National Library of Energy BETA

Sample records for icecube neutrino observatory

  1. Evaluation of expected solar flare neutrino events in the IceCube observatory

    E-Print Network [OSTI]

    de Wasseige, G; Hanson, K; van Eijndhoven, N; Klein, K -L

    2015-01-01

    Since the end of the eighties and in response to a reported increase in the total neutrino flux in the Homestake experiment in coincidence with a solar flare, solar neutrino detectors have searched for solar flare signals. Neutrinos from the decay of mesons, which are themselves produced in collisions of accelerated protons with the solar atmosphere, would provide a novel window on the underlying physics of the acceleration process. For our studies we focus on the IceCube Neutrino Observatory, a cubic kilometer neutrino detector located at the geographical South Pole. Due to its Supernova data acquisition system and its DeepCore component, dedicated to low energy neutrinos, IceCube may be sensitive to solar flare neutrinos and thus permit either a measurement of the signal or the establishment of more stringent upper limits on the solar flare neutrino flux. We present an approach for a time profile analysis based on a stacking method and an evaluation of a possible solar flare signal in IceCube using the Gean...

  2. Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

    E-Print Network [OSTI]

    Aartsen, M.?G.

    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint ...

  3. Neutrino Physics with the IceCube Detector

    E-Print Network [OSTI]

    Kiryluk, Joanna; IceCube Collaboration

    2008-01-01

    Science, O?ce of Nu- clear Physics, of the U.S. Departmentjkiryluk?lake?louise?lbl NEUTRINO PHYSICS WITH THE ICECUBESNRs). Other IceCube physics topics include searches for

  4. Jiangmen Underground Neutrino Observatory

    E-Print Network [OSTI]

    Miao He; for the JUNO collaboration

    2014-12-13

    The Jiangmen Underground Neutrino Observatory (JUNO) is a multipurpose neutrino-oscillation experiment designed to determine the neutrino mass hierarchy and to precisely measure oscillation parameters by detecting reactor antineutrinos, observe supernova neutrinos, study the atmospheric, solar neutrinos and geo-neutrinos, and perform exotic searches, with a 20 kiloton liquid scintillator detector of unprecedented $3\\%$ energy resolution (at 1 MeV) at 700-meter deep underground and to have other rich scientific possibilities. Currently MC study shows a sensitivity of the mass hierarchy to be $\\overline{\\Delta\\chi^2}\\sim 11$ and $\\overline{\\Delta\\chi^2}\\sim 16$ in a relative and an absolute measurement, respectively. JUNO has been approved by Chinese Academy of Sciences in 2013, and an international collaboration was established in 2014. The civil construction is in preparation and the R$\\&$D of the detectors are ongoing. A new offline software framework was developed for the detector simulation, the event reconstruction and the physics analysis. JUNO is planning to start taking data around 2020.

  5. Neutrino Data from IceCube and its Predecessor at the South Pole, the Antarctic Muon and Neutrino Detector Array (AMANDA)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Abbasi, R.

    IceCube is a neutrino observatory for astrophysics with parts buried below the surface of the ice at the South Pole and an air-shower detector array exposed above. The international group of sponsors, led by the National Science Foundation (NSF), that designed and implemented the experiment intends for IceCube to operate and provide data for 20 years. IceCube records the interactions produced by astrophysical neutrinos with energies above 100 GeV, observing the Cherenkov radiation from charged particles produced in neutrino interactions. Its goal is to discover the sources of high-energy cosmic rays. These sources may be active galactic nuclei (AGNs) or massive, collapsed stars where black holes have formed.[Taken from http://www.icecube.wisc.edu/] The data from IceCube's predecessor experiment and detector, AMANDA, IceCube’s predecessor detector and experiment is also available at this website. AMANDA pioneered neutrino detection in ice. Over a period of years in the 1990s, detecting “strings” were buried and activated and by 2000, AMANDA was successfully recording an average of 1,000 neutrino events per year. This site also makes available many images and video from the two experiments.

  6. IceCube: An Instrument for Neutrino Astronomy

    SciTech Connect (OSTI)

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  7. IceVeto: Extended PeV neutrino astronomy in the Southern Hemisphere with IceCube

    SciTech Connect (OSTI)

    Auffenberg, Jan; Collaboration: IceCube Collaboration

    2014-11-18

    IceCube, the world's largest high-energy neutrino observatory, built at the South Pole, recently reported evidence of an astrophysical neutrino flux extending to PeV energies in the Southern Hemisphere. This observation raises the question of how the sensitivity in this energy range could be further increased. In the down-going sector, in IceCube's case the Southern Hemisphere, backgrounds from atmospheric muons and neutrinos pose a challenge to the identification of an astrophysical neutrino flux. The IceCube analysis, that led to the evidence for astrophysical neutrinos, is based on an in-ice veto strategy for background rejection. One possibility available to IceCube is the concept of an extended surface detector, IceVeto, which could allow the rejection of a large fraction of atmospheric backgrounds, primarily for muons from cosmic ray (CR) air showers as well as from neutrinos in the same air showers. Building on the experience of IceTop/IceCube, possibly the most cost-effective and sensitive way to build IceVeto is as an extension of the IceTop detector, with simple photomultiplier based detector modules for CR air shower detection. Initial simulations and estimates indicate that such a veto detector will significantly increase the sensitivity to an astrophysical flux of ?{sub ?} induced muon tracks in the Southern Hemisphere compared to current analyses. Here we present the motivation and capabilities based on initial simulations. Conceptual ideas for a simplified surface array will be discussed briefly.

  8. Simulation of a Hybrid Optical/Radio/Acoustic Extension to IceCube for EeV Neutrino Detection

    E-Print Network [OSTI]

    D. Besson; S. Böser; R. Nahnhauer; P. B. Price; J. A. Vandenbroucke; for the IceCube Collaboration

    2005-12-25

    Astrophysical neutrinos at $\\sim$EeV energies promise to be an interesting source for astrophysics and particle physics. Detecting the predicted cosmogenic (``GZK'') neutrinos at 10$^{16}$ - 10$^{20}$ eV would test models of cosmic ray production at these energies and probe particle physics at $\\sim$100 TeV center-of-mass energy. While IceCube could detect $\\sim$1 GZK event per year, it is necessary to detect 10 or more events per year in order to study temporal, angular, and spectral distributions. The IceCube observatory may be able to achieve such event rates with an extension including optical, radio, and acoustic receivers. We present results from simulating such a hybrid detector.

  9. The Flavour Composition of the High-Energy IceCube Neutrinos

    E-Print Network [OSTI]

    Aaron C. Vincent; Sergio Palomares Ruiz; Olga Mena

    2015-05-13

    We present an in-depth analysis of the flavour and spectral composition of the 36 high-energy neutrino events observed after three years of observation by the IceCube neutrino telescope. While known astrophysical sources of HE neutrinos are expected to produce a nearly $(1:1:1)$ flavour ratio (electron : muon : tau) of neutrinos at earth, we show that the best fits based on the events detected above $E_\

  10. Distinguishing Neutrino Mass Hierarchies using Dark Matter Annihilation Signals at IceCube

    E-Print Network [OSTI]

    Rouzbeh Allahverdi; Bhaskar Dutta; Dilip Kumar Ghosh; Bradley Knockel; Ipsita Saha

    2015-06-27

    We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism. We show that for a detector with the same capability as the IceCube DeepCore array, multiyear data from DM annihilation at the Galactic Center and inside the Sun can be used to distinguish the normal and inverted neutrino mass hierarchies.

  11. NEUTRINO PHYSICS (NONACCELERATOR) Kamioka Observatory

    E-Print Network [OSTI]

    Tokyo, University of

    ] on neutrinoless double beta decay (0). The only way out would be to have two Majorana neutrinos whose

  12. Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube

    SciTech Connect (OSTI)

    IceCube; etal, Abbasi, R,

    2010-11-11

    A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillationmodels, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. Adiscrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improveconstraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by other experiments.

  13. IceCube Events from Heavy DM decays through the Right-handed Neutrino Portal

    E-Print Network [OSTI]

    P. Ko; Yong Tang

    2015-10-21

    The recently observed IceCube PeV events could be due to heavy dark matter (DM) decay. In this paper, we propose a simple DM model with extra $U(1)_X$ gauge symmetry and bridge it with standard model particles through heavy right-handed neutrino. The Dirac fermion DM $\\chi$ with mass ~5 PeV can dominantly decay into a dark Higgs ($\\phi$), the SM Higgs ($h$) and a neutrino ($\

  14. ANTARES Constrains a Blazar Origin of Two IceCube PeV Neutrino Events

    E-Print Network [OSTI]

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; De Rosa, G; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Enzenhöfer, A; Escoffier, S; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatŕ, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Lefčvre, D; Leonora, E; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Neff, M; Nezri, E; Palioselitis, D; P?v?la?, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldańa, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; de Wolf, E; Yatkin, K; Yepes, H; Zornoza, J D; Zúńiga, J; :,; Krauß, F; Kadler, M; Mannheim, K; Schulz, R; Trüstedt, J; Wilms, J; Ojha, R; Ros, E; Baumgartner, W; Beuchert, T; Blanchard, J; Bürkel, C; Carpenter, B; Edwards, P G; Glawion, D Eisenacher; Elsässer, D; Fritsch, U; Gehrels, N; Gräfe, C; Großberger, C; Hase, H; Horiuchi, S; Kappes, A; Kreikenbohm, A; Kreykenbohm, I; Langejahn, M; Leiter, K; Litzinger, E; Lovell, J E J; Müller, C; Phillips, C; Plötz, C; Quick, J; Steinbring, T; Stevens, J; Thompson, D J; Tzioumis, A K

    2015-01-01

    The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Such objects are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons - and hence their neutrino progenitors - from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A...

  15. On the origin of IceCube's PeV neutrinos

    SciTech Connect (OSTI)

    Cholis, Ilias; Hooper, Dan, E-mail: cholis@fnal.gov, E-mail: dhooper@fnal.gov [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

    2013-06-01

    The IceCube collaboration has recently reported the observation of two events with energies in excess of 1 PeV. While an atmospheric origin of these events cannot be ruled out at this time, this pair of showers may potentially represent the first observation of high-energy astrophysical neutrinos. In this paper, we argue that if these events are neutrino-induced, then the neutrinos are very likely to have been produced via photo-meson interactions taking place in the same class of astrophysical objects that are responsible for the acceleration of the ? 10{sup 17} eV cosmic ray spectrum. Among the proposed sources of such cosmic rays, gamma-ray bursts stand out as particularly capable of generating PeV neutrinos at the level implied by IceCube's two events. In contrast, the radiation fields in typical active galactic nuclei models are likely dominated by lower energy (UV) photons, and thus feature higher energy thresholds for pion production, leading to neutrino spectra which peak at EeV rather than PeV energies (models with significant densities of x-ray emission, however, could evade this problem). Cosmogenic neutrinos generated from the propagation of ultra-high energy cosmic rays similarly peak at energies that are much higher than those of the events reported by IceCube.

  16. Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector

    E-Print Network [OSTI]

    IceCube Collaboration; R. Abbasi; Y. Abdou; T. Abu-Zayyad; J. Adams; J. A. Aguilar; M. Ahlers; K. Andeen; J. Auffenberg; X. Bai; M. Baker; S. W. Barwick; R. Bay; J. L. Bazo Alba; K. Beattie; J. J. Beatty; S. Bechet; J. K. Becker; K. -H. Becker; M. L. Benabderrahmane; S. BenZvi; J. Berdermann; P. Berghaus; D. Berley; E. Bernardini; D. Bertrand; D. Z. Besson; D. Bindig; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; C. Bohm; D. Bose; S. Böser; O. Botner; J. Braun; A. M. Brown; S. Buitink; M. Carson; D. Chirkin; B. Christy; J. Clem; F. Clevermann; S. Cohen; C. Colnard; D. F. Cowen; M. V. D'Agostino; M. Danninger; J. Daughhetee; J. C. Davis; C. De Clercq; L. Demirörs; O. Depaepe; F. Descamps; P. Desiati; G. de Vries-Uiterweerd; T. DeYoung; J. C. Díaz-Vélez; M. Dierckxsens; J. Dreyer; J. P. Dumm; R. Ehrlich; J. Eisch; R. W. Ellsworth; O. Engdegĺrd; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; T. Feusels; K. Filimonov; C. Finley; T. Fischer-Wasels; M. M. Foerster; B. D. Fox; A. Franckowiak; R. Franke; T. K. Gaisser; J. Gallagher; M. Geisler; L. Gerhardt; L. Gladstone; T. Glüsenkamp; A. Goldschmidt; J. A. Goodman; D. Grant; T. Griesel; A. Groß; S. Grullon; M. Gurtner; C. Ha; A. Hallgren; F. Halzen; K. Han; K. Hanson; D. Heinen; K. Helbing; P. Herquet; S. Hickford; G. C. Hill; K. D. Hoffman; A. Homeier; K. Hoshina; D. Hubert; W. Huelsnitz; J. -P. Hülß; P. O. Hulth; K. Hultqvist; S. Hussain; A. Ishihara; J. Jacobsen; G. S. Japaridze; H. Johansson; J. M. Joseph; K. -H. Kampert; A. Kappes; T. Karg; A. Karle; J. L. Kelley; N. Kemming; P. Kenny; J. Kiryluk; F. Kislat; S. R. Klein; J. -H. Köhne; G. Kohnen; H. Kolanoski; L. Köpke; S. Kopper; D. J. Koskinen; M. Kowalski; T. Kowarik; M. Krasberg; T. Krings; G. Kroll; K. Kuehn; T. Kuwabara; M. Labare; S. Lafebre; K. Laihem; H. Landsman; M. J. Larson; R. Lauer; R. Lehmann; J. Lünemann; J. Madsen; P. Majumdar; A. Marotta; R. Maruyama; K. Mase; H. S. Matis; K. Meagher; M. Merck; P. Mészáros; T. Meures; E. Middell; N. Milke; J. Miller; T. Montaruli; R. Morse; S. M. Movit; R. Nahnhauer; J. W. Nam; U. Naumann; P. Nießen; D. R. Nygren; S. Odrowski; A. Olivas; M. Olivo; A. O'Murchadha; M. Ono; S. Panknin; L. Paul; C. Pérez de los Heros; J. Petrovic; A. Piegsa; D. Pieloth; R. Porrata; J. Posselt; P. B. Price; M. Prikockis; G. T. Przybylski; K. Rawlins; P. Redl; E. Resconi; W. Rhode; M. Ribordy; A. Rizzo; J. P. Rodrigues; P. Roth; F. Rothmaier; C. Rott; T. Ruhe; D. Rutledge; B. Ruzybayev; D. Ryckbosch; H. -G. Sander; M. Santander; S. Sarkar; K. Schatto; T. Schmidt; A. Schoenwald; A. Schukraft; A. Schultes; O. Schulz; M. Schunck; D. Seckel; B. Semburg; S. H. Seo; Y. Sestayo; S. Seunarine; A. Silvestri; A. Slipak; G. M. Spiczak; C. Spiering; M. Stamatikos; T. Stanev; G. Stephens; T. Stezelberger; R. G. Stokstad; S. Stoyanov; E. A. Strahler; T. Straszheim; G. W. Sullivan; Q. Swillens; H. Taavola; I. Taboada; A. Tamburro; O. Tarasova; A. Tepe; S. Ter-Antonyan; S. Tilav; P. A. Toale; S. Toscano; D. Tosi; D. Tur?an; N. van Eijndhoven; J. Vandenbroucke; A. Van Overloop; J. van Santen; M. Vehring; M. Voge; B. Voigt; C. Walck; T. Waldenmaier; M. Wallraff; M. Walter; C. Weaver; C. Wendt; S. Westerhoff; N. Whitehorn; K. Wiebe; C. H. Wiebusch; D. R. Williams; R. Wischnewski; H. Wissing; M. Wolf; K. Woschnagg; C. Xu; X. W. Xu; G. Yodh; S. Yoshida; P. Zarzhitsky

    2011-03-09

    IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if GRBs are responsible for the observed cosmic-ray flux above $10^{18}$ eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from $p \\gamma$-interactions in the prompt phase of the GRB fireball, and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.

  17. Implications of Fermi-LAT observations on the origin of IceCube neutrinos

    SciTech Connect (OSTI)

    Wang, Bin; Li, Zhuo [Department of Astronomy, School of Physics, Peking University, Beijing (China); Zhao, Xiaohong, E-mail: wang_b@pku.edu.cn, E-mail: zhaoxh@ynao.ac.cn, E-mail: zhuo.li@pku.edu.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming (China)

    2014-11-01

    The IceCube (IC) collaboration recently reported the detection of TeV-PeV extraterrestrial neutrinos whose origin is yet unknown. By the photon-neutrino connection in pp and p? interactions, we use the Fermi-LAT observations to constrain the origin of the IC detected neutrinos. We find that Galactic origins, i.e., the diffuse Galactic neutrinos due to cosmic ray (CR) propagation in the Milky Way, and the neutrinos from the Galactic point sources, may not produce the IC neutrino flux, thus these neutrinos should be of extragalactic origin. Moreover, the extragalactic gamma-ray bursts (GRBs) may not account for the IC neutrino flux, the jets of active galactic nuclei may not produce the IC neutrino spectrum, but the starburst galaxies (SBGs) may be promising sources. As suggested by the consistency between the IC detected neutrino flux and the Waxman-Bahcall bound, GRBs in SBGs may be the sources of both the ultrahigh energy, ?> 10{sup 19}eV, CRs and the 1–100 PeV CRs that produce the IC detected TeV-PeV neutrinos.

  18. Low-multiplicity Burst Search at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Chen, Min

    Results are reported from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory. Such bursts could indicate the detection of a nearby core-collapse supernova explosion. The data were taken from ...

  19. Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube

    E-Print Network [OSTI]

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Teši?, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; :,; Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bojtos, P; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B

    2014-01-01

    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of $10^{-2}$ M$_\\odot$c$^2$ at $\\sim 150$ Hz with $\\sim 60$ ms duration, and high-energy neutrino emission of $10^{51}$ erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below $1.6 \\times 10^{-2}$ Mpc$^{-3}$yr$^{-1}$. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave d...

  20. IceCube: An Instrument for Neutrino Astronomy

    E-Print Network [OSTI]

    Halzen, F.

    2010-01-01

    such as quasars or gamma-ray bursts unfortunately point tosky with neutrinos from gamma-ray bursts and active galacticor MeV photons in gamma-ray-burst fireballs. Neutral and

  1. Possible Interpretations of IceCube High-Energy Neutrino Events

    E-Print Network [OSTI]

    Chee Sheng Fong; Hisakazu Minakata; Boris Panes; Renata Zukanovich Funchal

    2015-03-08

    We discuss possible interpretations of the 37 high energy neutrino events observed by the IceCube experiment in the South Pole. We examine the possibility to explain the observed neutrino spectrum exclusively by the decays of a heavy long-lived particle of mass in the PeV range. We compare this with the standard scenario, namely, a single power-law spectrum related to neutrinos produced by astrophysical sources and a viable hybrid situation where the spectrum is a product of two components: a power-law and the long-lived particle decays. We present a simple extension of the Standard Model that could account for the heavy particle decays that are needed in order to explain the data. We show that the current data equally supports all above scenarios and try to evaluate the exposure needed in order to falsify them in the future.

  2. Spectral analysis of the high-energy IceCube neutrinos

    E-Print Network [OSTI]

    Palomares-Ruiz, Sergio; Mena, Olga

    2015-01-01

    A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multi-dimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the $\\sim$30 TeV - 3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canonical flavor composition at Earth, ($1:1:1$)$_\\oplus$, with respect to a single-energy bin analysis. Increasing both the minimum and the maximum deposited energies has dramatic effects on the reconstructed flavor ratios as well as on the spectral index. Imposing a higher threshold of 60 TeV yields a slightly harder spec...

  3. Analysis of the cumulative neutrino flux from Fermi-LAT blazar populations using 3 years of IceCube data

    E-Print Network [OSTI]

    Glüsenkamp, Thorsten

    2015-01-01

    The recent discovery of a diffuse neutrino flux up to PeV energies raises the question of which populations of astrophysical sources contribute to this diffuse signal. One extragalactic candidate source population to produce high-energy neutrinos are Blazars. We present results from a likelihood analysis searching for cumulative neutrino emission from Blazar populations selected with the 2nd Fermi-LAT AGN catalog (2LAC) using an IceCube data set that has been optimized for the detection of individual sources. In contrast to previous searches with IceCube, the investigated populations contain up to hundreds of sources, the biggest one being the entire Blazar sample measured by the Fermi-LAT. No significant neutrino signal was found from any of these populations. Some implications of this non-observation for the origin of the observed PeV diffuse signal will be discussed.

  4. Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events?

    E-Print Network [OSTI]

    P. Padovani; E. Resconi

    2014-06-10

    IceCube has recently reported the discovery of high-energy neutrinos of astrophysical origin, opening up the PeV (10^15 eV) sky. Because of their large positional uncertainties, these events have not yet been associated to any astrophysical source. We have found plausible astronomical counterparts in the GeV -- TeV bands by looking for sources in the available large area high-energy gamma-ray catalogues within the error circles of the IceCube events. We then built the spectral energy distribution of these sources and compared it with the energy and flux of the corresponding neutrino. Likely counterparts include mostly BL Lacs and two Galactic pulsar wind nebulae. On the one hand many objects, including the starburst galaxy NGC 253 and Centaurus A, despite being spatially coincident with neutrino events, are too weak to be reconciled with the neutrino flux. On the other hand, various GeV powerful objects cannot be assessed as possible counterparts due to their lack of TeV data. The definitive association between high-energy astrophysical neutrinos and our candidates will be significantly helped by new TeV observations but will be confirmed or disproved only by further IceCube data. Either way, this will have momentous implications for blazar jets, high-energy astrophysics, and cosmic-ray and neutrino astronomy.

  5. Technology Development for a Neutrino AstrophysicalObservatory

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J.; He, Y.D.; Jackson, S.; Kleinfelder, S.; Lai, K.W.; Learned, J.; Ling, J.; Liu, D.; Lowder, D.; Moorhead, M.; Morookian, J.M.; Nygren, D.R.; Price, P.B.; Richards, A.; Shapiro, G.; Shen, B.; Smoot, George F.; Stokstad, R.G.; VanDalen, G.; Wilkes, J.; Wright, F.; Young, K.

    1996-02-01

    We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  6. Technology development for a neutrino astrophysical observatory. Letter of intent

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J.

    1996-02-01

    The authors propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  7. A measurement of the atmospheric neutrino flux and oscillation parameters at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Sonley, Thomas John

    2009-01-01

    Through-going muon events are analyzed as a function of their direction of travel through the Sudbury Neutrino Observatory. Based on simulations and previous measurements, muons with a zenith angle of 1 < cos([theta]zenith) ...

  8. Search for high-energy muon neutrinos from the"naked-eye" GRB080319B with the IceCube neutrino telescope

    SciTech Connect (OSTI)

    IceCube Collaboration; R. Abbasi

    2009-02-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.12 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, there was no excess found above the background. The 90% C.L. upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.0 x 10{sup -3} erg cm{sup -2} in the energy range between 145 TeV and 2.1 PeV, which contains 90% of the expected events.

  9. SEARCH FOR HIGH-ENERGY MUON NEUTRINOS FROM THE 'NAKED-EYE' GRB 080319B WITH THE IceCube NEUTRINO TELESCOPE

    SciTech Connect (OSTI)

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Ahlers, M.; Auffenberg, J.; Becker, K.-H.; Bai, X.; Barwick, S. W.; Bay, R.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.

    2009-08-20

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, no excess was found above background. The 90% CL upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.5 x 10{sup -3} erg cm{sup -2} in the energy range between 120 TeV and 2.2 PeV, which contains 90% of the expected events.

  10. Spectroscopy of low energy solar neutrinos by MOON -Mo Observatory Of Neutrinos-

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Spectroscopy of low energy solar neutrinos by MOON -Mo Observatory Of Neutrinos- R. Hazamaa , P Be solar 's. The present status of MOON for the low energy solar experiment is briefly discussed the pp solar flux with good accuracy. 1. INTRODUCTION Realtime studies of the high-energy component of 8

  11. Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope

    E-Print Network [OSTI]

    Abbasi, R.

    2010-01-01

    2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

  12. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al

    2013-01-01

    The observation of ultrahigh energy neutrinos (UHE?s) has become a priority in experimental astroparticle physics. UHE?s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going?) or in the Earth crust (Earth-skimming?), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this workmore »we review the procedure and criteria established to search for UHE?s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE?s in the EeV range and above.« less

  13. The Final Results from the Sudbury Neutrino Observatory

    ScienceCinema (OSTI)

    None

    2011-04-25

    The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.

  14. 8Li electron spectrum versus 8B neutrino spectrum: implications for the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    G. Jonkmans; I. S. Towner; B. Sur

    1998-02-25

    The sensitivity of the Sudbury Neutrino Observatory (SNO) to measure the shape of the recoil electron spectrum in the charged-current reaction of $^{8}$B solar neutrinos interacting with deuterium can be improved if the results of a $^{8}$Li beta-decay calibration experiment are included in the test. We calculate an improvement in sensitivity, under certain idealistic assumptions, of about a factor of 2, sufficient to resolve different neutrino-oscillation solutions to the solar-neutrino problem. We further examine the role of recoil and radiative corrections on both the $^{8}$B neutrino spectrum and the $^{8}$Li electron spectrum and conclude that the influence of these effects on the ratio of the two spectra as measured by SNO is very small.

  15. Searches for extended and point-like neutrino sources with four years of IceCube data

    SciTech Connect (OSTI)

    Aartsen, M. G. [School of Chemistry and Physics, University of Adelaide, Adelaide SA, 5005 Australia (Australia); Ackermann, M.; Berghaus, P. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A. [Département de physique Nucléaire et Corpusculaire, Université de Genčve, CH-1211 Genčve (Switzerland); Ahlers, M.; Arguelles, C.; BenZvi, S. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Altmann, D. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Anderson, T.; Arlen, T. C. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Tjus, J. Becker [Fakultät für Physik and Astronomie, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Berley, D. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Collaboration: IceCube Collaboration; and others

    2014-12-01

    We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86 string detector. The total livetime of the combined data set is 1373 days. For an E {sup –2} spectrum, the observed 90% C.L. flux upper limits are ?10{sup –12} TeV{sup –1} cm{sup –2} s{sup –1} for energies between 1 TeV and 1 PeV in the northern sky and ?10{sup –11} TeV{sup –1} cm{sup –2} s{sup –1} for energies between 100 TeV and 100 PeV in the southern sky. This represents a 40% improvement compared to previous publications, resulting from both the additional year of data and the introduction of improved reconstructions. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update the results of searches for neutrino emission from stacked catalogs of sources and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.

  16. Low Multiplicity Burst Search at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    SNO Collaboration

    2010-11-24

    Results are reported from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory (SNO). Such bursts could indicate detection of a nearby core-collapse supernova explosion. The data were taken from Phase I (November 1999 - May 2001), when the detector was filled with heavy water, and Phase II (July 2001 - August 2003), when NaCl was added to the target. The search was a blind analysis in which the potential backgrounds were estimated and analysis cuts were developed to eliminate such backgrounds with 90% confidence before the data were examined. The search maintained a greater than 50% detection probability for standard supernovae occurring at a distance of up to 60 kpc for Phase I and up to 70 kpc for Phase II. No low-multiplicity bursts were observed during the data-taking period.

  17. SNO Data: Results from Experiments at the Sudbury Neutrino Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sudbury Neutrino Observatory (SNO) was built 6800 feet under ground, in INCO's Creighton mine near Sudbury, Ontario. SNO is a heavy-water Cherenkov detector that is designed to detect neutrinos produced by fusion reactions in the sun. It uses 1000 tonnes of heavy water, on loan from Atomic Energy of Canada Limited (AECL), contained in a 12 meter diameter acrylic vessel. Neutrinos react with the heavy water (D2O) to produce flashes of light called Cherenkov radiation. This light is then detected by an array of 9600 photomultiplier tubes mounted on a geodesic support structure surrounding the heavy water vessel. The detector is immersed in light (normal) water within a 30 meter barrel-shaped cavity (the size of a 10 story building!) excavated from Norite rock. Located in the deepest part of the mine, the overburden of rock shields the detector from cosmic rays. The detector laboratory is extremely clean to reduce background signals from radioactive elements present in the mine dust which would otherwise hide the very weak signal from neutrinos. (From http://www.sno.phy.queensu.ca/]

    The SNO website provides access to various datasets. See also the SNO Image Catalog at http://www.sno.phy.queensu.ca/sno/images/ and computer-generated images of SNO events at http://www.sno.phy.queensu.ca/sno/events/ and the list of published papers.

  18. The IceCube Collaboration:contributions to the 30 th International Cosmic Ray Conference (ICRC 2007),

    SciTech Connect (OSTI)

    IceCube Collaboration; Ackermann, M.

    2007-11-02

    This paper bundles 40 contributions by the IceCube collaboration that were submitted to the 30th International Cosmic Ray Conference ICRC 2007. The articles cover studies on cosmic rays and atmospheric neutrinos, searches for non-localized, extraterrestrial {nu}{sub e}, {nu}{sub {mu}} and {nu}{sub {tau}} signals, scans for steady and intermittent neutrino point sources, searches for dark matter candidates, magnetic monopoles and other exotic particles, improvements in analysis techniques, as well as future detector extensions. The IceCube observatory will be finalized in 2011 to form a cubic-kilometer ice-Cherenkov detector at the location of the geographic South Pole. At the present state of construction, IceCube consists of 52 paired IceTop surface tanks and 22 IceCube strings with a total of 1426 Digital Optical Modules deployed at depths up to 2350 m. The observatory also integrates the 19 string AMANDA subdetector, that was completed in 2000 and extends IceCube's reach to lower energies. Before the deployment of IceTop, cosmic air showers were registered with the 30 station SPASE-2 surface array. IceCube's low noise Digital Optical Modules are very reliable, show a uniform response and record waveforms of arriving photons that are resolvable with nanosecond precision over a large dynamic range. Data acquisition, reconstruction and simulation software are running in production mode and the analyses, profiting from the improved data quality and increased overall sensitivity, are well under way.

  19. Calibration and Characterization of the IceCube Photomultiplier Tube

    SciTech Connect (OSTI)

    IceCube Collaboration; Abbasi, R.; al., et

    2010-02-11

    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.

  20. Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    E-Print Network [OSTI]

    Ahmed, Shakeel; Hasan, Rashid; Salim, Mohammad; Singh, S K; Inbanathan, S S R; Singh, Venktesh; Subrahmanyam, V S; Behera, Shiba Prasad; Chandratre, Vinay B; Dash, Nitali; Datar, Vivek M; Kashyap, V K S; Mohanty, Ajit K; Pant, Lalit M; Chatterjee, Animesh; Choubey, Sandhya; Gandhi, Raj; Ghosh, Anushree; Tiwari, Deepak; Ajmi, Ali; Sankar, S Uma; Behera, Prafulla; Chacko, Aleena; Jafer, Sadiq; Libby, James; Raveendrababu, K; Rebin, K R; Indumathi, D; Meghna, K; Lakshmi, S M; Murthy, M V N; Pal, Sumanta; Rajasekaran, G; Sinha, Nita; Agarwalla, Sanjib Kumar; Khatun, Amina; Mehta, Poonam; Bhatnagar, Vipin; Kanishka, R; Kumar, A; Shahi, J S; Singh, J B; Ghosh, Monojit; Ghoshal, Pomita; Goswami, Srubabati; Gupta, Chandan; Raut, Sushant; Bhattacharya, Sudeb; Bose, Suvendu; Ghosal, Ambar; Jash, Abhik; Kar, Kamalesh; Majumdar, Debasish; Majumdar, Nayana; Mukhopadhyay, Supratik; Saha, Satyajit; Acharya, B S; Banerjee, Sudeshna; Bhattacharya, Kolahal; Dasgupta, Sudeshna; Devi, Moon Moon; Dighe, Amol; Majumder, Gobinda; Mondal, Naba K; Redij, Asmita; Samuel, Deepak; Satyanarayana, B; Thakore, Tarak; Ravikumar, C D; Vinodkumar, A M; Gangopadhyay, Gautam; Raychaudhuri, Amitava; Choudhary, Brajesh C; Gaur, Ankit; Kaur, Daljeet; Kumar, Ashok; Kumar, Sanjeev; Naimuddin, Md; Bari, Waseem; Malik, Manzoor A; Singh, Jyotsna; Krishnaveni, S; Ravikumar, H B; Ranganathaiah, C; Mahapatra, Swapna; Biswas, Saikat; Chattopadhyay, Subhasis; Ganai, Rajesh; Ghosh, Tapasi; Viyogi, Y P

    2015-01-01

    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substant...

  1. Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    E-Print Network [OSTI]

    The ICAL Collaboration; Shakeel Ahmed; M. Sajjad Athar; Rashid Hasan; Mohammad Salim; S. K. Singh; S. S. R. Inbanathan; Venktesh Singh; V. S. Subrahmanyam; Shiba Prasad Behera; Vinay B. Chandratre; Nitali Dash; Vivek M. Datar; V. K. S. Kashyap; Ajit K. Mohanty; Lalit M. Pant; Animesh Chatterjee; Sandhya Choubey; Raj Gandhi; Anushree Ghosh; Deepak Tiwari; Ali Ajmi; S. Uma Sankar; Prafulla Behera; Aleena Chacko; Sadiq Jafer; James Libby; K. Raveendrababu; K. R. Rebin; D. Indumathi; K. Meghna; S. M. Lakshmi; M. V. N. Murthy; Sumanta Pal; G. Rajasekaran; Nita Sinha; Sanjib Kumar Agarwalla; Amina Khatun; Poonam Mehta; Vipin Bhatnagar; R. Kanishka; A. Kumar; J. S. Shahi; J. B. Singh; Monojit Ghosh; Pomita Ghoshal; Srubabati Goswami; Chandan Gupta; Sushant Raut; Sudeb Bhattacharya; Suvendu Bose; Ambar Ghosal; Abhik Jash; Kamalesh Kar; Debasish Majumdar; Nayana Majumdar; Supratik Mukhopadhyay; Satyajit Saha; B. S. Acharya; Sudeshna Banerjee; Kolahal Bhattacharya; Sudeshna Dasgupta; Moon Moon Devi; Amol Dighe; Gobinda Majumder; Naba K. Mondal; Asmita Redij; Deepak Samuel; B. Satyanarayana; Tarak Thakore; C. D. Ravikumar; A. M. Vinodkumar; Gautam Gangopadhyay; Amitava Raychaudhuri; Brajesh C. Choudhary; Ankit Gaur; Daljeet Kaur; Ashok Kumar; Sanjeev Kumar; Md. Naimuddin; Waseem Bari; Manzoor A. Malik; Jyotsna Singh; S. Krishnaveni; H. B. Ravikumar; C. Ranganathaiah; Swapna Mahapatra; Saikat Biswas; Subhasis Chattopadhyay; Rajesh Ganai; Tapasi Ghosh; Y. P. Viyogi

    2015-05-27

    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.

  2. High-energy Atmospheric Muon Flux Expected at India-Based Neutrino Observatory

    E-Print Network [OSTI]

    Sukanta Panda; Sergei I. Sinegovsky

    2008-02-04

    We calculate the zenith-angle dependence of conventional and prompt high-energy muon fluxes at India-Based Neutrino Observatory (INO) depth. This study demonstrates a possibility to discriminate models of the charm hadroproduction including the low-x QCD behaviour of hadronic cross-sections relevant at very high energies.

  3. Searches for High Frequency Variations in the $^8$B Solar Neutrino Flux at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    SNO Collaboration

    2009-10-13

    We have performed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by the possibility that solar $g$-mode oscillations could affect the production or propagation of solar $^8$B neutrinos. The first search looked for any significant peak in the frequency range 1/day to 144/day, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which $g$-mode signals have been claimed by experiments aboard the SoHO satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

  4. Cosmic neutrino cascades from secret neutrino interactions

    E-Print Network [OSTI]

    Kenny C. Y. Ng; John F. Beacom

    2014-11-01

    The first detection of high-energy astrophysical neutrinos by IceCube provides new opportunities for tests of neutrino properties. The long baseline through the Cosmic Neutrino Background (C$\

  5. Search for high-energy neutrinos from dust obscured Blazars

    E-Print Network [OSTI]

    Maggi, G; Correa, P; Vries, K D; Gentile, G; Scholten, O; van Eijndhoven, N

    2015-01-01

    The recent discovery of high-energy cosmic neutrinos by the IceCube neutrino observatory opens up a new field in physics, the field of neutrino astronomy. Using the IceCube neutrino detector we plan to search for high-energy neutrinos emitted from Active Galactic Nuclei (AGN), since AGN are believed to be one of the most promising sources of the most energetic cosmic rays and hence of high-energy neutrinos. We discuss a specific type of AGN which we plan to investigate in more detail with data obtained by the IceCube observatory. The main properties of the AGN category in which we are interested are given by a high-energy jet which is pointing in our line of sight defining a class of AGN, called Blazars, and in particular the ones that are obscured by surrounding dust. The jet-matter interaction is expected to give an increased high-energy neutrino production. The properties of this specific type of AGN are expected to give very distinct features in the electromagnetic spectrum, which are discussed in detail.

