National Library of Energy BETA

Sample records for ice water content

  1. ARM - Measurement - Ice water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water content The concentration (mass/vol) of ice water particles in a cloud. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  2. ARM - PI Product - Large Scale Ice Water Path and 3-D Ice Water Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsLarge Scale Ice Water Path and 3-D Ice Water Content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Large Scale Ice Water Path and 3-D Ice Water Content Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM

  3. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    2008-01-15

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  4. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  5. Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources from Satellite, Ground Radar, and a Numerical Model Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data Sources from Satellite, Ground Radar, and a Numerical Model Liu, Guosheng Florida State University Seo, Eun-Kyoung Florida State University Category: Cloud Properties This study aims at determining the 3-dimensional distribution of ice water content over a broad area near the Atmospheric Radiation Measurement Southern Great Plain site, where cloud radar and

  6. ARM - Measurement - Ice water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    path ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water path A measure of the weight of the ice particles in the atmosphere above a unit surface area in kg m-2. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  7. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  8. Viscosity of interfacial water regulates ice nucleation

    SciTech Connect (OSTI)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; University of Chinese Academy of Sciences, Beijing 100049 ; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun Song, Yanlin

    2014-03-10

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and ?, in the context of classical nucleation theory. From the extracted J{sub 0} and ?, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  9. ARM - Measurement - Liquid water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Liquid water content The concentration (mass/vol) of liquid water droplets in a cloud. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded

  10. Covered Product Category: Water-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and federal efficiency requirements for water-cooled ice machines.

  11. Determining Cloud Ice Water Path from High-Frequency Microwave Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining Cloud Ice Water Path from High-Frequency Microwave Measurements G. Liu Department of Meteorology Florida State University Tallahassee, Florida Introduction A better understanding of cloud water content and its large-scale distribution is important to climate research for improving our ability to parameterize and validate cloud/precipitation processes in global climate models. The goal of this study is to determine the distribution and large-scale advection of cloud ice/liquid water

  12. HYDROGEN-DEUTERIUM EXCHANGE IN PHOTOLYZED METHANE-WATER ICES

    SciTech Connect (OSTI)

    Weber, Amanda S.; Hodyss, Robert; Johnson, Paul V.; Willacy, Karen; Kanik, Isik

    2009-09-20

    Previous work has concluded that H-D exchange occurs readily in polycyclic aromatic hydrocarbons frozen in deuterated water (D{sub 2}O) irradiated with ultraviolet light. Here, we examine H-D exchange in methane-water ices following exposure to ultraviolet radiation and analyze the products formed as a result. We find that H-D exchange also occurs in methane-water ices by means of ultraviolet photolysis. Exchange proceeds through a radical mechanism that implies that almost all organic species will undergo significant H-D exchange with the matrix in water ices exposed to ultraviolet radiation. Given sufficient energetic processing of the ice, the H/D ratio of an ice matrix may be transferred to the organic species in the ice.

  13. THE STICKINESS OF MICROMETER-SIZED WATER-ICE PARTICLES

    SciTech Connect (OSTI)

    Gundlach, B.; Blum, J.

    2015-01-01

    Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates), water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-sized region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of ?m-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between 114 K and 260 K. We show with our experiments that for low temperatures (below ?210 K), ?m-sized water-ice particles stick below a threshold velocity of 9.6 m s{sup 1}, which is approximately 10times higher than the sticking threshold of ?m-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above 15.3 m s{sup 1}. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

  14. THE PHASES OF WATER ICE IN THE SOLAR NEBULA

    SciTech Connect (OSTI)

    Ciesla, Fred J.

    2014-03-20

    Understanding the phases of water ice that were present in the solar nebula has implications for understanding cometary and planetary compositions as well as the internal evolution of these bodies. Here we show that amorphous ice formed more readily than previously recognized, with formation at temperatures <70K being possible under protoplanetary disk conditions. We further argue that photodesorption and freeze-out of water molecules near the surface layers of the solar nebula would have provided the conditions needed for amorphous ice to form. This processing would be a natural consequence of ice dynamics and would allow for the trapping of noble gases and other volatiles in water ice in the outer solar nebula.

  15. Covered Product Category: Water-Cooled Ice Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ice Machines Covered Product Category: Water-Cooled Ice Machines The Federal Energy Management Program (FEMP) provides acquisition guidance and federal efficiency requirements for water-cooled ice machines. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Efficiency Requirements for Water-Cooled Ice Machines Federal agencies must purchase water-cooled ice machines

  16. Oil spreading in surface waters with an ice cover

    SciTech Connect (OSTI)

    Yapa, P.D.; Weerasuriya, S.A.; Belaskas, D.P.; Chowdhury, T.

    1993-02-01

    A study of oil spreading in surface waters in the presence of a floating ice cover is presented. The ice can be solid or fragmented. Both axi-symmetrical and uni-directional spreading are studied. The report describes the analytical and numerical model development, the experimental set-up, results from the laboratory experiments, and their comparison with the derived theory and the numerical simulation. To analyze the spreading of oil under solid ice, new equations are derived. These equations consider gravity (buoyancy) - inertia phase, gravity (buoyancy) - viscous phase, and the termination of spreading during the buoyancy - surface tension phase. The derivation considers both the constant discharge mode and the constant volume mode. Therefore, a complete description of the spreading phenomena from the time of initial spill to termination of spreading is presented. The emphasis of the study is on the dominant spreading mechanism for oil under ice, which is the buoyancy-viscous phase.

  17. Time-resolved x-ray diffraction across water-ices VI/VII transformatio...

    Office of Scientific and Technical Information (OSTI)

    diffraction across water-ices VIVII transformations using dynamic-DAC Citation Details In-Document Search Title: Time-resolved x-ray diffraction across water-ices VIVII ...

  18. Does Water Content or Flow Rate Control Colloid Transport in...

    Office of Scientific and Technical Information (OSTI)

    Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media? Citation Details In-Document Search Title: Does Water Content or Flow Rate Control Colloid ...

  19. A PHOTOMETRIC SYSTEM FOR DETECTION OF WATER AND METHANE ICES ON KUIPER BELT OBJECTS

    SciTech Connect (OSTI)

    Trujillo, Chadwick A.; Sheppard, Scott S.; Schaller, Emily L. E-mail: sheppard@dtm.ciw.edu

    2011-04-01

    We present a new near-infrared photometric system for detection of water ice and methane ice in the solar system. The system consists of two medium-band filters in the K-band region of the near-infrared, which are sensitive to water ice and methane ice, plus continuum observations in the J band and Y band. The primary purpose of this system is to distinguish between three basic types of Kuiper Belt Objects (KBOs)-those rich in water ice, those rich in methane ice, and those with little absorbance. In this work, we present proof-of-concept observations of 51 KBOs using our filter system, 21 of which have never been observed in the near-infrared spectroscopically. We show that our custom photometric system is consistent with previous spectroscopic observations while reducing telescope observing time by a factor of {approx}3. We use our filters to identify Haumea collisional family members, which are thought to be collisional remnants of a much larger body and are characterized by large fractions of water ice on their surfaces. We add 2009 YE{sub 7} to the Haumea collisional family based on our water ice band observations (J - H{sub 2}O = -1.03 {+-} 0.27) which indicate a high amount of water ice absorption, our calculated proper orbital elements, and the neutral optical colors we measured, V - R = 0.38 {+-} 0.04, which are all consistent with the rest of the Haumea family. We identify several objects dynamically similar to Haumea as being distinct from the Haumea family as they do not have water ice on their surfaces. In addition, we find that only the largest KBOs have methane ice, and Haumea itself has significantly less water ice absorption than the smaller Haumea family members. We find no evidence for other families in the Kuiper Belt.

  20. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs’ cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  1. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect (OSTI)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice nucleation effciencies and can serve as effcient IN at atmospheric conditions typical for cirrus and mixed phase clouds. This indicates a potential link between human activities and cloud formation, and thus climate.

  2. VOLATILE TRANSPORT INSIDE SUPER-EARTHS BY ENTRAPMENT IN THE WATER-ICE MATRIX

    SciTech Connect (OSTI)

    Levi, A.; Podolak, M.; Sasselov, D.

    2013-05-20

    Whether volatiles can be entrapped in a background matrix composing planetary envelopes and be dragged via convection to the surface is a key question in understanding atmospheric fluxes, cycles, and composition. In this paper, we consider super-Earths with an extensive water mantle (i.e., water planets), and the possibility of entrapment of methane in their extensive water-ice envelopes. We adopt the theory developed by van der Waals and Platteeuw for modeling solid solutions, often used for modeling clathrate hydrates, and modify it in order to estimate the thermodynamic stability field of a new phase called methane filled ice Ih. We find that in comparison to water ice VII the filled ice Ih structure may be stable not only at the high pressures but also at the high temperatures expected at the core-water mantle transition boundary of water planets.

  3. Synchrotron x-ray photoemission study of soft x-ray processed ultrathin glycine-water ice films

    SciTech Connect (OSTI)

    Tzvetkov, George; Netzer, Falko P.

    2011-05-28

    Ultrathin glycine-water ice films have been prepared in ultrahigh vacuum by condensation of H{sub 2}O and glycine at 90 K on single crystalline alumina surfaces and processed by soft x-ray (610 eV) exposure for up to 60 min. The physicochemical changes in the films were monitored using synchrotron x-ray photoemission spectroscopy. Two films with different amounts of H{sub 2}O have been considered in order to evaluate the influence of the water ice content on the radiation-induced effects. The analysis of C1s, N1s, and O1s spectral regions together with the changes in the valence band spectra indicates that amino acid degradation occurs fast mainly via decarboxylation and deamination of pristine molecules. Enrichment of the x-ray exposed surfaces with fragments with carbon atoms without strong electronegative substituents (C-C and C-H) is documented as well. In the thinner glycine-water ice film (six layers of glycine + six layers of water) the 3D ice suffers strongly from the x-rays and is largely removed from the sample. The rate of photodecomposition of glycine in this film is about 30% higher than for glycine in the thicker film (6 layers of glycine + 60 layers of water). The photoemission results suggest that the destruction of amino acid molecules is caused by the direct interaction with the radiation and that no chemical attack of glycine by the species released by water radiolysis is detected.

  4. Determination of Ice Water Path Over the ARM SGP Using Combined Surface and Satellite Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of Ice Water Path Over the ARM SGP Using Combined Surface and Satellite Datasets J. Huang, M. M. Khaiyer, and P. W. Heck Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis and B. Lin Atmospheric Sciences National Aeronautics and Space Administration Langley Research Center Hampton, Virginia T.-F. Fan Science Applications International Corporation Hampton, Virginia Introduction Global information of cloud ice water path (IWP) is urgently needed for testing of

  5. The sticking of atomic hydrogen on amorphous water ice

    SciTech Connect (OSTI)

    Veeraghattam, Vijay K.; Manrodt, Katie; Lewis, Steven P.; Stancil, P. C. E-mail: lewis@physast.uga.edu

    2014-07-20

    Using classical molecular dynamics, we have simulated the sticking and scattering process of a hydrogen atom on an amorphous ice film to predict the sticking probability of hydrogen on ice surfaces. A wide range of initial kinetic energies of the incident hydrogen atom (10 K-600 K) and two different ice temperatures (10 K and 70 K) were used to investigate this fundamental process in interstellar chemistry. We report here the sticking probability of atomic hydrogen as a function of incident kinetic energy, gas temperature, and substrate temperature, which can be used in astrophysical models. The current results are compared to previous theoretical and experimental studies that have reported a wide range in the sticking coefficient.

  6. A Review Of Water Contents Of Nominally Anhydrous Natural Minerals...

    Open Energy Info (EERE)

    Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The Moon Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  7. Developing and Evaluating Ice Cloud Parameterizations by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by remote sensing is that the transfer functions which relate the observables (e. g., radar Doppler spectrum) to cloud properties (e. g., ice water content, or IWC) are not...

  8. Alaskan Ice Road Water Supplies Augmented by Snow Barriers

    Broader source: Energy.gov [DOE]

    Researchers at the University of Alaska Fairbanks have demonstrated that the use of artificial barriers—snow fences—can significantly increase the amount of fresh water supplies in Arctic lakes at a fraction of the cost of bringing in water from nearby lakes.

  9. CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS

    SciTech Connect (OSTI)

    Bordalo, V.; Da Silveira, E. F.; Seperuelo Duarte, E.

    2013-09-10

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified after irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

  10. Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices

    SciTech Connect (OSTI)

    Hardegree-Ullman, E. E.; Gudipati, M. S.; Werner, M.; Boogert, A. C. A.; Lignell, H.; Allamandola, L. J.; Stapelfeldt, K. R. E-mail: gudipati@jpl.nasa.gov

    2014-04-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 ?m) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 ?m. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ?50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 ?m spectral region, taking into account the strength of the 3.25 ?m CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 ?m region.

  11. Hydrogen isotopes as a proxy for the [sup 18]O content of water...

    Office of Scientific and Technical Information (OSTI)

    the sup 18O content of water in carbonates Citation Details In-Document Search Title: Hydrogen isotopes as a proxy for the sup 18O content of water in carbonates Water ...

  12. Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-02-07

    The intensity of the HOH bend in the IR spectrum of ice is significantly smaller than the corresponding one in liquid water. This difference in the IR intensities of the HOH bend in the two systems is investigated using MD simulations with the flexible, polarizable, ab-initio based TTM3-F model for water, a potential that correctly reproduces the experimentally observed increase of the HOH bend in liquid water and ice from the water monomer value. We have identified two factors that are responsible for the difference in the intensity of the HOH bend in liquid water and ice: (i) the decrease of the intensity of the HOH bend in ice caused by the strong anti-correlation between the permanent dipole moment of a molecule and the induced dipole moment of a neighboring hydrogen bond acceptor molecule and (ii) the weakening of this anti-correlation by the disordered hydrogen bond network in liquid water. The presence of the anti-correlation in ice is further confirmed by ab initio electronic structure calculations of water pentamer clusters extracted from the trajectories of the MD simulations for ice and liquid water.

  13. Effect of higher water vapor content on TBC performance

    SciTech Connect (OSTI)

    Pint, Bruce A; Haynes, James A

    2012-01-01

    Coal gasification, or IGCC (integrated gasification combined cycle), is one pathway toward cleaner use of coal for power generation with lower emissions. However, when coal-derived synthesis gas (i.e., syngas) is burned in turbines designed for natural gas, turbine manufacturers recommend 'derating,' or lowering the maximum temperature, which lowers the efficiency of the turbine, making electricity from IGCC more expensive. One possible reason for the derating is the higher water vapor contents in the exhaust gas. Water vapor has a detrimental effect on many oxidation-resistant high-temperature materials. In a turbine hot section, Ni-base superalloys are coated with a thermal barrier coating (TBC) allowing the gas temperature to be higher than the superalloy solidus temperature. TBCs have a low thermal conductivity ceramic top coating (typically Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}, or YSZ) and an oxidation-resistant metallic bond coating. For land-based gas turbines, the industry standard is air plasma sprayed (APS) YSZ and high velocity oxygen fuel (HVOF) sprayed NiCoCrAlY bond coatings. To investigate the role of higher water vapor content on TBC performance and possible mitigation strategies, furnace cycling experiments were conducted in dry O{sub 2} and air with 10% (typical with natural gas or jet fuel) or 50 vol% water vapor. Cycle frequency and temperature were accelerated to one hour at 1100 C (with 10 minute cooling to {approx}30 C between each thermal cycle) to induce early failures in coatings that are expected to operate for several years with a metal temperature of {approx}900 C. Coupons (16 mm diameter x 2 mm thick) of commercial second-generation single crystal superalloy CMSX4 were HVOF coated on both sides with {approx}125 {micro}m of Ni-22wt%Co-17Cr-12Al either with 0.7Y or 0.7Y-0.3Hf-0.4Si. One side was then coated with 190-240 {micro}m of APS YSZ. Coatings were cycled until the YSZ top coating spalled. Figure 2 shows the results of the initial phase of experiments. Compared to dry O{sub 2}, the addition of 10% water vapor decreased the lifetime of MCrAlY by {approx}30% for the conventional CMSX4 substrates. Higher average lifetimes were observed with Hf in the bond coating, but a similar decrease in lifetime was observed when water vapor was added. The addition of Y and La to the superalloy substrate did not change the YSZ lifetime with 10% water vapor. However, increasing water vapor content from 10 to 50% did not further decrease the lifetime of either bond coating with the doped superalloy substrate. Thus, these results suggest that higher water vapor contents cannot explain the derating of syngas-fired turbines, and other factors such as sulfur and ash from imperfect syngas cleanup (or upset conditions) need to be explored. Researchers continue to study effects of water vapor on thermally grown alumina scale adhesion and growth rate, and are looking for bond coating compositions more resistant to oxidation in the presence of water vapor.

  14. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 August 2005 Contents Bechtel Nevada achieves 5 million hours! 1 WSI graduates fresh members of security 1 protective forces Handling radiation emergencies 2 SiteLines features a new editor 2 Rocky Flats survey 3 NTS Swift Water Rescue Team practices on the 3 Colorado River Drilling Program overcomes challenges at the NTS 3 Toastmasters: making effective communication a 4 worldwide reality Atomic Testing Museum update 4 Two more successful shots at JASPER 5 Hazardous Substance Inventory users 5

  15. Water droplet behavior on superhydrophobic SiO{sub 2} nanocomposite films during icing/deicing cycles

    SciTech Connect (OSTI)

    Lazauskas, A.; Guobien?, A.; Prosy?evas, I.; Baltruaitis, V.; Grigali?nas, V.; Narmontas, P.; Baltrusaitis, J.

