (NECCES)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NorthEast Center for Chemical Energy Storage (NECCES) has been moved to Binghamton ... The Northeastern Center for Chemical Energy Storage (NECCES) is an effort being led by ...

  18. Wet Chemical Compositional and Near IR Spectra Data Sets for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Wet Chemical Compositional and Near IR Spectra Data ... Wet chemical compositional data and NIR spectra exist for the following types of biomass ...

  19. Effect of Chemical Pressure on the Charge Density Wave Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect of Chemical Pressure on the Charge Density Wave Transition in Rare-Earth ... These compounds have the chemical formula RTe3, where R represents a rare earth element ...

  20. Device for collecting chemical compounds and related methods

    DOE Patents [OSTI]

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  1. Thermal, chemical, and mechanical cookoff modeling

    SciTech Connect (OSTI)

    Hobbs, M.L.; Baer, M.R.; Gross, R.J.

    1994-08-01

    A Thermally Reactive, Elastic-plastic eXplosive code, TREX, has been developed to analyze coupled thermal, chemical and mechanical effects associated with cookoff simulation of confined or unconfined energetic materials. In confined systems, pressure buildup precedes thermal runaway, and unconfined energetic material expands to relieve high stress. The model was developed based on nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of a material with a distribution of internal defects represented as clusters of spherical inclusions. A local force balance, with mass continuity constraints, forms the basis of the model requiring input of temperature and reacted gas fraction. This constitutive material model has been incorporated into a quasistatic mechanics code SANTOS as a material module which predicts stress history associated with a given strain history. The thermal-chemical solver XCHEM has been coupled to SANTOS to provide temperature and reacted gas fraction. Predicted spatial history variables include temperature, chemical species, solid/gas pressure, solid/gas density, local yield stress, and gas volume fraction. One-Dimensional Time to explosion (ODTX) experiments for TATB and PBX 9404 (HMX and NC) are simulated using global multistep kinetic mechanisms and the reactive elastic-plastic constitutive model. Pressure explosions, rather than thermal runaway, result in modeling slow cookoff experiments of confined conventional energetic materials such as TATB. For PBX 9404, pressure explosions also occur at fast cookoff conditions because of low temperature reactions of nitrocellulose resulting in substantial pressurization. A demonstrative calculation is also presented for reactive heat flow in a hollow, propellant-filled, stainless steel cylinder, representing a rocket motor. This example simulation show

  2. Decontamination of metals using chemical etching

    DOE Patents [OSTI]

    Lerch, Ronald E.; Partridge, Jerry A.

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  3. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect (OSTI)

    1998-12-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE�s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  4. Carbon nanotube coatings as chemical absorbers

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  5. Direct Chemical Oxidation. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    1998-12-01

    The DOE complex has a need to demonstrate technologies that are alternatives to incineration for the destruction of organic solvents, chlorinated hydrocarbons, plastics, and organic solids. The current industry practice for the targeted waste streams is treatment by incineration. There has been increased public concern on the use of incinerators because of the potential release of products of incomplete combustion, dioxins, furans, and emission of radionuclides. Direct Chemical Oxidation is a technology for the destruction of organic solids and liquids that uses peroxydisulfate as the oxidant to destroy organics and treats residue immobilized using phosphate ceramic solidification.

  6. Use of chemical mechanical polishing in micromachining

    DOE Patents [OSTI]

    Nasby, Robert D.; Hetherington, Dale L.; Sniegowski, Jeffry J.; McWhorter, Paul J.; Apblett, Christopher A.

    1998-01-01

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface.

  7. Use of chemical mechanical polishing in micromachining

    DOE Patents [OSTI]

    Nasby, R.D.; Hetherington, D.L.; Sniegowski, J.J.; McWhorter, P.J.; Apblett, C.A.

    1998-09-08

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface. 4 figs.

  8. Kinetic studies of elementary chemical reactions

    SciTech Connect (OSTI)

    Durant, J.L. Jr.

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  9. Theoretical studies of chemical reaction dynamics

    SciTech Connect (OSTI)

    Schatz, G.C.