  6. Search for high-energy muon neutrinos from the "naked-eye" GRB080319B with the IceCube neutrino telescope

    E-Print Network [OSTI]

    Abbasi, R.; IceCube Collaboration

    2009-01-01

    muon neutrinos from the “naked-eye” GRB 080319B with themuon neutrinos from the “naked-eye” GRB080319B with theof 5.3 even visible to the naked eye for a short period of

  7. An improved limit to the diffuse flux of ultra-high energy neutrinos from the Pierre Auger Observatory

    E-Print Network [OSTI]

    Aab, Alexander; Aglietta, Marco; Ahn, Eun-Joo; Samarai, Imen Al; Albuquerque, Ivone; Allekotte, Ingomar; Allison, Patrick; Almela, Alejandro; Castillo, Jesus Alvarez; Alvarez-Muńiz, Jaime; Batista, Rafael Alves; Ambrosio, Michelangelo; Aminaei, Amin; Anchordoqui, Luis; Andringa, Sofia; Aramo, Carla; Aranda, Victor Manuel; Arqueros, Fernando; Arsene, Nicusor; Asorey, Hernán Gonzalo; Assis, Pedro; Aublin, Julien; Ave, Maximo; Avenier, Michel; Avila, Gualberto; Awal, Nafiun; Badescu, Alina Mihaela; Barber, Kerri B; Bäuml, Julia; Baus, Colin; Beatty, Jim; Becker, Karl Heinz; Bellido, Jose A; Berat, Corinne; Bertaina, Mario Edoardo; Bertou, Xavier; Biermann, Peter; Billoir, Pierre; Blaess, Simon G; Blanco, Alberto; Blanco, Miguel; Bleve, Carla; Blümer, Hans; Bohá?ová, Martina; Boncioli, Denise; Bonifazi, Carla; Borodai, Nataliia; Brack, Jeffrey; Brancus, Iliana; Bridgeman, Ariel; Brogueira, Pedro; Brown, William C; Buchholz, Peter; Bueno, Antonio; Buitink, Stijn; Buscemi, Mario; Caballero-Mora, Karen S; Caccianiga, Barbara; Caccianiga, Lorenzo; Candusso, Marina; Caramete, Laurentiu; Caruso, Rossella; Castellina, Antonella; Cataldi, Gabriella; Cazon, Lorenzo; Cester, Rosanna; Chavez, Alan G; Chiavassa, Andrea; Chinellato, Jose Augusto; Chudoba, Jiri; Cilmo, Marco; Clay, Roger W; Cocciolo, Giuseppe; Colalillo, Roberta; Coleman, Alan; Collica, Laura; Coluccia, Maria Rita; Conceiçăo, Ruben; Contreras, Fernando; Cooper, Mathew J; Cordier, Alain; Coutu, Stephane; Covault, Corbin; Cronin, James; Dallier, Richard; Daniel, Bruno; Dasso, Sergio; Daumiller, Kai; Dawson, Bruce R; de Almeida, Rogerio M; de Jong, Sijbrand J; De Mauro, Giuseppe; Neto, Joao de Mello; De Mitri, Ivan; de Oliveira, Jaime; de Souza, Vitor; del Peral, Luis; Deligny, Olivier; Dembinski, Hans; Dhital, Niraj; Di Giulio, Claudio; Di Matteo, Armando; Diaz, Johana Chirinos; Castro, Mary Lucia Díaz; Diogo, Francisco; Dobrigkeit, Carola; Docters, Wendy; D'Olivo, Juan Carlos; Dorofeev, Alexei; Hasankiadeh, Qader Dorosti; Dova, Maria Teresa; Ebr, Jan; Engel, Ralph; Erdmann, Martin; Erfani, Mona; Escobar, Carlos O; Espadanal, Joao; Etchegoyen, Alberto; Falcke, Heino; Fang, Ke; Farrar, Glennys; Fauth, Anderson; Fazzini, Norberto; Ferguson, Andrew P; Fernandes, Mateus; Fick, Brian; Figueira, Juan Manuel; Filevich, Alberto; Filip?i?, Andrej; Fox, Brendan; Fratu, Octavian; Freire, Martín Miguel; Fuchs, Benjamin; Fujii, Toshihiro; García, Beatriz; Garcia-Pinto, Diego; Gate, Florian; Gemmeke, Hartmut; Gherghel-Lascu, Alexandru; Ghia, Piera Luisa; Giaccari, Ugo; Giammarchi, Marco; Giller, Maria; G?as, Dariusz; Glaser, Christian; Glass, Henry; Golup, Geraldina; Berisso, Mariano Gómez; Vitale, Primo F Gómez; González, Nicolás; Gookin, Ben; Gordon, Jacob; Gorgi, Alessio; Gorham, Peter; Gouffon, Philippe; Griffith, Nathan; Grillo, Aurelio; Grubb, Trent D; Guardincerri, Yann; Guarino, Fausto; Guedes, Germano; Hampel, Matías Rolf; Hansen, Patricia; Harari, Diego; Harrison, Thomas A; Hartmann, Sebastian; Harton, John; Haungs, Andreas; Hebbeker, Thomas; Heck, Dieter; Heimann, Philipp; Herve, Alexander E; Hill, Gary C; Hojvat, Carlos; Hollon, Nicholas; Holt, Ewa; Homola, Piotr; Hörandel, Jörg; Horvath, Pavel; Hrabovský, Miroslav; Huber, Daniel; Huege, Tim; Insolia, Antonio; Isar, Paula Gina; Jandt, Ingolf; Jansen, Stefan; Jarne, Cecilia; Johnsen, Jeffrey A; Josebachuili, Mariela; Kääpä, Alex; Kambeitz, Olga; Kampert, Karl Heinz; Kasper, Peter; Katkov, Igor; Kégl, Balazs; Keilhauer, Bianca; Keivani, Azadeh; Kemp, Ernesto; Kieckhafer, Roger; Klages, Hans; Kleifges, Matthias; Kleinfeller, Jonny; Krause, Raphael; Krohm, Nicole; Krömer, Oliver; Kuempel, Daniel; Kunka, Norbert; LaHurd, Danielle; Latronico, Luca; Lauer, Robert; Lauscher, Markus; Lautridou, Pascal; Coz, Sandra Le; Lebrun, Didier; Lebrun, Paul; de Oliveira, Marcelo Augusto Leigui; Letessier-Selvon, Antoine; Lhenry-Yvon, Isabelle; Link, Katrin; Lopes, Luis; López, Rebeca; Casado, Aida López; Louedec, Karim; Lu, Lu; Lucero, Agustin; Malacari, Max; Maldera, Simone; Mallamaci, Manuela; Maller, Jennifer; Mandat, Dusan; Mantsch, Paul; Mariazzi, Analisa; Marin, Vincent; Mari?, Ioana; Marsella, Giovanni; Martello, Daniele; Martin, Lilian; Martinez, Humberto; Bravo, Oscar Martínez; Martraire, Diane; Meza, Jimmy Masías; Mathes, Hermann-Josef; Mathys, Sebastian; Matthews, James; Matthews, John; Matthiae, Giorgio; Maurel, Detlef; Maurizio, Daniela; Mayotte, Eric; Mazur, Peter; Medina, Carlos; Medina-Tanco, Gustavo; Meissner, Rebecca; Mello, Victor; Melo, Diego; Menshikov, Alexander; Messina, Stefano

    2015-01-01

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultra-high energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time-structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins $60^\\circ-75^\\circ$ and $75^\\circ-90^\\circ$ as well as for upward-going neutrinos, are combined to give a single limit. The $90\\%$ C.L. single-flavor limit to the diffuse flux of ultra-high energy neutrinos with an $E^{-2}$ spectrum in the energy ra...

  8. An array of low-background $^3$He proportional counters for the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    J. F. Amsbaugh; J. M. Anaya; J. Banar; T. J. Bowles; M. C. Browne; T. V. Bullard; T. H. Burritt; G. A. Cox-Mobrand; X. Dai; H. Deng; M. Di Marco; P. J. Doe; M. R. Dragowsky; C. A. Duba; F. A. Duncan; E. D. Earle; S. R. Elliott; E. -I. Esch; H. Fergani; J. A. Formaggio; M. M. Fowler; J. E. Franklin; P. Geissbühler; J. V. Germani; A. Goldschmidt; E. Guillian; A. L. Hallin; G. Harper; P. J. Harvey; R. Hazama; K. M. Heeger; J. Heise; A. Hime; M. A. Howe; M. Huang; L. L. Kormos; C. Kraus; C. B. Krauss; J. Law; I. T. Lawson; K. T. Lesko; J. C. Loach; S. Majerus; J. Manor; S. McGee; K. K. S. Miknaitis; G. G. Miller; B. Morissette; A. Myers; N. S. Oblath; H. M. O'Keeffe; R. W. Ollerhead; S. J. M. Peeters; A. W. P. Poon; G. Prior; S. D. Reitzner; K. Rielage; R. G. H. Robertson; P. Skensved; A. R. Smith; M. W. E. Smith; T. D. Steiger; L. C. Stonehill; P. M. Thornewell; N. Tolich; B. A. VanDevender; T. D. Van Wechel; B. L. Wall; H. Wan Chan Tseung; J. Wendland; N. West; J. B. Wilhelmy; J. F. Wilkerson; J. M. Wouters

    2007-05-23

    An array of Neutral-Current Detectors (NCDs) has been built in order to make a unique measurement of the total active flux of solar neutrinos in the Sudbury Neutrino Observatory (SNO). Data in the third phase of the SNO experiment were collected between November 2004 and November 2006, after the NCD array was added to improve the neutral-current sensitivity of the SNO detector. This array consisted of 36 strings of proportional counters filled with a mixture of $^3$He and CF$_4$ gas capable of detecting the neutrons liberated by the neutrino-deuteron neutral current reaction in the D$_2$O, and four strings filled with a mixture of $^4$He and CF$_4$ gas for background measurements. The proportional counter diameter is 5 cm. The total deployed array length was 398 m. The SNO NCD array is the lowest-radioactivity large array of proportional counters ever produced. This article describes the design, construction, deployment, and characterization of the NCD array, discusses the electronics and data acquisition system, and considers event signatures and backgrounds.

  9. Hadron energy response of the Iron Calorimeter detector at the India-based Neutrino Observatory

    E-Print Network [OSTI]

    Moon Moon Devi; Anushree Ghosh; Daljeet Kaur; Lakshmi S. Mohan; Sandhya Choubey; Amol Dighe; D. Indumathi; Sanjeev Kumar; M. V. N. Murthy; Md. Naimuddin

    2013-10-30

    The results of a Monte Carlo simulation study of the hadron energy response for the magnetized Iron CALorimeter detector, ICAL, proposed to be located at the India-based Neutrino Observatory (INO) is presented. Using a GEANT4 modeling of the detector ICAL, interactions of atmospheric neutrinos with target nuclei are simulated. The detector response to hadrons propagating through it is investigated using the hadron hit multiplicity in the active detector elements. The detector response to charged pions of fixed energy is studied first, followed by the average response to the hadrons produced in atmospheric neutrino interactions using events simulated with the NUANCE event generator. The shape of the hit distribution is observed to fit the Vavilov distribution, which reduces to a Gaussian at high energies. In terms of the parameters of this distribution, we present the hadron energy resolution as a function of hadron energy, and the calibration of hadron energy as a function of the hit multiplicity. The energy resolution for hadrons is found to be in the range 85% (for 1GeV) -- 36% (for 15 GeV).

  10. Very high energy neutrino emission from the core of low luminosity AGNs triggered by magnetic reconnection acceleration

    E-Print Network [OSTI]

    Khiali, Behrouz

    2015-01-01

    The detection of astrophysical very high energy (VHE) neutrinos in the range of TeV-PeV energies by the IceCube observatory has opened a new season in high energy astrophysics. Energies ~PeV imply that the neutrinos are originated from sources where cosmic rays (CRs) can be accelerated up to ~ 10^{17}eV. Recently, we have shown that the observed TeV gamma-rays from radio-galaxies may have a hadronic origin in their nuclear region and in such a case this could lead to neutrino production. In this paper we show that relativistic protons accelerated by magnetic reconnection in the core region of these sources may produce VHE neutrinos via the decay of charged pions produced by photo-meson process. We have also calculated the diffuse flux of VHE neutrinos and found that it can be associated to the IceCube data.

  11. Search for high-energy muon neutrinos from the "naked-eye" GRB080319B with the IceCube neutrino telescope

    E-Print Network [OSTI]

    Abbasi, R.; IceCube Collaboration

    2009-01-01

    one of the brightest gamma-ray bursts (GRBs) ever observed.cosmic high-energy neutrinos, gamma-ray-burst, GRB 080319BLong duration gamma-ray bursts (GRBs) are thought to

  12. SEARCH FOR TIME-INDEPENDENT NEUTRINO EMISSION FROM ASTROPHYSICAL SOURCES WITH 3 yr OF IceCube DATA

    E-Print Network [OSTI]

    Aartsen, M. G.; Besson, David Zeke

    2013-12-03

    The Astrophysical Journal, 779:132 (17pp), 2013 December 20 doi:10.1088/0004-637X/779/2/132 C© 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. SEARCH FOR TIME-INDEPENDENT NEUTRINO EMISSION FROM ASTROPHYSICAL.... Becker Tjus15, K.-H. Becker16, M. L. Benabderrahmane4, S. BenZvi2, P. Berghaus4, D. Berley17, E. Bernardini4, A. Bernhard18, D. Z. Besson19, G. Binder11,20, D. Bindig16, M. Bissok21, E. Blaufuss17, J. Blumenthal21, D. J. Boersma22, S. Bohaichuk23, C. Bohm...

  13. Day-night asymmetry of high and low energy solar neutrino events in Super-Kamiokande and in the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; D. Montanino; A. Palazzo

    2000-09-19

    In the context of solar neutrino oscillations among active states, we briefly discuss the current likelihood of Mikheyev-Smirnov-Wolfenstein (MSW) solutions to the solar neutrino problem, which appear to be currently favored at large mixing, where small Earth regeneration effects might still be observable in Super-Kamiokande (SK) and in the Sudbury Neutrino Observatory (SNO). We point out that, since such effects are larger at high (low) solar neutrino energies for high (low) values of the mass square difference \\delta m^2, it may be useful to split the night-day rate asymmetry in two separate energy ranges. We show that the difference \\Delta of the night-day asymmetry at high and low energy may help to discriminate the two large-mixing solutions at low and high \\delta m^2 through a sign test, both in SK and in SNO, provided that the sensitivity to \\Delta can reach the (sub)percent level.

  14. Measurement of radium concentration in water with Mn-coated beads at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    T. C. Andersen

    2003-04-01

    We describe a method to measure the concentration of 224Ra and 226Ra in the heavy water target used to detect solar neutrinos at the Sudbury Neutrino Observatory and in the surrounding light water shielding. A water volume of (50-400) m^3 from the detector is passed through columns which contain beads coated with a compound of manganese oxide onto which the Ra dissolved in the water is adsorbed. The columns are removed, dried, and mounted below an electrostatic chamber into which the Rn from the decay of trapped Ra is continuously flowed by a stream of nitrogen gas. The subsequent decay of Rn gives charged Po ions which are swept by the electric field onto a solid-state alpha counter. The content of Ra in the water is inferred from the measured decay rates of 212Po, 214Po, 216Po, and 218Po. The Ra extraction efficiency is >95%, the counting efficiency is 24% for 214Po and 6% for 216Po, and the method can detect a few atoms of 224Ra per m^3 and a few tens of thousands of atoms of 226Ra per m^3. Converted to equivalent equilibrium values of the topmost elements of the natural radioactive chains, the detection limit in a single assay is a few times 10^(-16) g Th or U/cm^3. The results of some typical assays are presented and the contributions to the systematic error are discussed.

  15. IceCube: Performance, Status, and Future

    E-Print Network [OSTI]

    Carsten Rott; for the IceCube Collaboration

    2006-11-28

    High-energy neutrinos are uniquely suited to study a large variety of physics as they traverse the universe almost untouched, in contrast to conventional astronomical messengers like photons or cosmic rays which are limited by interactions with radiation and matter at high energies or deflected by ambient magnetic fields. Located at the South Pole, IceCube combined with its predecessor AMANDA comprise the world's largest neutrino telescope. IceCube currently consists of nine strings, each containing 60 digital optical modules, deployed at depths of 1.5 to 2.5km in the ice and an array of 16 surface air-shower stations. IceCube is expected to be completed in early 2011 at which time it will instrument a volume of one km^3 below the IceTop air-shower array covering an area of one km^2. The current IceCube detector performance is described and an outlook given into the large variety of physics that it can address, with an emphasis on the search for ultra-high-energy neutrinos which may shed light on the origins of the highest energy cosmic rays.

  16. IceCube: Performance, Status, and Future

    E-Print Network [OSTI]

    Rott, C

    2006-01-01

    High-energy neutrinos are uniquely suited to study a large variety of physics as they traverse the universe almost untouched, in contrast to conventional astronomical messengers like photons or cosmic rays which are limited by interactions with radiation and matter at high energies or deflected by ambient magnetic fields. Located at the South Pole, IceCube combined with its predecessor AMANDA comprise the world's largest neutrino telescope. IceCube currently consists of nine strings, each containing 60 digital optical modules, deployed at depths of 1.5 to 2.5km in the ice and an array of 16 surface air-shower stations. IceCube is expected to be completed in early 2011 at which time it will instrument a volume of one km^3 below the IceTop air-shower array covering an area of one km^2. The current IceCube detector performance is described and an outlook given into the large variety of physics that it can address, with an emphasis on the search for ultra-high-energy neutrinos which may shed light on the origins ...

  17. SEARCH FOR POINT-LIKE SOURCES OF ULTRA-HIGH ENERGY NEUTRINOS AT THE PIERRE AUGER OBSERVATORY AND IMPROVED LIMIT ON THE DIFFUSE FLUX OF TAU NEUTRINOS

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S. [LIP and Instituto Superior Tecnico, Technical University of Lisbon (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Ahlers, M. [University of Wisconsin, Madison, WI (United States); Ahn, E. J. [Fermilab, Batavia, IL (United States); Albuquerque, I. F. M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Almela, A. [Universidad Tecnologica Nacional - Facultad Regional Buenos Aires, Buenos Aires (Argentina); Alvarez Castillo, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Alves Batista, R. [Universidade Estadual de Campinas, IFGW, Campinas, SP (Brazil); Ambrosio, M.; Aramo, C. [Universita di Napoli 'Federico II' and Sezione INFN, Napoli (Italy); Aminaei, A. [IMAPP, Radboud University Nijmegen (Netherlands); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Antici'c, T. [Rudjer Boskovi'c Institute, 10000 Zagreb (Croatia); Collaboration: Pierre Auger Collaboration; and others

    2012-08-10

    The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E{sub {nu}} between 10{sup 17} eV and 10{sup 20} eV from point-like sources across the sky south of +55 Degree-Sign and north of -65 Degree-Sign declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of {approx}3.5 years of a full surface detector array for the Earth-skimming channel and {approx}2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k{sub PS} {center_dot} E {sup -2}{sub {nu}} from a point-like source, 90% confidence level upper limits for k{sub PS} at the level of Almost-Equal-To 5 Multiplication-Sign 10{sup -7} and 2.5 Multiplication-Sign 10{sup -6} GeV cm{sup -2} s{sup -1} have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively.

  18. AMON Searches for Jointly-Emitting Neutrino + Gamma-Ray Transients

    E-Print Network [OSTI]

    Keivani, A; Teši?, G; Cowen, D F; Fixelle, J

    2015-01-01

    We present the results of archival coincidence analyses using public neutrino data from the 40-string configuration of IceCube (IC40) and contemporaneous public gamma-ray data from Fermi LAT. Our analyses have the potential to discover statistically significant coincidences between high-energy neutrino and gamma-ray signals, and hence, possible jointly-emitting neutrino/gamma-ray transients. This work is an example of more general multimessenger studies that the Astrophysical Multimessenger Observatory Network (AMON) aims to perform. AMON is currently under development and will link multiple running and future high-energy neutrino, cosmic ray and follow-up observatories as well as gravitational wave facilities. This single network will enable near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. We will present the component high-energy neutrino and gamma-ray datasets, the statistical approaches that we used, and the results of analyses of the ...

  19. Results from IceCube/IceTop Ooty, 17/12/12 Tom Gaisser for the IceCube Collab. 1

    E-Print Network [OSTI]

    Gaisser, Thomas K.

    , 17/12/12 Tom Gaisser for the IceCube Collab. 3 #12;Mumbai, 11/12/12 Tom;Mumbai, 11/12/12 Tom Gaisser for the IceCube Collab. 5 DetecMng neutrinos in H of interac,ons IceTop #12;Mumbai, 11/12/12 Tom Gaisser for the IceCube Collab. 6

  20. A Search for Ultra-High Energy Neutrinos in Highly Inclined Events at the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P [LIP, Coimbra; Lisbon, IST; Aglietta, M; Ahlers, M; Ahn, E J; Albuquerque, I F.M.; Allard, D

    2011-12-30

    The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E2dN/dE < 1.74 x 10-7 GeV cm-2s-1sr-1 at 90% C.L. in the energy range 1 x 1017eV < E < 1 x 1020 eV.

  1. A Search for Ultra-High Energy Neutrinos in Highly Inclined Events at the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu, P [LIP, Coimbra; Lisbon, IST; Aglietta, M; Ahlers, M; Ahn, E J; Albuquerque, I F.M.; Allard, D

    2011-12-30

    The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E2dN/dE -7 GeV cm-2s-1sr-1 at 90% C.L. in the energy range 1 x 1017eV 20 eV.

  2. A Search for Ultra-High Energy Neutrinos in Highly Inclined Events at the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu, P

    2011-12-30

    The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associatedmore »systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E2dN/dE -7 GeV cm-2s-1sr-1 at 90% C.L. in the energy range 1 x 1017eV 20 eV.« less

  3. Optical and X-ray early follow-up of ANTARES neutrino alerts

    E-Print Network [OSTI]

    Adrian-Martinez, S; Albert, A; Samarai, I Al; Andre, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Marti, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsasser, D; Enzenhofer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galata, S; Gay, P; Geißelsoder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; van Haren, H; Heijboer, A J; Hello, Y; Hernandez-Rey, J J; Herrero, A; Hoßl, J; Hofestadt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Lattuada, D; Lefevre, D; Leonora, E; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Neff, M; Nezri, E; Pavalas, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldana, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sanchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tonnis, C; Turpin, D; Vallage, B; Vallee, C; Van Elewyck, V; Vecchi, M; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zuniga, J; Klotz, A; Boer, M; Van Suu, A Le; Akerlof, C; Zheng, W; Evans, P; Gehrels, N; Kennea, J; Osborne, J P; Coward, D M

    2015-01-01

    High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT w...

  4. Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

    SciTech Connect (OSTI)

    Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

    2007-02-01

    This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

  5. The Princeton Tritium Observatory for Light, Early Universe,...

    Office of Environmental Management (EM)

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield...

  6. Low Energy Threshold Analysis of the Phase I and Phase II Data Sets of the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    The SNO Collaboration

    2010-06-09

    Results are reported from a joint analysis of Phase I and Phase II data from the Sudbury Neutrino Observatory. The effective electron kinetic energy threshold used is T_eff=3.5 MeV, the lowest analysis threshold yet achieved with water Cherenkov detector data. In units of 10^6 cm^{-2} s^{-1}, the total flux of active-flavor neutrinos from 8B decay in the Sun measured using the neutral current (NC) reaction of neutrinos on deuterons, with no constraint on the 8B neutrino energy spectrum, is found to be Phi_NC = 5.140 ^{+0.160}_{-0.158} (stat) ^{+0.132}_{-0.117} (syst). These uncertainties are more than a factor of two smaller than previously published results. Also presented are the spectra of recoil electrons from the charged current reaction of neutrinos on deuterons and the elastic scattering of electrons. A fit to the SNO data in which the free parameters directly describe the total 8B neutrino flux and the energy-dependent nu_e survival probability provides a measure of the total 8B neutrino flux Phi_8B = 5.046 ^{+0.159}_{-0.152} (stat) ^{+0.107}_{-0.123} (syst). Combining these new results with results of all other solar experiments and the KamLAND reactor experiment yields best-fit values of the mixing parameters of theta_{12}=34.06 ^{+1.16}_{-0.84} degrees and Delta m^2_{21}=7.59 ^{+0.20}_{-0.21} x 10^{-5} eV^2. The global value of Phi_8B is extracted to a precision of ^{+2.38}_{-2.95} %. In a three-flavor analysis the best fit value of sin^2\\theta_{13} is 2.00 ^{+2.09}_{-1.63} x 10^{-2}. Interpreting this as a limit implies an upper bound of sin^2\\theta_{13} < 0.057 (95% C. L.).

  7. IceCube: The state of the art

    E-Print Network [OSTI]

    Teresa Montaruli

    2006-08-09

    In this paper we describe the performance of the 9 instrumented IceCube strings and 16 surface IceTop stations taking data at the Geographical South Pole after 2 deployment seasons. We will focus on the description of the array and on the construction and data analysis status. The expected full array performance is discussed and compared to other results for the relevant physics studies using high energy neutrinos for astrophysical neutrino searches.

  8. MOON (Mo Observatory Of Neutrinos) for double beta decay M. Nomachia

    E-Print Network [OSTI]

    Washington at Seattle, University of

    experiments. The neutrino mass matrix is severely constrained by experiment [1]. Limits on neutrinoless double beta decay require the ee element to be less than about 10 eV, and there must be an eigenstate, pre

  9. Do high energy astrophysical neutrinos trace star formation?

    E-Print Network [OSTI]

    Emig, Kimberly; Windhorst, Rogier

    2015-01-01

    The IceCube Neutrino Observatory has provided the first map of the high energy (~ 0.01 -- 1 PeV) sky in neutrinos. Since neutrinos propagate undeflected, their arrival direction is an important identifier for sources of high energy particle acceleration. Reconstructed arrival directions are consistent with an extragalactic origin, with possibly a galactic component, of the neutrino flux. We present a statistical analysis of positional coincidences of the IceCube neutrinos with known astrophysical objects from several catalogs. For the brightest gamma-ray emitting blazars and for Seyfert galaxies, the number of coincidences is consistent with the random, or "null", distribution. Instead, when considering starburst galaxies with the highest flux in gamma-rays and infrared radiation, up to n = 8 coincidences are found, representing an excess over the ~4 predicted for the null distribution. The probability that this excess is realized in the null case, the p-value, is p = 0.042. This value falls to p = 0.003 for ...

  10. ANIS: High Energy Neutrino Generator for Neutrino Telescopes

    E-Print Network [OSTI]

    Askhat Gazizov; Marek P. Kowalski

    2004-06-19

    We present the high-energy neutrino Monte Carlo event generator ANIS (All Neutrino Interaction Simulation). The program provides a detailed and flexible neutrino event simulation for high-energy neutrino detectors, such as AMANDA, ANTARES or ICECUBE. It generates neutrinos of any flavor according to a specified flux and propagates them through the Earth. In a final step neutrino interactions are simulated within a specified volume. All relevant standard model processes are implemented. We discuss strengths and limitations of the program.

  11. High Energy Neutrino Generator for Neutrino Telescopes

    E-Print Network [OSTI]

    Marek Kowalski; Askhat Gazizov

    2003-12-08

    We present the high energy neutrino Monte Carlo event generator ANIS (All Neutrino Interaction Simulation). The aim of the program is to provide a detailed and flexible neutrino event simulation for high energy neutrino detectors, such as AMANDA and ICECUBE. It generates neutrinos of any flavor according to a specific flux, propagates them through the Earth and in a final step simulates neutrino interactions within a specified volume. All relevant standard model processes are implemented. We discuss strength and limitations of the program, and provide as an example event rates for atmospheric and E^-2 neutrino spectra.

  12. Estimating concentrations of heat producing elements in the crust near the Sudbury Neutrino Observatory, Ontario, Canada

    E-Print Network [OSTI]

    Observatory, Ontario, Canada Catherine Phaneuf, Jean-Claude Mareschal GEOTOP, University of Quebec at Montreal, Montreal, QC, Canada a b s t r a c ta r t i c l e i n f o Article history: Received 1 August 2013 in the Creighton Mine, near Sudbury, Ontario. The facility has been upgraded and a new kiloton scale liquid

  13. Simulations Study of Muon Response in the Peripheral Regions of the Iron Calorimeter Detector at the India-based Neutrino Observatory

    E-Print Network [OSTI]

    Kanishka, R; Bhatnagar, Vipin; Indumathi, D; Sinha, Nita

    2015-01-01

    The magnetized Iron CALorimeter detector (ICAL) which is proposed to be built in the India-based Neutrino Observatory (INO) laboratory, aims to study atmospheric neutrino oscillations primarily through charged current interactions of muon neutrinos and anti-neutrinos with the detector. The response of muons and charge identification efficiency, angle and energy resolution as a function of muon momentum and direction are studied from GEANT4-based simulations in the peripheral regions of the detector. This completes the characterisation of ICAL with respect to muons over the entire detector and has implications for the sensitivity of ICAL to the oscillation parameters and mass hierarchy compared to the studies where only the resolutions and efficiencies of the central region of ICAL were assumed for the entire detector. Selection criteria for track reconstruction in the peripheral region of the detector were determined from the detector response. On applying these, for the 1--20 GeV energy region of interest fo...

  14. On the angular distribution of IceCube high-energy events

    E-Print Network [OSTI]

    Marcos, R de la Fuente

    2015-01-01

    The detection of high-energy astrophysical neutrinos of extraterrestrial origin by the IceCube neutrino observatory in Antarctica has opened a unique window to the cosmos that may help to probe both the distant Universe and our cosmic backyard. The arrival directions of these high-energy events have been interpreted as uniformly distributed on the celestial sphere. Here, we revisit the topic of the putative isotropic angular distribution of these events applying Monte Carlo techniques to investigate a possible anisotropy. A modest evidence for anisotropy is found. An excess of events appears projected towards a section of the Local Void, where the density of galaxies with radial velocities below 3000 km/s is rather low, suggesting that this particular group of somewhat clustered sources are located either very close to the Milky Way or perhaps beyond 40 Mpc. The results of further analyses of the subsample of southern hemisphere events favour an origin at cosmological distances with the arrival directions of ...

  15. Neutrino Astronomy at the South Pole

    E-Print Network [OSTI]

    P. A. Toale; for the IceCube Collaboration

    2006-07-01

    IceCube is currently being built deep in the glacial ice beneath the South Pole. In its second year of construction, it is already larger than its predecessor, AMANDA. AMANDA continues to collect high energy neutrino and muon data as an independent detector until it is integrated with IceCube. After introducing both detectors, recent results from AMANDA and a status report on IceCube are presented.

  16. Prospects for Relic Neutrino Detection at PTOLEMY: Princeton...

    Office of Environmental Management (EM)

    Relic Neutrino Detection at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield Prospects for Relic Neutrino Detection at PTOLEMY: Princeton...

  17. Ultra-hard spectra of PeV neutrinos from supernovae in compact star clusters

    E-Print Network [OSTI]

    Bykov, A M; Gladilin, P E; Osipov, S M

    2015-01-01

    Starburst regions with multiple powerful winds of young massive stars and supernova remnants are favorable sites for high-energy cosmic ray acceleration. A supernova shock colliding with a fast wind from a compact cluster of young stars allows the acceleration of protons to energies well above the standard limits of diffusive shock acceleration in an isolated SN. The proton spectrum in such a wind-supernova PeV accelerator is hard with a large flux in the high-energy-end of the spectrum producing copious gamma-rays and neutrinos in inelastic nuclear collisions. We argue that SN shocks in the Westerlund 1 cluster in the Milky Way may accelerate protons to about 40 PeV. Once accelerated, these CRs will diffuse into surrounding dense clouds and produce neutrinos with fluxes sufficient to explain a fraction of the events detected by IceCube Observatory from the inner Galaxy.

  18. Estimation of low energy neutron flux ($E_n\\leq15$ MeV) in India-based Neutrino Observatory cavern using Monte Carlo techniques

    E-Print Network [OSTI]

    Dokania, N; Mathimalar, S; Garai, A; Nanal, V; Pillay, R G; Bhushan, K G

    2015-01-01

    The neutron flux at low energy ($E_n\\leq15$ MeV) resulting from the radioactivity of the rock in the underground cavern of the India-based Neutrino Observatory is estimated using Geant4-based Monte Carlo simulations. The neutron production rate due to the spontaneous fission of U, Th and ($\\alpha, n$) interactions in the rock is determined employing the actual rock composition. It has been demonstrated that the total flux is equivalent to a finite size cylindrical rock ($D=L=140$ cm) element. The energy integrated neutron flux thus obtained at the center of the underground tunnel is 2.76 (0.47) $\\times 10^{-6}\\rm~n ~cm^{-2}~s^{-1}$. The estimated neutron flux is of the same order ($\\sim10^{-6}\\rm~n ~cm^{-2}~s^{-1}$)~as measured in other underground laboratories.

  19. Estimation of low energy neutron flux ($E_n\\leq15$ MeV) in India-based Neutrino Observatory cavern using Monte Carlo techniques

    E-Print Network [OSTI]

    N. Dokania; V. Singh; S. Mathimalar; A. Garai; V. Nanal; R. G. Pillay; K. G. Bhushan

    2015-09-23

    The neutron flux at low energy ($E_n\\leq15$ MeV) resulting from the radioactivity of the rock in the underground cavern of the India-based Neutrino Observatory is estimated using Geant4-based Monte Carlo simulations. The neutron production rate due to the spontaneous fission of U, Th and ($\\alpha, n$) interactions in the rock is determined employing the actual rock composition. It has been demonstrated that the total flux is equivalent to a finite size cylindrical rock ($D=L=140$ cm) element. The energy integrated neutron flux thus obtained at the center of the underground tunnel is 2.76 (0.47) $\\times 10^{-6}\\rm~n ~cm^{-2}~s^{-1}$. The estimated neutron flux is of the same order ($\\sim10^{-6}\\rm~n ~cm^{-2}~s^{-1}$)~as measured in other underground laboratories.

  20. Geo-neutrino Observation

    SciTech Connect (OSTI)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-12-17

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  1. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip

    2013-05-23

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  2. 29April2011JohnLearnedatIceCubeDedication1 IceCube Dedication Symposium, Madison, Wisconsin

    E-Print Network [OSTI]

    Learned, John

    29April2011JohnLearnedatIceCubeDedication1 IceCube Dedication Symposium, Madison, Wisconsin 29 of Neutrino Studies #12;"Talking to the neighbors" 29April2011JohnLearnedatIceCubeDedication2 "A modest://www.economist.com/PrinterFriendly.cfm?story_id=18526871 Not what this talk is about.... SETI with Neutrinos #12;29April2011JohnLearnedatIceCubeDedication3

  3. The KM3NeT deep-sea neutrino telescope

    E-Print Network [OSTI]

    Margiotta, Annarita

    2014-01-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about one hundred Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are present...

  4. A radio air shower surface detector as an extension for IceCube and IceTop

    E-Print Network [OSTI]

    J. Auffenberg; T. Gaisser; K. Helbing; T. Huege; T. Karg; A. Karle

    2007-08-24

    The IceCube neutrino detector is built into the Antarctic ice sheet at the South Pole to measure high energy neutrinos. For this, 4800 photomultiplier tubes (PMTs) are being deployed at depths between 1450 and 2450 meters into the ice to measure neutrino induced charged particles like muons. IceTop is a surface air shower detector consisting of 160 Cherenkov ice tanks located on top of IceCube. To extend IceTop, a radio air shower detector could be built to significantly increase the sensitivity at higher shower energies and for inclined showers. As air showers induced by cosmic rays are a major part of the muonic background in IceCube, IceTop is not only an air shower detector, but also a veto to reduce the background in IceCube. Air showers are detectable by radio signals with a radio surface detector. The major emission process is the coherent synchrotron radiation emitted by e+ e- shower particles in the Earths magnetic field (geosynchrotron effect). Simulations of the expected radio signals of air showers are shown. The sensitivity and the energy threshold of different antenna field configurations are estimated.

  5. High sensitivity measurement of 224Ra and 226Ra in water with an improved hydrous titanium oxide technique at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    B. Aharmim; B. T. Cleveland; X. Dai; G. Doucas; J. Farine; H. Fergani; R. Ford; R. L. Hahn; E. D. Hallman; N. A. Jelley; R. Lange; S. Majerus; C. Mifflin; A. J. Noble; H. M. O'Keeffe; R. Rodriguez-Jimenez; D. Sinclair; M. Yeh

    2009-02-01

    The existing hydrous titanium oxide (HTiO) technique for the measurement of 224Ra and 226Ra in the water at the Sudbury Neutrino Observatory (SNO) has been changed to make it faster and less sensitive to trace impurities in the HTiO eluate. Using HTiO-loaded filters followed by cation exchange adsorption and HTiO co-precipitation, Ra isotopes from 200-450 tonnes of heavy water can be extracted and concentrated into a single sample of a few millilitres with a total chemical efficiency of 50%. Combined with beta-alpha coincidence counting, this method is capable of measuring 2.0x10^3 uBq/kg of 224Ra and 3.7x10^3 uBq/kg of 226Ra from the 232Th and 238U decay chains, respectively, for a 275 tonne D2O assay, which are equivalent to 5x10^16 g Th/g and 3x10^16 g U/g in heavy water.

  6. Sensor development and calibration for acoustic neutrino detection in ice

    E-Print Network [OSTI]

    Karg, Timo; Laihem, Karim; Semburg, Benjamin; Tosi, Delia

    2009-01-01

    A promising approach to measure the expected low flux of cosmic neutrinos at the highest energies (E > 1 EeV) is acoustic detection. There are different in-situ test installations worldwide in water and ice to measure the acoustic properties of the medium with regard to the feasibility of acoustic neutrino detection. The parameters of interest include attenuation length, sound speed profile, background noise level and transient backgrounds. The South Pole Acoustic Test Setup (SPATS) has been deployed in the upper 500 m of drill holes for the IceCube neutrino observatory at the geographic South Pole. In-situ calibration of sensors under the combined influence of low temperature, high ambient pressure, and ice-sensor acoustic coupling is difficult. We discuss laboratory calibrations in water and ice. Two new laboratory facilities, the Aachen Acoustic Laboratory (AAL) and the Wuppertal Water Tank Test Facility, have been set up. They offer large volumes of bubble free ice (3 m^3) and water (11 m^3) for the devel...

  7. Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature and Origin WhatNetworks,BeamNeutrino cross

  8. Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature andNeutrinos from the NuMI beamline in the

  9. Measurement of atmospheric neutrino oscillations with very large volume neutrino telescopes

    E-Print Network [OSTI]

    J. P. Yańez; A. Kouchner

    2015-09-28

    Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies, and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters, and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.

