Powered by Deep Web Technologies
Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Constraints on neutrino-nucleon interactions at energies of 1 EeV with the IceCube Neutrino Observatory  

Science Journals Connector (OSTI)

A search for extremely high energy cosmic neutrinos has been carried out with the IceCube Neutrino Observatory. The main signals in the search are neutrino-induced energetic charged leptons and their rate depends on the neutrino-nucleon cross section. The upper limit on the neutrino flux has implications for possible new physics beyond the standard model such as the extra space-time dimension scenarios which lead to a cross section much higher than the standard particle physics prediction. In this study we constrain the neutrino-nucleon cross section at energies beyond 109??GeV with the IceCube observation. The constraints are obtained as a function of the extraterrestrial neutrino flux in the relevant energy range, which accounts for the astrophysical uncertainty of neutrino production models.

Shigeru Yoshida

2010-11-22T23:59:59.000Z

2

First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory  

Science Journals Connector (OSTI)

We report on the results of the search for extremely-high energy neutrinos with energies above 107??GeV obtained with the partially (?30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective live time, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at E2??e+??+???1.4×10-6??GeV?cm-2?sec?-1?sr-1 for neutrinos in the energy range from 3×107 to 3×109??GeV.

R. Abbasi et al. (IceCube Collaboration)

2010-10-07T23:59:59.000Z

3

Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory  

Science Journals Connector (OSTI)

Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above ?500??GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2×10-3 for the flux coming from the Galactic plane region (-80°?l?-30°; -10°?b?5°) in the energy range 1.2–6.0 PeV. In the same energy range, point source fluxes with E-2 spectra have been excluded at a level of (E/TeV)2d?/dE?10-12–10-11??cm-2?s-1?TeV-1 depending on source declination. The complete IceCube detector will have a better sensitivity (due to the larger detector size), improved reconstruction, and vetoing techniques. Preliminary data from the nearly final IceCube detector configuration have been used to estimate the 5-yr sensitivity of the full detector. It is found to be more than an order of magnitude better, allowing the search for PeV extensions of known TeV gamma-ray emitters.

M. G. Aartsen et al. (IceCube Collaboration)

2013-03-20T23:59:59.000Z

4

Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory  

Science Journals Connector (OSTI)

We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino-induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model-independent quasidifferential 90% C.L. upper limit, which amounts to E2??e+??+??=1.2×10-7??GeV?cm-2?s-1?sr-1 at 1 EeV, provides the most stringent constraint in the energy range from 10 PeV to 10 EeV. Our observation disfavors strong cosmological evolution of the highest energy cosmic-ray sources such as the Fanaroff-Riley type II class of radio galaxies.

M. G. Aartsen et al. (IceCube Collaboration)

2013-12-16T23:59:59.000Z

5

Non-standard Neutrino Oscillations at Icecube  

E-Print Network [OSTI]

In this talk I review the potential of Icecube for revealing physics beyond the standard model in the oscillation of atmospheric neutrinos.

M. C. Gonzalez-Garcia

2006-12-19T23:59:59.000Z

6

Neutrino events at IceCube and the Fermi bubbles  

Science Journals Connector (OSTI)

We discuss the possibility that the IceCube neutrino telescope might be observing the Fermi bubbles. If the bubbles discovered in gamma rays originate from accelerated protons, they should be strong emitters of high energy (?GeV) neutrinos. These neutrinos are detectable as showerlike or tracklike events at a Km3 neutrino observatory. For a primary cosmic ray flux with spectrum ?E?2.1 and cutoff energy at or above 10 PeV, the Fermi bubble flux substantially exceeds the atmospheric background, and could account for up to ?4–5 of the 28 events detected above ?30??TeV at IceCube. Running the detector for ?5–7 more years should be sufficient to discover this flux at high significance. For a primary cosmic ray flux with steeper spectrum, and/or lower cutoff energy, longer running times will be required to overcome the background.

Cecilia Lunardini; Soebur Razzaque; Kristopher T. Theodoseau; Lili Yang

2014-07-21T23:59:59.000Z

7

Measurement of Atmospheric Neutrino Oscillations with IceCube  

Science Journals Connector (OSTI)

We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20??GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (?20??GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20–100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV–10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5? significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters |?m322|=(2.3-0.5+0.6)×10-3??eV2 and sin?2(2?23)>0.93, and maximum mixing is favored.

M. G. Aartsen et al. (IceCube Collaboration)

2013-08-19T23:59:59.000Z

8

Searches for sterile neutrinos with IceCube DeepCore  

Science Journals Connector (OSTI)

We show that study of the atmospheric neutrinos in the 10–100 GeV energy range by DeepCore subarray of the IceCube Neutrino Observatory can substantially constrain the mixing of sterile neutrinos of mass ?1??eV with active neutrinos. In the scheme with one sterile neutrino we calculate ?? and ?¯? oscillation probabilities as well as zenith angle distributions of ??CC (charge current) events in different energy intervals in DeepCore. The distributions depend on the mass hierarchy of active neutrinos. Therefore, in principle, the hierarchy can be identified, if ?s exists. After a few years of exposure the DeepCore data will allow us to exclude the mixing of |U?4|2?0.02 indicated by the LSND/MiniBooNE results. Combination of the DeepCore and high-energy IceCube data will further improve sensitivity to ?s mixing parameters.

Soebur Razzaque and A. Yu. Smirnov

2012-05-18T23:59:59.000Z

9

Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube  

E-Print Network [OSTI]

We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint ...

Aartsen, M.?G.

10

Pinpointing extragalactic neutrino sources in light of recent IceCube observations  

Science Journals Connector (OSTI)

The IceCube Collaboration has recently reported the observation of a flux of high-energy astrophysical neutrinos. The angular distribution of events is consistent with an isotropic arrival direction of neutrinos which is expected for an extragalactic origin. We estimate the prospects of detecting individual neutrino sources from a quasidiffuse superposition of many extragalactic sources at the level of the IceCube observation. Unlike previous analyses, we take into account ensemble variations of the source distribution as well as the event statistics of individual sources. We show that IceCube in its present configuration is sensitive to rare ?10?8??Mpc?3?yr?1 transient source classes within five years of operation via the observation of event clusters. Identification of time-independent sources is more challenging due to larger backgrounds. We estimate that during the same period IceCube is sensitive to sparse sources with densities of ?10?6??Mpc?3 via association of events with the closest 100 sources of an ensemble. We show that a next-generation neutrino observatory with 5 times the effective area of IceCube and otherwise similar detector performance would increase the sensitivity to source densities and rates by about 2 orders of magnitude.

Markus Ahlers and Francis Halzen

2014-08-11T23:59:59.000Z

11

IceCube: An Instrument for Neutrino Astronomy  

E-Print Network [OSTI]

Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: Neutrino Astronomy and Kilometer-Scale Detectors. High-Energy Neutrino Telescopes: Methodologies of Neutrino Detection. IceCube Hardware. High-Energy Neutrino Telescopes: Beyond Astronomy. Future Projects

Francis Halzen; Spencer R. Klein

2010-07-07T23:59:59.000Z

12

Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector  

Science Journals Connector (OSTI)

The IceCube Neutrino Observatory is a 1??km3 detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12?877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C.L. upper limit on the normalization of an E-2 astrophysical ?? flux of 8.9×10-9??GeV?cm-2?s-1?sr-1. The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12?877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.

R. Abbasi et al. (IceCube Collaboration)

2011-10-03T23:59:59.000Z

13

Some possible sources of IceCube TeV-PeV neutrino events  

E-Print Network [OSTI]

The IceCube Collaboration has observed 37 neutrino events in the energy range $30\\, {\\text TeV}\\lesssim E_{\

Sarira Sahu; Luis Salvador Miranda

2014-08-21T23:59:59.000Z

14

Photohadronic origin of the TeV-PeV neutrinos observed in IceCube  

Science Journals Connector (OSTI)

We perform an unbiased search of the origin of the recently observed 28 events above ?30??TeV in the IceCube neutrino observatory, assuming that these are (apart from the atmospheric background) of astrophysical origin produced by photohadronic interactions. Instead of relying on the normalization of the neutrino flux, we demonstrate that spectral shape and flavor composition can be used to constrain or identify the source class. In order to quantify our observations, we use a model where the target photons are produced by the synchrotron emission of coaccelerated electrons, and we include magnetic field effects on the secondary muons, pions, and kaons. We find that the lack of observed events with energies much larger than PeV points towards sources with strong magnetic fields, which do not exhibit a direct correlation between highest cosmic ray and neutrino energies. While the simplest active galactic nuclei models with efficient proton acceleration plausibly describe the current data at about the 3? confidence level, we show that IceCube can rule out that the observed neutrinos stem from the sources of the ultrahigh-energy cosmic rays with a factor of 10 increased statistics at more than 5? if the current observations are confirmed. A possible caveat are sources with strong magnetic fields and high Lorentz factors, such as magnetic energy dominated gamma-ray bursts.

Walter Winter

2013-10-15T23:59:59.000Z

15

Neutrinos at IceCube from heavy decaying dark matter  

Science Journals Connector (OSTI)

A monochromatic line in the cosmic neutrino spectrum would be a smoking gun signature of dark matter. It is intriguing that the IceCube experiment has recently reported two PeV neutrino events with energies that may be equal up to experimental uncertainties, and which have a probability of being a background fluctuation estimated to be less than a percent. Here we explore prospects for these events to be the first indication of a monochromatic line signal from dark matter. While measurable annihilation signatures would seem to be impossible at such energies, we discuss the dark matter quantum numbers, effective operators, and lifetimes which could lead to an appropriate signal from dark matter decays. We will show that the set of possible decay operators is rather constrained and will focus on the following viable candidates which could explain the IceCube events: R-parity violating gravitinos, hidden sector gauge bosons, and singlet fermions in an extra dimension. In essentially all cases we find that a PeV neutrino line signal from dark matter would be accompanied by a potentially observable continuum spectrum of neutrinos rising towards lower energies.

Brian Feldstein; Alexander Kusenko; Shigeki Matsumoto; Tsutomu T. Yanagida

2013-07-02T23:59:59.000Z

16

Detection of atmospheric muon neutrinos with the IceCube 9-string detector  

Science Journals Connector (OSTI)

The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino detector under construction at the geographic South Pole. The dominant population of neutrinos detected in IceCube is due to meson decay in cosmic-ray air showers. These atmospheric neutrinos are relatively well understood and serve as a calibration and verification tool for the new detector. In 2006, the detector was approximately 10% completed, and we report on data acquired from the detector in this configuration. We observe an atmospheric neutrino signal consistent with expectations, demonstrating that the IceCube detector is capable of identifying neutrino events. In the first 137.4 days of live time, 234 neutrino candidates were selected with an expectation of 211±76.1(syst)±14.5(stat) events from atmospheric neutrinos.

A. Achterberg et al. (IceCube Collaboration)

2007-07-19T23:59:59.000Z

17

Black holes at the IceCube neutrino telescope  

Science Journals Connector (OSTI)

If the fundamental Planck scale is about a TeV and the cosmic neutrino flux is at the Waxman-Bahcall level, quantum black holes are created daily in the Antarctic ice cap. We reexamine the prospects for observing such black holes with the IceCube neutrino-detection experiment. To this end, we first revise the black hole production rate by incorporating the effects of inelasticty, i.e., the energy radiated in gravitational waves by the multipole moments of the incoming shock waves. After that we study in detail the process of Hawking evaporation accounting for the black hole’s large momentum in the lab system. We derive the energy spectrum of the Planckian cloud which is swept forward with a large, O(106), Lorentz factor. (It is noteworthy that the boosted thermal spectrum is also relevant for the study of near-extremal supersymmetric black holes, which could be copiously produced at the Large Hadron Collider.) In the semiclassical regime, we estimate the average energy of the boosted particles to be less than 20% the energy of the ? progenitor. Armed with such a constraint, we determine the discovery reach of IceCube by tagging on soft (relative to what one would expect from charged current standard model processes) muons escaping the electromagnetic shower bubble produced by the black hole’s light descendants. The statistically significant 5? excess extends up to a quantum gravity scale ?1.3??TeV.

Luis A. Anchordoqui; Matthew M. Glenz; Leonard Parker

2007-01-09T23:59:59.000Z

18

Is there evidence for sterile neutrinos in IceCube data?  

Science Journals Connector (OSTI)

Data from the Liquid Scintillator Neutrino Detector and Mini-Booster Neutrino experiments, and the revised expectations of the antineutrino flux from nuclear reactors suggest the existence of eV-mass sterile neutrinos. The 3+2 and 1+3+1 scenarios accommodate all relevant short-baseline neutrino data except for the low-energy Mini-Booster Neutrino Experiment anomaly. We analyze the angular distribution of upward going atmospheric neutrino events in the IceCube-40 data set for evidence of sterile neutrinos within these scenarios. Depending on how systematic uncertainties are handled, we find strong evidence for, or weak evidence against sterile neutrinos. We show that future IceCube data will definitively settle the issue.

V. Barger; Y. Gao; D. Marfatia

2012-01-18T23:59:59.000Z

19

Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration  

Science Journals Connector (OSTI)

A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle distribution differs for astrophysical and atmospheric signals. A global fit of the reconstructed energies and directions of observed events is performed, including possible neutrino flux contributions for an astrophysical signal and atmospheric backgrounds as well as systematic uncertainties of the experiment and theoretical predictions. The best fit yields an astrophysical signal flux for ??+?¯? of E2·?(E)=0.25×10?8??GeV?cm?2?s?1?sr?1, and a zero prompt component. Although the sensitivity of this analysis for astrophysical neutrinos surpasses the Waxman and Bahcall upper bound, the experimental limit at 90% confidence level is a factor of 1.5 above at a flux of E2·?(E)=1.44×10?8??GeV?cm?2?s?1?sr?1.

M.?G. Aartsen et al.

2014-03-25T23:59:59.000Z

20

Reconstructing the supernova bounce time with neutrinos in IceCube  

Science Journals Connector (OSTI)

Generic model predictions for the early neutrino signal of a core-collapse supernova (SN) imply that IceCube can reconstruct the bounce to within about ±3.5??ms at 95% C.L. (assumed SN distance 10 kpc), relevant for coincidence with gravitational-wave detectors. The timing uncertainty scales approximately with the distance squared. The offset between true and reconstructed bounce time of up to several ms depends on the neutrino flavor oscillation scenario. Our work extends the recent study of Pagliaroli et al. [Phys. Rev. Lett. 103, 031102 (2009)] and demonstrates IceCube’s superb timing capabilities for neutrinos from the next nearby SN.

Francis Halzen and Georg G. Raffelt

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High Energy Neutrinos from the Cold: Status and Prospects of the IceCube Experiment  

SciTech Connect (OSTI)

The primary motivation for building neutrino telescopes is to open the road for neutrino astronomy, and to offer another observational window for the study of cosmic ray origins. Other physics topics, such as the search for WIMPs, can also be developed with neutrino telescope. As of March 2008, the IceCube detector, with half of its strings deployed, is the world largest neutrino telescope taking data to date and it will reach its completion in 2011. Data taken with the growing detector are being analyzed. The results of some of these works are summarized here. AMANDA has been successfully integrated into IceCube data acquisition system and continues to accumulate data. Results obtained using only AMANDA data taken between the years 2000 and 2006 are also presented. The future of IceCube and the extensions in both low and high energy regions will finally be discussed in the last section.

IceCube Collaboration; Portello-Roucelle, Cecile; Collaboration, IceCube

2008-02-29T23:59:59.000Z

22

PeV neutrinos observed by IceCube from cores of active galactic nuclei  

Science Journals Connector (OSTI)

I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and ?-ray backgrounds.

Floyd W. Stecker

2013-08-15T23:59:59.000Z

23

IceCube sensitivity for neutrino flux from Fermi blazars in quiescent states  

Science Journals Connector (OSTI)

We investigate the IceCube detection potential of very high energy neutrinos from blazars, for different classes of hadronic models, taking into account the limits imposed on the neutrino flux by the recent Fermi telescope observations. Assuming the observed ?-ray emission is produced by the decay of neutral pions from proton-proton interactions, the measurement of the time-averaged spectral characteristics of blazars in the GeV energy band imposes upper limits on the time-averaged neutrino flux. Comparing these upper limits to the 5? discovery threshold of IceCube for different neutrino spectra and different source locations in the sky, we find that several BL Lacs with hard spectra in the GeV band are within the detection potential of IceCube. If the ?-ray emission is dominated by the neutral pion decay flux, none of the flat-spectrum radio quasars are detectable with IceCube. If the primary high energy proton spectrum is very hard and/or neutrinos are produced in proton photon, rather than proton-proton reactions, the upper limit on the neutrino flux imposed by the measured ?-ray spectra is relaxed and gamma-ray observations impose only lower bounds on the neutrino flux. We investigate whether these lower bounds guarantee the detection of blazars with very hard neutrino spectra (spectral index ???1), expected in the latter type model. We show that all the hadronic models of activity of blazars are falsifiable with IceCube. Furthermore, we show that models with ?-ray emission produced by the decay of neutral pions from proton-proton interactions can be readily distinguished from the models based on proton-gamma interactions and/or models predicting very hard high energy proton spectra via a study of the distribution of spectral indices of ?-ray spectra of sources detected with IceCube.

A. Neronov and M. Ribordy

2009-10-21T23:59:59.000Z

24

Photohadronic origin of $\\gamma$-ray BL Lac emission: implications for IceCube neutrinos  

E-Print Network [OSTI]

The recent IceCube discovery of 0.1-1 PeV neutrinos of astrophysical origin opens up a new era for high-energy astrophysics. Although there are various astrophysical candidate sources, a firm association of the detected neutrinos with one (or more) of them is still lacking. A recent analysis of plausible astrophysical counterparts within the error circles of IceCube events showed that likely counterparts for nine of the IceCube neutrinos include mostly BL Lacs, among which Mrk 421. Motivated by this result and a previous independent analysis on the neutrino emission from Mrk 421, we test the BL Lac-neutrino connection in the context of a specific theoretical model for BL Lac emission. We model the spectral energy distribution (SED) of the BL Lacs selected as counterparts of the IceCube neutrinos using a one-zone leptohadronic model and mostly nearly simultaneous data. The neutrino flux for each BL Lac is self-consistently calculated, using photon and proton distributions specifically derived for every individ...

Petropoulou, Maria; Padovani, Paolo; Mastichiadis, Apostolos; Resconi, Elisa

2015-01-01T23:59:59.000Z

25

Constraining the violation of the equivalence principle with IceCube atmospheric neutrino data  

Science Journals Connector (OSTI)

The recent high-statistics high-energy atmospheric neutrino data collected by IceCube open a new window to probe new physics scenarios that are suppressed in lower-energy neutrino experiments. In this paper we analyze the IceCube atmospheric neutrino data to constrain the violation of equivalence principle (VEP) in the framework of three neutrinos with nonuniversal gravitational couplings. In this scenario the effect of the VEP on neutrino oscillation probabilities can be parametrized by two parameters, ??21??2??1 and ??31??3??1, where ?i’s denote the coupling of neutrino mass eigenstates to the gravitational field. By analyzing the latest muon-tracks data sets of IceCube-40 and IceCube-79, besides providing the two-dimensional allowed regions in the (???21,???31) plane, we obtain the upper limits |???21|<9.1×10?27 (at 90% C.L.), which improves the previous limit by ?4 orders of magnitude, and |???31|?6×10?27 (at 90% C.L.), which improves the current limit by ?1 order of magnitude. Also we discuss in detail and analytically the effect of the VEP on neutrino oscillation probabilities.

A. Esmaili; D.?R. Gratieri; M.?M. Guzzo; P.?C. de Holanda; O.?L.?G. Peres; G.?A. Valdiviesso

2014-06-11T23:59:59.000Z

26

Cosmic neutrino background absorption line in the neutrino spectrum at IceCube  

Science Journals Connector (OSTI)

The IceCube experiment has recently reported a high energy neutrino spectrum between the TeV and PeV scales. The observed neutrino flux can be as a whole well fitted by a simple power law of the neutrino energy E?, E???? (???2). As a notable feature of the spectrum, however, it has a gap between 500 TeV and 1 PeV. Although the existence of the gap in the neutrino spectrum is not statistically significant at this point, it is very enticing to ask whether it might hint at some physics beyond the Standard Model. In this paper, we investigate a possibility that the gap can be interpreted as an absorption line in the power-law spectrum by the cosmic neutrino background through a new resonance in the MeV range. We also show that the absorption line has rich information about not only the MeV scale new particle but also the neutrino masses as well as the distances to the astrophysical sources of the high energy neutrinos. Viable models to achieve this possibility are also discussed.

Masahiro Ibe and Kunio Kaneta

2014-09-24T23:59:59.000Z

27

First Evidence For Atmospheric Neutrino-Induced Cascades with the IceCube Detector  

E-Print Network [OSTI]

IceCube is an all-flavor, cubic kilometer neutrino telescope currently under construction in the deep glacial ice at the South Pole. Its embedded optical sensors detect Cherenkov light from charged particles produced in neutrino interactions in the ice. For several years IceCube has been detecting muon tracks from charged-current muon neutrino interactions. However, IceCube has yet to observe the electromagnetic or hadronic particle showers or "cascades" initiated by charged-current or neutral-current neutrino interactions. The first detection of such an event signature is expected to come from the known flux of atmospheric electron and muon neutrinos. A search for atmospheric neutrino-induced cascades was performed using 275.46 days of data from IceCube's 22-string configuration. Reconstruction and background rejection techniques were developed to reach, for the first time, a signal-to-background ratio ~1. Above a reconstructed energy of 5 TeV, 12 candidate events were observed in the full dataset. The signa...

D'Agostino, Michelangelo

2009-01-01T23:59:59.000Z

28

Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube  

Science Journals Connector (OSTI)

A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the standard model, allow for neutrino oscillations that depend on the neutrino’s direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Because of the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by 3 orders of magnitude with respect to limits set by other experiments.

R. Abbasi et al. (IceCube Collaboration)

2010-12-09T23:59:59.000Z

29

Testing the hadronuclear origin of PeV neutrinos observed with IceCube  

Science Journals Connector (OSTI)

We consider implications of the IceCube signal for hadronuclear (pp) scenarios of neutrino sources such as galaxy clusters/groups and star-forming galaxies. Since the observed neutrino flux is comparable to the diffuse ?-ray background flux obtained by Fermi, we place new, strong upper limits on the source spectral index, ??2.1–2.2. In addition, the new IceCube data imply that these sources contribute at least 30%–40% of the diffuse ?-ray background in the 100 GeV range and even ?100% for softer spectra. Our results, which are insensitive to details of the pp source models, are one of the first strong examples of the multimessenger approach combining the measured neutrino and ?-ray fluxes. The pp origin of the IceCube signal can further be tested by constraining ? with sub-PeV neutrino observations, by unveiling the sub-TeV diffuse ?-ray background and by observing such pp sources with TeV ?-ray detectors. We also discuss specific pp source models with a multi-PeV neutrino break/cutoff, which are consistent with the current IceCube data.

Kohta Murase; Markus Ahlers; Brian C. Lacki

2013-12-03T23:59:59.000Z

30

Estimating nonlinear QCD effects in ultrahigh energy neutrino events at IceCube  

Science Journals Connector (OSTI)

The number of ultrahigh energy events at IceCube is estimated, for the first time, taking into account nonlinear QCD effects in the neutrino-hadron cross section. We assume that the extragalactic neutrino flux is given by ??(E?)=?0E??2 and estimate the neutrino-hadron cross section using the dipole approach and a phenomenological model for the dipole-hadron cross section based on nonlinear QCD dynamics. We demonstrate that the nonlinear prediction is able to describe the current IceCube data and that the magnitude of the nonlinear effects is larger than 20% for visible energies of order of 2 PeV and increases with the neutrino energy. Our main conclusion is that the nonlinear QCD effects are non-negligible and should be taken into account in the analysis of the number of ultrahigh energy events.

V.?P. Gonçalves and D.?R. Gratieri

2014-09-11T23:59:59.000Z

31

Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube  

SciTech Connect (OSTI)

A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillationmodels, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. Adiscrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improveconstraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by other experiments.

IceCube; etal, Abbasi, R,

2010-11-11T23:59:59.000Z

32

IceCube: An Instrument for Neutrino Astronomy  

E-Print Network [OSTI]

An Instrument for Neutrino Astronomy Francis Halzen 1 andAn Instrument for Neutrino Astronomy Francis Halzen 1 and94720 Abstract Neutrino astronomy beyond the Sun was first

Halzen, F.

2010-01-01T23:59:59.000Z

33

Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube  

E-Print Network [OSTI]

We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino was found in coincidence with one of the 506 observed bursts, consistent with the expectation from atmospheric backgrounds. Although GRBs have been proposed as candidate sources for ultra-high energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than $\\sim1\\%$ of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Lünemann, J; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Teši?, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vanheule, S; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M

2014-01-01T23:59:59.000Z

34

Probing neutrino oscillations from supernovae shock waves via the IceCube detector  

Science Journals Connector (OSTI)

The time dependent neutrino oscillation signals due to the passage of a shock wave through the supernovae are analyzed for the case of three active neutrinos and also for the case that there are two additional sterile neutrinos. It is shown that, even without flavor identification and energy measurement, detailed information about the masses and mixing angles of the neutrinos may be obtained with a detector with excellent time resolution such as IceCube. Such a signal would also give important information about the nature of the shock wave within the supernovae.

Sandhya Choubey; N. P. Harries; G. G. Ross

2006-09-25T23:59:59.000Z

35

On the origin of IceCube's PeV neutrinos  

SciTech Connect (OSTI)

The IceCube collaboration has recently reported the observation of two events with energies in excess of 1 PeV. While an atmospheric origin of these events cannot be ruled out at this time, this pair of showers may potentially represent the first observation of high-energy astrophysical neutrinos. In this paper, we argue that if these events are neutrino-induced, then the neutrinos are very likely to have been produced via photo-meson interactions taking place in the same class of astrophysical objects that are responsible for the acceleration of the ? 10{sup 17} eV cosmic ray spectrum. Among the proposed sources of such cosmic rays, gamma-ray bursts stand out as particularly capable of generating PeV neutrinos at the level implied by IceCube's two events. In contrast, the radiation fields in typical active galactic nuclei models are likely dominated by lower energy (UV) photons, and thus feature higher energy thresholds for pion production, leading to neutrino spectra which peak at EeV rather than PeV energies (models with significant densities of x-ray emission, however, could evade this problem). Cosmogenic neutrinos generated from the propagation of ultra-high energy cosmic rays similarly peak at energies that are much higher than those of the events reported by IceCube.

Cholis, Ilias; Hooper, Dan, E-mail: cholis@fnal.gov, E-mail: dhooper@fnal.gov [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2013-06-01T23:59:59.000Z

36

ANTARES Constrains a Blazar Origin of Two IceCube PeV Neutrino Events  

E-Print Network [OSTI]

The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Such objects are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons - and hence their neutrino progenitors - from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A...

Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; De Rosa, G; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Enzenhöfer, A; Escoffier, S; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Lefèvre, D; Leonora, E; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Neff, M; Nezri, E; Palioselitis, D; P?v?la?, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; de Wolf, E; Yatkin, K; Yepes, H; Zornoza, J D; Zúñiga, J; :,; Krauß, F; Kadler, M; Mannheim, K; Schulz, R; Trüstedt, J; Wilms, J; Ojha, R; Ros, E; Baumgartner, W; Beuchert, T; Blanchard, J; Bürkel, C; Carpenter, B; Edwards, P G; Glawion, D Eisenacher; Elsässer, D; Fritsch, U; Gehrels, N; Gräfe, C; Großberger, C; Hase, H; Horiuchi, S; Kappes, A; Kreikenbohm, A; Kreykenbohm, I; Langejahn, M; Leiter, K; Litzinger, E; Lovell, J E J; Müller, C; Phillips, C; Plötz, C; Quick, J; Steinbring, T; Stevens, J; Thompson, D J; Tzioumis, A K

2015-01-01T23:59:59.000Z

37

Search for neutrino-induced particle showers with IceCube-40  

Science Journals Connector (OSTI)

We report on the search for neutrino-induced particle showers, so-called cascades, in the IceCube-40 detector. The data for this search were collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV leads to the observation of 14 cascadelike events, again consistent with the prediction of 3.0 atmospheric neutrino and 7.7 atmospheric muon events. We hence set an upper limit of E2?lim?7.46×10?8??GeV?sr?1?s?1?cm?2 (90% C.L.) on the diffuse flux from astrophysical neutrinos of all neutrino flavors, applicable to the energy range 25 TeV to 5 PeV, assuming an E??2 spectrum and a neutrino flavor ratio of 1?1?1 at the Earth. The third analysis utilized a larger and optimized sample of atmospheric muon background simulation, leading to a higher energy threshold of 100 TeV. Three events were found over a background prediction of 0.04 atmospheric muon events and 0.21 events from the flux of conventional and prompt atmospheric neutrinos. Including systematic errors this corresponds to a 2.7? excess with respect to the background-only hypothesis. Our observation of neutrino event candidates above 100 TeV complements IceCube’s recently observed evidence for high-energy astrophysical neutrinos.

M.?G. Aartsen et al. (IceCube Collaboration)

2014-05-01T23:59:59.000Z

38

Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector  

E-Print Network [OSTI]

IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if GRBs are responsible for the observed cosmic-ray flux above $10^{18}$ eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from $p \\gamma$-interactions in the prompt phase of the GRB fireball, and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.

IceCube Collaboration; R. Abbasi; Y. Abdou; T. Abu-Zayyad; J. Adams; J. A. Aguilar; M. Ahlers; K. Andeen; J. Auffenberg; X. Bai; M. Baker; S. W. Barwick; R. Bay; J. L. Bazo Alba; K. Beattie; J. J. Beatty; S. Bechet; J. K. Becker; K. -H. Becker; M. L. Benabderrahmane; S. BenZvi; J. Berdermann; P. Berghaus; D. Berley; E. Bernardini; D. Bertrand; D. Z. Besson; D. Bindig; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; C. Bohm; D. Bose; S. Böser; O. Botner; J. Braun; A. M. Brown; S. Buitink; M. Carson; D. Chirkin; B. Christy; J. Clem; F. Clevermann; S. Cohen; C. Colnard; D. F. Cowen; M. V. D'Agostino; M. Danninger; J. Daughhetee; J. C. Davis; C. De Clercq; L. Demirörs; O. Depaepe; F. Descamps; P. Desiati; G. de Vries-Uiterweerd; T. DeYoung; J. C. Díaz-Vélez; M. Dierckxsens; J. Dreyer; J. P. Dumm; R. Ehrlich; J. Eisch; R. W. Ellsworth; O. Engdegård; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; T. Feusels; K. Filimonov; C. Finley; T. Fischer-Wasels; M. M. Foerster; B. D. Fox; A. Franckowiak; R. Franke; T. K. Gaisser; J. Gallagher; M. Geisler; L. Gerhardt; L. Gladstone; T. Glüsenkamp; A. Goldschmidt; J. A. Goodman; D. Grant; T. Griesel; A. Groß; S. Grullon; M. Gurtner; C. Ha; A. Hallgren; F. Halzen; K. Han; K. Hanson; D. Heinen; K. Helbing; P. Herquet; S. Hickford; G. C. Hill; K. D. Hoffman; A. Homeier; K. Hoshina; D. Hubert; W. Huelsnitz; J. -P. Hülß; P. O. Hulth; K. Hultqvist; S. Hussain; A. Ishihara; J. Jacobsen; G. S. Japaridze; H. Johansson; J. M. Joseph; K. -H. Kampert; A. Kappes; T. Karg; A. Karle; J. L. Kelley; N. Kemming; P. Kenny; J. Kiryluk; F. Kislat; S. R. Klein; J. -H. Köhne; G. Kohnen; H. Kolanoski; L. Köpke; S. Kopper; D. J. Koskinen; M. Kowalski; T. Kowarik; M. Krasberg; T. Krings; G. Kroll; K. Kuehn; T. Kuwabara; M. Labare; S. Lafebre; K. Laihem; H. Landsman; M. J. Larson; R. Lauer; R. Lehmann; J. Lünemann; J. Madsen; P. Majumdar; A. Marotta; R. Maruyama; K. Mase; H. S. Matis; K. Meagher; M. Merck; P. Mészáros; T. Meures; E. Middell; N. Milke; J. Miller; T. Montaruli; R. Morse; S. M. Movit; R. Nahnhauer; J. W. Nam; U. Naumann; P. Nießen; D. R. Nygren; S. Odrowski; A. Olivas; M. Olivo; A. O'Murchadha; M. Ono; S. Panknin; L. Paul; C. Pérez de los Heros; J. Petrovic; A. Piegsa; D. Pieloth; R. Porrata; J. Posselt; P. B. Price; M. Prikockis; G. T. Przybylski; K. Rawlins; P. Redl; E. Resconi; W. Rhode; M. Ribordy; A. Rizzo; J. P. Rodrigues; P. Roth; F. Rothmaier; C. Rott; T. Ruhe; D. Rutledge; B. Ruzybayev; D. Ryckbosch; H. -G. Sander; M. Santander; S. Sarkar; K. Schatto; T. Schmidt; A. Schoenwald; A. Schukraft; A. Schultes; O. Schulz; M. Schunck; D. Seckel; B. Semburg; S. H. Seo; Y. Sestayo; S. Seunarine; A. Silvestri; A. Slipak; G. M. Spiczak; C. Spiering; M. Stamatikos; T. Stanev; G. Stephens; T. Stezelberger; R. G. Stokstad; S. Stoyanov; E. A. Strahler; T. Straszheim; G. W. Sullivan; Q. Swillens; H. Taavola; I. Taboada; A. Tamburro; O. Tarasova; A. Tepe; S. Ter-Antonyan; S. Tilav; P. A. Toale; S. Toscano; D. Tosi; D. Tur?an; N. van Eijndhoven; J. Vandenbroucke; A. Van Overloop; J. van Santen; M. Vehring; M. Voge; B. Voigt; C. Walck; T. Waldenmaier; M. Wallraff; M. Walter; C. Weaver; C. Wendt; S. Westerhoff; N. Whitehorn; K. Wiebe; C. H. Wiebusch; D. R. Williams; R. Wischnewski; H. Wissing; M. Wolf; K. Woschnagg; C. Xu; X. W. Xu; G. Yodh; S. Yoshida; P. Zarzhitsky

2011-03-09T23:59:59.000Z

39

Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector  

Science Journals Connector (OSTI)

IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 1018??eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from p? interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.

R. Abbasi et al. (IceCube Collaboration)

2011-04-07T23:59:59.000Z

40

Sensitivity of the IceCube neutrino detector to dark matter annihilating in dwarf galaxies  

Science Journals Connector (OSTI)

In this paper, we compare the relative sensitivities of gamma-ray and neutrino observations to the dark matter annihilation cross section in leptophilic models such as have been designed to explain PAMELA data. We investigate whether the high energy neutrino telescope IceCube will be competitive with current and upcoming searches by gamma-ray telescopes, such as the Atmospheric Çerenkov Telescopes (H.E.S.S., VERITAS, and MAGIC), or the Fermi Gamma-Ray Space Telescope, in detecting or constraining dark matter particles annihilating in dwarf spheroidal galaxies. We find that after 10 years of observation of the most promising nearby dwarfs, IceCube will have sensitivity comparable to the current sensitivity of gamma-ray telescopes only for very heavy (mX?7??TeV) or relatively light (mX?200??GeV) dark matter particles which annihilate primarily to ?+?-. If dark matter particles annihilate primarily to ?+?-, IceCube will have superior sensitivity only for dark matter particle masses below the 200 GeV threshold of current Atmospheric Çerenkov Telescopes. If dark matter annihilations proceed directly to neutrino-antineutrino pairs a substantial fraction of the time, IceCube will be competitive with gamma-ray telescopes for a much wider range of dark matter masses.

Pearl Sandick; Douglas Spolyar; Matthew Buckley; Katherine Freese; Dan Hooper

2010-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope  

SciTech Connect (OSTI)

We present the results of searches for high-energy muon neutrinos from 41 gamma- ray bursts (GRBs) in the northern sky with the IceCube detector in its 22-string con-figuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 h to +3 haround each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman?Bahcall GRB flux for the prompt emission but calcu- late individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all three time windows the best estimate for the number of signal events is zero. Therefore, we place 90percent CL upper limits on the fluence from the prompt phase of 3.7 x 10-3 erg cm-2 (72TeV - 6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10-3 erg cm-2 (2.2TeV - 55TeV), where the quoted energy ranges contain 90percent of the expected signal events in the detector. The 90percent CL upper limit for the wide time window is 2.7 x 10-3 erg cm-2 (3TeV - 2.8 PeV) assuming an E-2 flux.

IceCube Collaboration; Abbasi, R.

2010-01-19T23:59:59.000Z

42

Diffuse neutrinos from extragalactic supernova remnants: Dominating the 100 TeV IceCube flux  

E-Print Network [OSTI]

IceCube has measured a diffuse astrophysical flux of TeV-PeV neutrinos. The most plausible sources are unique high energy cosmic ray accelerators like hypernova remnants (HNRs) and remnants from gamma ray bursts in star-burst galaxies, which can produce primary cosmic rays with the required energies and abundance. In this case, however, ordinary supernova remnants (SNRs), which are far more abundant than HNRs, produce a comparable or larger neutrino flux in the ranges up to 100-150 TeV energies, implying a spectral break in the IceCube signal around these energies. The SNRs contribution in the diffuse flux up to these hundred TeV energies provides a natural baseline and then constrains the expected PeV flux.

Chakraborty, Sovan

2015-01-01T23:59:59.000Z

43

Extending the Search for Neutrino Point Sources with IceCube above the Horizon  

Science Journals Connector (OSTI)

Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmospheric background is observed in a sky scan and in tests of source candidates. Upper limits are reported, which for the first time cover point sources in the southern sky up to EeV energies.

R. Abbasi et al. (IceCube Collaboration)

2009-11-24T23:59:59.000Z

44

TANAMI counterparts to IceCube high-energy neutrino events  

E-Print Network [OSTI]

Since the discovery of a neutrino flux in excess of the atmospheric background by the IceCube Collaboration, searches for the astrophysical sources have been ongoing. Due to the steeply falling background towards higher energies, the PeV events detected in three years of IceCube data are the most likely ones to be of extraterrestrial origin. Even excluding the PeV events detected so far, the neutrino flux is well above the atmospheric background, so it is likely that a number of sub-PeV events originate from the same astrophysical sources that produce the PeV events. We study the high-energy properties of AGN that are positionally coincident with the neutrino events from three years of IceCube data and show the results for event number 4. IC 4 is a event with a low angular error (7.1$^\\circ$) and a large deposited energy of 165 TeV. We use multiwavelength data, including Fermi/LAT and X-ray data, to construct broadband spectra and present parametrizations of the broadband spectral energy distributions with lo...

Krauß, Felicia; Baxter, Claire; Kadler, Matthias; Mannheim, Karl; Ojha, Roopesh; Gräfe, Christina; Müller, Cornelia; Wilms, Joern; Carpenter, Bryce; Schulz, Robert; TANAMI, on behalf of the

2015-01-01T23:59:59.000Z

45

TANAMI Blazars in the IceCube PeV Neutrino Fields  

E-Print Network [OSTI]

The IceCube Collaboration has announced the discovery of a neutrino flux in excess of the atmospheric background. Due to the steeply falling atmospheric background spectrum, events at PeV energies are most likely of extraterrestrial origin. We present the multiwavelength properties of the six radio brightest blazars positionally coincident with these events using contemporaneous data of the TANAMI blazar sample, including high-resolution images and spectral energy distributions. Assuming the X-ray to {\\gamma}-ray emission originates in the photoproduction of pions by accelerated protons, the integrated predicted neutrino luminosity of these sources is large enough to explain the two detected PeV events.