    2013-08-15

    This work investigates water droplet behavior on superhydrophobic (water contact angle value of 162 1) SiO{sub 2} nanocomposite films subjected to repetitive icing/deicing treatments, changes in SiO{sub 2} nanocomposite film surface morphology and their non-wetting characteristics. During the experiment, water droplets on SiO{sub 2} nanocomposite film surface are subjected to a series of icing and deicing cycles in a humid (? 70% relative humidity) atmosphere and the resulting morphological changes are monitored and characterized using atomic force microscopy (AFM) and contact angle measurements. Our data show that the formation of the frozen or thawed water droplet, with no further shape change, on superhydrophobic SiO{sub 2} nanocomposite film, is obtained faster within each cycle as the number of the icing/deicing cycles increases. After 10 icing and deicing cycles, the superhydrophobic SiO{sub 2} nanocomposite film had a water contact angle value of 146 2 which is effectively non-superhydrophobic. AFM analysis showed that the superhydrophobic SiO{sub 2} nanocomposite film surface area under the water droplet undergoes gradual mechanical damage during the repetitive icing/deicing cycles. We propose a possible mechanism of the morphological changes to the film surface that take place during the consecutive icing/deicing experiments. - Highlights: Superhydrophobic film is subjected to repetitive icing/deicing treatments. Water droplet shape transition is recorded and characterized thereafter. Atomic force microscopy and contact angle measurements are performed. The surface undergoes gradual mechanical damage during repetitive icing/deicing. Mechanism for the observed surface morphological changes is suggested.

  16. A Compact, Backscattering Deplolarization Cloud Spectrometer for Ice and Water Discrimination

    SciTech Connect (OSTI)

    Thomson, David

    2014-05-15

    This project was to develop a compact optical particle spectrometer, small enough for operation on UAVS, that measures the optical diameter of cloud hydrometeors and differentiates their water phase (liquid or solid). To reach this goal, a work plan was laid out that would complete three objectives: 1) Evaluation of designs for an optical particle spectrometer that measures the component of light backscattered at two polarization angles. 2) Testing of selected designs on an optical bench. 3) Construction and preliminary testing of a prototype instrument based on the selected, optimum design. A protoype instrument was developed and tested in an icing wind tunnel where the results showed good measurement of cloud droplets and ice particles.

  17. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions

    SciTech Connect (OSTI)

    Walker, Rachel L.; Searles, Keith; Willard, Jesse A.; Michelsen, Rebecca R. H., E-mail: RMichelsen@rmc.edu [Department of Chemistry, Randolph-Macon College, P.O. Box 5005, Ashland, Virginia 23005 (United States)] [Department of Chemistry, Randolph-Macon College, P.O. Box 5005, Ashland, Virginia 23005 (United States)

    2013-12-28

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.

  18. Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 10.01.12 Sleuthing the Fate of

  19. Spreading of crude petroleum in brash ice; Effects of oil`s physical properties and water current

    SciTech Connect (OSTI)

    Sayed, M.; Kotlyar, L.S.; Sparks, B.D.

    1994-12-31

    Experiments were conducted in a refrigerated, circulating current flume to examine crude oil spreading in brash ice. Amauligak, Hibernia and Norman Wells crudes were tested. Measurements of the physical properties of the oils were also conducted, including: surface and interfacial tensions as well as viscosities. Spreading coefficients were calculated from measured surface and interfacial tensions. Results were obtained for original and weathered oils. For the spreading tests, spill volumes up to 3 liters and water currents up to 0.55 m/s were used. Tests were done using both fresh water ice and saline ice. Slick dimensions were measured, and modes of oil spreading were observed. Slick dimensions depended on oil type, but were not influenced by water current. Oils of high spreading coefficient and low viscosity spread over larger areas than those with low spreading coefficient and high viscosity.

  20. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?

    SciTech Connect (OSTI)

    Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

    2014-03-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? ?r)/(?s ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  1. Microphysical Consequences of the Spatial Distribution of Ice Nucleation in Mixed-Phase Stratiform Clouds

    SciTech Connect (OSTI)

    Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2014-07-28

    Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation, leads to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. [2013]. The sensitivity of the wi-ni relationship to the spatial distribution of ice nucleation is confirmed by Lagrangian tracking and ice growth with cloud-volume, cloud-top, and cloud-base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from ISDAC, a lower bound of 0.006 m^3/s is obtained for the ice crystal formation rate.

  2. Minimalist Model of Ice Microphysics in Mixed-phase Stratiform Clouds

    SciTech Connect (OSTI)

    Yang, F.; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2013-07-28

    The question of whether persistent ice crystal precipitation from super cooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model, and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power law relationship with ice number concentration ni. wi and ni from a LES cloud model with stochastic ice nucleation also confirm the 2.5 power law relationship. The prefactor of the power law is proportional to the ice nucleation rate, and therefore provides a quantitative link to observations of ice microphysical properties.

  3. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0 - HOISTING AND RIGGING IN HOSTILE ENVIRONMENTS February 18, 2010 Rev 1 Page 1 CHAPTER 18.0 TABLE OF CONTENTS TABLE OF CONTENTS..................................................................................................................................1 PAGINATION TABLE.....................................................................................................................................1 18.0 HOISTING AND RIGGING IN HOSTILE ENVIRONMENTS

  4. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity

    SciTech Connect (OSTI)

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.; Michaelides, Angelos

    2015-05-14

    Ice formation is one of the most common and important processes on earth and almost always occurs at the surface of a material. A basic understanding of how the physicochemical properties of a material’s surface affect its ability to form ice has remained elusive. Here, we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at a hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water exists for promoting ice nucleation.We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  5. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.0 - CRITICAL, SPECIAL, & ENGINEERED LIFTS January 4, 2016 Rev 1 Page 1 CHAPTER 3.0 TABLE OF CONTENTS 3.0 CRITICAL LIFTS ....................................................................................................................................... 3 3.1 SCOPE .......................................................................................................................................................... 3 3.2 CRITICAL LIFT DETERMINATION

  6. Modeling the Effect of Ice Nuclei on ARM Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upper-Tropospheric Ice Water Content in TWP-ICE Xiping Zeng, Wei-Kuo Tao, Minghua Zhang, and Shaochen Xie March 31, 2009 Papers Published Recently * Zeng, X., W.-K. Tao, M. Zhang, A. Y. Hou, S. Xie, S. Lang, X. Li, D. Starr, X. Li, and J. Simpson, 2009: An indirect effect of ice nuclei on atmospheric radiation. J. Atmos. Sci., 66, 41-61. * Zeng, X., W.-K. Tao, M. Zhang, A. Y. Hou, S. Xie, S. Lang, X. Li, D. Starr, and X. Li, 2009: A contribution by ice nuclei to global warming. Quart. J. Roy.

  7. A NEW SOURCE OF CO{sub 2} IN THE UNIVERSE: A PHOTOACTIVATED ELEY-RIDEAL SURFACE REACTION ON WATER ICES

    SciTech Connect (OSTI)

    Yuan, Chunqing; Cooke, Ilsa R.; Yates, John T. Jr.

    2014-08-20

    CO{sub 2} is one of the most abundant components of ices in the interstellar medium; however, its formation mechanism has not been clearly identified. Here we report an experimental observation of an Eley-Rideal-type reaction on a water ice surface, where CO gas molecules react by direct collisions with surface OH radicals, made by photodissociation of H{sub 2}O molecules, to produce CO{sub 2} ice on the surface. The discovery of this source of CO{sub 2} provides a new mechanism to explain the high relative abundance of CO{sub 2} ice in space.

  8. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 m) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 m), known as the small mode. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 m wavelength relative to 11 m wavelength due to the process of wave resonance or photon tunneling more active at 12 m. This makes the 12/11 m absorption optical depth ratio (or equivalently the 12/11 m Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  9. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program and Book of Abstracts Contents Organizers i-ii Detailed Program iii-viii Oral presentations 1-38 Posters P1-P27 Program Schematic back cover The LAPD Symposium brings together scientists from laser physics, low- temperature plasma chemistry and physics, and nuclear fusion. The Symposium is an important, unique, and fruitful source for cross-fertilization between these fields. Major topics include laser-aided diagnostics for fusion plasmas, industrial process plasmas, and environmental

  10. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated

    Office of Scientific and Technical Information (OSTI)

    Porous Media? (Journal Article) | SciTech Connect Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media? Citation Details In-Document Search Title: Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media? Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid

  11. The use of a permanent magnet for water content measurements ofwood chips

    SciTech Connect (OSTI)

    Barale, P.J.; Fong, C.G.; Green, M.A.; Luft, P.A.; McInturff,A.D.; Reimer, J.A.; Yahnke, M.

    2001-09-20

    The Lawrence Berkeley National Laboratory has developed a device that measures the water content of wood chips, pulp and brown stock for the paper industry. This device employs a permanent magnet as the central part of a NMR measurement system. This report describes the magnet and the NMR measurement system. The results of water content measurements in wood chips in a magnetic field of 0.47 T are presented.

  12. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 June/July 2005 Contents Fires burn Nevada Test Site in June NNSA/NSO and Department of Homeland Security break ground at the Nevada Test Site U1h ribbon cutting marks the remarkable New training grounds dedicated at NTS Changes enhance the EAP Unicorn subcritical experiment completes key milestone New communication system takes flight SiteLines goes online DNFSB visits U1a Funnel clouds at the Nevada Test Site Community Environmental Monitor receives EPA award Take Our Daughters and Sons to

  13. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  14. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, David F. (Idaho Falls, ID); Suciu, Dan F. (Idaho Falls, ID); Harris, Taryl L. (Idaho Falls, ID); Ingram, Jani C. (Idaho Falls, ID)

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  15. Arctic ice islands

    SciTech Connect (OSTI)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  16. Estimating water content in an active landfill with the aid of GPR

    SciTech Connect (OSTI)

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2013-10-15

    Highlights: Limited information in the literature on the use of GPR to measure in situ water content in a landfill. Developed GPR method allows measurement of in situ water content in a landfill. Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.

  17. The quantum nature of the OH stretching mode in ice and water probed by neutron scattering experiments

    SciTech Connect (OSTI)

    Senesi, Roberto; Flammini, Davide; Kolesnikov, Alexander I; Murray, Eamonn D.; Galli, Giulia; Andreani, Carla

    2013-01-01

    The OH stretching vibrational spectrum of water was measured in a wide range of temperatures across the triple point, 269 K < T < 296 K, using Inelastic Neutron Scattering (INS). The hydrogen projected density of states and the proton mean kinetic energy, _OH, were determined for the first time within the framework of a harmonic description of the proton dynamics. We found that in the liquid the value of _OH is nearly constant as a function of T, indicating that quantum effects on the OH stretching frequency are weakly dependent on temperature. In the case of ice, ab initio electronic structure calculations, using non-local van der Waals functionals, provided _OH values in agreement with INS experiments. We also found that the ratio of the stretching (_OH) to the total (_exp) kinetic energy, obtained from the present measurements, increases in going from ice, where hydrogen bonding is the strongest, to the liquid at ambient conditions and then to the vapour phase, where hydrogen bonding is the weakest. The same ratio was also derived from the combination of previous deep inelastic neutron scattering data, which does not rely upon the harmonic approximation, and the present measurements. We found that the ratio of stretching to the total kinetic energy shows a minimum in the metastable liquid phase. This finding suggests that the strength of intermolecular interactions increases in the supercooled phase, with respect to that in ice, contrary to the accepted view that supercooled water exhibits weaker hydrogen bonding than ice.

  18. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  19. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice numbermore » is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.« less

  20. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-12-01

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  1. Biogeochemistry in Sea Ice: CICE model developments

    SciTech Connect (OSTI)

    Jeffery, Nicole; Hunke, Elizabeth; Elliott, Scott; Turner, Adrian

    2012-06-18

    Polar primary production unfolds in a dynamic sea ice environment, and the interactions of sea ice with ocean support and mediate this production. In spring, for example, fresh melt water contributes to the shoaling of the mixed layer enhancing ice edge blooms. In contrast, sea ice formation in the fall reduces light penetration to the upper ocean slowing primary production in marine waters. Polar biogeochemical modeling studies typically consider these types of ice-ocean interactions. However, sea ice itself is a biogeochemically active medium, contributing a significant and, possibly, essential source of primary production to polar regions in early spring and fall. Here we present numerical simulations using the Los Alamos Sea Ice Model (CICE) with prognostic salinity and sea ice biogeochemistry. This study investigates the relationship between sea ice multiphase physics and sea ice productivity. Of particular emphasis are the processes of gravity drainage, melt water flushing, and snow loading. During sea ice formation, desalination by gravity drainage facilitates nutrient exchange between ocean and ice maintaining ice algal blooms in early spring. Melt water flushing releases ice algae and nutrients to underlying waters limiting ice production. Finally, snow loading, particularly in the Southern Ocean, forces sea ice below the ocean surface driving an upward flow of nutrient rich water into the ice to the benefit of interior and freeboard communities. Incorporating ice microphysics in CICE has given us an important tool for assessing the importance of these processes for polar algal production at global scales.

  2. EVOLUTION OF SNOW LINE IN OPTICALLY THICK PROTOPLANETARY DISKS: EFFECTS OF WATER ICE OPACITY AND DUST GRAIN SIZE

    SciTech Connect (OSTI)

    Oka, Akinori; Nakamoto, Taishi; Ida, Shigeru, E-mail: akinorioka1@gmail.com, E-mail: nakamoto@geo.titech.ac.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo (Japan)

    2011-09-10

    Evolution of a snow line in an optically thick protoplanetary disk is investigated with numerical simulations. The ice-condensing region in the disk is obtained by calculating the temperature and the density with the 1+1D approach. The snow line migrates as the mass accretion rate ( M-dot ) in the disk decreases with time. Calculations are carried out from an early phase with high disk accretion rates ( M-dot {approx}10{sup -7} M{sub sun} yr{sup -1}) to a later phase with low disk accretion rates ( M-dot {approx}10{sup -12} M{sub sun} yr{sup -1}) using the same numerical method. It is found that the snow line moves inward for M-dot {approx}>10{sup -10} M{sub sun} yr{sup -1}, while it gradually moves outward in the later evolution phase with M-dot {approx}<10{sup -10} M{sub sun} yr{sup -1}. In addition to the silicate opacity, the ice opacity is taken into consideration. In the inward migration phase, the additional ice opacity increases the distance of the snow line from the central star by a factor of 1.3 for dust grains {approx}< 10 {mu}m in size and of 1.6 for {approx}> 100 {mu}m. It is inevitable that the snow line comes inside Earth's orbit in the course of the disk evolution if the viscosity parameter {alpha} is in the range 0.001-0.1, the dust-to-gas mass ratio is higher than a tenth of the solar abundance value, and the dust grains are smaller than 1 mm. The formation of water-devoid planetesimals in the terrestrial planet region seems to be difficult throughout the disk evolution, which imposes a new challenge to planet formation theory.

  3. Morphology Of Diesel Soot Residuals From Supercooled Water Droplets And Ice Crystals: Implications For Optical Properties

    SciTech Connect (OSTI)

    China, Swarup; Kulkarni, Gourihar; Scarnatio, Barbara; Sharma, Noopur; Pekour, Mikhail S.; Shilling, John E.; Wilson, Jacqueline M.; Zelenyuk, Alla; Chand, Duli; Liu, Shang; Aiken, Allison; Dubey, Manvendra K.; Laskin, Alexander; Zaveri, Rahul A.; Mazzoleni, Claudio

    2015-11-04

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earths radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those from supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. These results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.

  4. Formation mechanisms of oxygen atoms in the O({sup 1}D{sub 2}) state from the 157 nm photoirradiation of amorphous water ice at 90 K

    SciTech Connect (OSTI)

    Hama, Tetsuya; Yabushita, Akihiro; Yokoyama, Masaaki; Kawasaki, Masahiro; Watanabe, Naoki

    2009-09-21

    Vacuum ultraviolet photolysis of water ice in the first absorption band was studied at 157 nm. Translational and internal energy distributions of the desorbed species, O({sup 1}D) and OH(v=0,1), were directly measured with resonance-enhanced multiphoton ionization method. Two different mechanisms are discussed for desorption of electronically excited O({sup 1}D) atoms from the ice surface. One is unimolecular dissociation of H{sub 2}O to H{sub 2}+O({sup 1}D) as a primary photoprocess. The other is the surface recombination reaction of hot OH radicals that are produced from photodissociation of hydrogen peroxide as a secondary photoprocess. H{sub 2}O{sub 2} is one of the major photoproducts in the vacuum ultraviolet photolysis of water ice.