  10. Measurement of atmospheric neutrino oscillations with very large volume neutrino telescopes

    E-Print Network [OSTI]

    Yańez, J P

    2015-01-01

    Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies, and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters, and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.

  11. Cosmic-ray results from IceCube/ Mumbai, 12/12/12 Tom Gaisser for the IceCube Collab. 1

    E-Print Network [OSTI]

    Gaisser, Thomas K.

    Cosmic-ray results from IceCube/ IceTop Mumbai, 12/12/12 Tom Gaisser for the IceCube Collab. 1 #12;Mumbai, 12/12/12 Tom Gaisser for the IceCube Collab. 2 events ­ IceTop/deep IceCube Mumbai, 12/12/12 Tom Gaisser for the IceCube Collab

  12. Searching for Cosmic Accelerators via IceCube

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Searching for Cosmic Accelerators via IceCube Searching for Cosmic Accelerators via IceCube Berkeley Lab Researchers Part of an International Hunt November 21, 2013 Lynn Yarris,...

  13. Higher order dark matter annihilations in the Sun and implications for IceCube

    SciTech Connect (OSTI)

    Ibarra, Alejandro; Totzauer, Maximilian; Wild, Sebastian E-mail: maximilian.totzauer@mytum.de

    2014-04-01

    Dark matter particles captured in the Sun would annihilate producing a neutrino flux that could be detected at the Earth. In some channels, however, the neutrino flux lies in the MeV range and is thus undetectable at IceCube, namely when the dark matter particles annihilate into e{sup +}e{sup ?}, ?{sup +}?{sup ?} or light quarks. On the other hand, the same interaction that mediates the annihilations into light fermions also leads, via higher order effects, to the production of weak gauge bosons (and in the case of quarks also gluons) that generate a high energy neutrino flux potentially observable at IceCube. We consider in this paper tree level annihilations into a fermion-antifermion pair with the associated emission of one gauge boson and one loop annihilations into two gauge bosons, and we calculate the limits on the scattering cross section of dark matter particles with protons in scenarios where the dark matter particle couples to electrons, muons or light quarks from the non-observation of an excess of neutrino events in the direction of the Sun. We find that the limits on the spin-dependent scattering cross section are, for some scenarios, stronger than the limits from direct detection experiments.

  14. Neutrino Physics with JUNO

    E-Print Network [OSTI]

    An, Fengpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Avanzini, Margherita Buizza; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Herve; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Goger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cecile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Mollenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M; McDonough, William F; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Bjorn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frederic; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2015-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\\%. Neutrino burst from a typical cor...

  15. NEUTRINO PHYSICS (NONACCELERATOR) Kamioka Observatory

    E-Print Network [OSTI]

    Tokyo, University of

    -9007(96)01989-8] PACS numbers: 23.40.Hc, 21.10.Tg, 21.60.Cs, 27.40.+z Neutrinoless double beta decay (bb0n) is the most

  16. IceCube events and decaying dark matter: hints and constraints

    E-Print Network [OSTI]

    Arman Esmaili; Sin Kyu Kang; Pasquale Dario Serpico

    2015-01-08

    In the light of the new IceCube data on the (yet unidentified) astrophysical neutrino flux in the PeV and sub-PeV range, we present an update on the status of decaying dark matter interpretation of the events. In particular, we develop further the angular distribution analysis and discuss the perspectives for diagnostics. By performing various statistical tests (maximum likelihood, Kolmogorov-Smirnov and Anderson-Darling tests) we conclude that currently the data show a mild preference (below the two sigma level) for the angular distribution expected from dark matter decay vs. the isotropic distribution foreseen for a conventional astrophysical flux of extragalactic origin. Also, we briefly develop some general considerations on heavy dark matter model building and on the compatibility of the expected energy spectrum of decay products with the IceCube data, as well as with existing bounds from gamma-rays. Alternatively, assuming that the IceCube data originate from conventional astrophysical sources, we derive bounds on both decaying and annihilating dark matter for various final states. The lower limits on heavy dark matter lifetime improve by up to an order of magnitude with respect to existing constraints, definitively making these events---even if astrophysical in origin---an important tool for astroparticle physics studies.

  17. Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-04-28

    A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

  18. Neutrino 2012: Outlook - theory

    E-Print Network [OSTI]

    A. Yu. Smirnov

    2012-10-15

    Ongoing developments in theory and phenomenology are related to the measured large value of 1-3 mixing and indications of significant deviation of the 2-3 mixing from maximal one. "Race" for the mass hierarchy has started and there is good chance that multi-megaton scale atmospheric neutrino detectors with low threshold (e.g. PINGU) will establish the type of hierarchy. Two IceCube candidates of the PeV cosmic neutrinos if confirmed, is the beginning of new era of high energy neutrino astronomy. Accumulation of data on solar neutrinos (energy spectrum, D-N asymmetry, value of $\\Delta m^2_{21}$) may uncover some new physics. The Tri-bimaximal mixing is disfavored and the existing discrete symmetry paradigm may change. The confirmed QLC prediction, $\\theta_{13} \\approx \\theta_{C}/\\sqrt{2}$, testifies for GUT, seesaw and some symmetry at very high scales. However, the same value of 1-3 mixing can be obtained in various ways which have different implications. The situation in lepton sector changes from special (with specific neutrino symmetries, etc.) to normal, closer to that in the quark sector. Sterile neutrinos are challenge for neutrino physics but also opportunity with many interesting phenomenological consequences. Further studies of possible connections between neutrinos and the dark sector of the Universe may lead to breakthrough both in particle physics and cosmology.

  19. Science Potential of a Deep Ocean Antineutrino Observatory

    E-Print Network [OSTI]

    Steve Dye

    2006-12-15

    This paper presents science potential of a deep ocean antineutrino observatory under development at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy. At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle.

  20. Solar Neutrino Matter Effects Redux

    E-Print Network [OSTI]

    A. B. Balantekin; A. Malkus

    2011-12-19

    Following recent low-threshold analysis of the Sudbury Neutrino Observatory and asymmetry measurements of the BOREXINO Collaboration of the solar neutrino flux, we revisit the analysis of the matter effects in the Sun. We show that solar neutrino data constrains the mixing angle $\\theta_{13}$ poorly and that subdominant Standard Model effects can mimic the effects of the physics beyond the Standard Model.

  1. The Era of Kilometer-Scale Neutrino Detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Halzen, Francis; Katz, Uli

    2013-01-01

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. KM3NeT, an instrument that aims to exploit several cubic kilometers of the deep Mediterranean sea as its detector medium, is in its final design stages. The scientific missions of these instruments include searching for sources of cosmic rays and for dark matter, observing Galactic supernova explosions, and studying the neutrinos themselves. Identifying the accelerators that produce Galacticmore »and extragalactic cosmic rays has been a priority mission of several generations of high-energy gamma-ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes. In this paper, we will first revisit the rationale for constructing kilometer-scale neutrino detectors. We will subsequently recall the methods for determining the arrival direction, energy and flavor of neutrinos, and will subsequently describe the architecture of the IceCube and KM3NeT detectors.« less

  2. IceCube: A Cubic Kilometer Radiation Detector

    E-Print Network [OSTI]

    Klein, S.; IceCube Collaboration

    2008-01-01

    Cubic Kilometer Radiation Detector The IceCube CollaborationA Cubic Kilometer Radiation Detector Spencer R. Klein, forlarge detector is to search for optical Cherenkov radiation

  3. The Enriched Xenon Observatory

    SciTech Connect (OSTI)

    Dolinski, M. J. [Stanford University Physics Department, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States)

    2009-12-17

    The Enriched Xenon Observatory (EXO) experiment will search for neutrinoless double beta decay of {sup 136}Xe. The EXO Collaboration is actively pursuing both liquid-phase and gas-phase Xe detector technologies with scalability to the ton-scale. The search for neutrinoless double beta decay of {sup 136}Xe is especially attractive because of the possibility of tagging the resulting Ba daughter ion, eliminating all sources of background other than the two neutrino decay mode. EXO-200, the first phase of the project, is a liquid Xe time projection chamber with 200 kg of Xe enriched to 80% in {sup 136}Xe. EXO-200, which does not include Ba-tagging, will begin taking data in 2009, with two-year sensitivity to the half-life for neutrinoless double beta decay of 6.4x10{sup 25} years. This corresponds to an effective Majorana neutrino mass of 0.13 to 0.19 eV.

  4. Neutrino Physics with JUNO

    E-Print Network [OSTI]

    Fengpeng An; Guangpeng An; Qi An; Vito Antonelli; Eric Baussan; John Beacom; Leonid Bezrukov; Simon Blyth; Riccardo Brugnera; Margherita Buizza Avanzini; Jose Busto; Anatael Cabrera; Hao Cai; Xiao Cai; Antonio Cammi; Guofu Cao; Jun Cao; Yun Chang; Shaomin Chen; Shenjian Chen; Yixue Chen; Davide Chiesa; Massimiliano Clemenza; Barbara Clerbaux; Janet Conrad; Davide D'Angelo; Herve De Kerret; Zhi Deng; Ziyan Deng; Yayun Ding; Zelimir Djurcic; Damien Dornic; Marcos Dracos; Olivier Drapier; Stefano Dusini; Stephen Dye; Timo Enqvist; Donghua Fan; Jian Fang; Laurent Favart; Richard Ford; Marianne Goger-Neff; Haonan Gan; Alberto Garfagnini; Marco Giammarchi; Maxim Gonchar; Guanghua Gong; Hui Gong; Michel Gonin; Marco Grassi; Christian Grewing; Mengyun Guan; Vic Guarino; Gang Guo; Wanlei Guo; Xin-Heng Guo; Caren Hagner; Ran Han; Miao He; Yuekun Heng; Yee Hsiung; Jun Hu; Shouyang Hu; Tao Hu; Hanxiong Huang; Xingtao Huang; Lei Huo; Ara Ioannisian; Manfred Jeitler; Xiangdong Ji; Xiaoshan Jiang; Cecile Jollet; Li Kang; Michael Karagounis; Narine Kazarian; Zinovy Krumshteyn; Andre Kruth; Pasi Kuusiniemi; Tobias Lachenmaier; Rupert Leitner; Chao Li; Jiaxing Li; Weidong Li; Weiguo Li; Xiaomei Li; Xiaonan Li; Yi Li; Yufeng Li; Zhi-Bing Li; Hao Liang; Guey-Lin Lin; Tao Lin; Yen-Hsun Lin; Jiajie Ling; Ivano Lippi; Dawei Liu; Hongbang Liu; Hu Liu; Jianglai Liu; Jianli Liu; Jinchang Liu; Qian Liu; Shubin Liu; Shulin Liu; Paolo Lombardi; Yongbing Long; Haoqi Lu; Jiashu Lu; Jingbin Lu; Junguang Lu; Bayarto Lubsandorzhiev; Livia Ludhova; Shu Luo; Vladimir Lyashuk; Randolph Mollenberg; Xubo Ma; Fabio Mantovani; Yajun Mao; Stefano M. Mari; William F. McDonough; Guang Meng; Anselmo Meregaglia; Emanuela Meroni; Mauro Mezzetto; Lino Miramonti; Thomas Mueller; Dmitry Naumov; Lothar Oberauer; Juan Pedro Ochoa-Ricoux; Alexander Olshevskiy; Fausto Ortica; Alessandro Paoloni; Haiping Peng; Jen-Chieh Peng; Ezio Previtali; Ming Qi; Sen Qian; Xin Qian; Yongzhong Qian; Zhonghua Qin; Georg Raffelt; Gioacchino Ranucci; Barbara Ricci; Markus Robens; Aldo Romani; Xiangdong Ruan; Xichao Ruan; Giuseppe Salamanna; Mike Shaevitz; Valery Sinev; Chiara Sirignano; Monica Sisti; Oleg Smirnov; Michael Soiron; Achim Stahl; Luca Stanco; Jochen Steinmann; Xilei Sun; Yongjie Sun; Dmitriy Taichenachev; Jian Tang; Igor Tkachev; Wladyslaw Trzaska; Stefan van Waasen; Cristina Volpe; Vit Vorobel; Lucia Votano; Chung-Hsiang Wang; Guoli Wang; Hao Wang; Meng Wang; Ruiguang Wang; Siguang Wang; Wei Wang; Yi Wang; Yi Wang; Yifang Wang; Zhe Wang; Zheng Wang; Zhigang Wang; Zhimin Wang; Wei Wei; Liangjian Wen; Christopher Wiebusch; Bjorn Wonsak; Qun Wu; Claudia-Elisabeth Wulz; Michael Wurm; Yufei Xi; Dongmei Xia; Yuguang Xie; Zhi-zhong Xing; Jilei Xu; Baojun Yan; Changgen Yang; Chaowen Yang; Guang Yang; Lei Yang; Yifan Yang; Yu Yao; Ugur Yegin; Frederic Yermia; Zhengyun You; Boxiang Yu; Chunxu Yu; Zeyuan Yu; Sandra Zavatarelli; Liang Zhan; Chao Zhang; Hong-Hao Zhang; Jiawen Zhang; Jingbo Zhang; Qingmin Zhang; Yu-Mei Zhang; Zhenyu Zhang; Zhenghua Zhao; Yangheng Zheng; Weili Zhong; Guorong Zhou; Jing Zhou; Li Zhou; Rong Zhou; Shun Zhou; Wenxiong Zhou; Xiang Zhou; Yeling Zhou; Yufeng Zhou; Jiaheng Zou

    2015-10-18

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\\%. Neutrino burst from a typical core-collapse supernova at 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino-proton elastic scattering events in JUNO. Detection of DSNB would provide valuable information on the cosmic star-formation rate and the average core-collapsed neutrino energy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino samples. The JUNO detector is sensitive to several exotic searches, e.g. proton decay via the $p\\to K^++\\bar\

  5. Neutrino Physics with JUNO

    E-Print Network [OSTI]

    Fengpeng An; Guangpeng An; Qi An; Vito Antonelli; Eric Baussan; John Beacom; Leonid Bezrukov; Simon Blyth; Riccardo Brugnera; Margherita Buizza Avanzini; Jose Busto; Anatael Cabrera; Hao Cai; Xiao Cai; Antonio Cammi; Guofu Cao; Jun Cao; Yun Chang; Shaomin Chen; Shenjian Chen; Yixue Chen; Davide Chiesa; Massimiliano Clemenza; Barbara Clerbaux; Janet Conrad; Davide D'Angelo; Herve De Kerret; Zhi Deng; Ziyan Deng; Yayun Ding; Zelimir Djurcic; Damien Dornic; Marcos Dracos; Olivier Drapier; Stefano Dusini; Stephen Dye; Timo Enqvist; Donghua Fan; Jian Fang; Laurent Favart; Richard Ford; Marianne Goger-Neff; Haonan Gan; Alberto Garfagnini; Marco Giammarchi; Maxim Gonchar; Guanghua Gong; Hui Gong; Michel Gonin; Marco Grassi; Christian Grewing; Mengyun Guan; Vic Guarino; Gang Guo; Wanlei Guo; Xin-Heng Guo; Caren Hagner; Ran Han; Miao He; Yuekun Heng; Yee Hsiung; Jun Hu; Shouyang Hu; Tao Hu; Hanxiong Huang; Xingtao Huang; Lei Huo; Ara Ioannisian; Manfred Jeitler; Xiangdong Ji; Xiaoshan Jiang; Cecile Jollet; Li Kang; Michael Karagounis; Narine Kazarian; Zinovy Krumshteyn; Andre Kruth; Pasi Kuusiniemi; Tobias Lachenmaier; Rupert Leitner; Chao Li; Jiaxing Li; Weidong Li; Weiguo Li; Xiaomei Li; Xiaonan Li; Yi Li; Yufeng Li; Zhi-Bing Li; Hao Liang; Guey-Lin Lin; Tao Lin; Yen-Hsun Lin; Jiajie Ling; Ivano Lippi; Dawei Liu; Hongbang Liu; Hu Liu; Jianglai Liu; Jianli Liu; Jinchang Liu; Qian Liu; Shubin Liu; Shulin Liu; Paolo Lombardi; Yongbing Long; Haoqi Lu; Jiashu Lu; Jingbin Lu; Junguang Lu; Bayarto Lubsandorzhiev; Livia Ludhova; Shu Luo; Vladimir Lyashuk; Randolph Mollenberg; Xubo Ma; Fabio Mantovani; Yajun Mao; Stefano M. Mari; William F. McDonough; Guang Meng; Anselmo Meregaglia; Emanuela Meroni; Mauro Mezzetto; Lino Miramonti; Thomas Mueller; Dmitry Naumov; Lothar Oberauer; Juan Pedro Ochoa-Ricoux; Alexander Olshevskiy; Fausto Ortica; Alessandro Paoloni; Haiping Peng; Jen-Chieh Peng; Ezio Previtali; Ming Qi; Sen Qian; Xin Qian; Yongzhong Qian; Zhonghua Qin; Georg Raffelt; Gioacchino Ranucci; Barbara Ricci; Markus Robens; Aldo Romani; Xiangdong Ruan; Xichao Ruan; Giuseppe Salamanna; Mike Shaevitz; Valery Sinev; Chiara Sirignano; Monica Sisti; Oleg Smirnov; Michael Soiron; Achim Stahl; Luca Stanco; Jochen Steinmann; Xilei Sun; Yongjie Sun; Dmitriy Taichenachev; Jian Tang; Igor Tkachev; Wladyslaw Trzaska; Stefan van Waasen; Cristina Volpe; Vit Vorobel; Lucia Votano; Chung-Hsiang Wang; Guoli Wang; Hao Wang; Meng Wang; Ruiguang Wang; Siguang Wang; Wei Wang; Yi Wang; Yi Wang; Yifang Wang; Zhe Wang; Zheng Wang; Zhigang Wang; Zhimin Wang; Wei Wei; Liangjian Wen; Christopher Wiebusch; Bjorn Wonsak; Qun Wu; Claudia-Elisabeth Wulz; Michael Wurm; Yufei Xi; Dongmei Xia; Yuguang Xie; Zhi-zhong Xing; Jilei Xu; Baojun Yan; Changgen Yang; Chaowen Yang; Guang Yang; Lei Yang; Yifan Yang; Yu Yao; Ugur Yegin; Frederic Yermia; Zhengyun You; Boxiang Yu; Chunxu Yu; Zeyuan Yu; Sandra Zavatarelli; Liang Zhan; Chao Zhang; Hong-Hao Zhang; Jiawen Zhang; Jingbo Zhang; Qingmin Zhang; Yu-Mei Zhang; Zhenyu Zhang; Zhenghua Zhao; Yangheng Zheng; Weili Zhong; Guorong Zhou; Jing Zhou; Li Zhou; Rong Zhou; Shun Zhou; Wenxiong Zhou; Xiang Zhou; Yeling Zhou; Yufeng Zhou; Jiaheng Zou

    2015-07-20

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\\%. Neutrino burst from a typical core-collapse supernova at 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino-proton elastic scattering events in JUNO. Detection of DSNB would provide valuable information on the cosmic star-formation rate and the average core-collapsed neutrino energy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino samples. The JUNO detector is sensitive to several exotic searches, e.g. proton decay via the $p\\to K^++\\bar\

  6. IceCube Project Monthly Report November 2007

    E-Print Network [OSTI]

    Saffman, Mark

    the current budgets or the budgets modified by the cost performance index. Change Log - IceCube Total Project IceCube array with a detector uptime of 97%, above the internal monthly goal of 95%. #12;Cost design, development, procured materials, and the construction of the infrastructure that supports

  7. IceCube Project Monthly Report -April 2010 Accomplishments

    E-Print Network [OSTI]

    Saffman, Mark

    Water Drill equipment (http://www.icecube.wisc.edu/disposition/index.php) and the site was circulated to solicit interest in the equipment following the end of IceCube construction. · The training at shorter distances. #12; 2 Cost and Schedule Performance ­ The project is 94.7% complete

  8. Type IIn supernovae as sources of high energy neutrinos

    E-Print Network [OSTI]

    Zirakashvili, V N

    2015-01-01

    It is shown that high-energy astrophysical neutrinos observed in the IceCube experiment can be produced by protons accelerated in extragalactic Type IIn supernova remnants by shocks propagating in the dense circumstellar medium. The nonlinear diffusive shock acceleration model is used for description of particle acceleration.

  9. Results from IceCube Mumbai, 11/12/12 Tom Gaisser for the IceCube Collab. 1

    E-Print Network [OSTI]

    Gaisser, Thomas K.

    Results from IceCube Mumbai, 11/12/12 Tom Gaisser for the IceCube Collab. 1 #12;2 39 Ins>tu>ons ~220 collaborators Mumbai, 11/12/12 Tom Gaisser-10 20 79 2010-11 7 86 Mumbai, 11/12/12 Tom Gaisser

  10. IceCube: An Instrument for Neutrino Astronomy

    E-Print Network [OSTI]

    Halzen, F.

    2010-01-01

    detectors: searching for radio waves or for acoustic pulsespredictions 93 . In cold ice, radio-wave attenuation lengthperfect reflector for radio waves. With this reflection,

  11. IceCube: An Instrument for Neutrino Astronomy

    E-Print Network [OSTI]

    Halzen, F.

    2010-01-01

    The preheat system: 4 car-wash-style heaters and 12 “of 35 high-efficiency, car-wash-style heaters that deliver

  12. Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Abbasi, R.; al., et

    2009-10-23

    A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 - 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

  13. Detecting Solar Neutrino Flare in Megaton and km^3 detectors

    E-Print Network [OSTI]

    Daniele Fargion; Paola Di Giacomo

    2009-01-21

    To foresee a solar flare neutrino signal we infer its upper and lower bound. The upper bound was derived since a few years by general energy equipartition arguments on observed solar particle flare. The lower bound, the most compelling one for any guarantee neutrino signal, is derived by most recent records of hard Gamma bump due to solar flare on January 2005 (by neutral pion decay).The observed gamma flux reflects into a corresponding one for the neutrinos, almost one to one. Therefore we obtain minimal bounds already at the edge of present but quite within near future Megaton neutrino detectors. Such detectors are considered mostly to reveal cosmic supernova background or rare Local Group (few Mpc) Supernovas events. However Megaton or even inner ten Megaton Ice Cube detector at ten GeV threshold may also reveal traces of solar neutrino in hardest energy of solar flares. Icecube, marginally, too. Solar neutrino flavors may shine light on neutrino mixing angles.

  14. Neutrino Astrophysics

    E-Print Network [OSTI]

    W. C. Haxton

    2008-08-05

    I review the current status of neutrino astrophysics, including solar neutrinos; atmospheric neutrinos; neutrino mass and oscillations; supernova neutrinos; neutrino nucleosynthesis (Big Bang nucleosynthesis, the neutrino process, the r-process); neutrino cooling and red giants; and high energy neutrino astronomy.

  15. Neutrino 2012: Outlook - theory

    E-Print Network [OSTI]

    Smirnov, A Yu

    2012-01-01

    Ongoing developments in theory and phenomenology are related to the measured large value of 1-3 mixing and indications of significant deviation of the 2-3 mixing from maximal one. "Race" for the mass hierarchy has started and there is good chance that multi-megaton scale atmospheric neutrino detectors with low threshold (e.g. PINGU) will establish the type of hierarchy. Two IceCube candidates of the PeV cosmic neutrinos if confirmed, is the beginning of new era of high energy neutrino astronomy. Accumulation of data on solar neutrinos (energy spectrum, D-N asymmetry, value of $\\Delta m^2_{21}$) may uncover some new physics. The Tri-bimaximal mixing is disfavored and the existing discrete symmetry paradigm may change. The confirmed QLC prediction, $\\theta_{13} \\approx \\theta_{C}/\\sqrt{2}$, testifies for GUT, seesaw and some symmetry at very high scales. However, the same value of 1-3 mixing can be obtained in various ways which have different implications. The situation in lepton sector changes from special (w...

  16. High energy cosmic rays, gamma rays and neutrinos from AGN

    E-Print Network [OSTI]

    Yukio Tomozawa

    2008-02-03

    The author reviews a model for the emission of high energy cosmic rays, gamma-rays and neutrinos from AGN (Active Galactic Nuclei) that he has proposed since 1985. Further discussion of the knee energy phenomenon of the cosmic ray energy spectrum requires the existence of a heavy particle with mass in the knee energy range. A possible method of detecting such a particle in the Pierre Auger Project is suggested. Also presented is a relation between the spectra of neutrinos and gamma-rays emitted from AGN. This relation can be tested by high energy neutrino detectors such as ICECUBE, the Mediterranean Sea Detector and possibly by the Pierre Auger Project.

  17. The direct detection of boosted dark matter at high energies and PeV events at IceCube

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhattacharya, A.; Gandhi, R.; Fermi National Accelerator Laboratory, Batavia, IL; Gupta, A.

    2015-03-13

    We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle ?, created via the decay of a significantly more massive and long-lived non-thermal relic ?, which forms the bulk of DM. If ? interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelasticmore »scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 1 – 2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC.« less

  18. High energy neutrinos from dissipative photospheric models of gamma ray bursts

    SciTech Connect (OSTI)

    Gao, Shan; Mészáros, Peter [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle Astrophysics, The Pennsylvania State University, University Park, 16802 (United States); Asano, Katsuaki, E-mail: sxg324@psu.edu, E-mail: asano@phys.titech.ac.jp, E-mail: pmeszaros@astro.psu.edu [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2012-11-01

    We calculate the high energy neutrino spectrum from gamma-ray bursts where the emission arises in a dissipative jet photosphere determined by either baryonically or magnetically dominated dynamics, and compare these neutrino spectra to those obtained in conventional internal shock models. We also calculate the diffuse neutrino spectra based on these models, which appear compatible with the current IceCube 40+59 constraints. While a re-analysis based on the models discussed here and the data from the full array would be needed, it appears that only those models with the most extreme parameters are close to being constrained at present. A multi-year operation of the full IceCube and perhaps a next generation of large volume neutrino detectors may be required in order to distinguish between the various models discussed.

  19. DIFFUSE PeV NEUTRINOS FROM GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Liu, Ruo-Yu; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)] [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2013-04-01

    The IceCube Collaboration recently reported the potential detection of two cascade neutrino events in the energy range 1-10 PeV. We study the possibility that these PeV neutrinos are produced by gamma-ray bursts (GRBs), paying special attention to the contribution by untriggered GRBs that elude detection due to their low photon flux. Based on the luminosity function, rate distribution with redshift and spectral properties of GRBs, we generate, using a Monte Carlo simulation, a GRB sample that reproduces the observed fluence distribution of Fermi/GBM GRBs and an accompanying sample of untriggered GRBs simultaneously. The neutrino flux of every individual GRB is calculated in the standard internal shock scenario, so that the accumulative flux of the whole samples can be obtained. We find that the neutrino flux in PeV energies produced by untriggered GRBs is about two times higher than that produced by the triggered ones. Considering the existing IceCube limit on the neutrino flux of triggered GRBs, we find that the total flux of triggered and untriggered GRBs can reach at most a level of {approx}10{sup -9} GeV cm{sup -2} s{sup -1} sr{sup -1}, which is insufficient to account for the reported two PeV neutrinos. Possible contributions to diffuse neutrinos by low-luminosity GRBs and the earliest population of GRBs are also discussed.

  20. Neutrino Solar Flare detection for a saving alert system of satellites and astronauts

    E-Print Network [OSTI]

    Daniele Fargion

    2011-06-19

    Largest Solar Neutrino Flare may be soon detectable by Deep Core neutrino detector immediately and comunicate to satellites or astronauts. Its detection is the fastest manifestation of a later (tens minutes,hours) dangerous cosmic shower. The precursor trigger maybe saving satellites and even long flight astronauts lives. We shall suggest how. Moreover their detection may probe the inner solar flare acceleration place as well as the neutrino flavor mixing in a new different parameter windows. We show the updated expected rate and signature of neutrinos and antineutrinos in largest solar flare for present tens Megaton Deep Core telescope at tens Gev range. Speculation for additional Icecube gigaton array signals are also considered.

  1. Methods for point source analysis in high energy neutrino telescopes

    E-Print Network [OSTI]

    Jim Braun; Jon Dumm; Francesco De Palma; Chad Finley; Albrecht Karle; Teresa Montaruli

    2008-01-10

    Neutrino telescopes are moving steadily toward the goal of detecting astrophysical neutrinos from the most powerful galactic and extragalactic sources. Here we describe analysis methods to search for high energy point-like neutrino sources using detectors deep in the ice or sea. We simulate an ideal cubic kilometer detector based on real world performance of existing detectors such as AMANDA, IceCube, and ANTARES. An unbinned likelihood ratio method is applied, making use of the point spread function and energy distribution of simulated neutrino signal events to separate them from the background of atmospheric neutrinos produced by cosmic ray showers. The unbinned point source analyses are shown to perform better than binned searches and, depending on the source spectral index, the use of energy information is shown to improve discovery potential by almost a factor of two.

  2. Search for Relic Neutrinos and Supernova Bursts

    E-Print Network [OSTI]

    David B. Cline

    2000-01-14

    We describe the current situation concerning methods to search for relic neutrinos from the Big Bang and from all past supernovae (SNs). The most promising method for Big Bang neutrinos is by the interaction of ultra-high- energy (UHE) neutrinos. For supernova neutrinos, both Super Kamiokande- and ICARUS-type detectors will be important to study both nubar_{e} and nu_{e} fluxes. We also discuss a dedicated supernova burst observatory (OMNIS) being planned for three sites in the world. We also describe the possible analysis of the supernova type-II (SNII) neutrinos, including flavor mixing, that might be carried out in the future.

  3. The Sudbury Neutrino Observatory The SNO Collaboration

    E-Print Network [OSTI]

    . Milton, B.Sur Chalk River Laboratories, AECL Research, Chalk River, Ontario K0J 1J0 CANADA2 J. Bigu, J

  4. nuclex/9910016 The Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Waltham, Chris

    .T.H. Clifford, R. Deal, E.D. Earle, E. Gaudette, G. Milton, B.Sur Chalk River Laboratories, AECL Research, Chalk River, Ontario K0J 1J0 CANADA 2 J. Bigu, J.H.M. Cowan, D.L. Cluff, E.D. Hallman, R.U. Haq, J. Hewett, J

  5. A multi-messenger study of the Fermi Bubbles: very high energy gamma rays and neutrinos

    E-Print Network [OSTI]

    Lunardini, Cecilia; Yang, Lili

    2015-01-01

    The Fermi Bubbles have been imaged in sub-TeV gamma rays at Fermi-LAT, and, if their origin is hadronic, they might have been seen with low statistics in $\\sim 0.1- 1$ PeV neutrinos at IceCube. We discuss the detectability of these objects at the new High Altitude Water Cherenkov (HAWC) gamma ray detector. HAWC will view the North Bubble for $\\sim 2-3$ hours a day, and will map its spectrum at 0.1-100 TeV. For the hard primary proton spectrum required to explain five events at IceCube, a high significance detection at HAWC will be achieved in less than 30 days. The combination of results at HAWC and IceCube will substantiate the hadronic model, or constrain its spectral parameters.

  6. Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector

    E-Print Network [OSTI]

    Klein, Spencer; IceCube Collaboration

    2009-01-01

    neutralino annihilations in the Sun with the IceCube 22-neutralino annihilations in the Sun with the IceCube 22-neutralino annihilations in the Sun has been performed with

  7. KM3NeT: A Next Generation Neutrino Telescope in the Mediterranean Sea

    E-Print Network [OSTI]

    A. Kappes; for the KM3NeT Consortium

    2007-11-05

    To complement the IceCube neutrino telescope currently under construction at the South Pole, the three Mediterranean neutrino telescope projects ANTARES, NEMO and NESTOR have joined forces to develop, construct and operate a km^3-scale neutrino telescope in the Mediterranean Sea. Since February 2006, the technical specifications and performance of such a detector are studied in the framework of a 3-year EU-funded Design Study. In 2009 a technical design report will be released laying the foundations for the construction of the detector. In the following, the current status of the Design Study is presented and examples of solutions for the technical challenges are discussed.

  8. Describing the Observed Cosmic Neutrinos by Interactions of Nuclei with Matter

    E-Print Network [OSTI]

    Walter Winter

    2014-10-17

    IceCube have observed neutrinos which are presumably of extra-galactic origin. Since specific sources have not yet been identified, we discuss what could be learned from the conceptual point of view. We use a simple model for neutrino production from the interactions between nuclei and matter, and we focus on the description of the spectral shape and flavor composition observed by IceCube. Our main parameters are spectral index, maximal energy, magnetic field, and composition of the accelerated nuclei. We show that a cutoff at PeV energies can be achieved by soft enough spectra, a cutoff of the primary energy, or strong enough magnetic fields. These options, however, are difficult to reconcile with the hypothesis that these neutrinos originate from the same sources as the ultra-high energy cosmic rays. We demonstrate that heavier nuclei accelerated in the sources may be a possible way out if the maximal energy scales appropriately with the mass number of the nuclei. In this scenario, neutrino observations can actually be used to test the UHECR acceleration mechanism. We also emphasize the need for a volume upgrade of the IceCube detector for future precision physics, for which the flavor information becomes a statistical meaningful model discriminator as qualitatively new ingredient.

  9. Search for Transient Astrophysical Neutrino Emission with IceCube-DeepCore

    E-Print Network [OSTI]

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fadiran, O; Fahey, S; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jero, K; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Saba, S M; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Scheriau, F; Schimp, M; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schulte, L; Seckel, D; Seunarine, S; Smith, M W E; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Ter-Antonyan, S; Terliuk, A; Teši?, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2015-01-01

    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between May 15th 2012 and April 30th 2013. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon neu- trinos from the Northern Sky (-5$^{\\circ}$ method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events is used to search for any significant self-correlation in the dataset. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1$\\,$s to 10 days for generic soft-spectra transients. We also present limits on a s...

  10. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  11. Could a multi-PeV neutrino event have as origin the internal shocks inside the GRB progenitor star?

    E-Print Network [OSTI]

    Fraija, Nissim

    2015-01-01

    The IceCube Collaboration initially reported the detection of 37 extraterrestrial neutrinos in the TeV - PeV energy range. The reconstructed neutrino events were obtained during three consecutive years of data taking, from 2010 to 2013. Although these events have been discussed to have an extragalactic origin, they have not correlated to any known source. Recently, the IceCube Collaboration reported a neutrino-induced muon event with energy of $2.6\\pm0.3$ PeV which corresponds to the highest event ever detected. Neither the reconstructed direction of this event (J2000.0), detected on June 11 2014 at R.A.=110$^\\circ$.34, Dec.=11$^\\circ$.48 matches with any familiar source. Long gamma-ray bursts (lGRBs) are usually associated with the core collapse of massive stars leading a relativistic-collimated jets inside the star with high-energy neutrino production. These neutrinos have been linked to the 37 events previously detected by IceCube detector. In this work, we explore the conditions so that the highest neutri...

  12. Neutrino telescopes in the World

    SciTech Connect (OSTI)

    Ernenwein, J.-P.

    2007-01-12

    Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its stag phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations.

  13. Neutrino Emission from Gamma-Ray Burst Fireballs, Revised

    E-Print Network [OSTI]

    Svenja Hümmer; Philipp Baerwald; Walter Winter

    2012-05-02

    We review the neutrino flux from gamma-ray bursts, which is estimated from gamma-ray observations and used for the interpretation of recent IceCube data, from a particle physics perspective. We numerically calculate the neutrino flux for the same astrophysical assumptions as the analytical fireball neutrino model, including the dominant pion and kaon production modes, flavor mixing, and magnetic field effects on the secondary muons, pions, and kaons. We demonstrate that taking into account the full energy dependencies of all spectra, the normalization of the expected neutrino flux reduces by about one order of magnitude and the spectrum shifts to higher energies, where we can pin down the exact origin of the discrepancies by the re-computation of the analytical models. We also reproduce the IceCube-40 analysis for exactly the same bursts and same assumptions and illustrate the impact of uncertainties. We conclude that the baryonic loading of the fireballs, which is an important control parameter for the emission of cosmic rays, can be constrained significantly with the full-scale experiment after about ten years.

  14. Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs

    E-Print Network [OSTI]

    Tamborra, Irene

    2015-01-01

    Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy neutrino prompt emission from pion and kaon decays, assuming that the leading mechanism for the neutrino production is lepto-hadronic. To this purpose, we include hadronic, radiative and adiabatic cooling effects and discuss their relevance for long- (including high- and low-luminosity) and short-duration GRBs. The expected diffuse neutrino background is derived, by requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions of the long and short GRBs. Although dedicated stacking searches have been unsuccessful up to now, we find that the GRBs could contribute up to a few percents to the observed IceCube high-energy neutrino flux for sub-PeV energies, assuming that the latter has a diffuse origin...

  15. Sensors for Environmental Observatories

    E-Print Network [OSTI]

    Hamilton, Michael P.

    Sensors for Environmental Observatories Report of the NSF-Sponsored Workshop December 2004 #12 States of America. 2005. #12;Sensors for Environmental Observatories Report of the NSF Sponsored Workshop Evaluation Center (WTEC), Inc. 4800 Roland Avenue Baltimore, Maryland 21210 #12;In recent years

  16. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    E-Print Network [OSTI]

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martě, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; De Rosa, G; Dekeyser, I; Deschamps, A; DeBonis, G; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Escoffier, S; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatŕ, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Lefčvre, D; Leonora, E; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Müller, C; Neff, M; Nezri, E; Palioselitis, D; P?v?la?, G E; Perrina, C; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldańa, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Tselengidou, M; Tönnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; de Wolf, E; Yatkin, K; Yepes, H; Zornoza, J D; Zúńiga, J; Falco, E E

    2014-01-01

    Context. The jets of radio-loud Active Galactic Nuclei are among the most powerful particle accelerators in the Universe, and a plausible production site for high-energy cosmic rays. The detection of high-energy neutrinos from these sources would provide unambiguous evidence of a hadronic component in such jets. High-luminosity blazars, such as the flat-spectrum radio quasars (FSRQs), are promising candidates to search for such emission. Because of the low fluxes due to large redshift, these sources are however challenging for the current generation of neutrino telescopes such as ANTARES and IceCube. Aims. This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazars. Methods. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed blazars, using data collected from 2007 to 2012 by ANTARES. The magnification factor is estimated for each syst...