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  10. ASPECT Emergency Response Chemical and Radiological Mapping

    SciTech Connect (OSTI)

    LANL

    2008-05-12

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane

  11. ASPECT Emergency Response Chemical and Radiological Mapping

    ScienceCinema (OSTI)

    LANL

    2009-09-01

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane

  12. Portable chemical detection system with intergrated preconcentrator

    DOE Patents [OSTI]

    Baumann, Mark J.; Brusseau, Charles A.; Hannum, David W.; Linker, Kevin L.

    2005-12-27

    A portable system for the detection of chemical particles such as explosive residue utilizes a metal fiber substrate that may either be swiped over a subject or placed in a holder in a collection module which can shoot a jet of gas at the subject to dislodge residue, and then draw the air containing the residue into the substrate. The holder is then placed in a detection module, which resistively heats the substrate to evolve the particles, and provides a gas flow to move the particles to a miniature detector in the module.

  13. Waveguide-based optical chemical sensor

    DOE Patents [OSTI]

    Grace, Karen M.; Swanson, Basil I.; Honkanen, Seppo

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  14. Scientist Named an American Chemical Society Fellow - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientist Named an American Chemical Society Fellow September 1, 2010 Helena Chum Dr. Helena Chum was named a 2010 Fellow by the American Chemical Society. Dr. Helena Chum, research fellow at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), was recently named a 2010 Fellow by the American Chemical Society (ACS). Dr. Chum's work includes the development of technologies for the conversion of biomass and organic wastes into liquid and gaseous fuels, chemicals and

  15. Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Carriers (CEC) for the Utilization of Geothermal Energy Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy DOE Geothermal Peer Review 2010 - Presentation. Project objective: Develop chemical energy carrier (CEC) systems to recover thermal energy from enhanced geothermal systems (EGS) in the form of chemical energy, in addition to sensible and latent energy. specialized_jody_chemical_carriers.pdf (489.93 KB) More Documents & Publications

  16. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marshall Name Christopher L. Marshall Institution Argonne National Laboratory Department Chemical Sciences and Engineering Division Areas of Focus Characterization & Catalytic...

  17. Chemical Kinetics Research on HCCI and Diesel Fuels

    Broader source: Energy.gov [DOE]

    Discusses detailed chemical kinetics mechanisms for complex hydrocarbon fuels and computationally efficiecnt, accurate methodologies for modeling advanced combustion strategies.

  18. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks | Department of Energy Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - 1:43pm Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office (BETO).

  19. ITP Chemicals: Hybripd Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybripd SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd SeparationsDistillation Technology. Research ...

  20. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Wednesday, 09 December 2015 00:00 Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps

  1. Los Alamos scientists selected as American Chemical Society Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Chemical Society Fellows Los Alamos scientists selected as American Chemical Society Fellows Rebecca Chamberlin and Donivan Porterfield have been selected as a 2014 Fellows of the American Chemical Society. August 7, 2014 Rebecca Chamberlin and Donivan Porterfield Rebecca Chamberlin and Donivan Porterfield Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "I'm so pleased that the American Chemical Society acknowledges the important contributions that Laboratory

  2. Summaries of FY 1993 research in the chemical sciences

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

  3. ITP Chemicals: Hybrid Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid SeparationsDistillation Technology. Research ...

  4. Micro-fluidic partitioning between polymeric sheets for chemical

    Office of Scientific and Technical Information (OSTI)

    amplification and processing (Patent) | SciTech Connect Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing Citation Details In-Document Search Title: Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet

  5. ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ...

  6. Chemical Kinetic Reaction Mechanisms for Combustion of Hydrocarbon and Other Types of Chemical Fuels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The central feature of the Combustion Chemistry project at LLNL is the development, validation, and application of detailed chemical kinetic reaction mechanisms for the combustion of hydrocarbon and other types of chemical fuels. For the past 30 years, LLNL's Chemical Sciences Division has built hydrocarbon mechanisms for fuels from hydrogen and methane through much larger fuels including heptanes and octanes. Other classes of fuels for which models have been developed include flame suppressants such as halons and organophosphates, and air pollutants such as soot and oxides of nitrogen and sulfur. Reaction mechanisms have been tested and validated extensively through comparisons between computed results and measured data from laboratory experiments (e.g., shock tubes, laminar flames, rapid compression machines, flow reactors, stirred reactors) and from practical systems (e.g., diesel engines, spark-ignition engines, homogeneous charge, compression ignition (HCCI) engines). These kinetic models are used to examine a wide range of combustion systems.