  5. Communication: Nucleation of water on ice nanograins: Size, charge, and quantum effects

    SciTech Connect (OSTI)

    Marciante, Mathieu; Calvo, Florent

    2015-05-07

    The sticking cross sections of water molecules on cold size-selected water clusters have been simulated using classical and quantum (path-integral) molecular dynamics trajectories under realistic conditions. The integrated cross sections for charged clusters show significant size effects with comparable trends as in experiments, as well as essentially no sign effect. Vibrational delocalization, although it contributes to enlarging the geometric cross sections, leads to a counter-intuitive decrease in the dynamical cross section obtained from the trajectories. These results are interpreted based on the apparent reduction in the effective interaction between the projectile and the target owing to zero-point effects.

  6. Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy

    SciTech Connect (OSTI)

    David, K.; Ben, H.; Muzzy, J.; Feik, C.; Iisa, K.; Ragauskas, A.

    2012-03-01

    Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oils range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.

  7. Energy Cost Calculator for Commercial Ice Machines | Department of Energy

    Office of Environmental Management (EM)

    Ice Machines Energy Cost Calculator for Commercial Ice Machines Vary capacity size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Ice Cube Machine Ice Making Head Self-Contained Remote Condensing Unit Ice Making Head Type of Condenser Air Cooled Water Cooled Air Cooled Ice Harvest Rate (lbs. ice per 24 hrs.) lbs. per 24 hrs. 500 lbs. per 24 hrs. Energy

  8. Evaluation of Tritium Content and Release from Pressurized Water Reactor Fuel Cladding

    SciTech Connect (OSTI)

    Robinson, Sharon M.; Chattin, Marc Rhea; Giaquinto, Joseph; Jubin, Robert Thomas

    2015-09-01

    It is expected that tritium pretreatment will be required in future reprocessing plants to prevent the release of tritium to the environment (except for long-cooled fuels). To design and operate future reprocessing plants in a safe and environmentally compliant manner, the amount and form of tritium in the used nuclear fuel (UNF) must be understood and quantified. Tritium in light water reactor (LWR) fuel is dispersed between the fuel matrix and the fuel cladding, and some tritium may be in the plenum, probably as tritium labelled water (THO) or T2O. In a standard processing flowsheet, tritium management would be accomplished by treatment of liquid streams within the plant. Pretreating the fuel prior to dissolution to release the tritium into a single off-gas stream could simplify tritium management, so the removal of tritium in the liquid streams throughout the plant may not be required. The fraction of tritium remaining in the cladding may be reduced as a result of tritium pretreatment. Since Zircaloy cladding makes up roughly 25% by mass of UNF in the United States, processes are being considered to reduce the volume of reprocessing waste for Zircaloy clad fuel by recovering the zirconium from the cladding for reuse. These recycle processes could release the tritium in the cladding. For Zircaloy-clad fuels from light water reactors, the tritium produced from ternary fission and other sources is expected to be divided between the fuel, where it is generated, and the cladding. It has been previously documented that a fraction of the tritium produced in uranium oxide fuel from LWRs can migrate and become trapped in the cladding. Estimates of the percentage of tritium in the cladding typically range from 096%. There is relatively limited data on how the tritium content of the cladding varies with burnup and fuel history (temperature, power, etc.) and how pretreatment impacts its release. To gain a better understanding of how tritium in cladding will behave during processing, scoping tests are being performed to determine the tritium content in the cladding pre- and post-tritium pretreatment. Samples of Surry-2 and H.B. Robinson pressurized water reactor cladding were heated to 11001200C to oxidize the zirconium and release all of the tritium in the cladding sample. Cladding samples were also heated within the temperature range of 480600C expected for standard air tritium pretreatment systems, and to a slightly higher temperature (700C) to determine the impact of tritium pretreatment on tritium release from the cladding. The tritium content of the Surry-2 and H.B. Robinson cladding was measured to be ~234 and ~500 Ci/g, respectively. Heating the Surry-2 cladding at 500C for 24 h removed ~0.2% of the tritium from the cladding, and heating at 700C for 24 h removed ~9%. Heating the H.B. Robinson cladding at 700C for 24 h removed ~11% of the tritium. When samples of the Surry-2 and H.B. Robinson claddings were heated at 700C for 96 h, essentially all of the tritium in the cladding was removed. However, only ~3% of the tritium was removed when a sample of Surry-2 cladding was heated at 600C for 96 h. These data indicate that the amount of tritium released from tritium pretreatment systems will be dependent on both the operating temperature and length of time in the system. Under certain conditions, a significant fraction of the tritium could remain bound in the cladding and would need to be considered in operations involving cladding recycle.

  9. Contractor SOW Template - ICE | Department of Energy

    Energy Savers [EERE]

    ICE Contractor SOW Template - ICE The template presented below is a Statement of Work (SOW) for services of an ICE Support Contractor for assisting OECM in conducting an ICE. Project and review specific information should be incorporated. Explanatory text appears in italics, while information that should be selected appears in <<brackets>>. The format and contents of this SOW is not compulsory, and the use is at the discretion of the OECM Analysts, tailored as appropriate for the

  10. System and method for monitoring water content or other dielectric influences in a medium

    DOE Patents [OSTI]

    Cherry, Robert S.; Anderson, Allen A.

    2001-01-01

    A sensor system is provided that measures water content or other detectable properties in a medium along the entire length of the sensor at any point in time. The sensor system includes an electromagnetic signal generator and a transmission line disposed in a medium to be monitored. Alternatively, the transmission line can be configured for movement across a medium to be monitored, or the transmission line can be fixed relative to a moving medium being monitored. A signal is transmitted along the transmission line at predetermined frequencies, and the signal is returned back along the transmission line and/or into an optional receive line in proximity to the transmission line. The returned signal is processed to generate a one-dimensional data output profile that is a function of a detectable property of the medium. The data output profile can be mapped onto a physical system to generate a two-dimensional or three-dimensional profile if desired. The sensor system is useful in a variety of different applications such as agriculture, horticulture, biofiltration systems for industrial offgases, leak detection in landfills or drum storage facilities at buried waste sites, and in many other applications.

  11. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  12. Formation mechanisms of oxygen atoms in the O({sup 3}P{sub J}) state from the 157 nm photoirradiation of amorphous water ice at 90 K

    SciTech Connect (OSTI)

    Hama, Tetsuya; Yabushita, Akihiro; Yokoyama, Masaaki; Kawasaki, Masahiro; Watanabe, Naoki

    2009-09-21

    Desorption of ground state O({sup 3}P{sub J=2,1,0}) atoms following the vacuum ultraviolet photolysis of water ice in the first absorption band was directly measured with resonance-enhanced multiphoton ionization (REMPI) method. Based on their translational energy distributions and evolution behavior, two different formation mechanisms are proposed: One is exothermic recombination reaction of OH radicals, OH+OH{yields}H{sub 2}O+O({sup 3}P{sub J}) and the other is the photodissociation of OH radicals on the surface of amorphous solid water. The translational and internal energy distributions of OH radicals as well as the evolution behavior were also measured by REMPI to elucidate the roles of H{sub 2}O{sub 2} and OH in the O({sup 3}P{sub J}) formation mechanisms.

  13. BISICLES Captures Details of Retreating Antarctic Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Satellite and ground observations show that the ice in this region is thinning and retreating significantly as shifting wind patterns and ocean currents allow warmer water to flow ...

  14. An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale

    SciTech Connect (OSTI)

    Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

    1989-01-01

    This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

  15. The TWP-ICE CRM Intercomparison Specification and First Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all elevations ice is a net sink for water vapor above the melting layer net hydration by hydrometeors occurs primarily below 5 km water vapor lifted by convection...

  16. Application of TDR technology to water content monitoring of capillary barriers made of pulp and paper residues

    SciTech Connect (OSTI)

    Cabral, A.R.; Burnotte, F.; Lefebvre, G.

    1999-03-01

    Acid mine drainage (AMD) can be curbed by covering tailings with capillary barriers. The purposes of these barriers is to prevent O{sub 2} from interacting with mine residues. This control can be made by keeping a high degree of moisture inside the cover material. Saturation is thus a key parameter to be monitored. The purpose of this paper is to present how the time domain reflectometry (TDR) technique can be used in order to monitor the volumetric water content for pulp and paper residues that have been used as capillary barriers. Calibration curves for deinking residues are presented and compared to literature data relating to mineral and organic soils.

  17. Method of forming calthrate ice

    DOE Patents [OSTI]

    Hino, T.; Gorski, A.J.

    1985-09-30

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultransonically so that small crystals are formed in the liquid. Thes small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  18. Method of forming clathrate ice

    DOE Patents [OSTI]

    Hino, Toshiyuki (Tokyo, JP); Gorski, Anthony J. (Lemont, IL)

    1987-01-01

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultrasonically so that small crystals are formed in the liquid. These small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  19. Passive ice freezing-releasing heat pipe

    DOE Patents [OSTI]

    Gorski, Anthony J. (Lemont, IL); Schertz, William W. (Batavia, IL)

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  20. ARM - Measurement - Ice nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Ice nuclei Small particles around which ice particles form. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  1. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B.; Rohde, C. A.; Tellier, L. L.; Ho, Cheng,

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  2. Aerosol Effects on Cirrus through Ice Nucleation in the Community Atmosphere Model CAM5 with a Statistical Cirrus Scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.

    2014-09-01

    A statistical cirrus cloud scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into NCAR CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. 1% to 10% dust particles serving as heterogeneous IN is 20 found to produce ice supersaturaiton in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations of meso-scale motion produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles significantly alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m-2) with a significant clear-sky longwave component (0.01 to -0.55 W m-2). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m-2 to -1.54 W m-2, with a standard deviation of 0.10 W m-2. Aerosol effects on cirrus clouds exert an even larger impact on the atmospheric component of the radiative fluxes (two or three times the changes in the TOA radiative fluxes) and therefore on the hydrology cycle through the fast atmosphere response. This points to the urgent need to quantify aerosol effects on cirrus clouds through ice nucleation and how these further affect the hydrological cycle.

  3. STATEMENT OF WORK (SOW) TEMPLATE FOR ICE SUPPORT CONTRACTOR

    Energy Savers [EERE]

    ICE SUPPORT CONTRACTOR The template presented below is a Statement of Work (SOW) for services of an ICE Support Contractor for assisting OECM in conducting an ICE. Project and review specific information should be incorporated. Explanatory text appears in italics, while information that should be selected appears in <<brackets>>. The format and contents of this SOW is not compulsory, and the use is at the discretion of the OECM Analysts, tailored as appropriate for the desired

  4. Multilayer formation and evaporation of deuterated ices in prestellar and protostellar cores

    SciTech Connect (OSTI)

    Taquet, Vianney; Charnley, Steven B.; Sipil, Olli

    2014-08-10

    Extremely large deuteration of several molecules has been observed toward prestellar cores and low-mass protostars for a decade. New observations performed toward low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimensional model of a collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H{sub 2} and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation toward the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices, while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes, but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics, important for the prebiotic chemistry, shows good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.

  5. ARM - Ice Cores

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PastIce Cores Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Ice Cores Ice cores reveal information about the earth's climate history. The information from ice cores is both more precise and more compelling than from other sources. Accurate history of our earth's temperature and carbon

  6. Pollution Changes Clouds' Ice Crystal Genesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Changes Clouds' Ice Crystal Genesis For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Suspended high in the atmosphere, plentiful dust particles are fertile turf for growing ice. But, what are the optimal conditions for this crop? Researchers at Pacific Northwest National Laboratory (PNNL) found that miniscule particles of airborne dust, thought to be a perfect landing site for water vapor, are altered by the

  7. Communication: On the stability of ice 0, ice i, and I{sub h}

    SciTech Connect (OSTI)

    Quigley, D.; Alf, D.; Slater, B.

    2014-10-28

    Using ab initio methods, we examine the stability of ice 0, a recently proposed tetragonal form of ice implicated in the homogeneous freezing of water [J. Russo, F. Romano, and H. Tanaka, Nat. Mater. 13, 670 (2014)]. Vibrational frequencies are computed across the complete Brillouin Zone using Density Functional Theory (DFT), to confirm mechanical stability and quantify the free energy of ice 0 relative to ice I{sub h}. The robustness of this result is tested via dispersion corrected semi-local and hybrid DFT, and Quantum Monte-Carlo calculation of lattice energies. Results indicate that popular molecular models only slightly overestimate the stability of ice zero. In addition, we study all possible realisations of proton disorder within the ice zero unit cell, and identify the ground state as ferroelectric. Comparisons are made to other low density metastable forms of ice, suggesting that the ice i structure [C. J. Fennel and J. D. Gezelter, J. Chem. Theory Comput. 1, 662 (2005)] may be equally relevant to ice formation.

  8. A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2012-02-08

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.

  9. Smoothed particle hydrodynamics Non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface ?ows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is veri?ed by simulating Poiseuille ?ow, plane shear ?ow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian ?uid. In the present work, however, the ice is modeled as both viscous Newtonian ?uid and non-Newtonian ?uid, such that the e?ect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glens law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  10. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect (OSTI)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earths atmosphere and influence the Earths energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  11. Spreading of oil spilled under ice

    SciTech Connect (OSTI)

    Yapa, P.D.; Chowdhury, T. )

    1990-12-01

    A new set of equations is presented to describe the process of oil spreading under ice in clam waters. These equations consider the gravity (buoyancy)-inertia phase, the gravity (buoyancy)-viscous phase, and the termination of spreading during the buoyancy-surface-tension phase. The derivation considers both the constant discharge mode and the constant volume mode. Therefore, a complete description of the spreading phenomena from the time of initial spill to the termination of spreading is presented. Laboratory experiments were conducted using both real ice covers in a cold room and artificial ice covers. The experiments included different ice-cover roughnesses from smooth to rough, oils of different viscosities, and a variety of discharge conditions. The experimental data show close agreement with the theory. These equations can be used during cleanup or environmental impact assessment to estimate the area of an oil slick with respect to time.

  12. Global Simulations of Ice nucleation and Ice Supersaturation with an

    Office of Scientific and Technical Information (OSTI)

    Improved Cloud Scheme in the Community Atmosphere Model (Journal Article) | SciTech Connect Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model Citation Details In-Document Search Title: Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model A process-based treatment of ice supersaturation and ice-nucleation is implemented in the National Center for

  13. Global Simulations of Ice nucleation and Ice Supersaturation...

    Office of Scientific and Technical Information (OSTI)

    Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud ... Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES; ...

  14. Community Ice Sheet Model (CISM2) Development and Marine Ice...

    Office of Scientific and Technical Information (OSTI)

    Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet Simulations Citation ... Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: ...

  15. Passive ice freezing-releasing heat pipe. [Patent application

    DOE Patents [OSTI]

    Gorski, A.J.; Schertz, W.W.

    1980-09-29

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  16. Ice formation on nitric acid coated dust particles: Laboratory and modeling studies

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun; Nandasiri, Manjula I.; Shutthanandan, V.; Liu, Xiaohong; Fast, Jerome D.; Berg, Larry K.

    2015-08-16

    Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperature and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.

  17. Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations

    SciTech Connect (OSTI)

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

    2014-10-01

    Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

  18. A New Approach for Representing Ice Particles in Weather

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mass mixing ratio, qi, c) cloud water mass mixing ratio, qc, d) rain mass mixing ratio, qr, e) rime mass fraction, Fr, f) mass-weighted mean ice particle density, p, g)...

  19. Ice - an explicit wavelet calculation code for ICE experiments.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Ice - an explicit wavelet calculation code for ICE experiments. Citation Details In-Document Search Title: Ice - an explicit wavelet calculation code for ICE experiments. No abstract prepared. Authors: Furnish, Michael David Publication Date: 2004-06-01 OSTI Identifier: 953323 Report Number(s): SAND2004-2878C TRN: US200915%%27 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the ICE

  20. Arctic Sea ice model sensitivities.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana Stefanova

    2010-12-01

    Arctic sea ice is an important component of the global climate system and, due to feedback effects, the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice state to internal model parameters. A new sea ice model that holds some promise for improving sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of this MPM sea ice code and compare it with the Los Alamos National Laboratory CICE code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness,and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  1. Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm³

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; Mattsson, T. R.; French, M.; Nettelmann, N.; Redmer, R.

    2012-02-27

    Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findingsmore » advocate that this water model be used as the standard for modeling Neptune, Uranus, and “hot Neptune” exoplanets and should improve our understanding of these types of planets.« less

  2. Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm

    SciTech Connect (OSTI)

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; Mattsson, T. R.; French, M.; Nettelmann, N.; Redmer, R.

    2012-02-27

    Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findings advocate that this water model be used as the standard for modeling Neptune, Uranus, and hot Neptune exoplanets and should improve our understanding of these types of planets.

  3. Energy conservation in ice skating rinks

    SciTech Connect (OSTI)

    Dietrich, B.K.; McAvoy, T.J.

    1980-01-01

    An economic and energy analysis of ice rinks was made to examine the areas in which energy could be profitably conserved. The areas where new equipment could make a major reduction in energy use are: the use of waste heat for space heating, the installation of a low emissivity false ceiling to reduce radiant heat, the use of a load cycling controller to reduce refrigeration costs, and the installation of more efficient lighting systems. Changes in rink operating procedure that could cut energy use are: higher refrigerant temperatures, thinner ice, the use of colder resurfacing water, turning the compressors and pumps off at night, and reducing ventilation.