  17. FERMI LIMIT ON THE NEUTRINO FLUX FROM GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Li Zhuo [Department of Astronomy and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing (China); Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming (China)

    2013-06-20

    If gamma-ray bursts (GRBs) produce high-energy cosmic rays, neutrinos are expected to be generated in GRBs via photo-pion productions. However, we stress that the same process also generates electromagnetic (EM) emission induced by the secondary electrons and photons, and that the EM emission is expected to be correlated with neutrino flux. Using Fermi/Large Area Telescope results on gamma-ray flux from GRBs, the GRB neutrino emission is limited to be <20 GeV m{sup -2} per GRB event on average, which is independent of the unknown GRB proton luminosity. This neutrino limit suggests that IceCube, operating at full scale, requires stacking of more than 130 GRBs in order to detect one GRB muon neutrino.

  18. Fermi Limit on the Neutrino Flux from Gamma-ray Bursts

    E-Print Network [OSTI]

    Zhuo Li

    2013-06-14

    If gamma-ray bursts (GRBs) produce high energy cosmic rays, neutrinos are expected to be generated in GRBs due to photo-pion productions. However we stress that the same process also generates electromagnetic (EM) emission induced by the production of secondary electrons and photons, and that the EM emission is expected to be correlated to the neutrino flux. Using the Fermi/LAT observational results on gamma-ray flux from GRBs, the GRB neutrino emission is limited to be below ~20 GeV/m^2 per GRB event on average, which is independent of the unknown GRB proton luminosity. This neutrino limit suggests that the full IceCube needs stacking more than 130 GRBs in order to detect one GRB muon neutrino.

  19. PeV Scale Right Handed Neutrino Dark Matter in $S_4$ Flavor Symmetric extra U(1) model

    E-Print Network [OSTI]

    Yasuhiro Daikoku; Hiroshi Okada

    2015-03-28

    Recent observation of high energy neutrino in IceCube experiment suggests existence of superheavy dark matter beyond PeV. We identify the parent particles of neutrino as two degenerated right handed neutrinos, assuming the dark matter is the heaviest right handed neutrino. The $O(V_{cb})\\sim O(10^{-2})$ flavor symmetry breaking accounts for the $O(10^{-4})$ mass degeneracy of right handed neutrinos which is a sizable scale to explain the successful resonant leptogenesis at the PeV scale. At the same time, non-thermal production of the heaviest right handed neutrino gives the right amount of dark matter for $T_{RH}\\sim 10$PeV. The footprint of flavor symmetry is left in degenerated mass spectra of extra Higgs multiplet and colored Higgs multiplet which may be testable for LHC or future colliders.

  20. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  1. Neutrino Mixing

    E-Print Network [OSTI]

    Carlo Giunti; Marco Laveder

    2004-10-01

    In this review we present the main features of the current status of neutrino physics. After a review of the theory of neutrino mixing and oscillations, we discuss the current status of solar and atmospheric neutrino oscillation experiments. We show that the current data can be nicely accommodated in the framework of three-neutrino mixing. We discuss also the problem of the determination of the absolute neutrino mass scale through Tritium beta-decay experiments and astrophysical observations, and the exploration of the Majorana nature of massive neutrinos through neutrinoless double-beta decay experiments. Finally, future prospects are briefly discussed.

  2. Neutrinos from Kaluza-Klein dark matter in the Sun

    E-Print Network [OSTI]

    Mattias Blennow; Henrik Melbeus; Tommy Ohlsson

    2010-01-26

    We investigate indirect neutrino signals from annihilations of Kaluza-Klein dark matter in the Sun. Especially, we examine a five- as well as a six-dimensional model, and allow for the possibility that boundary localized terms could affect the spectrum to give different lightest Kaluza-Klein particles, which could constitute the dark matter. The dark matter candidates that are interesting for the purpose of indirect detection of neutrinos are the first Kaluza-Klein mode of the U(1) gauge boson and the neutral component of the SU(2) gauge bosons. Using the DarkSUSY and WimpSim packages, we calculate muon fluxes at an Earth-based neutrino telescope, such as IceCube. For the five-dimensional model, the results that we obtained agree reasonably well with the results that have previously been presented in the literature, whereas for the six-dimensional model, we find that, at tree-level, the results are the same as for the five-dimensional model. Finally, if the first Kaluza-Klein mode of the U(1) gauge boson constitutes the dark matter, IceCube can constrain the parameter space. However, in the case that the neutral component of the SU(2) gauge bosons is the LKP, the signal is too weak to be observed.

  3. Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope

    E-Print Network [OSTI]

    Adrián-Martínez, S; André, M; Anghinolfi, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Cârloganu, C; Carr, J; Chiarusi, T; Circella, M; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Rosa, G; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Escoffier, S; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatŕ, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Herrero, A; Hößl, J; Hofestädt, J; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Lattuada, D; Lefčvre, D; Leonora, E; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Mueller, C; Neff, M; Nezri, E; Palioselitis, D; P?v?la?, G E; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldańa, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabe, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; de Wolf, E; Yatkin, K; Yepes, H; Zornoza, J D; Zúńiga, J

    2014-01-01

    A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates RA=$-$46.8$^{\\circ}$ and Dec=$-$64.9$^{\\circ}$ and corresponds to a 2.2$\\sigma$ background fluctuation. In addition, upper limits on the flux normalization of an E$^{-2}$ muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of 7 events relatively close to the Galactic Centre in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E$^{-2}$ energy spectrum of neutrinos from point sources in that regio...

  4. Probing the Absolute Mass Scale of Neutrinos

    SciTech Connect (OSTI)

    Prof. Joseph A. Formaggio

    2011-10-12

    The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

  5. Pinpointing the knee of cosmic rays with diffuse PeV ?-rays and neutrinos

    SciTech Connect (OSTI)

    Guo, Y. Q.; Hu, H. B.; Yuan, Q.; Tian, Z.; Gao, X. J. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049 (China)

    2014-11-01

    The origin of the knee in the cosmic ray spectrum remains to be an unsolved fundamental problem. There are various kinds of models that predict different break positions and the compositions of the knee. In this work, we suggest the use of diffuse ?-rays and neutrinos as probes to test these models. Based on several typical types of composition models, the diffuse ?-ray and neutrino spectra are calculated and show distinctive cutoff behaviors at energies from tens of TeV to multi-PeV. The expected flux will be observable by the newly upgraded Tibet-AS?+MD (muon detector) experiment as well as more sensitive future projects, such as LHAASO and HiSCORE. By comparing the neutrino spectrum with the recent observations by the IceCube experiment, we find that the diffuse neutrinos from interactions between the cosmic rays and the interstellar medium may not be responsible to the majority of the IceCube events. Future measurements of the neutrinos may be able to identify the Galactic diffuse component and shed further light on the problem of the knee of cosmic rays.

  6. Evidence for Neutrino Oscillations I: Solar and Reactor Neutrinos

    E-Print Network [OSTI]

    A. B. McDonald

    2004-12-06

    This paper discusses evidence for neutrino oscillations obtained from measurements with solar neutrinos and reactor neutrinos.

  7. The IceCube Data Acquisition Software: Lessons Learned during Distributed, Collaborative, Multi-Disciplined Software Development.

    E-Print Network [OSTI]

    Beattie, Keith

    2008-01-01

    et. al. , “Manifesto for Agile Software Development” http://Icecube Data Acquisition Software: Lessons Learned DuringMulti-Disciplined Software Development K S Beattie 1 , C T

  8. Solar neutrinos and neutrino physics

    E-Print Network [OSTI]

    Michele Maltoni; Alexei Yu. Smirnov

    2015-08-11

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. Theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters theta12 and Delta_m21^2 have been measured; theta13 extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3nu paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  9. Light propagation in the South Pole ice

    SciTech Connect (OSTI)

    Williams, Dawn; Collaboration: IceCube Collaboration

    2014-11-18

    The IceCube Neutrino Observatory is located in the ice near the geographic South Pole. Particle showers from neutrino interactions in the ice produce light which is detected by IceCube modules, and the amount and pattern of deposited light are used to reconstruct the properties of the incident neutrino. Since light is scattered and absorbed by ice between the neutrino interaction vertex and the sensor, IceCube event reconstruction depends on understanding the propagation of light through the ice. This paper presents the current status of modeling light propagation in South Pole ice, including the recent observation of an azimuthal anisotropy in the scattering.

  10. Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

    E-Print Network [OSTI]

    Abbasi, R.

    2010-01-01

    matter annihilations in the Sun from the IceCube 22-stringmatter annihilations in the Sun from the IceCube 22-stringmatter annihilations in the Sun has been performed with the

  11. Non-standard neutrino interactions in the mu–tau sector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mocioiu, Irina; Wright, Warren

    2015-04-01

    We discuss neutrino mass hierarchy implications arising from the effects of non-standard neutrino interactions on muon rates in high statistics atmospheric neutrino oscillation experiments like IceCube DeepCore. We concentrate on the mu–tau sector, which is presently the least constrained. It is shown that the magnitude of the effects depends strongly on the sign of the ??? parameter describing this non-standard interaction. A simple analytic model is used to understand the parameter space where differences between the two signs are maximized. We discuss how this effect is partially degenerate with changing the neutrino mass hierarchy, as well as how this degeneracymore »could be lifted.« less

  12. SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    SAGE Collaboration

    SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

  13. Neutrino factory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; et al

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore »making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  14. Neutrino factory

    SciTech Connect (OSTI)

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  15. Neutrino factory

    SciTech Connect (OSTI)

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J.?B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F.?J.?P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L.?J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J.?R.?J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T.?R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J.?J.; Harrison, P.; Berg, J.?S.; Fernow, R.; Gallardo, J.?C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J.?G.; Wands, R.; Snopok, P.; Bagacz, S.?A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R.?J.; Ankenbrandt, C.?M.; Beard, K.?B.; Cummings, M.?A.?C.; Flanagan, G.; Johnson, R.?P.; Roberts, T.?J.; Yoshikawa, C.?Y.; Graves, V.?B.; McDonald, K.?T.; Coney, L.; Hanson, G.

    2014-12-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  16. Requirements for a New Detector at the South Pole Receiving an Accelerator Neutrino Beam

    E-Print Network [OSTI]

    Jian Tang; Walter Winter

    2012-01-23

    There are recent considerations to increase the photomultiplier density in the IceCube detector array beyond that of DeepCore, which will lead to a lower detection threshold and a huge fiducial mass for the neutrino detection. This initiative is known as "Phased IceCube Next Generation Upgrade" (PINGU). We discuss the possibility to send a neutrino beam from one of the major accelerator laboratories in the Northern hemisphere to such a detector. Such an experiment would be unique in the sense that it would be the only neutrino beam where the baseline crosses the Earth's core. We study the detector requirements for a beta beam, a neutrino factory beam, and a superbeam, where we consider both the cases of small theta_13 and large theta_13, as suggested by the recent T2K and Double Chooz results. We illustrate that a flavor-clean beta beam best suits the requirements of such a detector, in particular, that PINGU may replace a magic baseline detector for small values of theta_13 -- even in the absence of any energy resolution capability. For large theta_13, however, a single-baseline beta beam experiment cannot compete if it is constrained by the CERN-SPS. For a neutrino factory, because of the missing charge identification possibility in the detector, a very good energy resolution is required. If this can be achieved, especially a low energy neutrino factory, which does not suffer from the tau contamination, may be an interesting option for large theta_13. For the superbeam, where we use the LBNE beam as a reference, electron neutrino flavor identification and statistics are two of the main limitations. Finally, we demonstrate that, at least in principle, neutrino factory and superbeam can measure the density of the Earth's core to the sub-percent level for sin^2 2theta_13 larger than 0.01.

  17. Sommers-Bausch Observatory

    E-Print Network [OSTI]

    Stowell, Michael

    Sommers-Bausch Observatory Handbook Ninth Edition, Fall 2013 DEPARTMENT OF ASTROPHYSICAL of the early years of SBO. Thanks also to the Denver Library for information and photos of Elmer Sommers, Ed here at Sommers-Bausch: Kelsey Johnson, Cori Krauss, John Weiss, James Roberts, Quyen Hart, Colin

  18. Sommers-Bausch Observatory

    E-Print Network [OSTI]

    Stowell, Michael

    The Sommers-Bausch Observatory Handbook Eighth Edition, Fall 2012 DEPARTMENT OF ASTROPHYSICAL to the Denver Library for information and photos of Elmer Sommers, Ed Kosmicki of Summit Magazine for the 16 the educational mission here at Sommers-Bausch: Kelsey Johnson, Cori Krauss, John Weiss, James Roberts, Quyen Hart

  19. Requirements for a New Detector at the South Pole Receiving an Accelerator Neutrino Beam

    E-Print Network [OSTI]

    Tang, Jian

    2011-01-01

    There are recent considerations to increase the photomultiplier density in the IceCube detector array beyond that of DeepCore, which will lead to a lower detection threshold and a huge fiducial mass for the neutrino detection. This initiative is known as "Phased IceCube Next Generation Upgrade" (PINGU). We discuss the possibility to send a neutrino beam from one of the major accelerator laboratories in the Northern hemisphere to such a detector. Such an experiment would be unique in the sense that it would be the only neutrino beam where the baseline crosses the Earth's core. We study the detector requirements for a beta beam, a neutrino factory beam, and a superbeam, where we consider both the cases of small theta_13 and large theta_13, as suggested by the recent T2K hint. We illustrate that a flavor-clean beta beam best suits the requirements of such a detector, in particular, that PINGU may replace a magic baseline detector for small values of theta_13 -- even in the absence of any energy resolution capabi...

  20. STRUCTURED JETS IN BL LAC OBJECTS: EFFICIENT PeV NEUTRINO FACTORIES?

    SciTech Connect (OSTI)

    Tavecchio, Fabrizio; Ghisellini, Gabriele; Guetta, Dafne

    2014-09-20

    The origin of high-energy neutrinos (0.1–1 PeV range) detected by IceCube remains a mystery. In this work, we explore the possibility that efficient neutrino production can occur in structured jets of BL Lac objects, characterized by a fast inner spine surrounded by a slower layer. This scenario has been widely discussed in the framework of the high-energy emission models for BL Lac objects and radio galaxies. One of the relevant consequences of a velocity structure is the enhancement of the inverse Compton emission caused by the radiative coupling of the two zones. We show that a similar boosting could occur for the neutrino output of the spine through the photo-meson reaction of high-energy protons scattering off the amplified soft target photon field of the layer. Assuming the local density and the cosmological evolution of ?-ray BL Lac object derived from Fermi Large Area Telescope data, we calculate the expected diffuse neutrino intensity, which can match the IceCube data for a reasonable choice of parameters.

  1. Energy and Direction Estimation of Neutrinos in muonless events at ICAL

    E-Print Network [OSTI]

    Ajmi, Ali

    2015-01-01

    In this paper, we study events without identifiable muon tracks in the Iron Calorimeter detector at the India-based Neutrino Observatory. Such events are dominated by high energy (E$_\

  2. Energy and Direction Estimation of Neutrinos in muonless events at ICAL

    E-Print Network [OSTI]

    Ali Ajmi; S. Uma Sankar

    2015-05-27

    In this paper, we study events without identifiable muon tracks in the Iron Calorimeter detector at the India-based Neutrino Observatory. Such events are dominated by high energy (E$_\

  3. First Evidence For Atmospheric Neutrino-Induced Cascades with the IceCube Detector

    E-Print Network [OSTI]

    D'Agostino, Michelangelo

    2009-01-01

    49] P. Meszaros. Gamma-Ray Bursts. Rept. Prog. Phys. , 69:Revealing the supernova-gamma-ray burst connection with TeVcascades from gamma-ray bursts with AMANDA. Astrophys. J. ,

  4. First Observation of PeV-Energy Neutrinos with IceCube

    E-Print Network [OSTI]

    Aartsen, M. G.; Besson, David Zeke

    2013-07-08

    are extracted from each waveform and stored as ‘‘hits.’’ To remove hits from coincident noise, a two-staged cleaning based on the spa- tial separation and the time interval between hits is applied. Data from the DeepCore strings are discarded to main- tain...

  5. First Evidence For Atmospheric Neutrino-Induced Cascades with the IceCube Detector

    E-Print Network [OSTI]

    D'Agostino, Michelangelo

    2009-01-01

    and cumulative distribution (right) for an energy cut of 15and sum of event weights (right) for an energy cut of 5and cumulative distribution (right) for an energy cut of 10

  6. Probing thermonuclear supernova explosions with neutrinos

    E-Print Network [OSTI]

    A. Odrzywolek; T. Plewa

    2011-03-27

    Aims: We present neutrino light curves and energy spectra for two representative type Ia supernova explosion models: a pure deflagration and a delayed detonation. Methods: We calculate the neutrino flux from $\\beta$ processes using nuclear statistical equilibrium abundances convoluted with approximate neutrino spectra of the individual nuclei and the thermal neutrino spectrum (pair+plasma). Results: Although the two considered thermonuclear supernova explosion scenarios are expected to produce almost identical electromagnetic output, their neutrino signatures appear vastly different, which allow an unambiguous identification of the explosion mechanism: a pure deflagration produces a single peak in the neutrino light curve, while the addition of the second maximum characterizes a delayed-detonation. We identified the following main contributors to the neutrino signal: (1) weak electron neutrino emission from electron captures (in particular on the protons Co55 and Ni56) and numerous beta-active nuclei produced by the thermonuclear flame and/or detonation front, (2) electron antineutrinos from positron captures on neutrons, and (3) the thermal emission from pair annihilation. We estimate that a pure deflagration supernova explosion at a distance of 1 kpc would trigger about 14 events in the future 50 kt liquid scintillator detector and some 19 events in a 0.5 Mt water Cherenkov-type detector. Conclusions: While in contrast to core-collapse supernovae neutrinos carry only a very small fraction of the energy produced in the thermonuclear supernova explosion, the SN Ia neutrino signal provides information that allows us to unambiguously distinguish between different possible explosion scenarios. These studies will become feasible with the next generation of proposed neutrino observatories.

  7. A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. IV. The neutrino signal

    SciTech Connect (OSTI)

    Müller, Bernhard [Monash Center for Astrophysics, School of Mathematical Sciences, Building 28, Monash University, Victoria 3800 (Australia); Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2014-06-10

    Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ?}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ?-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ? 10 M {sub ?} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of ?E{sub ?-bar{sub e}}? with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ?10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.

  8. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  9. Gamma Ray Bursts: recent results and connections to very high energy Cosmic Rays and Neutrinos

    E-Print Network [OSTI]

    Péter Mészáros; Katsuaki Asano; Péter Veres

    2012-09-11

    Gamma-ray bursts are the most concentrated explosions in the Universe. They have been detected electromagnetically at energies up to tens of GeV, and it is suspected that they could be active at least up to TeV energies. It is also speculated that they could emit cosmic rays and neutrinos at energies reaching up to the $10^{18}-10^{20}$ eV range. Here we review the recent developments in the photon phenomenology in the light of \\swift and \\fermi satellite observations, as well as recent IceCube upper limits on their neutrino luminosity. We discuss some of the theoretical models developed to explain these observations and their possible contribution to a very high energy cosmic ray and neutrino background.

  10. Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector

    E-Print Network [OSTI]

    Petkov, V B

    2015-01-01

    Observing a high-statistics neutrino signal from the supernova explosions in the Galaxy is a major goal of low-energy neutrino astronomy. The prospects for detecting all flavors of neutrinos and antineutrinos from the core-collapse supernova (ccSN) in operating and forthcoming large liquid scintillation detectors (LLSD) are widely discussed now. One of proposed LLSD is Baksan Large Volume Scintillation Detector (BLVSD). This detector will be installed at the Baksan Neutrino Observatory (BNO) of the Institute for Nuclear Research, Russian Academy of Sciences, at a depth of 4800 m.w.e. Low-energy neutrino astronomy is one of the main lines of research of the BLVSD.

  11. The Astrophysical Multimessenger Observatory Network (AMON) M.W.E. Smith a,b,

    E-Print Network [OSTI]

    Babu, G. Jogesh

    Gravitational radiation Neutrinos Cosmic rays Gamma-ray bursts Supernovae a b s t r a c t We summarize including the Swift [6] and Fermi [7] satellites, the HESS [8], VERITAS [9], and MAGIC [10] TeV gamma-ray telescopes, and the HAWC [11] TeV gamma-ray observatory. Collectively, these facilities promise the first

  12. Low Energy Investigations at Kamioka Observatory

    E-Print Network [OSTI]

    Hiroyuki Sekiya

    2013-01-30

    At Kamioka Observatory many activities for low energy rare event search are ongoing. Super-Kamiokande(SK), the largest water Cherenkov neutrino detector, currently continues data taking as the fourth phase of the experiment (SK-IV). In SK-IV, we have upgraded the water purification system and tuned water flow in the SK tank. Consequently the background level was lowered significantly. This allowed SK-IV to derive solar neutrino results down to 3.5MeV energy region. With these data, neutrino oscillation parameters are updated from global fit; $\\Delta m^2_{12}=7.44^{+0.2}_{-0.19}\\times10^{-5} {\\rm eV}^2$, $\\sin^2\\theta_{12}=0.304\\pm0.013$, $\\sin^2\\theta_{13}=0.030^{+0.017}_{-0.015}$. NEWAGE, the directional sensitive dark matter search experiment, is currently operated as "NEWAGE-0.3a" which is a $0.20\\times0.25\\times0.31$ m$^3$ micro-TPC filled with CF4 gas at 152 Torr. Recently we have developed "NEWAGE-0.3b". It was succeeded to lower the operation pressure down to 76 Torr and the threshold down to 50 keV (F recoils). XMASS experiment is looking for scintillation signals from dark matter interaction in 1 ton of liquid xenon. It was designed utilizing its self-shielding capability with fiducial volume confinement. However, we could lower the analysis threshold down to 0.3 keVee using whole volume of the detector. In February 2012, low threshold and very large exposure data (5591 kg$\\cdot$days) were collected. With these data, we have excluded some part of the parameter spaces claimed by DAMA/LIBRA and CoGeNT experiments.

  13. The National Virtual Observatory

    E-Print Network [OSTI]

    Robert J. Brunner; S. George Djorgovski; Thomas A. Prince; Alex S. Szalay

    2001-08-23

    As a scientific discipline, Astronomy is rather unique. We only have one laboratory, the Universe, and we cannot, of course, change the initial conditions and study the resulting effects. On top of this, acquiring Astronomical data has historically been a very labor-intensive effort. As a result, data has traditionally been preserved for posterity. With recent technological advances, however, the rate at which we acquire new data has grown exponentially, which has generated a Data Tsunami, whose wave train threatens to overwhelm the field. In this conference proceedings, we present and define the concept of virtual observatories, which we feel is the only logical answer to this dilemma.

  14. Neutrino Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operators in the Lagrangian (Majorana mass terms), or both. The ongoing neutrinoless double-beta decay searches may be able to shine light on the matter. But the neutrino sector...

  15. A New Technique for Detection of PeV Neutrinos Using a Phased Radio Array

    E-Print Network [OSTI]

    A. G. Vieregg; K. Bechtol; A. Romero-Wolf

    2015-04-29

    The detection of high energy neutrinos ($10^{15}-10^{20}$ eV or $1-10^{5}$ PeV) is an important step toward understanding the most energetic cosmic accelerators and would enable tests of fundamental physics at energy scales that cannot easily be achieved on Earth. In this energy range, there are two expected populations of neutrinos: the astrophysical flux observed with IceCube at lower energies ($\\sim1$ PeV) and the predicted cosmogenic flux at higher energies ($\\sim10^{18}$ eV). Radio detector arrays such as RICE, ANITA, ARA, and ARIANNA exploit the Askaryan effect and the radio transparency of glacial ice, which together enable enormous volumes of ice to be monitored with sparse instrumentation. We describe here the design for a phased radio array that would lower the energy threshold of radio techniques to the PeV scale, allowing measurement of the astrophysical flux observed with IceCube over an extended energy range. Meaningful energy overlap with optical Cherenkov telescopes could be used for energy calibration. The phased radio array design would also provide more efficient coverage of the large effective volume required to discover cosmogenic neutrinos.

  16. CHILBOLTON OBSERVATORY The Chilbolton Observatory in Hampshire is at the

    E-Print Network [OSTI]

    's energy balance. Scientists use CFARR's sophisticated RADAR (Radio Detection And Ranging), LIDAR (LIghtCHILBOLTON OBSERVATORY The Chilbolton Observatory in Hampshire is at the cutting-edge of world Monitoring Facility. CFARR CFARR is one of the world's most advanced experimental meteorological remote

  17. Space Telescope Programs Hubble Observatory

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Certifications required for all raw materials ­ Shelf Life (Polymerics) materials date controlled by QA · DesignsSpace Telescope Programs Hubble Observatory HST-COS FUV PER 11/8/00 FUV Detector System Materials;Space Telescope Programs Hubble Observatory HST-COS FUV PER 11/8/00 Materials and Processes · Materials

  18. PRECIPITATION AT ARMAGH OBSERVATORY 18381997

    E-Print Network [OSTI]

    PRECIPITATION AT ARMAGH OBSERVATORY 1838­1997 C.J. Butler, A.D.S. Coughlin and D.T. Fee ABSTRACT the longest in the British Isles. Here we present the monthly mean daily precipitation recorded at Armagh with the compilation and calibration of one such body of data, namely the precipitation recorded at Armagh Observatory

  19. Solar Neutrinos and the Decaying Neutrino Hypothesis

    E-Print Network [OSTI]

    Jeffrey M. Berryman; Andre de Gouvea; Daniel Hernandez

    2014-11-02

    We explore, mostly using data from solar neutrino experiments, the hypothesis that the neutrino mass eigenstates are unstable. We find that, by combining $^8$B solar neutrino data with those on $^7$Be and lower-energy solar neutrinos, one obtains a mostly model-independent bound on both the $\

  20. Solar Neutrinos

    E-Print Network [OSTI]

    R. G. H. Robertson

    2006-02-05

    Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

  1. Probing Dark Energy via Neutrino and Supernova Observatories

    E-Print Network [OSTI]

    Hall, Lawrence J.

    2008-01-01

    In the case of (UV) light measurements, the comoving rateFor instance the measurements of UV light are subject tomeasurements of light emitted from galaxies, mostly in the UV (

  2. Neutral Current Detectors for the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Waltham, Chris

    at WIPP and LANL in building the many detectors and other apparatus which were used as part of this thesis

  3. High energy neutrino emission from the earliest gamma-ray bursts

    SciTech Connect (OSTI)

    Gao Shan; Toma, Kenji; Meszaros, Peter [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle Astrophysics, Pennsylvania State University, University Park, 16802 (United States)

    2011-05-15

    We discuss the high energy neutrino emission from gamma-ray bursts resulting from the earliest generation (''population III'') stars forming in the Universe, whose core collapses into a black hole. These gamma-ray bursts are expected to produce a highly relativistic, magnetically dominated jet, where protons can be accelerated to ultrahigh energies. These interact with the photons produced by the jet, leading to ultrahigh energy photomeson neutrinos as well as secondary leptons and photons. The photon luminosity and the shock properties, and thus the neutrino spectrum, depend on the mass of the black holes as well as on the density of the surrounding external gas. We calculate the individual source neutrino spectral fluxes and the expected diffuse neutrino flux for various source parameters and evolution scenarios. Both the individual and diffuse signals appear detectable in the 1-300 PeV range with current and planned neutrino detectors such as IceCube and ARIANNA, provided the black hole mass is in excess of 30-100 solar masses. This provides a possible test for the debated mass of the progenitor stellar objects, as well as a probe for the early cosmological environment and the formation rate of the earliest structures.

  4. Electromagnetic properties of neutrinos

    E-Print Network [OSTI]

    Carlo Giunti; Alexander Studenikin

    2010-06-08

    A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.

  5. High-energy neutrino signals from the Sun in dark matter scenarios with internal bremsstrahlung

    SciTech Connect (OSTI)

    Ibarra, Alejandro; Totzauer, Maximilian; Wild, Sebastian E-mail: maximilian.totzauer@mytum.de

    2013-12-01

    We investigate the prospects to observe a high energy neutrino signal from dark matter annihilations in the Sun in scenarios where the dark matter is a Majorana fermion that couples to a quark and a colored scalar via a Yukawa coupling. In this minimal scenario, the dark matter capture and annihilation in the Sun can be studied in a single framework. We find that, for small and moderate mass splitting between the dark matter and the colored scalar, the two-to-three annihilation q q-bar g plays a central role in the calculation of the number of captured dark matter particles. On the other hand, the two-to-three annihilation into q q-bar Z gives, despite its small branching fraction, the largest contribution to the neutrino flux at the Earth at the highest energies. We calculate the limits on the model parameters using IceCube observations of the Sun and we discuss their interplay with the requirement of equilibrium of captures and annihilations in the Sun and with the requirement of thermal dark matter production. We also compare the limits from IceCube to the limits from direct detection, antiproton measurements and collider searches.

  6. The Intermediate Neutrino Program

    E-Print Network [OSTI]

    Adams, C; Ankowski, A M; Asaadi, J A; Ashenfelter, J; Axani, S N; Babu, K; Backhouse, C; Band, H R; Barbeau, P S; Barros, N; Bernstein, A; Betancourt, M; Bishai, M; Blucher, E; Bouffard, J; Bowden, N; Brice, S; Bryan, C; Camilleri, L; Cao, J; Carlson, J; Carr, R E; Chatterjee, A; Chen, M; Chen, S; Chiu, M; Church, E D; Collar, J I; Collin, G; Conrad, J M; Convery, M R; Cooper, R L; Cowen, D; Davoudiasl, H; De Gouvea, A; Dean, D J; Deichert, G; Descamps, F; DeYoung, T; Diwan, M V; Djurcic, Z; Dolinski, M J; Dolph, J; Donnelly, B; Dwyer, D A; Dytman, S; Efremenko, Y; Everett, L L; Fava, A; Figueroa-Feliciano, E; Fleming, B; Friedland, A; Fujikawa, B K; Gaisser, T K; Galeazzi, M; Galehouse, D C; Galindo-Uribarri, A; Garvey, G T; Gautam, S; Gilje, K E; Gonzalez-Garcia, M; Goodman, M C; Gordon, H; Gramellini, E; Green, M P; Guglielmi, A; Hackenburg, R W; Hackenburg, A; Halzen, F; Han, K; Hans, S; Harris, D; Heeger, K M; Herman, M; Hill, R; Holin, A; Huber, P; Jaffe, D E; Johnson, R A; Joshi, J; Karagiorgi, G; Kaufman, L J; Kayser, B; Kettell, S H; Kirby, B J; Klein, J R; Kolomensky, Yu G; Kriske, R M; Lane, C E; Langford, T J; Lankford, A; Lau, K; Learned, J G; Ling, J; Link, J M; Lissauer, D; Littenberg, L; Littlejohn, B R; Lockwitz, S; Lokajicek, M; Louis, W C; Luk, K; Lykken, J; Marciano, W J; Maricic, J; Markoff, D M; Caicedo, D A Martinez; Mauger, C; Mavrokoridis, K; McCluskey, E; McKeen, D; McKeown, R; Mills, G; Mocioiu, I; Monreal, B; Mooney, M R; Morfin, J G; Mumm, P; Napolitano, J; Neilson, R; Nelson, J K; Nessi, M; Norcini, D; Nova, F; Nygren, D R; Gann, G D Orebi; Palamara, O; Parsa, Z; Patterson, R; Paul, P; Pocar, A; Qian, X; Raaf, J L; Rameika, R; Ranucci, G; Ray, H; Reyna, D; Rich, G C; Rodrigues, P; Romero, E Romero; Rosero, R; Rountree, S D; Rybolt, B; Sanchez, M C; Santucci, G; Schmitz, D; Scholberg, K; Seckel, D; Shaevitz, M; Shrock, R; Smy, M B; Soderberg, M; Sonzogni, A; Sousa, A B; Spitz, J; John, J M St; Stewart, J; Strait, J B; Sullivan, G; Svoboda, R; Szelc, A M; Tayloe, R; Thomson, M A; Toups, M; Vacheret, A; Vagins, M; Van de Water, R G; Vogelaar, R B; Weber, M; Weng, W; Wetstein, M; White, C; White, B R; Whitehead, L; Whittington, D W; Wilking, M J; Wilson, R J; Wilson, P; Winklehner, D; Winn, D R; Worcester, E; Yang, L; Yeh, M; Yokley, Z W; Yoo, J; Yu, B; Yu, J; Zhang, C

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  7. The Intermediate Neutrino Program

    E-Print Network [OSTI]

    C. Adams; J. R. Alonso; A. M. Ankowski; J. A. Asaadi; J. Ashenfelter; S. N. Axani; K. Babu; C. Backhouse; H. R. Band; P. S. Barbeau; N. Barros; A. Bernstein; M. Betancourt; M. Bishai; E. Blucher; J. Bouffard; N. Bowden; S. Brice; C. Bryan; L. Camilleri; J. Cao; J. Carlson; R. E. Carr; A. Chatterjee; M. Chen; S. Chen; M. Chiu; E. D. Church; J. I. Collar; G. Collin; J. M. Conrad; M. R. Convery; R. L. Cooper; D. Cowen; H. Davoudiasl; A. De Gouvea; D. J. Dean; G. Deichert; F. Descamps; T. DeYoung; M. V. Diwan; Z. Djurcic; M. J. Dolinski; J. Dolph; B. Donnelly; D. A. Dwyer; S. Dytman; Y. Efremenko; L. L. Everett; A. Fava; E. Figueroa-Feliciano; B. Fleming; A. Friedland; B. K. Fujikawa; T. K. Gaisser; M. Galeazzi; D. C. Galehouse; A. Galindo-Uribarri; G. T. Garvey; S. Gautam; K. E. Gilje; M. Gonzalez-Garcia; M. C. Goodman; H. Gordon; E. Gramellini; M. P. Green; A. Guglielmi; R. W. Hackenburg; A. Hackenburg; F. Halzen; K. Han; S. Hans; D. Harris; K. M. Heeger; M. Herman; R. Hill; A. Holin; P. Huber; D. E. Jaffe; R. A. Johnson; J. Joshi; G. Karagiorgi; L. J. Kaufman; B. Kayser; S. H. Kettell; B. J. Kirby; J. R. Klein; Yu. G. Kolomensky; R. M. Kriske; C. E. Lane; T. J. Langford; A. Lankford; K. Lau; J. G. Learned; J. Ling; J. M. Link; D. Lissauer; L. Littenberg; B. R. Littlejohn; S. Lockwitz; M. Lokajicek; W. C. Louis; K. Luk; J. Lykken; W. J. Marciano; J. Maricic; D. M. Markoff; D. A. Martinez Caicedo; C. Mauger; K. Mavrokoridis; E. McCluskey; D. McKeen; R. McKeown; G. Mills; I. Mocioiu; B. Monreal; M. R. Mooney; J. G. Morfin; P. Mumm; J. Napolitano; R. Neilson; J. K. Nelson; M. Nessi; D. Norcini; F. Nova; D. R. Nygren; G. D. Orebi Gann; O. Palamara; Z. Parsa; R. Patterson; P. Paul; A. Pocar; X. Qian; J. L. Raaf; R. Rameika; G. Ranucci; H. Ray; D. Reyna; G. C. Rich; P. Rodrigues; E. Romero Romero; R. Rosero; S. D. Rountree; B. Rybolt; M. C. Sanchez; G. Santucci; D. Schmitz; K. Scholberg; D. Seckel; M. Shaevitz; R. Shrock; M. B. Smy; M. Soderberg; A. Sonzogni; A. B. Sousa; J. Spitz; J. M. St. John; J. Stewart; J. B. Strait; G. Sullivan; R. Svoboda; A. M. Szelc; R. Tayloe; M. A. Thomson; M. Toups; A. Vacheret; M. Vagins; R. G. Van de Water; R. B. Vogelaar; M. Weber; W. Weng; M. Wetstein; C. White; B. R. White; L. Whitehead; D. W. Whittington; M. J. Wilking; R. J. Wilson; P. Wilson; D. Winklehner; D. R. Winn; E. Worcester; L. Yang; M. Yeh; Z. W. Yokley; J. Yoo; B. Yu; J. Yu; C. Zhang

    2015-04-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  8. On the Parameters determining the Neutrino Flux from observed Active Galactic Nuclei

    E-Print Network [OSTI]

    J. L. Bazo; A. M. Gago

    2005-04-25

    Extrapolating from a sample of 39 AGNs, we examine the impact on the total number of high energy muon-neutrino induced events (PeV-EeV) expected in IceCube (a 1Km^3 ``neutrino telescope''), due to variations in different parameters involved in the neutrino flux, such as the emission region geometry, the estimation models and distributions of the Doppler factor and the variability time. This work has been done taking into account different limits of the extragalactic neutrino flux. Among our conclusions, we find, in the case of the largest variability time, that the cylindrical geometry hypothesis for the emission region, produce a separation of 3 sigma in the total number of events relative to the spherical hypothesis. In addition, for similar choices of the burst time, spherical geometry and for the upper neutrino flux bound, we obtain a separation of 2.5 sigma in the total number of events, for some of the Doppler factor estimations. These differences are undistinguishable for other input values.