  7. NIF: Impacts of chemical accidents and comparison of chemical/radiological accident approaches

    SciTech Connect (OSTI)

    Lazaro, M.A.; Policastro, A.J.; Rhodes, M.

    1996-01-12

    The US Department of Energy (DOE) proposes to construct and operate the National Ignition Facility (NIF). The goals of the NIF are to (1) achieve fusion ignition in the laboratory for the first time by using inertial confinement fusion (ICF) technology based on an advanced-design neodymium glass solid-state laser, and (2) conduct high-energy-density experiments in support of national security and civilian applications. The primary focus of this paper is worker-public health and safety issues associated with postulated chemical accidents during the operation of NIF. The key findings from the accident analysis will be presented. Although NIF chemical accidents will be emphasized, the important differences between chemical and radiological accident analysis approaches and the metrics for reporting results will be highlighted. These differences are common EIS facility and transportation accident assessments.

  8. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    SciTech Connect (OSTI)

    Gray, S.K.

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  9. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect (OSTI)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  10. Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of Enhanced Geothermal System Development and Production | Department of Energy Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Project objective: Develop a novel Thermal-Hydrological-Mechanical-Chemical (THMC) modeling tool.

  11. Summaries of FY 1980 research in the chemical sciences

    SciTech Connect (OSTI)

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included. (DLC)

  12. Unit Price Scaling Trends for Chemical Products

    SciTech Connect (OSTI)

    Qi, Wei; Sathre, Roger; William R. Morrow, III; Shehabi, Arman

    2015-08-01

    To facilitate early-stage life-cycle techno-economic modeling of emerging technologies, here we identify scaling relations between unit price and sales quantity for a variety of chemical products of three categories - metal salts, organic compounds, and solvents. We collect price quotations for lab-scale and bulk purchases of chemicals from both U.S. and Chinese suppliers. We apply a log-log linear regression model to estimate the price discount effect. Using the median discount factor of each category, one can infer bulk prices of products for which only lab-scale prices are available. We conduct out-of-sample tests showing that most of the price proxies deviate from their actual reference prices by a factor less than ten. We also apply the bootstrap method to determine if a sample median discount factor should be accepted for price approximation. We find that appropriate discount factors for metal salts and for solvents are both -0.56, while that for organic compounds is -0.67 and is less representative due to greater extent of product heterogeneity within this category.

  13. Microfabricated sleeve devices for chemical reactions

    DOE Patents [OSTI]

    Northrup, M. Allen

    2003-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  14. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    SciTech Connect (OSTI)

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01

    A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals in these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical

  15. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  16. USE OF CHEMICAL INVENTORY ACCURACY MEASUREMENTS AS LEADING INDICATORS

    SciTech Connect (OSTI)

    Kuntamukkula, M.

    2011-02-10

    Chemical safety and lifecycle management (CSLM) is a process that involves managing chemicals and chemical information from the moment someone begins to order a chemical and lasts through final disposition(1). Central to CSLM is tracking data associated with chemicals which, for the purposes of this paper, is termed the chemical inventory. Examples of data that could be tracked include chemical identity, location, quantity, date procured, container type, and physical state. The reason why so much data is tracked is that the chemical inventory supports many functions. These functions include emergency management, which depends upon the data to more effectively plan for, and respond to, chemical accidents; environmental management that uses inventory information to aid in the generation of various federally-mandated and other regulatory reports; and chemical management that uses the information to increase the efficiency and safety with which chemicals are stored and utilized. All of the benefits of having an inventory are predicated upon having an inventory that is reasonably accurate. Because of the importance of ensuring one's chemical inventory is accurate, many have become concerned about measuring inventory accuracy. But beyond providing a measure of confidence in information gleaned from the inventory, does the inventory accuracy measurement provide any additional function? The answer is 'Yes'. It provides valuable information that can be used as a leading indicator to gauge the health of a chemical management system. In this paper, we will discuss: what properties make leading indicators effective, how chemical inventories can be used as a leading indicator, how chemical inventory accuracy can be measured, what levels of accuracies should realistically be expected in a healthy system, and what a subpar inventory accuracy measurement portends.