  4. From Fire to Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire to Ice For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight When tons of ash spewed into the atmosphere from a 2010 Icelandic volcano, it caused havoc for vacationers across Europe. But did it also dramatically change clouds? Researchers at Pacific Northwest National Laboratory (PNNL) found that volcanic ash is not as efficient as common dust in birthing clouds' ice particles. Using a novel laboratory testing chamber,

  5. Final scientific report for DOE award title: Improving the Representation of Ice Sedimentation Rates in Global Climate Models

    SciTech Connect (OSTI)

    Mitchell, David L.

    2013-09-05

    It is well known that cirrus clouds play a major role in regulating the earth’s climate, but the details of how this works are just beginning to be understood. This project targeted the main property of cirrus clouds that influence climate processes; the ice fall speed. That is, this project improves the representation of the mass-weighted ice particle fall velocity, Vm, in climate models, used to predict future climate on global and regional scales. Prior to 2007, the dominant sizes of ice particles in cirrus clouds were poorly understood, making it virtually impossible to predict how cirrus clouds interact with sunlight and thermal radiation. Due to several studies investigating the performance of optical probes used to measure the ice particle size distribution (PSD), as well as the remote sensing results from our last ARM project, it is now well established that the anomalously high concentrations of small ice crystals often reported prior to 2007 were measurement artifacts. Advances in the design and data processing of optical probes have greatly reduced these ice artifacts that resulted from the shattering of ice particles on the probe tips and/or inlet tube, and PSD measurements from one of these improved probes (the 2-dimensional Stereo or 2D-S probe) are utilized in this project to parameterize Vm for climate models. Our original plan in the proposal was to parameterize the ice PSD (in terms of temperature and ice water content) and ice particle mass and projected area (in terms of mass- and area-dimensional power laws or m-D/A-D expressions) since these are the microphysical properties that determine Vm, and then proceed to calculate Vm from these parameterized properties. But the 2D-S probe directly measures ice particle projected area and indirectly estimates ice particle mass for each size bin. It soon became apparent that the original plan would introduce more uncertainty in the Vm calculations than simply using the 2D-S measurements to directly calculate Vm. By calculating Vm directly from the measured PSD, ice particle projected area and estimated mass, more accurate estimates of Vm are obtained. These Vm values were then parameterized for climate models by relating them to (1) sampling temperature and ice water content (IWC) and (2) the effective diameter (De) of the ice PSD. Parameterization (1) is appropriate for climate models having single-moment microphysical schemes whereas (2) is appropriate for double-moment microphysical schemes and yields more accurate Vm estimates. These parameterizations were developed for tropical cirrus clouds, Arctic cirrus, mid-latitude synoptic cirrus and mid-latitude anvil cirrus clouds based on field campaigns in these regions. An important but unexpected result of this research was the discovery of microphysical evidence indicating the mechanisms by which ice crystals are produced in cirrus clouds. This evidence, derived from PSD measurements, indicates that homogeneous freezing ice nucleation dominates in mid-latitude synoptic cirrus clouds, whereas heterogeneous ice nucleation processes dominate in mid-latitude anvil cirrus. Based on these findings, De was parameterized in terms of temperature (T) for conditions dominated by (1) homo- and (2) heterogeneous ice nucleation. From this, an experiment was designed for global climate models (GCMs). The net radiative forcing from cirrus clouds may be affected by the means ice is produced (homo- or heterogeneously), and this net forcing contributes to climate sensitivity (i.e. the change in mean global surface temperature resulting from a doubling of CO2). The objective of this GCM experiment was to determine how a change in ice nucleation mode affects the predicted global radiation balance. In the first simulation (Run 1), the De-T relationship for homogeneous nucleation is used at all latitudes, while in the second simulation (Run 2), the De-T relationship for heterogeneous nucleation is used at all latitudes. For both runs, Vm is calculated from De. Two GCMs were used; the Community Atmosphere Model version 5 (CAM5) and a European GCM known as ECHAM5 (thanks to our European colleagues who collaborated with us). Similar results were obtained from both GCMs in the Northern Hemisphere mid-latitudes, with a net cooling of ~ 1.0 W m-2 due to heterogeneous nucleation, relative to Run 1. The mean global net cooling was 2.4 W m-2 for the ECHAM5 GCM while CAM5 produced a mean global net cooling of about 0.8 W m-2. This dependence of the radiation balance on nucleation mode is substantial when one considers the direct radiative forcing from a CO2 doubling is 4 W m-2. The differences between GCMs in mean global net cooling estimates may demonstrate a need for improving the representation of cirrus clouds in GCMs, including the coupling between microphysical and radiative properties. Unfortunately, after completing this GCM experiment, we learned from the company that provided the 2D-S microphysical data that the data was corrupted due to a computer program coding problem. Therefore the microphysical data had to be reprocessed and reanalyzed, and the GCM experiments were redone under our current ASR project but using an improved experimental design.

  6. Field demonstration of the ICE 250{trademark} Cleaning System

    SciTech Connect (OSTI)

    Johnston, J.L.; Jackson, L.M.

    1999-10-05

    The ICE 250{trademark} Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moisture was generated, thereby reducing cleanup and disposal costs.

  7. ARM - TWP-ICE Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheet (pdf, 211K) Press Releases TWP-ICE Images ARM flickr site <"" li"" height"14" width"16"> TWP-ICE Maps map1 map2 Download TWP-ICEDarwin annotated maps (pdf, 246K)....

  8. THE STRUCTURE OF SURFACE H{sub 2}O LAYERS OF ICE-COVERED PLANETS WITH HIGH-PRESSURE ICE

    SciTech Connect (OSTI)

    Ueta, S.; Sasaki, T. E-mail: takanori@geo.titech.ac.jp

    2013-10-01

    Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ?} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic...

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic...

  11. Impact of Solvent on Photocatalytic Mechanisms: Reactions of Photodesorption Products with Ice Overlayers on the TiO2(110) Surface

    SciTech Connect (OSTI)

    Shen, Mingmin; Henderson, Michael A.

    2011-04-07

    The effects of water and methanol ice overlayers on the photodecomposition of acetone on rutile TiO2(110) were evaluated in ultrahigh vacuum (UHV) using photon stimulated desorption (PSD) and temperature programmed desorption (TPD). In the absence of ice overlayers, acetone photodecomposed on TiO2(110) at 95 K by ejection of a methyl radical into the gas phase and formation of acetate on the surface. With ice overlayers, the methyl radicals are trapped at the interface between TiO2(110) and the ice. When water ice was present, these trapped methyl radicals reacted either with each other to form ethane or with other molecules in the ice (e.g., water or displaced acetone) to form methane (CH4), ethane (CH3CH3) and other products (e.g., methanol), with all of these products trapped in the ice. The new products were free to revisit the surface or depart during desorption of the ice. When methanol ice was present, methane formation came about only from reaction of trapped methyl radicals with the methanol ice. Methane and ethane slowly leaked through methanol ice overlayers into vacuum at 95 K, but not through water ice overlayers. Different degrees of site competition between water and acetone, and between methanol and acetone led to different hydrogen abstraction pathways in the two ices. These results provide new insights into product formation routes and solution-phase radical formation mechanisms that are important in heterogeneous photocatalysis.

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"10272015 9:02:05 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPV...

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"10272015 9:02:06 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPV...

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Refinery & Blender Net Input" "Sourcekey","MTTRIUS1","MCRRIU... "Date","U.S. Refinery and Blender Net Input of Crude Oil and Petroleum ...

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ...201982" ,"Data 2","Refiner and Blender Net Inputs",6,"Weekly","3182016","49... "Back to Contents","Data 2: Refiner and Blender Net Inputs" "Sourcekey","WBCRINUS2","W...

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Refinery and Blender Net Production" "Sourcekey","MTTRPUS1","M... "Date","U.S. Refinery and Blender Net Production of Crude Oil and Petroleum ...

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGMEPG0PLCNUSDMMBTU" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)","U.S. Natural Gas Liquid ...

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Brazil (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NBRDMCF"...

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports by Vessel to Japan (Million Cubic Feet)" "Sourcekey","NGMEPG0EVENUS-NJAMMCF" "Date","Liquefied U.S....

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports by Vessel to Japan (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0EVENUS-NJADMCF"...

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Japan (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NJADMCF"...

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"2262016 2:17:08 PM" "Back to Contents","Data 1: Natural Gas Underground Storage ...

  3. Ice Storm Supercomputer

    ScienceCinema (OSTI)

    None

    2013-05-28

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  4. ARM - Measurement - Cloud ice particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle Particles made of ice found in clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or

  5. Winter Preparedness ? Slips on Ice

    Broader source: Energy.gov (indexed) [DOE]

    can further increase traction; however, they must be removed when ice is no longer present, because their use on floors, smooth concrete, or gravel, presents a different...

  6. Climate Impacts of Ice Nucleation

    SciTech Connect (OSTI)

    Gettelman, A.; Liu, Xiaohong; Barahona, Donifan; Lohmann, U.; Chen, Chih-Chieh

    2012-10-27

    Several different ice nucleation parameterizations in two different General Circulation Models are used to understand the effects of ice nucleation on the mean climate state, and the climate effect of aerosol perturbations to ice clouds. The simulations have different ice microphysical states that are consistent with the spread of observations. These different states occur from different parameterizations of the ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. At reasonable efficiencies, consistent with laboratory measurements and constrained by the global radiative balance, black carbon has a small (-0.06 Wm?2) and not statistically significant climate effect. Indirect effects of anthropogenic aerosols on cirrus clouds occur mostly due to increases in homogeneous nucleation fraction as a consequence of anthropogenic sulfur emissions. The resulting ice indirect effects do not seem strongly dependent on the ice micro-physical balance, but are slightly larger for those states with less homogeneous nucleation in the base state. The total ice AIE is estimated at 0.260.09 Wm?2 (1? uncertainty). This represents an offset of 20-30% of the simulated total Aerosol Indirect Effect for ice and liquid clouds.

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)",1,"Annual",2014 ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  8. No Confinement Needed: Observation of a Metastable Hydrophobic Wetting Two-Layer Ice on Graphene

    SciTech Connect (OSTI)

    Kimmel, Gregory A.; Matthiesen, Jesper; Baer, Marcel; Mundy, Christopher J.; Petrik, Nikolay G.; Smith, R. Scott; Dohnalek, Zdenek; Kay, Bruce D.

    2009-09-09

    The structure of water at interfaces is crucial for processes ranging from photocatalysis to protein folding. Here, we investigate the structure and lattice dynamics of two-layer crystalline ice films grown on a hydrophobic substrate - graphene on Pt(111) - with low energy electron diffraction, reflection-absorption infrared spectroscopy, rare-gas adsorption/desorption, and ab-initio molecular dynamics. Unlike hexagonal ice, which consists of stacks of puckered hexagonal "bilayers", this new ice polymorph consists of two flat hexagonal sheets of water molecules in which the hexagons in each sheet are stacked directly on top of each other. Such two-layer ices have been predicted for water confined between hydrophobic slits, but not previously observed. Our results show that the two-layer ice forms even at zero pressure at a single hydrophobic interface by maximizing the number of hydrogen bonds at the expense of adopting a non-tetrahedral geometry with weakened bonds.

  9. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect (OSTI)

    Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-06-24

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

  10. Therapeutic Hypothermia: Protective Cooling Using Medical Ice...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry Technology available for licensing: Proprietary method and equipment for making an ice slurry coolant to induce...

  11. Light propagation in the South Pole ice

    SciTech Connect (OSTI)

    Williams, Dawn; Collaboration: IceCube Collaboration

    2014-11-18

    The IceCube Neutrino Observatory is located in the ice near the geographic South Pole. Particle showers from neutrino interactions in the ice produce light which is detected by IceCube modules, and the amount and pattern of deposited light are used to reconstruct the properties of the incident neutrino. Since light is scattered and absorbed by ice between the neutrino interaction vertex and the sensor, IceCube event reconstruction depends on understanding the propagation of light through the ice. This paper presents the current status of modeling light propagation in South Pole ice, including the recent observation of an azimuthal anisotropy in the scattering.

  12. Resonant vibrational energy transfer in ice Ih

    SciTech Connect (OSTI)

    Shi, L.; Li, F.; Skinner, J. L.

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Frster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  13. Water Emissions from Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:54:27 PM" "Back to Contents","Data 1: U.S. Product Supplied for Crude Oil and Petroleum Products"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:56:04 PM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_imp_dc_nus-z00_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 3:35:39 PM" "Back to Contents","Data 1: U.S. Imports of Crude Oil and Petroleum Products"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumers",52,"Monthly","12/2015","01/15/2012" ,"Data 2","Heat Content of Natural Gas Delivered to Consumers",52,"Annual",2015,"06/30/2003" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File Name:","ngm25vmall.xls" ,"Available from Web

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:54:26 PM" "Back to Contents","Data 1: U.S. Product Supplied for Crude Oil and Petroleum Products"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:56:03 PM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products"

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_imp_dc_nus-z00_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 3:35:17 PM" "Back to Contents","Data 1: U.S. Imports of Crude Oil and Petroleum Products"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","District of Columbia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Sectors Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU per Cubic Foot)",1,"Annual",2014 ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot)",1,"Annual",2014 ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","District of Columbia Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbblpd_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbblpd_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:54:42 PM" "Back to Contents","Data 1: Crude Oil Production"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:54:41 PM" "Back to Contents","Data 1: Crude Oil Production"

  15. The New ICE Age | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The New ICE Age The New ICE Age Provides overview of internal combustion engine powertrain developments for the heavy truck market PDF icon deer12_gruden.pdf More Documents & Publications The New ICE Age The New ICE Age Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles

  16. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    de la Peña, S.; Howat, I. M.; Nienow, P. W.; van den Broeke, M. R.; Mosley-Thompson, E.; Price, S. F.; Mair, D.; Noël, B.; Sole, A. J.

    2015-06-11

    Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone,more » which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging –0.80 ± 0.39 m yr⁻¹ between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. If current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.« less

  17. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    SciTech Connect (OSTI)

    Liu, Yang; Hu, Hui [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Chen, Wen-Li [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090 (China); Bond, Leonard J. [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, 151 ASC II, Ames, IA 50011 (United States)

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  18. BISICLES Captures Details of Retreating Antarctic Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BISICLES Captures Details of Retreating Antarctic Ice BISICLES Captures Details of Retreating Antarctic Ice March 30, 2013 Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 Satellite observations suggest that the shrinking West Antarctic ice sheet is contributing to global sea level rise. But until recently, scientists could not accurately model the physical processes driving retreat of the ice sheet. Now, a new ice sheet model-called Berkeley-ISICLES (BISICLES)-is shedding light on these details.

  19. STATEMENT OF WORK (SOW) TEMPLATE COMBINED EIR/ICE SUPPORT CONTRACTOR

    Energy Savers [EERE]

    COMBINED EIR/ICE SUPPORT CONTRACTOR The template presented below is a Statement of Work (SOW) for services of an EIR/ICE Support Contractor for assisting OECM in conducting a combined EIR/ICE at CD-2. Project and review specific information should be incorporated. Explanatory text appears in italics, while information that should be selected appears in <<brackets>>. The format and contents of this SOW is not compulsory, and the use is at the discretion of the OECM Analysts, tailored

  20. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect (OSTI)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per [Royal Institute of Technology, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Brinellvaegen 68, 10044 Stockholm (Sweden)

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  1. Highway De-icing Snowmelt Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    De-icing Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name Highway De-icing Snowmelt Low Temperature Geothermal Facility Facility Highway De-icing...

  2. Microsoft Word - contents

    Office of Legacy Management (LM)

    GJO-2001-272-TAR MAC-GWDUR 1.1 UMTRA Ground Water Project Site Observational Work Plan for the Durango, Colorado, UMTRA Project Site January 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW 511-0006-10-000 Document Number U0143200 Work Performed Under DOE Contract Number DE-AC13-96GJ87335 This page intentionally left blank Document Number U0143200 Contents DOE/Grand Junction Office Site Observational Work Plan -Durango, Colorado January

  3. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    SciTech Connect (OSTI)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O.; Yang, P.

    2008-12-10

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in cirrus clouds using a detailed microphysical model and remote sensing measurements obtained at the Department of Energys Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. To help understand dynamic scales important in cirrus formation, we force the model using both large-scale forcing derived using ARM variational analysis, and mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where we have implemented a rigorous classical theory heterogeneous nucleation scheme to compare with empirical representations. We evaluate model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. This approach allows for independent verification of both the large and small particle modes of the particle size distribution. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities, while nucleation mechanism is secondary. Slow ice crystal growth tends to overestimate the number of small ice crystals, but does not seem to influence bulk properties such as ice water path and cloud thickness. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Ice crystal number concentrations on the order of 10-100 L-1 produce results consistent with both lidar and radar observations during a cirrus event observed on 7 December 1999, which has an optical depth range typical of midlatitude cirrus.

  4. Ice in Arctic Mixed-phase Stratocumulus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  5. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greene, S.; Walter Anthony, K. M.; Archer, D.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2014-12-08

    Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominatesmore » annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.« less

  6. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greene, S.; Walter Anthony, K. M.; Archer, D.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2014-07-15

    Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominatesmore » annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.« less

  7. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics

    SciTech Connect (OSTI)

    Varble, Adam; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher R.