  9. Neutrino Telescope Array Letter of Intent: A Large Array of High Resolution Imaging Atmospheric Cherenkov and Fluorescence Detectors for Survey of Air-showers from Cosmic Tau Neutrinos in the PeV-EeV Energy Range

    E-Print Network [OSTI]

    Makoto Sasaki; George Wei-Shu Hou

    2015-07-22

    This Letter of Intent (LoI) describes the outline and plan for the Neutrino Telescope Array (NTA) project. High-energy neutrinos provide unique and indisputable evidence for hadronic acceleration. Recently, IceCube has reported astronomical neutrino candidates in excess of expectation from atmospheric secondaries, but is limited by the water Cherenkov detection method. A next generation high-energy neutrino telescope should be capable of establishing indisputable evidence for cosmic high-energy neutrinos. It should not only have orders-of-magnitude larger sensitivity, but also enough pointing accuracy to probe known or unknown astronomical objects, without suffering from atmospheric secondaries. The proposed installation is a large array of compound eye stations of imaging atmospheric Cherenkov and fluorescence detectors, with wide field of view and refined observational ability of air showers from cosmic tau neutrinos in the PeV-EeV energy range. This advanced optical complex system is based substantially on the development of All-sky Survey High Resolution Air-shower detector (Ashra) and applies the tau shower Earth-skimming method to survey PeV-EeV tau neutrinos. It allows wide (30 deg x 360 deg) and deep (~400 Mpc) survey observation for PeV-EeV tau neutrinos assuming the standard GRB neutrino fluence.In addition, it enjoys the pointing accuracy of better than 0.2 deg in essentially background-free conditions. With the advanced imaging of Earth-skimming tau showers in the wide field of view, we aim for clear discovery and identification of astronomical tau neutrino sources, providing inescapable evidence of the astrophysical hadronic model for acceleration and/or propagation of extremely high energy protons in the precisely determined direction.

  10. Muons and Neutrinos 2007

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2008-01-29

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  11. Neutrinos in Nuclear Physics

    E-Print Network [OSTI]

    McKeown, R D

    2014-01-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  12. Space Telescope Programs Hubble Observatory

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Functional Test Pre-Vibration Functional BATC Acceptance Review · Verify Mechanical Integrity Only · Static Observatory HST-COS FUV PER 11/8/00 FUV Detector System Test Flow Vibration Test Post-Vibration Functional EMI Acceleration · Random Vibration · Sine Survey FUV detector Performance tests ·Long-Form Detector Functional

  13. Neutrino Sources and Properties

    E-Print Network [OSTI]

    Francesco Vissani

    2015-05-19

    In this lecture, prepared for PhD students, basic considerations on neutrino interactions, properties and sites of production are overviewed. The detailed content is as follows: Sect. 1, Weak interactions and neutrinos: Fermi coupling; definition of neutrinos; global numbers. Sect. 2, A list of neutrino sources: Explanatory note and examples (solar pp- and supernova-neutrinos). Sect. 3, Neutrinos oscillations: Basic formalism (Pontecorvo); matter effect (Mikheev, Smirnov, Wolfenstein); status of neutrino masses and mixings. Sect. 4, Modifying the standard model to include neutrinos masses: The fermions of the standard model; one additional operator in the standard model (Weinberg); implications. One summary table and several exercises offer the students occasions to check, consolidate and extend their understanding; the brief reference list includes historical and review papers and some entry points to active research in neutrino physics.

  14. Experimental Neutrino Physics: Final Report

    SciTech Connect (OSTI)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  15. Neutrinos and Big Bang Nucleosynthesis

    E-Print Network [OSTI]

    A. D. Dolgov

    2002-03-18

    The role of neutrinos in big bang nucleosynthesis is discussed. The bounds on the number of neutrino families, neutrino degeneracy, parameters of neutrino oscillations are presented. A model of chemically inhomogeneous, while energetically smooth, universe created by inhomogeneous cosmological neutrino asymmetry is described. Nucleosynthesis limits on production of right-handed neutrinos are considered.

  16. Neutrino Physics at Fermilab

    ScienceCinema (OSTI)

    Saoulidou, Niki

    2010-01-08

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  17. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Waltham, Chris

    of Canada, Limited, Chalk River Laboratories, Chalk River, ON K0J 1J0, Canada 2 Department of Physics

  18. A Nobel for Neutrinos: Sudbury Neutrino Observatory | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0GrantsThe Life of Enrico's The20155

  19. A Nobel for Neutrinos: Sudbury Neutrino Observatory | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0GrantsThe Life of Enrico's The20155Science (SC)

  20. Carnegie Mellon Opens Data Center Observatory

    E-Print Network [OSTI]

    Carnegie Mellon Opens Data Center Observatory :: CyLab Press Releases In the News CSO Council INI Home > Media Center > In the News > Carnegie Mellon Opens Data Center Observatory Carnegie Mellon Opens Data Center Observatory On May 23, 2006 Carnegie Mellon University held a lab dedication ceremony

  1. Tau Neutrino Appearance via Neutrino Oscillations in Atmospheric Neutrinos

    E-Print Network [OSTI]

    Tokyo, University of

    recommend acceptance of the dissertation. Dr. Chang Kee Jung Advisor Professor of Physics and Astronomy.1 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Neutrinos in the Standard Model . . . . . . . . . . . . . . . . . . . 24 2.3.2 Outer Detector PMT . . . . . . . . . . . . . . . . . . . 28 2.4 Water Purification System

  2. ON THE NEUTRINO NON-DETECTION OF GRB 130427A

    SciTech Connect (OSTI)

    Gao Shan; Kashiyama, Kazumi; Meszaros, Peter, E-mail: sxg324@psu.edu, E-mail: kzk15@psu.edu, E-mail: pmeszaros@astro.psu.edu [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2013-07-20

    The recent gamma-ray burst GRB 130427A has an isotropic electromagnetic energy E{sup iso} {approx} 10{sup 54} erg, suggesting an ample supply of target photons for photo-hadronic interactions, which at its low redshift of z {approx} 0.34 would appear to make it a promising candidate for neutrino detection. However, the IceCube collaboration has reported a null result based on a search during the prompt emission phase. We show that this neutrino non-detection can provide valuable information about this gamma-ray burst's (GRB's) key physical parameters such as the emission radius R{sub d} , the bulk Lorentz factor {Gamma}, and the energy fraction converted into cosmic rays {epsilon}{sub p}. The results are discussed both in a model-independent way and in the specific scenarios of an internal shock (IS) model, a baryonic photospheric (BPH) model, and a magnetic photospheric (MPH) model. We find that the constraints are most stringent for the MPH model considered, but the constraints on the IS and the BPH models are fairly modest.

  3. Non standard neutrino interactions

    E-Print Network [OSTI]

    Miranda, O G

    2015-01-01

    Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino parameters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.

  4. SNO: solving the mystery of the missing neutrinos

    SciTech Connect (OSTI)

    Jelley, Nick; Poon, Alan

    2007-03-30

    The end of an era came on 28 November 2006 when the Sudbury Neutrino Observatory (SNO) finally stopped data-taking after eight exciting years of discoveries. During this time the Observatory saw evidence that neutrinos, produced in the fusion of hydrogen in the solar core, change flavour while passing through the Sun on their way to the Earth. This observation explained the longstanding puzzle as to why previous experiments had seen fewer solar neutrinos than predicted and confirmed that these elusive particles have mass. Solar neutrinos were first detected in Ray Davis's radiochemical experiment in 1967, for which discovery he shared the 2002 Nobel Prize in Physics. Surprisingly he found only about a third of the number predicted from models of the Sun's output. This deficit, the so-called Solar Neutrino Problem, was confirmed by Kamiokande-II while other experiments saw related deficits of solar neutrinos. A possible explanation for this deficit, suggested by Gribov and Pontecorvo in 1969, was that some of the electron-type neutrinos, which are produced in the Sun, had ''oscillated'' into neutrinos that could not be detected in the Davis detector. The oscillation mechanism requires that neutrinos have non-zero mass. The unique advantage, which was pointed out by the late Herb Chen in 1985, of using heavy water (D{sub 2}O) to detect the neutrinos from {sup 8}B decays in the solar fusion process is that it enables both the number of electron-type and of all types of neutrinos to be measured. A comparison of the flux of electron-type neutrinos to that of all flavours could then reveal whether flavour transformation is the cause of the solar neutrino deficit. In heavy water neutrinos of all types can break a deuteron apart into its constituent proton and neutron (neutral-current reaction), while only electron-type neutrinos can change the deuteron into two protons and release an electron (charged-current reaction). SNO was designed by scientists from Canada, the USA and the UK to attain a detection rate of about 10 solar neutrinos per day using 1000 tonnes of heavy water. Neutrino interactions were detected by 9,456 photomultiplier tubes surrounding the heavy water, which was contained in a 12-m diameter acrylic sphere. This sphere was surrounded by 7000 tonnes of ultra-pure water to shield against radioactivity. Figure 1 shows the layout of the SNO detector, which is located about 2 km underground in Inco's Creighton nickel mine near Sudbury in Canada, to all but eliminate cosmic rays from reaching the detector. The pattern of hit photomultiplier tubes following the creation of an electron by an electron-type neutrino is shown in Figure 2.

  5. Neutrino Astronomy Scott Wilbur

    E-Print Network [OSTI]

    Golwala, Sunil

    V protons, which should be created with neutrinos, have been seen Can be used to observe possible dark Particle Physics Extremely long baseline for neutrino oscillation studies Dark Matter Searches Many dark Detector Picture from AMANDA II Web Site: http://www.amanda.uci.edu #12;Advantages of Neutrino Astronomy

  6. Constraining Sterile Neutrinos Using Reactor Neutrino Experiments

    E-Print Network [OSTI]

    Ivan Girardi; Davide Meloni; Tommy Ohlsson; He Zhang; Shun Zhou

    2014-08-21

    Models of neutrino mixing involving one or more sterile neutrinos have resurrected their importance in the light of recent cosmological data. In this case, reactor antineutrino experiments offer an ideal place to look for signatures of sterile neutrinos due to their impact on neutrino flavor transitions. In this work, we show that the high-precision data of the Daya Bay experi\\-ment constrain the 3+1 neutrino scenario imposing upper bounds on the relevant active-sterile mixing angle $\\sin^2 2 \\theta_{14} \\lesssim 0.06$ at 3$\\sigma$ confidence level for the mass-squared difference $\\Delta m^2_{41}$ in the range $(10^{-3},10^{-1}) \\, {\\rm eV^2}$. The latter bound can be improved by six years of running of the JUNO experiment, $\\sin^22\\theta_{14} \\lesssim 0.016$, although in the smaller mass range $ \\Delta m^2_{41} \\in (10^{-4} ,10^{-3}) \\, {\\rm eV}^2$. We have also investigated the impact of sterile neutrinos on precision measurements of the standard neutrino oscillation parameters $\\theta_{13}$ and $\\Delta m^2_{31}$ (at Daya Bay and JUNO), $\\theta_{12}$ and $\\Delta m^2_{21}$ (at JUNO), and most importantly, the neutrino mass hierarchy (at JUNO). We find that, except for the obvious situation where $\\Delta m^2_{41}\\sim \\Delta m^2_{31}$, sterile states do not affect these measurements substantially.

  7. Propagation and neutrino oscillations in the base of a highly magnetized gamma-ray burst fireball flow

    SciTech Connect (OSTI)

    Fraija, N. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., A. Postal 70-264, 04510 México D.F. (Mexico)

    2014-06-01

    Neutrons play an important role in the dynamics of gamma-ray bursts. The presence of neutrons in the baryon-loaded fireball is expected. If the neutron abundance is comparable to that of protons, important features may be observed, such as quasi-thermal multi-GeV neutrinos in coincidence with a subphotospheric ?-ray emission, nucleosynthesis at later times, and rebrightening of the afterglow emission. Additionally, thermal MeV neutrinos are created by electron-positron annihilation, electron (positron) capture on protons (neutrons), and nucleonic bremsstrahlung. Although MeV neutrinos are difficult to detect, quasi-thermal GeV neutrinos are expected in cubic kilometer detectors and/or DeepCore and IceCube. In this paper, we show that neutrino oscillations have outstanding implications for the dynamics of the fireball evolution and also that they can be detected through their flavor ratio on Earth. For that, we derive the resonance and charged-neutrality conditions as well as the neutrino self-energy and effective potential up to the order of m{sub W}{sup ?4} at strong, moderate, and weak magnetic field approximations to constrain the dynamics of the fireball. We found important implications: (1) resonant oscillations are suppressed for high baryon densities as well as neutron abundance larger than that of protons, and (2) the effect of magnetic field is to decrease the proton-to-neutron ratio aside from the number of multi-GeV neutrinos expected in the DeepCore detector. Also, we estimate the GeV neutrino flavor ratios along the jet and on Earth.

  8. Nucleosynthesis and Neutrinos

    SciTech Connect (OSTI)

    Kajino, Toshitaka [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2011-05-06

    Neutrinos play the critical roles in nucleosynthesis of light-to-heavy mass nuclei in core-collapse supernovae. We study the nucleosynthesis induced by neutrino interactions and find suitable average neutrino temperatures in order to explain the observed solar system abundances of several isotopes {sup 7}Li, {sup 11}B, {sup 138}La and {sup 180}Ta. These isotopes are predominantly synthesized by the supernova {nu}-process. We also study the neutrino oscillation effects on their abundances and propose a method to determine the unknown neutrino oscillation parameters, i.e. {theta}{sub 13} and mass hierarchy.

  9. A Search for Neutrinos from the Solar hep Reaction and the Diffuse Supernova Neutrino Background with the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    2006-01-01

    using the standard solar model prediction, including itsnormalized to the solar model prediction. The upper limit ofand the standard solar model prediction for the hep signal.

  10. Collective neutrino oscillations in supernovae

    SciTech Connect (OSTI)

    Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  11. Resonant oscillations of GeV - TeV neutrinos in internal shocks from gamma-ray burst jets inside the stars

    E-Print Network [OSTI]

    Fraija, Nissim

    2015-01-01

    High-energy neutrinos generated in collimated jets inside the progenitors of gamma-ray bursts (GRBs) have been related with the events detected by IceCube. These neutrinos, produced by hadronic interactions of Fermi-accelerated protons with thermal photons and hadrons in internal shocks, are the only signature when jet has not broken out or failed. Taking into account that the photon field is thermalized at keV energies and the standard assumption that the magnetic field maintains a steady value throughout the shock region (with a width of $10^{10} - 10^{11}$ cm in the observed frame), we study the effect of thermal and magnetized plasma generated in internal shocks on the neutrino oscillations. We calculate the neutrino effective potential generated by this plasma, the effects of the envelope of the star, and the vacuum on the path to Earth. By considering these three effects, the two (solar, atmospheric and accelerator parameters) and three neutrino mixing, we show that although GeV - TeV neutrinos can osci...

  12. MINOS Sterile Neutrino Search

    SciTech Connect (OSTI)

    Koskinen, David Jason; /University Coll. London

    2009-09-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  13. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota EA-1943: Long Baseline Neutrino FacilityDeep Underground Neutrino...

  14. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Broader source: Energy.gov (indexed) [DOE]

    May 27, 2015 EA-1943: Draft Environmental Assessment Long Baseline Neutrino FacilityDeep Underground Neutrino Experiment (LBNFDUNE) at Fermilab, Batavia, Illinois and the...

  15. Neutrino Decay and Solar Neutrino Seasonal Effect

    E-Print Network [OSTI]

    Picoreti, R; de Holanda, P C; Peres, O L G

    2015-01-01

    We consider the possibility of solar neutrino decay as a sub-leading effect on their propagation between production and detection. Using current oscillation data, we set a new lower bound to the $\

  16. Massive neutrinos and cosmology

    E-Print Network [OSTI]

    Julien Lesgourgues; Sergio Pastor

    2006-05-29

    The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of cosmological data, including the most recent analysis by the WMAP team. We also discuss how future cosmological experiments are expected to be sensitive to neutrino masses well into the sub-eV range.

  17. Physics of Massive Neutrinos

    E-Print Network [OSTI]

    J. W. F. Valle

    2004-10-07

    I summarize the present status of global analyses of neutrino oscillations, including the most recent KamLAND and K2K data, as well as the latest solar and atmospheric neutrino fluxes. I give the allowed ranges of the three--flavour oscillation parameters from the current worlds' global neutrino data sample, their best fit values and discuss the small parameters DeltaM_solar/DeltaM_atm and sin^2 theta_13, which characterize the strength of CP violation in neutrino oscillations. I briefly discuss neutrinoless double beta decay and the LSND neutrino oscillation hint, as well as the robustness of the neutrino oscillation results in the presence of non-standard physics.

  18. Neutrinos and Collider Physics

    E-Print Network [OSTI]

    Deppisch, Frank F; Pilaftsis, Apostolos

    2015-01-01

    We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.

  19. Neutrinos and Collider Physics

    E-Print Network [OSTI]

    Frank F. Deppisch; P. S. Bhupal Dev; Apostolos Pilaftsis

    2015-08-04

    We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.

  20. Solar neutrino detection

    E-Print Network [OSTI]

    Lino Miramonti

    2009-01-22

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  1. UHECR ESCAPE MECHANISMS FOR PROTONS AND NEUTRONS FROM GAMMA-RAY BURSTS, AND THE COSMIC-RAY-NEUTRINO CONNECTION

    SciTech Connect (OSTI)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter, E-mail: philipp.baerwald@physik.uni-wuerzburg.de, E-mail: mauricio.bustamante@physik.uni-wuerzburg.de, E-mail: winter@physik.uni-wuerzburg.de [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2013-05-10

    The paradigm that gamma-ray burst fireballs are the sources of the ultra-high energy cosmic rays (UHECRs) is being probed by neutrino observations. Very stringent bounds can be obtained from the cosmic-ray (proton)-neutrino connection, assuming that the UHECRs escape as neutrons. In this study, we identify three different regimes as a function of the fireball parameters: the standard ''one neutrino per cosmic ray'' case, the optically thick (to neutron escape) case, and the case where leakage of protons from the boundaries of the shells (direct escape) dominates. In the optically thick regime, the photomeson production is very efficient, and more neutrinos will be emitted per cosmic ray than in the standard case, whereas in the direct escape-dominated regime, more cosmic rays than neutrinos will be emitted. We demonstrate that, for efficient proton acceleration, which is required to describe the observed UHECR spectrum, the standard case only applies to a very narrow region of the fireball parameter space. We illustrate with several observed examples that conclusions on the cosmic-ray-neutrino connection will depend on the actual burst parameters. We also show that the definition of the pion production efficiency currently used by the IceCube collaboration underestimates the neutrino production in the optically thick case. Finally, we point out that the direct escape component leads to a spectral break in the cosmic-ray spectrum emitted from a single source. The resulting ''two-component model'' can be used to even more strongly pronounce the spectral features of the observed UHECR spectrum than the dip model.

  2. Neutrino Oscillation Studies with Reactors

    E-Print Network [OSTI]

    Petr Vogel; Liangjian Wen; Chao Zhang

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  3. Neutrino Oscillation Studies with Reactors

    E-Print Network [OSTI]

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  4. Neutrino oscillation studies with reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle ?13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  5. Neutrinos: Nature's Ghosts?

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-12

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  6. Great Salt Lake Basin Hydrologic Observatory

    E-Print Network [OSTI]

    Tarboton, David

    Great Salt Lake Basin Hydrologic Observatory Contact Information David Tarboton Utah State University of Utah 135 South 1460 East Rm 719 Salt Lake City, Utah (801) 581-5033 wjohnson. The Great Salt Lake Basin Hydrologic Observatory development team is highly committed to this concept

  7. Fourth Generation Majorana Neutrinos

    E-Print Network [OSTI]

    Alexander Lenz; Heinrich Päs; Dario Schalla

    2012-05-02

    We investigate the possibility of a fourth sequential generation in the lepton sector. Assuming neutrinos to be Majorana particles and starting from a recent - albeit weak - evidence for a non-zero admixture of a fourth generation neutrino from fits to weak lepton and meson decays we discuss constraints from neutrinoless double beta decay, radiative lepton decay and like-sign dilepton production at hadron colliders. Also an idea for fourth generation neutrino mass model building is briefly outlined. Here we soften the large hierarchy of the neutrino masses within an extradimensional model that locates each generation on different lepton number violating branes without large hierarchies.

  8. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  9. The Pierre Auger Cosmic Ray Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completionmore »in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.« less

  10. The Pierre Auger Cosmic Ray Observatory

    E-Print Network [OSTI]

    ,

    2015-01-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

  11. The Pierre Auger Cosmic Ray Observatory

    SciTech Connect (OSTI)

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  12. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect (OSTI)

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  13. Physics of neutrino flavor transformation through matter-neutrino resonances

    E-Print Network [OSTI]

    Wu, Meng-Ru; Qian, Yong-Zhong

    2015-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  14. Neutrino Counter Nuclear Weapon

    E-Print Network [OSTI]

    Tang, Alfred

    2008-01-01

    Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

  15. Neutrino Counter Nuclear Weapon

    E-Print Network [OSTI]

    Alfred Tang

    2013-06-25

    Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

  16. Reactor Monitoring with Neutrinos

    E-Print Network [OSTI]

    M. Cribier

    2007-04-06

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  17. Reactor Monitoring with Neutrinos

    E-Print Network [OSTI]

    Cribier, Michel

    2011-01-01

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  18. Wroclaw neutrino event generator

    E-Print Network [OSTI]

    Jaroslaw A. Nowak

    2006-07-07

    A neutrino event generator developed by the Wroclaw Neutrino Group is described. The physical models included in the generator are discussed and illustrated with the results of simulations. The considered processes are quasi-elastic scattering and pion production modelled by combining the $\\Delta$ resonance excitation and deep inelastic scattering.

  19. Deep Inelastic Neutrino Interactions

    E-Print Network [OSTI]

    S. Kretzer; M. H. Reno

    2003-06-30

    Understanding neutrino interactions is an important task in searches for neutrino oscillations; e.g. the nu_{mu} -> nu_{tau} oscillation hypothesis will be tested through nu_{tau} production of tau in long-baseline experiments as well as underground neutrino telescopes. An anomaly in the deep inelastic interaction of neutrinos has recently been observed by the NuTeV collaboration -- resulting in a measured weak mixing angle sin^2 Theta_{W} that differs by ~ 3 sigma from the standard model expectation. In this contribution to the proceedings of NUINT02, we summarize results on the NLO neutrino structure functions and cross sections in which charm quark mass and target mass effects in the collinear approximation are included.

  20. The ANTARES Neutrino Telescope

    E-Print Network [OSTI]

    Perrina, Chiara

    2015-01-01

    At about 40 km off the coast of Toulon (France), anchored at 2475 m deep in the Mediterranean Sea, there is ANTARES: the first undersea neutrino telescope and the only one currently operating. The detector consists of 885 photomultiplier tubes arranged into 12 strings of 450-metres high, with the aim to detect the Cherenkov light induced by the charged superluminal interaction products of neutrinos. Its main scientific target is the search for high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the cosmic neutrino diffuse flux, focusing in particular on events coming from below the horizon (up-going events) in order to significantly reduce the atmospheric muons background. Thanks to the development of a strategy for the identification of neutrinos coming from above the horizon (down-going events) the field of view of the telescope will be extended.

  1. Neutrinos, WMAP, and BBN

    E-Print Network [OSTI]

    Lawrence M. Krauss; Cecilia Lunardini; Christel Smith

    2010-11-18

    New data from WMAP have appeared, related to both the fractional energy density in relativistic species at decoupling and also the primordial helium abundance, at the same time as other independent observational estimates suggest a higher value of the latter than previously estimated. All the data are consistent with the possibility that the effective number of relativistic species in the radiation gas at the time of Big Bang Nucleosynthesis may exceed the value of 3, as expected from a CP-symmetric population of the known neutrino species. Here we explore the possibility that new neutrino physics accounts for such an excess. We explore different realizations, including neutrino asymmetry and new neutrino species, as well as their combination, and describe how existing constraints on neutrino physics would need to be relaxed as a result of the new data, as well as possible experimental tests of these possibilities.

  2. Constraints on Axial Two-Body Currents from Solar Neutrino Data

    E-Print Network [OSTI]

    A. B. Balantekin; H. Yuksel

    2003-07-31

    We briefly review recent calculations of neutrino deuteron cross sections within the effective field theory and traditional potential model approaches. We summarize recent efforts to determine the counter term describing axial two-body currents, L_{1A}, in the effective field theory approach. We determine the counter term directly from the solar neutrino data and find several, slightly different, ranges of L_{1A} under different sets of assumptions. Our most conservative fit value with the largest uncertainty is L_{1A} = 4.5 +18/-12 fm^3. We show that the contribution of the uncertainty of L_{1A} to the analysis and interpretation of the solar neutrino data measured at the Sudbury Neutrino Observatory is significantly less than the uncertainty coming from the lack of having a better knowledge of \\theta_{13}.

  3. Absolute neutrino mass measurements

    SciTech Connect (OSTI)

    Wolf, Joachim [Karlsruhe Institute of Technology (KIT), IEKP, Postfach 3640, 76021 Karlsruhe (Germany)

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  4. Superheavy sterile neutrinos as dark matter 

    E-Print Network [OSTI]

    Tang, Yongjun

    2000-01-01

    neutrinos as a dark matter candidate, produced through MSW conversion of active neutrinos. Recently Allen proposed a different nonthermal mechanism for the production of superheavy sterile neutrinos. Such neutrinos are predicted by an SO(10) grand...

  5. Neutrinos: Nature's Identity Thieves?

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  6. Neutrinos: Nature's Identity Thieves?

    ScienceCinema (OSTI)

    Dr. Don Lincoln

    2013-07-22

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  7. Solar neutrinos radiative corrections in neutrino-electron scattering experiments

    E-Print Network [OSTI]

    Bahcall, J N; Sirlin, A; Bahcall, John N; Kamionkowski, Marc; Sirlin, Alberto

    1995-01-01

    Radiative corrections to the electron recoil-energy spectra and to total cross sections are computed for neutrino-electron scattering by solar neutrinos. Radiative corrections change monotonically the electron recoil spectrum for incident \\b8 neutrinos, with the relative probability of observing recoil electrons being reduced by about 4 \\% at the highest electron energies. For p-p and \\be7 neutrinos, the recoil spectra are not affected significantly. Total cross sections for solar neutrino-electron scattering are reduced by about 2 \\% compared to previously computed values. We also calculate the recoil spectra from ^{13}N and ^{15}O neutrinos including radiative corrections.

  8. Neutrino Mean Free Path in Neutron Star

    E-Print Network [OSTI]

    P. T. P. Hutauruk

    2010-07-22

    Have been calculated the differential cross section and mean free path of neutrino of neutrino interaction in dense matter.

  9. Neutrino astrophysics : recent advances and open issues

    E-Print Network [OSTI]

    Cristina Volpe

    2015-03-04

    We highlight recent advances in neutrino astrophysics, the open issues and the interplay with neutrino properties. We emphasize the important progress in our understanding of neutrino flavor conversion in media. We discuss the case of solar neutrinos, of core-collapse supernova neutrinos and of SN1987A, and of the recently discovered ultra-high energy neutrinos whose origin is to be determined.

  10. Studying neutrinos and nuclear reactors with PROSPECT!

    E-Print Network [OSTI]

    discovers the tau neutrino.! #12;Milestones in Neutrino Oscillations! ·Solar neutrino problem is born when Ray Davis Cl experiment in the Homestake mine shows ~1/3 expected solar e flux.! ·Solar neutrinoKamiokande.! ·SNO confirms flavor change in solar neutrinos by measuring CC/NC.! ·KamLAND observes neutrino

  11. WMAPping out Neutrino Masses

    E-Print Network [OSTI]

    Aaron Pierce; Hitoshi Murayama

    2003-10-28

    Recent data from from the Wilkinson Microwave Anisotropy Probe (WMAP) place important bounds on the neutrino sector. The precise determination of the baryon number in the universe puts a strong constraint on the number of relativistic species during Big-Bang Nucleosynthesis. WMAP data, when combined with the 2dF Galaxy Redshift Survey (2dFGRS), also directly constrain the absolute mass scale of neutrinos. These results impinge upon a neutrino oscillation interpretation of the result from the Liquid Scintillator Neutrino Detector (LSND). We also note that the Heidelberg--Moscow evidence for neutrinoless double beta decay is only consistent with the WMAP+2dFGRS data for the largest values of the nuclear matrix element.

  12. Fast Light, Fast Neutrinos?

    E-Print Network [OSTI]

    Kevin Cahill

    2011-10-10

    In certain media, light has been observed with group velocities faster than the speed of light. The recent OPERA report of superluminal 17 GeV neutrinos may describe a similar phenomenon.

  13. Electromagnetic properties of massive neutrinos

    SciTech Connect (OSTI)

    Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  14. Cosmological and supernova neutrinos

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, ?i?li, ?stanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on ?{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  15. Virtual Global Magnetic ObservatoryVirtual Global Magnetic Observatory Network in Africa:Network in Africa

    E-Print Network [OSTI]

    Michigan, University of

    Virtual Global Magnetic ObservatoryVirtual Global Magnetic Observatory Network in Africa:Network in Africa: Capacity Building for ElectronicCapacity Building for Electronic Geophysical YearGeophysical Year · VGMO.NET is a middleware architecture that provides a new way for the worldwide geomagnetic community

  16. Neutrinos as astrophysical probes

    E-Print Network [OSTI]

    Flavio Cavanna; Maria Laura Costantini; Ornella Palamara; Francesco Vissani

    2003-11-11

    The aim of these notes is to provide a brief review of the topic of neutrino astronomy and in particular of neutrinos from core collapse supernovae. They are addressed to a curious reader, beginning to work in a multidisciplinary area that involves experimental neutrino physics, astrophysics, nuclear physics and particle physics phenomenology. After an introduction to the methods and goals of neutrinos astronomy, we focus on core collapse supernovae, as (one of) the most promising astrophysical source of neutrinos. The first part is organized almost as a tale, the last part is a bit more technical. We discuss the impact of flavor oscillations on the supernova neutrino signal (=the change of perspective due to recent achievements) and consider one specific example of signal in detail. This shows that effects of oscillations are important, but astrophysical uncertainties should be thought as an essential systematics for a correct interpretation of future experimental data. Three appendices corroborate the text with further details and some basics on flavor oscillations; but no attempt of a complete bibliographical survey is done (in practice, we selected a few references that we believe are useful for a `modern' introduction to the subject. We suggest the use of public databases for papers as SPIRES or NASA/ESO or for experiments as SPIRES or PaNAGIC to get a more complete information).

  17. Sterile Neutrino Fits to Short-Baseline Neutrino Oscillation Measurements

    E-Print Network [OSTI]

    Conrad, Janet

    2013-01-01

    This paper reviews short-baseline oscillation experiments as interpreted within the context of one, two, and three sterile neutrino models associated with additional neutrino mass states in the ~1?eV range. Appearance and ...

  18. No-neutrino double beta decay: more than one neutrino

    SciTech Connect (OSTI)

    Rosen, S.P.

    1983-01-01

    Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

  19. Anti-Neutrino Imprint in Solar Neutrino Flare

    E-Print Network [OSTI]

    D. Fargion

    2006-06-09

    Future neutrino detector at Megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares neutrino. Indeed the solar energetic flare particles while scattering among themselves on Solar corona atmosphere must produce prompt charged pions, whose chain decays are source of solar (electron-muon) neutrino "flare" (at tens or hundreds MeV energy). These brief (minutes) neutrino "burst" at largest flare peak may overcome by three to five order of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection. Moreover the birth of anti-neutrinos at a few tens MeVs is well loudly flaring above a null thermal "hep" anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino "burst" may be well detected in future SuperKamikande (Gadolinium implemented) by anti-neutrino signatures mostly in inverse Beta decay. Our estimate for the recent and exceptional October - November 2003 solar flares and January 20th 2005 exceptional eruption might lead to a few events above or near unity for existing Super-Kamiokande and above unity for Megaton detectors. The neutrino spectra may reflect in a subtle way the neutrino flavor oscillations and mixing in flight. A comparison of the solar neutrino flare (at their birth place on Sun and after oscillation on the arrival on the Earth) with other neutrino foreground is estimated: it offers an independent track to disentangle the neutrino flavor puzzles and its most secret mixing angles. The sharpest noise-free anti-neutrino imprint maybe its first clean voice.

  20. The Neutrino Eye: A Megaton Low Energy Neutrino

    E-Print Network [OSTI]

    Learned, John

    from WIMPS and gamma ray bursts, and upon real time counting of solar neutrinos, are all from sensi­ tivity, and conduct a watch for for neutrino correlates to sporadic phenomenon such as gamma ray bursts. The main thrust would be to detect actual muon neutrino appearance as well as disappearance

  1. Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

    E-Print Network [OSTI]

    Abbasi, R.

    2010-01-01

    of the Sun as a function of neutrino energy, see Fig. 2.high energy neutrinos from the direction of the Sun. Despiteand energy losses of the neutrinos on their way out of the Sun,

  2. Perspectives on neutrino telescopes 2009

    SciTech Connect (OSTI)

    Quigg, Chris; /Fermilab /Karlsruhe U., TTP

    2009-04-01

    Remarks at the roundtable on plans for the future at the XIII International Workshop on Neutrino Telescopes.

  3. Determining the neutrino mass hierarchy

    SciTech Connect (OSTI)

    Parke, Stephen J.; /Fermilab

    2006-07-01

    In this proceedings I review the physics that future experiments will use to determine the neutrino mass hierarchy.

  4. Hybrid Performance of the Pierre Auger Observatory

    E-Print Network [OSTI]

    B. R. Dawson; for the Pierre Auger Collaboration

    2007-06-08

    A key feature of the Pierre Auger Observatory is its hybrid design, in which ultra high energy cosmic rays are detected simultaneously by fluorescence telescopes and a ground array. The two techniques see air showers in complementary ways, providing important cross-checks and measurement redundancy. Much of the hybrid capability stems from the accurate geometrical reconstruction it achieves, with accuracy better than either the ground array detectors or a single telescope could achieve independently. We have studied the geometrical and longitudinal profile reconstructions of hybrid events. We present the results for the hybrid performance of the Observatory, including trigger efficiency, energy and angular resolution, and the efficiency of the event selection.

  5. Status of the Milagro $\\gamma$ Ray Observatory

    E-Print Network [OSTI]

    Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

    2001-01-01

    The Milagro Gamma Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the sky at TeV energies. Located in northern New Mexico, Milagro will perform an all sky survey of the Northern Hemisphere at energies between ~250 GeV and 50 TeV. With a high duty cycle, large detector area (~5000 square meters), and a wide field-of-view (~1 sr), Milagro is uniquely capable of searching for transient and DC sources of high-energy gamma-ray emission. Milagro has been operating since February, 1999. The current status of the Milagro Observatory and initial results will be discussed.

  6. Status of the Milagro Gamma Ray Observatory

    E-Print Network [OSTI]

    R. Atkins; W. Benbow; D. Berley; M. -L. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; L. Fleysher; R. Fleysher; G. Gisler; J. A. Goodman; T. J. Haines; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; J. Macri; M. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; A. I. Mincer; M. F. Morales; P. Nemethy; J. M. Ryan; M. Schneider; B. Shen; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; T. N. Thompson; O. T. Tumer; K. Wang; M. O. Wascko; S. Westerhoff; D. A. Williams; T. Yang; G. B. Yodh

    1999-06-24

    The Milagro Gamma Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the sky at TeV energies. Located in northern New Mexico, Milagro will perform an all sky survey of the Northern Hemisphere at energies between ~250 GeV and 50 TeV. With a high duty cycle, large detector area (~5000 square meters), and a wide field-of-view (~1 sr), Milagro is uniquely capable of searching for transient and DC sources of high-energy gamma-ray emission. Milagro has been operating since February, 1999. The current status of the Milagro Observatory and initial results will be discussed.

  7. The origin of the Hawaiian Volcano Observatory

    SciTech Connect (OSTI)

    Dvorak, John [University of Hawaii's Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  8. Electromagnetic neutrino: a short review

    E-Print Network [OSTI]

    Alexander I. Studenikin

    2014-11-09

    A short review on selected issues related to the problem of neutrino electromagnetic properties is given. After a flash look at the theoretical basis of neutrino electromagnetic form factors, constraints on neutrino magnetic moments and electric millicharge from terrestrial experiments and astrophysical observations are discussed. We also focus on some recent studies of the problem and on perspectives.

  9. Supernova Neutrinos Detection On Earth

    E-Print Network [OSTI]

    Xin-Heng Guo; Ming-Yang Huang; Bing-Lin Young

    2009-05-12

    In this paper, we first discuss the detection of supernova neutrino on Earth. Then we propose a possible method to acquire information about $\\theta_{13}$ smaller than $1.5^\\circ$ by detecting the ratio of the event numbers of different flavor supernova neutrinos. Such an sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment.

  10. Supernova neutrinos: Earth matter effects and neutrino mass spectrum

    E-Print Network [OSTI]

    C. Lunardini; A. Yu. Smirnov

    2001-06-29

    We perform a detailed study of the Earth matter effects on supernova neutrinos. The dependences of these effects on the properties of the original neutrino fluxes, on the trajectory of the neutrinos inside the Earth and on the oscillation parameters are described. We show that, for a large fraction (60 %) of the possible arrival times of the signal, the neutrino flux crosses a substantial amount of the matter of the Earth at least for one of the existing detectors. For oscillation parameters from the LMA solution of the solar neutrino problem the Earth matter effect consists in an oscillatory modulation of the $\\barnue$ and/or $\

  11. Neutrino Scattering Physics at Superbeams and Neutrino Factories

    E-Print Network [OSTI]

    S. Kumano

    2003-10-14

    Neutrino scattering physics is discussed for investigating internal structure of the nucleon and nuclei at future neutrino facilities. We explain structure functions in neutrino scattering. In particular, there are new polarized functions g_3, g_4, and g_5, and they should provide us important information for determining internal nucleon spin structure. Next, nuclear structure functions are discussed. From F_3 structure function measurements, valence-quark shadowing should be clarified. Nuclear effects on the NuTeV sin^2\\theta_W anomaly are explained. We also comment on low-energy neutrino scattering, which is relevant to current long-baseline neutrino oscillation experiments.

  12. Axions at the International Axion Observatory

    E-Print Network [OSTI]

    Redondo, Javier

    2016-01-01

    QCD axions with meV mass can be behind some stellar cooling anomalies and form all or part of the cold dark matter of the universe. We discuss on a proposed experiment to discover the solar flux of meV mass axions: the International AXion Observatory: IAXO.