F. Krauß; M. Kadler; K. Mannheim; R. Schulz; J Trüstedt; J. Wilms; R. Ojha; E. Ros; G. Anton; W. Baumgartner; T. Beuchert; J. Blanchard; C. Bürkel; B. Carpenter; T. Eberl; P. G. Edwards; D. Eisenacher; D. Elsässer; K. Fehn; U. Fritsch; N. Gehrels; C. Gräfe; C. Großberger; H. Hase; S. Horiuchi; C. James; A. Kappes; U. Katz; A. Kreikenbohm; I. Kreykenbohm; M. Langejahn; K. Leiter; E. Litzinger; J. E. J. Lovell; C. Müller; C. Phillips; C. Plötz; J. Quick; T. Steinbring; J. Stevens; D. J. Thompson; A. K. Tzioumis

2014-06-03T23:59:59.000Z

46

Evidence for neutrino oscillations in the Sudbury Neutrino Observatory  

SciTech Connect (OSTI)

The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while {approx}2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 {+-} 0.065(stat.){+-}{sub 0.068}{sup 0.065}(sys.){+-}0.02(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, via the elastic-scattering interaction is [2.21{+-}0.22(stat.){+-}{sub 0.12}{sup 0.11}(sys.){+-}0.01(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, and via the neutral-current interaction is [5.05{+-}0.23(stat.){+-}{sub 0.37}{sup 0.31}(sys.){+-}0.06(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}. The electron-only flux seen via the charged-current interaction is more than 7{sigma} below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

Marino, Alysia Diane

2004-08-10T23:59:59.000Z

47

Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data  

Science Journals Connector (OSTI)

A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012–2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV–PeV range at the level of 10?8??GeV?cm?2?s?1?sr?1 per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7?. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed.

M.?G. Aartsen et al. (IceCube Collaboration)

2014-09-02T23:59:59.000Z

48

Physics reach of high-energy and high-statistics IceCube atmospheric neutrino data  

Science Journals Connector (OSTI)

This paper investigates the physics reach of the IceCube neutrino detector when it will have collected a data set of order one million atmospheric neutrinos with energies in the 0.1?104??TeV range. The paper consists of three parts. We first demonstrate how to simulate the detector performance using relatively simple analytic methods. Because of the high energies of the neutrinos, their oscillations, propagation in the Earth and regeneration due to ? decay must be treated in a coherent way. We set up the formalism to do this and discuss the implications. In a final section we apply the methods developed to evaluate the potential of IceCube to study new physics beyond neutrino oscillations. Not surprisingly, because of the increased energy and statistics over present experiments, existing bounds on violations of the equivalence principle and of Lorentz invariance can be improved by over 2 orders of magnitude. The methods developed can be readily applied to other nonconventional physics associated with neutrinos.

M. C. Gonzalez-Garcia; Francis Halzen; Michele Maltoni

2005-05-31T23:59:59.000Z

49

Galactic Center origin of a subset of IceCube neutrino events  

Science Journals Connector (OSTI)

The center of the Milky Way is a host to energetic phenomena across many electromagnetic wave bands and now possibly of high-energy neutrinos. We show that 5 out of 21 IceCube showerlike events, including a PeV event, likely originated from the Galactic Center region. A hard spectrum and flux inferred from these events are inconsistent with atmospheric neutrinos. The flux of these neutrinos is consistent with an extrapolation of the gamma-ray flux measured by Fermi-LAT from the inner Galactic region. This indicates a common hadronic origin of both, powered by supernovae. Three other showerlike events are spatially correlated with the Fermi bubbles, originating from the Galactic Center activity, within the uncertainty of reconstructing their arrival directions. The origin of the other neutrino events, including 7 tracklike events, is still elusive.

Soebur Razzaque

2013-10-18T23:59:59.000Z

50

Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope  

Science Journals Connector (OSTI)

Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ??Av??10-22??cm3?s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.

R. Abbasi et al. (IceCube Collaboration)

2011-07-29T23:59:59.000Z

51

Search for ultrahigh-energy tau neutrinos with IceCube  

Science Journals Connector (OSTI)

The first dedicated search for ultrahigh-energy (UHE) tau neutrinos of astrophysical origin was performed using the IceCube detector in its 22-string configuration with an instrumented volume of roughly 0.25??km3. The search also had sensitivity to UHE electron and muon neutrinos. After application of all selection criteria to approximately 200 live-days of data, we expect a background of 0.60±0.19(stat)+0.56-0.58(syst) events and observe three events, which after inspection, emerge as being compatible with background but are kept in the final sample. Therefore, we set an upper limit on neutrinos of all flavors from UHE astrophysical sources at 90% C.L. of E?2?90(?x)<16.3×10-8??GeV?cm-2?sr?-1?s-1 over an estimated primary neutrino energy range of 340 TeV to 200 PeV.

R. Abbasi et al. (IceCube Collaboration)

2012-07-26T23:59:59.000Z

52

First Observation of PeV-Energy Neutrinos with IceCube  

Science Journals Connector (OSTI)

We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04±0.16 and 1.14±0.17??PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current ?e,?,? (?¯e,?,?) or charged-current ?e (?¯e) interactions within the IceCube detector. The events were discovered in a search for ultrahigh energy neutrinos using data corresponding to 615.9 days effective live time. The expected number of atmospheric background is 0.082±0.004(stat)-0.057+0.041(syst). The probability of observing two or more candidate events under the atmospheric background-only hypothesis is 2.9×10-3 (2.8?) taking into account the uncertainty on the expected number of background events. These two events could be a first indication of an astrophysical neutrino flux; the moderate significance, however, does not permit a definitive conclusion at this time.

M. G. Aartsen et al. (IceCube Collaboration)

2013-07-08T23:59:59.000Z

53

IceCube: An Instrument for Neutrino Astronomy  

E-Print Network [OSTI]

such as quasars or gamma-ray bursts unfortunately point tosky with neutrinos from gamma-ray bursts and active galacticor MeV photons in gamma-ray-burst fireballs. Neutral and

Halzen, F.

2010-01-01T23:59:59.000Z

54

First search for extraterrestrial neutrino-induced cascades with IceCube  

SciTech Connect (OSTI)

We report on the first search for extraterrestrial neutrino-induced cascades in IceCube.The analyzed data were collected in the year 2007 when 22 detector strings were installed and operated. We will discuss the analysis methods used to reconstruct cascades and to suppress backgrounds. Simulated neutrino signal events with a E-2 energy spectrum, which pass the background rejection criteria, are reconstructed with a resolution Delta(log E) ~;; 0.27 in the energy range from ~;; 20 TeV to a few PeV. We present the range of the diffuse flux of extra-terrestrial neutrinos in the cascade channel in IceCube within which we expect to be able to put a limit.

IceCube Collaboration; Kiryluk, Joanna

2009-05-22T23:59:59.000Z

55

Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data  

E-Print Network [OSTI]

We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10\\,GeV and 100\\,GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $\\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\\times 10^{-3}\\,\\mathrm{eV}^2$ and $\\sin^2\\theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.

Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Brunner, J; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Lünemann, J; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Teši?, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M

2014-01-01T23:59:59.000Z

56

Neutrino Portal Dark Matter: From Dwarf Galaxies to IceCube  

E-Print Network [OSTI]

It has been suggested that the baseline scenario of collisionless cold dark matter over-predicts the numbers of satellite galaxies, as well as the dark matter (DM) densities in galactic centers. This apparent lack of structure at small scales can be accounted for if one postulates neutrino-DM and DM-DM interactions mediated by light O(MeV) force carriers. In this letter, we consider a simple, consistent model of neutrinophilic DM with these features where DM and a "secluded" SM-singlet neutrino species are charged under a new $U(1)$ gauge symmetry. An important ingredient of this model is that the secluded sector couples to the Standard Model fields only through neutrino mixing. We observe that the secluded and active neutrinos recouple, leading to a large relic secluded neutrino population. This relic population can prevent small-scale halos from collapsing, while at same time significantly modifying the optical depth of ultra-high-energy neutrinos recently observed at Icecube. We find that the bulk of the p...

Cherry, John F; Shoemaker, Ian M

2014-01-01T23:59:59.000Z

57

Standard model explanation of the ultrahigh energy neutrino events at IceCube  

Science Journals Connector (OSTI)

The recent observation of two PeV events at IceCube, followed by an additional 26 events between 30 and 300 TeV, has generated considerable speculations on its origin, and many exotic new physics explanations have been invoked. For a reliable interpretation, it is, however, important to first scrutinize the Standard Model (SM) expectations carefully, including the theoretical uncertainties, mainly due to the parton distribution functions. Assuming a new isotropic cosmic neutrino flux with a simple unbroken power-law spectrum, ??E?s for the entire energy range of interest, we find that with s=1.5–2, the SM neutrino-nucleon interactions are sufficient to explain all the observed events so far, without the need for any beyond the SM explanation. With more statistics, this powerful detector could provide a unique test of the SM up to the PeV scale and lead to important clues of new physics.

Chien-Yi Chen; P.?S. Bhupal Dev; Amarjit Soni

2014-02-25T23:59:59.000Z

58

Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos  

E-Print Network [OSTI]

We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.

The IceCube Collaboration; J. Ahrens

2003-05-12T23:59:59.000Z

59

Neutron \\beta-decay as the origin of IceCube's PeV (anti)neutrinos  

E-Print Network [OSTI]

Motivated by the indications of a possible deficit of muon tracks in the first three-year equivalent dataset of IceCube we investigate the possibility that the astrophysical (anti)neutrino flux (in the PeV energy range) could originate from \\beta-decay of relativistic neutrons. We show that to accommodate IceCube observations it is necessary that only \\sim 10% of the emitted cosmic rays in the energy decade 10^{8.5} \\alt E_{CR}/GeV \\alt 10^{9.5}$, yielding antineutrinos on Earth (10^{5.5} \\alt E_{\\bar \

Anchordoqui, Luis A

2014-01-01T23:59:59.000Z

60

Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope  

E-Print Network [OSTI]

of California. Search for muon neutrinos from Gamma-RaySearch for muon neutrinos from Gamma-Ray Bursts with theof searches for high-energy muon neutrinos from 41 gamma-

Abbasi, R.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Flavor Composition of the High-Energy Neutrino Events in IceCube  

Science Journals Connector (OSTI)

The IceCube experiment has recently reported the observation of 28 high-energy (>30??TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this Letter, we compute the compatibility of such an observation with possible combinations of neutrino flavors with relative proportion (?e??????)?. Although the 7?21 track-to-shower ratio is naively favored for the canonical (1?1?1)? at Earth, this is not true once the atmospheric muon and neutrino backgrounds are properly accounted for. We find that, for an astrophysical neutrino E?2 energy spectrum, (1?1?1)? at Earth is disfavored at 81% C.L. If this proportion does not change, 6 more years of data would be needed to exclude (1?1?1)? at Earth at 3? C.L. Indeed, with the recently released 3-yr data, that flavor composition is excluded at 92% C.L. The best fit is obtained for (1?0?0)? at Earth, which cannot be achieved from any flavor ratio at sources with averaged oscillations during propagation. If confirmed, this result would suggest either a misunderstanding of the expected background events or a misidentification of tracks as showers, or even more compellingly, some exotic physics which deviates from the standard scenario.

Olga Mena; Sergio Palomares-Ruiz; Aaron C. Vincent

2014-08-28T23:59:59.000Z

62

First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector  

Science Journals Connector (OSTI)

We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007–2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of 8.3±3.6. At 90% confidence we set an upper limit of E2?90%CL<3.6×10-7??GeV·cm-2·s-1·sr-1 on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that ??E-2 and the flavor composition of the ?e?????? flux is 1?1?1 at the Earth. The atmospheric neutrino analysis was optimized for lower energies. A total of 12 events were observed with energies above 5 TeV. The observed number of events is consistent with the expected background, within the uncertainties.

R. Abbasi et al. (IceCube Collaboration)

2011-10-03T23:59:59.000Z

63

Galactic halo origin of the neutrinos detected by IceCube  

Science Journals Connector (OSTI)

Recent IceCube results suggest that the first detection of very high energy astrophysical neutrinos have been accomplished. We consider these results at face value in a Galactic origin context. Emission scenarios from both the Fermi bubble and broader halo region are considered. We motivate that such an intensity of diffuse neutrino emission could be Galactic in origin if it is produced from an outflow into the halo region. This scenario requires cosmic ray transport within the outflow environment to be different to that inferred locally within the disk and that activity in the central part of the Galaxy accelerates cosmic rays to trans-“knee” energies before they escape into an outflow. The presence of a large reservoir of gas in a very extended halo around the Galaxy, recently inferred from x-ray observations, implies that the relatively modest acceleration power of 1039 erg s?1 in PeV energy cosmic rays may be sufficient to explain the observed neutrino flux. Such a luminosity is compatible with that required to explain the observed intensity of cosmic rays around the knee.

Andrew M. Taylor; Stefano Gabici; Felix Aharonian

2014-05-05T23:59:59.000Z

64

Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data  

Science Journals Connector (OSTI)

We report on a search for extremely-high energy neutrinos with energies greater than 106??GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half-completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of live time significantly improves model-independent limits from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an E-2 spectrum in the energy range 2.0×106-6.3×109??GeV to a level of E2??3.6×10-8??GeV?cm-2?sec-1?sr-1.

R. Abbasi et al. (IceCube Collaboration)

2011-05-24T23:59:59.000Z

65

Technology Development for a Neutrino AstrophysicalObservatory  

SciTech Connect (OSTI)

We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

Chaloupka, V.; Cole, T.; Crawford, H.J.; He, Y.D.; Jackson, S.; Kleinfelder, S.; Lai, K.W.; Learned, J.; Ling, J.; Liu, D.; Lowder, D.; Moorhead, M.; Morookian, J.M.; Nygren, D.R.; Price, P.B.; Richards, A.; Shapiro, G.; Shen, B.; Smoot, George F.; Stokstad, R.G.; VanDalen, G.; Wilkes, J.; Wright, F.; Young, K.

1996-02-01T23:59:59.000Z

66

Technology development for a neutrino astrophysical observatory. Letter of intent  

SciTech Connect (OSTI)

The authors propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

Chaloupka, V.; Cole, T.; Crawford, H.J. [and others

1996-02-01T23:59:59.000Z

67

A measurement of the atmospheric neutrino flux and oscillation parameters at the Sudbury Neutrino Observatory  

E-Print Network [OSTI]

Through-going muon events are analyzed as a function of their direction of travel through the Sudbury Neutrino Observatory. Based on simulations and previous measurements, muons with a zenith angle of 1 < cos([theta]zenith) ...

Sonley, Thomas John

2009-01-01T23:59:59.000Z

68

Searches for High-energy Neutrino Emission in the Galaxy with the Combined ICECUBE-AMANDA Detector  

Science Journals Connector (OSTI)

We report on searches for neutrino sources at energies above 200 GeV in the Northern sky of the Galactic plane, using the data collected by the South Pole neutrino telescope, IceCube, and AMANDA. The Galactic region considered in this work includes the local arm toward the Cygnus region and our closest approach to the Perseus Arm. The searches are based on the data collected between 2007 and 2009. During this time AMANDA was an integrated part of IceCube, which was still under construction and operated with 22 strings (2007-2008) and 40 strings (2008-2009) of optical modules deployed in the ice. By combining the advantages of the larger IceCube detector with the lower energy threshold of the more compact AMANDA detector, we obtain an improved sensitivity at energies below ~10 TeV with respect to previous searches. The analyses presented here are a scan for point sources within the Galactic plane, a search optimized for multiple and extended sources in the Cygnus region, which might be below the sensitivity of the point source scan, and studies of seven pre-selected neutrino source candidates. For one of them, Cygnus X-3, a time-dependent search for neutrino emission in coincidence with observed radio and X-ray flares has been performed. No evidence of a signal is found, and upper limits are reported for each of the searches. We investigate neutrino spectra proportional to E –2 and E –3 in order to cover the entire range of possible neutrino spectra. The steeply falling E –3 neutrino spectrum can also be used to approximate neutrino energy spectra with energy cutoffs below 50 TeV since these result in a similar energy distribution of events in the detector. For the region of the Galactic plane visible in the Northern sky, the 90% confidence level muon neutrino flux upper limits are in the range E 3 dN/dE ~ 5.4-19.5 ? 10–11 TeV2 cm–2 s–1 for point-like neutrino sources in the energy region [180.0 GeV-20.5 TeV]. These represent the most stringent upper limits for soft-spectra neutrino sources within the Galaxy reported to date.

IceCube Collaboration; R. Abbasi; Y. Abdou; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; D. Altmann; K. Andeen; J. Auffenberg; X. Bai; M. Baker; S. W. Barwick; V. Baum; R. Bay; K. Beattie; J. J. Beatty; S. Bechet; J. Becker Tjus; K.-H. Becker; M. Bell; M. L. Benabderrahmane; S. BenZvi; J. Berdermann; P. Berghaus; D. Berley; E. Bernardini; D. Bertrand; D. Z. Besson; D. Bindig; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; C. Bohm; D. Bose; S. Böser; O. Botner; L. Brayeur; A. M. Brown; R. Bruijn; J. Brunner; S. Buitink; M. Carson; J. Casey; M. Casier; D. Chirkin; B. Christy; F. Clevermann; S. Cohen; D. F. Cowen; A. H. Cruz Silva; M. Danninger; J. Daughhetee; J. C. Davis; C. De Clercq; F. Descamps; P. Desiati; G. de Vries-Uiterweerd; T. DeYoung; J. C. Díaz-Vélez; J. Dreyer; J. P. Dumm; M. Dunkman; R. Eagan; J. Eisch; R. W. Ellsworth; O. Engdegård; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; J. Feintzeig; T. Feusels; K. Filimonov; C. Finley; T. Fischer-Wasels; S. Flis; A. Franckowiak; R. Franke; K. Frantzen; T. Fuchs; T. K. Gaisser; J. Gallagher; L. Gerhardt; L. Gladstone; T. Glüsenkamp; A. Goldschmidt; J. A. Goodman; D. Góra; D. Grant; A. Groß; S. Grullon; M. Gurtner; C. Ha; A. Haj Ismail; A. Hallgren; F. Halzen; K. Hanson; D. Heereman; P. Heimann; D. Heinen; K. Helbing; R. Hellauer; S. Hickford; G. C. Hill; K. D. Hoffman; R. Hoffmann; A. Homeier; K. Hoshina; W. Huelsnitz; P. O. Hulth; K. Hultqvist; S. Hussain; A. Ishihara; E. Jacobi; J. Jacobsen; G. S. Japaridze; O. Jlelati; A. Kappes; T. Karg; A. Karle; J. Kiryluk; F. Kislat; J. Kläs; S. R. Klein; J.-H. Köhne; G. Kohnen; H. Kolanoski; L. Köpke; C. Kopper; S. Kopper; D. J. Koskinen; M. Kowalski; M. Krasberg; G. Kroll; J. Kunnen; N. Kurahashi; T. Kuwabara; M. Labare; K. Laihem; H. Landsman; M. J. Larson; R. Lauer; M. Lesiak-Bzdak; J. Lünemann; J. Madsen; R. Maruyama; K. Mase; H. S. Matis; F. McNally; K. Meagher; M. Merck; P. Mészáros; T. Meures; S. Miarecki; E. Middell; N. Milke; J. Miller; L. Mohrmann; T. Montaruli; R. Morse; S. M. Movit; R. Nahnhauer; U. Naumann; S. C. Nowicki; D. R. Nygren; A. Obertacke; S. Odrowski; A. Olivas; M. Olivo; A. O'Murchadha; S. Panknin; L. Paul; J. A. Pepper; C. Pérez de los Heros; D. Pieloth; N. Pirk; J. Posselt; P. B. Price; G. T. Przybylski; L. Rädel; K. Rawlins; P. Redl; E. Resconi; W. Rhode; M. Ribordy; M. Richman; B. Riedel; J. P. Rodrigues; F. Rothmaier; C. Rott; T. Ruhe; B. Ruzybayev; D. Ryckbosch; S. M. Saba; T. Salameh; H.-G. Sander; M. Santander; S. Sarkar; K. Schatto; M. Scheel; F. Scheriau; T. Schmidt; M. Schmitz; S. Schoenen; S. Schöneberg; L. Schönherr; A. Schönwald; A. Schukraft; L. Schulte; O. Schulz; D. Seckel; S. H. Seo; Y. Sestayo; S. Seunarine; M. W. E. Smith; M. Soiron; D. Soldin; G. M. Spiczak; C. Spiering; M. Stamatikos; T. Stanev; A. Stasik; T. Stezelberger; R. G. Stokstad; A. Stößl; E. A. Strahler; R. Ström; G. W. Sullivan; H. Taavola; I. Taboada; A. Tamburro; S. Ter-Antonyan; S. Tilav; P. A. Toale; S. Toscano; M. Usner; D. van der Drift; N. van Eijndhoven; A. Van Overloop; J. van Santen; M. Vehring; M. Voge; C. Walck; T. Waldenmaier; M. Wallraff; M. Walter; R. Wasserman; Ch. Weaver; C. Wendt; S. Westerhoff; N. Whitehorn; K. Wiebe; C. H. Wiebusch; D. R. Williams; H. Wissing; M. Wolf; T. R. Wood; K. Woschnagg; C. Xu; D. L. Xu; X. W. Xu; J. P. Yanez; G. Yodh; S. Yoshida; P. Zarzhitsky; J. Ziemann; A. Zilles; M. Zoll

2013-01-01T23:59:59.000Z

69

Neutral Current Detectors for the Sudbury Neutrino Observatory  

E-Print Network [OSTI]

3 Neutral Current Detectors for the Sudbury Neutrino Observatory Peter Michael Thornewell Lincoln), a 1,000 tonne heavy water Cerenkov detector presently under construction. This detector will measure the 8B e flux and energy spectrum via a pure charge current reaction, and independently the 8B total

Waltham, Chris

70

India-Based Neutrino Observatory (INO) Mar 28, 2014  

E-Print Network [OSTI]

India-Based Neutrino Observatory (INO) Mar 28, 2014 PRESS RELEASE Sub: Misreporting on Media of INO project strongly condemn the recent media mis-information campaign and vilification in reports that have. Such rumour-mongering is at best poor reporting, and at worst deliberate and malicious. It is reprehensible

Udgaonkar, Jayant B.

71

Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope  

E-Print Network [OSTI]

2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

Abbasi, R.

2010-01-01T23:59:59.000Z

72

Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube  

Science Journals Connector (OSTI)

A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18?000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject misreconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than 1%. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric ??+?¯? flux.

R. Abbasi et al. (IceCube Collaboration)

2011-01-05T23:59:59.000Z

73

SEARCH FOR TIME-INDEPENDENT NEUTRINO EMISSION FROM ASTROPHYSICAL SOURCES WITH 3 yr OF IceCube DATA  

E-Print Network [OSTI]

of Oxford, 1 Keble Road, Oxford OX1 3NP, UK Received 2013 July 25; accepted 2013 October 8; published 2013 December 3 ABSTRACT We present the results of a search for neutrino point sources using the IceCube data collected between 2008 April and 2011 May...-called first-order Fermi acceleration. Candidate sources of Galactic CRs are supernova explosions and their remnant shocks, which may accelerate charged particles via diffuse shock acceleration up to the CR “knee” (?3 × 1015 eV). At higher energies...

Aartsen, M. G.; Besson, David Zeke

2013-12-03T23:59:59.000Z

74

The IceCube Collaboration: contributions to the 30th International Cosmic Ray Conference (ICRC 2007)  

E-Print Network [OSTI]

This paper bundles 40 contributions by the IceCube collaboration that were submitted to the 30th International Cosmic Ray Conference ICRC 2007. The articles cover studies on cosmic rays and atmospheric neutrinos, searches for non-localized, extraterrestrial electron, muon and tau neutrino signals, scans for steady and intermittent neutrino point sources, searches for dark matter candidates, magnetic monopoles and other exotic particles, improvements in analysis techniques, as well as future detector extensions. The IceCube observatory will be finalized in 2011 to form a cubic-kilometer ice-Cherenkov detector at the location of the geographic South Pole. At the present state of construction, IceCube consists of 52 paired IceTop surface tanks and 22 IceCube strings with a total of 1426 Digital Optical Modules deployed at depths up to 2350 m. The observatory also integrates the 19 string AMANDA subdetector, that was completed in 2000 and extends IceCube's reach to lower energies. Before the deployment of IceTop, cosmic air showers were registered with the 30 station SPASE-2 surface array. IceCube's low noise Digital Optical Modules are very reliable, show a uniform response and record waveforms of arriving photons that are resolvable with nanosecond precision over a large dynamic range. Data acquisition, reconstruction and simulation software are running in production mode and the analyses, profiting from the improved data quality and increased overall sensitivity, are well under way.

The IceCube Collaboration

2007-11-02T23:59:59.000Z

75

The Final Results from the Sudbury Neutrino Observatory  

ScienceCinema (OSTI)

The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.

None

2011-04-25T23:59:59.000Z

76

Results from the Sudbury Neutrino Observatory Phase III  

SciTech Connect (OSTI)

The third and last phase of the Sudbury Neutrino Observatory (SNO) used a technique independent of previous methods, to measure the rate of neutral-current interactions in heavy water and determine precisely the total active {sup 8}B solar neutrino flux. The total flux obtained is 5.54{sub -0.31}{sup +0.33}(stat){sub -0.34}{sup +0.36}(syst) x 10{sup 6} cm{sup -2}s{sup -1}, in agreement with previous measurements and standard solar models. Results from a global analysis of solar and reactor neutrino give {Delta}m{sup 2} = 7.59{sub -0.21}{sup +0.19} x 10{sup -5} eV{sup 2} and {theta} = 34.4{sub -1.2}{sup +1.3} degrees with a reduced uncertainty on the mixing angle compared to previous phases.

SNO Collaboration; Prior, G.

2008-11-03T23:59:59.000Z

77

Optical calibration hardware for the Sudbury Neutrino Observatory  

E-Print Network [OSTI]

The optical properties of the Sudbury Neutrino Observatory (SNO) heavy water Cherenkov neutrino detector are measured in situ using a light diffusing sphere ("laserball"). This diffuser is connected to a pulsed nitrogen/dye laser via specially developed underwater optical fibre umbilical cables. The umbilical cables are designed to have a small bending radius, and can be easily adapted for a variety of calibration sources in SNO. The laserball is remotely manipulated to many positions in the D2O and H2O volumes, where data at six different wavelengths are acquired. These data are analysed to determine the absorption and scattering of light in the heavy water and light water, and the angular dependence of the response of the detector's photomultiplier tubes. This paper gives details of the physical properties, construction, and optical characteristics of the laserball and its associated hardware.

B. A. Moffat; R. J. Ford; F. A. Duncan; K. Graham; A. L. Hallin; C. A. W. Hearns; J. Maneira; P. Skensved; D. R. Grant

2005-07-19T23:59:59.000Z

78

Search for periodicities in the B8 solar neutrino flux measured by the Sudbury Neutrino Observatory  

Science Journals Connector (OSTI)

A search has been made for sinusoidal periodic variations in the B8 solar neutrino flux using data collected by the Sudbury Neutrino Observatory over a 4-year time interval. The variation at a period of 1 yr is consistent with modulation of the B8 neutrino flux by the Earth’s orbital eccentricity. No significant sinusoidal periodicities are found with periods between 1 d and 10 years with either an unbinned maximum likelihood analysis or a Lomb-Scargle periodogram analysis. The data are inconsistent with the hypothesis that the results of the recent analysis by Sturrock et al., based on elastic scattering events in Super-Kamiokande, can be attributed to a 7% sinusoidal modulation of the total B8 neutrino flux.

B. Aharmim et al. (SNO Collaboration)

2005-09-30T23:59:59.000Z

79

Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU)  

E-Print Network [OSTI]

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will feature the world's largest effective volume for neutrinos at an energy threshold of a few GeV, enabling it to reach its chief goal of determining the neutrino mass hierarchy (NMH) quickly and at modest cost. PINGU will be able to distinguish between the normal and inverted NMH at $3\\sigma$ significance with an estimated 3.5 years of data. With its unprecedented statistical sample of low energy atmospheric neutrinos, PINGU will also have highly competitive sensitivity to $\

,

2014-01-01T23:59:59.000Z

80

Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU)  

E-Print Network [OSTI]

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will feature the world's largest effective volume for neutrinos at an energy threshold of a few GeV, enabling it to reach its chief goal of determining the neutrino mass hierarchy (NMH) quickly and at modest cost. PINGU will be able to distinguish between the normal and inverted NMH at $3\\sigma$ significance with an estimated 3.5 years of data. With its unprecedented statistical sample of low energy atmospheric neutrinos, PINGU will also have highly competitive sensitivity to $\

The IceCube-PINGU Collaboration

2014-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Demystifying the PeV cascades in IceCube: Less (energy) is more (events)  

Science Journals Connector (OSTI)

The IceCube neutrino observatory has detected two cascade events with energies near 1 PeV [A. Ishihara Proceedings of Neutrino 2012 Conference, http://neu2012.kek.jp/index.html; M. Aartsen et al. (IceCube Collaboration) Phys. Rev. Lett. 111, 021103 (2013)]. Without invoking new physics, we analyze the source of these neutrinos. We show that atmospheric conventional neutrinos and cosmogenic neutrinos (those produced in the propagation of ultra-high-energy cosmic rays) are strongly disfavored. For atmospheric prompt neutrinos or a diffuse background of neutrinos produced in astrophysical objects, the situation is less clear. We show that there is tension with observed data, but that the details depend on the least-known aspects of the IceCube analysis. Very likely, prompt neutrinos are disfavored and astrophysical neutrinos are plausible. We demonstrate that the fastest way to reveal the origin of the observed PeV neutrinos is to search for neutrino cascades in the range below 1 PeV, for which dedicated analyses with high sensitivity have yet to appear, and where many more events could be found.

Ranjan Laha; John F. Beacom; Basudeb Dasgupta; Shunsaku Horiuchi; Kohta Murase

2013-08-21T23:59:59.000Z

82

Catching cosmic clues in the ice - recent results from IceCube  

E-Print Network [OSTI]

IceCube is a neutrino observatory located deep in the Antarctic glacier close to the geographical South Pole. Close to a gigaton of ice has been instrumented with optical sensors with the primary goal of searching for neutrinos from the still unknown sources of the highest-energy cosmic rays. Last year, IceCube observed for the first time ever a handful of high-energy neutrinos which must have originated outside the solar system. The discovery was named the 2013 Breakthrough of the Year by the British magazine Physics World. It is the first necessary step to actually achieve the dream of charting the places in the universe able to accelerate hadrons to energies over a million times higher than those at the LHC. The science goals of IceCube extend beyond astrophysics: IceCube is also a powerful tool for searches of dark matter and can be used to study phenomena connected to the neutrinos themselves, like neutrino oscillations. The talk will be an update on the most recent results from IceCube.

CERN. Geneva

2014-01-01T23:59:59.000Z

83

Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory  

Science Journals Connector (OSTI)

We report results from a combined analysis of solar neutrino data from all phases of the Sudbury Neutrino Observatory (SNO). By exploiting particle identification information obtained from the proportional counters installed during the third phase, this analysis improved background rejection in that phase of the experiment. The combined analysis of the SNO data resulted in a total flux of active neutrino flavors from 8B decays in the Sun of (5.25±0.16(stat.)?0.13+0.11(syst.))×106cm?2s?1, while a two-flavor neutrino oscillation analysis yielded ?m212=(5.6?1.4+1.9)×10?5eV2 and tan2?12=0.427?0.029+0.033. A three-flavor neutrino oscillation analysis combining the SNO result with results of all other solar neutrino experiments and reactor neutrino experiments yielded ?m212=(7.46?0.19+0.20)×10?5eV2, tan2?12=0.443?0.025+0.030, and sin2?13=(2.49?0.32+0.20)×10?2.

B. Aharmim et al. (SNO Collaboration)

2013-08-01T23:59:59.000Z

84

Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory  

Science Journals Connector (OSTI)

Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth’s surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and unoscillated portion of the neutrino flux. A total of 514 muonlike events are measured between -1?cos??zenith?0.4 in a total exposure of 2.30×1014??cm2?s. The measured flux normalization is 1.22±0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos??zenith>0.4 is measured to be (3.31±0.01(stat)±0.09(sys))×10-10???/s/cm2.

B. Aharmim et al. (SNO Collaboration)

2009-07-10T23:59:59.000Z

85

The IceCube Collaboration:contributions to the 30 th International Cosmic Ray Conference (ICRC 2007),  

SciTech Connect (OSTI)

This paper bundles 40 contributions by the IceCube collaboration that were submitted to the 30th International Cosmic Ray Conference ICRC 2007. The articles cover studies on cosmic rays and atmospheric neutrinos, searches for non-localized, extraterrestrial {nu}{sub e}, {nu}{sub {mu}} and {nu}{sub {tau}} signals, scans for steady and intermittent neutrino point sources, searches for dark matter candidates, magnetic monopoles and other exotic particles, improvements in analysis techniques, as well as future detector extensions. The IceCube observatory will be finalized in 2011 to form a cubic-kilometer ice-Cherenkov detector at the location of the geographic South Pole. At the present state of construction, IceCube consists of 52 paired IceTop surface tanks and 22 IceCube strings with a total of 1426 Digital Optical Modules deployed at depths up to 2350 m. The observatory also integrates the 19 string AMANDA subdetector, that was completed in 2000 and extends IceCube's reach to lower energies. Before the deployment of IceTop, cosmic air showers were registered with the 30 station SPASE-2 surface array. IceCube's low noise Digital Optical Modules are very reliable, show a uniform response and record waveforms of arriving photons that are resolvable with nanosecond precision over a large dynamic range. Data acquisition, reconstruction and simulation software are running in production mode and the analyses, profiting from the improved data quality and increased overall sensitivity, are well under way.

IceCube Collaboration; Ackermann, M.

2007-11-02T23:59:59.000Z

86

The Design and Performance of IceCube DeepCore  

E-Print Network [OSTI]

The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher...

,

2011-01-01T23:59:59.000Z

87

Historic Sudbury Neutrino Observatory Data, Carried by ESnet...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sun) to muon or tau neutrinos. In 2001, Science Magazine identified SNO's solution to the solar neutrino mystery as one of their 10 science breakthroughs of the year. "SNO data...

88

SEARCHES FOR HIGH-FREQUENCY VARIATIONS IN THE {sup 8}B SOLAR NEUTRINO FLUX AT THE SUDBURY NEUTRINO OBSERVATORY  

SciTech Connect (OSTI)

We have performed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory, motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar {sup 8}B neutrinos. The first search looked for any significant peak in the frequency range 1-144 day{sup -1}, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the Solar and Heliospheric Observatory satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

Aharmim, B.; Chauhan, D. [Department of Physics and Astronomy, Laurentian University, Sudbury, ON P3E 2C6 (Canada); Ahmed, S. N.; Boulay, M. G.; Cai, B.; Chen, M.; Dai, X. [Department of Physics, Queen's University, Kingston, ON K7L 3N6 (Canada); Anthony, A. E. [Department of Physics, University of Texas at Austin, Austin, TX 78712-0264 (United States); Barros, N. [Laboratorio de Instrumentacao e Fisica Experimental de PartIculas, Av. Elias Garcia 14, 1, 1000-149 Lisboa (Portugal); Beier, E. W.; Deng, H. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396 (United States); Bellerive, A.; Boudjemline, K. [Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, Ottawa, ON K1S 5B6 (Canada); Beltran, B. [Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2R3 (Canada); Bergevin, M.; Chan, Y. D. [Institute for Nuclear and Particle Astrophysics and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Biller, S. D.; Cleveland, B. T. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Burritt, T. H.; Cox, G. A. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States)

2010-02-10T23:59:59.000Z

89

Historic Sudbury Neutrino Observatory Data, Carried by ESnet, Lives on at  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Historic Sudbury Historic Sudbury Neutrino Observatory Data, Carried by ESnet, Lives on at NERSC Historic Sudbury Neutrino Observatory Data, Carried by ESnet, Lives on at NERSC January 26, 2010 | Tags: Astrophysics Contact: Linda Vu, lvu@lbl.gov, +1 510 486 2402 SNO.jpg SNO onsists of an 18-meters-in-diameter stainless steel geodesic sphere inside of which is an acrylic vessel filled with 1000 tons of heavy water (deuterium oxide or D2O). Attached to the sphere are 9,522 ultra-sensitive light-sensors called photomultiplier tubes. When neutrinos passing through the heavy water interact with deuterium nuclei, flashes of light are emitted. The photomultiplier tubes detect these light flashes and convert them into electronic signals that scientists can analyze for the presence

90

IceCube: A Cubic Kilometer Radiation Detector  

SciTech Connect (OSTI)

IceCube is a 1 km{sup 3} neutrino detector now being built at the Amudsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate {nu}{sub {mu}}, {nu}{sub t}, and {nu}{sub {tau}} interactions because of their different topologies. IceCube construction is currently 50% complete.

IceCube Collaboration; Klein, Spencer R; Klein, S.R.

2008-06-01T23:59:59.000Z

91

Optimization of the design of OMNIS, the observatory of multiflavor neutrinos from supernovae  

E-Print Network [OSTI]

A Monte Carlo code has been developed to simulate the operation of the planned detectors in OMNIS, a supernova neutrino observatory. OMNIS will detect neutrinos originating from a core collapse supernova by the detection of spalled neutrons from Pb- or Fe-nuclei. This might be accomplished using Gd-loaded liquid scintillator. Results for the optimum configuration for such modules with respect to both neutron detection efficiency and cost efficiency are presented. Careful consideration has been given to the expected levels of radioactive backgrounds and their effects. The results show that the amount of data to be processed by a software trigger can be reduced to the 30%.

J. J. Zach; A. StJ. Murphy; D. Marriott; R. N. Boyd

2002-05-17T23:59:59.000Z

92

Low-energy-threshold analysis of the Phase I and Phase II data sets of the Sudbury Neutrino Observatory  

E-Print Network [OSTI]

Results are reported from a joint analysis of Phase I and Phase II data from the Sudbury Neutrino Observatory. The effective electron kinetic energy threshold used is Teff=3.5 MeV, the lowest analysis threshold yet achieved ...

Monroe, Jocelyn

93

Enhanced crustal geo-neutrino production near the Sudbury Neutrino Observatory, Ontario, Canada  

E-Print Network [OSTI]

records average crustal radio-activity over the whole crustal column and is unaffected by small-scale Observatory (SNO) has been in operation since November 1999. The upgrade of the facility to SNO+ in the coming

Long, Bernard

94

Measurement of the ?e and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set  

Science Journals Connector (OSTI)

This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of 3He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active 8B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54?0.31+0.33(stat.)?0.34+0.36(syst.)×106 cm?2 s?1, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of ?m2=7.59?0.21+0.19×10?5eV2 and ?=34.4?1.2+1.3degrees.

B. Aharmim et al. (SNO Collaboration)

2013-01-18T23:59:59.000Z

95

Search for high-energy muon neutrinos from the "naked-eye" GRB080319B with the IceCube neutrino telescope  

E-Print Network [OSTI]

California. Search for high-energy muon neutrinos from the “Search for high-energy muon neutrinos from the “naked-eye”IceCube detector for high-energy muon neu- trinos from GRB

Abbasi, R.; IceCube Collaboration

2009-01-01T23:59:59.000Z

96

Calibration of Muon Reconstruction Algorithms Using an External Muon Tracking System at the Sudbury Neutrino Observatory  

E-Print Network [OSTI]

To help constrain the algorithms used in reconstructing high-energy muon events incident on the Sudbury Neutrino Observatory (SNO), a muon tracking system was installed. The system consisted of four planes of wire chambers, which were triggered by scintillator panels. The system was integrated with SNO's main data acquisition system and took data for a total of 95 live days. Using cosmic-ray events reconstructed in both the wire chambers and in SNO's water Cherenkov detector, the external muon tracking system was able to constrain the uncertainty on the muon direction to better than 0.6 degrees.

SNO Collaboration

2011-05-06T23:59:59.000Z

97

Constraints on Nucleon Decay via Invisible Modes from the Sudbury Neutrino Observatory  

Science Journals Connector (OSTI)

Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to “invisible” modes, such as n?3?. The analysis was based on a search for ? rays from the deexcitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of ?inv>2×1029??yr is obtained at 90% confidence for either neutron- or proton-decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton-decay modes and 400 times more stringent than similar neutron modes.

S. N. Ahmed et al. (SNO Collaboration)

2004-03-10T23:59:59.000Z

98

IceCube Collaboration Contributions to ARENA 2008  

E-Print Network [OSTI]

Contributions of the IceCube Collaboration to the 3rd International Workshop on Acoustic and Radio EeV Neutrino detection Activities (ARENA 2008). The conference was held at Roma University "Sapienza," June 25-27, 2008, in Rome, Italy. This is an html index of the IceCube Collaboration contributions, with clickable links to the individual papers.