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, co-located UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain published results showing a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rain water contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (?) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes, but lower RWCs than observed. Two moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and thus, may have issues balancing raindrop formation, collision coalescence, and raindrop breakup. Assuming a ? of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing ? to have values greater than 0 may improve two-moment schemes. Under-predicted stratiform rain rates are associated with under-predicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. In addition to stronger convective updrafts than observed, limited domain size prevents a large, well-developed stratiform region from developing in CRMs, while a dry bias in ECMWF analyses does the same to the LAMs.

  8. Laboratory Investigation of Contact Freezing and the Aerosol to Ice Crystal Transformation Process

    SciTech Connect (OSTI)

    Shaw, Raymond A.

    2014-10-28

    This project has been focused on the following objectives: 1. Investigations of the physical processes governing immersion versus contact nucleation, specifically surface-induced crystallization; 2. Development of a quadrupole particle trap with full thermodynamic control over the temperature range 0 to 40 C and precisely controlled water vapor saturation ratios for continuous, single-particle measurement of the aerosol to ice crystal transformation process for realistic ice nuclei; 3. Understanding the role of ice nucleation in determining the microphysical properties of mixed-phase clouds, within a framework that allows bridging between laboratory and field measurements.

  9. Water Emissions from Fuel Cell Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs). Water Chart: How far will one gallon go and how much water will it produce?

  10. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    SciTech Connect (OSTI)

    Quintana, Elisa V. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Lissauer, Jack J., E-mail: elisa.quintana@nasa.gov [Space Science and Astrobiology Division 245-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-05-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M {sub ?} to 1 M {sub J}) in Jupiter's orbit at ?5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  11. Medical ice slurry production device

    DOE Patents [OSTI]

    Kasza, Kenneth E.; Oras, John; Son, HyunJin

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  12. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    SciTech Connect (OSTI)

    AL-Areqi, Wadeeah M. Majid, Amran Ab. Sarmani, Sukiman

    2014-02-12

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and ?-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 129 ppm (5274.9 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.917.6 ppm (7987.4 71.9 Bq/kg) and 17.2 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by ?- spectrometry were 1156 ppm (4728 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 0.6% and 4.7 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  13. NASA Award for Marginal Ice Zone Observations and Process Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MIZOPEX) Award for Marginal Ice Zone Observations and Process Experiment (MIZOPEX) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  14. WATER-TRAPPED WORLDS

    SciTech Connect (OSTI)

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  15. Evaluating and Constraining Ice Cloud Parameterizations in CAM5 using Aircraft Measurements from the SPARTICUS Campaign

    SciTech Connect (OSTI)

    Zhang, Kai; Liu, Xiaohong; Wang, Minghuai; Comstock, Jennifer M.; Mitchell, David; Mishra, Subhashree; Mace, Gerald G.

    2013-01-01

    This study uses aircraft measurements of relative humidity and ice crystal size distribution collected in synoptic cirrus during the SPARTICUS (Small PARTicles In CirrUS) field campaign to evaluate and constrain ice cloud parameterizations in the Community Atmosphere Model version 5. The probability density function (PDF) of ice crystal number concentration (Ni) derived from high frequency (1 Hz) measurements features a strong dependence on ambient temperature. As temperature decreases from -35C to -62C, the peak in the PDF shifts from 10-20 L-1 to 200-1000 L-1, while the ice crystal number concentration shows a factor of 6-7 increase. Model simulations are performed with two different insitu ice nucleation schemes. One of the schemes can reproduce a clear increase of Ni with decreasing temperature, by using either an observation based ice nuclei spectrum or a classical theory based spectrum with a relatively low (5%-10%) maximum freezing ratio for dust aerosols. The simulation with the other scheme, which assumes a high maximum freezing ratio (100%), shows much weaker temperature dependence of Ni. Simulations are also performed to test empirical parameters related to water vapor deposition and the auto-conversion of ice crystals to snow. Results show that a value between 0.05 and 0.1 for the water vapor deposition coefficient and 250 um for the critical ice crystal size can produce good agreements between model simulation and the SPARTICUS measurements in terms of ice crystal number concentration and effective radius. The climate impact of perturbing these parameters is also discussed.

  16. From fire to ice

    SciTech Connect (OSTI)

    Adcock, P.W.

    1995-06-01

    Absorption chillers are heat-operate refrigeration without harmful environmental emissions (CFCs, HCFCS, and HFCS). The machine uses either steam or a gas-fired burner as the energy source and utilizes endothermic evaporation to provide refrigeration to an external process fluid, usually chilled water. In the United States, absorption chillers are used in regions where the cost of electricity is high relative to natural gas. Absorption chillers are also used in applications where steam is readily available or in areas where seasonal load peaks cause utilities to subsidize gas cooling. This paper will describe the history of absorption, the basic absorption refrigeration cycle and some advanced high efficiency cycles. Practical applications of absorption refrigeration to commercial end uses will also be discussed.

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is, the higher nucleation rates from homogeneous freezing could decrease ice particle size and fall speed, and for a given ice water content (IWC), increase ice crystal...

  18. ELECTRON IRRADIATION OF CARBON DISULFIDE-OXYGEN ICES: TOWARD THE FORMATION OF SULFUR-BEARING MOLECULES IN INTERSTELLAR ICES

    SciTech Connect (OSTI)

    Maity, Surajit; Kaiser, Ralf I. [Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822 (United States)

    2013-08-20

    The formation of sulfur-bearing molecules in interstellar ices was investigated during the irradiation of carbon disulfide (CS{sub 2})-oxygen (O{sub 2}) ices with energetic electrons at 12 K. The irradiation-induced chemical processing of these ices was monitored online and in situ via Fourier transform infrared spectroscopy to probe the newly formed products quantitatively. The sulfur-bearing molecules produced during the irradiation were sulfur dioxide (SO{sub 2}), sulfur trioxide (SO{sub 3}), and carbonyl sulfide (OCS). Formations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and ozone (O{sub 3}) were observed as well. To fit the temporal evolution of the newly formed products and to elucidate the underlying reaction pathways, kinetic reaction schemes were developed and numerical sets of rate constants were derived. Our studies suggest that carbon disulfide (CS{sub 2}) can be easily transformed to carbonyl sulfide (OCS) via reactions with suprathermal atomic oxygen (O), which can be released from oxygen-containing precursors such as water (H{sub 2}O), carbon dioxide (CO{sub 2}), and/or methanol (CH{sub 3}OH) upon interaction with ionizing radiation. This investigation corroborates that carbonyl sulfide (OCS) and sulfur dioxide (SO{sub 2}) are the dominant sulfur-bearing molecules in interstellar ices.

  19. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  20. The measured compositions of Uranus and Neptune from their formation on the CO ice line

    SciTech Connect (OSTI)

    Ali-Dib, Mohamad; Mousis, Olivier; Petit, Jean-Marc

    2014-09-20

    The formation mechanisms of the ice giants Uranus and Neptune, and the origin of their elemental and isotopic compositions, have long been debated. The density of solids in the outer protosolar nebula is too low to explain their formation, and spectroscopic observations show that both planets are highly enriched in carbon, very poor in nitrogen, and the ices from which they originally formed might have had deuterium-to-hydrogen ratios lower than the predicted cometary value, unexplained properties that were observed in no other planets. Here, we show that all these properties can be explained naturally if Uranus and Neptune both formed at the carbon monoxide ice line. Due to the diffusive redistribution of vapors, this outer region of the protosolar nebula intrinsically has enough surface density to form both planets from carbon-rich solids but nitrogen-depleted gas, in abundances consistent with their observed values. Water-rich interiors originating mostly from transformed CO ices reconcile the D/H value of Uranus's and Neptune's building blocks with the cometary value. Finally, our scenario generalizes a well known hypothesis that Jupiter formed on an ice line (water snow line) for the two ice giants, and might be a first step toward generalizing this mechanism for other giant planets.

  1. Molecular interactions with ice: Molecular embedding, adsorption, detection, and release

    SciTech Connect (OSTI)

    Gibson, K. D.; Langlois, Grant G.; Li, Wenxin; Sibener, S. J.; Killelea, Daniel R.

    2014-11-14

    The interaction of atomic and molecular species with water and ice is of fundamental importance for chemistry. In a previous series of publications, we demonstrated that translational energy activates the embedding of Xe and Kr atoms in the near surface region of ice surfaces. In this paper, we show that inert molecular species may be absorbed in a similar fashion. We also revisit Xe embedding, and further probe the nature of the absorption into the selvedge. CF{sub 4} molecules with high translational energies (?3 eV) were observed to embed in amorphous solid water. Just as with Xe, the initial adsorption rate is strongly activated by translational energy, but the CF{sub 4} embedding probability is much less than for Xe. In addition, a larger molecule, SF{sub 6}, did not embed at the same translational energies that both CF{sub 4} and Xe embedded. The embedding rate for a given energy thus goes in the order Xe > CF{sub 4} > SF{sub 6}. We do not have as much data for Kr, but it appears to have a rate that is between that of Xe and CF{sub 4}. Tentatively, this order suggests that for Xe and CF{sub 4}, which have similar van der Waals radii, the momentum is the key factor in determining whether the incident atom or molecule can penetrate deeply enough below the surface to embed. The more massive SF{sub 6} molecule also has a larger van der Waals radius, which appears to prevent it from stably embedding in the selvedge. We also determined that the maximum depth of embedding is less than the equivalent of four layers of hexagonal ice, while some of the atoms just below the ice surface can escape before ice desorption begins. These results show that energetic ballistic embedding in ice is a general phenomenon, and represents a significant new channel by which incident species can be trapped under conditions where they would otherwise not be bound stably as surface adsorbates. These findings have implications for many fields including environmental science, trace gas collection and release, and the chemical composition of astrophysical icy bodies in space.

  2. INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operating Procedures | Department of Energy INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures PDF icon ICR_ICE SOP_Sep 2013_Final.pdf More Documents & Publications ICR-ICE Standard Operating Procedures (Update Sept 2013) Contractor SOW Template - ICR Contractor SOW Template - ICE

  3. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. The fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.

  4. Automatic Commercial Ice Makers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automatic Commercial Ice Makers Automatic Commercial Ice Makers The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Automatic Commercial Ice Makers -- v2.0 More Documents

  5. ARM - Lesson Plans: When Land Ice Melts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Land Ice Melts Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: When Land Ice Melts Objective The objective of this activity is to demonstrate what happens when land ice melts and how it is different from the effect of melting icebergs. Materials A big rectangular container

  6. Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet

    Office of Scientific and Technical Information (OSTI)

    Simulations (Conference) | SciTech Connect Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet Simulations Citation Details In-Document Search Title: Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet Simulations Authors: Lipscomb, William [1] ; Leguy, Gunter [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-06-17 OSTI Identifier: 1186039 Report Number(s): LA-UR-15-24514 DOE Contract Number: AC52-06NA25396 Resource Type:

  7. Laboratory investigations of irradiated acetonitrile-containing ices on an interstellar dust analog

    SciTech Connect (OSTI)

    Abdulgalil, Ali G. M.; Marchione, Demian; Rosu-Finsen, Alexander; Collings, Mark P.; McCoustra, Martin R. S.

    2012-07-15

    Reflection-absorption infrared spectroscopy is used to study the impact of low-energy electron irradiation of acetonitrile-containing ices, under conditions close to those in the dense star-forming regions in the interstellar medium. Both the incident electron energy and the surface coverage were varied. The experiments reveal that solid acetonitrile is desorbed from its ultrathin solid films with a cross section of the order of 10{sup -17} cm{sup 2}. Evidence is presented for a significantly larger desorption cross section for acetonitrile molecules at the water-ice interface, similar to that previously observed for the benzene-water system.

  8. Comparison of 17 Ice Nucleation Measurement Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 Ice Nucleation Measurement Techniques for Immersion Freezing For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research...

  9. fire-in-the-ice | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a quarterly publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice...

  10. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    SciTech Connect (OSTI)

    Yang, Rui Gudipati, Murthy S.

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this shockwave mediated surface resonance enhanced subsurface ablation technique as two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers. This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processesablation and ionization. This new technique can thus be potentially employed to undertake in situ analysis of materials imbedded in diverse media, such as cryogenic ices, biological samples, tissues, minerals, etc., by covered with an IR-absorbing laser ablation medium and study the chemical composition and reaction pathways of the analyte in its natural surroundings.

  11. A direct evidence of vibrationally delocalized response at ice surface

    SciTech Connect (OSTI)

    Ishiyama, Tatsuya; Morita, Akihiro

    2014-11-14

    Surface-specific vibrational spectroscopic responses at isotope diluted ice and amorphous ice are investigated by molecular dynamics (MD) simulations combined with quantum mechanics/molecular mechanics calculations. The intense response specific to the ordinary crystal ice surface is predicted to be significantly suppressed in the isotopically diluted and amorphous ices, demonstrating the vibrational delocalization at the ordinary ice surface. The collective vibration at the ice surface is also analyzed with varying temperature by the MD simulation.

  12. Department of Energy Land Ice Modeling Efforts (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Energy Land Ice Modeling Efforts Citation Details In-Document Search Title: Department of Energy Land Ice Modeling Efforts Authors: Price, Stephen F. Dr 1 + Show Author...

  13. ICR-ICE Standard Operating Procedures (Update Sept 2013) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures Contractor SOW Template - ICR Contractor SOW Template - ICE...

  14. Sandia Energy - Ice-Sheet Simulation Code Matures, Leveraging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and as the land ice component of coupled climate simulations in DOE's Earth System Model. The land ice component is responsible for simulating the evolution of the...

  15. Complex systems influence melting of Greenland ice sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things are more complicated...

  16. New climate model predicts likelihood of Greenland ice melt,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of accumulated carbon emissions predicts the likelihood of crossing several dangerous climate change thresholds. November 20, 2015 Greenland ice loss. Greenland ice loss....

  17. A marine biogenic source of atmospheric ice-nucleating particles...

    Office of Scientific and Technical Information (OSTI)

    A marine biogenic source of atmospheric ice-nucleating particles Citation Details In-Document Search Title: A marine biogenic source of atmospheric ice-nucleating particles The ...

  18. Greenland Ice Sheet Modeling Update (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Greenland Ice Sheet Modeling Update Citation Details In-Document Search Title: Greenland Ice Sheet Modeling Update You are accessing a document from the Department of Energy's...

  19. Modeling the Alaskan Continental Shelf waters. Final report

    SciTech Connect (OSTI)

    Liu, S.K.; Leendertse, J.J.

    1987-10-01

    This report describes a three-dimensional ocean circulation model and two dimensional stochastic weather model used to calculate hypothetical oil-spill trajectories over the Alaskan Outer Continental Shelf (OCS) areas. Special consideration is given to the movement of sea ice in areas characterized by the presence of seasonal ice, and to ice/water interaction under different current and wind conditions. Spreading, dispersion, and weathering of crude oil, and probable landfalls of trajectories are calculated under hypothetical scenarios of oil spills from tanker accidents and well blow-outs. The report also provides comparisons between simulated data on water and sea ice motion with available field observations.

  20. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties

    SciTech Connect (OSTI)

    Varble, A. C.; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Collis, Scott M.; Fan, Jiwen; Hill, Adrian; Shipway, Ben

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias. Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.

  1. LABORATORY STUDIES ON THE FORMATION OF FORMIC ACID (HCOOH) IN INTERSTELLAR AND COMETARY ICES

    SciTech Connect (OSTI)

    Bennett, Chris J.; Kim, Yong Seol; Kaiser, Ralf I.; Hama, Tetsuya; Kawasaki, Masahiro

    2011-01-20

    Mixtures of water (H{sub 2}O) and carbon monoxide (CO) ices were irradiated at 10 K with energetic electrons to simulate the energy transfer processes that occur in the track of galactic cosmic-ray particles penetrating interstellar ices. We identified formic acid (HCOOH) through new absorption bands in the infrared spectra at 1690 and 1224 cm{sup -1} (5.92 and 8.17 {mu}m, respectively). During the subsequent warm-up of the irradiated samples, formic acid is evident from the mass spectrometer signal at the mass-to-charge ratio, m/z = 46 (HCOOH{sup +}) as the ice sublimates. The detection of formic acid was confirmed using isotopically labeled water-d2 with carbon monoxide, leading to formic acid-d2 (DCOOD). The temporal fits of the reactants, reaction intermediates, and products elucidate two reaction pathways to formic acid in carbon monoxide-water ices. The reaction is induced by unimolecular decomposition of water forming atomic hydrogen (H) and the hydroxyl radical (OH). The dominating pathway to formic acid (HCOOH) was found to involve addition of suprathermal hydrogen atoms to carbon monoxide forming the formyl radical (HCO); the latter recombined with neighboring hydroxyl radicals to yield formic acid (HCOOH). To a lesser extent, hydroxyl radicals react with carbon monoxide to yield the hydroxyformyl radical (HOCO), which recombined with atomic hydrogen to produce formic acid. Similar processes are expected to produce formic acid within interstellar ices, cometary ices, and icy satellites, thus providing alternative processes for the generation of formic acid whose abundance in hot cores such as Sgr-B2 cannot be accounted for solely by gas-phase chemistry.