  17. Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia

    SciTech Connect (OSTI)

    He, Miao; Ichinose, Takamichi; Song, Yuan; Yoshida, Yasuhiro; Arashidani, Keiichi; Yoshida, Seiichi; Liu, Boying; Nishikawa, Masataka; Takano, Hirohisa; and others

    2013-11-01

    The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs contained different amounts of lipopolysaccharides (LPS) and β-glucan (ASD1 < ASD2) and SiO{sub 2} (ASD1 > ASD2). CD-1 mice were instilled intratracheally with ASD1, ASD2 and/or ovalbumin (OVA) four times at 2-week intervals. ASD1 and ASD2 enhanced eosinophil recruitment induced by OVA in the submucosa of the airway, with goblet cell proliferation in the bronchial epithelium. ASD1 and ASD2 synergistically increased OVA-induced eosinophil-relevant cytokines interleukin-5 (IL-5), IL-13 (ASD1 < ASD2) and chemokine eotaxin (ASD1 > ASD2) in bronchoalveolar lavage fluid. ASD2 aggravating effects on lung eosinophilia were greater than ASD1. The role of LPS and β-glucan in ASD2 on the production of pro-inflammatory mediators was assessed using in vitro bone marrow-derived macrophages (BMDMs) from wild type, Toll-like receptor 2-deficient (TLR2 −/−), TLR4 −/−, and MyD88 −/− mice (on Balb/c background). ASD2-stimulated TLR2 −/− BMDMs enhanced IL-6, IL-12, TNF-α, MCP-1 and MIP-1α secretion compared with ASD2-stimulated TLR4 −/− BMDMs. Protein expression from ASD2-stimulated MyD88 −/− BMDM were very low or undetectable. The in vitro results indicate that lung eosinophilia caused by ASD is TLR4 dependent. Therefore, the aggravation of OVA-related lung eosinophilia by ASD may be dependent on toxic substances derived from microbes, such as LPS, rather than SiO{sub 2}. - Highlights: • Asian sand dust (ASD) from the deserts of China causes serious respiratory problems. • The aggravating effects of two ASDs on lung eosinophilia were compared. • The ASDs contained different LPS and β-glucan (ASD1

  18. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  19. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  20. Paint for detection of radiological or chemical agents

    DOE Patents [OSTI]

    Farmer, Joseph C.; Brunk, James L.; Day, Sumner Daniel

    2010-08-24

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  1. Biotechnology for producing fuels and chemicals from biomass. Volume II. Fermentation chemicals from biomass

    SciTech Connect (OSTI)

    Villet, R.

    1981-02-01

    The technological and economic feasibility of producing some selected chemicals by fermentation is discussed: acetone, butanol, acetic acid, citric acid, 2,3-butanediol, and propionic acid. The demand for acetone and butanol has grown considerably. They have not been produced fermentatively for three decades, but instead by the oxo and aldol processes. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5% to 7%/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. For about 50 years fermentation has been the chief process for citric acid production. The feedstock cost is 15% to 20% of the overall cost of production. The anticipated 5%/yr growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. R and D are needed to establish a viable commercial process. The commercial fermentative production of propionic acid has not yet been developed. Recovery and purification of the product require considerable improvement. Other chemicals such as lactic acid, isopropanol, maleic anhydride, fumarate, and glycerol merit evaluation for commercial fermentative production in the near future.

  2. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    SciTech Connect (OSTI)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  3. A New Understanding of Chemical Agent Release

    SciTech Connect (OSTI)

    Nakafuji, G; Greenman, R; Theofanous, T

    2002-07-24

    The evolution of thickened chemical agent released at supersonic velocities, due to a missile defense intercept or a properly functioning warhead, has been misunderstood. Current and historical experimental and modeling efforts have attributed agent breakup to a variety of droplet breakup mechanisms. According to this model, drops of agent fragment into subsequent generations of smaller drops until a stable drop size is reached. Recent experimental data conducted in a supersonic wind tunnel show that agent breakup is not driven by any droplet breakup mechanism. The breakup of agent is instead governed by viscoelastic behavior and aerodynamic history effects. This viscoelastic breakup mechanism results in the formation of threads and sheets of liquid, instead of drops. The evolution and final state of agent released has broad implications not only for aerobreakup models, but also for all atmospheric dispersion models.

  4. Fundamentals of fluidized bed chemical processes

    SciTech Connect (OSTI)

    Yates, J.G.