IceCube Collaboration

2008-11-15T23:59:59.000Z

99

New physics with IceCube  

Science Journals Connector (OSTI)

IceCube, a cubic kilometer neutrino telescope, will be capable of probing neutrino-nucleon interactions in the ultrahigh energy regime, far beyond the energies reached by colliders. In this article we introduce a new observable that combines several advantages; it only makes use of the upward-going neutrino flux, so that the Earth filters the atmospheric muons, and it is only weakly dependent on the initial astrophysical flux uncertainties.

Matias M. Reynoso and Oscar A. Sampayo

2007-08-17T23:59:59.000Z

100

The IceCube data acquisition system for galactic core collapse supernova searches  

Science Journals Connector (OSTI)

The IceCube Neutrino Observatory was designed to detect highly energetic neutrinos. The detector was built as a lattice of 5160 photomultiplier tubes monitoring one cubic kilometer of clear Antarctic ice. Due to low photomultiplier dark noise rates in the cold and radio-pure ice IceCube is also able to detect bursts of O(10MeV) neutrinos expected to be emitted from core collapse supernovae. The detector will provide the world’s highest statistical precision for the lightcurves of galactic supernovae by observing an induced collective rise in all photomultiplier rates [1]. This paper presents the supernova data acquisition system the search algorithms for galactic supernovae as well as the recently implemented HitSpooling DAQ extension. HitSpooling will overcome the current limitation of transmitting photomultiplier rates in intervals of 1.6384 ms by storing all recorded time-stamped hits for supernova candidate triggers. From the corresponding event-based information the average neutrino energy can be estimated and the background induced by detector noise and atmospheric muons can be reduced.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Search for high-energy muon neutrinos from the "naked-eye" GRB080319B with the IceCube neutrino telescope  

E-Print Network [OSTI]

one of the brightest gamma-ray bursts (GRBs) ever observed.cosmic high-energy neutrinos, gamma-ray-burst, GRB 080319BLong duration gamma-ray bursts (GRBs) are thought to

Abbasi, R.; IceCube Collaboration

2009-01-01T23:59:59.000Z

102

Day-night asymmetry of high and low energy solar neutrino events in Super-Kamiokande and in the Sudbury Neutrino Observatory  

E-Print Network [OSTI]

In the context of solar neutrino oscillations among active states, we briefly discuss the current likelihood of Mikheyev-Smirnov-Wolfenstein (MSW) solutions to the solar neutrino problem, which appear to be currently favored at large mixing, where small Earth regeneration effects might still be observable in Super-Kamiokande (SK) and in the Sudbury Neutrino Observatory (SNO). We point out that, since such effects are larger at high (low) solar neutrino energies for high (low) values of the mass square difference \\delta m^2, it may be useful to split the night-day rate asymmetry in two separate energy ranges. We show that the difference \\Delta of the night-day asymmetry at high and low energy may help to discriminate the two large-mixing solutions at low and high \\delta m^2 through a sign test, both in SK and in SNO, provided that the sensitivity to \\Delta can reach the (sub)percent level.

G. L. Fogli; E. Lisi; D. Montanino; A. Palazzo

2000-08-01T23:59:59.000Z

103

Grand Observatories and multiple-OWL for high energy neutrino astrophysics  

Science Journals Connector (OSTI)

A possible “Space Factory” on the International Space Station (ISS) for “Grand Observatories” would permit a large astrophysical observatory in space. Grand-Observatories could revolutionize the great observatories that were hitherto pre-assembled and deployed by the Space Transportation System (STS). The concept of the ISS-Space-Factory envisages a plan of orbital construction fine-tuning and deployment of large-scale astrophysical instruments into the desired free-flying orbit. It incorporates physical aids of the robotics arms and Extra-Vehicular Activities (EVA) of astronauts. This concept study also examines the necessary infrastructure on ISS for manufacturing a large spaceship for future deployment to the Moon Mars and other interplanetary destinations. We envision a step-by-step advancement of the “Space Factory” with the most frontier astrophysical programs. Less demanding experiments could precede the construction of the most demanding optical telescopes. Multiple-OWL (Orbiting-array of Wide-angle Light collector) has very forgiving optical resolution (?0.1 degrees) and would be suitable for the first generation payload to be built on and deployed from the ISS. This system is an earth’s night-sky-watcher for observing the highest energy cosmic rays and other atmospheric phenomena and is currently in the SEU Explorer Concept. Using the Space Factory this collector can drastically advance its capacity to cover a 120° Field-of-View (FOV) in which the entire horizon of the earth (?6000 km diameter) can be viewed from a low-earth orbit (?1000 km). We have already developed a revolutionary wide-angle Fresnel-lens optic in the OWL program and the Multiple-OWL can use several units of them. As one of the Grand Observatories the proposed Multiple-OWL satellite can open a new window for observational universe in terms of high energy neutrino astrophysics. The OWL may also be used for monitoring earth-threatening meteorites if flipped on orbit at daytime for deep space observation.

Yoshiyuki Takahashi; John O. Dimmock; Lloyd W. Hillman; James B. Hadaway; David J. Lamb; Mamoru Mohri; Toshikazu Ebisuzaki

1999-01-01T23:59:59.000Z

104

An array of low-background 3He proportional counters for theSudbury Neutrino Observatory  

SciTech Connect (OSTI)

An array of Neutral-Current Detectors (NCDs) has been builtin order to make a unique measurement of the total active ux of solarneutrinos in the Sudbury Neutrino Observatory (SNO). Data in the thirdphase of the SNO experiment were collected between November 2004 andNovember 2006, after the NCD array was added to improve theneutral-current sensitivity of the SNO detector. This array consisted of36 strings of proportional counters lled with a mixture of 3He and CF4gas capable of detecting the neutrons liberated by the neutrino-deuteronneutral current reaction in the D2O, and four strings lled with a mixtureof 4He and CF4 gas for background measurements. The proportional counterdiameter is 5 cm. The total deployed array length was 398 m. The SNO NCDarray is the lowest-radioactivity large array of proportional countersever produced. This article describes the design, construction,deployment, and characterization of the NCD array, discusses theelectronics and data acquisition system, and considers event signaturesand backgrounds.

Amsbaugh, J.F.; Anaya, J.M.; Banar, J.; Bowles, T.J.; Browne,M.C.; Bullard, T.V.; Burritt, T.H.; Cox-Mobrand, G.A.; Dai, X.; H.Deng,X.; Di Marco, M.; Doe, P.J.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Earle, E.D.; Elliott, S.R.; Esch, E.-I.; Fergani, H.; Formaggio, J.A.; Fowler, M.M.; Franklin, J.E.; Geissbuehler, P.; Germani, J.V.; Goldschmidt, A.; Guillian, E.; Hallin, A.L.; Harper, G.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heise, J.; Hime, A.; Howe, M.A.; Huang, M.; Kormos, L.L.; Kraus, C.; Krauss, C.B.; Law, J.; Lawson, I.T.; Lesko,K.T.; Loach, J.C.; Majerus, S.; Manor, J.; McGee, S.; Miknaitis, K.K.S.; Miller, G.G.; Morissette, B.; Myers, A.; Oblath, N.S.; O'Kee, H.M.; Ollerhead, R.W.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Reitzner,S.D.; Rielage, K.; Robertson, R.G.H.; Skensved, P.; Smith, A.R.; Smith,M.W.E.; Steiger, T.D.; Stonehill,L.C.; Thornewell, P.M.; Tolich, N.; VanDevender, B.A.; VanWechel, T.D.; Wall, B.L.; Tseung, H.W.C.; Wendland,J.; West, N.; Wilhelmy, J.B.; Wilkerson, J.F.; Wouters, J.M.

2007-02-01T23:59:59.000Z

105

IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters  

Science Journals Connector (OSTI)

We present the results of a first search for self-annihilating dark matter in nearby galaxies and galaxy clusters using a sample of high-energy neutrinos acquired in 339.8 days of live time during 2009/10 with the IceCube neutrino observatory in its 59-string configuration. The targets of interest include the Virgo and Coma galaxy clusters, the Andromeda galaxy, and several dwarf galaxies. We obtain upper limits on the cross section as a function of the weakly interacting massive particle mass between 300 GeV and 100 TeV for the annihilation into bb¯, W+W-, ?+?-, ?+?-, and ??¯. A limit derived for the Virgo cluster, when assuming a large effect from subhalos, challenges the weakly interacting massive particle interpretation of a recently observed GeV positron excess in cosmic rays.

M. G. Aartsen et al. (IceCube Collaboration)

2013-12-06T23:59:59.000Z

106

Independent Measurement of the Total Active B8 Solar Neutrino Flux Using an Array of He3 Proportional Counters at the Sudbury Neutrino Observatory  

Science Journals Connector (OSTI)

The Sudbury Neutrino Observatory (SNO) used an array of He3 proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (?x) B8 solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54-0.31+0.33(stat)-0.34+0.36(syst)×106??cm-2?s-1, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields ?m2=7.59-0.21+0.19×10-5??eV2 and ?=34.4-1.2+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO’s previous results.

B. Aharmim et al. (SNO Collaboration)

2008-09-09T23:59:59.000Z

107

Energy and Matter: The design of a nature centre, tunnel, and neutrino observatory.  

E-Print Network [OSTI]

??Neutrino physics proposes radical new conceptions of matter. Contemplating the extraordinary and mysterious nature of neutrinos in architectural terms, Energy and Matter considers the ideas… (more)

Elsworthy, William

2015-01-01T23:59:59.000Z

108

Solar neutrino measurement in SK and larger detector a Kamioka observatory, ICRR, Univ. of Tokyo,  

E-Print Network [OSTI]

the solar neutrino ux but also its energy spectrum and time variations such as day-night and seasonal di#11). The advantages of the detector as a solar neutrino observation are the time variation measurements and very-I 2.1. Solar neutrino ux The observed solar neutrino ux in SK-I, whose energy threshold is 5.0Me

Tokyo, University of

109

Probing leptoquark production at IceCube  

Science Journals Connector (OSTI)

We emphasize the inelasticity distribution of events detected at the IceCube neutrino telescope as an important tool for revealing new physics. This is possible because the unique energy resolution at this facility allows to separately assign the energy fractions for emergent muons and taus in neutrino interactions. As a particular example, we explore the possibility of probing second and third generation leptoquark parameter space (coupling and mass). We show that production of leptoquarks with masses ?250??GeV and diagonal generation couplings of O(1) can be directly tested if the cosmic neutrino flux is at the Waxman-Bahcall level.

Luis A. Anchordoqui; Carlos A. García Canal; Haim Goldberg; Daniel Gomez Dumm; Francis Halzen

2006-12-29T23:59:59.000Z

110

First Neutrino Observations from the Sudbury Neutrino Observatory A.B. McDonald, Queen's University, Kingston, Ontario, Canada  

E-Print Network [OSTI]

's University, Kingston, Ontario, Canada For the SNO Collaboration a The #12;rst neutrino observations from and location, the data in the region of interest appear to be dominated by 8 B solar neutrinos, detected's Creighton mine near Sudbury, Ontario, Canada. The SNO detector has been #12;lled with water since May, 1999

Waltham, Chris

111

Searching for Cosmic Accelerators via IceCube  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Searching for Cosmic Searching for Cosmic Accelerators via IceCube Searching for Cosmic Accelerators via IceCube Berkeley Lab Researchers Part of an International Hunt November 21, 2013 Lynn Yarris, lcyarris@lbl.gov, 510.486.5375 Bert.jpg This event display shows "Bert," one of two neutrino events discovered at IceCube whose energies exceeded one petaelectronvolt (PeV). The colors show when the light arrived, with reds being the earliest, succeeded by yellows, greens and blues. The size of the circle indicates the number of photons observed. (Courtesy of IceCube Lab) In our universe there are particle accelerators 40 million times more powerful than the Large Hadron Collider (LHC) at CERN. Scientists don't know what these cosmic accelerators are or where they are located, but new

112

Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set  

SciTech Connect (OSTI)

This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

2007-02-01T23:59:59.000Z

113

The Sudbury Neutrino Observatory # C.J. Virtue (for the SNO Collaboration + ) a  

E-Print Network [OSTI]

of Physics and Astronomy, Laurentian University, Sudbury, ON, Canada P3E 2C6. Designed and constructed to address the solar neutrino problem by measuring the charged and neutral current interactions of solar. In particular, SNO was designed to ad­ dress the problem of the apparent deficit of solar neutrinos observed

Waltham, Chris

114

Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources  

E-Print Network [OSTI]

Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy $\\gtrsim 30$ TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at $>60$ EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with $\\ge 100$ EeV UHECR arrival directions at confidence level $\\approx 93\\%$. The strength of the correlation decreases with decreasing UHECR energy and no correlation exists at energy $\\sim 60$ EeV. A search in astrophysical databases within $3^\\circ$ of the arrival directions of UHECRs with energy $\\ge 100$ EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the S...

Moharana, Reetanjali

2015-01-01T23:59:59.000Z

115

The IceCube data acquisition system: Signal capture, digitization,and timestamping  

SciTech Connect (OSTI)

IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration ismaintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved.

The IceCube Collaboration; Matis, Howard

2009-03-02T23:59:59.000Z

116

THE NEUTRINO ENERGY & DIRECTION RESOLUTIONS IN THE INO-ICAL DETECTOR Moon Moon Devi  

E-Print Network [OSTI]

-based Neutrino Observatory (INO) [1] is a proposed underground facility for hosting de- cisive neutrino

Shyamasundar, R.K.

117

A new physics interpretation of the IceCube data  

E-Print Network [OSTI]

IceCube has recently observed 37 events of TeV-PeV energies. The angular distribution, with a strong preference for downgoing directions, the spectrum, and the small muon to shower ratio in the data can not be accommodated assuming standard interactions of atmospheric neutrinos. We obtain an excellent fit, however, if a diffuse flux of ultrahigh energy (cosmogenic) neutrinos experiences collisions where only a small fraction of the energy is transferred to the target nucleon. We show that consistent models of TeV gravity or other non-Wilsonian completions of the standard model provide cross sections with these precise features. An increased statistics could clearly distinguish our scenario from the one assumed by IceCube (a diffuse flux of astrophysical neutrinos with a E^{-2} spectrum) and establish the need for new physics in the interpretation of the data.

José Ignacio Illana; Manuel Masip; Davide Meloni

2014-10-13T23:59:59.000Z

118

Probing Planck scale physics with IceCube  

Science Journals Connector (OSTI)

Neutrino oscillations can be affected by decoherence induced e.g. by Planck scale suppressed interactions with the space-time foam predicted in some approaches to quantum gravity. We study the prospects for observing such effects at IceCube, using the likely flux of TeV antineutrinos from the Cygnus spiral arm. We formulate the statistical analysis for evaluating the sensitivity to quantum decoherence in the presence of the background from atmospheric neutrinos, as well as from plausible cosmic neutrino sources. We demonstrate that IceCube will improve the sensitivity to decoherence effects of O(E2/MPl) by 17 orders of magnitude over present limits and, moreover, that it can probe decoherence effects of O(E3/MPl2) which are well beyond the reach of other experiments.

Luis A. Anchordoqui; Haim Goldberg; M. C. Gonzalez-Garcia; Francis Halzen; Dan Hooper; Subir Sarkar; Thomas J. Weiler

2005-09-28T23:59:59.000Z

119

Prospects for identifying the sources of the Galactic cosmic rays with IceCube  

Science Journals Connector (OSTI)

We quantitatively address whether IceCube, a kilometer-scale neutrino detector under construction at the South Pole, can observe neutrinos pointing back at the accelerators of the Galactic cosmic rays. The photon flux from candidate sources identified by the Milagro detector in a survey of the TeV sky is consistent with the flux expected from a typical cosmic-ray generating supernova remnant interacting with the interstellar medium. We show here that IceCube can provide incontrovertible evidence of cosmic-ray acceleration in these sources by detecting neutrinos. We find that the signal is optimally identified by specializing to events with energies above 30?TeV where the atmospheric neutrino background is low. We conclude that evidence for a correlation between the Milagro and IceCube sky maps should be conclusive after several years.

Francis Halzen; Alexander Kappes; Aongus Ó Murchadha

2008-09-04T23:59:59.000Z

120

IceCube Collaboration Governance Document IceCube Collaboration Governance Document  

E-Print Network [OSTI]

IceCube Collaboration Governance Document IceCube Collaboration Governance Document Revision 8.1, November 21, 2014 Page 1 of 20 #12;IceCube Collaboration Governance Document IceCube Collaboration Governance Document Revision 8.1, November 21, 2014 Collaboration Objectives The IceCube Collaboration (the

Saffman, Mark

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High-Energy Neutrino Signatures of Newborn Pulsars In the Local Universe  

E-Print Network [OSTI]

Charged particles can be accelerated to higher than PeV energies in the electromagnetic wind of a fast-spinning newborn pulsar to produce high-energy neutrinos, through hadronuclear interactions in the supernova remnant. Here we explore the detectability and observational signatures of these high-energy neutrinos. We show that their spectral index varies approximately from 1.5 to 2, depending on the relevant pulsar properties and observation time. We also apply the scenario to existing young pulsars in the local universe and find the corresponding neutrino flux well below current detection limits. Finally, we report an upper limit on the birth rate of fast-spinning pulsars observed by the IceCube observatory as 0.14 per year.

Fang, Ke

2014-01-01T23:59:59.000Z

122

Neutrinos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

source. Keywords: Neutrino, Oscillations, MiniBooNE, NuMI, off-axis PACS: 14.60.Pq,14.60.Lm,13.15.+g INTRODUCTION The NuMI beamline 1 produces neutrinos for the MINOS experiment...

123

Studies of a three-stage dark matter and neutrino observatory based on multi-ton combinations of liquid xenon and liquid argon detectors  

E-Print Network [OSTI]

We study a three stage dark matter and neutrino observatory based on multi-ton two-phase liquid Xe and Ar detectors with sufficiently low backgrounds to be sensitive to WIMP dark matter interaction cross sections down to 10E-47 cm^2, and to provide both identification and two independent measurements of the WIMP mass through the use of the two target elements in a 5:1 mass ratio, giving an expected similarity of event numbers. The same detection systems will also allow measurement of the pp solar neutrino spectrum, the neutrino flux and temperature from a Galactic supernova, and neutrinoless double beta decay of 136Xe to the lifetime level of 10E27 - 10E28 y corresponding to the Majorana mass predicted from current neutrino oscillation data. The proposed scheme would be operated in three stages G2, G3, G4, beginning with fiducial masses 1-ton Xe + 5-ton Ar (G2), progressing to 10-ton Xe + 50-ton Ar (G3) then, dependent on results and performance of the latter, expandable to 100-ton Xe + 500-ton Ar (G4). This ...

Arisaka, K; Smith, P F; Beltrame, P; Ghag, C; Lung, K; Teymourian, A; Wang, H; Cline, D B

2011-01-01T23:59:59.000Z

124

Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory  

Science Journals Connector (OSTI)

Results are reported from the complete salt phase of the Sudbury Neutrino Observatory experiment in which NaCl was dissolved in the H22O (“D2O”) target. The addition of salt enhanced the signal from neutron capture as compared to the pure D2O detector. By making a statistical separation of charged-current events from other types based on event-isotropy criteria, the effective electron recoil energy spectrum has been extracted. In units of 106cm-2s-1, the total flux of active-flavor neutrinos from B8 decay in the Sun is found to be 4.94-0.21+0.21(stat)-0.34+0.38(syst) and the integral flux of electron neutrinos for an undistorted B8 spectrum is 1.68-0.06+0.06(stat)-0.09+0.08(syst); the signal from (?x,e) elastic scattering is equivalent to an electron-neutrino flux of 2.35-0.22+0.22(stat)-0.15+0.15(syst). These results are consistent with those expected for neutrino oscillations with the so-called large mixing angle parameters and also with an undistorted spectrum. A search for matter-enhancement effects in the Earth through a possible day-night asymmetry in the charged-current integral rate is consistent with no asymmetry. Including results from other experiments, the best-fit values for two-neutrino mixing parameters are ?m2=(8.0-0.4+0.6)×10-5 eV2 and ?=33.9-2.2+2.4 degrees.

B. Aharmim et al. (SNO Collaboration)

2005-11-30T23:59:59.000Z

125

Dark matter at DeepCore and IceCube  

Science Journals Connector (OSTI)

With the augmentation of IceCube by DeepCore, the prospect for detecting dark matter annihilation in the Sun is much improved. To complement this experimental development, we provide a thorough template analysis of the particle physics issues that are necessary to precisely interpret the data. Our study is about nitty-gritty and is intended as a framework for detailed work on a variety of dark matter candidates. To accurately predict the source neutrino spectrum, we account for spin-correlations of the final state particles and the helicity-dependence of their decays, and absorption effects at production. We fully treat the propagation of neutrinos through the Sun, including neutrino oscillations, energy losses and tau regeneration. We simulate the survival probability of muons produced in the Earth by using the Muon Monte Carlo program, reproduce the published IceCube effective area, and update the parameters in the differential equation that approximates muon energy losses. To evaluate the zenith-angle dependent atmospheric background event rate, we track the Sun and determine the time it spends at each zenith-angle. Throughout, we employ neutralino dark matter as our example.

V. Barger; Y. Gao; D. Marfatia

2011-03-22T23:59:59.000Z

126

End of the cosmic neutrino energy spectrum  

E-Print Network [OSTI]

There may be a high-energy cutoff of neutrino events in IceCube data. In particular, IceCube does not observe the Standard Model Glashow-resonance events expected at 6.3 PeV. There are also no higher-energy neutrino signatures in the ANITA and Auger experiments. This absence of high-energy neutrino events motivates models with a fundamental restriction on neutrino energies above a few PeV. The simplest scenario to terminate the neutrino spectrum is Lorentz-invariance violating with a limiting neutrino velocity that is smaller than the speed of light. A consequence is that charged pions are stable above four times the maximum neutrino energy and may serve as a cosmic ray primary.

Anchordoqui, L A; Goldberg, H; Learned, J G; Marfatia, D; Pakvasa, S; Paul, T C; Weiler, T J

2014-01-01T23:59:59.000Z

127

Possible explanation for the low flux of high energy astrophysical muon neutrinos  

SciTech Connect (OSTI)

I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

Pakvasa, Sandip [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

2013-05-23T23:59:59.000Z

128

Neutrino Induced Upward Going Muons from a Gamma Ray Burst in a Neutrino Telescope of Km^2 Area  

E-Print Network [OSTI]

The number of neutrino induced upward going muons from a single Gamma Ray Burst (GRB) expected to be detected by the proposed kilometer scale IceCube detector at the South Pole location has been calculated. The effects of the Lorentz factor, total energy of the GRB emitted in neutrinos and its distance from the observer (red shift) on the number of neutrino events from the GRB have been examined. The present investigation reveals that there is possibility of exploring the early Universe with the proposed kilometer scale IceCube neutrino telescope.

Nayantara Gupta

2002-01-30T23:59:59.000Z

129

High-Energy Neutrino Astronomy  

E-Print Network [OSTI]

Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 10^{20} and 10^{13} eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by neutrinos with energies similar to those of the highest energy cosmic rays.

F. Halzen

2005-01-26T23:59:59.000Z

130

Probing the Galactic origin of the IceCube excess with gamma rays  

Science Journals Connector (OSTI)

The IceCube Collaboration has recently reported evidence for a high-energy extraterrestrial neutrino flux. During two years of operation 28 events with energies between 30 TeV and 1.2 PeV were observed while only 10.6 events were expected from conventional atmospheric backgrounds. The hadronic interactions responsible for this IceCube excess will also produce a flux of high-energy ?-rays that can serve as a probe of source direction and distance. We show that existing TeV to PeV diffuse ?-ray limits support the interpretation that the IceCube excess is mostly of extragalactic origin. However, we point out that ?-ray surveys are biased in the Northern Hemisphere whereas the recent IceCube data tentatively show a weak preference for the Southern Sky. Possible sub-dominant contributions from Galactic neutrino sources like remnants of supernovae and hypernovae are marginally consistent with present ?-ray limits. This emphasizes the importance of future diffuse TeV to PeV ?-ray surveys in the Southern Hemisphere, particularly in the extended region around the Galactic center including the Fermi Bubbles.

Markus Ahlers and Kohta Murase

2014-07-11T23:59:59.000Z

131

The KM3NeT deep-sea neutrino telescope  

E-Print Network [OSTI]

KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about one hundred Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are present...

Margiotta, Annarita

2014-01-01T23:59:59.000Z

132

IceCube PeV cascade events initiated by electron-antineutrinos at Glashow resonance  

Science Journals Connector (OSTI)

We propose an interpretation of the two neutrino initiated cascade events with PeV energies observed by IceCube: Ultrahigh energy cosmic ray protons (or Fe nuclei) scatter on cosmic microwave background photons through the Delta-resonance (the Berezinsky-Zatsepin process) yielding charged pions and neutrons. The neutron decays give electron-antineutrinos which undergo neutrino oscillations to populate all antineutrino flavors, but the electron-antineutrino flux remains dominant. At 6.3 PeV electron-antineutrino energy their annihilation on electrons in the IceCube detector is enhanced by the Glashow resonance (the W-boson) whose decays can give the PeV showers observed in the IceCube detector. The two observed showers with ?1??PeV energies would need to be from W leptonic decays to electrons and taus. An order of magnitude higher event rate of showers at 6.3 PeV is predicted from W to hadron decays. This interpretation can be tested in the near term. It has significant physics implications on the origin of the highest energy cosmic rays, since neutrino events and cosmic ray events likely share a common origin.

Vernon Barger; John Learned; Sandip Pakvasa

2013-02-22T23:59:59.000Z

133

Prospects for indirect detection of sneutrino dark matter with IceCube  

Science Journals Connector (OSTI)

We investigate the prospects for indirect detection of right-handed sneutrino dark matter at the IceCube neutrino telescope in a U(1)B-L extension of the minimal supersymmetric standard model. The capture and annihilation of sneutrinos inside the Sun reach equilibrium, and the flux of produced neutrinos is governed by the sneutrino-proton elastic scattering cross section, which has an upper bound of 8×10-9??pb from the Z? mass limits in the B-L model. Despite the absence of any spin-dependent contribution, the muon event rates predicted by this model can be detected at IceCube since sneutrinos mainly annihilate into leptonic final states by virtue of the fermion B-L charges. These subsequently decay to neutrinos with 100% efficiency. The Earth muon event rates are too small to be detected for the standard halo model irrespective of an enhanced sneutrino annihilation cross section that can explain the recent PAMELA data. For modified velocity distributions, the Earth muon events increase substantially and can be greater than the IceCube detection threshold of 12 events km-2?yr-1. However, this only leads to a mild increase of about 30% for the Sun muon events. The number of muon events from the Sun can be as large as roughly 100 events km-2?yr-1 for this model.

Rouzbeh Allahverdi; Sascha Bornhauser; Bhaskar Dutta; Katherine Richardson-McDaniel

2009-09-23T23:59:59.000Z

134

IceCube at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search for extraterrestrial sources of high energy neutrinos from exploding stars, gamma ray bursts, cataclysmic phenomena involving black holes and neutron stars, and from dark...

135

Search for relativistic magnetic monopoles with IceCube  

Science Journals Connector (OSTI)

We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1??km3. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2??km3 of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of ?90%C.L.?3×10-18??cm-2?sr-1?s-1 for ??0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost ? below 107. This result is then interpreted for a wide range of mass and kinetic energy values.

R. Abbasi et al. (IceCube Collaboration)

2013-01-18T23:59:59.000Z

136

Searching for Cosmic Accelerators via IceCube  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Searching for Cosmic Accelerators via IceCube Searching for Cosmic Accelerators via IceCube Berkeley Lab Researchers Part of an International Hunt November 21, 2013 Lynn Yarris,...

137

Solar Neutrino Matter Effects Redux  

E-Print Network [OSTI]

Following recent low-threshold analysis of the Sudbury Neutrino Observatory and asymmetry measurements of the BOREXINO Collaboration of the solar neutrino flux, we revisit the analysis of the matter effects in the Sun. We show that solar neutrino data constrains the mixing angle $\\theta_{13}$ poorly and that subdominant Standard Model effects can mimic the effects of the physics beyond the Standard Model.

A. B. Balantekin; A. Malkus

2011-12-19T23:59:59.000Z

138

IceCube Project Monthly Report -April 2010 Accomplishments  

E-Print Network [OSTI]

1 IceCube Project Monthly Report - April 2010 Accomplishments · The IceCube Software Water Drill equipment (http://www.icecube.wisc.edu/disposition/index.php) and the site was circulated at Uppsala University are using Deep Core DOMs as flashers and receivers for low-intensity flasher runs

Saffman, Mark

139

E-Print Network 3.0 - accuracy neutrino oscillation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

evidence that neutrinos oscillate 3. In other words, they transform... Observatory in Canada provided beautiful experimental evidence of neutrino oscillations using solar...

140

IceCube, DeepCore, PINGU and the indirect search for supersymmetric dark matter  

E-Print Network [OSTI]

The discovery of a particle that could be the lightest CP-even Higgs of the minimal supersymmetric extension of the Standard Model (MSSM) and the lack of evidence so far for supersymmetry at the LHC have many profound implications, including for the phenomenology of supersymmetric dark matter. In this study, we re-evaluate and give an update on the prospects for detecting supersymmetric neutralinos with neutrino telescopes, focussing in particular on the IceCube/DeepCore Telescope as well as on its proposed extension, PINGU. Searches for high-energy neutrinos from the Sun with IceCube probe MSSM neutralino dark matter models with the correct Higgs mass in a significant way. This is especially the case for neutralino dark matter models producing hard neutrino spectra, across a wide range of masses, while PINGU is anticipated to improve the detector sensitivity especially for models in the low neutralino mass range.

Paul Bergeron; Stefano Profumo

2013-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector  

Science Journals Connector (OSTI)

We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore subarray is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent scattering cross sections of weakly interacting massive particles (WIMPs) on protons, for WIMP masses in the range 20–5000??GeV/c2. These are the most stringent spin-dependent WIMP-proton cross section limits to date above 35??GeV/c2 for most WIMP models.

M. G. Aartsen et al. (IceCube Collaboration)

2013-03-28T23:59:59.000Z

142

Fermion WIMPless dark matter at DeepCore and IceCube  

Science Journals Connector (OSTI)

We investigate the prospects for indirect detection of fermion WIMPless dark matter at the neutrino telescopes IceCube and DeepCore. The dark matter annihilating in the Sun is a hidden sector Majorana fermion that couples through Yukawa couplings to a connector particle and a visible sector particle, and it exhibits only spin-dependent scattering with nuclei via couplings to first generation quarks. We consider cases where the annihilation products are taus, staus, or sneutrinos of the three generations. To evaluate the muon fluxes incident at the detector, we propagate the neutrino spectra through the solar medium and to the Earth and account for the effects of neutrino oscillations, energy losses due to neutral- and charged-current interactions, and tau regeneration. We find that for the stau and sneutrino channels, a 5 yr 3? detection of dark matter lighter than about 300 GeV is possible at IceCube for large Yukawa couplings or for dark matter and connector particles with similar masses. The tau channel offers far better detection prospects. However, due to its lower energy threshold and better muon background rejection capability, DeepCore is able to detect signals in all annihilation channels and for a wider range of dark matter masses.

Vernon Barger; Jason Kumar; Danny Marfatia; Enrico Maria Sessolo

2010-06-24T23:59:59.000Z

143

Limits on a Muon Flux from Neutralino Annihilations in the Sun with the IceCube 22-String Detector  

Science Journals Connector (OSTI)

A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the weakly interacting massive particle (WIMP) proton cross sections for WIMP masses in the range 250–5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

R. Abbasi et al. (IceCube Collaboration)

2009-05-21T23:59:59.000Z

144

Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector  

SciTech Connect (OSTI)

A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

IceCube Collaboration; Klein, Spencer

2009-04-28T23:59:59.000Z

145

Science Potential of a Deep Ocean Antineutrino Observatory  

E-Print Network [OSTI]

This paper presents science potential of a deep ocean antineutrino observatory under development at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy. At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle.

Steve Dye

2006-12-15T23:59:59.000Z

146

The IceCube Computing Infrastructure Model  

Science Journals Connector (OSTI)

In addition to the big LHC experiments, a number of mid-size experiments are coming online which need to define new computing models to meet the demands on processing and storage requirements of those experiments. We present the hybrid computing model of IceCube which leverages Grid models with a more flexible direct user model as an example of a possible solution. In IceCube a central data center at UW-Madison serves as a Tier-0 with a single Tier-1 at DESY Zeuthen.

M Merck; S Barnet

2012-01-01T23:59:59.000Z

147

Cascade events at IceCube + DeepCore as a definitive constraint on the dark matter interpretation of the PAMELA and Fermi anomalies  

Science Journals Connector (OSTI)

Dark matter decaying or annihilating into ?+?- or ?+?- has been proposed as an explanation for the e± anomalies reported by PAMELA and Fermi. Recent analyses show that IceCube, supplemented by DeepCore, will be able to significantly constrain the parameter space of decays to ?+?-, and rule out decays to ?+?- and annihilations to ?+?- in less than five years of running. These analyses rely on measuring tracklike events in IceCube + DeepCore from down-going ??. In this paper we show that by instead measuring cascade events, which are induced by all neutrino flavors, IceCube + DeepCore can rule out decays to ?+?- in only three years of running, and rule out decays to ?+?- and annihilation to ?+?- in only one year of running. These constraints are highly robust to the choice of dark matter halo profile and independent of dark matter-nucleon crosssection.

Sourav K. Mandal; Matthew R. Buckley; Katherine Freese; Douglas Spolyar; Hitoshi Murayama

2010-02-02T23:59:59.000Z

148

Origin of the High Energy Cosmic Neutrino Background  

Science Journals Connector (OSTI)

The diffuse background of very high energy extraterrestrial neutrinos recently discovered with IceCube is compatible with that expected from cosmic ray interactions in the Galactic interstellar medium plus that expected from hadronic interactions near the source and in the intergalactic medium of the cosmic rays which have been accelerated by the jets that produce gamma ray bursts.

Shlomo Dado and Arnon Dar

2014-11-07T23:59:59.000Z

149

Implications of the pseudo-Dirac scenario for ultra high energy neutrinos from GRBs  

SciTech Connect (OSTI)

The source of Ultra High Energy Cosmic Rays (UHECR) is still an unresolved mystery. Up until recently, sources of Gamma Ray Bursts (GRBs) had been considered as a suitable source for UHECR. Within the fireball model, the UHECR produced at GRBs should be accompanied with a neutrino flux detectable at the neutrino telescope such as IceCube. Recently, IceCube has set an upper bound on the neutrino flux accompanied by GRBs about 3.7 times below the prediction. We investigate whether this deficit can be explained by the oscillation of the active neutrinos to sterile neutrinos en route from the source to the detectors within the pseudo-Dirac scenario. We then discuss the implication of this scenario for diffuse supernova relic neutrinos.

Esmaili, Arman [Instituto de Fisica Gleb Wataghin — UNICAMP, 13083-859, Campinas, SP (Brazil); Farzan, Yasaman, E-mail: aesmaili@ifi.unicamp.br, E-mail: yasaman@theory.ipm.ac.ir [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

2012-12-01T23:59:59.000Z

150

Constraints on enhanced dark matter annihilation from IceCube results  

Science Journals Connector (OSTI)

Excesses on positron and electron fluxes—measured by ATIC and the PAMELA and Fermi-LAT telescopes—can be explained by dark matter annihilation in the Galaxy, however, it requires large boosts on the dark matter annihilation rate. There are many possible enhancement mechanisms such as the Sommerfeld effect or the existence of dark matter clumps in our halo. If enhancements on the dark matter annihilation cross section are taking place, the dark matter annihilation in the core of the Earth will be enhanced. Here we use recent results from the IceCube 40-string configuration to probe generic enhancement scenarios. We present results as a function of the dark matter-proton interaction cross section, ??p weighted by the branching fraction into neutrinos f??¯ as a function of a generic boost factor BF, which parametrizes the expected enhancement of the annihilation rate. We find that dark matter models that require annihilation enhancements of O(100) or more and that annihilate significantly into neutrinos are excluded as an explanation for these excesses. We also determine the boost range that can be probed by the full IceCube telescope.

Ivone F. M. Albuquerque; Leandro J. Beraldo e Silva; Carlos Pérez de los Heros

2012-06-25T23:59:59.000Z

151

Pinning down the cosmic ray source mechanism with new IceCube data  

Science Journals Connector (OSTI)

Very recently the IceCube Collaboration has reported an observation of 28 neutrino candidates with energies between 50 TeV and 2 PeV, constituting a 4.1? excess compared to the atmospheric background. In this article we investigate the compatibility between the data and a hypothesized unbroken power-law neutrino spectrum for various values of spectral index ??2. We show that ??2.3 is consistent at the ?1.5? level with the observed events up to 2 PeV and to the null observation of events at higher energies. We then assume that the sources of this unbroken spectrum are Galactic, and deduce (i) an energy-transfer fraction from parent protons to pions (finding ??± and ??), and (ii) a way of discriminating among models which have been put forth to explain the “knee” and “ankle” features of the cosmic ray spectrum. Future IceCube data will test the unbroken power-law hypothesis and provide a multimessenger approach to explaining features of the cosmic ray spectrum, including the transition from Galactic to extragalactic dominance.

Luis A. Anchordoqui; Haim Goldberg; Morgan H. Lynch; Angela V. Olinto; Thomas C. Paul; Thomas J. Weiler

2014-04-04T23:59:59.000Z

152

IceCube Project Monthly Report August 2005  

E-Print Network [OSTI]

IceCube Project Monthly Report August 2005 Accomplishments All of the DOMs installed at the South additional emphasis on training and procedures. The training program for IceCube personnel scheduled to work-05 S-05 O-05 N-05 D-05 J-06 F-06 M-06 3&4 FY06 FY07 FY08 FY09 FY10 FY11 IceCube Project Baseline

Saffman, Mark

153

First year performance of the IceCube neutrino telescope IceCube Collaboration  

E-Print Network [OSTI]

. Pettersen s , A. Piegsa t , D. Pieloth af , A.C. Pohl ac,2 , R. Porrata d , J. Pretz k , P.B. Price d , G.R. Klein f , S. Klepser af , G. Kohnen u , H. Kolanoski e , L. Ko¨pke t , M. Krasberg s , K. Kuehn o , H

Price, P. Buford

154

Probing Neutrino Dark Energy with Extremely High-Energy Cosmic Neutrinos  

E-Print Network [OSTI]

Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10^13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR.

Andreas Ringwald; Lily Schrempp

2006-06-13T23:59:59.000Z

155

IceCube: An Instrument for Neutrino Astronomy  

E-Print Network [OSTI]

has not yet been proven. Muon Energy measurement Muons fromshower with 10% of the muon energy, e.g. 130 m for a 100-TeVlight) energy loss and muon energy varies from muon to muon.

Halzen, F.

2010-01-01T23:59:59.000Z

156

IceCube Project Monthly Report September 2005  

E-Print Network [OSTI]

IceCube Project Monthly Report September 2005 Accomplishments All of the IceCube Digital Optical the long- term project goals of 90% first pass yield and 95% ultimate yield. The additional data handling at the Pole and one at McMurdo. The drilling procedures are nearing completion. A final review and sign

Saffman, Mark

157

The Energy Spectrum of Atmospheric Neutrinos between 2 and 200 TeV with the AMANDA-II Detector  

SciTech Connect (OSTI)

The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2-200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

IceCube Collaboration; Abbasi, R.

2010-05-11T23:59:59.000Z

158

Firewall Phenomenology with Astrophysical Neutrinos  

E-Print Network [OSTI]

One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, firewalls have been proposed as an alternative to black hole event horizons. In this letter, we explore the phenomenological implications of black holes possessing a surface or firewall. We predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. We further show that, independent of the generation mechanism, IceCube data can be explained (at $1\\sigma$ confidence level) by conversion of accretion on...

Afshordi, Niayesh

2015-01-01T23:59:59.000Z

159

Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors  

Science Journals Connector (OSTI)

A search for an excess of muon neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of live time between 2001 and 2006 and 149 days of live time collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total live time of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 50–5000 GeV. We also derive a limit on the neutralino-proton spin-dependent and spin-independent cross section. The limits presented here improve the previous results obtained by the collaboration between a factor of 2 and 5, as well as extending the neutralino masses probed down to 50 GeV. The spin-dependent cross section limits are the most stringent so far for neutralino masses above 200 GeV, and well below direct search results in the mass range from 50 GeV to 5 TeV.