  13. Solar Dynamics Observatory/ Extreme Ultraviolet Variability Experiment

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Solar Dynamics Observatory/ EVE Extreme Ultraviolet Variability Experiment Frequently Asked and model solar extreme ultraviolet irradiance variations due to solar flares, solar rotation, and solar and structure of the Sun. What is solar variability? Solar radiation varies on all time scales ranging from

  14. Observatory Conversion of Pixels to Coordinates

    E-Print Network [OSTI]

    Greisen, Eric

    Eric W. Greisen Mark Calabretta National Radio Astronomy Observatory Australia Telescope National 300 330 60 30 0 ­30 ­60 Hammer­Aitoff projection 0 30 60 90 120 150 180 180 210 240 270 300 330 60 30, pole (0, 30) 0 30 60 90 120 150 180 180 210 240 270 300 330 60 30 0 ­30 ­60 Hammer­Aitoff projection

  15. Bishop's University Astronomical Observatory October 2009

    E-Print Network [OSTI]

    that was built on the roof of Nicolls adjacent to the Observatory and the other is Bishop's first-ever solar of our visitors. The solar panel and battery system provide sufficient energy to easily light the deck that reduce the level of light pollution. The installation of the solar energy system and the replacement

  16. Riddle of the Neutrino Mass

    E-Print Network [OSTI]

    A. Yu. Smirnov

    2015-02-16

    We discuss some known approaches and results as well as few new ideas concerning origins and nature of neutrino mass. The key issues include (i) connections of neutrino and charged fermions masses, relation between masses and mixing, energy scale of new physics behind neutrino mass where possibilities spread from the Planck and GUT masses down to a sub-eV scale. The data hint two different new physics involved in generation of neutrino mass. Determination of the CP phase as well as mass hierarchy can play important role in identification of new physics. It may happen that sterile neutrinos provide the key to resolve the riddle.

  17. Riddle of the Neutrino Mass

    E-Print Network [OSTI]

    Smirnov, A Yu

    2015-01-01

    We discuss some known approaches and results as well as few new ideas concerning origins and nature of neutrino mass. The key issues include (i) connections of neutrino and charged fermions masses, relation between masses and mixing, energy scale of new physics behind neutrino mass where possibilities spread from the Planck and GUT masses down to a sub-eV scale. The data hint two different new physics involved in generation of neutrino mass. Determination of the CP phase as well as mass hierarchy can play important role in identification of new physics. It may happen that sterile neutrinos provide the key to resolve the riddle.

  18. Are neutrinos their own antiparticles?

    SciTech Connect (OSTI)

    Kayser, Boris; /Fermilab

    2009-03-01

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  19. The Case for a Kilometer-Scale High-Energy Neutrino Detector: 1996

    E-Print Network [OSTI]

    F. Halzen

    1996-05-02

    The objective of neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, is to build instruments which reach throughout and far beyond our Galaxy and make measurements relevant to cosmology, astrophysics, cosmic-ray and particle physics. These telescopes will push astronomy to wavelengths smaller than $10^{-14}$~cm by mapping the sky in high-energy neutrinos instead of high-energy photons to which the Universe is partially opaque. While a variety of collaborations are pioneering complementary methods by building neutrino detectors with effective area in excess of 0.01~km$^2$, we show here that the science dictates 1~km$^2$, or a 1~km$^3$ instrumented volume, as the natural scale of a high-energy neutrino telescope. The construction of a high-energy neutrino telescope therefore requires a huge volume of very transparent, deeply buried material such as ocean water or ice, which acts as the medium for detecting the particles. We will speculate on its architecture. The field is immersed in technology in the domain of particle physics to which many of its research goals are intellectually connected. With several thousand optical modules the scope of constructing a kilometer-scale instrument is similar to that of experiments presently being commissioned such as the SNO neutrino observatory in Canada and the Superkamiokande experiment in Japan.

  20. Operations of and Future Plans for the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  1. "Towards Optics-Based Measurements in Ocean Observatories"

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    /JPSS ­ UAV ­ Ocean optics, Biological ­ Laser penetration New opportunity · Insitu Sensors ­ (Gliders"Towards Optics-Based Measurements in Ocean Observatories" "Ocean Observatories Contributions to Ocean Models and Data Assimilation For Ecosystems" Ocean Optics 2012 Glasgow Scotland Robert Arnone

  2. The endless mantra : innovation at the Keck Observatory

    E-Print Network [OSTI]

    Bobra, Monica Godha

    2005-01-01

    A study of historical, current, and future developments at the Keck Observatory revealed a thriving philosophy of innovation. Intended to defy obsoletion and keep the observatory competitive over long time scales, this ...

  3. Neutrino Oscillation Search Neutrino Oscillation Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature and OriginMiniBooNE's Neutrino

  4. Neutrinoless double beta decay and neutrino physics

    E-Print Network [OSTI]

    Werner Rodejohann

    2012-08-20

    The connection of neutrino physics with neutrinoless double beta decay is reviewed. After presenting the current status of the PMNS matrix and the theoretical background of neutrino mass and lepton mixing, we will summarize the various implications of neutrino physics for double beta decay. The influence of light sterile neutrinos and other exotic modifications of the three neutrino picture is also discussed.

  5. Measurement of the nue and Total 8B Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase I Data Set

    E-Print Network [OSTI]

    2007-01-01

    agreement with the predictions of Standard Solar Models. The50 times the Standard Solar Model prediction for each of theagreement with the predictions of Standard Solar Models. We

  6. Measurement of the nue and Total 8B Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase I Data Set

    E-Print Network [OSTI]

    2007-01-01

    Collaboration) Atomic Energy of Canada, Limited, Chalk RiverLaboratories, Chalk River, ON K0J 1J0, Canada Department of

  7. Prospects for Relic Neutrino Detection at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield

    Broader source: Energy.gov [DOE]

    Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013.

  8. Neutrino Factory Target Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept V. Graves Target Studies EVO April 11, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 11 Apr 2012 Target Vessel;3 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 11 Apr 2012 Starting Point

  9. Neutrino Factory Target Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept Update V. Graves T. Lessard Target Studies EVO June 26, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 26 June 2012 of Energy Target Vessel Update 26 June 2012 Review - Mercury Module Extraction #12;4 Managed by UT

  10. Neutrino Factory Target Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept Update V. Graves Target Studies EVO June 12, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 12 June 2012 Review ­ IPAC #12;3 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 12 June 2012 Inner

  11. Neutrino Factory Target Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Target Vessel Concepts Updated 4/16/12 V. Graves Target Studies EVO April 11, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 16 Apr 2012 Target Vessel Requirements · Accurate jet placement · Jet/beam dump pool · Double containment of mercury

  12. Neutrino Factory Mercury Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Mercury Vessel: Initial Cooling Calculations V. Graves Target Studies Nov 15, 2012 vessel assumed to be cooled with Helium ­ Shielding vessel filled with tungsten beads ­ Mercury vessel;7 Managed by UT-Battelle for the U.S. Department of Energy Cooling Calculations 15 Nov 2012 Mercury Vessel

  13. Supernovae and neutrinos

    SciTech Connect (OSTI)

    John F. Beacom

    2002-09-19

    A long-standing problem in supernova physics is how to measure the total energy and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  14. Experimental Neutrino Physics

    ScienceCinema (OSTI)

    Walter, Chris [Duke University, Durham, North Carolina, United States

    2010-01-08

    In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

  15. Neutrino Factory Downstream Systems

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2009-12-23

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  16. Pseudo-Dirac Neutrinos, a Challenge for Neutrino Telescopes

    E-Print Network [OSTI]

    John F. Beacom; Nicole F. Bell; Dan Hooper; John G. Learned; Sandip Pakvasa; Thomas J. Weiler

    2004-01-05

    Neutrinos may be pseudo-Dirac states, such that each generation is actually composed of two maximally-mixed Majorana neutrinos separated by a tiny mass difference. The usual active neutrino oscillation phenomenology would be unaltered if the pseudo-Dirac splittings are $\\delta m^2 \\alt 10^{-12}$ eV$^2$; in addition, neutrinoless double beta decay would be highly suppressed. However, it may be possible to distinguish pseudo-Dirac from Dirac neutrinos using high-energy astrophysical neutrinos. By measuring flavor ratios as a function of $L/E$, mass-squared differences down to $\\delta m^2 \\sim 10^{-18}$ eV$^2$ can be reached. We comment on the possibility of probing cosmological parameters with neutrinos.

  17. Solar mass-varying neutrino oscillations

    E-Print Network [OSTI]

    Marfatia, Danny; Huber, P.; Barger, V.

    2005-11-18

    We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric ...

  18. Non-unitary neutrino propagation from neutrino decay

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berryman, Jeffrey M.; de Gouvęa, André; Hernández, Daniel; Oliveira, Roberto L.N.

    2015-03-01

    Neutrino propagation in space–time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  19. Raymond Davis Jr., Solar Neutrinos, and the Solar Neutrino Problems

    Office of Scientific and Technical Information (OSTI)

    discrepancy. While at Brookhaven, Ray Davis conducted research and experiments in solar neutrinos at Homestake Gold Mine in South Dakota. This research was funded by the...

  20. Toward CP-even Neutrino Beam

    E-Print Network [OSTI]

    A. Fukumi; I. Nakano; H. Nanjo; N. Sasao; S. Sato; M. Yoshimura

    2009-01-20

    The best method of measuring CP violating effect in neutrino oscillation experiments is to construct and use a neutrino beam made of an ideal mixture of $\\bar{\

  1. Low-energy solar anti-neutrinos

    E-Print Network [OSTI]

    V. B. Semikoz; S. Pastor; J. W. F. Valle

    1998-08-13

    If neutrino conversions within the Sun result in partial polarization of initial solar neutrino fluxes, then a new opportunity arises to observe the anti-\

  2. Cosmic Neutrinos Scott Dodelson Fermilab/UChicago

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matter particles with the smallest mass, neutrinos, are also the most abundant in the Universe. Large cosmic surveys can not only detect these neutrinos, produced when the Universe...

  3. Muon Colliders and Neutrino Factories

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  4. Muon colliders and neutrino factories

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  5. Magnetic Dipole Moment of Neutrino

    E-Print Network [OSTI]

    Samina S. Masood

    2015-06-03

    We recalculate the magnetic moment of neutrinos in a hot and dense medium. The magnetic dipole moment of neutrinos is modified at high temperature and chemical potential. We show that the magnetic dipole moment of electron neutrino does not get a significant contribution from thermal background to meet the cosmological bound. However, chemical potential contribution to the magnetic moment is non-ignorable even when chemical potential is an order of magnitude greater than the electron mass. It is demonstrated that this effect is more significant in the models with an extended Higgs sector through neutrino mixing.

  6. Proton and Neutrino Extragalactic Astronomy

    E-Print Network [OSTI]

    Paolo Lipari

    2008-08-04

    The study of extragalactic sources of high energy radiation via the direct measurement of the proton and neutrino fluxes that they are likely to emit is one of the main goals for the future observations of the recently developed air showers detectors and neutrino telescopes. In this work we discuss the relation between the inclusive proton and neutrino signals from the ensemble of all sources in the universe, and the resolved signals from the closest and brightest objects. We also compare the sensitivities of proton and neutrino telescopes and comment on the relation between these two new astronomies.

  7. Neutrino oscillations in accelerated states

    E-Print Network [OSTI]

    Ahluwalia, Dharam Vir; Torrieri, Giorgio

    2015-01-01

    We discuss the inverse $\\beta$-decay of accelerated protons in the context of neutrino oscillations. The process $p\\rightarrow n \\ell^+ \

  8. Primordial nucleosynthesis and neutrino physics

    E-Print Network [OSTI]

    Smith, Christel Johanna

    2009-01-01

    A Brief History of and Introduction to Neutrino Physics . 13Theoretical Nuclear Physics, Volume I: Nuclear Structure, 1McGregor, in Particle Physics and Cosmology: Third Tropical

  9. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  10. Neutrino Mass and Dark Matter

    E-Print Network [OSTI]

    David O. Caldwell

    1998-12-01

    Despite direct observations favoring a low mass density, a critical density universe with a neutrino component of dark matter provides the best existing model to explain the observed structure of the universe over more than three orders of magnitude in distance scale. In principle this hot dark matter could consist of one, two, or three species of active neutrinos. If all present indications for neutrino mass are correct, however, only the two-species (muon neutrino and tau neutrino) possibility works. This requires the existence of at least one light sterile neutrino to explain the solar electron neutrino deficit via nu(e)->nu(s), leaving nu(mu)->nu(tau) as the explanation for the anomalous nu(mu)/nu(e) ratio produced by atmospheric neutrinos, and having the LSND experiment demonstrating via anti-nu(mu)-> anti-nu(e) the mass difference between the light nu(e)-nu(s) pair and the heavier nu(mu)-nu(tau) pair required for dark matter. Other experiments do not conflict with the LSND results when all the experiments are analyzed in the same way, and when analyzed conservatively the LSND data is quite compatible with the mass difference needed for dark matter. Further support for this mass pattern is provided by the need for a sterile neutrino to rescue heavy-element nucleosynthesis in supernovae, and it could even aid the concordance in light element abundances from the early universe.

  11. Feasibility of acoustic neutrino detection in ice: First results from the South Pole Acoustic Test Setup (SPATS)

    E-Print Network [OSTI]

    S. Böser; C. Bohm; F. Descamps; J. Fischer; A. Hallgren; R. Heller; S. Hundertmark; K. Krieger; R. Nahnhauer; M. Pohl; P. B. Price; K. -H. Sulanke; D. Tosi; J. Vandenbroucke

    2007-08-15

    Astrophysical neutrinos in the EeV range (particularly those generated by the interaction of cosmic rays with the cosmic microwave background) promise to be a valuable tool to study astrophysics and particle physics at the highest energies. Much could be learned from temporal, spectral, and angular distributions of ~100 events, which could be collected by a detector with ~100 km^3 effective volume in a few years. Scaling the optical Cherenkov technique to this scale is prohibitive. However, using the thick ice sheet available at the South Pole, the radio and acoustic techniques promise to provide sufficient sensitivity with sparse instrumentation. The best strategy may be a hybrid approach combining all three techniques. A new array of acoustic transmitters and sensors, the South Pole Acoustic Test Setup, was installed in three IceCube holes in January 2007. The purpose of SPATS is to measure the attenuation length, background noise, and sound speed for 10-100 kHz acoustic waves. Favorable results would pave the way for a large hybrid array. SPATS is the first array to study the possibility of acoustic neutrino detection in ice, the medium expected to be best for the purpose. First results from SPATS are presented.

  12. Neutrino detection at a spallation source

    E-Print Network [OSTI]

    Huang, Ming-Yang

    2015-01-01

    In this paper, we study the detection of accelerator neutrinos and supernova (SN) neutrinos at China Spallation Neutron Source (CSNS). Firstly, by using the code FLUKA, the processes of accelerator neutrinos production during the proton beam hitting on the tungsten target can be simulated, and the yield efficiency, numerical flux, average energy of different flavor neutrinos are given. Secondly, the detection of accelerator neutrinos through two reaction channels: the neutrino-electron reactions and the neutrino-carbon reactions, is studied, and the neutrino event numbers can be calculated. Finally, while considering the SN shock effects, the MSW effects, the neutrino collective effects, and the Earth matter effects, the detection of SN neutrinos on the Earth is studied. Then, the event numbers of SN neutrinos observed through various reaction channels are given.

  13. Entanglement of neutrino states

    E-Print Network [OSTI]

    D. L. Khokhlov

    2008-11-12

    Muon and muon antineutrino born in the decay of charged pion form the entangled spin state. The decay of muon with the left helicity triggers the left helicity for muon antineutrino to preserve the null total angular momentum of muon and muon antineutrino. This is forbidden for antineutrino hence one cannot detect the muon antineutrino after the decay of muon. This effect may explain the deficit of muon neutrino flux in the Super-Kamiokande, K2K, MINOS experiments.

  14. Neutrino Factory Target Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept V. Graves Target Studies EVO May 1, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 1 May 2012 Review ­ Two Target Vessel Ideas · Solid-Battelle for the U.S. Department of Energy Target Vessel Concept 1 May 2012 #12;4 Managed by UT-Battelle for the U

  15. Neutrinos in the Electron

    E-Print Network [OSTI]

    E. L. Koschmieder

    2006-09-26

    We will show that one half of the rest mass of the electron is equal to the sum of the rest masses of electron neutrinos and that the other half of the rest mass of the electron is given by the energy in the sum of electric oscillations. With this composition we can explain the rest mass, the electric charge, the spin and the magnetic moment of the electron.

  16. Birth of Neutrino Astrophysics

    ScienceCinema (OSTI)

    None

    2011-10-06

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  17. The Case for a Kilometer-Scale High Energy Neutrino Detector

    E-Print Network [OSTI]

    F. Halzen

    1994-10-26

    Doing astronomy with photons of energies in excess of a GeV has turned out to be extremely challenging. Efforts are underway to develop instruments that may push astronomy to wavelengths smaller than $10^{-14}$~cm by mapping the sky in high energy neutrinos instead. Neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach outside the galaxy and make measurements relevant to cosmology. The field is immersed in technology in the domains of particle physics to which many of its research goals are intellectually connected. To mind come the search for neutrino mass, cold dark matter (supersymmetric particles?) and the monopoles of the Standard Model. While a variety of collaborations are pioneering complementary methods by building telescopes with effective area in excess of 0.01~km$^2$, we show here that the natural scale of a high energy neutrino telescope is 1~km$^2$. With several thousand optical modules and a price tag unlikely to exceed 100 million dollars, the scope of a kilometer-scale instrument is similar to that of experiments presently being commissioned such as the SNO neutrino observatory in Canada and the Superkamiokande experiment in Japan.

  18. First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope

    SciTech Connect (OSTI)

    Collaboration: ANTARES Collaboration

    2013-11-01

    A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two supersymmetric models, CMSSM and MSSM-7. The ANTARES limits are comparable with those obtained by other neutrino observatories and are more stringent than those obtained by direct search experiments for the spin-dependent WIMP-proton cross-section in the case of hard self-annihilation channels (W{sup +}W{sup ?}, ?{sup +}?{sup ?})

  19. Strategies for Future Neutrino Experiments: Remarks on Neutrino Sources and

    E-Print Network [OSTI]

    McDonald, Kirk

    Data from atmospheric and solar neutrino experiments Rich follow-up physics at accelerators and reactors. Parameter Atmos. Solar Accel. Reactor Decay M2 23 ID PM 23 ID PM M2 12 ID PM PM Sign(M2 12) ID (neutrino flux) (detector mass). Cost optimization Source cost Detector cost. Cost of 4 MW proton source

  20. Sensitivity of neutrino mass experiments to the cosmic neutrino background

    E-Print Network [OSTI]

    Formaggio, Joseph A.

    The KATRIN neutrino experiment is a next-generation tritium beta decay experiment aimed at measuring the mass of the electron neutrino to better than 200 meV at 90% C.L. Because of its intense tritium source, KATRIN can ...

  1. ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG

    E-Print Network [OSTI]

    ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG Abstract. The current neutrino oscillation an alternative resolution to the solar neutrino loss problem. Contents 1. Introduction 1 2. Discrepancy of Solar, there are three flavors of neutrinos: the electron neutrino e, the tau neutrino and the mu neutrino µ. The solar

  2. Robust Signal Extraction Methods and Monte Carlo Sensitivity Studies for the Sudbury Neutrino Observatory and

    E-Print Network [OSTI]

    Waltham, Chris

    +. An important part of the SNO+ physics program will be a search for neutrinoless double beta decay, carried out a reasonable choice for the 150 Nd neutrinoless double beta decay matrix element, these half lives correspond are competitive with those expected from all other near-term neutrinoless double beta decay experiments. ii #12

  3. The Sudbury Neutrino Observatory # C.J. Virtue (for the SNO Collaboration + ) a

    E-Print Network [OSTI]

    as a Class 2500 cleanroom. Two prin­ ciple structures comprise the detector as shown in #12; Figure 1

  4. An array of low-background 3He proportional counters for the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    2008-01-01

    im- mediately into the cleanroom, placed into a vacuumthe University of Washing- ton cleanroom where the detectorand endcaps in nylon cleanroom bags, minimizing exposure to

  5. The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY)

    Broader source: Energy.gov [DOE]

    Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014.

  6. Cosmic rays & Neutrinos Historical development

    E-Print Network [OSTI]

    Gaisser, Thomas K.

    Cosmic rays & Neutrinos Historical development Mumbai, 14/12/12 Tom Gaisser 1 #12; Inven@on of neutrinos, 1930 Mumbai, 14/12/12 Tom Gaisser 2 ETH@) : 1956 Mumbai, 14/12/12 Tom Gaisser 3 25 years from inven@on to experimental

  7. Solar Hydrogen Burning and Neutrinos

    E-Print Network [OSTI]

    W. C. Haxton; P. D. Parker; C. E. Rolfs

    2005-01-10

    We summarize the current status of laboratory measurements of nuclear cross sections of the pp chain and CN cycle. We discuss the connections between such measurements, predictions of solar neutrino fluxes, and the conclusion that solar neutrinos oscillate before reaching earth.

  8. A Sterile Neutrino at DUNE

    E-Print Network [OSTI]

    Jeffrey M. Berryman; Andre de Gouvea; Kevin J. Kelly; Andrew Kobach

    2015-07-14

    We investigate the potential for the Deep Underground Neutrino Experiment (DUNE) to probe the existence and effects of a fourth neutrino mass-eigenstate. We study the mixing of the fourth mass-eigenstate with the three active neutrinos of the Standard Model, including the effects of new sources of CP-invariance violation, for a wide range of new mass-squared differences, from lower than 10^-5 eV^2 to higher than 1 eV^2. DUNE is sensitive to previously unexplored regions of the mixing angle - mass-squared difference parameter space. If there is a fourth neutrino, in some regions of the parameter space, DUNE is able to measure the new oscillation parameters (some very precisely) and clearly identify two independent sources of CP-invariance violation. Finally, we use the hypothesis that there are four neutrino mass-eigenstates in order to ascertain how well DUNE can test the limits of the three-massive-neutrinos paradigm. In this way, we briefly explore whether light sterile neutrinos can serve as proxies for other, in principle unknown, phenomena that might manifest themselves in long-baseline neutrino oscillation experiments.

  9. Neutrino Physics and Astrophysics : Highlights

    E-Print Network [OSTI]

    Henry Tsz-King Wong

    2007-02-28

    This article presents an overview of neutrino physics research, with highlights on the physics goals, results and interpretations of the current neutrino experiments and future directions and program. It is not meant to be a comprehensive account or detailed review article. Interested readers can pursue the details via the listed references.

  10. Neutrino Masses: Where Are We? Angelo Nucciotti

    E-Print Network [OSTI]

    · lepton number violation · neutrinoless double beta decay · rare processes (e.g. µ e) · vacuum neutrino

  11. Small entries of neutrino mass matrices

    E-Print Network [OSTI]

    E. Kh. Akhmedov

    1999-09-15

    We consider phenomenologically allowed structures of the neutrino mass matrix in the case of three light neutrino species. Constraints from the solar, atmospheric and reactor neutrino experiments as well as those from the neutrinoless double beta decay are taken into account. Both hierarchical and quasi-degenerate neutrino mass cases are studied. Assuming maximal $\

  12. Electromagnetic neutrinos in terrestrial experiments and astrophysics

    E-Print Network [OSTI]

    Carlo Giunti; Konstantin A. Kouzakov; Yu-Feng Li; Alexey V. Lokhov; Alexander I. Studenikin; Shun Zhou

    2015-06-17

    An overview of neutrino electromagnetic properties, which open a door to the new physics beyond the Standard Model, is given. The effects of neutrino electromagnetic interactions both in terrestrial experiments and in astrophysical environments are discussed. The experimental bounds on neutrino electromagnetic characteristics are summarized. Future astrophysical probes of electromagnetic neutrinos are outlined.

  13. ANTARES deep sea neutrino telescope results

    SciTech Connect (OSTI)

    Mangano, Salvatore [IFIC - Instituto de Física Corpuscular, Edificio Institutos de Investigatión, 46071 Valencia (Spain); Collaboration: ANTARES Collaboration

    2014-01-01

    The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

  14. TeV {gamma} rays and neutrinos from photodisintegration of nuclei in Cygnus OB2

    SciTech Connect (OSTI)

    Anchordoqui, Luis A. [Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201 (United States); Beacom, John F. [CCAPP, Departments of Physics and Astronomy, Ohio State University, Columbus, Ohio 43210 (United States); Goldberg, Haim [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Palomares-Ruiz, Sergio [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Institute for Particle Physics Phenomenology, University of Durham, Durham DH1 3LE (United Kingdom); Weiler, Thomas J. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2007-03-15

    TeV {gamma}-rays may provide significant information about high energy astrophysical accelerators. Such {gamma}-rays can result from the photo-de-excitation of PeV nuclei after their parents have undergone photo-disintegration in an environment of ultraviolet photons. This process is proposed as a candidate explanation of the recently discovered HEGRA source at the edge of the Cygnus OB2 association. The Lyman-{alpha} background is provided by the rich O and B stellar environment. It is found that (1) the HEGRA flux can be obtained if there is efficient acceleration at the source of lower energy nuclei; (2) the requirement that the Lorentz-boosted ultraviolet photons can excite the giant dipole resonance implies a strong suppression of the {gamma}-ray spectrum compared to an E{sub {gamma}}{sup -2} behavior at energies < or approx. 1 TeV (some of these energies will be probed by the upcoming GLAST mission); (3) a TeV neutrino counterpart from neutron decay following helium photo-disintegration will be observed at IceCube only if a major proportion of the kinetic energy budget of the Cygnus OB2 association is expended in accelerating nuclei.

  15. Dipolar dark matter in light of 3.5 keV X-ray Line, Neutrino mass and LUX data

    E-Print Network [OSTI]

    Patra, Sudhanwa; Sahu, Narendra

    2014-01-01

    A simple extension of the standard model (SM) providing transient magnetic moments to right-handed neutrinos is presented. In this model, the decay of next-to-lightest right-handed heavy neutrino to the lightest one and a photon (N 2 -> N 1 + gamma) can explain the 3.5 keV X-ray line signal observed by XMM-Newton X-ray observatory. Beside the SM particles and heavy right-handed Majorana neutrinos, the model contains a singly charged scalar (H) and an extra Higgs doublet (Sigma). Within this minimal set of extra fields the sub-eV masses of left-handed neutrinos are also explained. Moreover, we show that the spin-independent DM-nucleon cross-section is compatible with latest LUX data.

  16. Neutrino Oscillations With Recently Measured Sterile-Active Neutrino Mixing Angle

    E-Print Network [OSTI]

    Leonard S. Kisslinger

    2015-06-01

    This brief report is an extension of a prediction of neutrino oscillation with a sterile neutrino using parameters of the sterile neutrino mass and mixing angle recently extracted from experiment.

  17. Energy Dependence of Solar Neutrino Suppression and Bounds on the Neutrino Magnetic Moment

    E-Print Network [OSTI]

    Joao Pulido; Ana M. Mourao

    1998-03-02

    An analysis of neutrino electron scattering as applied to the SuperKamiokande solar neutrino experiment with the data from the Homestake experiment leads to an upper bound on the neutrino magnetic moment in the range $\\mu_{\

  18. Tau Neutrinos from Astrophysical and Cosmological Sources

    E-Print Network [OSTI]

    Jane H. MacGibbon; Ubi F. Wichoski; Bryan R. Webber

    2001-06-28

    Previous work on the neutrino spectra from high energy sources has not included the tau neutrinos directly produced by the decays in the source. Here we consider the tau neutrino component and discuss how its inclusion modifies the expected neutrino spectra. We discuss implications for interpreting any observed tau neutrino component in TeV - UHE events as evidence of nu_mu --> nu_tau oscillations.

  19. Neutrino Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature and Origin WhatNetworks,BeamNeutrino

  20. Neutrino Nucleon Elastic Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature and Origin WhatNetworks,BeamNeutrinoN u

  1. Neutrino Nucleon Elastic Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature and Origin WhatNetworks,BeamNeutrinoN

  2. Neutrino Scattering Results from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature and OriginMiniBooNE's NeutrinoPhysics/SÎ’

  3. Sterile Neutrino Oscillations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by: Michael G.StephenSterile Neutrino

  4. Low Energy Neutrino Oscillations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogoFeet)Low Energy Neutrino Oscillations

  5. A Sterile Neutrino at DUNE

    E-Print Network [OSTI]

    Berryman, Jeffrey M; Kelly, Kevin J; Kobach, Andrew

    2015-01-01

    We investigate the potential for the Deep Underground Neutrino Experiment (DUNE) to probe the existence and effects of a fourth neutrino mass-eigenstate. We study the mixing of the fourth mass-eigenstate with the three active neutrinos of the Standard Model, including the effects of new sources of CP-invariance violation, for a wide range of new mass-squared differences, from lower than 10^-5 eV^2 to higher than 1 eV^2. DUNE is sensitive to previously unexplored regions of the mixing angle - mass-squared difference parameter space. If there is a fourth neutrino, in some regions of the parameter space, DUNE is able to measure the new oscillation parameters (some very precisely) and clearly identify two independent sources of CP-invariance violation. Finally, we use the hypothesis that there are four neutrino mass-eigenstates in order to ascertain how well DUNE can test the limits of the three-massive-neutrinos paradigm. In this way, we briefly explore whether light sterile neutrinos can serve as proxies for ot...

  6. Radio Wavelength Observatories within the Exploration Architecture

    E-Print Network [OSTI]

    J. Lazio; R. J. Macdowall; J. Burns; L. Demaio; D. L. Jones; K. W. Weiler

    2007-01-26

    Observations at radio wavelengths address key problems in astrophysics, astrobiology, and lunar structure including the first light in the Universe (the Epoch of Reionization), the presence of magnetic fields around extrasolar planets, particle acceleration mechanisms, and the structure of the lunar ionosphere. Moreover, achieving the performance needed to address these scientific questions demands observations at wavelengths longer than those that penetrate the Earth's ionosphere, observations in extremely "radio quiet" locations such as the Moon's far side, or both. We describe a series of lunar-based radio wavelength interferometers of increasing capability. The Radio Observatory for Lunar Sortie Science (ROLSS) is an array designed to be deployed during the first lunar sorties (or even before via robotic rovers) and addressing particle acceleration and the lunar ionosphere. Future arrays would be larger, more capable, and deployed as experience is gained in working on the lunar surface.

  7. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  8. PARKER LIBRARY STEWARD OBSERVATORY PLSO Guide to the Library

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    PARKER LIBRARY STEWARD OBSERVATORY PLSO Guide to the Library I. Circulation Guidelines A. Borrowers and Planetary Lab, and Kitt Peak National Observatory. b. Undergraduate astronomy majors, whose names and campus PLSO materials only in the library. b. Other persons who wish to borrow material from the library must

  9. Ocean Observatories Initiative: Pacific Northwest The Endurance Array

    E-Print Network [OSTI]

    Kurapov, Alexander

    Ocean Observatories Initiative: Pacific Northwest The Endurance Array The processes that shape. The Ocean Observatories Initiative (OOI) will build a 25­30 year laboratory on the seafloor, in the water column, and at the ocean surface. It will make available novel platforms for oceanographic discovery

  10. 7 March 2013 Armagh Observatory Forthcoming Public Events

    E-Print Network [OSTI]

    for approximately half an hour. 2. St. Patrick's Day Event The Armagh Observatory and the Armagh Public Library Evensong from 3.15pm to 4.00pm. (www.stpatricks-cathedral.org) b. The Armagh Public Library and No. 57 March 2013 Armagh Observatory Forthcoming Public Events 1. "Comet PANSTARRS IS COMING" Students

  11. Towards a Taxonomy for Web Observatories Web Science Institute

    E-Print Network [OSTI]

    Towards a Taxonomy for Web Observatories Ian Brown Web Science Institute University of Southampton University of Southampton Southampton, SO17 1BJ, UK +44 (0)23 8059 5000 wh@soton.ac.uk Lisa Harris Web.j.harris@soton.ac.uk ABSTRACT In this paper, we propose an initial structure to support a taxonomy for Web Observatories (WO

  12. Registration of atmospheric neutrinos with the Baikal neutrino telescope

    E-Print Network [OSTI]

    Baikal Collaboration; V. A. Balkanov et al

    1999-03-23

    We present first neutrino induced events observed with a deep underwater neutrino telescope. Data from 70 days effective life time of the BAIKAL prototype telescope NT-96 have been analyzed with two different methods. With the standard track reconstruction method, 9 clear upward muon candidates have been identified, in good agreement with 8.7 events expected from Monte Carlo calculations for atmospheric neutrinos. The second analysis is tailored to muons coming from close to the opposite zenith. It yields 4 events, compared to 3.5 from Monte Carlo expectations. From this we derive a 90 % upper flux limit of 1.1 * 10^-13 cm^-2 sec^-1 for muons in excess of those expected from atmospheric neutrinos with zenith angle > 150 degrees and energy > 10GeV.

  13. Field Operations Manager-Domain 3 The National Ecological Observatory Network (NEON) is a $430 million dollar observatory project dedicated to

    E-Print Network [OSTI]

    Ma, Lena

    ) is a $430 million dollar observatory project dedicated to understanding how changes in climate, land use

  14. Supernova II Neutrino Bursts and Neutrino Massive Mixing

    E-Print Network [OSTI]

    David B. Cline

    2001-03-08

    We describe the Neutrino Spectrum and detection for SN II sources. We discuss the effects of neutrino mixing in the SN II. A new analysis of SN1987A is described. We discuss the possible detection of the diffuse relic SN II flux. Finally we discuss a new detection concept, OMNIS, for Nu sub mu and Nu sub tau and detection and compare with other present and future SN detectors.

  15. Neutrino flavor transformation in core-collapse supernovae

    E-Print Network [OSTI]

    Cherry, John F.; Cherry, John F.

    2012-01-01

    luminous in neutrinos, those neutrinos must interact with matter on their way out and deposit enough of their energy

  16. Radiative Emission of Neutrino Pairs in Atoms and Light Sterile Neutrinos

    E-Print Network [OSTI]

    D. N. Dinh; S. T. Petcov

    2015-01-22

    The process of Radiative Emission of Neutrino Pair (RENP) in atoms is sensitive to the absolute neutrino mass scale, the type of spectrum neutrino masses obey and the nature - Dirac or Majorana - of massive neutrinos. We analyse the possibility to test the hypothesis of existence of neutrinos with masses at the eV scale coupled to the electron in the weak charged lepton current in an RENP experiment. The presence of eV scale neutrinos in the neutrino mixing is associated with the existence of sterile neutrinos which mix with the active flavour neutrinos. At present there are a number of hints for active-sterile neutrino oscillations driven by $\\Delta m^2 \\sim 1~{\\rm eV^2}$. We perform a detailed analysis of the RENP phenomenology within the "3 + 1" scheme with one sterile neutrino.

  17. Radiative Emission of Neutrino Pairs in Atoms and Light Sterile Neutrinos

    E-Print Network [OSTI]

    Dinh, D N

    2014-01-01

    The process of Radiative Emission of Neutrino Pair (RENP) in atoms is sensitive to the absolute neutrino mass scale, the type of spectrum neutrino masses obey and the nature - Dirac or Majorana - of massive neutrinos. We analyse the possibility to test the hypothesis of existence of neutrinos with masses at the eV scale coupled to the electron in the weak charged lepton current in an RENP experiment. The presence of eV scale neutrinos in the neutrino mixing is associated with the existence of sterile neutrinos which mix with the active flavour neutrinos. At present there are a number of hints for active-sterile neutrino oscillations driven by $\\Delta m^2 \\sim 1~{\\rm eV^2}$. We perform a detailed analysis of the RENP phenomenology within the "3 + 1" scheme with one sterile neutrino.

  18. Neutrino mixing and dark energy

    SciTech Connect (OSTI)

    Blasone, M.; Capolupo, A.; Vitiello, G. [Dipartimento di Fisica 'E.R. Caianiello', I-84100 Salerno (Italy); INFN, Universita di Salerno, I-84100 Salerno (Italy); Capozziello, S. [Dipartimento di Scienze Fisiche, Universita di Napoli 'Federico II', Compl. Univ. Monte S. Angelo, Ed.N, Via Cinthia, I-80126 Naples (Italy); INFN Sez. di Napoli, Compl. Univ. Monte S. Angelo, Ed.N, Via Cinthia, I-80126 Naples (Italy)

    2006-06-19

    We report on the recent result that the non-perturbative vacuum structure associated with neutrino mixing leads to a non-zero contribution to the value of the dark energy.

  19. Neutrino capital of the world

    E-Print Network [OSTI]

    Johnson, Carolyn Y., 1980-

    2004-01-01

    Neutrinos are ubiquitous particles, but they don't like to mingle. Each second, billions of them pass through our bodies, slicing imperceptibly through our delicate internal organs. They can barrel through the sun, stars, ...

  20. The Fermilab neutrino beam program

    SciTech Connect (OSTI)

    Rameika, Regina A.; /Fermilab

    2007-01-01

    This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

  1. Neutrinos and Nucleosynthesis in Supernova

    E-Print Network [OSTI]

    U. Solis; J. C. D'Olivo; L. G. Cabral-Rosetti

    2005-11-12

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment.

  2. Recent results in neutrino physics

    E-Print Network [OSTI]

    Valle, José W F

    1994-01-01

    Invited Talk at {\\sl ICNAPP}, Bangalore, India, Jan. 1994; {\\sl Int. School on Cosmological Dark Matter}, Valencia, Oct. 1993; and Gran Sasso meeting on {\\sl Solar Neutrino Problem: astrophysics or oscillations?}, march 1994.

  3. Research in Neutrino Physics

    SciTech Connect (OSTI)

    Busenitz, Jerome

    2014-09-30

    Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 ± 0.041 (stat) ± 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main foci of our efforts. The Stancu group plans to become re–involved in LBNE and possibly also to join NO A, and the Busenitz group has begun to explore joining a direct dark matter search.