    1983-01-01

    Chemical processes based on the use of fluidized solids, although widely used on an industrial scale for some four decades, are currently increasing in importance as industry looks for improved methods for handling and reacting solid materials. This book provides background necessary for an understanding of the technique of gas-solid fluidization. Contents: Some Fundamental Aspects of Fluidization-General Features of Gas-Solid Fluidization; Minimum Fluidization Velocity; Inter-particle forces; Liquid-Solid Fluidization; Bubbles; Slugging; Entrainment and Elutriation; Particle Movement; Bed Viscosity; Fluidization Under Pressure. Fluidized-Bed Reactor Models-ome Individual Models; Model Comparisons; Multiple Region Models. Catalytic Cracking-Process Developments Riser Cracking; Catalysis; Process Chemistry; Kinetics; Process Models. Combustion and Gasification-Plant Developments; Oil and Gas Combustion; Desulphurization; No/sub x/ Emissions; Coal Gassification. Miscellaneous Processes-Phthalic Anhydride (1,3-isobezofurandione); Acrylonitrile (prop-3-enenitrile); Vinyl Chloride (chloroethene); Titanium Dioxide; Uranium Processing; Sulphide Roasting; Indexes.

  5. Chemical reclamation of scrap rubber. Final report

    SciTech Connect (OSTI)

    Frazier, G.C.; Chan, S.M.; Culberson, O.L.; Perona, J.J.; Larsen, J.W.

    1984-01-01

    A conceptual, commercial-scale plant design was formulated for processing 22,500 t/yr of scrap rubber tires to hydrocarbon fuel gases, oils, petrochemicals (principally ethylene and aromatic liquids), and carbon black. The process is based upon molten salt (zinc chloride) pyrolysis of the rubber, and pyrolysis data obtained in a bench-scale flow apparatus. An economic assessment of the plant was made in terms of late 1979 dollars, for ranges in scrap tire costs and prices for the principal products: carbon black and the fuel gases and oil. Profitability at these 1979 costs and prices is somewhat modest by chemical processing industry standards for new processes, but any increases in energy and carbon black prices would cause favorable changes in this assessment.

  6. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  7. High temperature chemically resistant polymer concrete

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  8. Chemical Technology Division annual technical report 1997

    SciTech Connect (OSTI)

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  9. Wetting of a Chemically Heterogeneous Surface

    SciTech Connect (OSTI)

    Frink, L.J.D.; Salinger, A.G.

    1998-11-20

    Theories for inhomogeneous fluids have focused in recent years on wetting, capillary conden- sation, and solvation forces for model systems where the surface(s) is(are) smooth homogeneous parallel plates, cylinders, or spherical drops. Unfortunately natural systems are more likely to be hetaogeneous both in surt%ce shape and surface chemistry. In this paper we discuss the conse- quences of chemical heterogeneity on wetting. Specifically, a 2-dimensional implementation of a nonlocal density functional theory is solved for a striped surface model. Both the strength and range of the heterogeneity are varied. Contact angles are calculated, and phase transitions (both the wetting transition and a local layering transition) are located. The wetting properties of the surface ase shown to be strongly dependent on the nature of the surface heterogeneity. In addition highly ordered nanoscopic phases are found, and the operational limits for formation of ordered or crystalline phases of nanoscopic extent are discussed.

  10. Production of Chemical Derivatives from Renewables

    SciTech Connect (OSTI)

    Davison, Brian; Nghiem, John; Donnelly, Mark; Tsai, Shih-Perng; Frye, John; Landucci, Ron; Griffin, Michael

    1996-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corp., (LMER), Argonne National Laboratory (ANL), National Renewable Energy Laboratory (NREL), and Battelle Memorial Institute, operator of Pacific Northwest National Laboratory (PNNL), (collectively referred to as the 'Contractor'), and Applied Carbochemicals, Inc. (Participant) was to scale-up from bench results an economically promising and competitive process for the production of chemical derivatives from biologically produced succinic acid. The products that were under consideration for production from the succinic acid platform included 1,4-butanediol, {gamma}y-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Preliminary economic analyses indicated that this platform was competitive with the most recent petrochemical routes. The Contractors and participant are hereinafter jointly referred to as the 'Parties.' Research to date in succinic acid fermentation, separation and genetic engineering resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on preliminary laboratory findings and predicted catalytic parameters. At the time, the current need was to provide the necessary laboratory follow-up information to properly optimize, design and operate a pilot scale process. The purpose of the pilot work was to validate the integrated process, assure 'robustness' of the process, define operating conditions, and provide samples for potential customer evaluation. The data from the pilot scale process was used in design and development of a full scale production facility. A new strain, AFP111 (patented), discovered at ANL was tested and developed for process use at the Oak Ridge National Laboratory (ORNL

  11. Reliability of chemical analyses of water samples

    SciTech Connect (OSTI)

    Beardon, R.