R. Abbasi et al. (IceCube Collaboration)

2012-02-22T23:59:59.000Z

160

Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector  

SciTech Connect (OSTI)

A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 - 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

IceCube Collaboration; Abbasi, R.; al., et

2009-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector  

Science Journals Connector (OSTI)

A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross sections for LKP masses in the range 250–3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

R. Abbasi et al. (IceCube Collaboration)

2010-03-29T23:59:59.000Z

162

Solar Neutrino Physics  

SciTech Connect (OSTI)

With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

1999-07-15T23:59:59.000Z

163

High energy cosmic rays, gamma rays and neutrinos from AGN  

E-Print Network [OSTI]

The author reviews a model for the emission of high energy cosmic rays, gamma-rays and neutrinos from AGN (Active Galactic Nuclei) that he has proposed since 1985. Further discussion of the knee energy phenomenon of the cosmic ray energy spectrum requires the existence of a heavy particle with mass in the knee energy range. A possible method of detecting such a particle in the Pierre Auger Project is suggested. Also presented is a relation between the spectra of neutrinos and gamma-rays emitted from AGN. This relation can be tested by high energy neutrino detectors such as ICECUBE, the Mediterranean Sea Detector and possibly by the Pierre Auger Project.

Yukio Tomozawa

2008-02-03T23:59:59.000Z

164

Neutrino Tomography of Gamma Ray Bursts and Massive Stellar Collapses  

E-Print Network [OSTI]

Neutrinos at energies above TeV can serve as probes of the stellar progenitor and jet dynamics of gamma ray bursts arising from stellar core collapses. They can also probe collapses which do not lead to gamma-rays, which may be much more numerous. We calculate detailed neutrino spectra from shock accelerated protons in jets just below the outer stellar envelope, before their emergence. We present neutrino flux estimates from such pre-burst jets for two different massive stellar progenitor models. These should be distinguishable by IceCube, and we discuss the implications.

Soebur Razzaque; Peter Meszaros; Eli Waxman

2003-03-21T23:59:59.000Z

165

The IceCube Collaboration:contributions to the 30 th International Cosmic Ray Conference (ICRC 2007),  

E-Print Network [OSTI]

X. Bai (for the IceCube Collaboration, J. Phys. : Conf. Ser.Gaisser for the IceCube Collaboration, these proceedings. [Achterberg et al. (IceCube Collaboration) Astropart. Phys.

Ackermann, M.; IceCube Collaboration

2008-01-01T23:59:59.000Z

166

High Energy Neutrino Signals from the Epoch of Reionization  

SciTech Connect (OSTI)

In this paper we perform a new estimate of the high energy neutrinos expected from GRBs associated with the first generation of stars in light of new models and constraints on the epoch of reionization and a more detailed evaluation of the neutrino emission yields. We also compare the diffuse high energy neutrino background from Population III stars with the one from ''ordinary stars'' (Population II), as estimated consistently within the same cosmological and astrophysical assumptions. In disagreement with previous literature, we find that high energy neutrinos from Population III stars will not be observable with current or near future neutrino telescopes, falling below both IceCube sensitivity and atmospheric neutrino background under the most extreme assumptions for the GRB rate. This rules them out as a viable diagnostic tool for these still elusive metal-free stars.

Iocco, F.; Murase, K.; Nagataki, S.; Serpico, P.D.

2007-07-06T23:59:59.000Z

167

DIFFUSE PeV NEUTRINOS FROM GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

The IceCube Collaboration recently reported the potential detection of two cascade neutrino events in the energy range 1-10 PeV. We study the possibility that these PeV neutrinos are produced by gamma-ray bursts (GRBs), paying special attention to the contribution by untriggered GRBs that elude detection due to their low photon flux. Based on the luminosity function, rate distribution with redshift and spectral properties of GRBs, we generate, using a Monte Carlo simulation, a GRB sample that reproduces the observed fluence distribution of Fermi/GBM GRBs and an accompanying sample of untriggered GRBs simultaneously. The neutrino flux of every individual GRB is calculated in the standard internal shock scenario, so that the accumulative flux of the whole samples can be obtained. We find that the neutrino flux in PeV energies produced by untriggered GRBs is about two times higher than that produced by the triggered ones. Considering the existing IceCube limit on the neutrino flux of triggered GRBs, we find that the total flux of triggered and untriggered GRBs can reach at most a level of {approx}10{sup -9} GeV cm{sup -2} s{sup -1} sr{sup -1}, which is insufficient to account for the reported two PeV neutrinos. Possible contributions to diffuse neutrinos by low-luminosity GRBs and the earliest population of GRBs are also discussed.

Liu, Ruo-Yu; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)] [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

2013-04-01T23:59:59.000Z

168

High energy neutrinos from dissipative photospheric models of gamma ray bursts  

SciTech Connect (OSTI)

We calculate the high energy neutrino spectrum from gamma-ray bursts where the emission arises in a dissipative jet photosphere determined by either baryonically or magnetically dominated dynamics, and compare these neutrino spectra to those obtained in conventional internal shock models. We also calculate the diffuse neutrino spectra based on these models, which appear compatible with the current IceCube 40+59 constraints. While a re-analysis based on the models discussed here and the data from the full array would be needed, it appears that only those models with the most extreme parameters are close to being constrained at present. A multi-year operation of the full IceCube and perhaps a next generation of large volume neutrino detectors may be required in order to distinguish between the various models discussed.

Gao, Shan; Mészáros, Peter [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle Astrophysics, The Pennsylvania State University, University Park, 16802 (United States); Asano, Katsuaki, E-mail: sxg324@psu.edu, E-mail: asano@phys.titech.ac.jp, E-mail: pmeszaros@astro.psu.edu [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

2012-11-01T23:59:59.000Z

169

Cosmic PeV Neutrinos and the Sources of Ultrahigh Energy Protons  

E-Print Network [OSTI]

The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh-energy cosmic rays. Starting from rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ~10^18 eV, where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.

Matthew D. Kistler; Todor Stanev; Hasan Yuksel

2014-11-06T23:59:59.000Z

170

Neutrinos from Gamma Ray Bursts  

E-Print Network [OSTI]

The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs), following Mannheim, Protheroe, and Rachen (2000). It is shown that if GRBs produce the ultrahigh-energy cosmic rays, they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV, contrary to their observed energy flux which is only a minute fraction of this flux, and (b) a cumulative neutrino flux a factor of 20 below the AMANDA (Neutrino 2000) limit on isotropic neutrinos. This could have two implications, either GRBs do not produce the ultrahigh energy cosmic rays or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV implausibly increasing the energy requirements, but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO, HEGRA-AIROBICC, and the Tibet-Array. All crucial measurements to test the models will be available in the next few years. These are measurements of (i) high-energy neutrinos with AMANDA-ICECUBE or an enlarged ANTARES/NESTOR ocean detector, (ii) GRB redshifts from HETE-2 follow-up studies, and (iii) GRB spectra above 10 GeV with low-threshold imaging air Cherenkov telescopes such as MAGIC and the space telescopes AGILE and GLAST.

Karl Mannheim

2000-10-18T23:59:59.000Z

171

Neutrinos from Gamma Ray Bursts  

Science Journals Connector (OSTI)

The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs) following Reference [1]. It is shown that if GRBs produce the ultrahigh-energy cosmic rays they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV contrary to their observed energy flux which is only a minute fraction of this flux and (b) a cumulative neutrino flux a factor of 20 below the AMANDA-?2000 limit on isotropic neutrinos. This could have two implications either GRBs do not produce the ultrahigh energy cosmic rays [2 3] or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV [4] implausibly increasing the energy requirements but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO [5] HEGRA-AIROBICC [6] and the Tibet-Array [7]. All crucial measurements to test the models will be available in the next few years. These are measurements of (i) high-energy neutrinos with AMANDA-ICECUBE or an enlarged ANTARES/NESTOR ocean detector (ii) GRB redshifts from HETE-2 follow-up studies and (iii) GRB spectra above 10 GeV with low-threshold imaging air Cherenkov telescopes such as MAGIC and the space telescopes AGILE and GLAST.

Karl Mannheim

2001-01-01T23:59:59.000Z

172

Multi-GeV Neutrino Emission from Magnetized Gamma Ray Bursts  

E-Print Network [OSTI]

We investigate the expected neutrino emissivity from nuclear collisions in magnetically dominated collisional models of gamma-ray bursts, motivated by recent observational and theoretical developments. The results indicate that significant multi-GeV neutrino fluxes are expected for model parameter values which are typical of electromagnetically detected bursts. We show that for detecting at least one muon event in Icecube and its Deep Core sub-array, a single burst must be near the high end of the luminosity function and at a redshift $z\\lesssim 0.2$. We also calculate the luminosity and distance ranges that can generate $0.01-1$ muon events per GRB in the same detectors, which may be of interest if simultaneously detected electromagnetically, or if measured with future extensions of Icecube or other neutrino detectors with larger effective volume and better sensitivity.

Shan Gao; Peter Meszaros

2012-04-20T23:59:59.000Z

173

IceCube-Plus: An Ultra-High Energy Neutrino Telescope  

E-Print Network [OSTI]

While the first kilometer-scale neutrino telescope, IceCube, is under constructi on, alternative plans exist to build even larger detectors that will, however, b e limited by a much higher neutrino energy threshold of 10 PeV or higher rather than 10 to 100 GeV. These future projects detect radio and acoustic pulses as w ell as air showers initiated by ultra-high energy neutrinos. As an alternative, we here propose an expansion of IceCube, using the same strings, placed on a gri d with a spacing of order 500 m. Unlike other proposals, the expanded detector uses methods that are understood and calibrated on atmospheric neutrinos. Atmosp heric neutrinos represent the only background at the energies under consideratio n and is totally negligible. Also, the cost of such a detector is understood. We conclude that supplementing the 81 IceCube strings with a modest number of addi tional strings spaced at large distances can almost double the effective volume of the detector. Doubling the number of strings on a 800 m ...

Halzen, F; Halzen, Francis; Hooper, Dan

2004-01-01T23:59:59.000Z

174

IceCube-Plus: An Ultra-High Energy Neutrino Telescope  

E-Print Network [OSTI]

While the first kilometer-scale neutrino telescope, IceCube, is under construction, alternative plans exist to build even larger detectors that will, however, b e limited by a much higher neutrino energy threshold of 10 PeV or higher rather than 10 to 100 GeV. These future projects detect radio and acoustic pulses as w ell as air showers initiated by ultra-high energy neutrinos. As an alternative, we here propose an expansion of IceCube, using the same strings, placed on a gri d with a spacing of order 500 m. Unlike other proposals, the expanded detector uses methods that are understood and calibrated on atmospheric neutrinos. Atmosp heric neutrinos represent the only background at the energies under consideratio n and is totally negligible. Also, the cost of such a detector is understood. We conclude that supplementing the 81 IceCube strings with a modest number of addi tional strings spaced at large distances can almost double the effective volume of the detector. Doubling the number of strings on a 800 m grid can deliver a d etector that this a factor of 5 larger for horizontal muons at modest cost.

Francis Halzen; Dan Hooper

2003-12-22T23:59:59.000Z

175

Geo-neutrinos and Earth Models  

E-Print Network [OSTI]

We present the current status of geo-neutrino measurements and their implications for radiogenic heating in the mantle. Earth models predict different levels of radiogenic heating and, therefore, different geo-neutrino fluxes from the mantle. Seismic tomography reveals features in the deep mantle possibly correlated with radiogenic heating and causing spatial variations in the mantle geo-neutrino flux at the Earth surface. An ocean-based observatory offers the greatest sensitivity to the mantle flux and potential for resolving Earth models and mantle features. Refinements to estimates of the geo-neutrino flux from continental crust reduce uncertainty in measurements of the mantle flux, especially measurements from land-based observatories. These refinements enable the resolution of Earth models using the combined measurements from multiple continental observatories.

Dye, S T; Lekic, V; McDonough, W F; Sramek, O

2014-01-01T23:59:59.000Z

176

Atmospheric Neutrinos  

E-Print Network [OSTI]

This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

Thomas K. Gaisser

2006-12-11T23:59:59.000Z

177

IceCube Project Monthly Report August 2009 Accomplishments  

E-Print Network [OSTI]

IceCube Project Monthly Report ­ August 2009 Accomplishments · Driller and string installation officer was hired and received training and orientation to personnel, systems, and procedures. Cost and Schedule Performance ­ The project is 92.9% complete. Remaining contingency is $7.6 million. There has been

Saffman, Mark

178

IceCube Project Monthly Report -December 2008 Accomplishments  

E-Print Network [OSTI]

IceCube Project Monthly Report - December 2008 Accomplishments · Drilling and string installation of December 2008 and a total of 16 strings were deployed by January 15th . The deep core prototype string are filled with water, and the controlled freeze of the water in the tanks is underway. · Additional

Saffman, Mark

179

IceCube Project Monthly Report September 2007  

E-Print Network [OSTI]

for glacial motion, and the other one using the IceCube Standard Candle that provides an absolute energy the planned filters (as designed by the individual physics groups). Two major shipments to Port Hueneme were. The remaining budget for spare hose segments does not fully satisfy the likely demand. The increased hose

Saffman, Mark

180

Gamma-ray astronomy with muons: Sensitivity of IceCube to PeVatrons in the Southern sky  

Science Journals Connector (OSTI)

Northern hemisphere TeV gamma-ray observatories such as Milagro and Tibet AS? have demonstrated the importance of all-sky instruments by discovering previously unidentified sources that may be the PeVatrons producing cosmic rays up to the knee in the cosmic ray spectrum. We evaluate the potential of IceCube to identify similar sources in the southern sky by detailing an analytic approach to determine fluxes of muons from TeV gamma-ray showers. We apply this approach to known gamma-ray sources such as supernova remnants. We find that, similar to Milagro, detection is possible in 10 years for pointlike PeVatrons with fluxes stronger than several 10-11 particles TeV-1??cm-2?s-1.

Francis Halzen; Alexander Kappes; Aongus Ó Murchadha

2009-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Neutrino telescopes in the World  

SciTech Connect (OSTI)

Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its stag phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations.

Ernenwein, J.-P. [GRPHE, Universite de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse cedex (France)

2007-01-12T23:59:59.000Z

182

Neutrino Physics  

DOE R&D Accomplishments [OSTI]

The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

Lederman, L. M.

1963-01-09T23:59:59.000Z

183

Neutrino oscillations  

Science Journals Connector (OSTI)

...the energy released in the nuclear transition. If neutrinos have...momentum p is produced in a nuclear b-decay. At time t = 0 the...neutrino oscillations in x 3 only vacuum oscillations were considered...of muon neutrinos from the accelerator complex at Fermilab. The neutrinos...

2002-01-01T23:59:59.000Z

184

Single Ion Trapping For The Enriched Xenon Observatory  

E-Print Network [OSTI]

In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of ? m?? ≃ .010 eV.

Waldman, S J

2005-01-01T23:59:59.000Z

185

Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope  

E-Print Network [OSTI]

A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates RA=$-$46.8$^{\\circ}$ and Dec=$-$64.9$^{\\circ}$ and corresponds to a 2.2$\\sigma$ background fluctuation. In addition, upper limits on the flux normalization of an E$^{-2}$ muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of 7 events relatively close to the Galactic Centre in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E$^{-2}$ energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1$\\times$10$^{-8}$ GeV$\\,$cm$^{-2}$s$^{-1}$, depending on the exact location of the source.

ANTARES Collaboration; S. Adrián-Martínez; A. Albert; M. André; M. Anghinolfi; G. Anton; M. Ardid; J. -J. Aubert; B. Baret; J. Barrios-Martí; S. Basa; V. Bertin; S. Biagi; C. Bogazzi; R. Bormuth; M. Bou-Cabo; M. C. Bouwhuis; R. Bruijn; J. Brunner; J. Busto; A. Capone; L. Caramete; C. Cârloganu; J. Carr; T. Chiarusi; M. Circella; L. Core; H. Costantini; P. Coyle; A. Creusot; C. Curtil; G. De Rosa; I. Dekeyser; A. Deschamps; G. De Bonis; C. Distefano; C. Donzaud; D. Dornic; Q. Dorosti; D. Drouhin; A. Dumas; T. Eberl; D. Elsässer; A. Enzenhöfer; S. Escoffier; K. Fehn; I. Felis; P. Fermani; F. Folger; L. A. Fusco; S. Galatà; P. Gay; S. Geißelsöder; K. Geyer; V. Giordano; A. Gleixner; J. P. Gómez-González; K. Graf; G. Guillard; H. van Haren; A. J. Heijboer; Y. Hello; J. J. Hernández-Rey; B. Herold; A. Herrero; J. Hößl; J. Hofestädt; C. W James; M. de Jong; M. Kadler; O. Kalekin; U. Katz; D. Kießling; P. Kooijman; A. Kouchner; I. Kreykenbohm; V. Kulikovskiy; R. Lahmann; E. Lambard; G. Lambard; D. Lattuada; D. Lefèvre; E. Leonora; H. Loehner; S. Loucatos; S. Mangano; M. Marcelin; A. Margiotta; J. A. Martínez-Mora; S. Martini; A. Mathieu; T. Michael; P. Migliozzi; C. Mueller; M. Neff; E. Nezri; D. Palioselitis; G. E. P?v?la?; C. Perrina; P. Piattelli; V. Popa; T. Pradier; C. Racca; G. Riccobene; R. Richter; K. Roensch; A. Rostovtsev; M. Saldaña; D. F. E. Samtleben; A. Sánchez-Losa; M. Sanguineti; P. Sapienza; J. Schmid; J. Schnabe; S. Schulte; F. Schüssler; T. Seitz; C. Sieger; A. Spies; M. Spurio; J. J. M. Steijger; Th. Stolarczyk; M. Taiuti; C. Tamburini; Y. Tayalati; A. Trovato; B. Vallage; C. Vallée; V. Van Elewyck; E. Visser; D. Vivolo; S. Wagner; J. Wilms; E. de Wolf; K. Yatkin; H. Yepes; J. D. Zornoza; J. Zúñiga

2014-02-25T23:59:59.000Z

186

Dynamical Collective Calculation of Supernova Neutrino Signals  

SciTech Connect (OSTI)

We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydrodynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.

Gava, Jerome; Kneller, James; Volpe, Cristina; McLaughlin, G. C. [Institut de Physique Nucleaire, F-91406 Orsay cedex, CNRS/IN2P3 and University of Paris-XI (France); Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States)

2009-08-14T23:59:59.000Z

187

Neutrino Mixing  

E-Print Network [OSTI]

In this review we present the main features of the current status of neutrino physics. After a review of the theory of neutrino mixing and oscillations, we discuss the current status of solar and atmospheric neutrino oscillation experiments. We show that the current data can be nicely accommodated in the framework of three-neutrino mixing. We discuss also the problem of the determination of the absolute neutrino mass scale through Tritium beta-decay experiments and astrophysical observations, and the exploration of the Majorana nature of massive neutrinos through neutrinoless double-beta decay experiments. Finally, future prospects are briefly discussed.

Carlo Giunti; Marco Laveder

2004-10-01T23:59:59.000Z

188

FERMI LIMIT ON THE NEUTRINO FLUX FROM GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

If gamma-ray bursts (GRBs) produce high-energy cosmic rays, neutrinos are expected to be generated in GRBs via photo-pion productions. However, we stress that the same process also generates electromagnetic (EM) emission induced by the secondary electrons and photons, and that the EM emission is expected to be correlated with neutrino flux. Using Fermi/Large Area Telescope results on gamma-ray flux from GRBs, the GRB neutrino emission is limited to be <20 GeV m{sup -2} per GRB event on average, which is independent of the unknown GRB proton luminosity. This neutrino limit suggests that IceCube, operating at full scale, requires stacking of more than 130 GRBs in order to detect one GRB muon neutrino.

Li Zhuo [Department of Astronomy and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing (China); Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming (China)

2013-06-20T23:59:59.000Z

189

Fermi Limit on the Neutrino Flux from Gamma-ray Bursts  

E-Print Network [OSTI]

If gamma-ray bursts (GRBs) produce high energy cosmic rays, neutrinos are expected to be generated in GRBs due to photo-pion productions. However we stress that the same process also generates electromagnetic (EM) emission induced by the production of secondary electrons and photons, and that the EM emission is expected to be correlated to the neutrino flux. Using the Fermi/LAT observational results on gamma-ray flux from GRBs, the GRB neutrino emission is limited to be below ~20 GeV/m^2 per GRB event on average, which is independent of the unknown GRB proton luminosity. This neutrino limit suggests that the full IceCube needs stacking more than 130 GRBs in order to detect one GRB muon neutrino.

Zhuo Li

2012-10-24T23:59:59.000Z

190

ESTIMATION OF THE NEUTRINO FLUX AND RESULTING CONSTRAINTS ON HADRONIC EMISSION MODELS FOR Cyg X-3 USING AGILE DATA  

SciTech Connect (OSTI)

In this work, we give an estimate of the neutrino flux that can be expected from the microquasar Cyg X-3. We calculate the muon neutrino flux expected here on Earth as well as the corresponding number of neutrino events in the IceCube telescope based on the so-called hypersoft X-ray state of Cyg X-3. If the average emission from Cyg X-3 over a period of 5 yr were as high as during the used X-ray state, a total of 0.8 events should be observed by the full IceCube telescope. We also show that this conclusion holds by a factor of a few when we consider the other measured X-ray states. Using the correlation of AGILE data on the flaring episodes in 2009 June and July to the hypersoft X-ray state, we calculate that the upper limits on the neutrino flux given by IceCube are starting to constrain the hadronic models, which have been introduced to interpret the high-energy emission detected by AGILE.

Baerwald, P. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Guetta, D. [Osservatorio Astronomico di Roma, v. Frascati 33, I-00040 Monte Porzio Catone (Italy)

2013-08-20T23:59:59.000Z

191

Neutrinos and Gamma Rays from Galaxy Clusters  

E-Print Network [OSTI]

The next generation of neutrino and gamma-ray detectors should provide new insights into the creation and propagation of high-energy protons within galaxy clusters, probing both the particle physics of cosmic rays interacting with the background medium and the mechanisms for high-energy particle production within the cluster. In this paper we examine the possible detection of gamma-rays (via the GLAST satellite) and neutrinos (via the ICECUBE and Auger experiments) from the Coma cluster of galaxies, as well as for the gamma-ray bright clusters Abell 85, 1758, and 1914. These three were selected from their possible association with unidentified EGRET sources, so it is not yet entirely certain that their gamma-rays are indeed produced diffusively within the intracluster medium, as opposed to AGNs. It is not obvious why these inconspicuous Abell-clusters should be the first to be seen in gamma-rays, but a possible reason is that all of them show direct evidence of recent or ongoing mergers. Their identification with the EGRET gamma-ray sources is also supported by the close correlation between their radio and (purported) gamma-ray fluxes. Under favorable conditions (including a proton spectral index of 2.5 in the case of Abell 85, and sim 2.3 for Coma, and Abell 1758 and 1914), we expect ICECUBE to make as many as 0.3 neutrino detections per year from the Coma cluster of galaxies, and as many as a few per year from the Abell clusters 85, 1758, and 1914. Also, Auger may detect as many as 2 events per decade at ~ EeV energies from these gamma-ray bright clusters.

Brandon Wolfe; Fulvio Melia; Roland M. Crocker; Raymond R. Volkas

2008-07-04T23:59:59.000Z

192

Neutrino Superbeams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upgraded conventional neutrino beams: Neutrino superbeams Upgraded conventional neutrino beams: Neutrino superbeams The capabilities of greatly upgraded conventional neutrino beams and the comparison with neutrino factories is under study. This page collects together some useful working information-- and at the bottom you can find links to studies that have already been done! GROUP REPORT: Oscillation Measurements with Upgraded Conventional Neutrino Beams V. Barger et al., hep-ex/0103052 (FERMILAB-FN-703), Addendum to Report FN-692 to the Fermilab Directorate, March 5, 2001. MI upgrade limitations Conf-97-199, W. Chou NUMI low energy beam with L = 732 km uoscillation signals for point IA1 (LMA scenario) but with sin**2 2theta(13) = 0.01, from Steve Geer. NUMI medium energy beam with L = 2800 km oscillation signals for

193

Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory  

SciTech Connect (OSTI)

These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

2009-06-01T23:59:59.000Z

194

Sensors for Environmental Observatories  

E-Print Network [OSTI]

Sensors for Environmental Observatories Report of the NSF-Sponsored Workshop December 2004 #12 States of America. 2005. #12;Sensors for Environmental Observatories Report of the NSF Sponsored Workshop sensor technology and the networks that collect data from them. Present work clearly demonstrates

Hamilton, Michael P.

195

Exploring the Universe with Very High Energy Neutrinos  

E-Print Network [OSTI]

With the discovery of a high-energy neutrino flux in the 0.1 PeV to PeV range from beyond the Earth's atmosphere with the IceCube detector, neutrino astronomy has achieved a major breakthrough in the exploration of the high-energy universe. One of the main goals is the identification and investigation of the still mysterious sources of the cosmic rays which are observed at Earth with energies up to several $10^5$ PeV. In addition to being smoking-gun evidence for the presence of cosmic rays in a specific object, neutrinos escape even dense environments and can reach us from distant places in the universe, thereby providing us with a unique tool to explore cosmic accelerators. This article summarizes our knowledge about the observed astrophysical neutrino flux and current status of the search for individual cosmic neutrino sources. At the end, it gives an overview of plans for future neutrino telescope projects.

Kappes, A

2015-01-01T23:59:59.000Z

196

Neutrino Telescope Array Letter of Intent: A Large Array of High Resolution Imaging Atmospheric Cherenkov and Fluorescence Detectors for Survey of Air Showers from Cosmic Tau Neutrinos in the PeV-EeV Energy Range  

E-Print Network [OSTI]

This Letter of Intent (LoI) describes the outline and plan for the Neutrino Telescope Array (NTA) project. High-energy neutrinos provide unique and indisputable evidence for hadronic acceleration, as well as a most accurate probe into the hidden sector of traditional astronomy or physics, such as dark matter. However, their extremely low flux and interaction cross section make their detection extraordinarily difficult. Recently, IceCube has reported astronomical neutrino candidates in excess of expectation from atmospheric secondaries, but is limited by the water Cherenkov detection method. A next generation high-energy neutrino telescope should be capable of establishing indisputable evidence for cosmic high-energy neutrinos. It should not only have orders-of-magnitude larger sensitivity, but also enough pointing accuracy to probe known or unknown astronomical objects, without suffering from atmospheric secondaries. The proposed installation is a large array of compound eye stations of imaging atmospheric Ch...

Sasaki, Makoto

2014-01-01T23:59:59.000Z

197

SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

SAGE Collaboration

198

Solar Neutrinos  

DOE R&D Accomplishments [OSTI]

The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

Davis, R. Jr.; Harmer, D. S.

1964-12-00T23:59:59.000Z

199

Diffuse Neutrino Intensity from the Inner Jets of Active Galactic Nuclei: Impacts of External Photon Fields and the Blazar Sequence  

E-Print Network [OSTI]

We study high-energy neutrino production in the inner jets of radio-loud active galactic nuclei (AGN), taking into account effects of external photon fields and the blazar sequence. We show that the resulting diffuse neutrino intensity is dominated by quasar-hosted blazars, in particular, flat spectrum radio quasars, and that PeV neutrino production due to photohadronic interactions with broadline radiation is unavoidable if the inner jets of blazars are cosmic-ray sources. The resulting neutrino spectrum has a cutoff feature around PeV energies since the main target photons are Ly$\\alpha$ emission. Because of infrared photons provided by the dust torus, neutrino spectra above PeV energies are too hard to be consistent with the IceCube data unless the proton spectral index is steeper than 2.5, or the maximum proton energy is $\\lesssim100$ PeV. Thus, although the cumulative background can be as high as $E_\

Murase, Kohta; Dermer, Charles D

2014-01-01T23:59:59.000Z

200

Closing the window on strongly interacting dark matter with IceCube  

Science Journals Connector (OSTI)

We use the recent results on dark matter searches of the 22-string IceCube detector to probe the remaining allowed window for strongly interacting dark matter in the mass range 104IceCube detector from the annihilation of such particles captured in the Sun and compare it to the detected background. As a result, the remaining allowed region in the mass versus cross section parameter space is ruled out. We also show the expected sensitivity of the complete IceCube detector with 86 strings.

Ivone F. M. Albuquerque and Carlos Pérez de los Heros

2010-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

HAWC ?-Ray Observatory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(HAWC) Gamma Ray Observatory formally began operations. HAWC is designed to study the origin of very high-energy cosmic rays and observe the most energetic objects in the known...

202

The Boulder Atmospheric Observatory  

Science Journals Connector (OSTI)

The Boulder Atmospheric Observatory (BAO) is a unique research facility for studying the planetary boundary layer and for testing and calibrating atmospheric sensors. The facility includes a 300 m tower instrumented with fast- and slow-response ...

J. C. Kaimal; J. E. Gaynor

1983-05-01T23:59:59.000Z

203

Booster Neutrino Experiment - About Neutrinos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adventure An interactive tour of quarks, neutrinos, anti-matter, extra dimensions, dark matter, accelerators, and particle detectors. Developed by the Particle Data Group....

204

Probing annihilations and decays of low-mass galactic dark matter in IceCube DeepCore array: Track events  

Science Journals Connector (OSTI)

The deployment of DeepCore array significantly lowers IceCube’s energy threshold to about 10 GeV and enhances the sensitivity of detecting neutrinos from annihilations and decays of light dark matter. To match this experimental development, we calculate the track event rate in DeepCore array due to neutrino flux produced by annihilations and decays of galactic dark matter. We also calculate the background event rate due to the atmospheric neutrino flux for evaluating the sensitivity of DeepCore array to galactic dark matter signatures. Unlike previous approaches, which set the energy threshold for track events at around 50 GeV (this choice avoids the necessity of including the oscillation effect in the estimation of atmospheric background event rate), we have set the energy threshold at 10 GeV to take full advantage of DeepCore array. We compare our calculated sensitivity with those obtained by setting the threshold energy at 50 GeV. We conclude that our proposed threshold energy significantly improves the sensitivity of DeepCore array to the dark matter signature for m?<100??GeV in the annihilation scenario and m?<300??GeV in the decay scenario.

Fei-Fan Lee and Guey-Lin Lin

2012-01-25T23:59:59.000Z

205

Low Energy Investigations at Kamioka Observatory  

E-Print Network [OSTI]

At Kamioka Observatory many activities for low energy rare event search are ongoing. Super-Kamiokande(SK), the largest water Cherenkov neutrino detector, currently continues data taking as the fourth phase of the experiment (SK-IV). In SK-IV, we have upgraded the water purification system and tuned water flow in the SK tank. Consequently the background level was lowered significantly. This allowed SK-IV to derive solar neutrino results down to 3.5MeV energy region. With these data, neutrino oscillation parameters are updated from global fit; $\\Delta m^2_{12}=7.44^{+0.2}_{-0.19}\\times10^{-5} {\\rm eV}^2$, $\\sin^2\\theta_{12}=0.304\\pm0.013$, $\\sin^2\\theta_{13}=0.030^{+0.017}_{-0.015}$. NEWAGE, the directional sensitive dark matter search experiment, is currently operated as "NEWAGE-0.3a" which is a $0.20\\times0.25\\times0.31$ m$^3$ micro-TPC filled with CF4 gas at 152 Torr. Recently we have developed "NEWAGE-0.3b". It was succeeded to lower the operation pressure down to 76 Torr and the threshold down to 50 keV (F...

Sekiya, Hiroyuki

2013-01-01T23:59:59.000Z

206

Can a Single High-energy Neutrino from Gamma-ray Bursts be a Discovery?  

E-Print Network [OSTI]

Current emission models of GeV-PeV neutrinos from gamma-ray bursts (GRBs) predict a neutrino flux with $\\ll1$ detected neutrinos per GRB with kilometer-scale neutrino observatories. The detection of this flux will require the stacking of data from a large number of GRBs, leading to an increased background rate, decreasing the significance of a single neutrino detection. We show that utilizing the temporal correlation between the expected gamma-ray and neutrino fluxes, one can significantly improve the neutrino signal-to-noise ratio. We describe how this temporal correlation can be used. Using realistic GRB and atmospheric neutrino fluxes and incorporating temporal, spectral and directional information, we estimate the probability of a single detected GRB-neutrino being a 5-sigma discovery.

Bartos, Imre

2014-01-01T23:59:59.000Z

207

Probing thermonuclear supernova explosions with neutrinos  

E-Print Network [OSTI]

Aims: We present neutrino light curves and energy spectra for two representative type Ia supernova explosion models: a pure deflagration and a delayed detonation. Methods: We calculate the neutrino flux from $\\beta$ processes using nuclear statistical equilibrium abundances convoluted with approximate neutrino spectra of the individual nuclei and the thermal neutrino spectrum (pair+plasma). Results: Although the two considered thermonuclear supernova explosion scenarios are expected to produce almost identical electromagnetic output, their neutrino signatures appear vastly different, which allow an unambiguous identification of the explosion mechanism: a pure deflagration produces a single peak in the neutrino light curve, while the addition of the second maximum characterizes a delayed-detonation. We identified the following main contributors to the neutrino signal: (1) weak electron neutrino emission from electron captures (in particular on the protons Co55 and Ni56) and numerous beta-active nuclei produced by the thermonuclear flame and/or detonation front, (2) electron antineutrinos from positron captures on neutrons, and (3) the thermal emission from pair annihilation. We estimate that a pure deflagration supernova explosion at a distance of 1 kpc would trigger about 14 events in the future 50 kt liquid scintillator detector and some 19 events in a 0.5 Mt water Cherenkov-type detector. Conclusions: While in contrast to core-collapse supernovae neutrinos carry only a very small fraction of the energy produced in the thermonuclear supernova explosion, the SN Ia neutrino signal provides information that allows us to unambiguously distinguish between different possible explosion scenarios. These studies will become feasible with the next generation of proposed neutrino observatories.

A. Odrzywolek; T. Plewa

2011-03-27T23:59:59.000Z

208

The IceCube Collaboration: contributions to the 29th International Cosmic Ray Conference (ICRC 2005), Pune, India, Aug. 2005  

E-Print Network [OSTI]

In this document we collect the 18 contributions of the IceCube Collaboration to the 29th International Cosmic Ray Conference (ICRC 2005), Pune, India, Aug. 2005

The IceCube Collaboration

2005-09-13T23:59:59.000Z

209

Diffuse Neutrino Intensity from the Inner Jets of Active Galactic Nuclei: Impacts of External Photon Fields and the Blazar Sequence  

E-Print Network [OSTI]

We study high-energy neutrino production in inner jets of radio-loud active galactic nuclei (AGN), taking into account effects of external photon fields and the blazar sequence. We show that the resulting diffuse neutrino intensity is dominated by quasar-hosted blazars, in particular, flat spectrum radio quasars, and that PeV-EeV neutrino production due to photohadronic interactions with broadline and dust radiation is unavoidable if the AGN inner jets are ultrahigh-energy cosmic-ray (UHECR) sources. Their neutrino spectrum has a cutoff feature around PeV energies since target photons are due to Ly$\\alpha$ emission. Because of infrared photons provided by the dust torus, neutrino spectra above PeV energies are too hard to be consistent with the IceCube data unless the proton spectral index is steeper than 2.5, or the maximum proton energy is $\\lesssim100$ PeV. Thus, the simple model has difficulty in explaining the IceCube data. For the cumulative neutrino intensity from blazars to exceed $\\sim{10}^{-8}~{\\rm GeV}~{\\rm cm}^{-2}~{\\rm s}^{-1}~{\\rm sr}^{-1}$, their local cosmic-ray energy generation rate would be $\\sim10-100$ times larger than the local UHECR emissivity, but is comparable to the averaged gamma-ray blazar emissivity. Interestingly, future detectors such as the Askaryan Radio Array can detect $\\sim0.1-1$ EeV neutrinos even in more conservative cases, allowing us to indirectly test the hypothesis that UHECRs are produced in the inner jets. We find that the diffuse neutrino intensity from radio-loud AGN is dominated by blazars with gamma-ray luminosity of $\\gtrsim10^{48}~{\\rm erg}~{\\rm s}^{-1}$, and the arrival directions of their $\\sim1-100$ PeV neutrinos correlate with the luminous blazars detected by Fermi.

Kohta Murase; Yoshiyuki Inoue; Charles D. Dermer

2014-03-17T23:59:59.000Z

210

Neutrino Burst from Supernovae and Neutrino Oscillation  

Science Journals Connector (OSTI)

......solar, atmospheric, reactor neutrinos and so on...anti-neutrinos from nuclear reactors, spal- lation products...atmospheric, and reactor neutrinos. (Since...is expected that next generation of water Cherenkov detectors......

Katsuhiko Sato; Keitaro Takahashi; Shin'ichiro Ando

2002-03-01T23:59:59.000Z

211

Neutrino Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operators in the Lagrangian (Majorana mass terms), or both. The ongoing neutrinoless double-beta decay searches may be able to shine light on the matter. But the neutrino sector...

212

Alexey Kuznetsov Armagh Observatory  

E-Print Network [OSTI]

Solar radio emission · History · Instruments and methods · Results of observations Radio emission) 1933-1934: John Kraus & Arthur Adel (University of Michigan) 1890-1940: first attempts to detect radio performed during solar minima. #12;21 September 2012 Armagh Observatory 4 1942: discovery of solar radio

213

Armagh Observatory Annual Report  

E-Print Network [OSTI]

Media Mentions, 1998 21 F Public Queries, 1998 24 G Astropark Display Panels 27 #12; 1 Introduction, many of whom are engaged on fixed­term research contracts for periods ranging from one to three years Astrophysics, the Sun, Solar System astronomy, and the Earth's climate. Facilities at Armagh Observatory

214

Neutrinos at high energy accelerators  

E-Print Network [OSTI]

PREAMBLE, BRIEF HISTORY AND PRELIMINARIES, QUICK REVIEW OF BASIC NEUTRINO PROPERTIES, CHARGED CURRENT NEUTRINO PROCESSES, NEUTRAL CURRENT NEUTRINO PROCESSES, VERY HEAVY NEUTRINOS, CONCLUDING SUMMARY

Probir Roy

1993-08-02T23:59:59.000Z

215

Gamma Ray Bursts: recent results and connections to very high energy Cosmic Rays and Neutrinos  

E-Print Network [OSTI]

Gamma-ray bursts are the most concentrated explosions in the Universe. They have been detected electromagnetically at energies up to tens of GeV, and it is suspected that they could be active at least up to TeV energies. It is also speculated that they could emit cosmic rays and neutrinos at energies reaching up to the $10^{18}-10^{20}$ eV range. Here we review the recent developments in the photon phenomenology in the light of \\swift and \\fermi satellite observations, as well as recent IceCube upper limits on their neutrino luminosity. We discuss some of the theoretical models developed to explain these observations and their possible contribution to a very high energy cosmic ray and neutrino background.

Péter Mészáros; Katsuaki Asano; Péter Veres

2012-09-11T23:59:59.000Z

216

Sensitivity of the icecube detector to astrophysical sources of high energy muon neutrinos  

E-Print Network [OSTI]

as a function of muon energy and angle of incidence. WeKopp and Voss [38] (for muon energies smaller than 10 5.5and Stanev [33] (for muon energies greater than 10 5.5 GeV).

2004-01-01T23:59:59.000Z

217

Extending the search for neutrino point sources with IceCube above the horizon  

E-Print Network [OSTI]

primarily of high energy muons, produced in extended airsimilar to a single very high energy muon track induced by asuppression of lower energy background muons. This sets it

Abbasi, R.