  4. The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines

    E-Print Network [OSTI]

    LAGUNA-LBNO Collaboration; :; S. K. Agarwalla; L. Agostino; M. Aittola; A. Alekou; B. Andrieu; F. Antoniou; R. Asfandiyarov; D. Autiero; O. Bésida; A. Balik; P. Ballett; I. Bandac; D. Banerjee; W. Bartmann; F. Bay; B. Biskup; A. M. Blebea-Apostu; A. Blondel; M. Bogomilov; S. Bolognesi; E. Borriello; I. Brancus; A. Bravar; M. Buizza-Avanzini; D. Caiulo; M. Calin; M. Calviani; M. Campanelli; C. Cantini; G. Cata-Danil; S. Chakraborty; N. Charitonidis; L. Chaussard; D. Chesneanu; F. Chipesiu; P. Crivelli; J. Dawson; I. De Bonis; Y. Declais; P. Del Amo Sanchez; A. Delbart; S. Di Luise; D. Duchesneau; J. Dumarchez; I. Efthymiopoulos; A. Eliseev; S. Emery; T. Enqvist; K. Enqvist; L. Epprecht; A. N. Erykalov; T. Esanu; D. Franco; M. Friend; V. Galymov; G. Gavrilov; A. Gendotti; C. Giganti; S. Gilardoni; B. Goddard; C. M. Gomoiu; Y. A. Gornushkin; P. Gorodetzky; A. Haesler; T. Hasegawa; S. Horikawa; K. Huitu; A. Izmaylov; A. Jipa; K. Kainulainen; Y. Karadzhov; M. Khabibullin; A. Khotjantsev; A. N. Kopylov; A. Korzenev; S. Kosyanenko; D. Kryn; Y. Kudenko; P. Kuusiniemi; I. Lazanu; C. Lazaridis; J. -M. Levy; K. Loo; J. Maalampi; R. M. Margineanu; J. Marteau; C. Martin-Mari; V. Matveev; E. Mazzucato; A. Mefodiev; O. Mineev; A. Mirizzi; B. Mitrica; S. Murphy; T. Nakadaira; S. Narita; D. A. Nesterenko; K. Nguyen; K. Nikolics; E. Noah; Yu. Novikov; A. Oprima; J. Osborne; T. Ovsyannikova; Y. Papaphilippou; S. Pascoli; T. Patzak; M. Pectu; E. Pennacchio; L. Periale; H. Pessard; B. Popov; M. Ravonel; M. Rayner; F. Resnati; O. Ristea; A. Robert; A. Rubbia; K. Rummukainen; A. Saftoiu; K. Sakashita; F. Sanchez-Galan; J. Sarkamo; N. Saviano; E. Scantamburlo; F. Sergiampietri; D. Sgalaberna; E. Shaposhnikova; M. Slupecki; D. Smargianaki; D. Stanca; R. Steerenberg; A. R. Sterian; P. Sterian; S. Stoica; C. Strabel; J. Suhonen; V. Suvorov; G. Toma; A. Tonazzo; W. H. Trzaska; R. Tsenov; K. Tuominen; M. Valram; G. Vankova-Kirilova; F. Vannucci; G. Vasseur; F. Velotti; P. Velten; V. Venturi; T. Viant; S. Vihonen; H. Vincke; A. Vorobyev; A. Weber; S. Wu; N. Yershov; L. Zambelli; M. Zito

    2014-12-02

    The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of $\\sim 20$ kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyh\\"asalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\\delta_{CP}$ and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure CP violation in the leptonic sector at a confidence level of at least $3\\sigma$ for 50\\% of the true values of $\\delta_{CP}$ with a 20 kton detector. With a far detector of 70 kton, the combination allows a $3\\sigma$ sensitivity for 75\\% of the true values of $\\delta_{CP}$ after 10 years of running. Running two independent neutrino beams, each at a power below 1 MW, is more within today's state of the art than the long-term operation of a new single high-energy multi-MW facility, which has several technical challenges and will likely require a learning curve.

  5. Supernova neutrino detection at spallation neutron sources

    E-Print Network [OSTI]

    Huang, Ming-Yang; Young, Bing-Lin

    2015-01-01

    With considering the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the neutrino collective effects, and the Earth matter effects, the detection of supernova neutrinos at China Spallation Neutron Sources is studied and the event numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and "beta fit" distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on the Earth is applied to some other spallation neutron sources, and the total event numbers of supernova neutrinos observed through different reactions channels are given.

  6. Theoretical Status of Neutrino Physics

    E-Print Network [OSTI]

    Marco Drewes

    2015-02-24

    In the framework of renormalisable relativistic quantum field theory, the explanation of neutrino masses necessarily requires the existence of new physical states. These new states may also be responsible for other unexplained phenomena in particle physics and cosmology. After a brief introduction, I focus on scenarios in which the neutrino masses are generated by the type-I seesaw mechanism and review the phenomenological implications of different choices of the seesaw scale.

  7. Optimization of neutrino beams for underground sites in Europe

    E-Print Network [OSTI]

    A. Longhin

    2012-06-19

    We present an optimization procedure for neutrino beams which could be produced at CERN and aimed to a set of seven possible underground sites in Europe with distances ranging from 130 km to 2300 km. Studies on the feasibility of a next generation very massive neutrino observatory have been performed for these sites in the context of the first phase of the LAGUNA design study. We consider specific scenarios for the proton driver (a high power proton driver at 4.5 GeV for the shortest baseline and a 50 GeV machine for longer baselines) and the far detector (a Water Cherenkov for the shortest baseline and a LAr TPC for longer baselines). The flux simulation profits of a full GEANT4 simulation. The optimization has been performed before the recent results on nu_e appearance by reactor and accelerator experiments and hence it is based on the maximization of the sensitivity on theta13. Nevertheless the optimized fluxes have been widely used since their publication on the internet (2010). This work is therefore mainly intended as a documentation of the adopted method and at the same time as an intermediate step towards future studies which will put the emphasis on the performances of beams for the study of delta_CP.

  8. The sensitivity of the next generation of lunar Cherenkov observations to UHE neutrinos and cosmic rays

    E-Print Network [OSTI]

    C. W. James; R. J. Protheroe

    2008-02-25

    We present simulation results for the detection of ultra-high energy (UHE) cosmic ray (CR) and neutrino interactions in the Moon by radio-telescopes. We simulate the expected radio signal at Earth from such interactions, expanding on previous work to include interactions in the sub-regolith layer for single dish and multiple telescope systems. For previous experiments at Parkes, Goldstone, and Kalyazin we recalculate the sensitivity to an isotropic flux of UHE neutrinos. Our predicted sensitivity for future experiments using the Australia Telescope Compact Array (ATCA) and the Australian SKA Pathfinder (ASKAP) indicate these instruments will be able to detect the more optimistic UHE neutrino flux predictions, while the Square Kilometre Array (SKA) will also be sensitive to all bar one prediction of a diffuse `cosmogenic', or `GZK', neutrino flux. Current uncertainties concerning the structure and roughness of the lunar surface prevents an accurate calculation of the sensitivity of the lunar Cherenkov technique for UHE cosmic ray astronomy at high frequencies. However, below 200 MHz we find that the proposed SKA low-frequency aperture array should be able to detect events above 56 EeV at a rate about 30 times that of the current Pierre Auger Observatory. This would allow directional analysis of UHE cosmic rays, and investigation of correlations with putative cosmic ray source populations, to be conducted with very high statistics.

  9. The Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug Simons

    E-Print Network [OSTI]

    The Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug Simons

  10. Atmospheric Neutrinos in the MINOS Far Detector

    SciTech Connect (OSTI)

    Howcroft, Caius L.F.

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  11. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect (OSTI)

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  12. GAMMA-400 gamma-ray observatory

    E-Print Network [OSTI]

    Topchiev, N P; Bonvicini, V; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bakaldin, A V; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, L; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Cumani, P; Dalkarov, O D; Dedenko, G L; De Donato, C; Dogiel, V A; Finetti, N; Gascon, D; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Martinez, M; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Paredes, J M; Pearce, M; Picozza, P; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Stozhkov, Yu I; Suchkov, S I; Taraskin, A A; Tavani, M; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Ward, J E; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The energy range of GAMMA-400 is expected to be from ~20 MeV up to TeV energies for gamma rays, up to 20 TeV for electrons + positrons, and up to 10E15 eV for cosmic-ray nuclei. For high-energy gamma rays with energy from 10 to 100 GeV, the GAMMA-400 angular resolution improves from 0.1{\\deg} to ~0.01{\\deg} and energy resolution from 3% to ~1%; the proton rejection factor is ~5x10E5. GAMMA-400 will be installed onboard the Russian space observatory.

  13. Particle physics confronts the solar neutrino problem

    SciTech Connect (OSTI)

    Pal, P.B.

    1991-06-01

    This review has four parts. In Part I, we describe the reactions that produce neutrinos in the sun and the expected flux of those neutrinos on the earth. We then discuss the detection of these neutrinos, and how the results obtained differ from the theoretical expectations, leading to what is known as the solar neutrino problem. In Part II, we show how neutrino oscillations can provide a solution to the solar neutrino problem. This includes vacuum oscillations, as well as matter enhanced oscillations. In Part III, we discuss the possibility of time variation of the neutrino flux and how a magnetic moment of the neutrino can solve the problem. WE also discuss particle physics models which can give rise to the required values of magnetic moments. In Part IV, we present some concluding remarks and outlook for the recent future.

  14. Solar Neutrinos: Models, Observations, and New Opportunities

    E-Print Network [OSTI]

    W. C. Haxton

    2007-10-11

    I discuss the development and resolution of the solar neutrino problem, as well as opportunities now open to us to extend our knowledge of main-sequence stellar evolution and neutrino astrophysics.

  15. Neutrinos and cosmology: a lifetime relationship

    SciTech Connect (OSTI)

    Serpico, Pasquale D.; /Fermilab

    2008-06-01

    We consider the example of neutrino decays to illustrate the profound relation between laboratory neutrino physics and cosmology. Two case studies are presented: In the first one, we show how the high precision cosmic microwave background spectral data collected by the FIRAS instrument on board of COBE, when combined with Lab data, have greatly changed bounds on the radiative neutrino lifetime. In the second case, we speculate on the consequence for neutrino physics of the cosmological detection of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a detection at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on some models of neutrino secret interactions.

  16. How Uncertain Are Solar Neutrino Predictions?

    E-Print Network [OSTI]

    John N. Bahcall; Sarbani Basu; M. H. Pinsonneault

    1998-05-24

    Solar neutrino fluxes and sound speeds are calculated using a systematic reevaluation of nuclear fusion rates. The largest uncertainties are identified and their effects on the solar neutrino fluxes are estimated.

  17. Annual modulation of cosmic relic neutrinos

    E-Print Network [OSTI]

    Safdi, Benjamin R.

    The cosmic neutrino background (C?B), produced about one second after the big bang, permeates the Universe today. New technological advancements make neutrino capture on beta-decaying nuclei (NCB) a clear path forward ...

  18. European Strategy for Future Neutrino Physics

    ScienceCinema (OSTI)

    None

    2011-10-06

    A workshop to discuss the possibilities for future neutrino investigations in Europe and the links to CERN.

  19. Earth Matter Effect on Democratic Neutrinos

    E-Print Network [OSTI]

    Dmitry Zhuridov

    2014-08-30

    The neutrino propagation through the Earth is investigated in the framework of the democratic neutrino theory. In this theory the neutrino mixing angle theta-1-3 is approximately determined, which allows one to make a well defined neutrino oscillogram driven by the 1-3 mixing in the matter of the Earth. Significant differences in this oscillogram from the case of models with relatively small theta-1-3 are discussed.

  20. Neutrino oscillations: Current status and prospects

    E-Print Network [OSTI]

    Thomas Schwetz

    2005-10-25

    I summarize the status of neutrino oscillations from world neutrino oscillation data with date of October 2005. The results of a global analysis within the three-flavour framework are presented. Furthermore, a prospect on where we could stand in neutrino oscillations in ten years from now is given, based on a simulation of upcoming long-baseline accelerator and reactor experiments.

  1. Neutrino oscillations: present status and outlook

    E-Print Network [OSTI]

    Thomas Schwetz

    2007-10-26

    I summarize the status of three-flavour neutrino oscillations with date of Oct. 2007, and provide an outlook for the developments to be expected in the near future. Furthermore, I discuss the status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results, and comment on implications for the future neutrino oscillation program.

  2. An Experimental Method to Remove Neutrino Interaction

    E-Print Network [OSTI]

    -neutrinos · Feasibility (Cost and Time) · Future outlook 2 #12;Neutrino Mixing · The neutrino flavor states are related) "Atmospheric " (Super-K, K2K, MINOS) 23 = 45°±6° (90% C.L.) "Solar " (SNO, KamLAND) 12 = 33.9°±1.0° "Reactor is given for comparison. 9 CP Violation Sensitivity · To fully exploit the data taken by the next

  3. Multipole expansion method for supernova neutrino oscillations

    SciTech Connect (OSTI)

    Duan, Huaiyu; Shalgar, Shashank, E-mail: duan@unm.edu, E-mail: shashankshalgar@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-01

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  4. Resonant conversion of massless neutrinos in supernovae

    E-Print Network [OSTI]

    Nunokawa, H; Rossi, A; Valle, José W F

    1996-01-01

    It has been noted for a long time that, in some circumstances, {\\sl massless} neutrinos may be {\\sl mixed} in the leptonic charged current. Conventional neutrino oscillation searches in vacuum are insensitive to this mixing. We discuss the effects of resonant massless-neutrino conversions in the dense medium of a supernova. In particular, we show how the detected \\bar\

  5. SOLAR NEUTRINOS: WHERE WE ARE JOHN BAHCALL

    E-Print Network [OSTI]

    Bahcall, John

    SOLAR NEUTRINOS: WHERE WE ARE JOHN BAHCALL Institute for Advanced Study, Princeton, NJ 08540 This talk compares standard model predictions for solar neutrino experiments with the results of actual a standard solar model. I emphasize the importance of recent analyses in which the neutrino fluxes

  6. Neutrinos and Non-proliferation in Europe

    E-Print Network [OSTI]

    M. Cribier

    2007-04-04

    Triggered by the demand of the IAEA, neutrino physicists in Europe involved with the Double Chooz experiment are studying the potential of neutrino detection to monitor nuclear reactors. In particular a new set of experiments at the ILL is planned to improve the knowledge of the neutrino spectrum emitted in the fission of 235U and 239Pu.

  7. Physics Potential of Solar Neutrino Experiments

    E-Print Network [OSTI]

    A. B. Balantekin; H. Yuksel

    2003-12-19

    We discuss the physics potential of the solar neutrino experiments i) To explore the parameter space of neutrino mass and mixings; ii) To probe the physics of the Sun; iii) To explore nuclear physics of the neutrino-target interactions. Examples are given for these three classes.

  8. Observatory, 125, 319322, 2005 EARTH IN THE COSMIC SHOOTING GALLERY

    E-Print Network [OSTI]

    , Vacheslav Emel'yanenko2 and Bill Napier3 1Armagh Observatory, College Hill, Armagh, BT61 9DG 2South Ural University, Chelyabinsk, 454080, Russia 3Cardiff Centre for Astrobiology, Cardiff University, Cardiff CF10 3

  9. Supernova neutrinos and nucleosynthesis

    E-Print Network [OSTI]

    G. Martínez-Pinedo; T. Fischer; L. Huther

    2013-09-21

    Observations of metal-poor stars indicate that at least two different nucleosynthesis sites contribute to the production of r-process elements. One site is responsible for the production of light r-process elements Zwinds from core-collapse supernova are the main site for the production of these elements. We explore this possibility by performing nucleosynthesis calculations based on long term Boltzmann neutrino transport simulations. They are based on an Equation of State that reproduces recent constrains on the nuclear symmetry energy. We predict that the early ejecta is neutron-rich with Ye ~ 0.48, it becomes proton rich around 4 s and reaches Ye = 0.586 at 9 s when our simulation stops. The nucleosynthesis in this model produces elements between Zn and Mo, including 92Mo. The elemental abundances are consistent with the observations of the metal-poor star HD 12263. For the elements between Ge and Mo, we produce mainly the neutron-deficient isotopes. This prediction can be confirmed by observations of isotopic abundances in metal-poor stars. No elements heavier than Mo (Z=42) and no heavy r-process elements are produced in our calculations.

  10. Design and Deployment of the Bonne Bay Observatory (B2O) B. de Young

    E-Print Network [OSTI]

    deYoung, Brad

    and data acquisition for the subsea node. Shore based computers collect the data from the observatory

  11. 8. Hokuriku Earthquake Prediction Observatory, Fukui (D.P.R.I.)

    E-Print Network [OSTI]

    Takada, Shoji

    11 34 8. Hokuriku Earthquake Prediction Observatory, Fukui (D.P.R.I.) 9. Primate Research Institute Quality Control (Eng.) 12. Shigaraki MU Observatory (R.I.S.H) 13. Osakayama Earthquake Prediction Observatory, Otsu, Shiga (D.P.R.I.) 14. Abuyama Earthquake Prediction Observatory, Takatsuki, Osaka (D

  12. Physics Potential of Future Atmospheric Neutrino Searches

    E-Print Network [OSTI]

    Thomas Schwetz

    2008-12-12

    The potential of future high statistics atmospheric neutrino experiments is considered, having in mind currently discussed huge detectors of various technologies (water Cerekov, magnetized iron, liquid Argon). I focus on the possibility to use atmospheric data to determine the octant of $\\theta_{23}$ and the neutrino mass hierarchy. The sensitivity to the $\\theta_{23}$-octant of atmospheric neutrinos is competitive (or even superior) to long-baseline experiments. I discuss the ideal properties of a fictitious atmospheric neutrino detector to determine the neutrino mass hierarchy.

  13. The Unruh effect and oscillating neutrinos

    E-Print Network [OSTI]

    Dharam Vir Ahluwalia; Lance Labun; Giorgio Torrieri

    2015-05-15

    We point out that neutrino oscillations imply an ambiguity in the definition of the vacuum and the coupling to gravity, with experimentally observable consequences due to the Unruh effect. In an accelerating frame, the detector should see a bath of mass Eigenstates neutrinos. In inertial processes, neutrinos are produced and absorbed as charge Eigenstates. The two cannot be reconciled by a spacetime coordinate transformation. This makes manifestations of the Unruh effect in neutrino physics a promising probe of both neutrinos and fundamental quantum field theory. In this respect, we suggest $p\\rightarrow n +\\ell^+ + {\

  14. Investigation of Neutrino Properties with Bolometric Detectors

    SciTech Connect (OSTI)

    Heeger, Karsten M

    2014-11-01

    Neutrino mass and mixing are amongst the major discoveries of the past decade. The particle nature of neutrinos and the hierarchy of mass eigenstates, however, are unknown. Neutrinoless double beta-decay (0???) is the only known mechanism to test whether neutrinos are their own antiparticles. The observation of 0??? would imply lepton number violation and show that neutrinos have Majorana mass. This report describes research activities performed at the University of Wisconsin in 2011-2014 aimed at the search for 0??? with CUORE-0 and CUORE with the goal of exploring the inverted mass hierarchy region and probing an effective neutrino mass of ~40- 120 meV.

  15. On solar neutrino fluxes in radiochemical experiments

    E-Print Network [OSTI]

    R. N. Ikhsanov; Yu. N. Gnedin; E. V. Miletsky

    2005-12-08

    We analyze fluctuations of the solar neutrino flux using data from the Homestake, GALLEX, GNO, SAGE and Super Kamiokande experiments. Spectral analysis and direct quantitative estimations show that the most stable variation of the solar neutrino flux is a quasi-five-year periodicity. The revised values of the mean solar neutrino flux are presented in Table 4. They were used to estimate the observed pp-flux of the solar electron neutrinos near the Earth. We consider two alternative explanations for the origin of a variable component of the solar neutrino deficit.

  16. Solar neutrinos and the sun

    E-Print Network [OSTI]

    Aldo Serenelli

    2011-09-12

    We present updated standard solar models (SSMs) that incorporate the latest results for nuclear fusion rates, recently published. We show helioseismic results for high and low metallicity compositions and also for an alternative set of solar abundance, derived from 3D model atmospheres, which give intermediate results. For the high and low metallicity models, we show that current solar neutrino data can not differentiate between models and that a measurement of the CNO fluxes is necessary to achieve that goal. A few additional implications of a hypothetical measurement of CNO neutrinos, both in terms of solar and stellar physics, are discussed.

  17. Muon Colliders and Neutrino Factories

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MAP; MICE Collaborations

    2014-12-10

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  18. Progress in the physics of massive neutrinos

    E-Print Network [OSTI]

    V. Barger; D. Marfatia; K. Whisnant

    2003-09-16

    The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of \

  19. Neutrino Majorana Mass from Black Hole

    E-Print Network [OSTI]

    Yosuke Uehara

    2002-05-25

    We propose a new mechanism to generate the neutrino Majorana mass in TeV-scale gravity models. The black hole violates all non-gauged symmetries and can become the origin of lepton number violating processes. The fluctuation of higher-dimensional spacetime can result in the production of a black hole, which emits 2 neutrinos. If neutrinos are Majorana particles, this process is equivalent to the free propagation of a neutrino with the insertion of the black hole. From this fact, we derive the neutrino Majorana mass. The result is completely consistent with the recently observed evidence of neutrinoless double beta decay. And the obtained neutrino Majorana mass satisfies the constraint from the density of the neutrino dark matter, which affects the cosmic structure formation. Furthermore, we can explain the ultrahigh energy cosmic rays by the Z-burst scenario with it.

  20. Collective neutrino oscillations and spontaneous symmetry breaking

    E-Print Network [OSTI]

    Duan, Huaiyu

    2015-01-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillation...

  1. Mass freezing in growing neutrino quintessence

    E-Print Network [OSTI]

    Nelson J. Nunes; Lily Schrempp; Christof Wetterich

    2011-05-31

    Growing neutrino quintessence solves the coincidence problem for dark energy by a growing cosmological value of the neutrino mass which emerges from a cosmon-neutrino interaction stronger than gravity. The cosmon-mediated attraction between neutrinos induces the formation of large scale neutrino lumps in a recent cosmological epoch. We argue that the non-linearities in the cosmon field equations stop the further increase of the neutrino mass within sufficiently dense and large lumps. As a result, we find the neutrino induced gravitational potential to be substantially reduced when compared to linear extrapolations. We furthermore demonstrate that inside a lump the possible time variation of fundamental constants is much smaller than their cosmological evolution. This feature may reconcile current geophysical bounds with claimed cosmological variations of the fine structure constant.

  2. Supernova Neutrinos: Production, Oscillations and Detection

    E-Print Network [OSTI]

    Mirizzi, Alessandro; Janka, Hans-Thomas; Saviano, Ninetta; Scholberg, Kate; Bollig, Robert; Hudepohl, Lorenz; Chakraborty, Sovan

    2015-01-01

    Neutrinos play a crucial role in the collapse and explosion of massive stars, governing the infall dynamics of the stellar core, triggering and fueling the explosion and driving the cooling and deleptonization of the newly formed neutron star. Due to their role neutrinos carry information from the heart of the explosion and, due to their weakly interacting nature, offer the only direct probe of the dynamics and thermodynamics at the center of a supernova. In this paper, we review the present status of modelling the neutrino physics and signal formation in collapsing and exploding stars. We assess the capability of current and planned large underground neutrino detectors to yield faithful information of the time and flavor dependent neutrino signal from a future Galactic supernova. We show how the observable neutrino burst would provide a benchmark for fundamental supernova physics with unprecedented richness of detail. Exploiting the treasure of the measured neutrino events requires a careful discrimination o...

  3. Energy Neutrinos Ever Lisa Gerhardt, LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOE Office of99 Diagram 4.EnergyBe fromC8IceCube

  4. Wave-packet treatment of neutrino oscillations and its implications on determining the neutrino mass hierarchy

    E-Print Network [OSTI]

    Yat-Long Chan; M. -C. Chu; Ka Ming Tsui; Chan Fai Wong; Jianyi Xu

    2015-07-23

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 $\\sigma$ confidence level.

  5. Wave-packet treatment of neutrino oscillations and its implications on determining the neutrino mass hierarchy

    E-Print Network [OSTI]

    Chan, Yat-Long; Tsui, Ka Ming; Wong, Chan Fai; Xu, Jianyi

    2015-01-01

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 $\\sigma$ confidence level.

  6. Neutrino electromagnetic properties: new approach to oscillations in magnetic fields

    E-Print Network [OSTI]

    Dmitriev, Alexander; Studenikin, Alexander

    2015-01-01

    Several new and interesting aspects of neutrino oscillations in a magnetic field are considered: 1) We develop a standard usually used approach to the neutrino spin oscillations in the neutrino mass basis and obtain the effective neutrino spin (and "spin-mass") oscillation Hamiltonian that can be used for description of the neutrino oscillations between different pairs of neutrino states with different masses and helicities; 2) We derive the exact solution of the Dirac equation for a massive neutrino with nonzero magnetic moment in the presence of a constant transversal magnetic field that is rotating along the direction of the neutrino propagation (the twisting magnetic field) and on the basis of the obtained energy spectrum the neutrino spin oscillation effective Hamiltonian is derive; 3) We develop a new approach to neutrino spin oscillations that is based on the description of the neutrino spin states with the corresponding spin operator that commutes with the neutrino dynamics Hamiltonian in the magnetic...

  7. Everything under the sun: A review of solar neutrinos (Journal...

    Office of Scientific and Technical Information (OSTI)

    Everything under the sun: A review of solar neutrinos Citation Details In-Document Search Title: Everything under the sun: A review of solar neutrinos Solar neutrinos offer a...

  8. Neutrino-2008: Where are we? Where are we going?

    E-Print Network [OSTI]

    Smirnov, Alexei Yu

    2008-01-01

    Our present knowledge of neutrinos can be summarized in terms of the "standard neutrino scenario". Phenomenology of this scenario as well as attempts to uncover physics behind neutrino mass and mixing are described. Goals of future studies include complete reconstruction of the neutrino mass and flavor spectrum, further test of the standard scenario and search for new physics beyond it. Developments of new experimental techniques may lead to construction of new neutrino detectors from table-top to multi-Megaton scales which will open new horizons in the field. With detection of neutrino bursts from the Galactic supernova and high energy cosmic neutrinos neutrino astrophysics will enter qualitatively new phase. Neutrinos and LHC (and future colliders), neutrino astronomy, neutrino structure of the Universe, and probably, neutrino technologies will be among leading topics of research.

  9. Neutrino-2008: Where are we? Where are we going?

    E-Print Network [OSTI]

    Alexei Yu. Smirnov

    2008-10-15

    Our present knowledge of neutrinos can be summarized in terms of the "standard neutrino scenario". Phenomenology of this scenario as well as attempts to uncover physics behind neutrino mass and mixing are described. Goals of future studies include complete reconstruction of the neutrino mass and flavor spectrum, further test of the standard scenario and search for new physics beyond it. Developments of new experimental techniques may lead to construction of new neutrino detectors from table-top to multi-Megaton scales which will open new horizons in the field. With detection of neutrino bursts from the Galactic supernova and high energy cosmic neutrinos neutrino astrophysics will enter qualitatively new phase. Neutrinos and LHC (and future colliders), neutrino astronomy, neutrino structure of the Universe, and probably, neutrino technologies will be among leading topics of research.

  10. New bounds on neutrino electric millicharge from GEMMA experiment on neutrino magnetic moment

    E-Print Network [OSTI]

    Victor B. Brudanin; Dmitry V. Medvedev; Alexander S. Starostin; Alexander I. Studenikin

    2014-11-09

    Using the new limit on the neutrino anomalous magnetic moment recently obtained by GEMMA experiment we get an order-of-magnitude estimation for possible new direct upper bound on the neutrino electric millicharge $\\mid q_{\

  11. Measuring active-to-sterile neutrino oscillations with neutral current coherent neutrino-nucleus scattering

    E-Print Network [OSTI]

    Anderson, Adam Jonathan

    Light sterile neutrinos have been introduced as an explanation for a number of oscillation signals at ?m[superscript 2]?1??eV[superscript 2]. Neutrino oscillations at relatively short baselines provide a probe of these ...

  12. Emission angle distribution and flavor transformation of supernova neutrinos

    E-Print Network [OSTI]

    Wei Liao

    2009-06-28

    Using moment equations we analyze collective flavor transformation of supernova neutrinos. We study the convergence of moment equations and find that numerical results using a few moment converge quite fast. We study effects of emission angle distribution of neutrinos on neutrino sphere. We study scaling law of the amplitude of neutrino self-interaction Hamiltonian and find that it depends on model of emission angle distribution of neutrinos. Dependence of neutrino oscillation on different models of emission angle distribution is studied.

  13. Neutrino-Nucleon Cross section in Ultra High Energy Regime

    E-Print Network [OSTI]

    Bora, Kalpana

    2015-01-01

    Neutrino Physics is now entering precision era and neutrino-nucleon cross sections are an im- portant ingredient in all neutrino oscillation experiments. Specially, precise knowledge of neutrino- nucleon cross sections in Ultra High Energy (UHE) regime (TeV-PeV) is becoming more important now, as several experiments worldwide are going to observe processes involving such UHE neutrinos. In this work, we present new results on neutrino-nucleon cross-sections in this UHE regime, using QCD.

  14. The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad

    E-Print Network [OSTI]

    McDonald, Kirk

    . · The WIPP underground science facility is well sized and well located to host a large detector for neutrinos

  15. The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad

    E-Print Network [OSTI]

    McDonald, Kirk

    The WIPP underground science facility is well sized and well located to host a large detector for neutrinos

  16. Neutrino oscillation solutions to the solar neutrino problem: concepts and validity of various approximations 

    E-Print Network [OSTI]

    Burgard, Christoph

    1991-01-01

    ) is disfavored as explanations to the Solar Neutrino Problem since the detection of v, from the supernova 1987A in the KII [20] and other detectors [21]. Neutrino decay together with vacuum mixing [22] or together with the MSW effect [23], however, can... accomplish consistency with both, the solar neutrino data and supernova 1987A. But this is again a second generation explanation since vacuum oscillations and MSW effect alone can explain the Solar Neutrino Problem. 1. 4 THE CONTRIBUTION OF THIS WORK...

  17. Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy

    E-Print Network [OSTI]

    Lu, X -G; Dolan, S; Barr, G; Coplowe, D; Uchida, Y; Wark, D; Wascko, M O; Weber, A; Yuan, T

    2015-01-01

    We present a phenomenological study of nuclear effects in neutrino charged-current interactions, using transverse kinematic imbalances in exclusive measurements as a direct probe. Novel observables with minimal dependence on neutrino energy are proposed to study quasielastic scattering, and especially resonance production. They should be able to provide direct constraints on nuclear effects in neutrino- and antineutrino-nucleus interactions.

  18. Exotic Solutions to the Solar Neutrino Problem and Some Implications for Low Energy Solar Neutrino Experiments

    E-Print Network [OSTI]

    H. Nunokawa

    2001-05-03

    In this talk, I review, from the phenomenological point of view, solutions to the solar neutrino problem, which are not provided by the conventional neutrino oscillation induced by mass and flavor mixing, and show that they can provide a good fit to the observed data. I also consider some simple implications for low energy solar neutrino experiments.

  19. The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA

    E-Print Network [OSTI]

    Achterberg, A.; IceCube Collaboration

    2008-01-01

    see also the Swift Gamma-Ray Burst Mission Page: http://from Northern Hemisphere Gamma-Ray Bursts with AMANDA A.Northern Hemisphere Gamma-Ray Bursts with AMANDA The IceCube

  20. Double Beta Decay, Majorana Neutrinos, and Neutrino Mass

    E-Print Network [OSTI]

    Frank T. Avignone III; Steven R. Elliott; Jonathan Engel

    2007-11-26

    The theoretical and experimental issues relevant to neutrinoless double-beta decay are reviewed. The impact that a direct observation of this exotic process would have on elementary particle physics, nuclear physics, astrophysics and cosmology is profound. Now that neutrinos are known to have mass and experiments are becoming more sensitive, even the non-observation of neutrinoless double-beta decay will be useful. If the process is actually observed, we will immediately learn much about the neutrino. The status and discovery potential of proposed experiments are reviewed in this context, with significant emphasis on proposals favored by recent panel reviews. The importance of and challenges in the calculation of nuclear matrix elements that govern the decay are considered in detail. The increasing sensitivity of experiments and improvements in nuclear theory make the future exciting for this field at the interface of nuclear and particle physics.

  1. Double beta decay, Majorana neutrinos, and neutrino mass

    SciTech Connect (OSTI)

    Avignone, Frank T. III; Elliott, Steven R.; Engel, Jonathan [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255 (United States)

    2008-04-15

    The theoretical and experimental issues relevant to neutrinoless double beta decay are reviewed. The impact that a direct observation of this exotic process would have on elementary particle physics, nuclear physics, astrophysics, and cosmology is profound. Now that neutrinos are known to have mass and experiments are becoming more sensitive, even the nonobservation of neutrinoless double beta decay will be useful. If the process is actually observed, we will immediately learn much about the neutrino. The status and discovery potential of proposed experiments are reviewed in this context, with significant emphasis on proposals favored by recent panel reviews. The importance of and challenges in the calculation of nuclear matrix elements that govern the decay are considered in detail. The increasing sensitivity of experiments and improvements in nuclear theory make the future exciting for this field at the interface of nuclear and particle physics.

  2. Majorana Neutrino Masses from Neutrinoless Double Beta Decay and Cosmology

    E-Print Network [OSTI]

    V. Barger; K. Whisnant

    1999-04-08

    When three Majorana neutrinos describe the solar and atmospheric neutrino data via oscillations, a nonzero measurement of neutrinoless double beta ($0\

  3. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics. Final report The...

  4. Pion condensation in a dense neutrino gas

    E-Print Network [OSTI]

    Hiroaki Abuki; Tomas Brauner; Harmen J. Warringa

    2009-08-26

    We argue that using an equilibrated gas of neutrinos it is possible to probe the phase diagram of QCD for finite isospin and small baryon chemical potentials. We discuss this region of the phase diagram in detail and demonstrate that for large enough neutrino densities a Bose-Einstein condensate of positively charged pions arises. Moreover, we show that for nonzero neutrino density the degeneracy in the lifetimes and masses of the charged pions is lifted.

  5. Nuclear correction factors from neutrino DIS

    E-Print Network [OSTI]

    K. Kovarik

    2011-07-15

    Neutrino Deep Inelastic Scattering on nuclei is an essential process to constrain the strange quark parton distribution functions in the proton. The critical component on the way to using the neutrino DIS data in a proton PDF analysis is understanding the nuclear effects in parton distribution functions. We parametrize these effects by nuclear parton distribution functions and we use this framework to analyze the consistency of neutrino DIS data with other nuclear data.

  6. Jack Steinberger and the Muon-Neutrino

    Office of Scientific and Technical Information (OSTI)

    of particles ... . At the time, the elementary particles which were involved were the electrons and the neutrino. ... We required the BNL accelerator, which was the effort of...

  7. Electron Neutrinos at T2K

    E-Print Network [OSTI]

    Melissa George

    2010-06-07

    Tokai-to-Kamioka T2K is a long baseline neutrino oscillation experiment, looking for sub-dominant muon neutrino to electron neutrino oscillations. One of the primary aims of the T2K experiment is to narrow down the current limit on the value of theta13 (which if this value large enough, suggests CP violation in the neutrino sector) and to find whether theta23 is maximal, which is crucial for constraining neutrino mass models. T2K produces a high power neutrino beam at the J-PARC facility on the east coast of Japan, and this beam is then characterised by the near detector ND280 280 m from the start of the beam, the far detector (Super-Kamiokande), a 50 kton water Cherenkov detector, then detects the beam at the oscillation maximum of 295 km on Japan's west coast. T2K will be the first experiment to really study the electron neutrino appearance measurement - whose result will be sensitive to theta13 arguably the main physics goal of T2K. The ND280 detector is imperative to this measurement and will be used to understand the electron neutrino appearance background. The status of the T2K experiment and the predicted performance for the electron neutrino appearance measurement is presented here.

  8. Fourth Family Neutrinos and the Higgs Boson

    E-Print Network [OSTI]

    T. Cuhadar-Donszelmann; M. Karagoz Unel; V. E. Ozcan; S. Sultansoy; G. Unel

    2008-10-03

    We evaluate the LHC discovery potential for the fourth family Standard Model neutrinos in the process $pp\\to Z/h\\to\

  9. Scintillator yields glimpse of elusive solar neutrinos

    SciTech Connect (OSTI)

    Smart, Ashley G.

    2014-11-01

    The low-energy neutrinos are byproducts of the first reaction in a chain that generates 99% of the Sun’s energy.

  10. Solar Neutrinos from CNO Electron Capture

    E-Print Network [OSTI]

    L. C. Stonehill; J. A. Formaggio; R. G. H. Robertson

    2003-11-18

    The neutrino flux from the sun is predicted to have a CNO-cycle contribution as well as the known pp-chain component. Previously, only the fluxes from beta+ decays of 13N, 15O, and 17F have been calculated in detail. Another neutrino component that has not been widely considered is electron capture on these nuclei. We calculate the number of interactions in several solar neutrino detectors due to neutrinos from electron capture on 13N, 15O, and 17F, within the context of the Standard Solar Model. We also discuss possible non-standard models where the CNO flux is increased.

  11. NeutrinoPhysicsinSudbury JeanneWilson

    E-Print Network [OSTI]

    Agnor, Craig B.

    · Reactorneutrinos · Geoneutrinos · Supernovaeneutrinos #12;Physicsgoals · Pepsolarneutrinos · Neutrinolessdoublebetadecayof150Nd · Reactorneutrinos · Geoneutrinos · Supernovaeneutrinos #12;LowEnergySolarNeutrinos p + p 2H

  12. Non-Oscillation Probes of Neutrino Masses

    SciTech Connect (OSTI)

    Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster Institut fuer Kernphysik, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany)

    2010-03-30

    The absolute scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing statements on the neutrino mass from cosmological observations, two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double beta decay and the direct neutrino mass search. For both methods currently experiments with a sensitivity of O(100) meV are being set up or commissioned.