  2. CONTENT MODEL HOW-TO

    Energy Science and Technology Software Center (OSTI)

    003241MLTPL00 Content Model Guidelines https://github.com/usgin/usginspecs/wiki/Content-Model-Guidelines

  3. An update on modeling land-ice/ocean interactions in CESM

    SciTech Connect (OSTI)

    Asay-davis, Xylar

    2011-01-24

    This talk is an update on ongoing land-ice/ocean coupling work within the Community Earth System Model (CESM). The coupling method is designed to allow simulation of a fully dynamic ice/ocean interface, while requiring minimal modification to the existing ocean model (the Parallel Ocean Program, POP). The method makes use of an immersed boundary method (IBM) to represent the geometry of the ice-ocean interface without requiring that the computational grid be modified in time. We show many of the remaining development challenges that need to be addressed in order to perform global, century long climate runs with fully coupled ocean and ice sheet models. These challenges include moving to a new grid where the computational pole is no longer at the true south pole and several changes to the coupler (the software tool used to communicate between model components) to allow the boundary between land and ocean to vary in time. We discuss benefits for ice/ocean coupling that would be gained from longer-term ocean model development to allow for natural salt fluxes (which conserve both water and salt mass, rather than water volume).

  4. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    SciTech Connect (OSTI)

    Mukundan, Rangachary; Luhan, Roger W; Davey, John R; Spendelow, Jacob S; Borup, Rodney L; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  5. Sensitivity of CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation Parameterization

    SciTech Connect (OSTI)

    Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; Zhang, Yuying

    2013-08-01

    Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model version 5 to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN number concentrations at all latitudes while changes in cloud amount and cloud properties are mainly seen in high latitudes and middle latitude storm tracks. In the Arctic, there is a considerable increase in mid-level clouds and a decrease in low clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and the large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path due to the slow-down of the Bergeron-Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low cloud simulations over most of the Arctic, but produces too many mid-level clouds. Considerable improvements are seen in the simulated low clouds and their properties when compared to Arctic ground-based measurements. Issues with the observations and the model-observation comparison in the Arctic region are discussed.

  6. Water in protoplanetary disks: Deuteration and turbulent mixing

    SciTech Connect (OSTI)

    Furuya, Kenji; Aikawa, Yuri; Nomura, Hideko; Hersant, Franck; Wakelam, Valentine

    2013-12-10

    We investigate water and deuterated water chemistry in turbulent protoplanetary disks. Chemical rate equations are solved with the diffusion term, mimicking turbulent mixing in a vertical direction. Water near the midplane is transported to the disk atmosphere by turbulence and is destroyed by photoreactions to produce atomic oxygen, while the atomic oxygen is transported to the midplane and reforms water and/or other molecules. We find that this cycle significantly decreases column densities of water ice at r ? 30 AU, where dust temperatures are too high to reform water ice effectively. The radial extent of such region depends on the desorption energy of atomic hydrogen. Our model indicates that water ice could be deficient even outside the sublimation radius. Outside this radius, the cycle decreases the deuterium-to-hydrogen (D/H) ratio of water ice from ?2 10{sup 2}, which is set by the collapsing core model, to 10{sup 4}-10{sup 2} in 10{sup 6} yr, without significantly decreasing the water ice column density. The resultant D/H ratios depend on the strength of mixing and the radial distance from the central star. Our finding suggests that the D/H ratio of cometary water (?10{sup 4}) could be established (i.e., cometary water could be formed) in the solar nebula, even if the D/H ratio of water ice delivered to the disk was very high (?10{sup 2}).

  7. Critical Mechanisms for the Formation of Extreme Arctic Sea-Ice Extent in the Summers of 2007 and 1996

    SciTech Connect (OSTI)

    Dong, Xiquan; Zib, Benjamin J.; Xi, Baike; Stanfield, Ryan; Deng, Yi; Zhang, Xiangdong; Lin, B.; Long, Charles N.

    2014-07-29

    A warming Arctic climate is undergoing significant e 21 nvironmental change, most evidenced by the reduction of Arctic sea-ice extent during the summer. In this study, we examine two extreme anomalies of September sea-ice extent in 2007 and 1996, and investigate the impacts of cloud fraction (CF), atmospheric precipitable water vapor (PWV), downwelling longwave flux (DLF), surface air temperature (SAT), pressure and winds on the sea-ice variation in 2007 and 1996 using both satellite-derived sea-ice products and MERRA reanalysis. The area of the Laptev, East Siberian and West Chukchi seas (70-90oN, 90-180oE) has experienced the largest variation in sea-ice extent from year-to-year and defined here as the Area Of Focus (AOF). The record low September sea-ice extent in 2007 was associated with positive anomalies 30 of CF, PWV, DLF, and SAT over the AOF. Persistent anti-cyclone positioned over the Beaufort Sea coupled with low pressure over Eurasia induced easterly zonal and southerly meridional winds. In contrast, negative CF, PWV, DLF and SAT anomalies, as well as opposite wind patterns to those in 2007, characterized the 1996 high September sea-ice extent. Through this study, we hypothesize the following positive feedbacks of clouds, water vapor, radiation and atmospheric variables on the sea-ice retreat during the summer 2007. The record low sea-ice extent during the summer 2007 is initially triggered by the atmospheric circulation anomaly. The southerly winds across the Chukchi and East Siberian seas transport warm, moist air from the north Pacific, which is not only enhancing sea-ice melt across the AOF, but also increasing clouds. The positive cloud feedback results in higher SAT and more sea-ice melt. Therefore, 40 more water vapor could be evaporated from open seas and higher SAT to form more clouds, which will enhance positive cloud feedback. This enhanced positive cloud feedback will then further increase SAT and accelerate the sea-ice retreat during the summer 2007.

  8. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply...

  9. The influence of ice nucleation mode and ice vapor growth on simulation of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arctic mixed-phase clouds The influence of ice nucleation mode and ice vapor growth on simulation of arctic mixed-phase clouds Avramov, Alexander The Pennsylvania State University Category: Modeling Mixed-phase arctic stratus clouds are the predominant cloud type in the Arctic . Perhaps one of the most intriguing of their features is that they tend to have liquid tops that precipitate ice. Despite the fact that this situation is colloidally unstable, these cloud systems are quite long lived

  10. Fermilab Today - Related Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Content Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO Classifieds Director's Corner Physics in a Nutshell Frontier Science Result Tip of the Week...

  11. Table of Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TABLE OF CONTENTS INTRODUCTION J. B. Natowitz, Director SECTION I: NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND ASTROPHYSICS SECTION II: HEAVY ION REACTIONS SECTION III: NUCLEAR...

  12. Climate, Ocean and Sea Ice Modeling (COSIM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sea Level Rise: The rate of sea level rise is one of the largest unknowns in current climate models and requires our advanced ocean and ice sheet models for accurate future ...

  13. Climate, Ocean and Sea Ice Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The rate of sea level rise is one of the largest unknowns in current climate models and requires our advanced ocean and ice sheet models for accurate future projections. * Rapid ...

  14. The Next ICE Age | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies to further increase engine efficiency and external drivers PDF icon deer12_foster.pdf More Documents & Publications The Next ICE Age Fuel Modification t Facilitate Future Combustion Regimes? Optimization of Advanced Diesel Engine Combustion Strategies

  15. Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in Minnesota Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail Share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Facebook Tweet about Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Twitter Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Google Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air

  16. Development of a Mobile Ice Nucleus Counter

    SciTech Connect (OSTI)

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70 deg C, and a single stage system can operate the warm wall at -45 deg C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  17. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes. Part II. Sensitivity to heterogeneous ice nucleation parameterizations and dust emissions

    SciTech Connect (OSTI)

    Zhang, Yang; Chen, Ying; Fan, Jiwen; Leung, Lai -Yung

    2015-09-14

    Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of ice supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O?, SO??, and PM2.5, but increase surface concentrations of CO, NO?, and SO? over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.

  18. TABLE OF CONTENTS

    National Nuclear Security Administration (NNSA)

    AC05-00OR22800 TABLE OF CONTENTS Contents Page # TOC - i SECTION A - SOLICITATION/OFFER AND AWARD ......................................................................... A-i SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS ........................................................ B-i B.1 SERVICES BEING ACQUIRED ....................................................................................B-2 B.2 TRANSITION COST, ESTIMATED COST, MAXIMUM AVAILABLE FEE, AND AVAILABLE FEE (Modification 295,

  19. Intercomparison of Large-eddy Simulations of Arctic Mixed-phase Clouds: Importance of Ice Size Distribution Assumptions

    SciTech Connect (OSTI)

    Ovchinnikov, Mikhail; Ackerman, Andrew; Avramov, Alex; Cheng, Anning; Fan, Jiwen; Fridlind, Ann; Ghan, Steven J.; Harrington, Jerry Y.; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg; Morrison, H.; Paukert, Marco; Savre, Julien; Shipway, Ben; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara

    2014-03-14

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP) and potential cloud dissipation, in agreement with earlier studies. By comparing simulations with the same microphysics coupled to different dynamical cores as well as the same dynamics coupled to different microphysics schemes, it is found that the ice water path (IWP) is mainly controlled by ice microphysics, while the inter-model differences in LWP are largely driven by physics and numerics of the dynamical cores. In contrast to previous intercomparisons, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSD) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case.

  20. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Water power Type Term Title Author Replies Last Post...

  1. The Role of Snow and Ice in the Climate System

    SciTech Connect (OSTI)

    Barry, Roger G.

    2007-12-19

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  2. Ice Bear® Storage Module | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ice Bear® Storage Module Ice Bear® Storage Module Thermal Energy Storage for Light Commercial Refrigerant-Based Air Conditioning Units The Ice Bear® storage technology was initially developed by Powell Energy Products, with assistance from DOE's Inventions and Innovation Program and commercialized by Ice Energy®, Inc. The Ice Bear storage module was engineered to complement new or existing air conditioning (AC) equipment to shift energy use from peak to off-peak periods. The Ice Bear unit is

  3. The Role of Snow and Ice in the Climate System

    ScienceCinema (OSTI)

    Barry, Roger G.

    2009-09-01

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  4. Contents.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paul Clavin Contents Combustion Waves and Fronts in Flows P. Clavin and G. Searby Cambridge University Press (to appear) Orders of magnitude 2 Lecture 1: 1-1: Overall...

  5. TABLE OF CONTENTS

    Energy Savers [EERE]

    008 High Temperature Superconductivity for Electric Systems Peer Review Final Report i TABLE OF CONTENTS High Temperature Superconductivity for Electric Systems Program Overview ...... 1 The Peer Review................................................................................................................ 3 Review Criteria ................................................................................................................. 5 Guidelines

  6. Table_of_Contents

    Energy Savers [EERE]

    Table of Contents 1. Physical Security .............................................................................................................................. 1-1 101. Headquarters Security Badges ........................................................................................ 101-1 102. HSPD-12 Badges and the PIV Process ........................................................................... 102-1 103. Prohibited Articles

  7. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes. Part II. Sensitivity to heterogeneous ice nucleation parameterizations and dust emissions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yang; Chen, Ying; Fan, Jiwen; Leung, Lai -Yung

    2015-09-14

    Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.« less

  8. A Comprehensive Parameterization of Heterogeneous Ice Nucleation of Dust Surrogate: Laboratory Study with Hematite Particles and Its Application to Atmospheric Models

    SciTech Connect (OSTI)

    Hiranuma, Naruki; Paukert, Marco; Steinke, Isabelle; Zhang, Kai; Kulkarni, Gourihar R.; Hoose, Corinna; Schnaiter, Martin; Saathoff, Harald; Mohler, Ottmar

    2014-12-10

    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 ?C to -78 ?C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by ns, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost independent freezing was observed at -60 ?C < T < -50 ?C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 ?C < T < -60 ?C and -50 ?C < T < -36 ?C. More specifically, observations at T colder than -60 ?C revealed that higher RHice was necessary to maintain constant ns, whereas T may have played a significant role in ice nucleation at T warmer than -50 ?C. We implemented new ns parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 ?C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.

  9. Solar Works in Seattle: Domestic Hot Water

    Broader source: Energy.gov [DOE]

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  10. Land Ice Verification and Validation Kit

    Energy Science and Technology Software Center (OSTI)

    2015-07-15

    To address a pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice-sheet models is underway. The associated verification and validation process of these models is being coordinated through a new, robust, python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVV). This release provides robust and automated verification and a performance evaluation on LCF platforms. The performance V&Vmore » involves a comprehensive comparison of model performance relative to expected behavior on a given computing platform. LIVV operates on a set of benchmark and test data, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-4-bit evaluation, and plots of tests where differences occur.« less

  11. Land Ice Verification and Validation Kit

    SciTech Connect (OSTI)

    2015-07-15

    To address a pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice-sheet models is underway. The associated verification and validation process of these models is being coordinated through a new, robust, python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVV). This release provides robust and automated verification and a performance evaluation on LCF platforms. The performance V&V involves a comprehensive comparison of model performance relative to expected behavior on a given computing platform. LIVV operates on a set of benchmark and test data, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-4-bit evaluation, and plots of tests where differences occur.

  12. Equations of state of ice VI and ice VII at high pressure and high temperature

    SciTech Connect (OSTI)

    Bezacier, Lucile; Hanfland, Michael; Journaux, Baptiste; Perrillat, Jean-Philippe; Cardon, Herv; Daniel, Isabelle

    2014-09-14

    High-pressure H{sub 2}O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H{sub 2}O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V{sub 0} = 14.17(2) cm{sup 3}?mol{sup ?1}, K{sub 0} = 14.05(23) GPa, and ?{sub 0} = 14.6(14) 10{sup ?5} K{sup ?1} for ice VI and V{sub 0} = 12.49(1) cm{sup 3}?mol{sup ?1}, K{sub 0} = 20.15(16) GPa, and ?{sub 0} = 11.6(5) 10{sup ?5} K{sup ?1} for ice VII.

  13. Flight Path 30L - About ICE House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. About ICE House Irradiation of Chips Electronics (ICE House) is located on the 30° flight path of WNR. At this angle, the shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by

  14. Ice Sheet Model Reveals Most Comprehensive Projections for West...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has been stage to dramatic thinning in recent years. The West Antarctic Ice Sheet (WAIS) is out of balance because it is losing significant amounts of ice to the ocean, with...

  15. A TWP-ICE High-Level Cloud Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TWP-ICE High-Level Cloud Case Study Mace, Gerald University of Utah Category: Field Campaigns The Tropical Warm Pool International Cloud Experiment (TWP ICE) was conducted near...

  16. ARM - What About Melting Polar Ice Caps and Sea Levels?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What About Melting Polar Ice Caps and Sea Levels? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What About Melting Polar Ice Caps and Sea Levels? As the northern polar zone warms up, sea ice could melt (very probable) and the sea/ice interface could retreat to the north. This is likely to

  17. WATER TRAPPING ON TIDALLY LOCKED TERRESTRIAL PLANETS REQUIRES SPECIAL CONDITIONS

    SciTech Connect (OSTI)

    Yang, Jun; Abbot, Dorian S.; Liu, Yonggang; Hu, Yongyun

    2014-12-01

    Surface liquid water is essential for standard planetary habitability. Calculations of atmospheric circulation on tidally locked planets around M stars suggest that this peculiar orbital configuration lends itself to the trapping of large amounts of water in kilometers-thick ice on the night side, potentially removing all liquid water from the day side where photosynthesis is possible. We study this problem using a global climate model including coupled atmosphere, ocean, land, and sea ice components as well as a continental ice sheet model driven by the climate model output. For a waterworld, we find that surface winds transport sea ice toward the day side and the ocean carries heat toward the night side. As a result, nightside sea ice remains O(10m) thick and nightside water trapping is insignificant. If a planet has large continents on its night side, they can grow ice sheets O(1000m) thick if the geothermal heat flux is similar to Earth's or smaller. Planets with a water complement similar to Earth's would therefore experience a large decrease in sea level when plate tectonics drives their continents onto the night side, but would not experience complete dayside dessiccation. Only planets with a geothermal heat flux lower than Earth's, much of their surface covered by continents, and a surface water reservoir O(10%) of Earth's would be susceptible to complete water trapping.

  18. Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry Technology available for licensing: Proprietary method and equipment for making an ice slurry coolant to induce therapeutic hypothermia. Portable, automatic Advantageous for emergency care, cooling during surgeries, organ harvesting PDF icon ice_slurry

  19. Ocean-ice/oil-weathering computer program user's manual. Final report

    SciTech Connect (OSTI)

    Kirstein, B.E.; Redding, R.T.

    1987-10-01

    The ocean-ice/oil-weathering code is written in FORTRAN as a series of stand-alone subroutines that can easily be installed on most any computer. All of the trial-and-error routines, integration routines, and other special routines are written in the code so that nothing more than the normal system functions such as EXP are required. The code is user-interactive and requests input by prompting questions with suggested input. Therefore, the user can actually learn about the nature of crude oil and oil weathering by using this code. The ocean-ice oil-weathering model considers the following weathering processes: evaporation; dispersion (oil into water); moussee (water into oil); and spreading; These processes are used to predict the mass balance and composition of oil remaining in the slick as a function of time and environmental parameters.