2010-01-01T23:59:59.000Z

218

First Evidence For Atmospheric Neutrino-Induced Cascades with the IceCube Detector  

E-Print Network [OSTI]

49] P. Meszaros. Gamma-Ray Bursts. Rept. Prog. Phys. , 69:Revealing the supernova-gamma-ray burst connection with TeVcascades from gamma-ray bursts with AMANDA. Astrophys. J. ,

D'Agostino, Michelangelo

2009-01-01T23:59:59.000Z

219

The Green Computing Observatory: from  

E-Print Network [OSTI]

The Green Computing Observatory: from instrumentation to ontology Cécile Germain-Renaud1, Fredéric a gateway Files in XML format Available from the Grid Observatory portal GreenDays@LyonThe Green Computing) n GreenDays@LyonThe Green Computing Observatory #12;The GRIF-LAL computing room Green

Lefèvre, Laurent

220

Detecting extra-galactic supernova neutrinos in the Antarctic ice  

E-Print Network [OSTI]

Building on the technological success of the IceCube neutrino telescope, we outline a prospective low-energy extension that utilizes the clear ice of the South Pole. Aiming at a 10 Mton effective volume and a 10 MeV threshold, the detector would provide sufficient sensitivity to detect neutrino bursts from core-collapse supernovae (SNe) in nearby galaxies. The detector geometry and required density of instrumentation are discussed along with the requirements to control the various sources of background, such as solar neutrinos. In particular, the suppression of spallation events induced by atmospheric muons poses a challenge that will need to be addressed. Assuming this background can be controlled, we find that the resulting detector will be able to detect SNe from beyond 10 Mpc, delivering between 10 and 41 regular core-collapse SN detections per decade. It would further allow to study more speculative phenomena, such as optically dark (failed) SNe, where the collapse proceeds directly to a black hole, at a detection rate similar to that of regular SNe. We find that the biggest technological challenge lies in the required number of large area photo-sensors, with simultaneous strict limits on the allowed noise rates. If both can be realized, the detector concept we present will reach the required sensitivity with a comparatively small construction effort and hence offers a route to future routine observations of SNe with neutrinos.

Sebastian Böser; Marek Kowalski; Lukas Schulte; Nora Linn Strotjohann; Markus Voge

2014-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solar Neutrinos and the Decaying Neutrino Hypothesis  

E-Print Network [OSTI]

We explore, mostly using data from solar neutrino experiments, the hypothesis that the neutrino mass eigenstates are unstable. We find that, by combining $^8$B solar neutrino data with those on $^7$Be and lower-energy solar neutrinos, one obtains a mostly model-independent bound on both the $\

Jeffrey M. Berryman; Andre de Gouvea; Daniel Hernandez

2014-11-02T23:59:59.000Z

222

Solar Neutrinos and the Decaying Neutrino Hypothesis  

E-Print Network [OSTI]

We explore, mostly using data from solar neutrino experiments, the hypothesis that the neutrino mass eigenstates are unstable. We find that, by combining $^8$B solar neutrino data with those on $^7$Be and lower-energy solar neutrinos, one obtains a mostly model-independent bound on both the $\

Berryman, Jeffrey M; Hernandez, Daniel

2014-01-01T23:59:59.000Z

223

Solar Neutrinos  

E-Print Network [OSTI]

Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

R. G. H. Robertson

2006-02-05T23:59:59.000Z

224

Probing the coupling of heavy dark matter to nucleons by detecting neutrino signature from the Earth core  

E-Print Network [OSTI]

We argue that the detection of neutrino signature from the Earth core is an ideal approach for probing the coupling of heavy dark matter ($m_{\\chi}>10^{4}$ GeV) to nucleons. We first note that direct searches for dark matter (DM) in such a mass range do not provide stringent constraints. Furthermore the energies of neutrinos arising from DM annihilations inside the Sun cannot exceed a few TeV at the Sun surface due to the attenuation effect. Therefore the sensitivity to the heavy DM coupling is lost. Finally, the detection of neutrino signature from galactic halo can only probe DM annihilation cross sections. After presenting the rationale of our studies, we discuss the event rates in IceCube and KM3NeT arising from the neutrino flux produced by annihilations of Earth-captured DM heavier than $10^{4}$ GeV. The IceCube and KM3NeT sensitivities to spin independent DM-proton scattering cross section $\\sigma_{\\chi p}$ and isospin violation effect in this mass range are presented. The implications of our results are also discussed.

Guey-Lin Lin; Yen-Hsun Lin

2014-04-02T23:59:59.000Z

225

Observation of the cosmic-ray shadow of the Moon with IceCube  

Science Journals Connector (OSTI)

We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this “Moon shadow” is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (>6?) in both detector configurations. The observed location of the shadow center is within 0.2° of its expected position when geomagnetic deflection effects are taken into account. This measurement validates the directional reconstruction capabilities of IceCube.

M.?G. Aartsen et al. (IceCube Collaboration)

2014-05-28T23:59:59.000Z

226

Low Energy Investigations at Kamioka Observatory  

E-Print Network [OSTI]

At Kamioka Observatory many activities for low energy rare event search are ongoing. Super-Kamiokande(SK), the largest water Cherenkov neutrino detector, currently continues data taking as the fourth phase of the experiment (SK-IV). In SK-IV, we have upgraded the water purification system and tuned water flow in the SK tank. Consequently the background level was lowered significantly. This allowed SK-IV to derive solar neutrino results down to 3.5MeV energy region. With these data, neutrino oscillation parameters are updated from global fit; $\\Delta m^2_{12}=7.44^{+0.2}_{-0.19}\\times10^{-5} {\\rm eV}^2$, $\\sin^2\\theta_{12}=0.304\\pm0.013$, $\\sin^2\\theta_{13}=0.030^{+0.017}_{-0.015}$. NEWAGE, the directional sensitive dark matter search experiment, is currently operated as "NEWAGE-0.3a" which is a $0.20\\times0.25\\times0.31$ m$^3$ micro-TPC filled with CF4 gas at 152 Torr. Recently we have developed "NEWAGE-0.3b". It was succeeded to lower the operation pressure down to 76 Torr and the threshold down to 50 keV (F recoils). XMASS experiment is looking for scintillation signals from dark matter interaction in 1 ton of liquid xenon. It was designed utilizing its self-shielding capability with fiducial volume confinement. However, we could lower the analysis threshold down to 0.3 keVee using whole volume of the detector. In February 2012, low threshold and very large exposure data (5591 kg$\\cdot$days) were collected. With these data, we have excluded some part of the parameter spaces claimed by DAMA/LIBRA and CoGeNT experiments.

Hiroyuki Sekiya

2013-01-30T23:59:59.000Z

227

Colliding neutrino beams  

E-Print Network [OSTI]

From several neutrino oscillation experiments, we understand now that neutrinos have mass. However, we really don't know what mechanism is responsible for producing this neutrino mass. Current or planned neutrino experiments utilize neutrino beams and long-baseline detectors to explore flavor mixing but do not address the question of the origin of neutrino mass. In order to answer that question, neutrino interactions need to be explored at much higher energies. This paper outlines a program to explore neutrinos and their interactions with various particles through a series of experiments involving colliding neutrino beams.

Reinhard Schwienhorst

2007-11-08T23:59:59.000Z

228

Neutrino oscillations  

Science Journals Connector (OSTI)

...Solar neutrino oscillations The thermonuclear fusion reactions in the core of the Sun...dominant source of solar energy is the fusion process 4p !4 He + 2n e + 2e...related to the 4p ! 4He+2n e +2e+ fusion rate. Consequently, the theoretical...

2002-01-01T23:59:59.000Z

229

Electromagnetic properties of neutrinos  

E-Print Network [OSTI]

A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.

Carlo Giunti; Alexander Studenikin

2010-06-08T23:59:59.000Z

230

High energy neutrino emission from the earliest gamma-ray bursts  

SciTech Connect (OSTI)

We discuss the high energy neutrino emission from gamma-ray bursts resulting from the earliest generation (''population III'') stars forming in the Universe, whose core collapses into a black hole. These gamma-ray bursts are expected to produce a highly relativistic, magnetically dominated jet, where protons can be accelerated to ultrahigh energies. These interact with the photons produced by the jet, leading to ultrahigh energy photomeson neutrinos as well as secondary leptons and photons. The photon luminosity and the shock properties, and thus the neutrino spectrum, depend on the mass of the black holes as well as on the density of the surrounding external gas. We calculate the individual source neutrino spectral fluxes and the expected diffuse neutrino flux for various source parameters and evolution scenarios. Both the individual and diffuse signals appear detectable in the 1-300 PeV range with current and planned neutrino detectors such as IceCube and ARIANNA, provided the black hole mass is in excess of 30-100 solar masses. This provides a possible test for the debated mass of the progenitor stellar objects, as well as a probe for the early cosmological environment and the formation rate of the earliest structures.

Gao Shan; Toma, Kenji; Meszaros, Peter [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle Astrophysics, Pennsylvania State University, University Park, 16802 (United States)

2011-05-15T23:59:59.000Z

231

Neutrinos: Theory and Phenomenology  

SciTech Connect (OSTI)

The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

Parke, Stephen

2013-10-22T23:59:59.000Z

232

Short Baseline Neutrino  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 10, 2003 March 10, 2003 Jonathan Link, Columbia La Thuile A Little Neutrino Phenomenology If neutrinos have mass then they may oscillate between flavors. ) 27 . 1 ( sin...

233

Geo-neutrino Observation S.T. Dye^'^ M. Alderman^, M. Batygov^ J.G. Learned^ S. Matsuno^  

E-Print Network [OSTI]

-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology are in the decay series of uranium-238 and thorium-232. Terrestrial antineutrino observation relies on detecting comprehensive reviews of geo-neutrinos exist in the literature''^. Uranium-238 and thorium-232, the parent

Mcdonough, William F.

234

Neutrino Oscillation Search Neutrino Oscillation Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EPS HEP 2007 MiniBooNE, Part 2: MiniBooNE, Part 2: First Results of the Muon-To-Electron First Results of the Muon-To-Electron Neutrino Oscillation Search Neutrino Oscillation...

235

Acoustic detection of astrophysical neutrinos in South Pole ice  

E-Print Network [OSTI]

When high-energy particles interact in dense media to produce a particle shower, most of the shower energy is deposited in the medium as heat. This causes the medium to expand locally and emit a shock wave with a medium-dependent peak frequency on the order of 10 kHz. In South Pole ice in particular, the elastic properties of the medium have been theorized to provide good coupling of particle energy to acoustic energy. The acoustic attenuation length has been theorized to be several km, which could enable a sparsely instrumented large-volume detector to search for rare signals from high-energy astrophysical neutrinos. We simulated a hybrid optical/radio/acoustic extension to the IceCube array, specifically intended to detect cosmogenic (GZK) neutrinos with multiple methods simultaneously in order to achieve high confidence in a discovered signal and to measure angular, temporal, and spectral distributions of GZK neutrinos. This work motivated the design, deployment, and operation of the South Pole Acoustic Te...

Vandenbroucke, Justin

2012-01-01T23:59:59.000Z

236

Neutrino mass hierarchy determination with IceCube-PINGU  

Science Journals Connector (OSTI)

We discuss the neutrino mass hierarchy determination with atmospheric neutrinos in Precision IceCube Next Generation Upgrade, based on a simulation with the GLoBES software including the full three flavor framework and parameter degeneracy, and we compare it to long-baseline experiment options. We demonstrate that the atmospheric mass hierarchy sensitivity depends on the achievable experiment properties, and we identify the main targets for optimization, whereas the impact of a large number of tested systematical errors turns out to be small. Depending on the values of ?23, ?, and the true hierarchy, a 90% C.L. to 3? discovery after three years of operation seems conceivable. We also emphasize the synergy with existing beam and reactor experiments, driven by NO?A, such as the complementary coverage of the parameter space. Finally, we point out that a low intensity neutrino beam with a relatively short decay pipe could be used to determine the mass hierarchy with a sensitivity comparable to the LBNE experiment irrespective of the directional resolution of the detector.

Walter Winter

2013-07-22T23:59:59.000Z

237

HAWC Observatory captures first image  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April » April » HAWC Observatory captures first image HAWC Observatory captures first image The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. April 30, 2013 The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. HAWC is under construction inside the Parque Nacional Pico de Orizaba, a Mexican national park. An international team of researchers, including scientists from Los Alamos, has taken the first image of the High-Altitude Water Cherenkov Observatory, or HAWC. The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. HAWC is under

238

Neutrino physics at accelerators  

E-Print Network [OSTI]

Present and future neutrino experiments at accelerators are mainly concerned with understanding the neutrino oscillation phenomenon and its implications. Here a brief account of neutrino oscillations is given together with a description of the supporting data. Some current and planned accelerator neutrino experiments are also explained.

Enrique Fernandez

2006-07-16T23:59:59.000Z

239

Muons and Neutrinos 2007  

E-Print Network [OSTI]

This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

Thomas K. Gaisser

2008-01-29T23:59:59.000Z

240

Neutrino Physics AAPT Strand Day  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics AAPT Strand Day NSTA Regional, 2005 Jocelyn Monroe, Columbia University 1. What Is a Neutrino Anyway? 2. The Question Of Neutrino Mass 3. Searching For Neutrino...

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Neutrinos in Nuclear Physics  

E-Print Network [OSTI]

Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

McKeown, R D

2014-01-01T23:59:59.000Z

242

Neutrinos from the Galactic Center in the Light of its Gamma-Ray Detection at TeV Energy  

E-Print Network [OSTI]

We re-evaluate the event rate expected in km^3-scale detectors for neutrinos from the direction of the Galactic Center (GC) in light of recent spectral measurements obtained by the HESS instrument for ~TeV gamma-radiation from this direction. In the most plausible scenario the re-evaluated event rate is smaller than that previously calculated--and here re-calculated--on the basis of EGRET data. However, the GC TeV gamma-ray detections by the Whipple, CANGAROO, and HESS instruments, together with the strong indications for an overabundance of cosmic rays coming from the GC at EeV energies, strengthen the expectation for a detectable, TeV-PeV GC neutrino signal from proton-proton interactions in that region. If the TeV gamma-ray--EeV cosmic ray anisotropy connection is correct, this signal will be detectable within a year and half for km^3-scale neutrino detectors in the Northern Hemisphere at super-TeV energies and, significantly, should also be detectable in 1.6 years by the South Polar IceCube detector at energies > 10^14 eV. The GC neutrino signal should also produce a detectable signal from neutrino showering and resonant W^- production by anti-electron-neutrinos in the volume of a km^3-scale detector.

Roland M. Crocker; Fulvio Melia; Raymond R. Volkas

2005-02-10T23:59:59.000Z

243

Geek-Up[12.23.2010]: Muons at the South Pole and Dr. Nick Holoynak |  

Broader source: Energy.gov (indexed) [DOE]

2.23.2010]: Muons at the South Pole and Dr. Nick Holoynak 2.23.2010]: Muons at the South Pole and Dr. Nick Holoynak Geek-Up[12.23.2010]: Muons at the South Pole and Dr. Nick Holoynak December 23, 2010 - 12:05pm Addthis Illustration of the IceCube neutrino observatory. Source: LBNL Illustration of the IceCube neutrino observatory. Source: LBNL Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Earlier today, the Energy Blog featured Los Alamos National Lab's system to track Santa. However, while there is a lot of attention focused on the North Pole right now, the Geek-Up[date] team is taking a look at the opposite end of the Earth. This past weekend, a collaborative group of 40 institutions from around the world, including DOE's Lawrence Berkeley National Lab, celebrated the completion of the IceCube Neutrino Observatory

244

Neutrino energy reconstruction problems and neutrino oscillations  

E-Print Network [OSTI]

We discuss the accuracy of the usual procedure for neutrino energy reconstruction which is based on the quasielastic kinematics. Our results are described in terms of a probability distribution for a real neutrino energy value. Several factors are responsible of the deviations from the reconstructed value. The main one is the multinucleon component of the neutrino interaction which in the case of Cherenkov detectors enters as a quasielastic cross section, increasing the mean neutrino energy which can differ appreciably from the reconstructed value. As an application we derive, for excess electron events attributed to the conversion of muon neutrinos, the true neutrino energy distribution based on the experimental one which is given in terms of the reconstructed value. The result is a reshaping effect. For MiniBooNE the low energy peak is suppressed and shifted at higher energies, which may influence the interpretation in terms of oscillation. For T2K at the Super Kamiokande far detector the reshaping translat...

Martini, M; Chanfray, G

2012-01-01T23:59:59.000Z

245

Neutrino_Lectures_1and2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NuTeV sin 2 W Measurement Direct Neutrino Mass Measurements Neutrino Oscillation Phenomenology Solar Neutrinos (part 1) Lecture 2: Solar Neutrinos (part 2) Atmospheric and...

246

BNL | Neutrino Research History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brookhaven Neutrino Research Brookhaven Neutrino Research image of neutrinos Tens of billions of neutrinos are passing through every square centimeter of the Earth's surface right now. A Ghost-Particle Retrospective Neutrinos, ghostlike particles that flooded the universe just moments after the Big Bang, are born in the hearts of stars and other nuclear reactions. Untouched by electromagnetism and nearly as fast as light, neutrinos pass practically unhindered through everything from planets to people, only rarely responding to the weak nuclear force and the even weaker gravity. In fact, at any given moment, tens of billions of neutrinos are passing through every square centimeter of the Earth's surface. Neutrino Research News photomultiplier tubes New Results from Daya Bay: Tracking the Disappearance of Ghostlike

247

High-Energy Neutrinos Produced by Interactions of Relativistic Protons in Shocked Pulsar Winds  

Science Journals Connector (OSTI)

We have estimated fluxes of neutrinos and gamma rays that are generated from the decay of charged and neutral pions from a pulsar surrounded by supernova ejecta in our Galaxy, including an effect that has not been taken into consideration before, that is, the interactions between high-energy cosmic rays themselves in the nebula flow, assuming that hadronic components are the energetically dominant species in the pulsar wind. The bulk flow is assumed to be randomized by passing through the termination shock, and the energy distribution functions of protons and electrons behind the termination shock are assumed to obey relativistic Maxwellians. We have found that fluxes of neutrinos and gamma rays depend very sensitively on the wind luminosity, which is assumed to be comparable to the spin-down luminosity. In the case where B = 1012 G and P = 1 ms, neutrinos should be detected by km3 high-energy neutrino detectors such as AMANDA and IceCube. Also, gamma rays should be detected by Cerenkov telescopes such as CANGAROO and HESS, as well as by gamma-ray satellites such as GLAST. On the other hand, in the case where B = 1012 G and P = 5 ms, fluxes of neutrinos and gamma rays will be too low to be detected even by the next-generation detectors. However, even in the case where B = 1012 G and P = 5 ms, there is a possibility that very high fluxes of neutrinos may be realized at early stages of a supernova explosion (t ? 1 yr), where the location of the termination shock is very near to the pulsar. We have also found that there is a possibility that protons with energies of ~105 GeV in the nebula flow may interact with the photon field from the surface of the pulsar and produce many pions, which would enhance the intensity of the resulting neutrinos and gamma rays.

Shigehiro Nagataki

2004-01-01T23:59:59.000Z

248

Solar neutrino experiments  

Science Journals Connector (OSTI)

The main results of solar neutrino experiments are presented, ranging from the pioneering Cl - Ar experiment up to the most recent Borexino data. Solar neutrino fluxes and spectra are given for two versions of the standard solar model, and radiochemical and electronic detectors are briefly described. The results of Be- and pep-neutrino detection by Borexino are presented. The LMA-MSW oscillation solution of the solar neutrino problem is considered.

A V Derbin

2014-01-01T23:59:59.000Z

249

Neutrino Astronomy Scott Wilbur  

E-Print Network [OSTI]

V protons, which should be created with neutrinos, have been seen Can be used to observe possible dark Particle Physics Extremely long baseline for neutrino oscillation studies Dark Matter Searches Many dark Detector Picture from AMANDA II Web Site: http://www.amanda.uci.edu #12;Advantages of Neutrino Astronomy

Golwala, Sunil

250

ON THE NEUTRINO NON-DETECTION OF GRB 130427A  

SciTech Connect (OSTI)

The recent gamma-ray burst GRB 130427A has an isotropic electromagnetic energy E{sup iso} {approx} 10{sup 54} erg, suggesting an ample supply of target photons for photo-hadronic interactions, which at its low redshift of z {approx} 0.34 would appear to make it a promising candidate for neutrino detection. However, the IceCube collaboration has reported a null result based on a search during the prompt emission phase. We show that this neutrino non-detection can provide valuable information about this gamma-ray burst's (GRB's) key physical parameters such as the emission radius R{sub d} , the bulk Lorentz factor {Gamma}, and the energy fraction converted into cosmic rays {epsilon}{sub p}. The results are discussed both in a model-independent way and in the specific scenarios of an internal shock (IS) model, a baryonic photospheric (BPH) model, and a magnetic photospheric (MPH) model. We find that the constraints are most stringent for the MPH model considered, but the constraints on the IS and the BPH models are fairly modest.

Gao Shan; Kashiyama, Kazumi; Meszaros, Peter, E-mail: sxg324@psu.edu, E-mail: kzk15@psu.edu, E-mail: pmeszaros@astro.psu.edu [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

2013-07-20T23:59:59.000Z

251

Extragalactic star-forming galaxies with hypernovae and supernovae as high-energy neutrino and gamma-ray sources: the case of the 10 TeV neutrino data  

E-Print Network [OSTI]

In light of the latest IceCube data, we discuss the implications of the cosmic ray energy input from hypernovae and supernovae into the Universe, and their propagation in the hosting galaxy and galaxy clusters or groups. The magnetic confinement in these environments may lead to efficient $pp$ collisions, resulting in a diffuse neutrino spectrum extending from PeV down to 10 TeV energies, with a spectrum and flux level compatible with that recently reported by IceCube. If the diffuse 10 TeV neutrino background largely comes from such the CR reservoirs, the corresponding diffuse gamma-ray background should be compatible with the recent \\textit{Fermi} data. In this scenario, the CR energy input from hypernovae should be dominant over that of supernovae, implying that the starburst scenario does not work if the supernova energy budget is a factor of two larger than the hypernova energy budget. Thus, this strong case scenario can be supported or ruled out in near future.

Senno, Nicholas; Murase, Kohta; Baerwald, Philipp; Rees, Martin J

2015-01-01T23:59:59.000Z

252

High-energy cosmic neutrinos from spine-sheath BL Lac jets  

E-Print Network [OSTI]

We recently proposed that structured (spine-sheath) jets associated to BL Lac objects offer a suitable environment for the production of the extragalactic high-energy ($E>100$ TeV) neutrino recently revealed by IceCube. Our previous analysis was limited to low-power BL Lac objects. We extend our preliminary study to the entire BL Lac population. We assume that the power of cosmic rays as well as the radiative luminosity of the sheath depend linearly on the the jet power. In turn, we assume that the latter is well traced by the $\\gamma$-ray luminosity. We exploit the BL Lac $\\gamma$-ray luminosity function and its cosmic evolution as recently inferred from Fermi-LAT data to derive the expected neutrino cumulative intensity from the entire BL Lac population. When considering only the low-power BL Lacs, a large cosmic ray power for each source is required to account for the neutrino flux. Instead, if BL Lacs of all powers produce neutrinos, the power demand decreases, and the required cosmic ray power becomes of...

Tavecchio, F

2014-01-01T23:59:59.000Z

253

FIRST MEASUREMENT OF THE FLUX OF SOLAR NEUTRINOS FROM THE SUN AT THE SUDBURY NEUTRINO OBSERVATORY  

E-Print Network [OSTI]

Energy Physics Engineering Group taught me how to work in a lab and how to think critically about making signal relative to the theoretical predictions. Such a con#12;rmation is the #12;rst step in SNO's ambit

Waltham, Chris

254

Prospects for detecting dark matter with neutrino telescopes in light of recent results from direct detection experiments  

SciTech Connect (OSTI)

Direct detection dark matter experiments, lead by the CDMS collaboration, have placed increasingly stronger constraints on the cross sections for elastic scattering of WIMPs on nucleons. These results impact the prospects for the indirect detection of dark matter using neutrino telescopes. With this in mind, we revisit the prospects for detecting neutrinos produced by the annihilation of WIMPs in the Sun. We find that the latest bounds do not seriously limit the models most accessible to next generation kilometer-scale neutrino telescopes such as IceCube. This is largely due to the fact that models with significant spin-dependent couplings to protons are the least constrained and, at the same time, the most promising because of the efficient capture of WIMPs in the Sun. We identify models where dark matter particles are beyond the reach of any planned direct detection experiments while within reach of neutrino telescopes. In summary, we find that, even when contemplating recent direct detection results, neutrino telescopes still have the opportunity to play an important as well as complementary role in the search for particle dark matter.

Halzen, Francis; /Wisconsin U., Madison; Hooper, Dan; /Fermilab

2005-10-01T23:59:59.000Z

255

Space Telescope Programs Hubble Observatory  

E-Print Network [OSTI]

Assurance/Configuration Management Mr. Christopher Scholz EAG QA Manager #12;Space Telescope Programs Hubble · COS-UCB-002 QA Implementation Plan Released December 1, 1999 · COS-UCB-003 CM Plan released DecemberSpace Telescope Programs Hubble Observatory HST-COS FUV PER 11/8/00 FUV Detector System Quality

Colorado at Boulder, University of

256

Experimental Signature for Black Hole Production in Neutrino Air Showers  

E-Print Network [OSTI]

The existence of extra degrees of freedom beyond the electroweak scale may allow the formation of black holes in nearly horizontal neutrino air showers. In this paper we examine the average properties of the light descendants of these black holes. Our analysis indicates that black hole decay gives rise to deeply penetrating showers with an electromagnetic component which differs substantially from that in conventional neutrino interactions, allowing a good characterization of the phenomenon against background. Naturally occurring black holes in horizontal neutrino showers could be detected and studied with the Auger air shower array. Since the expected black hole production rate at Auger is $> 1$ event/year, this cosmic ray observatory could be potentially powerful in probing models with extra dimensions and TeV-scale gravity.

Luis Anchordoqui; Haim Goldberg

2001-10-15T23:59:59.000Z

257

BooNE: Booster Neutrino Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arXiv:0806.1449 General neutrino fluxes vs true neutrino energy, for MiniBooNE: image:muon neutrino flux image:electron neutrino flux image:final muon and electron neutrino...

258

Virtual Observatories A New Era for Astronomy  

E-Print Network [OSTI]

Virtual Observatories A New Era for Astronomy Reinaldo R. de Carvalho DAS-INPE/MCT 2010 Wednesday, April 7, 2010 #12;Virtual Observatories A New Era for Astronomy Reinaldo R. de Carvalho DAS!;#--&$G !!!$ ! ' !"#$%&'&#()*! !!!$#%& !( $ ' !%&$ $ ! (% +#&,&'- .'/0&#,& Wednesday, April 7, 2010 #12;Virtual Observatories A New Era for Astronomy Reinaldo R. de

259

Chandra X-ray Observatory Center  

E-Print Network [OSTI]

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St. Cambridge, MA 02138 USA http://chandra.harvard.edu Four Supernova Remnants: NASA's Chandra X-ray Observatory's Chandra X-ray Observatory, four newly processed images of supernova remnants dramatically illustrate

260

MINOS Sterile Neutrino Search  

SciTech Connect (OSTI)

The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

Koskinen, David Jason; /University Coll. London

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar neutrino detection  

SciTech Connect (OSTI)

More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

Miramonti, Lino [Physics department of Milano University and INFN (Italy)

2009-04-30T23:59:59.000Z

262

Solar neutrino detection  

E-Print Network [OSTI]

More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

Lino Miramonti

2009-01-22T23:59:59.000Z

263

Massive neutrinos and cosmology  

E-Print Network [OSTI]

The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of cosmological data, including the most recent analysis by the WMAP team. We also discuss how future cosmological experiments are expected to be sensitive to neutrino masses well into the sub-eV range.

Julien Lesgourgues; Sergio Pastor

2006-05-29T23:59:59.000Z

264

Neutrinos from Gamma Ray Bursts  

E-Print Network [OSTI]

We show that the detection of neutrinos from a typical gamma ray burst requires a kilometer-scale detector. We argue that large bursts should be visible with the neutrino telescopes under construction. We emphasize the 3 techniques by which neutrino telescopes can perform this search: by triggering on i) bursts of muons from muon neutrinos, ii) muons from air cascades initiated by high energy gamma rays and iii) showers made by relatively low energy ($\\simeq 100\\,\\mev$) electron neutrinos. Timing of neutrino-photon coincidences may yield a measurement of the neutrino mass to order $10^{-5}$~eV, an interesting range in light of the solar neutrino anomaly.

F. Halzen; G. Jaczko

1996-02-07T23:59:59.000Z

265

Neutrinos: Nature's Ghosts?  

ScienceCinema (OSTI)

Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

Lincoln, Don

2014-08-12T23:59:59.000Z

266

Neutrinos: Nature's Ghosts?  

SciTech Connect (OSTI)

Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

Lincoln, Don

2013-06-18T23:59:59.000Z

267

Neutrino energy reconstruction problems and neutrino oscillations  

Science Journals Connector (OSTI)

We discuss the accuracy of the usual procedure for neutrino energy reconstruction which is based on the quasielastic kinematics. Our results are described in terms of a probability distribution for a real neutrino energy value. Several factors are responsible for the deviations from the reconstructed value. The main one is the multinucleon component of the neutrino interaction which in the case of Cherenkov detectors enters as a quasielastic cross section, increasing the mean neutrino energy which can differ appreciably from the reconstructed value. As an application we derive, for excess electron events attributed to the conversion of muon neutrinos, the true neutrino energy distribution based on the experimental one which is given in terms of the reconstructed value. The result is a reshaping effect. For MiniBooNE the low energy peak is suppressed and shifted at higher energies, which may influence the interpretation in terms of oscillation. For T2K at the Super Kamiokande far detector the reshaping translates into a narrowing of the energy distribution.

M. Martini; M. Ericson; G. Chanfray

2012-05-21T23:59:59.000Z

268

Neutrino energy reconstruction problems and neutrino oscillations  

E-Print Network [OSTI]

We discuss the accuracy of the usual procedure for neutrino energy reconstruction which is based on the quasielastic kinematics. Our results are described in terms of a probability distribution for a real neutrino energy value. Several factors are responsible of the deviations from the reconstructed value. The main one is the multinucleon component of the neutrino interaction which in the case of Cherenkov detectors enters as a quasielastic cross section, increasing the mean neutrino energy which can differ appreciably from the reconstructed value. As an application we derive, for excess electron events attributed to the conversion of muon neutrinos, the true neutrino energy distribution based on the experimental one which is given in terms of the reconstructed value. The result is a reshaping effect. For MiniBooNE the low energy peak is suppressed and shifted at higher energies, which may influence the interpretation in terms of oscillation. For T2K at the Super Kamiokande far detector the reshaping translates into a narrowing of the energy distribution.

M. Martini; M. Ericson; G. Chanfray

2012-02-21T23:59:59.000Z

269

Data Center Observatory General Schematic  

E-Print Network [OSTI]

Data Center Observatory General Schematic Rack 12 critical infrastr. Rack 10 1U Rack 11 1U Rack 9 Blades Battery Battery UPS UPS PDU PDU Rack 8 mix Rack 7 1U Rack 6 1U Rack 5 1U Rack 4 3U Rack 3 1U Rack 2 1U Rack 1 3U Air FM40 Air FM40 Campuschilledwaterloop PUMP ROOM (FMS BUILDING) CICBUILDING ZONE 1

270

Atmospheric Neutrino Fluxes  

E-Print Network [OSTI]

Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

Thomas K. Gaisser

2005-02-18T23:59:59.000Z

271

UHECR ESCAPE MECHANISMS FOR PROTONS AND NEUTRONS FROM GAMMA-RAY BURSTS, AND THE COSMIC-RAY-NEUTRINO CONNECTION  

SciTech Connect (OSTI)

The paradigm that gamma-ray burst fireballs are the sources of the ultra-high energy cosmic rays (UHECRs) is being probed by neutrino observations. Very stringent bounds can be obtained from the cosmic-ray (proton)-neutrino connection, assuming that the UHECRs escape as neutrons. In this study, we identify three different regimes as a function of the fireball parameters: the standard ''one neutrino per cosmic ray'' case, the optically thick (to neutron escape) case, and the case where leakage of protons from the boundaries of the shells (direct escape) dominates. In the optically thick regime, the photomeson production is very efficient, and more neutrinos will be emitted per cosmic ray than in the standard case, whereas in the direct escape-dominated regime, more cosmic rays than neutrinos will be emitted. We demonstrate that, for efficient proton acceleration, which is required to describe the observed UHECR spectrum, the standard case only applies to a very narrow region of the fireball parameter space. We illustrate with several observed examples that conclusions on the cosmic-ray-neutrino connection will depend on the actual burst parameters. We also show that the definition of the pion production efficiency currently used by the IceCube collaboration underestimates the neutrino production in the optically thick case. Finally, we point out that the direct escape component leads to a spectral break in the cosmic-ray spectrum emitted from a single source. The resulting ''two-component model'' can be used to even more strongly pronounce the spectral features of the observed UHECR spectrum than the dip model.

Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter, E-mail: philipp.baerwald@physik.uni-wuerzburg.de, E-mail: mauricio.bustamante@physik.uni-wuerzburg.de, E-mail: winter@physik.uni-wuerzburg.de [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

2013-05-10T23:59:59.000Z

272

Neutrino oscillations and the number of neutrino types  

Science Journals Connector (OSTI)

A brief treatment of neutrino oscillations, generalized to an arbitrary number of neutrino types, is given as the basis for design of a feasible experiment to search for neutrino oscillations using the neutrino beam produced at a high-energy proton accelerator.

A. K. Mann and H. Primakoff

1977-02-01T23:59:59.000Z

273

Neutrino mass and dark matter in light of recent AMS-02 results  

Science Journals Connector (OSTI)

We study a simple extension of the Standard Model supplemented by an electroweak triplet scalar field to accommodate small neutrino masses by the type-II seesaw mechanism, while an additional singlet scalar field can play the role of cold dark matter (DM) in our Universe. This DM candidate is leptophilic for a wide range of model parameter space, and the lepton flux due to its annihilation carries information about the neutrino mass hierarchy. Using the recently released high-precision data on positron fraction and flux from the AMS-02 experiment, we examine the DM interpretation of the observed positron excess in our model for two kinematically distinct scenarios with the DM and triplet scalar masses (a) nondegenerate (mDM?m?) and (b) quasidegenerate (mDM?m?). We find that a good fit to the AMS-02 data can be obtained in both cases (a) and (b) with a normal hierarchy of neutrino masses, while the inverted hierarchy case is somewhat disfavored. Although we require a larger boost factor for the normal hierarchy case, this is still consistent with the current upper limits derived from Fermi-LAT and IceCube data for case (a). Moreover, the absence of an excess antiproton flux as suggested by PAMELA data sets an indirect upper limit on the DM-nucleon spin-independent elastic scattering cross section, which is stronger than the existing DM direct detection bound from LUX in the AMS-02 preferred DM mass range.

P.?S. Bhupal Dev; Dilip Kumar Ghosh; Nobuchika Okada; Ipsita Saha

2014-05-02T23:59:59.000Z

274

Neutrino Counter Nuclear Weapon  

E-Print Network [OSTI]

Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

Tang, Alfred

2008-01-01T23:59:59.000Z

275

Worldwide R&D of Virtual Observatory  

E-Print Network [OSTI]

Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in late of 1990s to meet challenges brought up with data avalanche in astronomy. This paper reviews current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects, and a brief introduction of Chinese Virtual Observatory.

Chenzhou Cui; Yongheng Zhao

2007-11-27T23:59:59.000Z

276

Neutrino-neutrino interactions in a supernova and their effect on neutrino flavor conversions  

SciTech Connect (OSTI)

The neutrino-neutrino interactions inside a supernova core give rise to nonlinear collective effects that significantly influence the neutrino flavor conversions inside the star. I shall describe these interactions, the new oscillation phenomena they generate, and their effect on the neutrino fluxes arriving at the earth.

Dighe, Amol [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India)

2011-11-23T23:59:59.000Z

277

Governors of the Armagh Observatory and Planetarium: Armagh Observatory Safeguarding Children and Vulnerable  

E-Print Network [OSTI]

40 Governors of the Armagh Observatory and Planetarium: Armagh Observatory Safeguarding Children the procedures in place at the Observatory in order to achieve this aim. For the purposes of this Safeguarding on the legislative context and best practice for the protection of children: "Guidance on Safeguarding Children

278

Governors of the Armagh Observatory and Planetarium: Armagh Observatory Safeguarding Children and Vulnerable  

E-Print Network [OSTI]

35 Governors of the Armagh Observatory and Planetarium: Armagh Observatory Safeguarding Children the procedures in place at the Observatory in order to achieve this aim. For the purposes of this Safeguarding on the legislative context and best practice for the protection of children: "Guidance on Safeguarding Children

279

Solar mass-varying neutrino oscillations  

E-Print Network [OSTI]

We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data...

Marfatia, Danny; Huber, P.; Barger, V.

2005-11-18T23:59:59.000Z

280

BooNE: Booster Neutrino Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BooNE will investigate the question of neutrino mass by searching for oscillations of muon neutrinos into electron neutrinos. This will be done by directing a muon neutrino beam...

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Neutrinos: Nature's Identity Thieves?  

ScienceCinema (OSTI)

The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

Dr. Don Lincoln

2013-07-22T23:59:59.000Z

282

Neutrinos: Nature's Identity Thieves?  

SciTech Connect (OSTI)

The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

Lincoln, Don

2013-07-11T23:59:59.000Z

283

Neutrinos: Nature's Identity Thieves?  

ScienceCinema (OSTI)

The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

Lincoln, Don

2014-08-07T23:59:59.000Z

284

Chandra X-ray Observatory Center  

E-Print Network [OSTI]

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St 200 million light years from Earth. (Credit: X-ray: NASA/CXC/UAH/M.Sun et al; Optical: NASA, ESA, & the Hubble Heritage Team (STScI/AURA) Caption: This composite image from the Chandra X-ray Observatory (blue

285

The Pierre Auger Cosmic Ray Observatory  

E-Print Network [OSTI]

The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

,

2015-01-01T23:59:59.000Z

286

Phenomenology of Neutrino Oscillations  

E-Print Network [OSTI]

The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

G. Rajasekaran

2000-04-17T23:59:59.000Z

287

neutrino.html  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fall 2000 Fall 2000 Tau Neutrino Evidence Announced at Fermilab This summer scientists at Fermi National Accelerator Laboratory announced the first direct evidence for the subatomic particle, the tau neutrino. The tau is an almost massless particle that carries no electric charge and barely interacts with surrounding matter. Previous experiments showed indirect evidence for its existence, but it had not been observed directly as yet. The tau is the third neutrino of the Standard Model of elementary particles, a theoretical description that groups all particles into three generations. The first electron neutrino was discovered in 1956, the muon in 1962. The Fermilab experiment responsible for the announcement is the Direct Observation of the Nu Tau (DONUT) experiment. DONUT is a collaboration of

288

Measuring Neutrino Interactions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Neutrino Interactions with MiniBooNE R. Tayloe for the MiniBooNE collaboration Physics Department, Indiana University Bloomington, IN 47405, USA Abstract. The MiniBooNE...

289

Neutrino Oscillations in 1. The Study of Neutrino Oscillations  

E-Print Network [OSTI]

... Currently there are three oscillation signal regions: #15; LSND #23; e ! #23; #22; ,#23; e ! #23; #22; separately #15; Atmospheric Neutrinos #23; #22; + #23; #22; disappearance #15; Solar Neutrinos #23; e is combination of two e#11;ects Proposed Matrixes for Neutrino Mixing (#23; 1 ; #23; 2 ; #23; 3 ) = M(#23; e

290

Advanced Neutrino Sources (Neutrino Factories and Beta Beams)  

E-Print Network [OSTI]

Advanced Neutrino Sources (Neutrino Factories and Beta Beams) · Design · R&D Status · Remaining R Meeting February, 2008 page 1 #12;· The stored beam properties & decay kinematics are well known uncertainties on neutrino flux & spectra are small PRECISION · Initial beams are flavor "pure" (BB) or "tagged

291

Results from Neutrino Oscillations Experiments  

SciTech Connect (OSTI)

The interpretation of the results of early solar and atmospheric neutrino experiments in terms of neutrino oscillations has been verified by several recent experiments using both, natural and man-made sources. The observations provide compelling evidence in favor of the existence of neutrino masses and mixings. These proceedings give a general description of the results from neutrino oscillation experiments, the current status of the field, and some possible future developments.