  13. From super beams to neutrino factories

    SciTech Connect (OSTI)

    Bross, Alan; /Fermilab

    2009-11-01

    The Neutrino Factory, which produces an extremely intense source of flavor-tagged neutrinos from muon decays in a storage ring, arguably gives the best physics reach for CP violation, as well as virtually all parameters in the neutrino oscillation parameter space. I will briefly describe the physics capabilities of the baseline Neutrino Factory as compared to other possible future facilities ({beta}-beam and super-beam facilities), give an overview of the accelerator complex and describe in detail the current international R&D program.

  14. Gamma Ray Burst Neutrinos Probing Quantum Gravity

    E-Print Network [OSTI]

    M. C. Gonzalez-Garcia; F. Halzen

    2006-11-28

    Very high energy, short wavelength, neutrinos may interact with the space-time foam predicted by theories of quantum gravity. They would propagate like light through a crystal lattice and be delayed, with the delay depending on the energy. This will appear to the observer as a violation of Lorenz invariance. Back of the envelope calculations imply that observations of neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We revisit the problem considering two essential complications: the imprecise timing of the neutrinos associated with their poorly understood production mechanism in the source and the indirect nature of their energy measurement made by high energy neutrino telescopes.

  15. Neutrinos from Supernovas and Supernova Remnants

    E-Print Network [OSTI]

    Francesco Vissani; Maria Laura Costantini

    2005-08-05

    Supernovae (SN) and supernova remnants (SNR) have key roles in galaxies, but their physical descriptions is still incomplete. Thus, it is of interest to study neutrino radiation to understand SN and SNR better. We will discuss: (1) The ~10 MeV thermal neutrinos that arise from core collapse SN, that were observed for SN1987A, and can be seen with several existing or planned experiments. (2) The 10-100 TeV neutrinos expected from galactic SNR (in particular from RX J1713.7-3946) targets of future underwater neutrino telescopes.

  16. Neutrino physics with an intense \

    E-Print Network [OSTI]

    R. Henning

    2010-11-16

    We study some of the physics potential of an intense $1\\,\\mathrm{MCi}$ $^{51}\\mathrm{Cr}$ source combined with the {\\sc Majorana Demonstrator} enriched germanium detector array. The {\\sc Demonstrator} will consist of detectors with ultra-low radioactive backgrounds and extremely low energy thresholds of~$\\sim 400\\,\\mathrm{eV}$. We show that it can improve the current limit on the neutrino magnetic dipole moment. We briefly discuss physics applications of the charged-current reaction of the $^{51}\\mathrm{Cr} neutrino with the $^{73}\\mathrm{Ge} isotope. Finally, we argue that the rate from a realistic, intense tritium source is below the detectable limit of even a tonne-scale HPGe experiment

  17. Evidence for neutrino mass: A decade of discovery

    SciTech Connect (OSTI)

    Heeger, Karsten M.

    2004-12-08

    Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.

  18. Supporting a Social Media Observatory with Customizable Index Structures --Architecture

    E-Print Network [OSTI]

    research activity in analysis of social media and micro- blogging data in recent years suggests media data. To support these "social media observatories" effectively, a storage platform must satisfy special requirements for loading and storage of multi-terabyte datasets, as well as efficient evaluation

  19. Wide-field stellar photometry in Piwnice Observatory

    E-Print Network [OSTI]

    Gracjan Maciejewski

    2007-12-17

    In this paper research projects based on the wide-field CCD photometry performed in Piwnice Observatory are discussed. The used telescopes, as well as dedicated software pipeline for data reduction are presented. The prospects for collaboration between Polish and Bulgarian institutes in the field of wide-field photometry are also discussed.

  20. NASA/TP--2006214434 Examination of the Armagh Observatory

    E-Print Network [OSTI]

    NASA/TP--2006­214434 Examination of the Armagh Observatory Annual Mean Temperature Record, 1844, Alabama July 2006 #12;The NASA STI Program Office...in Profile Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program

  1. Results from the Milagro Gamma-Ray Observatory

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    V energies, and a search for transient emission above 100 GeV from gamma-ray bursts. 1 Introduction remnants and gamma-ray bursts (GRB). Gamma rays are also produced when high-energy cosmic rays interactResults from the Milagro Gamma-Ray Observatory E. Blaufuss for the Milagro Collaboration a,1 , a

  2. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  3. The Royal Observatory Edinburgh: Astronomy past, present, and future

    E-Print Network [OSTI]

    Peacock, John

    on James Clerk Maxwell Telescope in Hawaii World's first CCD-like sub-millimetre camera SCUBA2 survey led, VISTA) ­ Next generation CCD surveys ­ Virtual Observatory and e-science tools #12;Scientific outlook Aims: ·Probing the nature of dark matter and dark energy ·Understanding the format

  4. The HAWC Gamma-Ray Observatory: Design, Calibration, and Operation

    E-Print Network [OSTI]

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramińana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivičre, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseńor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01

    The High-Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is under construction 4100 meters above sea level at Sierra Negra, Mexico. We describe the design and cabling of the detector, the characterization of the photomultipliers, and the timing calibration system. We also outline a next-generation detector based on the water Cherenkov technique.

  5. Instruments and Science Programs at Fresno State's Campus Observatory

    E-Print Network [OSTI]

    Ringwald, Frederick A.

    an Orion Ultrablock Light-Pollution Filter, also called a nebular filter since it passes only hydrogen betaGlow Broadband light pollution filter, which also passes the hydrogen alpha line. The observatory's 1.25-inch Hutech IDAS light-pollution suppression (LPS) filter deserves special mention. It has five narrow bands

  6. BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH

    E-Print Network [OSTI]

    BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH Faculty Position in Solar Physics, New Jersey Institute of Technology A tenure track faculty position in solar physics is available of NJIT's program in solar physics, visit http://solar.njit.edu. Applicants are required to have a Ph

  7. The World Space Observatory (WSO-UV) - Current status

    E-Print Network [OSTI]

    Michela Uslenghi; Isabella Pagano; Cristian Pontoni; Salvatore Scuderi; Boris Shustov

    2008-01-14

    This paper reports on the current status of the World Space Observatory WSO-UV, a space mission for UV astronomy, planned for launch at the beginning of next decade. It is based on a 1.7 m telescope, with focal plane instruments including high resolution spectrographs, long slit low resolution spectrographs and imaging cameras.

  8. A SURVEY OF EGRET SOURCES USING THE MILAGRO OBSERVATORY

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    V. The third EGRET catalog contained 271 new gamma-ray sources with energies above 100 MeV. The 271 sources in this catalog include the single 1991 solar flare, the Large Magellanic Cloud, five pulsars, one radio galaxy objects. Located in northern New Mexico, the Milagro gamma-ray observatory employs a water

  9. SUN-EARTH CONNECTION Solar TErrestrial RElations Observatory

    E-Print Network [OSTI]

    MISSIONS SUN-EARTH CONNECTION STEREO Solar TErrestrial RElations Observatory Hinode CORONAL MASS. Twin spacecraft, placed in different orbits, take images to produce 3-D pictures of the Sun and Solar Japanese/US/UK mission to study interactions between the Sun's magnetic field and its outer atmosphere

  10. Radiosonde campaign in Paranal Observatory 2011: PWV measurement.

    E-Print Network [OSTI]

    to SOW document this report is a deliverable to ESO as part of the contract. 1Avenida Gran Bretańa 1111, Valparaíso, Chile. Contact: omar.cuevas@uv.cl - michel.cure@uv.cl 2European Southern Observatory 3http://www

  11. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    2012-04-01

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  12. Synoptic Observing Programs at Big Bear Solar Observatory

    E-Print Network [OSTI]

    Synoptic Observing Programs at Big Bear Solar Observatory Haimin Wang and Philip R. Goode Big Bear and en- hance the comprehensive synoptic observing programs at BBSO, which include the following ve studies. Statistical studies on sunspot areas and magnetic shear are among the highlights of this research

  13. Graphene, neutrino mass and oscillation

    E-Print Network [OSTI]

    Z. Y. Wang

    2011-03-28

    A resolution of the Abraham-Minkowski dilemma is presented that other constant velocities can play the role of c in the theory of relativity. For example, in 2005 electrons of graphene were discovered to behave as if the coefficient is a Fermi velocity. Then we propose a conjecture for neutrinos to avoid the contradiction among two-component theory, negative rest mass-square and oscillation.

  14. Constraints on the Sum of Neutrino Masses from Cosmology and their impact on world neutrino data

    E-Print Network [OSTI]

    A. Melchiorri; G. L. Fogli; E. Lisi; A. Marrone; A. Palazzo; P. Serra; J. I. Silk

    2005-01-25

    We derive upper limits on the sum of neutrino masses from an updated combination of data from Cosmic Microwave Background experiments and Galaxy Redshifts Surveys. The results are discussed in the context of three-flavor neutrino mixing and compared with neutrino oscillation data, with upper limits on the effective neutrino mass in Tritium beta decay from the Mainz and Troitsk experiments and with the claimed lower bound on the effective Majorana neutrino mass in neutrinoless double beta decay from the Heidelberg-Moscow experiment.

  15. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    SciTech Connect (OSTI)

    NONE

    2013-03-01

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV–PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

  16. The Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug Simons

    E-Print Network [OSTI]

    The Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug; The Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug Simons

  17. Great Salt Lake Basin Hydrologic Observatory Prospectus Submitted to CUAHSI for consideration as a CUAHSI Hydrologic Observatory

    E-Print Network [OSTI]

    Tarboton, David

    1 Great Salt Lake Basin Hydrologic Observatory Prospectus Submitted to CUAHSI for consideration.S., the Great Salt Lake Basin provides the opportunity to observe climate and human-induced land-surface changes relationship between people and water across the globe and make the Great Salt Lake Basin a microcosm

  18. Neutrino. History of a unique particle

    E-Print Network [OSTI]

    S. M. Bilenky

    2012-10-10

    Neutrinos are the only fundamental fermions which have no electric charges. Because of that neutrinos have no direct electromagnetic interaction and at relatively small energies they can take part only in weak processes with virtual $W^{\\pm}$ and $Z^{0}$ bosons (like $\\beta$-decay of nuclei, inverse $\\beta$ process $\\bar\

  19. The neutrino portal to new physics

    SciTech Connect (OSTI)

    Ma, Ernest

    2014-06-24

    Neutrinos may have interactions beyond those of the standard model. They may be responsible for neutrino mass and provide a link to other fundamental issues of particle physics such as dark matter. A brief incomplete survey of some of the theoretical ideas along this direction is offered.

  20. Consistency of 8B neutrino spectra

    E-Print Network [OSTI]

    Oliver S. Kirsebom; Hans O. U. Fynbo; Riccardo Raabe; Karsten Riisager; Thomas Roger

    2014-08-05

    We identify and quantify systematic effects not accounted for in two previous measurements of the alpha-alpha relative-energy distribution in the beta decay of 8B, which can explain the apparent disagreement with respect to two newer measurements. This settles a current dispute concerning the shape of the 8B neutrino spectrum of importance to solar-neutrino studies.

  1. Solar opacity, neutrino signals and helioseismology

    E-Print Network [OSTI]

    B. Ricci

    1996-05-24

    In connection with the recent suggestion by Tsytovich et al. that opacity in the solar core could be overestimated, we consider the following questions: i) What would a 10\\% opacity reduction imply for the solar neutrino puzzle? ii) Is there any hope of solving the solar neutrino puzzle by changing opacity? iii) Is a 10\\% opacity reduction testable with helioseismological data?

  2. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect (OSTI)

    Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

    2014-05-02

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  3. Neutrino Capture and r-Process Nucleosynthesis

    E-Print Network [OSTI]

    Bradley S. Meyer; Gail C. McLaughlin; George M. Fuller

    1998-09-18

    We explore neutrino capture during r-process nucleosynthesis in neutrino-driven ejecta from nascent neutron stars. We focus on the interplay between charged-current weak interactions and element synthesis, and we delineate the important role of equilibrium nuclear dynamics. During the period of coexistence of free nucleons and light and/or heavy nuclei, electron neutrino capture inhibits the r-process. At all stages, capture on free neutrons has a larger impact than capture on nuclei. However, neutrino capture on heavey nuclei by itself, if it is very strong, is also detrimental to the r-process until large nuclear equilibrium clusters break down and the classical neutron-capture phase of the r-process begins. The sensitivity of the r-process to neutrino irradiation means that neutrino-capture effects can strongly constrain the r-process site, neutrino physics, or both. These results apply also to r-process scenarios other than neutrino-heated winds.

  4. Option of three pseudo--Dirac neutrinos

    E-Print Network [OSTI]

    Wojciech Krolikowski

    1999-10-12

    As an alternative for popular see-saw mechanism, the option of three pseudo% -Dirac neutrinos is discussed, where ${1/2}(m^{(L)} + m^{(R)}) \\ll m^{(D)}$ for their Majorana and Dirac masses. The actual neutrino mass matrix is assumed in the form of tensor product $ M^{(\

  5. Geomagnetic observatory GAN Jakub Velimsky K. Chandra Shakar Rao Lars W. Pedersen Ahmed Muslim

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    ´imsk´y et al. (ETH,UK,DTU,NGRI,GMO) Geomagnetic observatory GAN 27.4.2011/KG MFF UK 1 / 16 #12;Participating, Univ. Stuttgart) John Riddick (BGS, retired) Vel´imsk´y et al. (ETH,UK,DTU,NGRI,GMO) Geomagnetic Measurements and Observatory Practice, 1996) Vel´imsk´y et al. (ETH,UK,DTU,NGRI,GMO) Geomagnetic observatory

  6. Detecting Neutrinos with the NOvA Detectors (Other) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    PARTICLES AND FIELDS NOVA; NEUTRINO; NEUTRINO DETECTOR; DETECTOR; COSMIC RAY; NEUTRINO INTERACTION Word Cloud More Like This Multimedia File size NAView Multimedia View Multimedia...

  7. Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall

    E-Print Network [OSTI]

    Bahcall, John

    ) that neutrinos must pass through on their way out of the sun. One can quantify the sensitivity of solar neutrinosChapter 10 Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall Institute for Advanced study solar neutrinos? What does the combined standard model (solar plus electroweak) predict for solar

  8. Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall

    E-Print Network [OSTI]

    Bahcall, John

    that solar neutrino experiments may have already provided strong hints that at least one neutrino type has. One can quantify the sensitivity of solar neutrinos relative to laboratory experiments by consideringChapter 10 Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall Institute for Advanced

  9. Double Beta Decay and the Absolute Neutrino Mass Scale

    E-Print Network [OSTI]

    Carlo Giunti

    2003-08-20

    After a short review of the current status of three-neutrino mixing, the implications for the values of neutrino masses are discussed. The bounds on the absolute scale of neutrino masses from Tritium beta-decay and cosmological data are reviewed. Finally, we discuss the implications of three-neutrino mixing for neutrinoless double-beta decay.

  10. Mixed MSW and Vacuum Solutions of Solar Neutrino Problem

    E-Print Network [OSTI]

    Qiu-Yu Liu

    1997-08-11

    Assuming three flavour neutrino mixing takes place in vacuum, we investigate the possibility that the solar $\

  11. Mixed MSW and Vacuum Solutions of Solar Neutrino Problem

    E-Print Network [OSTI]

    Liu, Q Y

    1997-01-01

    Assuming three flavour neutrino mixing takes place in vacuum, we investigate the possibility that the solar $\

  12. Solar neutrino measurements in Super-Kamiokande-I

    E-Print Network [OSTI]

    Super-Kamiokande Collaboration

    2005-09-26

    The details of Super--Kamiokande--I's solar neutrino analysis are given. Solar neutrino measurement in Super--Kamiokande is a high statistics collection of $^8$B solar neutrinos via neutrino-electron scattering. The analysis method and results of the 1496 day data sample are presented. The final oscillation results for the data are also presented.

  13. Neutrino flux variations and solar activity

    E-Print Network [OSTI]

    Ikhsanov, R N

    2003-01-01

    We investigate temporal variations of the solar neutrino flux in 1970-1997. The periods of 11, 5 and 2 years have been found in the variations of the neutrino flux. The results indicate that a periodicity close to 5 years is the most significant in the data from both the Homestake and GALLEX experiments. Two groups of the solar activity indices have been distinguished regarding their interconnection with the neutrino flux series. The first group contains the indices showing predominantly 11-year period, while a periodicity at approximately 5 years is observed in the second group. The correlation coefficients between the neutrino flux and indices from the first group are negative, with their module not exceeding 0.5. The second group is characterized by positive correlation with the neutrino counting rates with coefficients not lower than 0.6. A discussion of findings is presented.

  14. Neutrino Oscillations in the Dualized Standard Model

    E-Print Network [OSTI]

    J Bordes; HM Chan; J. Pfaudler; ST Tsou

    1998-02-25

    A method developed from the Dualized Standard Model for calculating the quark CKM matrix and masses is applied to the parallel problem in neutrino oscillations. Taking the parameters determined from quarks and the masses of two neutrinos: $m_3^2 \\sim 10^{-2} - 10^{-3} eV^2$ suggested by atmospheric neutrino data, and $m_2^2 \\sim 10^{-10} eV^2$ suggested by the long wave-length oscillation (LWO) solution of the solar neutrino problem, one obtains from a parameter-free calculation all the mixing angles in reasonable agreement with existing experiment. However, the scheme is found not to accommodate comfortably the mass values $m_2^2 \\sim 10^{-5} eV^2$ suggested by the MSW solution for solar neutrinos.

  15. Neutrino Oscillations in the Dualized Standard Model

    E-Print Network [OSTI]

    Bordes, J; Pfaudler, J; Tsou, S T; Chan, HM; Tsou, ST

    1998-01-01

    A method developed from the Dualized Standard Model for calculating the quark CKM matrix and masses is applied to the parallel problem in neutrino oscillations. Taking the parameters determined from quarks and the masses of two neutrinos: $m_3^2 \\sim 10^{-2} - 10^{-3} eV^2$ suggested by atmospheric neutrino data, and $m_2^2 \\sim 10^{-10} eV^2$ suggested by the long wave-length oscillation (LWO) solution of the solar neutrino problem, one obtains from a parameter-free calculation all the mixing angles in reasonable agreement with existing experiment. However, the scheme is found not to accommodate comfortably the mass values $m_2^2 \\sim 10^{-5} eV^2$ suggested by the MSW solution for solar neutrinos.

  16. Solar neutrinos and the solar composition problem

    E-Print Network [OSTI]

    Carlos Pena-Garay; Aldo Serenelli

    2008-11-16

    Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

  17. Light sterile neutrinos in the early universe

    SciTech Connect (OSTI)

    Lunardini, Cecilia [Department of Physics, Arizona State University, Tempe, Arizona 85287-1404 (United States)

    2014-06-24

    Cosmological and terrestrial data suggests the number of light neutrinos may be greater than 3, motivating a careful reexamination of cosmological bounds on extra light species. Big bang nucleosynthesis constrains the number of relativistic neutrino species present during nucleosynthesis, N{sub eff}{sup BBN}, while measurements of the cosmic microwave background (CMB) angular power spectrum constrain the effective energy density in relativistic neutrinos at the time of matter-radiation equality, N{sub eff}{sup CMB}. We review a scenario with two sterile neutrinos and explore whether partial thermalization of the sterile states can ease the tension between cosmological constraints on N{sub eff}{sup BBN} and terrestrial data. We conclude that, still, two additional light sterile neutrinos species cannot fit all the data at the 95% confidence level.

  18. Dirac neutrino in warped extra dimensions

    SciTech Connect (OSTI)

    Chang, W.-F.; Ng, John N.; Wu, Jackson M. S.

    2009-12-01

    We implement Dirac neutrinos in the minimal custodial Randall-Sundrum setting via the Krauss-Wilczek mechanism. We demonstrate by giving explicit lepton mass matrices that with neutrinos in the normal hierarchy, lepton mass and mixing patterns can be naturally reproduced at the scale set by the constraints from electroweak precision measurements, and at the same time without violating bounds set by lepton flavor violations. Our scenario generically predicts a nonzero neutrino mixing angle {theta}{sub 13}, as well as the existence of sub-TeV right-handed Kaluza-Klein neutrinos, which partner the right-handed standard model charged leptons. These relatively light KK neutrinos may be searched for at the LHC.

  19. Raymond Davis Jr., Solar Neutrinos, and the Solar Neutrino Problems

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access toSmall ReactorRaymond Davis, Jr., Solar Neutrinos, and the

  20. Neutrinoless double beta decay in four-neutrino models

    E-Print Network [OSTI]

    Anna Kalliomaki; Jukka Maalampi

    2000-03-29

    The most stringent constraint on the so-called effective electron neutrino mass from the present neutrinoless double beta decay experiments is |M_{ee}| < 0.2 eV, while the planned next generation experiment GENIUS is anticipated to reach a considerably more stringent limit |M_{ee}|< 0.001 eV. We investigate the constraints these bounds set on the neutrino masses and mixings of neutrinos in four-neutrino models where there exists a sterile neutrino along with the three ordinary neutrinos. We find that the GENIUS experiment would be sensitive to the electron neutrino masses down to the limit m_{\

  1. Measurement of the rate of e + d ! p + p + e interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Waltham, Chris

    Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario K0J 1J0 2 Chemistry Department

  2. Influence of flavor oscillations on neutrino beam instabilities

    SciTech Connect (OSTI)

    Mendonça, J. T.; Haas, F.; Bret, A.

    2014-09-15

    We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

  3. Phenomenological relations for neutrino masses and mixing parameters

    SciTech Connect (OSTI)

    Khruschov, V. V.

    2013-11-15

    Phenomenological relations for masses, angles, and CP phases in the neutrino mixing matrix are proposed with allowance for available experimental data. For the case of CP violation in the lepton sector, an analysis of the possible structure of the neutrino mass matrix and a calculation of the neutrino mass features and the Dirac CP phase for the bimodal-neutrino model are performed. The values obtained in this way can be used to interpret and predict the results of various neutrino experiments.

  4. US earthquake observatories: recommendations for a new national network

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report is the first attempt by the seismological community to rationalize and optimize the distribution of earthquake observatories across the United States. The main aim is to increase significantly our knowledge of earthquakes and the earth's dynamics by providing access to scientifically more valuable data. Other objectives are to provide a more efficient and cost-effective system of recording and distributing earthquake data and to make as uniform as possible the recording of earthquakes in all states. The central recommendation of the Panel is that the guiding concept be established of a rationalized and integrated seismograph system consisting of regional seismograph networks run for crucial regional research and monitoring purposes in tandem with a carefully designed, but sparser, nationwide network of technologically advanced observatories. Such a national system must be thought of not only in terms of instrumentation but equally in terms of data storage, computer processing, and record availability.

  5. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    SciTech Connect (OSTI)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  6. Demonstration of Communication using Neutrinos

    E-Print Network [OSTI]

    D. D. Stancil; P. Adamson; M. Alania; L. Aliaga; M. Andrews; C. Araujo Del Castillo; L. Bagby; J. L. Bazo Alba; A. Bodek; D. Boehnlein; R. Bradford; W. K. Brooks; H. Budd; A. Butkevich; D. A. M. Caicedo; D. P. Capista; C. M. Castromonte; A. Chamorro; E. Charlton; M. E. Christy; J. Chvojka; P. D. Conrow; I. Danko; M. Day; J. Devan; J. M. Downey; S. A. Dytman; B. Eberly; J. R. Fein; J. Felix; L. Fields; G. A. Fiorentini; A. M. Gago; H. Gallagher; R. Gran; J. Grange; J. Griffin; T. Griffin; E. Hahn; D. A. Harris; A. Higuera; J. A. Hobbs; C. M. Hoffman; B. L. Hughes; K. Hurtado; A. Judd; T. Kafka; K. Kephart; J. Kilmer; M. Kordosky; S. A. Kulagin; V. A. Kuznetsov; M. Lanari; T. Le; H. Lee; L. Loiacono; G. Maggi; E. Maher; S. Manly; W. A. Mann; C. M. Marshall; K. S. McFarland; A. Mislivec; A. M. McGowan; J. G. Morfin; H. da Motta; J. Mousseau; J. K. Nelson; J. A. Niemiec-Gielata; N. Ochoa; B. Osmanov; J. Osta; J. L. Palomino; J. S. Paradis; V. Paolone; J. Park; C. Pena; G. Perdue; C. E. Perez Lara; A. M. Peterman; A. Pla-Dalmau; B. Pollock; F. Prokoshin; R. D. Ransome; H. Ray; M. Reyhan; P. Rubinov; D. Ruggiero; O. S. Sands; H. Schellman; D. W. Schmitz; E. C. Schulte; C. Simon; C. J. Solano Salinas; R. Stefanski; R. G. Stevens; N. Tagg; V. Takhistov; B. G. Tice; R. N. Tilden; J. P. Velasquez; I. Vergalosova; J. Voirin; J. Walding; B. J. Walker; T. Walton; J. Wolcott; T. P. Wytock; G. Zavala; D. Zhang; L. Y. Zhu; B. P. Ziemer

    2012-04-09

    Beams of neutrinos have been proposed as a vehicle for communications under unusual circumstances, such as direct point-to-point global communication, communication with submarines, secure communications and interstellar communication. We report on the performance of a low-rate communications link established using the NuMI beam line and the MINERvA detector at Fermilab. The link achieved a decoded data rate of 0.1 bits/sec with a bit error rate of 1% over a distance of 1.035 km, including 240 m of earth.

  7. Neutrino Cross-Section Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature and Origin WhatNetworks,BeamNeutrinoN u F a

  8. Neutrino Physics AAPT Strand Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature and OriginMiniBooNE's NeutrinoPhysics AAPT

  9. Hybrid Detection of UHECR with the Pierre Auger Observatory

    E-Print Network [OSTI]

    Miguel Mostafa; for the Pierre Auger Collaboration

    2006-07-31

    The Pierre Auger Observatory detects ultra-high energy cosmic rays by implementing two complementary air-shower techniques. The combination of a large ground array and fluorescence detectors, known as the "hybrid" concept, means that a rich variety of measurements can be made on a single shower, providing much improved information over what is possible with either detector alone. In this paper the hybrid reconstruction approach and its performance are described.

  10. The HAWC Gamma-Ray Observatory: Observations of Cosmic Rays

    E-Print Network [OSTI]

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramińana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivičre, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseńor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01

    We describe measurements of GeV and TeV cosmic rays with the High-Altitude Water Cherenkov Gamma-Ray Observatory, or HAWC. The measurements include the observation of the shadow of the moon; the observation of small-scale and large-scale angular clustering of the TeV cosmic rays; the prospects for measurement of transient solar events with HAWC; and the observation of Forbush decreases with the HAWC engineering array and HAWC-30.

  11. Regional study of the Archean to Proterozoic crust at the Sudbury Neutrino Observatory (SNO+), Ontario: Predicting the geoneutrino flux

    E-Print Network [OSTI]

    Huang, Yu; Mantovani, Fabio; Shirey, Steven B; Rudnick, Roberta L; McDonough, William F

    2014-01-01

    The SNO+ detector, a new kiloton scale liquid scintillator detector capable of recording geoneutrino events, will define the strength of the Earth radiogenic heat. A detailed 3-D model of the regional crust, centered at SNO+ and based on compiled geological, geophysical and geochemical information, was used to characterize the physical and chemical attributes of crust and assign uncertainties to its structure. Monte Carlo simulations were used to predict the U and Th abundances and uncertainties in crustal lithologies and to model the regional crustal geoneutrino signal originating from the at SNO+.

  12. CUORE and beyond: Bolometric techniques to explore inverted neutrino mass hierarchy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; et al

    2015-03-24

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130Te. With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6 × 1026 y at 1? (9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meVmore »(50–130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130Te and possibly other double beta decay candidate nuclei.« less

  13. CUORE and beyond: Bolometric techniques to explore inverted neutrino mass hierarchy

    SciTech Connect (OSTI)

    Artusa, D. R. [Univ. of South Carolina, Columbia, SC (United States); INFN - LAb Nazionali del Gran Sasso, Assergi (Italy); Avignone, F. T. [Univ. of South Carolina, Columbia, SC (United States); Azzolini, O. [INFN - Laboratori Nazionali di Legnaro, Legnaro (Italy); Balata, M. [INFN - Lab Nazionali del Gran Sasso, Assergi (Italy); Banks, T. I. [INFN - Lab Nazionali del Gran Sasso, Assergi (Italy); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bari, G. [INFN - Sezione di Bologna, Bologna (Italy); Beeman, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bellini, F. [Sapienza Univ. di Roma, Roma (Italy); INFN - Sezione di Roma, Roma (Italy); Bersani, A. [INFN - Sezione di Genova, Genova (Italy); Biassoni, M. [Univ. di Milano- Bicocca, Milano (Italy); INFN - Sezione di Milano Bicocca, Milano (Italy); Brofferio, C. [Univ. di Milano- Bicocca, Milano (Italy); INFN - Sezione di Milano Bicocca, Milano (Italy); Bucci, C. [INFN - Lab Nazionali del Gran Sasso, Assergi (Italy); Cai, X. Z. [Chinese Academy of Sciences (CAS), Shanghai (China); Camacho, A. [INFN - Laboratori Nazionali di Legnaro, Legnaro (Italy); Canonica, L. [INFN - Lab Nazionali del Gran Sasso, Assergi (Italy); Cao, X. G. [Chinese Academy of Sciences (CAS), Shanghai (China); Capelli, S. [Univ. di Milano- Bicocca, Milano (Italy); INFN - Sezione di Milano Bicocca, Milano (Italy); Carbone, L. [INFN - Sezione di Milano Bicocca, Milano (Italy); Cardani, L. [Sapienza Univ. di Roma, Roma (Italy); INFN - Sezione di Roma, Roma (Italy); Carrettoni, M. [Univ. di Milano- Bicocca, Milano (Italy); INFN - Sezione di Milano Bicocca, Milano (Italy); Casali, N. [INFN - Lab Nazionali del Gran Sasso, Assergi (Italy); Chiesa, D. [Univ. di Milano- Bicocca, Milano (Italy); INFN - Sezione di Milano Bicocca, Milano (Italy); Chott, N. [Univ. of South Carolina, Columbia, SC (United States); Clemenza, M. [Univ. di Milano- Bicocca, Milano (Italy); INFN - Sezione di Milano Bicocca, Milano (Italy); Copello, S. [Univ. di Genova, Genova (Italy); Cosmelli, C. [Sapienza Univ. di Roma, Roma (Italy); INFN - Sezione di Roma, Roma (Italy); Cremonesi, O. [INFN - Sezione di Milano Bicocca, Milano (Italy); Creswick, R. J. [Univ. of South Carolina, Columbia, SC (United States); Dafinei, I. [INFN - Sezione di Roma, Roma (Italy); Dally, A. [Univ. of Wisconsin, Madison, WI (United States); Datskov, V. [INFN - Sezione di Milano Bicocca, Milano (Italy); De Biasi, A. [INFN - Laboratori Nazionali di Legnaro, Legnaro (Italy); Deninno, M. M. [INFN - Sezione di Bologna, Bologna (Italy); Di Domizio, S. [Univ. di Genova, Genova (Italy); INFN - Sezione di Genova, Genova (Italy); di Vacri, M. L. [INFN - Lab Nazionali del Gran Sasso, Assergi (Italy); Ejzak, L. [Univ. of Wisconsin, Madison, WI (United States); Fang, D. Q. [Chinese Academy of Sciences (CAS), Shanghai (China); Farach, H. A. [Univ. of South Carolina, Columbia, SC (United States); Faverzani, M. [Univ. di Milano- Bicocca, Milano (Italy); INFN - Sezione di Milano Bicocca, Milano (Italy); Fernandes, G. [Univ. de Genova, Genova (Italy); INFN - Sezione di Genova, Genova (Italy); Ferri, E. [Univ. di Milano- Bicocca, Milano (Italy); INFN - Sezione di Milano Bicocca, Milano (Italy); Ferroni, F. [Sapienza Univ. di Roma, Roma (Italy); INFN - Sezione di Roma, Roma (Italy); Fiorini, E. [Univ. di Milano- Bicocca, Milano (Italy); INFN - Sezione di Milano Bicocca, Milano (Italy); Franceschi, M. A. [INFN - Lab. Nazionali di Frascati, Frascati (Italy); Freedman, S. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); INFN- Sezione di Milano Bicocca, Milano (Italy); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Giachero, A. [Univ. di Milano- Bicocca, Milano (Italy); INFN - Sezione di Milano Bicocca, Milano (Italy); Gironi, L. [Univ. di Milano- Bicocca, Milano (Italy); INFN - Sezione di Milano Bicocca, Milano (Italy); Giuliani, A. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Orsay Campus (France)

    2015-01-01

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of ął?Te. With 741 kg of TeO? crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6 × 10˛? y at 1? (9.5 × 10˛? y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with ął?Te and possibly other double beta decay candidate nuclei.

  14. Weighing neutrinos with cosmic neutral hydrogen

    E-Print Network [OSTI]

    Francisco Villaescusa-Navarro; Philip Bull; Matteo Viel

    2015-07-17

    We investigate the signatures left by massive neutrinos on the spatial distribution of neutral hydrogen (HI) in the post-reionization era by running hydrodynamic simulations that include massive neutrinos as additional collisionless particles. We find that halos in massive/massless neutrino cosmologies host a similar amount of neutral hydrogen, although for a fixed halo mass, on average, the HI mass increases with the sum of the neutrino masses. Our results show that HI is more strongly clustered in cosmologies with massive neutrinos, while its abundance, $\\Omega_{\\rm HI}(z)$, is lower. These effects arise mainly from the impact of massive neutrinos on cosmology: they suppress both the amplitude of the matter power spectrum on small scales and the abundance of dark matter halos. Modelling the HI distribution with hydrodynamic simulations at $z > 3$, and a simple analytic model at $z<3$, we use the Fisher matrix formalism to conservatively forecast the constraints that Phase 1 of the Square Kilometre Array (SKA) will place on the sum of neutrino masses, $M_\

  15. Neutrino emission in the jet propagation process

    SciTech Connect (OSTI)

    Xiao, D.; Dai, Z. G.

    2014-07-20

    Relativistic jets are universal in long-duration gamma-ray burst (GRB) models. Before breaking out, they must propagate in the progenitor envelope along with a forward shock and a reverse shock forming at the jet head. Both electrons and protons will be accelerated by the shocks. High-energy neutrinos could be produced by these protons interacting with stellar materials and electron-radiating photons. The jet will probably be collimated, which may have a strong effect on the final neutrino flux. Under the assumption of a power-law stellar-envelope density profile ??r {sup –?} with index ?, we calculate the neutrino emission flux by these shocks for low-luminosity GRBs (LL-GRBs) and ultra-long GRBs (UL-GRBs) in different collimation regimes, using the jet propagation framework developed by Bromberg et al. We find that LL-GRBs and UL-GRBs are capable of producing detectable high-energy neutrinos up to ?PeV, from which the final neutrino spectrum can be obtained. Further, we conclude that a larger ? corresponds to greater neutrino flux at the high-energy end (?PeV) and to higher maximum neutrino energy as well. However, such differences are so small that it is not promising for us to be able to distinguish these in observations, given the energy resolution we have now.

  16. Can Neutrinos be Degenerate in Mass?

    E-Print Network [OSTI]

    John Ellis; Smaragda Lola

    1999-04-13

    We reconsider the possibility that the masses of the three light neutrinos of the Standard Model might be almost degenerate and close to the present upper limits from Tritium beta decay and cosmology. In such a scenario, the cancellations required by the latest upper limit on neutrinoless double-beta decay enforce near-maximal mixing that may be compatible only with the vacuum-oscillation scenario for solar neutrinos. We argue that the mixing angles yielded by degenerate neutrino mass-matrix textures are not in general stable under small perturbations. We evaluate within the MSSM the generation-dependent one-loop renormalization of neutrino mass-matrix textures that yielded degenerate masses and large mixing at the tree level. We find that m_{nu_e} > m_{nu_mu} > m_{nu_tau} after renormalization, excluding MSW effects on solar neutrinos. We verify that bimaximal mixing is not stable, and show that the renormalized masses and mixing angles are not compatible with all the experimental constraints, even for tanbeta as low as unity. These results hold whether the neutrino masses are generated by a see-saw mechanism with heavy neutrinos weighing approx. 10^{13} GeV or by non-renormalizable interactions at a scale approx. 10^5 GeV. We also comment on the corresponding renormalization effects in the minimal Standard Model, in which m_{nu_e} < m_{nu_mu} < m_{nu_tau}. Although a solar MSW effect is now possible, the perturbed neutrino masses and mixings are still not compatible with atmospheric- and solar-neutrino data.

  17. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    E-Print Network [OSTI]

    Vale, D; Paar, N

    2015-01-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for $^{56}$Fe and $^{208}$Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons $\\mathrm{p}(\\bar{\

  18. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    E-Print Network [OSTI]

    D. Vale; T. Rauscher; N. Paar

    2015-09-24

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for $^{56}$Fe and $^{208}$Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons $\\mathrm{p}(\\bar{\

  19. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect (OSTI)

    Coleman, Stephen James; /William-Mary Coll.

    2011-01-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

  20. Neutrino Mixing from CP Symmetry

    E-Print Network [OSTI]

    Peng Chen; Chang-Yuan Yao; Gui-Jun Ding

    2015-07-13

    The neutrino mass matrix has remnant CP symmetry expressed in terms of the lepton mixing matrix, and vice versa the remnant CP transformations allow us to reconstruct the mixing matrix. We study the scenario that all the four remnant CP transformations are preserved by the neutrino mass matrix. The most general parameterization of remnant CP transformations is presented. The lepton mixing matrix is completely fixed by the remnant CP, and its explicit form is derived. The necessary and sufficient condition for conserved Dirac CP violating phase is found. If the Klein four flavor symmetry generated by the postulated remnant CP transformations arises from a finite flavor symmetry group, the phenomenologically viable lepton flavor mixing would be the trimaximal pattern, both Dirac CP phase $\\delta_{CP}$ and Majorana phase $\\alpha_{31}$ are either $0$ or $\\pi$ while another Majorana phase $\\alpha_{21}$ is a rational multiple of $\\pi$. These general results are confirmed to be true in the case that the finite flavor symmetry group is $\\Delta(6n^2)$.