  20. The Next ICE Age | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    developments in diesel engines for light- and heavy-duty applications PDF icon deer12_ruth.pdf More Documents & Publications The Next ICE Age Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks SuperTruck Program: Engine Project Review

  1. Table of Contents

    Energy Savers [EERE]

    COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary.......................................................... 1 a. Overview of Smart Grid Benefits and Communications Needs................. 2 b. Summary of Recommendations .................................................................... 5 II. Federal Government Smart Grid Initiatives ................................................ 7 a. DOE Request for Information

  2. THE INTERIOR DYNAMICS OF WATER PLANETS

    SciTech Connect (OSTI)

    Fu, Roger; O'Connell, Richard J.; Sasselov, Dimitar D. E-mail: richard_oconnell@harvard.ed

    2010-01-10

    The ever-expanding catalog of detected super-Earths calls for theoretical studies of their properties in the case of a substantial water layer. This work considers such water planets with a range of masses and water mass fractions (2-5 M{sub Earth}, 0.02%-50% H{sub 2}O). First, we model the thermal and dynamical structure of the near-surface for icy and oceanic surfaces, finding separate regimes where the planet is expected to maintain a subsurface liquid ocean and where it is expected to exhibit ice tectonics. Newly discovered exoplanets may be placed into one of these regimes given estimates of surface temperature, heat flux, and gravity. Second, we construct a parameterized convection model for the underlying ice mantle of higher ice phases, finding that materials released from the silicate-iron core should traverse the ice mantle on the timescale of 0.1 to 100 megayears. We present the dependence of the overturn times of the ice mantle and the planetary radius on total mass and water mass fraction. Finally, we discuss the implications of these internal processes on atmospheric observables.

  3. Modeling the Fracture of Ice Sheets on Parallel Computers

    SciTech Connect (OSTI)

    Waisman, Haim; Tuminaro, Ray

    2013-10-10

    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  4. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SGP) site. The microphysical data have been analyzed to better understand the particle size distributions, ice water contents (IWC), and ice crystal habits of these clouds. These...

  5. Contents TRU Waste Celebration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 September 2005 A publication for all members of the NNSA/NSO family Contents TRU Waste Celebration by Katherine Schwartz On July 28, 2005, Bechtel Nevada hosted a function to commemorate the dedication and hard work of every Joanne Norton of meeting the milestone of completion of characterization of all legacy waste drums stored at the NTS for 30 years." , assistant general manager for Environmental Management at BN, was equally pleased. making direct contact with it. the dedicated

  6. NESEA Newsletter Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NESEA Newsletter Content Middle School Curriculum Created by Northeast Sustainable Energy Association (NESEA) Click on the links below to take you to the Chapter heading: Solar Panels: The Basics Solar Cells: P-N Junction Solar Panels: Amps, Volts and Power Solar Panels: Manufacture Solar Panels: PV Applications & More Parts of a Solar Cell Getting Started with Gears 123456789012345678901234567890121234567890123 123456789012345678901234567890121234567890123 PREMIER MIDDLE SCHOOL MODEL SOLAR

  7. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: marine energy Type Term Title Author Replies Last...

  8. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Wave Type Term Title Author Replies Last Post sort...

  9. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: ocean energy Type Term Title Author Replies Last...

  10. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: current energy Type Term Title Author Replies Last...

  11. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: DOE Type Term Title Author Replies Last Post sort...

  12. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: CBS Type Term Title Author Replies Last Post sort...

  13. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Current Type Term Title Author Replies Last Post...

  14. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: community Type Term Title Author Replies Last Post...

  15. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: LCOE Type Term Title Author Replies Last Post sort...

  16. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Cost Type Term Title Author Replies Last Post sort...

  17. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: gateway Type Term Title Author Replies Last Post...

  18. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: levelized cost of energy Type Term Title Author...

  19. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: forum Type Term Title Author Replies Last Post sort...

  20. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Tidal Type Term Title Author Replies Last Post sort...

  1. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: numerical modeling Type Term Title Author Replies...

  2. H2 ICE Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H2 ICE Combustion Share Description Hydrogen combustion inside a direct injection H2 engine Topic Energy Energy efficiency Vehicles Hydrogen & fuel cells Credit S. Ciatti This video captures the OH * radicals that are produced during the hydrogen combustion process inside a direct injection H2 engine. It provides a qualitative assessment of where (areas in white, red, and green) and how rapidly those combustion reactions occur. The video was recorded at 3,000 RPM and with 6 bar indicated

  3. Flight Path 30L - ICE House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. The Invisible Neutron Threat LANSCE - A Key Facility for National Science and Defense Neutron-Induced Failures in Semiconductor Devices THE ICE HOUSE - Neutron Testing Leads to More-Reliable Electronic

  4. Flight Path 30L - ICE House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. The Invisible Neutron Threat LANSCE - A Key Facility for National Science and Defense Neutron-Induced Failures in Semiconductor Devices THE ICE HOUSE - Neutron Testing Leads to More-Reliable Electronics

  5. Flight Path 30R - ICE II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. The Invisible Neutron Threat LANSCE - A Key Facility for National Science and Defense Neutron-Induced Failures in Semiconductor Devices THE ICE HOUSE - Neutron Testing Leads to More-Reliable Electronic

  6. Flight Path 30R - ICE II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. The Invisible Neutron Threat LANSCE - A Key Facility for National Science and Defense Neutron-Induced Failures in Semiconductor Devices THE ICE HOUSE-Neutron Testing Leads to More-Reliable Electronics

  7. FactSheet-TWP_ICE.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) is a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteo- rology. Beginning January 19 and ending February 28, 2006, the experiment will be conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped with

  8. Personalized professional content recommendation

    DOE Patents [OSTI]

    Xu, Songhua

    2015-10-27

    A personalized content recommendation system includes a client interface configured to automatically monitor a user's information data stream transmitted on the Internet. A hybrid contextual behavioral and collaborative personal interest inference engine resident to a non-transient media generates automatic predictions about the interests of individual users of the system. A database server retains the user's personal interest profile based on a plurality of monitored information. The system also includes a server programmed to filter items in an incoming information stream with the personal interest profile and is further programmed to identify only those items of the incoming information stream that substantially match the personal interest profile.

  9. Personalized professional content recommendation

    DOE Patents [OSTI]

    Xu, Songhua

    2015-11-05

    A personalized content recommendation system includes a client interface configured to automatically monitor a user's information data stream transmitted on the Internet. A hybrid contextual behavioral and collaborative personal interest inference engine resident to a non-transient media generates automatic predictions about the interests of individual users of the system. A database server retains the user's personal interest profile based on a plurality of monitored information. The system also includes a server programmed to filter items in an incoming information stream with the personal interest profile and is further programmed to identify only those items of the incoming information stream that substantially match the personal interest profile.

  10. ARM - VAP Product - ripbe1mcfarlane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud droplet size Ice water content Liquid water content Ozone Surface albedo Surface skin temperature Locations Southern Great Plains SGP C1 Browse Data Central Facility,...

  11. Microsoft PowerPoint - mather_twpice_heating_newyork.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manus Clear-Sky Heating Rates (Kday) Shortwave Longwave Net Ice Water Content + Liquid Water Content Radiative Heating Radiative heating profiles for the period January 26 -...

  12. Full-physics 3D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice

    SciTech Connect (OSTI)

    Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.; Kolodzey, James

    2015-10-01

    In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water as a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.

  13. Full-physics 3D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.; Kolodzey, James

    2015-10-01

    In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water asmore » a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.« less

  14. Crystal Field Disorder in the Quantum Spin Ice Ground State of Tb2Sn2 xTixO7

    SciTech Connect (OSTI)

    Gaulin, Bruce D.; Zhang, J.; Dahlberg, M. L.; Matthews, Maria J.; Bert, F.; Kermarrec, E.; Fritsch, Katharina; Granroth, Garrett E; Jiramongkolchai, P.; Amato, A.; Baines, C.; Cava, R. J.; Mendels, P.; Schiffer, P

    2015-01-01

    Spin ice physics marries that of hydrogen disorder in water ice, first discussed almost 60 years ago by Pauling, and that of low temperature magnetism on certain networks of connected tetrahedra. Recently the classical spin ice mag- nets Ho2Ti2O7 and Dy2Ti2O7 have shown an emergent artificial magneto- statics , which manifests itself as Coulombic spin correlations and excitations behaving as diffusive magnetic monopoles. The related pyrochlore magnet, Tb2Ti2O7, has been proposed as a quantum variant of spin ice, stabilized by 1 virtual excitations between the crystal field (CF) ground state doublet appro- priate to Tb3+, and its low lying excited state doublet. Isostructural Tb2Sn2O7 displays soft spin ice order, and its Tb3+ ground and excited CF eigenstates are known to differ relative to those of Tb2Ti2O7. We present a comprehensive study of Tb2Sn2 xTixO7 showing a novel, dynamic spin liquid state for all x other than the end members (0, 2). This state is the result of disorder in the low lying Tb3+ CF environments which de-stabilizes the mechanism by which quantum fluctuations contribute to ground state selection in Tb2Sn2 xTixO7.

  15. Ground Water Levels for NGEE Areas A, B, C and D, Barrow, Alaska, 2012-2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anna Liljedahl; Cathy Wilson

    2015-06-08

    Ice wedge polygonal tundra water levels were measured at a total of 45 locations representing polygon centers and troughs during three summers. Early season water levels, which were still affected by ice and snow, are represented by manual measurements only. Continuous (less than hourly) measurements followed through early fall (around mid-Sep). The data set contains inundation depth (cm), absolute water level and local ground surface elevation (masl).

  16. IceVeto: Extended PeV neutrino astronomy in the Southern Hemisphere with IceCube

    SciTech Connect (OSTI)

    Auffenberg, Jan; Collaboration: IceCube Collaboration

    2014-11-18

    IceCube, the world's largest high-energy neutrino observatory, built at the South Pole, recently reported evidence of an astrophysical neutrino flux extending to PeV energies in the Southern Hemisphere. This observation raises the question of how the sensitivity in this energy range could be further increased. In the down-going sector, in IceCube's case the Southern Hemisphere, backgrounds from atmospheric muons and neutrinos pose a challenge to the identification of an astrophysical neutrino flux. The IceCube analysis, that led to the evidence for astrophysical neutrinos, is based on an in-ice veto strategy for background rejection. One possibility available to IceCube is the concept of an extended surface detector, IceVeto, which could allow the rejection of a large fraction of atmospheric backgrounds, primarily for muons from cosmic ray (CR) air showers as well as from neutrinos in the same air showers. Building on the experience of IceTop/IceCube, possibly the most cost-effective and sensitive way to build IceVeto is as an extension of the IceTop detector, with simple photomultiplier based detector modules for CR air shower detection. Initial simulations and estimates indicate that such a veto detector will significantly increase the sensitivity to an astrophysical flux of ?{sub ?} induced muon tracks in the Southern Hemisphere compared to current analyses. Here we present the motivation and capabilities based on initial simulations. Conceptual ideas for a simplified surface array will be discussed briefly.

  17. Black carbon aerosols and the third polar ice cap

    SciTech Connect (OSTI)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  18. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

  19. Hydrogen Material Compatibility for Hydrogen ICE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Compatibility for Hydrogen ICE Hydrogen Material Compatibility for Hydrogen ICE 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pm_04_smith.pdf More Documents & Publications Hydrogen Materials Compatibility for the H-ICE Engine Friction Reduction Through Surface Finish and Coatings Low-Friction Hard Coatings

  20. Ice Sheet Model Reveals Most Comprehensive Projections for West

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antarctica's Future Most Comprehensive Projections for West Antarctica's Future Revealed Ice Sheet Model Reveals Most Comprehensive Projections for West Antarctica's Future BISICLES Simulations Run at NERSC Help Estimate Ice Loss, Sea Level Rise August 18, 2015 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov IceSheet Retreat in the Amundsen Sea Embayment in 2154 (Credit: Cornford et al., The Cryosphere, 2015) A new international study is the first to use a high-resolution, large-scale

  1. Magnetic charge crystals imaged in artificial spin ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic charge crystals imaged in artificial spin ice Magnetic charge crystals imaged in artificial spin ice Potential data storage and computational advances could follow August 27, 2013 Potential data storage and computational advances could follow A 3-D depiction of the honeycomb artificial spin ice topography after the annealing and cooling protocols. The light and dark colors represent the north and south magnetic poles of the islands. Image by Ian Gilbert, U. of I. Department of Physics

  2. ARM - Lesson Plans: When Floating Ice Melts in the Sea

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Floating Ice Melts in the Sea Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: When Floating Ice Melts in the Sea Objective The objective is to investigate the effect on sea level due to the melting of floating ice due to global warming. Materials Each student or group of

  3. Initial results from ensemble SCM simulations of TWP-ICE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Status of the TWP Status of the TWP Status of the TWP - - - ICE SCM ICE SCM ICE SCM intercomparison intercomparison intercomparison Laura Davies, Christian Jakob Monash University, Australia Thanks to Kenneth Cheung and Marty Singh March 2009 Outline * Forcing method * Upper level temperature biases? The whys and wherefores.... * Initial single column model results * Future directions * GCSS intercomparison project March 2009 Forcing methods Forcing methods Forcing methods March 2009 Forcing

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater, Surface Water, and Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site December 2013 LMS/RVT/S00913 This page intentionally left blank U.S. Department of Energy DVP-September 2013, Riverton, Wyoming December 2013 RIN 13095603 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Sample Location Map

  5. Table of Contents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y O O F F F F I I C C E E O O F F I I N N S S P P E E C C T T O O R R G G E E N N E E R R A A L L Semiannual Report toCongress DOE/IG-0065 April 1 - September 30, 2013 TABLE OF CONTENTS From the Desk of the Inspector General ..................................................... 2 Impacts Key Accomplishments ............................................................................................... 3

  6. Molecular dynamics simulations of D{sub 2}O ice photodesorption

    SciTech Connect (OSTI)

    Arasa, C.; Andersson, S.; Cuppen, H. M.; Dishoeck, E. F. van; Kroes, G. J.

    2011-04-28

    Molecular dynamics (MD) calculations have been performed to study the ultraviolet (UV) photodissociation of D{sub 2}O in an amorphous D{sub 2}O ice surface at 10, 20, 60, and 90 K, in order to investigate the influence of isotope effects on the photodesorption processes. As for H{sub 2}O, the main processes after UV photodissociation are trapping and desorption of either fragments or D{sub 2}O molecules. Trapping mainly takes place in the deeper monolayers of the ice, whereas desorption occurs in the uppermost layers. There are three desorption processes: D atom, OD radical, and D{sub 2}O molecule photodesorption. D{sub 2}O desorption takes places either by direct desorption of a recombined D{sub 2}O molecule, or when an energetic D atom produced by photodissociation kicks a surrounding D{sub 2}O molecule out of the surface by transferring part of its momentum. Desorption probabilities are calculated for photoexcitation of D{sub 2}O in the top four monolayers and are compared quantitatively with those for H{sub 2}O obtained from previous MD simulations of UV photodissociation of amorphous water ice at different ice temperatures [Arasa et al., J. Chem. Phys. 132, 184510 (2010)]. The main conclusions are the same, but the average D atom photodesorption probability is smaller than that of the H atom (by about a factor of 0.9) because D has lower kinetic energy than H, whereas the average OD radical photodesorption probability is larger than that of OH (by about a factor of 2.5-2.9 depending on ice temperature) because OD has higher translational energy than OH for every ice temperature studied. The average D{sub 2}O photodesorption probability is larger than that of H{sub 2}O (by about a factor of 1.4-2.3 depending on ice temperature), and this is entirely due to a larger contribution of the D{sub 2}O kick-out mechanism. This is an isotope effect: the kick-out mechanism is more efficient for D{sub 2}O ice, because the D atom formed after D{sub 2}O photodissociation has a larger momentum than photogenerated H atoms from H{sub 2}O, and D transfers momentum more easily to D{sub 2}O than H to H{sub 2}O. The total (OD + D{sub 2}O) yield has been compared with experiments and the total (OH + H{sub 2}O) yield from previous simulations. We find better agreement when we compare experimental yields with calculated yields for D{sub 2}O ice than when we compare with calculated yields for H{sub 2}O ice.

  7. Nanotextured Anti-Icing Surfaces | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrate Promising Anti-icing Nano Surfaces Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Scientists Demonstrate Promising Anti-icing Nano Surfaces GE Global Research today presented new research findings on its nanotextured anti-icing surfaces. In addition to dramatically reducing ice adhesion, these surfaces

  8. Single Particle Database of Natural Ice Crystals: Dimensions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Database of Natural Ice Crystals: Dimensions and Aspect Ratios For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights...

  9. optimal initial conditions for coupling ice sheet models to earth...

    Office of Scientific and Technical Information (OSTI)

    optimal initial conditions for coupling ice sheet models to earth system models Perego, Mauro Sandia National Laboratories Sandia National Laboratories; Price, Stephen F. Dr...

  10. IceCube: A Cubic Kilometer Radiation Detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer R; Klein, S.R.

    2008-06-01

    IceCube is a 1 km{sup 3} neutrino detector now being built at the Amudsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate {nu}{sub {mu}}, {nu}{sub t}, and {nu}{sub {tau}} interactions because of their different topologies. IceCube construction is currently 50% complete.

  11. Covered Product Category: Air-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, which are covered by the ENERGY STAR program.