Aguilar-Arevalo, Alexis [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico, D.F., 04510 (Mexico)

2010-09-10T23:59:59.000Z

292

Y.Takeuchi (Y.Takeuchi (KamiokaKamioka Observatory, ICRR)Observatory, ICRR) Radon workshop @ NEUTRINO 2000  

E-Print Network [OSTI]

for water950L for water ·· RnRn--lessless--airair supply systemsupply system ·· Water purification systemWater·Covered with MINEGUARD ·supply fresh air from outside mine (10m3/h) Water purificationWater purification systemsystem Rn (stainless steel) water (+50mmAq) 60cm SK dome air #12;Water purification systemWater purification system

Takeuchi, Yasuo

293

Supernova Neutrinos Detection On Earth  

E-Print Network [OSTI]

In this paper, we first discuss the detection of supernova neutrino on Earth. Then we propose a possible method to acquire information about $\\theta_{13}$ smaller than $1.5^\\circ$ by detecting the ratio of the event numbers of different flavor supernova neutrinos. Such an sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment.

Xin-Heng Guo; Ming-Yang Huang; Bing-Lin Young

2009-05-12T23:59:59.000Z

294

Neutrino Oscillations Experiments at Fermilab  

E-Print Network [OSTI]

Neutrino oscillations provide an unique opportunity to probe physics beyond the Standard Model. Fermilab is constructing two new neutrino beams to provide a decicive test of two of the recent positive indications for neutrino oscillations: MiniBOONE experiment will settle the LSND controversy, MINOS will provide detailed studies of the region indicated by the SuperK results.

Adam Para

2000-05-01T23:59:59.000Z

295

Electromagnetic neutrino: a short review  

E-Print Network [OSTI]

A short review on selected issues related to the problem of neutrino electromagnetic properties is given. After a flash look at the theoretical basis of neutrino electromagnetic form factors, constraints on neutrino magnetic moments and electric millicharge from terrestrial experiments and astrophysical observations are discussed. We also focus on some recent studies of the problem and on perspectives.

Alexander I. Studenikin

2014-11-09T23:59:59.000Z

296

The Mars Atmospheric Constellation Observatory (MACO) Concept  

Science Journals Connector (OSTI)

The Mars Atmospheric Constellation Observatory (MACO) represents an innovative approach...2, and dust cycles together with the energy and momentum budgets. The mission concept is based on a constellation of satel...

E. R. Kursinski; W. Folkner; C. Zuffada…

2004-01-01T23:59:59.000Z

297

Plasmon decay to a neutrino pair via neutrino electromagnetic moments in a strongly magnetized medium  

E-Print Network [OSTI]

We calculate the neutrino luminosity of a degenerate electron gas in a strong magnetic field via plasmon decay to a neutrino pair due to neutrino electromagnetic moments and obtain the relative upper bounds on the effective neutrino magnetic moment.

A. V. Borisov; P. E. Sizin

2014-06-12T23:59:59.000Z

298

Neutrino Physics: A Selective Overview  

E-Print Network [OSTI]

Neutrinos in the Standard Model of particle physics are massless, neutral fermions that seemingly do little more than conserve 4-momentum, angular momentum, lepton number, and lepton flavour in weak interactions. In the last decade conclusive evidence has demonstrated that the Standard Model's description of neutrinos does not match reality. We now know that neutrinos undergo flavour oscillations, violating lepton flavour conservation and implying that neutrinos have non-zero mass. A rich oscillation phenomenology then becomes possible, including matter-enhanced oscillation and possibly CP violation in the neutrino sector. Extending the Standard Model to include neutrino masses requires the addition of new fields and mass terms, and possibly new methods of mass generation. In this review article I will discuss the evidence that has established the existence of neutrino oscillation, and then highlight unresolved issues in neutrino physics, such as the nature of three-generational mixing (including CP-violating effects), the origins of neutrino mass, the possible existence of light sterile neutrinos, and the difficult question of measuring the absolute mass scale of neutrinos.

Scott M. Oser

2006-04-11T23:59:59.000Z

299

Frederick Reines and the Neutrino  

Office of Scientific and Technical Information (OSTI)

Frederick Reines and the Detection of the Neutrino Frederick Reines and the Detection of the Neutrino Resources with Additional Information '[Frederick] Reines - known among scientists as the "father of neutrino physics" - won the Nobel Prize for physics in 1995 ["for the detection of the neutrino"], nearly 40 years after his neutrino experiments changed the world of physics and set in motion a new way of looking at the universe. ... Frederick Reines Courtesy University of California Irvine Until Reines's discovery, physicists had only theorized the existence of the neutrino - and physicists believed the tiny particles would never be detected. Reines's research laid the groundwork for new avenues of physics inquiry and hundreds of physics experiments that have tested central theories about the structure of our cosmos. The neutrino is one of the tiny spinning particles that are the building blocks of nature. ...

300

Study of High pT Muons in IceCube  

SciTech Connect (OSTI)

Muons with a high transverse momentum (p{sub T}) are produced in cosmic ray air showers via semileptonic decay of heavy quarks and the decay of high p{sub T} kaons and pions. These high p{sub T} muons have a large lateral separation from the shower core muon bundle. IceCube is well suited for the detection of high p{sub T} muons. The surface shower array can determine the energy, core location and direction of the cosmic ray air shower while the in-ice array can reconstruct the energy and direction of the high p{sub T} muon. This makes it possible to measure the decoherence function (lateral separation spectrum) at distances greater than 150 meters. The muon p{sub T} can be determined from the muon energy (measured by dE/dx) and the lateral separation. The high p{sub T} muon spectrum may also be calculated in a perturbative QCD framework; this spectrum is sensitive to the cosmic-ray composition.

IceCube Collaboration; Gerhardt, Lisa; Klein, Spencer

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Composition from high $p_\\mathrm{T}$ muons in IceCube  

E-Print Network [OSTI]

Cosmic rays with energies up to $10^{11}\\,\\mathrm{GeV}$ enter the atmosphere and produce showers of secondary particles. Inside these showers muons with high transverse momentum ($p_\\mathrm{T} \\gtrsim 2\\,\\mathrm{GeV}$) are produced from the decay of heavy hadrons, or from high $p_\\mathrm{T}$ pions and kaons very early in the shower development. These isolated muons can have large transverse separations from the shower core up to several hundred meters, together with the muon bundle forming a double or triple track signature in IceCube. The separation from the core is a measure of the transverse momentum of the muon's parent particle. Assuming the validity of perturbative quantum chromodynamics (pQCD) the muon lateral distribution depends on the composition of the incident nuclei, thus the composition of high energy cosmic rays can be determined from muon separation measurements. Vice versa these muons can help to understand uncertainties due to phenomenological models as well as test pQCD predictions of high ...

Soldin, D

2014-01-01T23:59:59.000Z

302

Lateral distribution of muons in IceCube cosmic ray events  

Science Journals Connector (OSTI)

In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (>2??GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations.

R. Abbasi et al. (IceCube Collaboration)

2013-01-07T23:59:59.000Z

303

Neutrinos From Individual Gamma-Ray Bursts in the BATSE Catalog  

E-Print Network [OSTI]

We calculate the neutrino emission from individual gamma-ray bursts observed by the BATSE detector on the Compton Gamma-Ray Observatory. Neutrinos are produced by photoproduction of pions when protons interact with photons in the region where the kinetic energy of the relativistic fireball is dissipated allowing the acceleration of electrons and protons. We also consider models where neutrinos are predominantly produced on the radiation surrounding the newly formed black hole. From the observed redshift and photon flux of each individual burst, we compute the neutrino flux in a variety of models based on the assumption that equal kinetic energy is dissipated into electrons and protons. Where not measured, the redshift is estimated by other methods. Unlike previous calculations of the universal diffuse neutrino flux produced by all gamma-ray bursts, the individual fluxes (compiled at http://www.arcetri.astro.it/~dafne/grb/) can be directly compared with coincident observations by the AMANDA telescope at the South Pole. Because of its large statistics, our predictions are likely to be representative for future observations with larger neutrino telescopes.

D. Guetta; D. Hooper; J. Alvarez-Muniz; F. Halzen; E. Reuveni

2003-02-25T23:59:59.000Z

304

Nonstandard neutrino interactions and transition magnetic moments  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We constrain generic nonstandard neutrino interactions with existing experimental data on neutrino transition magnetic moments and derive strong bounds on tensorial couplings of neutrinos to charged fermions. We also discuss how some of these tensorial couplings can be constrained by other experiments, e.g., on neutrino-electron and neutrino-nucleus scattering.

Healey, Kristopher J.; Petrov, Alexey A.; Zhuridov, Dmitry

2013-06-01T23:59:59.000Z

305

Experimental Neutrino Physics  

ScienceCinema (OSTI)

In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

Chris Walter

2010-01-08T23:59:59.000Z

306

Observational Neutrino Astronomy  

Science Journals Connector (OSTI)

...models and nu-clear energy generation in stars...from stars, high-energy neutrino experiments...an Olympic-sized swimming pool. The most impor-tant...VOL. 147 percent efficiency) by the simple pro-cedure...neu-trino of a given energy, incident on a Cl...

John N. Bahcall

1965-01-08T23:59:59.000Z

307

Raymond Davis Jr., Solar Neutrinos, and the Solar Neutrino Problems  

Office of Scientific and Technical Information (OSTI)

Raymond Davis, Jr., Solar Neutrinos, Raymond Davis, Jr., Solar Neutrinos, and the Solar Neutrino Problem Resources with Additional Information Raymond Davis, Jr. Photo Courtesy of Brookhaven National Laboratory (BNL) Raymond Davis, Jr., who conducted research in the Chemistry Department at Brookhaven National Laboratory (BNL) from 1948 through 1984, was awarded the 2002 Nobel Prize in Physics "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos." Dr. Davis is also a recipient of the 2003 Fermi Award. He was the first scientist to detect solar neutrinos, ghostlike particles produced in the nuclear reactions that power the sun. "Neutrinos are fascinating particles, so tiny and fast that they can pass straight through everything, even the earth itself, without even slowing down," said Davis. "When I began my work, I was intrigued by the idea of learning something new. The interesting thing about doing new experiments is that you never know what the answer is going to be!"

308

BooNE: Booster Neutrino Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The...

309

BooNE: Booster Neutrino Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CA A Search for numu Disappearance with SciBooNE and MiniBooNE PowerPoint Z. Pavlovic Low Energy Neutrino Oscillations G. Zeller Neutrino-Nucleus Cross Sections G. Mills Neutrino...

310

On the Detection of the Free Neutrino  

DOE R&D Accomplishments [OSTI]

The experiment previously proposed [to Detect the Free Neutrino] has been initiated, with a Hanford pile as a neutrino source. It appears probable that neutrino detection has been accomplished, and confirmatory work is in progress. (K.S.)

Reines, F.; Cowan, C. L., Jr.

1953-08-06T23:59:59.000Z

311

3D Spectroscopy and the Virtual Observatory  

E-Print Network [OSTI]

Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.

Bryan W. Miller

2007-08-15T23:59:59.000Z

312

Toward CP-even Neutrino Beam  

E-Print Network [OSTI]

The best method of measuring CP violating effect in neutrino oscillation experiments is to construct and use a neutrino beam made of an ideal mixture of $\\bar{\

A. Fukumi; I. Nakano; H. Nanjo; N. Sasao; S. Sato; M. Yoshimura

2006-12-20T23:59:59.000Z

313

Low-energy solar anti-neutrinos  

E-Print Network [OSTI]

If neutrino conversions within the Sun result in partial polarization of initial solar neutrino fluxes, then a new opportunity arises to observe the anti-\

V. B. Semikoz; S. Pastor; J. W. F. Valle

1998-08-13T23:59:59.000Z

314

Hybrid Performance of the Pierre Auger Observatory  

E-Print Network [OSTI]

A key feature of the Pierre Auger Observatory is its hybrid design, in which ultra high energy cosmic rays are detected simultaneously by fluorescence telescopes and a ground array. The two techniques see air showers in complementary ways, providing important cross-checks and measurement redundancy. Much of the hybrid capability stems from the accurate geometrical reconstruction it achieves, with accuracy better than either the ground array detectors or a single telescope could achieve independently. We have studied the geometrical and longitudinal profile reconstructions of hybrid events. We present the results for the hybrid performance of the Observatory, including trigger efficiency, energy and angular resolution, and the efficiency of the event selection.

B. R. Dawson; for the Pierre Auger Collaboration

2007-06-08T23:59:59.000Z

315

Muon colliders and neutrino factories  

SciTech Connect (OSTI)

Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

Geer, S.; /Fermilab

2010-09-01T23:59:59.000Z

316

Quantum Coherence of Relic Neutrinos  

Science Journals Connector (OSTI)

We argue that in at least a portion of the history of the Universe the relic background neutrinos are spatially extended, coherent superpositions of mass states. We show that an appropriate quantum mechanical treatment affects the neutrino mass values derived from cosmological data. The coherence scale of these neutrino flavor wave packets can be an appreciable fraction of the causal horizon size, raising the possibility of spacetime curvature-induced decoherence.

George M. Fuller and Chad T. Kishimoto

2009-05-22T23:59:59.000Z

317

Neutrino mass matrix with U(2) flavor symmetry and neutrino oscillations  

Science Journals Connector (OSTI)

The three neutrino mass matrices in the SU(5)×U(2) model are studied focusing on neutrino oscillation experiments. The atmospheric neutrino anomaly could be explained by a large ??-?? oscillation. The long baseline experiments are expected to detect signatures of the neutrino oscillation even if the atmospheric neutrino anomaly is not due to the neutrino oscillation. However, the model cannot solve the solar neutrino deficit while it could be reconciled with the LSND data.

Morimitsu Tanimoto

1998-02-01T23:59:59.000Z

318

Phenomenology of Absolute Neutrino Masses  

E-Print Network [OSTI]

The phenomenology of absolute neutrino masses is reviewed, focusing on tritium beta decay, cosmological measurements and neutrinoless double-beta decay.

Carlo Giunti

2004-12-11T23:59:59.000Z

319

Neutrino Oscillations from String Theory  

E-Print Network [OSTI]

We derive the character of neutrino oscillations that results from a model of equivalence principle violation suggested recently by Damour and Polyakov as a plausible consequence of string theory. In this model neutrino oscillations will take place through interaction with a long range scalar field of gravitational origin even if the neutrinos are degenerate in mass. The energy dependence of the oscillation length is identical to that in the conventional mass mixing mechanism. This possibility further highlghts the independence of and need for more exacting direct neutrino mass measurements together with a next generation of neutrinoless double beta decay experiments.

A. Halprin; C. N. Leung

1997-07-21T23:59:59.000Z

320

Neutrino Factory Feasibility Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6-1 - 6-1 - April 15 th , 2000 6. Cooling 6.1 Introduction The goal of this six-month study is an integrated design for a neutrino source, subject to realistic engineering constraints. As will become evident, the coupling between the cooling-channel design and the design of the upstream components is critical to achieving the best performance. Nevertheless, to make sufficiently rapid progress it has been necessary to design the various components semi-independently, then optimize and iterate to converge towards an integrated design. While we have not yet arrived at a fully optimized design, we have studied sufficiently the cooling channels described below to determine that their performance is limited primarily by the performance of the current phase-rotation and buncher designs. While the designs presented here suffice for an entry-level neutrino factory (10

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Acoustic detection of neutrinos  

Science Journals Connector (OSTI)

When high energy neutrinosinteract with nucleons in the ocean a jet of hadrons is produced which deposits thermal energy. This thermal energy is expected to produce a sonic pulse which hopefully will be sufficiently intense and directional to enable the energy and direction of incidence of the primary neutrino to be determined [Antares Parvulescu J. Acoust. Soc. Am. 61 580(A) (1977)]. This paper discusses the physical mechanism whereby the energy of the neutrino is converted into a sound pulse. A simple model will be exploited to account for the signature expected from such an event. [Work supported in part by the U. S. Naval Ocean Research and Development Activity and by the U. S. Department of Energy.

Peter J. Westervelt

1978-01-01T23:59:59.000Z

322

Quasivacuum solar neutrino oscillations  

Science Journals Connector (OSTI)

We discuss in detail solar neutrino oscillations with ?m2/E in the range [10-10,10-7]?eV2/MeV. In this range, which interpolates smoothly between the so-called “just-so” and “Mikheyev-Smirnov-Wolfenstein” oscillation regimes, neutrino flavor transitions are increasingly affected by matter effects as ?m2/E increases. As a consequence, the usual vacuum approximation has to be improved through the matter-induced corrections, leading to a “quasivacuum” oscillation regime. We perform accurate numerical calculations of such corrections, using both the true solar density profile and its exponential approximation. Matter effects are shown to be somewhat overestimated in the latter case. We also discuss the role of Earth crossing and of energy smearing. Prescriptions are given to implement the leading corrections in the quasivacuum oscillation range. Finally, the results are applied to a global analysis of solar ? data in a three-flavor framework.

G. L. Fogli; E. Lisi; D. Montanino; A. Palazzo

2000-10-25T23:59:59.000Z

323

Neutrinos in the Electron  

E-Print Network [OSTI]

We will show that one half of the rest mass of the electron is equal to the sum of the rest masses of electron neutrinos and that the other half of the rest mass of the electron is given by the energy in the sum of electric oscillations. With this composition we can explain the rest mass, the electric charge, the spin and the magnetic moment of the electron.

E. L. Koschmieder

2006-09-26T23:59:59.000Z

324

Birth of Neutrino Astrophysics  

ScienceCinema (OSTI)

Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

None

2011-10-06T23:59:59.000Z

325

Observables in Neutrino Mass Spectroscopy Using Atoms  

E-Print Network [OSTI]

The process of collective de-excitation of atoms in a metastable level into emission mode of a single photon plus a neutrino pair, called radiative emission of neutrino pair (RENP), is sensitive to the absolute neutrino mass scale, to the neutrino mass hierarchy and to the nature (Dirac or Majorana) of massive neutrinos. We investigate how the indicated neutrino mass and mixing observables can be determined from the measurement of the corresponding continuous photon spectrum taking the example of a transition between specific levels of the Yb atom. The possibility of determining the nature of massive neutrinos and, if neutrinos are Majorana fermions, of obtaining information about the Majorana phases in the neutrino mixing matrix, is analyzed in the cases of normal hierarchical, inverted hierarchical and quasi-degenerate types of neutrino mass spectrum. We find, in particular, that the sensitivity to the nature of massive neutrinos depends critically on the atomic level energy difference relevant in the RENP.

D. N. Dinh; S. T. Petcov; N. Sasao; M. Tanaka; M. Yoshimura

2012-09-21T23:59:59.000Z

326

Recent Progress at the Pierre Auger Observatory  

Science Journals Connector (OSTI)

......the shape of the cosmic ray energy spectrum, the nature of the...of light. For the highest energy cosmic rays this cascade...observatory in Men- doza Province, Argentina, is funded and is under construction...growing to 16 detectors at an energy of 1020eV. This sampling of......

Bruce R. Dawson

2003-05-01T23:59:59.000Z

327

Solar Dynamics Observatory/ Extreme Ultraviolet Variability Experiment  

E-Print Network [OSTI]

Solar Dynamics Observatory/ EVE Extreme Ultraviolet Variability Experiment Frequently Asked and model solar extreme ultraviolet irradiance variations due to solar flares, solar rotation, and solar and structure of the Sun. What is solar variability? Solar radiation varies on all time scales ranging from

Mojzsis, Stephen J.

328

UK observatories look to private sector  

Science Journals Connector (OSTI)

... London. The British government has announced that private-sector organizations will be invited to bid for the services provided by its 'Royal ... a negotiator with the Institute of Professionals, Managers and Specialists (IPMS), says that private-sector management of the observatories is not the solution to what he describes as " ...

Ehsan Masood

1996-05-02T23:59:59.000Z

329

Carnegie Mellon Opens Data Center Observatory  

E-Print Network [OSTI]

of up to 774 kW â " more than the rate of consumption of 750 average-sized homes. In addition Home > Media Center > In the News > Carnegie Mellon Opens Data Center Observatory Carnegie Mellon Opens,000-square-foot DCO has the ability to support 40 racks of computers, which would consume energy at a rate

330

Bishop's University Astronomical Observatory October 2009  

E-Print Network [OSTI]

of our visitors. The solar panel and battery system provide sufficient energy to easily light the deck that was built on the roof of Nicolls adjacent to the Observatory and the other is Bishop's first-ever solar panel mounted next to it. The deck was built late last summer and completes the final phase

331

Chandra X-ray Observatory Center  

E-Print Network [OSTI]

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St in hot gas about 250 million light years from Earth. (Credit: X-ray: NASA/CXC/SAO/E.Bulbul, et al-Newton has revealed a mysterious X-ray signal in the data. This signal is represented in the circled data

332

Chandra X-ray Observatory Center  

E-Print Network [OSTI]

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St million light years from Earth. (Credit: X-ray: NASA/CXC/Wesleyan Univ./R.Kilgard, et al; Optical: NASA with optical data from the Hubble Space Telescope (red, green, and blue). The X-ray data reveal hundreds

333

ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG  

E-Print Network [OSTI]

ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG Abstract. The current neutrino oscillation an alternative resolution to the solar neutrino loss problem. Contents 1. Introduction 1 2. Discrepancy of Solar, there are three flavors of neutrinos: the electron neutrino e, the tau neutrino and the mu neutrino µ. The solar

334

Vacuum neutrino oscillations of solar neutrinos and lepton mass matrices  

Science Journals Connector (OSTI)

We consider the case that the solar neutrino deficit is due to vacuum oscillations. The lepton mass matrices with nearly bimaximal mixings are needed in order to explain both the solar and atmospheric neutrino deficit. A texture with the symmetry of flavor democracy or S3 has been investigated by taking account of the symmetry breaking terms of the charged lepton mass matrix. It is found that predicted mixings can be considerably changed from the neutrino mixings sin22???1 and sin22?atm?8/9 at the symmetric limit. The correlation between |Ue3| and |Ue1Ue2*| is also presented. The test of the model is discussed by focusing on the three flavor analyses in the solar neutrinos, atmospheric neutrinos, and long baseline experiments.

Morimitsu Tanimoto

1998-12-11T23:59:59.000Z

335

The endless mantra : innovation at the Keck Observatory  

E-Print Network [OSTI]

A study of historical, current, and future developments at the Keck Observatory revealed a thriving philosophy of innovation. Intended to defy obsoletion and keep the observatory competitive over long time scales, this ...

Bobra, Monica Godha

2005-01-01T23:59:59.000Z

336

The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines  

E-Print Network [OSTI]

The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of $\\sim 20$ kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyh\\"asalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\\delta_{CP}$ and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure ...

:,; Agostino, L; Aittola, M; Alekou, A; Andrieu, B; Antoniou, F; Asfandiyarov, R; Autiero, D; Bésida, O; Balik, A; Ballett, P; Bandac, I; Banerjee, D; Bartmann, W; Bay, F; Biskup, B; Blebea-Apostu, A M; Blondel, A; Bogomilov, M; Bolognesi, S; Borriello, E; Brancus, I; Bravar, A; Buizza-Avanzini, M; Caiulo, D; Calin, M; Calviani, M; Campanelli, M; Cantini, C; Cata-Danil, G; Chakraborty, S; Charitonidis, N; Chaussard, L; Chesneanu, D; Chipesiu, F; Crivelli, P; Dawson, J; De Bonis, I; Declais, Y; Sanchez, P Del Amo; Delbart, A; Di Luise, S; Duchesneau, D; Dumarchez, J; Efthymiopoulos, I; Eliseev, A; Emery, S; Enqvist, T; Enqvist, K; Epprecht, L; Erykalov, A N; Esanu, T; Franco, D; Friend, M; Galymov, V; Gavrilov, G; Gendotti, A; Giganti, C; Gilardoni, S; Goddard, B; Gomoiu, C M; Gornushkin, Y A; Gorodetzky, P; Haesler, A; Hasegawa, T; Horikawa, S; Huitu, K; Izmaylov, A; Jipa, A; Kainulainen, K; Karadzhov, Y; Khabibullin, M; Khotjantsev, A; Kopylov, A N; Korzenev, A; Kosyanenko, S; Kryn, D; Kudenko, Y; Kuusiniemi, P; Lazanu, I; Lazaridis, C; Levy, J -M; Loo, K; Maalampi, J; Margineanu, R M; Marteau, J; Martin-Mari, C; Matveev, V; Mazzucato, E; Mefodiev, A; Mineev, O; Mirizzi, A; Mitrica, B; Murphy, S; Nakadaira, T; Narita, S; Nesterenko, D A; Nguyen, K; Nikolics, K; Noah, E; Novikov, Yu; Oprima, A; Osborne, J; Ovsyannikova, T; Papaphilippou, Y; Pascoli, S; Patzak, T; Pectu, M; Pennacchio, E; Periale, L; Pessard, H; Popov, B; Ravonel, M; Rayner, M; Resnati, F; Ristea, O; Robert, A; Rubbia, A; Rummukainen, K; Saftoiu, A; Sakashita, K; Sanchez-Galan, F; Sarkamo, J; Saviano, N; Scantamburlo, E; Sergiampietri, F; Sgalaberna, D; Shaposhnikova, E; Slupecki, M; Smargianaki, D; Stanca, D; Steerenberg, R; Sterian, A R; Sterian, P; Stoica, S; Strabel, C; Suhonen, J; Suvorov, V; Toma, G; Tonazzo, A; Trzaska, W H; Tsenov, R; Tuominen, K; Valram, M; Vankova-Kirilova, G; Vannucci, F; Vasseur, G; Velotti, F; Velten, P; Venturi, V; Viant, T; Vihonen, S; Vincke, H; Vorobyev, A; Weber, A; Wu, S; Yershov, N; Zambelli, L; Zito, M

2014-01-01T23:59:59.000Z

337

Lepton textures and neutrino oscillations  

E-Print Network [OSTI]

Systematic analyses of the textures arising in lepton mass matrices have been carried out using unitary transformations and condition of naturalness for the Dirac and Majorana neutrino possibilities. It is observed that the recent three neutrino oscillation data together with the effective mass in neutrinoless double beta decay provide vital clues in predicting the general structures of these lepton mass matrices.

Verma, Rohit

2014-01-01T23:59:59.000Z

338

The Pierre Auger Observatory: Perspectives on Ultra-High Energy  

E-Print Network [OSTI]

¨ue, Argentina Abstract The Pierre Auger Observatory for ultra-high energy cosmic rays is under constructionThe Pierre Auger Observatory: Perspectives on Ultra-High Energy Cosmic Rays Tiina Suomij¨arvi1 in Argentina. The Observatory will consist when completed of 1600 water Cerenkov tanks and 24 fluorescence

Paris-Sud XI, Université de

339

Ultra- and extremely high energy neutrino astronomy  

E-Print Network [OSTI]

Scientific motivations for ultra- and extremely high energy neutrino astronomy are considered. Sources and expected fluxes of EHE/UHE neutrinos are briefly discussed. Operating and planned experiments on astrophysical neutrino detection are reviewed focusing on deep underwater/ice Cherenkov neutrino telescopes.

I. Sokalski

2005-01-05T23:59:59.000Z

340

Microsoft PowerPoint - MiniBooNE Neutrino 2008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oscillation Searches Steve Brice (Fermilab) for the MiniBooNE Collaboration Neutrino 2008 Neutrino 2008 Steve Brice (FNAL) 2 Outline * Electron Neutrino Appearance - Oscillation...

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geo-neutrinos: recent developments  

E-Print Network [OSTI]

Radiogenic heating is a key component of the energy balance and thermal evolution of the Earth. It contributes to mantle convection, plate tectonics, volcanoes, and mountain building. Geo-neutrino observations estimate the present radiogenic power of our planet. This estimate depends on the quantity and distribution of heat-producing elements in various Earth reservoirs. Of particular geological importance is radiogenic heating in the mantle. This quantity informs the origin and thermal evolution of our planet. Here we present: currently reported geo-neutrino observations; estimates of the mantle geo-neutrino signal, mantle radiogenic heating, and mantle cooling; a comparison of chemical Earth model predictions of the mantle geo-neutrino signal and mantle radiogenic heating; a brief discussion of radiogenic heating in the core, including calculations of geo-neutrino signals per pW/kg; and finally a discussion of observational strategy.

Dye, Steve

2014-01-01T23:59:59.000Z

342

ANTARES deep sea neutrino telescope results  

SciTech Connect (OSTI)

The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

Mangano, Salvatore [IFIC - Instituto de Física Corpuscular, Edificio Institutos de Investigatión, 46071 Valencia (Spain); Collaboration: ANTARES Collaboration

2014-06-24T23:59:59.000Z

343

Supernova observations for neutrino mixing parameters  

SciTech Connect (OSTI)

The neutrino spectra from a future galactic core collapse supernova could reveal information on the neutrino mixing pattern, especially on {theta}{sub 13} and the mass hierarchy. I briefly outline our current understanding of neutrino flavor conversions inside a supernova, and point out possible signatures of various neutrino mixing scenarios that the neutrino detectors should look for. Supernova neutrinos provide a probe for {theta}{sub 13} and mass hierarchy that is complementary to, and sometimes even better than, the current and proposed terrestrial neutrino oscillation experiments.

Dighe, Amol [Department of Theoretical Physics, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Mumbai 400005 (India)

2011-10-06T23:59:59.000Z

344

neutrino_mixing_s805.dvi  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEUTRINO NEUTRINO PHYSICS AS EXPLORED BY FLAVOR CHANGE Written May 2002 by B. Kayser (Fermilab). I. The physics of flavor change: The rather convincing evidence that atmospheric neutrinos change from one flavor to another has now been joined by new, very strong evidence that the solar neutrinos do this as well. Neutrino flavor change implies that neutrinos have nonzero masses. That is, there is a spectrum of three or more neutrino mass eigenstates, ν 1 , ν 2 , ν 3 , . . ., that are the analogues of the charged-lepton mass eigenstates, e, µ, and τ . Neutrino flavor change also implies leptonic mixing. That is, the weak interaction coupling the W boson to a charged lepton and a neutrino can couple any charged-lepton mass eigenstate α to any neutrino mass eigenstate ν i . Here, α = e, µ, or τ , and e is the electron, etc. Leptonic W + decay can yield a particular + α in association with any ν i . The amplitude

345

Energy Dependence of Solar Neutrino Suppression and Bounds on the Neutrino Magnetic Moment  

E-Print Network [OSTI]

An analysis of neutrino electron scattering as applied to the SuperKamiokande solar neutrino experiment with the data from the Homestake experiment leads to an upper bound on the neutrino magnetic moment in the range $\\mu_{\

Joao Pulido; Ana M. Mourao

1998-03-02T23:59:59.000Z

346

Small scales structures and neutrino masses  

E-Print Network [OSTI]

We review the impact of massive neutrinos on cosmological observables at the linear order. By means of N-body simulations we investigate the signatures left by neutrinos on the fully non-linear regime. We present the effects induced by massive neutrinos on the matter power spectrum, the halo mass function and on the halo-matter bias in massive neutrino cosmologies. We also investigate the clustering of cosmic neutrinos within galaxy clusters.

Villaescusa-Navarro, Francisco

2015-01-01T23:59:59.000Z

347

What we can learn from atmospheric neutrinos  

E-Print Network [OSTI]

Physics potential of future measurements of atmospheric neutrinos is explored. Observation of $\\Delta m^2_{21}$ driven sub-dominant effects and $\\theta_{13}$ driven large matter effects in atmospheric neutrinos can be used to study the deviation of $\\theta_{23}$ from maximality and its octant. Neutrino mass hierarchy can be determined extremely well due to the large matter effects. New physics can be constrained both in standard atmospheric neutrino experiments as well as in future neutrino telescopes.

Sandhya Choubey

2006-09-19T23:59:59.000Z

348

Coherence condition for resonant neutrino oscillation  

Science Journals Connector (OSTI)

We study the coherence condition for a neutrino to keep coherence between the effective mass eigenstates in the presence of matter and examine whether or not resonant neutrino oscillation (RNO) happens in the cases of solar and SN 1987A neutrinos. As a result, it becomes evident that RNO is possible in the solar-neutrino case but impossible in the SN 1987A neutrino case.

Hajime Anada and Haruhiko Nishimura

1990-04-15T23:59:59.000Z

349

Current Direct Neutrino Mass Experiments  

E-Print Network [OSTI]

In this contribution we review the status and perspectives of direct neutrino mass experiments. These experiments investigate the kinematics of $\\beta$-decays of specific isotopes ($^3$H, $^{187}$Re, $^{163}$Ho) to derive model-independent information on the averaged electron (anti-) neutrino mass, which is formed by the incoherent sum of the neutrino mass eigenstates contributing to the electron neutrino. We first review the kinematics of $\\beta$-decay and the determination of the neutrino mass, before giving a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for $^3$H, cryo-bolometers for $^{187}$Re). We then describe the Karlsruhe Tritium Neutrino (KATRIN) experiment which is currently under construction at Karlsruhe Institute of Technology. The large-scale setup will use the MAC-E-Filter principle pioneered earlier to push the sensitivity down to a value of 200 meV(90% C.L.). KATRIN faces many technological challenges that have to be resolved with regar...

Drexlin, G; Mertens, S; Weinheimer, C

2013-01-01T23:59:59.000Z

350

Phenomenology Of Sterile Neutrinos At Different Mass Scales: Neutrinoless Double Beta Decay And Neutrino Oscillations.  

E-Print Network [OSTI]

??The existence of neutrino oscillation is the first evidence of physics beyond the Standard Model. It proves that neutrinos are massive and motivates the study… (more)

WONG, CHAN,FAI

2012-01-01T23:59:59.000Z

351

The next-generation liquid-scintillator neutrino observatory LENA Michael Wurm a,b,  

E-Print Network [OSTI]

ae , Walter Potzel a , Tomi Räihä k , Georg G. Raffelt af , Gioacchino Ranucci g , Soebur Razzaque ag of Fundamental Research, Mumbai, India j Hawaii Pacific University, Kaneohe, HI, USA k Oulu Southern Institute of Bucharest, Romania s Department of Physics and Astronomy, University of Hawaii, Honolulu, HI, USA

Mcdonough, William F.

352

Robust Signal Extraction Methods and Monte Carlo Sensitivity Studies for the Sudbury Neutrino Observatory and  

E-Print Network [OSTI]

+. An important part of the SNO+ physics program will be a search for neutrinoless double beta decay, carried out a reasonable choice for the 150 Nd neutrinoless double beta decay matrix element, these half lives correspond are competitive with those expected from all other near-term neutrinoless double beta decay experiments. ii #12

Waltham, Chris

353

Estimating concentrations of heat producing elements in the crust near the Sudbury Neutrino Observatory, Ontario, Canada  

E-Print Network [OSTI]

the concentrations of uranium and thorium in the crust must be determined precisely for the future geoneutrino with measure- ments on outcrop and core samples, and with heat flow data. The concentrations of uranium, thorium, and po- tassium from radiometric surveys are correlated with geology, but heat production

354

Solar monopoles and terrestrial neutrinos  

SciTech Connect (OSTI)

Magnetic monopoles captured in the core of the sun may give rise to a substantial flux of energetic neutrinos by catalyzing the decay of solar hydrogen. We discuss the expected neutrino flux in underground detectors under different assumptions about solar interior conditions. Although a monopole flux as low as F/sub M/ /approximately/ 10/sup /minus/24/ cm/sup /minus/2/ sec/sup /minus/1/ sr/sup /minus/1/ could give rise to a neutrino flux above atmospheric background, due to M/bar M/ annihilation, this does not translate into a reliable monopole flux bound stronger than the Parker limit. 8 refs., 1 fig.

Frieman, J.

1988-04-01T23:59:59.000Z

355

Neutrino interactions in neutron matter  

E-Print Network [OSTI]

Neutrino flow is the dominant mechanism of energy transfer in the latest stages of supernovae explosions and in compact stars. The Standard Model of particle physics and accelerator data, provide a satisfactory description of neutrino physics in vacuum up to TeV scale. Nevertheless modeling the dynamics of neutrino interaction in the nuclear environment involves severe difficulties. This thesis in mainly aimed at obtaining the weak response of infinite matter, using both the Correlated Basis Function theory and Landau Theory of Fermi liquid to take into account properly nucleon-nucleon hard core potential and long range correlation (quasi-particle, collective modes, ecc.)

Cipollone, Andrea

2012-01-01T23:59:59.000Z

356

Neutrino interactions in neutron matter  

E-Print Network [OSTI]

Neutrino flow is the dominant mechanism of energy transfer in the latest stages of supernovae explosions and in compact stars. The Standard Model of particle physics and accelerator data, provide a satisfactory description of neutrino physics in vacuum up to TeV scale. Nevertheless modeling the dynamics of neutrino interaction in the nuclear environment involves severe difficulties. This thesis in mainly aimed at obtaining the weak response of infinite matter, using both the Correlated Basis Function theory and Landau Theory of Fermi liquid to take into account properly nucleon-nucleon hard core potential and long range correlation (quasi-particle, collective modes, ecc.)

Andrea Cipollone

2012-12-20T23:59:59.000Z

357

Neutrino masses, leptogenesis, and sterile neutrino dark matter  

E-Print Network [OSTI]

We analyze a scenario in which the lightest heavy neutrino $N_1$ is a dark matter candidate and the second- heaviest neutrino $N_2$ decays producing a lepton number. If $N_1$ were in thermal equilibrium, its energy density today would be much larger than that of the observed dark matter, so we consider energy injection by the decay of $N_2$. In this paper, we show the parameters of this scenario that give the correct abundances of dark matter and baryonic matter and also induce the observed neutrino masses. This model can explain a possible sterile neutrino dark matter signal of $M_1$=7 keV in the x-ray observation of x-ray multi-mirror mission.

Takanao Tsuyuki

2014-07-20T23:59:59.000Z

358

Neutrino oscillation studies and the neutrino cross section  

E-Print Network [OSTI]

The present uncertainties in the knowledge of the neutrino cross sections for E_nu \\sim 1 GeV, that is in the energy range most important for atmospheric and long baseline accelerator neutrinos, are large. These uncertainties do not play a significant role in the interpretation of existing data, however they could become a limiting factor in future studies that aim at a complete and accurate determination of the neutrino oscillation parameters. New data and theoretical understanding on nuclear effects and on the electromagnetic structure functions at low Q^2 and in the resonance production region are available, and can be valuable in reducing the present systematic uncertainties. The collaboration of physicists working in different subfields will be important to obtain the most from this available information. It is now also possible, with the facilities developed for long baseline beams, to produce high intensity and well controlled neutrino beams to measure the neutrino interaction properties with much better precision that what was done in the past. Several projects and ideas to fully exploit these possibilities are under active investigation. These topics have been the object of the first neutrino interaction (NUINT01) workshop.

Paolo Lipari

2002-07-14T23:59:59.000Z

359

Neutrinos in IceCube/KM3NeT as probes of dark matter substructures in galaxy clusters  

Science Journals Connector (OSTI)

Galaxy clusters are one of the most promising candidate sites for dark matter (DM) annihilation. We focus on DM (?) with mass in the range of 10 GeV–100 TeV, annihilating through the channels ????+?-, ?????¯, ???tt¯, or ?????¯??¯, and forecast the expected sensitivity to the annihilation cross section into these channels by observing galaxy clusters at IceCube/KM3NeT. Optimistically, the presence of DM substructures in galaxy clusters is predicted to enhance the signal by 2–3 orders of magnitude over the contribution from the smooth component of the DM distribution. Optimizing for the angular size of the region of interest for galaxy clusters, the sensitivity to the annihilation cross section, ??v?, of heavy DM with mass in the range of 300 GeV–100 TeV will be O(10-24??cm3?s-1) for full IceCube/KM3NeT live time of 10 years, which is about one order of magnitude better than the best limit that can be obtained by observing the Milky Way halo. We find that neutrinos from cosmic ray interactions in the galaxy cluster, in addition to the atmospheric neutrinos, are a source of background. We show that significant improvement in the experimental sensitivity can be achieved for lower DM masses in the range of 10–300 GeV if neutrino-induced cascades can be reconstructed to ?5° accuracy, as may be possible in KM3NeT. We, therefore, propose that a low-energy extension “KM3NeT-Core,” similar to DeepCore in IceCube, be considered for an extended reach at low DM masses.