    1989-11-01

    Ground-water quality investigations require reliable chemical analyses of water samples. Unfortunately, laboratory analytical results are often unreliable. The Uranium Mill Tailings Remedial Action (UMTRA) Project`s solution to this problem was to establish a two phase quality assurance program for the analysis of water samples. In the first phase, eight laboratories analyzed three solutions of known composition. The analytical accuracy of each laboratory was ranked and three laboratories were awarded contracts. The second phase consists of on-going monitoring of the reliability of the selected laboratories. The following conclusions are based on two years experience with the UMTRA Project`s Quality Assurance Program. The reliability of laboratory analyses should not be taken for granted. Analytical reliability may be independent of the prices charged by laboratories. Quality assurance programs benefit both the customer and the laboratory.

  12. Fluorescence based chemical sensors for corrosion detection

    SciTech Connect (OSTI)

    Johnson, R.E.; Agarwala, V.S.

    1997-12-01

    Several fluorescent materials have been identified as possible corrosion sensing coatings. These are either redox or metal ion complex materials. The redox materials are nonfluorescent in the reduced state and become fluorescent upon oxidation. Incorporated into paint coatings, they provide an early warning of corrosive conditions at the metal or alloy surface. The metal ion complex materials only fluoresce when the organic compound complexes with metal ions such as those generated in corrosion reactions. Fluorescent materials have been incorporated into paint coatings and on metal surfaces for the detection of corrosion. Oxine reacts with aluminum oxide on corroded aluminum to give a fluorescence that can be photographed in UV light. Several other materials were found to have good fluorescence but cannot be reversibly oxidized or reduced at the present time. More work will be done with these compounds as well as with Schiff bases to develop new fluorescent chemical sensing materials for smart coating on alloy surfaces.

  13. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect (OSTI)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  14. Chemical Technology Division. Annual technical report, 1995

    SciTech Connect (OSTI)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  15. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect (OSTI)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  16. Chemical, mechanical treatment options reduce hydroprocessor fouling

    SciTech Connect (OSTI)

    Groce, B.C.

    1996-01-29

    The processing of opportunity crudes and the need to meet stricter environmental regulations in the production of distillates and finished fuels have increased the benefit of the hydroprocessing unit to the refiner. With this potential for increased margins and more environmentally friendly fuel products comes increased risk of fouling in hydroprocessing units. Increased fouling can reduce unit reliability and increase maintenance and operating costs. The refiner has several options available to help minimize the fouling and maximize the unit`s profitability and flexibility. One of the two commonly selected options is to allocate capital for a mechanical solution to address a specific cause of fouling. The other option is the use of a chemical treatment program. This paper reviews the efficiency and implementation procedures for these two processes.

  17. Chemical Sciences Division annual report, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This report contains sections on the following topics: photochemistry of materials in the stratosphere, energy transfer and structural studies of molecules on surfaces, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at the high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting polyorganometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures.

  18. Method for forming a chemical microreactor

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan

    2009-05-19

    Disclosed is a chemical microreactor that provides a means to generate hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water. The microreactor contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. Two distinct embodiment styles are discussed. One embodiment style employs a packed catalyst capillary microchannel and at least one porous membrane. Another embodiment style employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2/cm.sup.3. Various methods to form packed catalyst capillary microchannels, porous membranes and porous membrane support structures are also disclosed.

  19. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  20. THERMAL AND CHEMICAL EVOLUTION OF COLLAPSING FILAMENTS

    SciTech Connect (OSTI)

    Gray, William J.; Scannapieco, Evan

    2013-05-10

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z Almost-Equal-To 0.1 Z{sub Sun} filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form a dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10{sup -3} Z{sub Sun} filaments, the collapse proceeds much more slowly. This is mostly due to the lower initial temperatures, which lead to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbursting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occurs. We find that we achieve similar accretion rates as NGC 5253 but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.