Basudeb Dasgupta and Ranjan Laha

2012-11-01T23:59:59.000Z

360

neutrino-properties-web.dvi  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THE THE NEUTRINO PROPERTIES LISTINGS Revised August 2013 by P. Vogel (Caltech) and A. Piepke (University of Alabama). The following Listings concern measurements of various properties of neutrinos. Nearly all of the measurements, all of which so far are limits, actually concern superpositions of the mass eigenstates ν i , which are in turn related to the weak eigenstates ν ℓ , via the neutrino mixing matrix |ν ℓ = i U ℓi |ν i . In the analogous case of quark mixing via the CKM matrix, the smallness of the off-diagonal terms (small mixing angles) permits a "dominant eigenstate" approximation. However, the results of neutrino oscillation searches show that the mixing matrix contains two large mixing angles and a third angle that is not exceedingly small. We cannot, therefore, associate any particular state |ν i with any particular lepton label e, µ or τ . Nevertheless,

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

On the muon neutrino mass  

E-Print Network [OSTI]

During the runs of the PS 179 experiment at LEAR of CERN, we photographed an event of antiproton-Ne absorption, with a complete pi+ -> mu+ ->e+ chain. From the vertex of the reaction a very slow energy pi+ was emitted. The pi+ decays into a mu+ and subsequently the mu+ decays into a positron. At the first decay vertex a muon neutrino was emitted and at the second decay vertex an electron neutrino and a muon antineutrino. Measuring the pion and muon tracks and applying the momentum and energy conservation and using a classical statistical interval estimator, we obtained an experimental upper limit for the muon neutrino mass: m_nu < 2.2 MeV at a 90% confidence level. A statistical analysis has been performed of the factors contributing to the square value of the neutrino mass limit.

N. Angelov; F. Balestra; Yu. Batusov; A. Bianconi; M. P. Bussa; L. Busso; L. Ferrero; R. Garfagnini; I. Gnesi; E. Lodi Rizzini; A. Maggiora; D. Panzieri; G. Piragino; G. Pontecorvo; F. Tosello; L. Venturelli

2006-05-03T23:59:59.000Z

362

zeller-neutrino08.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

K2K MiniBooNE,SciBooNE MINERvA Sam Zeller, Neutrino 08 6 New Measurements * near future: - MINERA (2009) * present: - K2K (1999 - 2004) - MiniBooNE (2002 - present) -...

363

Neutrino Cross-Section Experiments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

N u F a c t 0 9 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams July 20-25, 2009 - Illinois Institute of Technology - Chicago David Schmitz, Fermilab...

364

Neutrino Factories and Beta Beams  

E-Print Network [OSTI]

a Neutrino Factory Based on Muon Beams,” Proc. 2001 ParticleMD. [19] C. Rubbia et al. , “Beam Cooling with Ionisationthe required unstable ion beams has recently been suggested

Zisman, Michael S.

2006-01-01T23:59:59.000Z

365

Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector  

E-Print Network [OSTI]

California. APS/123-QED Limits on a muon ?ux from neutralinoLimits on a muon flux from neutralino annihilations in theApril 28, 2009) A search for muon neutrinos from neutralino

Klein, Spencer; IceCube Collaboration

2009-01-01T23:59:59.000Z

366

Standard and non-standard primordial neutrinos  

E-Print Network [OSTI]

The standard cosmological model predicts the existence of a cosmic neutrino background with a present density of about 110 cm^{-3} per flavour, which affects big-bang nucleosynthesis, cosmic microwave background anisotropies, and the evolution of large scale structures. We report on a precision calculation of the cosmic neutrino background properties including the modification introduced by neutrino oscillations. The role of a possible neutrino-antineutrino asymmetry and the impact of non-standard neutrino-electron interactions on the relic neutrinos are also briefly discussed.

P. D. Serpico

2006-08-14T23:59:59.000Z

367

Solar Neutrinos: Status and Prospects  

E-Print Network [OSTI]

We describe the current status of solar neutrino measurements and of the theory -- both neutrino physics and solar astrophysics -- employed in interpreting measurements. Important recent developments include Super-Kamiokande's determination of the neutrino-electron elastic scattering rate for 8B neutrinos to 3%; the latest SNO global analysis in which the inclusion of low-energy data from SNO I and II significantly narrowed the range of allowed values for the neutrino mixing angle theta12; Borexino results for both the 7Be and pep neutrino fluxes, the first direct measurements constraining the rate of ppI and ppII burning in the Sun; global reanalyses of solar neutrino data that take into account new reactor results on theta13; a new decadal evaluation of the nuclear physics of the pp chain and CNO cycle defining best values and uncertainties in the nuclear microphysics input to solar models; recognition of an emerging discrepancy between two tests of solar metallicity, helioseismological mappings of the sound speed in the solar interior, and analyses of the metal photoabsorption lines based on our best current description of the Sun's photosphere; a new round of standard solar model calculations optimized to agree either with helioseismology or with the new photospheric analysis; and, motivated by the solar abundance problem, the development of nonstandard, accreting solar models, in order to investigate possible consequences of the metal segregation that occurred in the proto-solar disk. We review this progress and describe how new experiments such as SNO+ could help us further exploit neutrinos as a unique probe of stellar interiors.

W. C. Haxton; R. G. Hamish Robertson; Aldo M. Serenelli

2012-08-28T23:59:59.000Z

368

Coherence effects in neutrino oscillations  

Science Journals Connector (OSTI)

We study the effect of coherent and incoherent broadening on neutrino oscillations both in vacuum and in the presence of matter (the MSW effect). We show under very general assumptions that it is not possible to distinguish experimentally neutrinos produced in some region of space as wave packets from those produced in the same region of space as plane waves with the same energy distribution. © 1995 The American Physical Society.

Ken Kiers; Shmuel Nussinov; Nathan Weiss

1996-01-01T23:59:59.000Z

369

E-Print Network 3.0 - antares neutrino telescope Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oscillation parameters. Keywords: neutrino oscillations, ANTARES, neutrino telescope 1 Introduction It is now... energy neutrino telescopes, whose energy threshold is...

370

NERSC Supports 2013's Top Breakthroughs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supports 2013's Supports 2013's Top Breakthroughs NERSC Supports Top Breakthroughs of 2013 December 20, 2013 | Tags: Astrophysics, Hopper, PDSF, Physics Linda Vu, +1 510 495 2402, lvu@lbl.gov Research supported by NERSC is being honored by end-of-year reviews in two leading magazines: Physics World and WIRED. The IceCube South Pole Neutrino Observatory was notably named to both lists, being honored as the most important discovery by Physics World. Three of Physics World's top 10 breakthroughs of 2013 went to discoveries that used NERSC resources. In addition to the IceCube South Pole Neutrino Observatory's top honor, "breakthrough of the year," the magazine named the European Space Agency's European Planck space telescope, which revealed new information about the age and composition of the universe; and the South

371

Masatoshi Koshiba and Cosmic Neutrinos  

Office of Scientific and Technical Information (OSTI)

Masatoshi Koshiba and Cosmic Neutrinos Masatoshi Koshiba and Cosmic Neutrinos Resources with Additional Information Masatoshi Koshiba Courtesy of Sebastian Brandt 'The 2002 Nobel Prize in Physics has been awarded to ... Masatoshi Koshiba of the International Center for Elementary Particle Physics at the University of Tokyo in Japan, ... "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos." ... Neutrinos are important in astrophysics since they might have played a considerable role in shaping early galaxies; they are the form of energy coming directly from the solar core; and they account for the largest share of energy released during supernova explosions....'1 ...Koshiba, professor emeritus at the University of Tokyo, received his doctorate from the University of Rochester in [1955]. This year [2000], he is the co-recipient of the Wolf Prize in Physics, considered second only to the Nobel Prize in prestige, for his discovery that neutrinos have mass. Neutrinos are tiny particles smaller than atoms, and Koshiba's discovery is being hailed for its ramifications in the study of astronomical objects and the fundamental properties of matter, helping scientists to understand the birth of the universe. Koshiba started his career as a research associate at the University of Rochester, then went on to teach at the University of Tokyo." 2

372

High Energy Neutrino Telescopes  

E-Print Network [OSTI]

This paper presents a review of the history, motivation and current status of high energy neutrino telescopes. Many years after these detectors were first conceived, the operation of kilometer-cubed scale detectors is finally on the horizon at both the South Pole and in the Mediterranean Sea. These new detectors will perhaps provide us the first view of high energy astrophysical objects with a new messenger particle and provide us with our first real glimpse of the distant universe at energies above those accessible by gamma-ray instruments. Some of the topics that can be addressed by these new instruments include the origin of cosmic rays, the nature of dark matter, and the mechanisms at work in high energy astrophysical objects such as gamma-ray bursts, active galactic nuclei, pulsar wind nebula and supernova remnants.

Hoffman, K D

2008-01-01T23:59:59.000Z

373

High Energy Neutrino Telescopes  

E-Print Network [OSTI]

This paper presents a review of the history, motivation and current status of high energy neutrino telescopes. Many years after these detectors were first conceived, the operation of kilometer-cubed scale detectors is finally on the horizon at both the South Pole and in the Mediterranean Sea. These new detectors will perhaps provide us the first view of high energy astrophysical objects with a new messenger particle and provide us with our first real glimpse of the distant universe at energies above those accessible by gamma-ray instruments. Some of the topics that can be addressed by these new instruments include the origin of cosmic rays, the nature of dark matter, and the mechanisms at work in high energy astrophysical objects such as gamma-ray bursts, active galactic nuclei, pulsar wind nebula and supernova remnants.

K. D. Hoffman

2008-12-18T23:59:59.000Z

374

Hint of nonstandard Mikheyev-Smirnov-Wolfenstein dynamics in solar neutrino conversion  

SciTech Connect (OSTI)

Motivated by the recent low-threshold measurements of the solar {sup 8}B neutrino spectrum performed by Borexino, Super-Kamiokande and the Sudbury Neutrino Observatory--all now monitoring the transition regime between low-energy (vacuumlike) and high-energy (matter-dominated) flavor conversions--we consider the role of subdominant dynamical terms induced by new flavor-changing interactions. We find that the presence of such perturbations with strength {approx}10{sup -1}G{sub F} is now favored, offering a better description of the anomalous behavior suggested by the new results, whose spectrum shows no sign of the typical low-energy upturn predicted by the standard Mikheyev-Smirnov-Wolfenstein (MSW) mechanism. Our findings, if interpreted in a 2-flavor scheme, provide a hint of such new interactions at the {approx}2{sigma} level, which is rather robust with respect to 3-flavor effects possibly induced by nonzero {theta}{sub 13}.

Palazzo, Antonio [Cluster of Excellence, Origin and Structure of the Universe, Technische Universitaet Muenchen, Boltzmannstrasse 2, D-85748, Garching (Germany)

2011-05-15T23:59:59.000Z

375

Los Alamos Science, Number 25 -- 1997: Celebrating the Neutrino  

DOE R&D Accomplishments [OSTI]

This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

Cooper, N. G. [ed.

1997-00-00T23:59:59.000Z

376

Review Paper. Neutrino masses, mixing and oscillations  

Science Journals Connector (OSTI)

...experiments and experiments on the search for neutrinoless double beta-decay are briefly discussed. Neutrino Masses|Neutrino Oscillations|Neutrinoless Double beta-Decay| 10.1098/rspa.2003.1263 REVIEW PAPER...

2004-01-01T23:59:59.000Z

377

Solar Neutrinos: Models, Observations, and New Opportunities  

E-Print Network [OSTI]

I discuss the development and resolution of the solar neutrino problem, as well as opportunities now open to us to extend our knowledge of main-sequence stellar evolution and neutrino astrophysics.

W. C. Haxton

2007-10-11T23:59:59.000Z

378

Annual modulation of cosmic relic neutrinos  

E-Print Network [OSTI]

The cosmic neutrino background (C?B), produced about one second after the big bang, permeates the Universe today. New technological advancements make neutrino capture on beta-decaying nuclei (NCB) a clear path forward ...

Safdi, Benjamin R.

379

Neutrino mixing, flavor states and dark energy  

E-Print Network [OSTI]

We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe.

M. Blasone; A. Capolupo; S. Capozziello; G. Vitiello

2007-11-06T23:59:59.000Z

380

Earth Matter Effect on Democratic Neutrinos  

E-Print Network [OSTI]

The neutrino propagation through the Earth is investigated in the framework of the democratic neutrino theory. In this theory the neutrino mixing angle theta-1-3 is approximately determined, which allows one to make a well defined neutrino oscillogram driven by the 1-3 mixing in the matter of the Earth. Significant differences in this oscillogram from the case of models with relatively small theta-1-3 are discussed.

Dmitry Zhuridov

2014-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

From Neutrino Factory to Muon Collider  

SciTech Connect (OSTI)

Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

Geer, S.; /Fermilab

2010-01-01T23:59:59.000Z

382

Neutrino magnetic moment in a magnetized plasma  

E-Print Network [OSTI]

The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

N. V. Mikheev; E. N. Narynskaya

2010-11-08T23:59:59.000Z

383

Dark energy induced by neutrino mixing  

E-Print Network [OSTI]

The energy content of the vacuum condensate induced by the neutrino mixing is interpreted as dynamically evolving dark energy.

Antonio Capolupo; Salvatore Capozziello; Giuseppe Vitiello

2006-12-05T23:59:59.000Z

384

Models of Neutrino Masses and Mixing  

E-Print Network [OSTI]

Neutrino physics has entered an era of precision measurements. With these precise measurements, we may be able to distinguish different models that have been constructed to explain the small neutrino masses and the large mixing among them. In this talk, I review some of the existing theoretical models and their predictions for neutrino oscillations.

Mu-Chun Chen

2007-06-14T23:59:59.000Z

385

Muon neutrino disappearance at MINOS  

SciTech Connect (OSTI)

A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be {Delta}m{sub 32}{sup 2} = 2.45{sub +0.12}{sup -0.12} x 10{sub -3} eV{sup 2} and sin{sup 2}(2{theta}{sub 32}) = 1.00{sub -0.04}{sup +0.00} (> 0.90 at 90% confidence level).

Armstrong, R.; /Indiana U.

2009-08-01T23:59:59.000Z

386

National Radio Astronomy Observatory Electronics Division Technical Note No. 219  

E-Print Network [OSTI]

1 National Radio Astronomy Observatory Electronics Division Technical Note No. 219 Measurements of Automotive Radar Emissions received by a Radio Astronomy Observatory Darrel Emerson (National Radio Astronomy (Continental Corporation, A.D.C. Automotive Distance Control Systems GmbH, Germany), Juergen

Groppi, Christopher

387

THE CAMPUS OBSERVATORY at the University of Saskatchewan  

E-Print Network [OSTI]

THE CAMPUS OBSERVATORY at the University of Saskatchewan ABOUT: The campus observatory provides facilities at the University of Saskatchewan are available for use by both uni- versity students and visitors-deductible contribution payable to the University of Saskatchewan. Adoption rates de- pend upon the star's apparent

Peak, Derek

388

AstroGrid and the Astrophysical Virtual Observatory: first capabilities  

Science Journals Connector (OSTI)

......Astrophysical Virtual Observatory initiative. Its "first light" event was held at Jodrell Bank Observatory on 20 January...lan- der will plunge into the thin mart- ian atmosphere on Christmas Day, using a parachute and airbags dur- ing its descent to......

Nicholas Walton

2003-08-01T23:59:59.000Z

389

The Aosta Valley Astronomical Observatory Carbognani, A.1,2  

E-Print Network [OSTI]

The Aosta Valley Astronomical Observatory Carbognani, A.1,2 1 B.P. 4229 F-06304 NICE Cedex 4 Observatory of the Autonomous Region of the Aosta Valley (Italy). The centre is located in the northwestern Italian Alps, near the border with France and Switzerland (Lat: 45° 47 22 N, Long: 7° 28 42 E), at 1675 m

Paris-Sud XI, Université de

390

Ocean Observatories Initiative: Pacific Northwest The Endurance Array  

E-Print Network [OSTI]

Ocean Observatories Initiative: Pacific Northwest The Endurance Array The processes that shape. The Ocean Observatories Initiative (OOI) will build a 25­30 year laboratory on the seafloor, in the water column, and at the ocean surface. It will make available novel platforms for oceanographic discovery

Kurapov, Alexander

391

Science with the constellation-X observatory  

SciTech Connect (OSTI)

The Constellation X-ray Mission is a high throughput X-ray facility emphasizing observations at high spectral resolution (E/{delta}E{approx}300-3000), and broad energy bandpass (0.25-40 keV). Constellation-X will provide a factor of nearly 100 increase in sensitivity over current high resolution X-ray spectroscopy missions. It is the X-ray astronomy equivalent of large ground-based optical telescopes such as the Keck Observatory and the ESO Very Large Telescope. When observations commence toward the end of next decade, Constellation-X will address many fundamental astrophysics questions such as: the formation and evolution of clusters of galaxies; constraining the baryon content of the Universe; determining the spin and mass of supermassive black holes in AGN; and probing strong gravity in the vicinity of black holes.

Valinia, Azita [NASA's Goddard Space Flight Center, Code 662, Greenbelt, Maryland 20771 (United States); Department of Astronomy, University of Maryland, College Park, Maryland 20742 (United States); White, Nicholas [NASA's Goddard Space Flight Center, Code 662, Greenbelt, Maryland 20771 (United States); Tananbaum, Harvey [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, Massachusetts 02138 (United States)

1999-04-27T23:59:59.000Z

392

Science with the constellation-X observatory  

Science Journals Connector (OSTI)

The Constellation X-ray Mission is a high throughput X-ray facility emphasizing observations at high spectral resolution ( E /? E ?300–3000) and broad energy bandpass (0.25–40 keV). Constellation-X will provide a factor of nearly 100 increase in sensitivity over current high resolution X-ray spectroscopy missions. It is the X-ray astronomy equivalent of large ground-based optical telescopes such as the Keck Observatory and the ESO Very Large Telescope. When observations commence toward the end of next decade Constellation-X will address many fundamental astrophysics questions such as: the formation and evolution of clusters of galaxies; constraining the baryon content of the Universe; determining the spin and mass of supermassive black holes in AGN; and probing strong gravity in the vicinity of black holes.

Azita Valinia; Nicholas White; Harvey Tananbaum

1999-01-01T23:59:59.000Z

393

EChO - Exoplanet Characterisation Observatory  

E-Print Network [OSTI]

A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO -the Exoplanet Characterisation Observatory- is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. EChO will build on observations by Hubble, Spitzer and groundbased telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. EChO will simultaneously observe a broad enough spectral region -from the visible to the mid-IR- to constrain from one single spectrum the temperature structure of the atmosphere and the abundances of the major molecular species. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules to retrieve the composition and temperature str...

Tinetti, G; Henning, T; Meyer, M; Micela, G; Ribas, I; Stam, D; Swain, M; Krause, O; Ollivier, M; Pace, E; Swinyard, B; Aylward, A; van Boekel, R; Coradini, A; Encrenaz, T; Snellen, I; Zapatero-Osorio, M R; Bouwman, J; Cho, J Y-K; Foresto, V Coudé du; Guillot, T; Lopez-Morales, M; Mueller-Wodarg, I; Palle, E; Selsis, F; Sozzetti, A; Ade, P A R; Achilleos, N; Adriani, A; Agnor, C B; Afonso, C; Prieto, C Allende; Bakos, G; Barber, R J; Barlow, M; Bernath, P; Bezard, B; Bordé, P; Brown, L R; Cassan, A; Cavarroc, C; Ciaravella, A; Cockell, C O U; Coustenis, A; Danielski, C; Decin, L; De Kok, R; Demangeon, O; Deroo, P; Doel, P; Drossart, P; Fletcher, L N; Focardi, M; Forget, F; Fossey, S; Fouqué, P; Frith, J; Galand, M; Gaulme, P; Hernández, J I González; Grasset, O; Grassi, D; Grenfell, J L; Griffin, M J; Griffith, C A; Grözinger, U; Guedel, M; Guio, P; Hainaut, O; Hargreaves, R; Hauschildt, P H; Heng, K; Heyrovsky, D; Hueso, R; Irwin, P; Kaltenegger, L; Kervella, P; Kipping, D; Koskinen, T T; Kovács, G; La Barbera, A; Lammer, H; Lellouch, E; Leto, G; Morales, M Lopez; Valverde, M A Lopez; Lopez-Puertas, M; Lovis, C; Maggio, A; Maillard, J P; Prado, J Maldonado; Marquette, J B; Martin-Torres, F J; Maxted, P; Miller, S; Molinari, S; Montes, D; Moro-Martin, A; Moses, J I; Mousis, O; Tuong, N Nguyen; Nelson, R; Orton, G S; Pantin, E; Pascale, E; Pezzuto, S; Pinfield, D; Poretti, E; Prinja, R; Prisinzano, L; Rees, J M; Reiners, A; Samuel, B; Sanchez-Lavega, A; Forcada, J Sanz; Sasselov, D; Savini, G; Sicardy, B; Smith, A; Stixrude, L; Strazzulla, G; Tennyson, J; Tessenyi, M; Vasisht, G; Vinatier, S; Viti, S; Waldmann, I; White, G J; Widemann, T; Wordsworth, R; Yelle, R; Yung, Y; Yurchenko, S N

2011-01-01T23:59:59.000Z

394

Radio Wavelength Observatories within the Exploration Architecture  

E-Print Network [OSTI]

Observations at radio wavelengths address key problems in astrophysics, astrobiology, and lunar structure including the first light in the Universe (the Epoch of Reionization), the presence of magnetic fields around extrasolar planets, particle acceleration mechanisms, and the structure of the lunar ionosphere. Moreover, achieving the performance needed to address these scientific questions demands observations at wavelengths longer than those that penetrate the Earth's ionosphere, observations in extremely "radio quiet" locations such as the Moon's far side, or both. We describe a series of lunar-based radio wavelength interferometers of increasing capability. The Radio Observatory for Lunar Sortie Science (ROLSS) is an array designed to be deployed during the first lunar sorties (or even before via robotic rovers) and addressing particle acceleration and the lunar ionosphere. Future arrays would be larger, more capable, and deployed as experience is gained in working on the lunar surface.

J. Lazio; R. J. Macdowall; J. Burns; L. Demaio; D. L. Jones; K. W. Weiler

2007-01-26T23:59:59.000Z

395

Stimulated Neutrino Transformation Through Turbulence  

E-Print Network [OSTI]

We derive an analytical solution for the flavor evolution of a neutrino through a turbulent density profile which is found to accurately predict the amplitude and transition wavelength of numerical solutions on a case-by-case basis. The evolution is seen to strongly depend upon those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Transitions are strongly enhanced by those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. We also find a suppression of transitions due to the long wavelength modes when the ratio of their amplitude and the wavenumber is of order, or greater than, the first root of the Bessel function $J_0$.

Kelly M. Patton; James P. Kneller; Gail C. McLaughlin

2014-04-15T23:59:59.000Z

396

Neutrino Physics at DPF 2013  

E-Print Network [OSTI]

The field of neutrino physics was covered at DPF 2013 in 32 talks, including three on theoretical advances and the remainder on experiments that spanned at least 17 different detectors. This summary of those talks cannot do justice to the wealth of information presented, but will provide links to other material where possible. There were allso two plenary session contributions on neutrino physics at this meeting: the current status of what we know about neutrino (oscillation) physics was outlined by Huber, and the next steps in long baseline oscillation expeirments were described by Fleming. This article covers a subset of the topics discussed at the meeting, with emphasis given to those talks that showed data or new results.

Deborah A. Harris

2013-10-25T23:59:59.000Z

397

Neutrino interactions in oscillation experiments  

Science Journals Connector (OSTI)

We calculate the neutrino induced cross sections relevant for oscillation experiments, including the ?-lepton threshold for quasielastic, resonance and deep-inelastic scattering. In addition to threshold effects, we include nuclear corrections for heavy targets which are moderate for quasielastic and large for single pion production. The nuclear effects for deep-inelastic reactions are small. We present cross sections together with their nuclear corrections for various channels which are useful for interpreting the experimental results and for determining parameters of the neutrino sector. Finally, we calculate the ?-lepton event rates for the OPERA LBL experiment.

E. A. Paschos and J. Y. Yu

2002-01-07T23:59:59.000Z

398

Solar neutrinos and the sun  

E-Print Network [OSTI]

We present updated standard solar models (SSMs) that incorporate the latest results for nuclear fusion rates, recently published. We show helioseismic results for high and low metallicity compositions and also for an alternative set of solar abundance, derived from 3D model atmospheres, which give intermediate results. For the high and low metallicity models, we show that current solar neutrino data can not differentiate between models and that a measurement of the CNO fluxes is necessary to achieve that goal. A few additional implications of a hypothetical measurement of CNO neutrinos, both in terms of solar and stellar physics, are discussed.

Aldo Serenelli

2011-09-12T23:59:59.000Z

399

Progress in the physics of massive neutrinos  

E-Print Network [OSTI]

The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of \

V. Barger; D. Marfatia; K. Whisnant

2003-09-16T23:59:59.000Z

400

The IceCube Data Acquisition Software: Lessons Learned during Distributed, Collaborative, Multi-Disciplined Software Development.  

SciTech Connect (OSTI)

In this experiential paper we report on lessons learned during the development ofthe data acquisition software for the IceCube project - specifically, how to effectively address the unique challenges presented by a distributed, collaborative, multi-institutional, multi-disciplined project such as this. While development progress in software projects is often described solely in terms of technical issues, our experience indicates that non- and quasi-technical interactions play a substantial role in the effectiveness of large software development efforts. These include: selection and management of multiple software development methodologies, the effective useof various collaborative communication tools, project management structure and roles, and the impact and apparent importance of these elements when viewed through the differing perspectives of hardware, software, scientific and project office roles. Even in areas clearly technical in nature, success is still influenced by non-technical issues that can escape close attention. In particular we describe our experiences on software requirements specification, development methodologies and communication tools. We make observations on what tools and techniques have and have not been effective in this geographically disperse (including the South Pole) collaboration and offer suggestions on how similarly structured future projects may build upon our experiences.

Beattie, Keith S; Beattie, Keith; Day Ph.D., Christopher; Glowacki, Dave; Hanson Ph.D., Kael; Jacobsen Ph.D., John; McParland, Charles; Patton Ph.D., Simon

2007-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Neutrino facility and neutrino physics in J-PARC  

Science Journals Connector (OSTI)

......pulse. The repetition rate of the operation cycle...decay above 5 GeV/c pass through the beam dump...along with measuring rates for exclusive neutrino...by INGRID. The event rate in INGRID (1.5 events...beam direction. 3.2. Physics results Physics results......

Tetsuro Sekiguchi

2012-01-01T23:59:59.000Z

402

Neutrino tomography: Tevatron mapping versus the neutrino sky  

Science Journals Connector (OSTI)

... adequate reconstruction for noninvasive imaging in medicine. Geophysical densities follow from the mapping of the Radon or Fourier transform of certain neutrino projections, and not from the Volkova-Zatsepin scheme, ... problem was first addressed by Radon24 who derived what has now become known as the Radon transform. Tomography10'19'20'25 can be defined as reconstructive imaging by means of ...

Thomas L. Wilson

1984-05-03T23:59:59.000Z

403

Solving the Neutrino Mass Mystery using Double Beta Decay. An Examination of the Feasibility of Xennoon Purification and Ion Capture and Release using an Electrostatic Probe  

SciTech Connect (OSTI)

Double beta decay has long been recognized as a useful avenue for the study of electron neutrinos, especially the neutrino mass and its fundamental nature (Majorana or Dirac). Recent neutrino oscillation experiments have provided compelling evidence that the neutrino has mass. The detection of the neutrinoless mode of double beta decay would finally set a lower limit on the mass of the electron neutrino, as well as prove that the neutrino is a Majorana particle (with opposite spin, it is its own anti-particle). The Enriched Xenon Observatory (EXO) project attempts to detect neutrinoless double beta decay using {sup 136}Xe that decays by this process to {sup 136}Ba{sup 2} + e{sup -} + e{sup -}. Perhaps one of the most significant characteristics of this project is the reduction of the background through the identification of the Barium ions for each individual event using laser fluorescence techniques. This project also proposes to collect scintillation light in addition to the ionization electrons in order to further improve energy resolution. Current work at SLAC includes the development of a purification system for xenon, as well as tests for the capture and release of single ions using an electrostatic probe.

Outschoorn, Verena M

2003-09-05T23:59:59.000Z

404

E-Print Network 3.0 - atmospheric muon neutrino Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

neutrino Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric muon neutrino...

405

E-Print Network 3.0 - atmospheric muon neutrinos Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

neutrinos Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric muon neutrinos...

406

E-Print Network 3.0 - astrophysical observatory letter Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

restore and widen access... ; 15; strengthen the Observatory's research capacity in solar system and stellar astrophysics; 15... interests of Observatory sta11; currently...

407

Solar Neutrinos and Solar Oscillations  

Science Journals Connector (OSTI)

...solar core, it is not out of the question that they induce motion that influences substantially the rates of the various thermonuclear reactions that emit the neutrinos. The basic processes of seismic inference will be discussed briefly, followed by a summary...

1994-01-01T23:59:59.000Z

408

Charge radius of the neutrino  

Science Journals Connector (OSTI)

Using the pinch technique we construct at one-loop order a neutrino charge radius, which is finite, depends neither on the gauge-fixing parameter nor on the gauge-fixing scheme employed, and is process independent. This definition stems solely from an effective proper photon-neutrino one-loop vertex, with no reference to box or self-energy contributions. The role of the WW box in this construction is critically examined. In particular it is shown that the exclusion of the effective WW box from the definition of the neutrino charge radius is not a matter of convention but is in fact dynamically realized when the target fermions are right-handedly polarized. In this way we obtain a unique decomposition of effective self-energies, vertices, and boxes, which separately respect electroweak gauge invariance. We elaborate on the tree-level origin of the mechanism which enforces at the one-loop level massive cancellations among the longitudinal momenta appearing in the Feynman diagrams, and in particular those associated with the non-Abelian character of the theory. Various issues related to the known connection between the pinch technique and the background field method are further clarified. Explicit closed expressions for the neutrino charge radius are reported.

J. Bernabéu; L. G. Cabral-Rosetti; J. Papavassiliou; J. Vidal

2000-11-10T23:59:59.000Z

409

What are the Neutrino Masses  

E-Print Network [OSTI]

The possible source of the production of neutrino with large masses is considered. For this purpose the reaction nu+n to e+p+gamma, in which the electron in neW+ vertex is produced off-mass-shell, is studied.

V. P. Efrosinin

2009-04-03T23:59:59.000Z

410

Why Neutrino Lines are Hypersharp  

E-Print Network [OSTI]

It was recently pointed out that mono-energetic neutrino lines from the 2-body decay of tritium (tau ~ 18-y) can be emitted, a significant fraction, with natural line width (~10-24 eV) for hypersharp resonance transitions 3H--> line broadening in resonances of short lived (tau ~ microsec) states.

R. S. Raghavan

2009-08-20T23:59:59.000Z

411

Cross section dependence of event rates at neutrino telescopes  

E-Print Network [OSTI]

We examine the dependence of event rates at neutrino telescopes on the neutrino-nucleon cross section for neutrinos with energy above 1 PeV, and contrast the results with those for cosmic ray experiments. Scaling of the ...

Marfatia, Danny; Seckel, D.; McKay, D. W.; Hussain, S.

2006-10-20T23:59:59.000Z

412

Discovering Long Wavelength Neutrino Oscillations in the Distorted Neutrino Spectrum of Galactic Supernova Remnants  

E-Print Network [OSTI]

We investigate the muon neutrino event rate in km$^3$ neutrino telescopes due to a number of galactic supernova remnants expected on the basis of these objects' known $\\gamma$-ray signals. We evaluate the potential of these neutrino signals to exhibit evidence of the sub-dominant neutrino oscillations expected in various neutrino mixing schemes including pseudo-Dirac scenarios and the Exact Parity Model. With ten years' data, neutrino signals from Sgr A East should either discover or exclude neutrino oscillations governed by a $\\delta m^2$ parameter in the range $10^{-12}$ to $10^{-15}$ eV$^2$. Such a capability is not available to terrestrial or solar system neutrino experiments.

Roland M. Crocker; Fulvio Melia; Raymond R. Volkas

2001-06-06T23:59:59.000Z

413

Measuring active-to-sterile neutrino oscillations with neutral current coherent neutrino-nucleus scattering  

E-Print Network [OSTI]

Light sterile neutrinos have been introduced as an explanation for a number of oscillation signals at ?m[superscript 2]?1??eV[superscript 2]. Neutrino oscillations at relatively short baselines provide a probe of these ...

Anderson, A. J.

414

Effective Mass Matrix for Light Neutrinos Consistent with Solar and Atmospheric Neutrino Experiments  

E-Print Network [OSTI]

We propose an effective mass matrix for light neutrinos which is consistent with the mixing pattern indicated by solar and atmospheric neutrino experiments. Two scenarios for the mass eigenvalues are discussed and the connection with double beta decay is noted.

S. P. Rosen; Waikwok Kwong

1995-01-20T23:59:59.000Z

415

Towards the detection of cosmological relic neutrino with neutrino capture on a beta decaying nuclei  

E-Print Network [OSTI]

In this paper we report on recent results in the Þeld of the phenomenology of very low energy neutrino interactions. We brießy describe the cross section calculation for Neutrino Capture on Beta decay nuclei (NCB). We show that the resulting cross section open the possibility to detect the cosmological relic neutrinos. With this achievement, the relic neutrino detection has been downscaled from a principle problem to a technological challenge. We also summarise the state of the art about possible detection techniques.

Messina, M; Mangano, G

2010-01-01T23:59:59.000Z

416

Emission angle distribution and flavor transformation of supernova neutrinos  

E-Print Network [OSTI]

Using moment equations we analyze collective flavor transformation of supernova neutrinos. We study the convergence of moment equations and find that numerical results using a few moment converge quite fast. We study effects of emission angle distribution of neutrinos on neutrino sphere. We study scaling law of the amplitude of neutrino self-interaction Hamiltonian and find that it depends on model of emission angle distribution of neutrinos. Dependence of neutrino oscillation on different models of emission angle distribution is studied.

Wei Liao

2009-06-28T23:59:59.000Z

417

Solar-neutrino problem: Some old solutions reexamined  

Science Journals Connector (OSTI)

Recent experimental data confirm the solar-neutrino problem and imply new neutrino physics. We review some of the less discussed proposals to solve this problem: (1) maximal vacuum mixing of three neutrino flavors, (2) vacuum oscillation of two neutrino flavors, and (3) neutrino decay. Each of these three solutions can fit the Cl37 and Kamiokande-II solar-neutrino-flux measurements. Their implications for the continuing Ga71 experiments and for other, future experiments are discussed.

Andy Acker; Sandip Pakvasa; James Pantaleone

1991-03-15T23:59:59.000Z

418

Daya Bay Reactor Neutrino Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daya Bay Reactor Neutrino Daya Bay Reactor Neutrino Experiment Daya Bay Reactor Neutrino Experiment Daya Bay is an international neutrino-oscillation experiment designed to determine the last unknown neutrino mixing angle θ13 using anti-neutrinos produced by the Daya Bay and Ling Ao Nuclear Power Plant reactors. The experiment is being built by blasting three kilometers of tunnel through the granite rock under the mountains where the power plants are located. Data collection is now scheduled to start in in 2011. On the PDSF cluster at NERSC, Daya Bay performs simulations of the detectors, reactors, and surrounding mountains to help design and anticipate detector properties and behavior. Once real data are available, Daya Bay will be using NERSC to analyze data and NERSC HPSS will be the central U.S. repository for all raw

419

Exotic Solutions to the Solar Neutrino Problem and Some Implications for Low Energy Solar Neutrino Experiments  

E-Print Network [OSTI]

In this talk, I review, from the phenomenological point of view, solutions to the solar neutrino problem, which are not provided by the conventional neutrino oscillation induced by mass and flavor mixing, and show that they can provide a good fit to the observed data. I also consider some simple implications for low energy solar neutrino experiments.

H. Nunokawa

2001-05-03T23:59:59.000Z

420

Neutrino-electron scattering and the choice between different MSW solutions of the solar neutrino problem  

SciTech Connect (OSTI)

We consider the scattering of solar neutrinos by electrons as a means for distinguishing between MSW solutions of the solar neutrino problem. In terms of the ratio R between the observed cross-section and that for pure electron-type neutrinos, we find that some correlation between the value R and the appropriate solution. 9 refs., 3 figs.

Rosen, S.P.; Gelb, J.M.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Double Beta Decay, Majorana Neutrinos, and Neutrino Mass  

E-Print Network [OSTI]

The theoretical and experimental issues relevant to neutrinoless double-beta decay are reviewed. The impact that a direct observation of this exotic process would have on elementary particle physics, nuclear physics, astrophysics and cosmology is profound. Now that neutrinos are known to have mass and experiments are becoming more sensitive, even the non-observation of neutrinoless double-beta decay will be useful. If the process is actually observed, we will immediately learn much about the neutrino. The status and discovery potential of proposed experiments are reviewed in this context, with significant emphasis on proposals favored by recent panel reviews. The importance of and challenges in the calculation of nuclear matrix elements that govern the decay are considered in detail. The increasing sensitivity of experiments and improvements in nuclear theory make the future exciting for this field at the interface of nuclear and particle physics.

Frank T. Avignone III; Steven R. Elliott; Jonathan Engel

2007-08-07T23:59:59.000Z

422

Majorana Neutrino Masses from Neutrinoless Double Beta Decay and Cosmology  

E-Print Network [OSTI]

When three Majorana neutrinos describe the solar and atmospheric neutrino data via oscillations, a nonzero measurement of neutrinoless double beta ($0\

V. Barger; K. Whisnant

1999-04-08T23:59:59.000Z

423

EA-1943: Proposed Long Baseline Neutrino Experiment (LBNE) at...  

Energy Savers [EERE]

943: Proposed Long Baseline Neutrino Experiment (LBNE) at Fermilab, Batavia, Illinois EA-1943: Proposed Long Baseline Neutrino Experiment (LBNE) at Fermilab, Batavia, Illinois...

424

Measuring neutrino oscillation parameters using $\  

SciTech Connect (OSTI)

MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters ({Delta}m{sub atm}{sup 2} and sin{sup 2} 2{theta}{sub atm}). The oscillation signal consists of an energy-dependent deficit of {nu}{sub {mu}} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the {nu}{sub {mu}}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the {nu}{sub {mu}}-disappearance analysis, incorporating this new estimator were: {Delta}m{sup 2} = 2.32{sub -0.08}{sup +0.12} x 10{sup -3} eV{sup 2}, sin {sup 2} 2{theta} > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly {bar {nu}}{sub {mu}} beam, yielded somewhat different best-fit parameters {Delta}{bar m}{sup 2} = (3.36{sub -0.40}{sup +0.46}(stat.) {+-} 0.06(syst.)) x 10{sup -3}eV{sup 2}, sin{sup 2} 2{bar {theta}} = 0.86{sub -0.12}{sup _0.11}(stat.) {+-} 0.01(syst.). The tension between these results is intriguing, and additional antineutrino data is currently being taken in order to further investigate this apparent discrepancy.

Backhouse, Christopher James; /Oxford U.

2011-02-01T23:59:59.000Z

425

Coherent Neutrino Scattering and Stellar Collapse  

Science Journals Connector (OSTI)

Freedman has shown that coherency and the neutral current theory of neutrinos imply a scattering cross section for neutrinos off heavy nuclei proportional to the square of the atomic weight. The collapse of an iron-core star produces a hot neutron star surrounded by a thin iron layer. Because of the large scattering rate in the outer layer, neutrinos from the hot neutron core are able to accelerate the iron layer to above escape velocity.

James R. Wilson

1974-04-15T23:59:59.000Z

426

On the Electric Charge of the Neutrino  

E-Print Network [OSTI]

Exact expression is obtained for the differential cross section of elastic electroweak scattering of longitudinal polarized massive Dirac neutrinos with the electric charge and anomalous magnetic moment on a spinless nucleus. This formula contains all necessary information about the nature of the neutrino mass, charge and magnetic moment. Some of them state that between the mass of the neutrino its electric charge there exists an interconnection.

Rasulkhozha S. Sarafiddinov

2010-12-09T23:59:59.000Z

427

Nuclear correction factors from neutrino DIS  

E-Print Network [OSTI]

Neutrino Deep Inelastic Scattering on nuclei is an essential process to constrain the strange quark parton distribution functions in the proton. The critical component on the way to using the neutrino DIS data in a proton PDF analysis is understanding the nuclear effects in parton distribution functions. We parametrize these effects by nuclear parton distribution functions and we use this framework to analyze the consistency of neutrino DIS data with other nuclear data.

K. Kovarik

2011-07-15T23:59:59.000Z

428

Superheavy sterile neutrinos as dark matter  

E-Print Network [OSTI]

(Chair of Committee) Ronald A. Bryan (Member) S ephen A. Fulling (Member) Thomas Adair, III (Head of Department) May 2000 Major Subject: Physics ABSTRACT Superheavy Sterile Neutrinos as Dark Matter. (May 2000) Yongjun Tang, B. S. , Jilin... this research. Thanks also go to Dr. Ronald A. Bryan and Dr. Stephen A. Fulling for being my committee members. vu TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . II DARK MATTER MODELS III NEUTRINO OSCILLATION . A. Neutrino Oscillation in Vacuum B...

Tang, Yongjun

2012-06-07T23:59:59.000Z

429

The Invisible Axion and Neutrino Masses  

E-Print Network [OSTI]

We show that in any invisible axion model due to the effects of effective non-renormalizable interactions related to an energy scale near the Peccei-Quinn, grand unification or even the Planck scale, active neutrinos necessarily acquire masses in the sub-eV range. Moreover, if sterile neutrinos are also included and if appropriate cyclic $Z_N$ symmetries are imposed, it is possible that some of these neutrinos are heavy while others are light.

Alex G. Dias; V. Pleitez

2005-11-09T23:59:59.000Z

430

Pion condensation in a dense neutrino gas  

E-Print Network [OSTI]

We argue that using an equilibrated gas of neutrinos it is possible to probe the phase diagram of QCD for finite isospin and small baryon chemical potentials. We discuss this region of the phase diagram in detail and demonstrate that for large enough neutrino densities a Bose-Einstein condensate of positively charged pions arises. Moreover, we show that for nonzero neutrino density the degeneracy in the lifetimes and masses of the charged pions is lifted.

Hiroaki Abuki; Tomas Brauner; Harmen J. Warringa

2009-08-26T23:59:59.000Z

431

The Green Computing Observatory: status of acquisition and analysis  

E-Print Network [OSTI]

The Green Computing Observatory: status of acquisition and analysis Cécile Germain-Renaud1, Julien, CNRS, INRIA 2: Laboratoire de l'Accélérateur Linéaire, CNRS-IN2P3 #12; Previous GreenDays talks o GreenDays@Paris The Green Computing Observatory: plans and scientific challenges o GreenDays@Lyon The Green Computing

Lefèvre, Laurent

432

RF Systems in a Neutrino Factory  

SciTech Connect (OSTI)

Based on existing sources, I compile parameters for the RF systems for a neutrino factory which accelerates to 10 GeV.

Berg J. S.

2012-09-07T23:59:59.000Z

433

Low energy atmospheric muon neutrinos in MACRO  

E-Print Network [OSTI]

The flux of low energy neutrinos (~ 4 GeV) has been studied with the MACRO detector at Gran Sasso via the detection of muon neutrinos interactions inside the apparatus, and of upward-going stopping muons. Data collected in ~3 y with the full apparatus were analyzed. The results are compatible with a deficit of the flux of atmospheric muon neutrinos from below, and no reduction from above, with respect to Monte Carlo predictions. The deficit and the angular distributions are interpreted in terms of neutrino oscillations, and compared with the MACRO results on the upward throughgoing muons (~ 100 GeV).

M. Spurio; for the MACRO Collaboration

1998-08-01T23:59:59.000Z

434

Scintillator yields glimpse of elusive solar neutrinos  

SciTech Connect (OSTI)

The low-energy neutrinos are byproducts of the first reaction in a chain that generates 99% of the Sun’s energy.

Smart, Ashley G.

2014-11-01T23:59:59.000Z

435

Solar neutrino with Borexino: results and perspectives  

E-Print Network [OSTI]

Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5\\% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been performed during the first stage. Recently the collaboration conducted successful liquid scintillator repurification campaign aiming to reduce main contaminants in the sub-MeV energy range. With the new levels of radiopurity Borexino can improve existing and challenge a number of new measurements including: improvement of the results on the Solar and terrestrial neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes; search for non-standard interactions of neutrino; study of the neutrino oscillations on the short baseline with an artificial neutrino source (search for sterile neutrino) in context of SOX project.

O. Smirnov; G. Bellini; J. Benziger; D. Bick; G. Bonfini; D. Bravo; B. Caccianiga; F. Calaprice; A. Caminata; P. Cavalcante; A. Chavarria; A. Chepurnov; D. D'Angelo; S. Davini; A. Derbin; A. Empl; A. Etenko; K. Fomenko; D. Franco; G. Fiorentini; C. Galbiati; S. Gazzana; C. Ghiano; M. Giammarchi; M. Goeger-Neff; A. Goretti; C. Hagner; E. Hungerford; Aldo Ianni; Andrea Ianni; V. Kobychev; D. Korablev; G. Korga; D. Kryn; M. Laubenstein; B. Lehnert; T. Lewke; E. Litvinovich; F. Lombardi; P. Lombardi; L. Ludhova; G. Lukyanchenko; I. Machulin; S. Manecki; W. Maneschg; F. Mantovani; S. Marcocci; Q. Meindl; E. Meroni; M. Meyer; L. Miramonti; M. Misiaszek; P. Mosteiro; V. Muratova; L. Oberauer; M. Obolensky; F. Ortica; K. Otis; M. Pallavicini; L. Papp; L. Perasso; A. Pocar; G. Ranucci; A. Razeto; A. Re; B. Ricci; A. Romani; N. Rossi; R. Saldanha; C. Salvo; S. Schoenert; H. Simgen; M. Skorokhvatov; A. Sotnikov; S. Sukhotin; Y. Suvorov; R. Tartaglia; G. Testera; D. Vignaud; R. B. Vogelaar; F. von Feilitzsch; H. Wang; J. Winter; M. Wojcik; A. Wright; M. Wurm; O. Zaimidoroga; S. Zavatarelli; K. Zuber; G. Zuzel

2014-10-03T23:59:59.000Z

436

BooNE: Booster Neutrino Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adventure An interactive tour of quarks, neutrinos, anti-matter, extra dimensions, dark matter, accelerators, and particle detectors. Developed by the Particle Data Group....

437

Gamma Ray Burst Neutrinos Probing Quantum Gravity  

E-Print Network [OSTI]

Very high energy, short wavelength, neutrinos may interact with the space-time foam predicted by theories of quantum gravity. They would propagate like light through a crystal lattice and be delayed, with the delay depending on the energy. This will appear to the observer as a violation of Lorenz invariance. Back of the envelope calculations imply that observations of neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We revisit the problem considering two essential complications: the imprecise timing of the neutrinos associated with their poorly understood production mechanism in the source and the indirect nature of their energy measurement made by high energy neutrino telescopes.

M. C. Gonzalez-Garcia; F. Halzen

2006-11-28T23:59:59.000Z

438

Energy Neutrinos Ever Lisa Gerhardt, LBNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

objects CR P. Gorham Distance to AGNs 4 (A Few) Neutrino Sources CRs: atm Gamma Ray Bursts Dark Matter Supernovae Active Galactic Nuclei GZK p + CMB ...

439

Neutrinoless Double Beta Decay with Composite Neutrinos.  

E-Print Network [OSTI]

We study in detail the contribution of heavy composite Majorana neutrinos to neutrino-less double beta decay (0???). Our analysis confirms the result of a previous estimate by two of the authors. Excited neutrinos couple to the electroweak gauge bosons through a magnetic type effective Lagrangian. The relevant nuclear matrix element is related to matrix elements available in the literature and current bounds on the half-life of 0??? are converted into bounds on the compositeness scale and/or the heavy neutrino mass. Our bounds are of the same order of magnitude as those available from accelerator experiments.

O. Panella (a; C. Carimalo (b; Y. N. Srivastava (a; A. Widom (c

1997-01-01T23:59:59.000Z

440

Testing nuclear models via neutrino scattering  

E-Print Network [OSTI]

Recent progresses on the relativistic modeling of neutrino-nucleus reactions are presented and the results are compared with high precision experimental data in a wide energy range.

Barbaro, M B; Amaro, J E; Antonov, A N; Caballero, J A; Donnelly, T W; Gonzalez-Jimenez, R; Ivanov, M V; de Guerra, E Moya; Megias, G D; Simo, I Ruiz; Udias, J M

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Testing nuclear models via neutrino scattering  

E-Print Network [OSTI]

Recent progresses on the relativistic modeling of neutrino-nucleus reactions are presented and the results are compared with high precision experimental data in a wide energy range.

M. B. Barbaro; C. Albertus; J. E. Amaro; A. N. Antonov; J. A. Caballero; T. W. Donnelly; R. Gonzalez-Jimenez; M. V. Ivanov; E. Moya de Guerra; G. D. Megias; I. Ruiz Simo; J. M. Udias

2014-11-21T23:59:59.000Z

442

Search for Neutrinos from the Sun  

DOE R&D Accomplishments [OSTI]

A solar neutrino detection system has been built to observe the neutrino radiation from the sun. The detector uses 3,900,000 liters of tetrachloroethylene as the neutrino capturing medium. Argon is removed from the liquid by sweeping with helium gas, and counted in a small low level proportional counter. The recovery efficiency of the system was tested with Ar{sup 36} by the isotope dilution method, and also with Ar{sup 37} produced in the liquid by fast neutrons. These tests demonstrate that Ar{sup 37} produced in the liquid by neutrino capture can be removed with a 95 percent efficiency by the procedure used.

Davis, Raymond Jr.

1968-09-00T23:59:59.000Z

443

Neutrino Oscillations, Neutrinoless Double Beta Decay  

Science Journals Connector (OSTI)

We review the experimental evidence for neutrino mixing and neutrino mass. Searches for possible branches into heavy neutrinos do not reveal evidence for static mixing with branching ratios larger than 10?4 to 10?6. Similarly neutrino oscillation experiments show no evidence for dynamic mixing in various oscillation channels. Stringent limits for ? e disappearance from a recent reactor experiment are presented. Results from neutrinoless double beta decay provide sensitive test for Majorana mass and right?hand couplings the present limits being 3–10 eV and 10?5 respectively.

F. Boehm

1982-01-01T23:59:59.000Z

444

CPT-Odd Resonances in Neutrino Oscillations  

Science Journals Connector (OSTI)

We consider the consequences for future neutrino factory experiments of small CPT-odd interactions in neutrino oscillations. The ????? and ?¯???¯? survival probabilities at a baseline L=732 km can test for CPT-odd contributions at orders of magnitude better sensitivity than present neutrino sector limits. Interference between the CPT-violating interaction and CPT-even mass terms in the Lagrangian can lead to a resonant enhancement of the oscillation amplitude. For oscillations in matter, a simultaneous enhancement of both neutrino and antineutrino oscillation amplitudes is possible.

V. Barger; S. Pakvasa; T. J. Weiler; K. Whisnant

2000-12-11T23:59:59.000Z

445

Neutrino physics with an intense \  

E-Print Network [OSTI]

We study some of the physics potential of an intense $1\\,\\mathrm{MCi}$ $^{51}\\mathrm{Cr}$ source combined with the {\\sc Majorana Demonstrator} enriched germanium detector array. The {\\sc Demonstrator} will consist of detectors with ultra-low radioactive backgrounds and extremely low energy thresholds of~$\\sim 400\\,\\mathrm{eV}$. We show that it can improve the current limit on the neutrino magnetic dipole moment. We briefly discuss physics applications of the charged-current reaction of the $^{51}\\mathrm{Cr} neutrino with the $^{73}\\mathrm{Ge} isotope. Finally, we argue that the rate from a realistic, intense tritium source is below the detectable limit of even a tonne-scale HPGe experiment

R. Henning

2010-11-16T23:59:59.000Z

446

Neutrino Factory Mercury Flow Loop  

E-Print Network [OSTI]

Neutrino Factory Mercury Flow Loop V. GravesV. Graves C. Caldwell IDS-NF Videoconference March 9, 2010 #12;Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94 2 liter/min 24 9 gpm)mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment showed that a pump

McDonald, Kirk

447

Graphene, neutrino mass and oscillation  

E-Print Network [OSTI]

A resolution of the Abraham-Minkowski dilemma is presented that other constant velocities can play the role of c in the theory of relativity. For example, in 2005 electrons of graphene were discovered to behave as if the coefficient is a Fermi velocity. Then we propose a conjecture for neutrinos to avoid the contradiction among two-component theory, negative rest mass-square and oscillation.

Z. Y. Wang

2009-09-10T23:59:59.000Z

448

Non-standard Neutrino Interactions  

E-Print Network [OSTI]

Theories beyond the Standard Model must respect its gauge symmetry. This implies strict constraints on the possible models of Non-Standard Neutrino Interactions (NSIs). We review here the present status of NSIs from the point of view of effective field theory. Our recent work on the restrictions implied by Standard Model gauge invariance is provided along with some examples of possible gauge invariant models featuring non-standard interactions.

D. Hernandez

2009-11-25T23:59:59.000Z

449

First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope  

SciTech Connect (OSTI)

A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV–PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

NONE

2013-03-01T23:59:59.000Z

450

Neutrino induced light element synthesis  

SciTech Connect (OSTI)

As the core of a massive star collapses to form a neutron star, the flux of neutrinos in the overlying shells of heavy elements becomes so great that, despite the small cross section, substantial nuclear transmutation is induced. Neutrinos, especially the higher energy {mu}- and {tau}-neutrinos, excite heavy elements and even helium to particle unbound levels. The evaporation of a single neutron or proton, and the back reaction of these nucleons on other species present, significantly alters the outcome of traditional nucleosynthesis calculations leading to a new process: {nu}-nucleosynthesis. The process was first studied by Domogatsky et al. and Woosley. Recent work by Epstein, Colgate, and Haxton and Woosley and Haxton suggested that a large number of elements could owe their existence in nature to {nu}-induced reactions in supernovae. A parametrized study of this process including shock wave propagation was carried out by Woosley et al. for selected zones of a 20 M{sub {circle dot}} star. Here we give preliminary results for a 25 M{sub {circle dot}} star, including all {nu}-reactions in all stellar zones.

Hartmann, D.H.; Mathews, G.; Weaver, T.A. (Lawrence Livermore National Lab., CA (USA)); Haxton, W.C. (Washington Univ., Seattle, WA (USA). Dept. of Physics); Woosley, S.E. (Lawrence Livermore National Lab., CA (USA) California Univ., Santa Cruz, CA (USA). Board of Studies in Astronomy and Astrophysics)

1990-01-01T23:59:59.000Z

451

Confusing the extragalactic neutrino flux limit with a neutrino propagation limit  

SciTech Connect (OSTI)

We study the possible suppression of the extragalactic neutrino flux due to a nonstandard interaction during its propagation. In particular, we study neutrino interaction with an ultra-light scalar field dark matter. It is shown that the extragalactic neutrino flux may be suppressed by such an interaction, leading to a new mechanism to reduce the ultra-high energy neutrino flux. We study both the cases of non-self-conjugate as well as self-conjugate dark matter. In the first case, the suppression is independent of the neutrino and dark matter masses. We conclude that care must be taken when explaining limits on the neutrino flux through source acceleration mechanisms only, since there could be other mechanisms for the reduction of the neutrino flux.

Barranco, Juan [Instituto de Astronomía, Universidad Nacional Autonoma de México, Mexico, DF 04510 (Mexico); Miranda, Omar G. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740 07000 México, D.F. (Mexico); Moura, Celio A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, 09210-170 Santo André, SP (Brazil); Rashba, Timur I. [Max-Planck-Institute for Solar System Research, Katlenburg-Lindau, 37191 (Germany); Rossi-Torres, Fernando, E-mail: barranco@astroscu.unam.mx, E-mail: Omar.Miranda@fis.cinvestav.mx, E-mail: celio.moura@ufabc.edu.br, E-mail: timur@mppmu.mpg.de, E-mail: ftorres@ifi.unicamp.br [Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271 - Bl. II, 01140-070, São Paulo, SP (Brazil)

2011-10-01T23:59:59.000Z

452

The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA  

E-Print Network [OSTI]

see also the Swift Gamma-Ray Burst Mission Page: http://from Northern Hemisphere Gamma-Ray Bursts with AMANDA A.Northern Hemisphere Gamma-Ray Bursts with AMANDA The IceCube

Achterberg, A.; IceCube Collaboration

2008-01-01T23:59:59.000Z

453

Jack Steinberger and the Muon-Neutrino  

Office of Scientific and Technical Information (OSTI)

Jack Steinberger and the Muon-Neutrino Resources with Additional Information Jack Steinberger Photograph by Harry Sticker, courtesy AIP Emilio Segre Visual Archives, Physics Today Collection In an interview, Jack Steinberger spoke about his 1988 Nobel Prize winning research. He states "I did an experiment, together with several other people at Brookhaven National Laboratory ... which showed that there is a second kind of neutrino. The neutrino has elementary particles. Elementary particles exist in families of particles ... . At the time, the elementary particles which were involved were the electrons and the neutrino. ... [W]e required the [BNL] accelerator, which was the effort of very many people, ... and this allowed [us] to make a beam of these neutrinos, and we were able to convince ourselves that these neutrinos were not the same kind of neutrinos as those which had been seen before. They were associated with not electrons, but with something called [muons]. So we were able to understand that there is a different neutrino associated with the [muon] than with the electron.

454

Coherent neutrino scattering in dark matter detectors  

Science Journals Connector (OSTI)

Coherent elastic neutrino-nucleus and weakly interacting massive particle-nucleus interaction signatures are expected to be quite similar. This paper discusses how a next-generation ton-scale dark matter detector could discover neutrino-nucleus coherent scattering, a precisely-predicted standard model process. A high-intensity pion- and muon- decay-at-rest neutrino source recently proposed for oscillation physics at underground laboratories would provide the neutrinos for these measurements. In this paper, we calculate raw rates for various target materials commonly used in dark matter detectors and show that discovery of this interaction is possible with a 2??ton·year GEODM exposure in an optimistic energy threshold and efficiency scenario. We also study the effects of the neutrino source on weakly interacting massive particle sensitivity and discuss the modulated neutrino signal as a sensitivity/consistency check between different dark matter experiments at the Deep Underground Science and Engineering Laboratory. Furthermore, we consider the possibility of coherent neutrino physics with a GEODM module placed within tens of meters of the neutrino source.

A. J. Anderson; J. M. Conrad; E. Figueroa-Feliciano; K. Scholberg; J. Spitz

2011-07-15T23:59:59.000Z

455

CP violation in neutrino–photon scattering  

Science Journals Connector (OSTI)

It is shown that effects of CP violation arise in neutrino–photon scattering. Several CP-violating ?? reactions are considered within the Standard Model and predictions for some observables are made. It is emphasized that neutrino–photon scattering may provide an experimental tool for testing the scale dependence of CP violation.

I Alikhanov

2014-01-01T23:59:59.000Z

456

Neutrino SuperBeams at Fermilab  

SciTech Connect (OSTI)

In this talk I will give a brief description of long baseline neutrino physics, the LBNE experiment and Project X at Fermilab. A brief outline of the physics of long baseline neutrino experiments, LBNE and Project X at Fermilab is given in this talk.

Parke, Stephen J.; /Fermilab

2011-08-23T23:59:59.000Z

457

Neutrino proton scattering and the isosinglet term  

SciTech Connect (OSTI)

Elastic neutrino proton scattering is sensitive to the SU(3) axial isosinglet term which is in turn dependent on the strangeness content of the proton. The uncertainties in the analysis of a neutrino proton elastic scattering experiment are discussed, and an experiment which is insensitive to many of the difficulties of the previous experiment is described.

White, D.H.

1990-01-01T23:59:59.000Z

458

Neutrino Balls and Gamma-Ray Bursts  

E-Print Network [OSTI]

We propose a mechanism by which the neutrino emission from a supernova-type explosion can be converted into a gamma-ray burst of total energy $\\sim 10^{50}$ ergs. This occurs naturally if the explosion is situated inside a ball of trapped neutrinos, which in turn may lie at a galactic core. There are possible unique signatures of this scenario.

B. Holdom; R. A. Malaney

1993-06-17T23:59:59.000Z

459

Variations in the Solar Neutrino Flux  

DOE R&D Accomplishments [OSTI]

Observations are reported from the chlorine solar neutrino detector in the Homestake Gold Mine, South Dakota, USA. They extend from 1970 to 1985 and yield an average neutrino capture rate of 2.1 +- 0.3 SNU. The results from 1977 to 1985 show an anti-correlation with the solar activity cycle, and an apparent increased rate during large solar flares.

Davis, R. Jr.; Cleveland, B. T.; Rowley, J. K.

1987-08-02T23:59:59.000Z

460

Review Paper. Neutrino masses, mixing and oscillations  

Science Journals Connector (OSTI)

...experiments on the search for neutrinoless...experiments on the search for neutrinoless...If neutrino fields enter only in the SM Lagrangians...is a neutrino mass term, which does not...i) Dirac mass term LD = - R MD L + h...Sterile fields do not enter into the standard...

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Neutrino mixing and oscillations in astrophysical environments  

SciTech Connect (OSTI)

A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

2014-05-02T23:59:59.000Z

462

Dark energy, cosmological constant and neutrino mixing  

E-Print Network [OSTI]

The today estimated value of dark energy can be achieved by the vacuum condensate induced by neutrino mixing phenomenon. Such a tiny value is recovered for a cut-off of the order of Planck scale and it is linked to the sub eV neutrino mass scale. Contributions to dark energy from auxiliary fields or mechanisms are not necessary in this approach.

A. Capolupo; S. Capozziello; G. Vitiello

2007-05-02T23:59:59.000Z

463

Solar neutrino measurements in Super-Kamiokande-I  

E-Print Network [OSTI]

The details of Super--Kamiokande--I's solar neutrino analysis are given. Solar neutrino measurement in Super--Kamiokande is a high statistics collection of $^8$B solar neutrinos via neutrino-electron scattering. The analysis method and results of the 1496 day data sample are presented. The final oscillation results for the data are also presented.

Super-Kamiokande Collaboration

2005-09-26T23:59:59.000Z

464

Detectors for Neutrino Physics at the First Muon Collider  

E-Print Network [OSTI]

We consider possible detector designs for short-baseline neutrino experiments using neutrino beams produced at the First Muon Collider complex. The high fluxes available at the muon collider make possible high statistics deep-inelastic scattering neutrino experiments with a low-mass target. A design of a low-energy neutrino oscillation experiment on the ``tabletop'' scale is also discussed.

Deborah A. Harris; Kevin S. McFarland

1998-04-20T23:59:59.000Z

465

Double Beta Decay and the Absolute Neutrino Mass Scale  

E-Print Network [OSTI]

After a short review of the current status of three-neutrino mixing, the implications for the values of neutrino masses are discussed. The bounds on the absolute scale of neutrino masses from Tritium beta-decay and cosmological data are reviewed. Finally, we discuss the implications of three-neutrino mixing for neutrinoless double-beta decay.

Carlo Giunti

2003-08-20T23:59:59.000Z

466

E-Print Network 3.0 - approximative neutrino transport Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

neutrino transport Page: << < 1 2 3 4 5 > >> 1 Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall Summary: neutrino emission by its approximate dependence upon the...

467

The Effect of Sterile States on the Magnetic Moments of Neutrinos  

E-Print Network [OSTI]

We briefly review recent work exploring the effect of light sterile neutrino states on the neutrino magnetic moment as explored by the reactor and solar neutrino experiments.

A. B. Balantekin; N. Vassh

2014-04-04T23:59:59.000Z

468

Solar neutrinos and the solar composition problem  

E-Print Network [OSTI]

Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

Carlos Pena-Garay; Aldo Serenelli

2008-11-16T23:59:59.000Z

469

The Fermilab main injector neutrino program  

SciTech Connect (OSTI)

The NuMI Facility at Fermilab provides an extremely intense beam of neutrinos making it an ideal place for the study of neutrino oscillations as well as high statistics (anti)neutrino-nucleon/nucleus scattering experiments. The MINOS neutrino oscillation {nu}{mu} disappearance experiment is currently taking data and has published first results. The NO{nu}A {nu}e appearance experiment is planning to begin taking data at the start of the next decade. For the study of neutrino scattering, the MINER{nu}A experiment at Fermilab is a collaboration of elementary-particle and nuclear physicists planning to use a fully active fine-grained solid scintillator detector. The overall goals of the experiment are to measure absolute exclusive cross-sections, nuclear effects in {nu} - A interactions, a systematic study of the resonance-DIS transition region and the high-xBj - low Q2 DIS region.

Morfin, Jorge G.; /Fermilab

2007-01-01T23:59:59.000Z

470

Neutrinoless double beta decay in four-neutrino models  

E-Print Network [OSTI]

The most stringent constraint on the so-called effective electron neutrino mass from the present neutrinoless double beta decay experiments is |M_{ee}| < 0.2 eV, while the planned next generation experiment GENIUS is anticipated to reach a considerably more stringent limit |M_{ee}|< 0.001 eV. We investigate the constraints these bounds set on the neutrino masses and mixings of neutrinos in four-neutrino models where there exists a sterile neutrino along with the three ordinary neutrinos. We find that the GENIUS experiment would be sensitive to the electron neutrino masses down to the limit m_{\

Anna Kalliomaki; Jukka Maalampi

2000-03-29T23:59:59.000Z

471

La Thuile 2014: Theoretical premises to neutrino round table  

E-Print Network [OSTI]

This talk, dedicated to the memory of G. Giacomelli, introduced the round table on neutrinos held in February 2014. The topics selected for the discussion are: 1) the neutrinoless double beta decay rate (interpretation in terms of light neutrinos, nuclear uncertainties); 2) the physics in the gigantic water Cherenkov detectors (proton decay, atmospheric neutrinos); 3) the study of neutrino oscillations (mass hierarchy and CP violation; other neutrino states); 4) the neutrino astronomy at low and high energies (solar, supernova, cosmic neutrinos). The importance of an active interplay between theory and experiment is highlighted.

Francesco Vissani

2014-05-25T23:59:59.000Z

472

La Thuile 2014: Theoretical premises to neutrino round table  

E-Print Network [OSTI]

This talk, dedicated to the memory of G. Giacomelli, introduced the round table on neutrinos held in February 2014. The topics selected for the discussion are: 1) the neutrinoless double beta decay rate (interpretation in terms of light neutrinos, nuclear uncertainties); 2) the physics in the gigantic water Cherenkov detectors (proton decay, atmospheric neutrinos); 3) the study of neutrino oscillations (mass hierarchy and CP violation; other neutrino states); 4) the neutrino astronomy at low and high energies (solar, supernova, cosmic neutrinos). The importance of an active interplay between theory and experiment is highlighted.

Vissani, Francesco

2014-01-01T23:59:59.000Z

473

Heavy sterile neutrinos, entropy and relativistic energy production, and the relic neutrino background  

E-Print Network [OSTI]

We explore the implications of the existence of heavy neutral fermions (i.e., sterile neutrinos) for the thermal history of the early universe. In particular, we consider sterile neutrinos with rest masses in the 100 MeV to 500 MeV range, with couplings to ordinary active neutrinos large enough to guarantee thermal and chemical equilibrium at epochs in the early universe with temperatures T > 1 GeV, but in a range to give decay lifetimes from seconds to minutes. Such neutrinos would decouple early, with relic densities comparable to those of photons, but decay out of equilibrium, with consequent prodigious entropy generation prior to, or during, Big Bang Nucleosynthesis (BBN). Most of the ranges of sterile neutrino rest mass and lifetime considered are at odds with Cosmic Microwave Background (CMB) limits on the relativistic particle contribution to energy density (e.g., as parameterized by N_eff). However, some sterile neutrino parameters can lead to an acceptable N_eff. These parameter ranges are accompanied by considerable dilution of the ordinary background relic neutrinos, possibly an adverse effect on BBN, but sometimes fall in a range which can explain measured neutrino masses in some particle physics models. A robust signature of these sterile neutrinos would be a measured N_eff not equal to 3 coupled with no cosmological signal for neutrino rest mass when the detection thresholds for these probes are below laboratory-established neutrino mass values, either as established by the atmospheric neutrino oscillation scale or direct measurements with, e.g., KATRIN or neutrino-less double beta decay experiments.

George M. Fuller; Chad T. Kishimoto; Alexander Kusenko

2011-10-28T23:59:59.000Z

474

Atmospheric aerosol monitoring at the Pierre Auger Observatory  

SciTech Connect (OSTI)

For a ground based cosmic-ray observatory the atmosphere is an integral part of the detector. Air fluorescence detectors (FDs) are particularly sensitive to the presence of aerosols in the atmosphere. These aerosols, consisting mainly of clouds and dust, can strongly affect the propagation of fluorescence and Cherenkov light from cosmic-ray induced extensive air showers. The Pierre Auger Observatory has a comprehensive program to monitor the aerosols within the atmospheric volume of the detector. In this paper the aerosol parameters that affect FD reconstruction will be discussed. The aerosol monitoring systems that have been deployed at the Pierre Auger Observatory will be briefly described along with some measurements from these systems.

Cester, R.; Chiosso, M.; Chirin, J.; Clay, R.; Dawson, B.; Fick, B.; Filipcic, A.; Garcia, B.; Grillo, A.; Horvat, M.; Iarlori, M.; Malek, M.; Matthews, J.; Matthews,; Melo, D.; Meyhandan, R.; Mostafa, M.; Mussa, R.; Prouza, M.; Raefert, B.; Rizi, V.

2005-07-01T23:59:59.000Z

475

The GAMMA-400 space observatory: status and perspectives  

E-Print Network [OSTI]

The present design of the new space observatory GAMMA-400 is presented in this paper. The instrument has been designed for the optimal detection of gamma rays in a broad energy range (from ~100 MeV up to 3 TeV), with excellent angular and energy resolution. The observatory will also allow precise and high statistic studies of the electron component in the cosmic rays up to the multi TeV region, as well as protons and nuclei spectra up to the knee region. The GAMMA-400 observatory will allow to address a broad range of science topics, like search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts and charged cosmic rays acceleration and diffusion mechanism up to the knee.

Galper, A M; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Boyarchuk, K A; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

2014-01-01T23:59:59.000Z

476

Phenomenological relations for neutrino masses and mixing parameters  

SciTech Connect (OSTI)

Phenomenological relations for masses, angles, and CP phases in the neutrino mixing matrix are proposed with allowance for available experimental data. For the case of CP violation in the lepton sector, an analysis of the possible structure of the neutrino mass matrix and a calculation of the neutrino mass features and the Dirac CP phase for the bimodal-neutrino model are performed. The values obtained in this way can be used to interpret and predict the results of various neutrino experiments.

Khruschov, V. V., E-mail: khru@imp.kiae.ru [National Research Center Kurchatov Institute (Russian Federation)

2013-11-15T23:59:59.000Z

477

Influence of flavor oscillations on neutrino beam instabilities  

SciTech Connect (OSTI)

We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

Mendonça, J. T., E-mail: titomend@ist.utl.pt [Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo SP (Brazil); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre RS (Brazil); Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

2014-09-15T23:59:59.000Z

478

Effects of Inelastic Neutrino-Nucleus Scattering on Supernova Dynamics and Radiated Neutrino Spectra  

E-Print Network [OSTI]

Based on the shell model for Gamow-Teller and the Random Phase Approximation for forbidden transitions, we have calculated reaction rates for inelastic neutrino-nucleus scattering (INNS) under supernova (SN) conditions, assuming a matter composition given by Nuclear Statistical Equilibrium. The rates have been incorporated into state-of-the-art stellar core-collapse simulations with detailed energy-dependent neutrino transport. While no significant effect on the SN dynamics is observed, INNS increases the neutrino opacities noticeably and strongly reduces the high-energy tail of the neutrino spectrum emitted in the neutrino burst at shock breakout. Relatedly the expected event rates for the observation of such neutrinos by earthbound detectors are reduced by up to about 60%.

K. Langanke; G. Martinez-Pinedo; B. Mueller; H. -Th. Janka; A. Marek; W. R. Hix; A. Juodagalvis; J. M. Sampaio

2007-06-12T23:59:59.000Z

479

Mass Varying Neutrinos in the Sun  

E-Print Network [OSTI]

In this work we study the phenomenological consequences of the dependence of mass varying neutrinos on the neutrino density in the Sun, which we precisely compute in each point along the neutrino trajectory. We find that a generic characteristic of these scenarios is that they establish a connection between the effective Delta m^2 in the Sun and the absolute neutrino mass scale. This does not lead to any new allowed region in the oscillation parameter space. On the contrary, due to this effect, the description of solar neutrino data worsens for large absolute mass. As a consequence a lower bound on the level of degeneracy can be derived from the combined analysis of the solar and KamLAND data. In particular this implies that the analysis favours normal over inverted mass orderings. These results, in combination with a positive independent determination of the absolute neutrino mass, can be used as a test of these scenarios together with a precise determination of the energy dependence of the survival probability of solar neutrinos, in particular for low energies.

Marco Cirelli; M. C. Gonzalez-Garcia; Carlos Pena-Garay

2005-07-08T23:59:59.000Z

480

Can Neutrinos be Degenerate in Mass?  

E-Print Network [OSTI]

We reconsider the possibility that the masses of the three light neutrinos of the Standard Model might be almost degenerate and close to the present upper limits from Tritium beta decay and cosmology. In such a scenario, the cancellations required by the latest upper limit on neutrinoless double-beta decay enforce near-maximal mixing that may be compatible only with the vacuum-oscillation scenario for solar neutrinos. We argue that the mixing angles yielded by degenerate neutrino mass-matrix textures are not in general stable under small perturbations. We evaluate within the MSSM the generation-dependent one-loop renormalization of neutrino mass-matrix textures that yielded degenerate masses and large mixing at the tree level. We find that m_{nu_e} > m_{nu_mu} > m_{nu_tau} after renormalization, excluding MSW effects on solar neutrinos. We verify that bimaximal mixing is not stable, and show that the renormalized masses and mixing angles are not compatible with all the experimental constraints, even for tanbeta as low as unity. These results hold whether the neutrino masses are generated by a see-saw mechanism with heavy neutrinos weighing approx. 10^{13} GeV or by non-renormalizable interactions at a scale approx. 10^5 GeV. We also comment on the corresponding renormalization effects in the minimal Standard Model, in which m_{nu_e} < m_{nu_mu} < m_{nu_tau}. Although a solar MSW effect is now possible, the perturbed neutrino masses and mixings are still not compatible with atmospheric- and solar-neutrino data.

John Ellis; Smaragda Lola

1999-04-13T23:59:59.000Z

Note: This page contains sample records for the topic "icecube neutrino observatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment  

SciTech Connect (OSTI)

Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

Coleman, Stephen James; /William-Mary Coll.

2011-01-01T23:59:59.000Z

482

Scalar neutrinos at the LHC  

Science Journals Connector (OSTI)

We study a softly broken supersymmetric model whose gauge symmetry is that of the standard model gauge group times an extra Abelian symmetry U(1)?. We call this gauge-extended model the U(1)? model, and we study a U(1)? model with a secluded sector such that neutrinos acquire Dirac masses via higher-dimensional terms allowed by the U(1)? invariance. In this model the ? term of the minimal supersymmetric model (MSSM) is dynamically induced by the vacuum expectation value of a singlet scalar. In addition, the model contains exotic particles necessary for anomaly cancellation, and extra singlet bosons for achieving correct Z?/Z mass hierarchy. The neutrinos are charged under U(1)?, and thus, their production and decay channels differ from those in the MSSM in strength and topology. We implement the model into standard packages and perform a detailed analysis of sneutrino production and decay at the Large Hadron Collider, for various mass scenarios, concentrating on three types of signals: (1) 0?+MET, (2) 2?+MET, and (3) 4?+MET. We compare the results with those of the MSSM whenever possible, and analyze the standard model background for each signal. The sneutrino production and decays provide clear signatures enabling distinction of the U(1)? model from the MSSM at the LHC.

Durmu? A. Demir; Mariana Frank; Levent Selbuz; Ismail Turan

2011-05-03T23:59:59.000Z

483

On the 17-keV neutrino  

SciTech Connect (OSTI)

A brief review on the status of the 17-keV neutrino is presented. Several different experiments found spectral distortions which were consistently interpreted as evidence for a heavy neutrino admixture in {beta} decay. Recent experiments, however, rule out the existence of a 17-keV neutrino as well as escaping criticisms of earlier null results. Moreover, the majority of positive results have been reinterpreted in terms of instrumental effects, despite the need for a different explanation in each case. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation.

Hime, A.

1993-04-01T23:59:59.000Z

484

On the 17-keV neutrino  

SciTech Connect (OSTI)

A brief review on the status of the 17-keV neutrino is presented. Several different experiments found spectral distortions which were consistently interpreted as evidence for a heavy neutrino admixture in [beta] decay. Recent experiments, however, rule out the existence of a 17-keV neutrino as well as escaping criticisms of earlier null results. Moreover, the majority of positive results have been reinterpreted in terms of instrumental effects, despite the need for a different explanation in each case. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation.

Hime, A.

1993-04-01T23:59:59.000Z

485

Gravitational Phase Transition of Heavy Neutrino Matter  

E-Print Network [OSTI]

We study the phase transition of a system of self-gravitating neutrinos in the presence of a large radiation density background in the framework of the Thomas-Fermi model. We show that, by cooling a non-degenerate gas of massive neutrinos below some critical temperature, a condensed phase emerges, consisting of quasi-degenerate supermassive neutrino stars. These compact dark objects could play an important role in structure formation in this universe, as they might in fact provide the seeds for galactic nuclei and quasi-stellar objects.

Neven Bilic; Raoul D. Viollier

1996-07-16T23:59:59.000Z

486

Neutrino oscillations and mixings with three flavors  

Science Journals Connector (OSTI)

Global fits to all data of candidates for neutrino oscillations are presented in the framework of a three-flavor model. The analysis excludes mass regions where the MSW effect is important for the solar neutrino problem. The best fit gives ?1?28.9°, ?2?4.2°, ?3?45.0°, m22-m12?2.87×10-4 eV2, and m32-m22?1.11 eV2 indicating essentially maximal mixing between the two lightest neutrino mass eigenstates.

Tommy Ohlsson and Håkan Snellman

1999-10-07T23:59:59.000Z

487

Neutrinoless double ? decay with composite neutrinos  

Science Journals Connector (OSTI)

We study in detail the contribution of heavy composite Majorana neutrinos to neutrinoless double beta decay (0???). Our analysis confirms the result of a previous estimate by two of the authors. Excited neutrinos couple to the electroweak gauge bosons through a magnetic-type effective Lagrangian. The relevant nuclear matrix element is related to matrix elements available in the literature and current bounds on the half-life of 0??? are converted into bounds on the compositeness scale and/or the heavy neutrino mass. Our bounds are of the same order of magnitude as those available from accelerator experiments.

O. Panella; C. Carimalo; Y. N. Srivastava; A. Widom

1997-11-01T23:59:59.000Z

488

Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of ?13  

Science Journals Connector (OSTI)

We revisit some of the recent neutrino observations and anomalies in the context of sterile neutrinos. Among our aims is to understand more clearly some of the analytic implications of the current global neutrino fits from short-baseline experiments. Of particular interest to us are the neutrino disappearance measurements from MINOS and the recent indications of a possibly nonvanishing angle, ?13, from T2K, MINOS and Double CHOOZ. Based on a general parametrization motivated in the presence of sterile neutrinos, the consistency of the MINOS disappearance data with additional sterile neutrinos is discussed. We also explore the implications of sterile neutrinos for the measurement of |U?3| in this case. We then turn our attention to the study of |Ue3| extraction in electron neutrino disappearance and appearance measurements. In particular, we study the effects of some of the additional CP phases that appear when there are sterile neutrinos. We observe that the existence of sterile neutrinos may induce a significant modification of the ?13 angle in neutrino appearance experiments like T2K and MINOS, over and above the ambiguities and degeneracies that are already present in three-neutrino parameter extractions. There are reactor experiments, for instance those measuring ?e disappearance like Double CHOOZ, Daya Bay and RENO, where this modification is less significant and therefore the extracted |Ue3| value when sterile neutrinos are present is close to the one that would be obtained in the three-neutrino case. Based on our study, we also conclude that the results from T2K imply a 90% C.L. lower bound on |Ue3|, in the “3+2” neutrino case, which is still within the sensitivity of future reactor neutrino experiments like Daya Bay, and consistent with the one-? range of sin?22?13 recently reported by the Double CHOOZ experiment. Finally, we argue that for the recently determined best-fit parameters, the resu