  12. Rapid development of an ice sheet climate application using the...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Rapid development of an ice sheet climate ... Country of Publication: United States Language: English Word Cloud More Like This Full ...

  13. Reducing uncertainty in high-resolution sea ice models.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2013-07-01

    Arctic sea ice is an important component of the global climate system, reflecting a significant amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice have shown a significant decline in recent decades with implications for global climate as well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects make predictive mathematical modeling of sea ice a task of tremendous practical import. Satellite data obtained over the last few decades have provided a wealth of information on sea ice motion and deformation. The data clearly show that ice deformation is focused along narrow linear features and this type of deformation is not well-represented in existing models. To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the impact of material parameters on sea ice response functions. Two material strength parameters that exhibited the most significant impact on responses were further analyzed to evaluate their influence on quantitative comparisons between model output and data. The sensitivity analysis along with ten year model runs indicate that while the anisotropic rheology provides some benefit in velocity predictions, additional improvements are required to make this material model a viable alternative for global sea ice simulations.

  14. The Rush to Exploit an Increasingly Ice-Free Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rush to Exploit an Increasingly Ice-Free Arctic - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ...

  15. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-04-21

    This study investigates the maintenance of cloud ice production in Arctic mixed phase stratocumulus in large-eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  16. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-09-25

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  17. Parameterization of the Extinction Coefficient in Ice and Mixed-Phase Arctic Clouds during the ISDAC Field Campaign

    SciTech Connect (OSTI)

    Korolev, A; Shashkov, A; Barker, H

    2012-03-06

    This report documents the history of attempts to directly measure cloud extinction, the current measurement device known as the Cloud Extinction Probe (CEP), specific problems with direct measurement of extinction coefficient, and the attempts made here to address these problems. Extinction coefficient is one of the fundamental microphysical parameters characterizing bulk properties of clouds. Knowledge of extinction coefficient is of crucial importance for radiative transfer calculations in weather prediction and climate models given that Earth's radiation budget (ERB) is modulated much by clouds. In order for a large-scale model to properly account for ERB and perturbations to it, it must ultimately be able to simulate cloud extinction coefficient well. In turn this requires adequate and simultaneous simulation of profiles of cloud water content and particle habit and size. Similarly, remote inference of cloud properties requires assumptions to be made about cloud phase and associated single-scattering properties, of which extinction coefficient is crucial. Hence, extinction coefficient plays an important role in both application and validation of methods for remote inference of cloud properties from data obtained from both satellite and surface sensors (e.g., Barker et al. 2008). While estimation of extinction coefficient within large-scale models is relatively straightforward for pure water droplets, thanks to Mie theory, mixed-phase and ice clouds still present problems. This is because of the myriad forms and sizes that crystals can achieve, each having their own unique extinction properties. For the foreseeable future, large-scale models will have to be content with diagnostic parametrization of crystal size and type. However, before they are able to provide satisfactory values needed for calculation of radiative transfer, they require the intermediate step of assigning single-scattering properties to particles. The most basic of these is extinction coefficient, yet it is rarely measured directly, and therefore verification of parametrizations is difficult. The obvious solution is to be able to measure microphysical properties and extinction at the same time and for the same volume. This is best done by in situ sampling by instruments mounted on either balloon or aircraft. The latter is the usual route and the one employed here. Yet the problem of actually measuring extinction coefficient directly for arbitrarily complicated particles still remains unsolved.

  18. Flight Path 30R | ICE II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Target 4 Flight Path 30R (ICE II) Target 4 Flight Path 30R (4FP30R) utilizes the neutrons that scatter off the tungsten spallation source at approximately 30 degrees to beam right. The experiments utilizing this flight path

  19. An update on land-ice modeling in the CESM (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    The current model, however, has significant limitations: The land-ice coupling is one-way; ... of Glimmer-CISM with the shallow-ice approximation; and there is no ice-ocean coupling. ...

  20. Third international workshop on ice storage for cooling applications

    SciTech Connect (OSTI)

    Gorski, A.J.

    1986-04-01

    The third international workshop on ice storage for cooling applications which was informal and interactive in nature, was open to persons interested in all ice-growing technologies and in ice storage, both seasonal and diurnal. Presentations were made on some 20 topics, ranging from freezers in Alaska to ice cooling of commercial jet aircraft. Workshop tours included visits to ice-storage systems at Commonwealth Edison's facilities in Bolingbrook and Des Plaines Valley, the A.C. Neilsen builing in Northbrook, and the new State of Illinois Center in Chicago. The first workshop in the present series considered the future of ice storage and predicted applications in the agricultural sector, desalinization, and commercial ice production. Progress has been rapid in the intervening two years, and an important topic at the third workshop was the possible use of ''warm ices'' (clathrate hydrates) for energy storage. This report consists primarily of abstracts of presentations made at the workshop. Persons wishing to obtain further information about particular papers should contact the speakers directly; speakers' addresses and telephone numbers are listed in this report.

  1. An update on land-ice modeling in the CESM (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    An update on land-ice modeling in the CESM Citation Details In-Document Search Title: An update on land-ice modeling in the CESM Mass loss from land ice, including the Greenland and Antarctic ice sheets as well as smaller glacier and ice caps, is making a large and growing contribution to global sea-level rise. Land ice is only beginning to be incorporated in climate models. The goal of the Land Ice Working Group (LIWG) is to develop improved land-ice models and incorporate them in CESM, in

  2. Methods and apparatus for rotor blade ice detection

    DOE Patents [OSTI]

    LeMieux, David Lawrence

    2006-08-08

    A method for detecting ice on a wind turbine having a rotor and one or more rotor blades each having blade roots includes monitoring meteorological conditions relating to icing conditions and monitoring one or more physical characteristics of the wind turbine in operation that vary in accordance with at least one of the mass of the one or more rotor blades or a mass imbalance between the rotor blades. The method also includes using the one or more monitored physical characteristics to determine whether a blade mass anomaly exists, determining whether the monitored meteorological conditions are consistent with blade icing; and signaling an icing-related blade mass anomaly when a blade mass anomaly is determined to exist and the monitored meteorological conditions are determined to be consistent with icing.

  3. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    SciTech Connect (OSTI)

    Wirstrm, E. S.; Persson, C. M.; Charnley, S. B.; Cordiner, M. A.; Buckle, J. V.; Takakuwa, S.

    2014-06-20

    After more than 30yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (?10K) water vapor has been detectedL1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at worklikely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  4. 2009 Community Sequencing Program: Life Under Ice

    ScienceCinema (OSTI)

    Victo Kunin, PhD (Project co-PI); Microbial Ecology Group, DOE JGI; Phil Hugenholtz, PhD (CSP Project PI); Microbial Ecology Program Head, DOE JGI

    2010-09-01

    A JGI Multimedia Presentation: Buried deep beneath the surface of Antarctica is a fresh water lake, Lake Vostok.

  5. Water Levels, Barrow, Alaska, NGEE Areas A, B, C and D for 2012, 2013, 2014, Final Version, 20150324

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anna Liljedahl; Cathy Wilson

    2015-06-08

    Ice wedge polygonal tundra water levels were measured at a total of 45 locations representing polygon centers and troughs during three summers. Early season water levels, which were still affected by ice and snow, are represented by manual measurements only. Continuous (less than hourly) measurements followed through early fall (around mid-Sep). The data set contains inundation depth (cm), absolute water level and local ground surface elevation (masl).

  6. Water Levels, Barrow, Alaska, NGEE Areas A, B, C and D for 2012, 2013, 2014, Final Version, 20150324

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anna Liljedahl; Cathy Wilson

    Ice wedge polygonal tundra water levels were measured at a total of 45 locations representing polygon centers and troughs during three summers. Early season water levels, which were still affected by ice and snow, are represented by manual measurements only. Continuous (less than hourly) measurements followed through early fall (around mid-Sep). The data set contains inundation depth (cm), absolute water level and local ground surface elevation (masl).

  7. Glaciers, ice sheets, and sea level: effect of a CO/sub 2/-induced climatic change

    SciTech Connect (OSTI)

    1985-09-01

    The workshop examined the basic questions of how much water has been exchanged between land ice and ocean during the last century, what is happening now, and, given existing climate-modeling prediction, how much exchange can be expected in the next century. In addition, the evidence for exchange was examined and gaps in that evidence were identified. The report includes the 23 presentations made at the workshop, summarizes the workshop discussion, and presents the Committee's findings and recommendations. Separate abstracts have been prepared for the 23 presentations.

  8. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  9. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term Content Group Activity By term Q & A Feeds CBS (1) community (1) Cost (1) Current (1) current energy (1) DOE (1) forum...

  10. Searching for Cosmic Accelerators via IceCube

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Searching for Cosmic Accelerators via IceCube Searching for Cosmic Accelerators via IceCube Berkeley Lab Researchers Part of an International Hunt November 21, 2013 Lynn Yarris, lcyarris@lbl.gov, 510.486.5375 Bert.jpg This event display shows "Bert," one of two neutrino events discovered at IceCube whose energies exceeded one petaelectronvolt (PeV). The colors show when the light arrived, with reds being the earliest, succeeded by yellows, greens and blues. The size of the circle

  11. ARM - Publications: Science Team Meeting Documents: Investigation of Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystal Shapes Using Multi-resolution Techniques Investigation of Ice Crystal Shapes Using Multi-resolution Techniques McFarquhar, Greg University of Illinois Better knowledge of small-scale features from ice crystals are needed to determine their effects on radiation and hence to improve the treatment of clouds in climate models. With the Cloud Particle Imager (CPI) it is now possible to capture ice crystal images with 2.3 μm resolution and 256 gray scales of illumination, providing an

  12. Development, sensitivity analysis, and uncertainty quantification of high-fidelity arctic sea ice models.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana S.

    2010-09-01

    Arctic sea ice is an important component of the global climate system and due to feedback effects the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice to model physical parameters. A new sea ice model that has the potential to improve sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of the Los Alamos National Laboratory CICE code and the MPM sea ice code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness, and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  13. Appendix D Surface Water and Ground Water Time-Concentration Plots,

    Office of Legacy Management (LM)

    Surface Water and Ground Water Time-Concentration Plots, Stream Discharge Measurements, Ground Water Level Data, and Ground Water Well Hydrographs This page intentionally left blank Contents Section .................................................................................. Surface Water Time-Concentration Plots D1.O ............................................................................................... Stream Discharge Measurements D2.0

  14. Visual Analysis of Weblog Content

    SciTech Connect (OSTI)

    Gregory, Michelle L.; Payne, Deborah A.; McColgin, Dave; Cramer, Nick O.; Love, Douglas V.

    2007-03-26

    In recent years, one of the advances of the World Wide Web is social media and one of the fastest growing aspects of social media is the blogosphere. Blogs make content creation easy and are highly accessible through web pages and syndication. With their growing influence, a need has arisen to be able to monitor the opinions and insight revealed within their content. In this paper we describe a technical approach for analyzing the content of blog data using a visual analytic tool, IN-SPIRE, developed by Pacific Northwest National Laboratory. We highlight the capabilities of this tool that are particularly useful for information gathering from blog data.

  15. Recent content in Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    - 11:43 Question 2013 projects and funding Vanessa.gregory 13 Dec 2013 - 09:12 Question Hi Vanessa-I connected wit... NickL 13 Dec 2013 - 14:38 Answer Worldwide 'Power exchanges'...

  16. Nanotextured Anti-Icing Surfaces | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrate Promising Anti-icing Nano Surfaces Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window)...

  17. Sandia's ice sheet modeling of Greenland, Antarctica helps predict...

    National Nuclear Security Administration (NNSA)

    The Greenland and Antarctic ice sheets will make a dominant contribution to 21st century sea-level rise if current climate trends continue. However, predicting the expected loss of ...

  18. Progress on a TWP-ICE Monsoon Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outline Introduction 25-mb large-scale forcing 10-mb large-scale forcing Tracers Future work Progress on a TWP-ICE Monsoon Case Study Ann Fridlind and Andrew Ackerman * NASA GISS...

  19. Magnetization plateaus of dipolar spin ice on kagome lattice

    SciTech Connect (OSTI)

    Xie, Y. L.; Wang, Y. L.; Yan, Z. B.; Liu, J.-M.

    2014-05-07

    Unlike spin ice on pyrochlore lattice, the spin ice structure on kagome lattice retains net magnetic charge, indicating non-negligible dipolar interaction in modulating the spin ice states. While it is predicted that the dipolar spin ice on kagome lattice exhibits a ground state with magnetic charge order and ?3???3 spin order, our work focuses on the magnetization plateau of this system. By employing the Wang-Landau algorithm, it is revealed that the lattice exhibits the fantastic three-step magnetization in response to magnetic field h along the [10] and [01] directions, respectively. For the h//[1 0] case, an additional ?3/6M{sub s} step, where M{sub s} is the saturated magnetization, is observed in a specific temperature range, corresponding to a new state with charge order and short-range spin order.

  20. ARM-UAV TWP-ICE Activities and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flown during the TWP-ICE experiment are presented. Data was also collected during the transit flight across the Pacific from Mojave California to Darwin Australia and on the...

  1. Ice Particle Projected Area- and Mass-dimension Expressions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m-D and A-D expressions in BMPs is described in this paper. Figure 1. The m-D expression (black curve) for synoptic ice clouds between -20C and -40C based on SCPP m-D...

  2. Arctic sea ice modeling with the material-point method.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2010-04-01

    Arctic sea ice plays an important role in global climate by reflecting solar radiation and insulating the ocean from the atmosphere. Due to feedback effects, the Arctic sea ice cover is changing rapidly. To accurately model this change, high-resolution calculations must incorporate: (1) annual cycle of growth and melt due to radiative forcing; (2) mechanical deformation due to surface winds, ocean currents and Coriolis forces; and (3) localized effects of leads and ridges. We have demonstrated a new mathematical algorithm for solving the sea ice governing equations using the material-point method with an elastic-decohesive constitutive model. An initial comparison with the LANL CICE code indicates that the ice edge is sharper using Materials-Point Method (MPM), but that many of the overall features are similar.

  3. Operating Experience Level 3, Winter Preparedness: Slips on Ice

    Broader source: Energy.gov [DOE]

    OE-3 2015-06: This Operating Experience Level 3 (OE-3) document provides information about the hazards of slips, trips, and falls on ice across the Department of Energy (DOE) Complex.

  4. JOBAID-LAUNCHING ONLINE CONTENT

    Broader source: Energy.gov [DOE]

    In this jobaid you will learn how to launch Online Content "Items" or Courses. In the LMS you can launch most anything as an "item": documents, courses, webpages and track users that have completed...

  5. Complex systems influence melting of Greenland ice sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex systems influence melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things are more complicated than we thought December 22, 2014 The newly discovered rolling movement shown in (A) three-dimensional cryo-electron microscopy image of ribosome, and (B) computer-generated atomic-resolution model of the human ribosome consistent with microscopy. An international team of researchers deployed to

  6. Insider features Barton's ice boat | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insider features Barton's ice boat Former Director Tom Barton had the cover story in Insider 25 years ago featuring his ice boat. In honor of Valentine's Day, the issue also carried an article, "Chemistry That Works" featuring couples who worked at the Lab. There was also a story on intreped peddlers who biked to work throughout the winter. To see the entire issue, click on the cover

  7. IceCube: An Instrument for Neutrino Astronomy

    SciTech Connect (OSTI)

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  8. Micro-Spectroscopic Imaging and Characterization of Individually Identified Ice Nucleating Particles from a Case Field Study

    SciTech Connect (OSTI)

    Knopf, Daniel A.; Alpert, Peter A.; Wang, Bingbing; O'Brien, Rachel E.; Kelly, Stephen T.; Laskin, Alexander; Gilles, Mary K.; Moffet, Ryan C.

    2014-09-03

    The effect of anthropogenic and biogenic organic particles on atmospheric glaciation processes is poorly understood. We use an optical microscopy (OM) setup to identify the location of ice nuclei (IN) active in immersion freezing and deposition ice nucleation for temperatures of 200-273 K within a large population of particles sampled from an ambient environment. Applying multi-modal micro-spectroscopy methods we characterize the physicochemical properties of individual IN in particle populations collected in central California. Chemical composition and mixing state analysis of particle populations are performed to identify characteristic particle-type classes. All particle-types contained organic material. Particles in these samples take up water at subsaturated conditions, induce immersion freezing at subsaturated and saturated conditions above 226 K, and act as deposition IN below 226 K. The identified IN belong to the most common particle-type classes observed in the field samples: organic coated sea salt, Na-rich, and secondary and refractory carbonaceous particles. Based on these observations, we suggest that the IN are not always particles with unique chemical composition and exceptional ice nucleation propensity; rather, they are common particles in the ambient particle population. Thus, particle composition and morphology alone are insufficient to assess their potential to act as IN. The results suggest that particle-type abundance is also a crucial factor in determining the ice nucleation efficiency of specific IN types. These findings emphasize that ubiquitous organic particles can induce ice nucleation under atmospherically relevant conditions and that they may play an important role in atmospheric glaciation processes.

  9. Reducing the moisture content of clean coals

    SciTech Connect (OSTI)

    Kehoe, D. )

    1992-12-01

    Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    February 2015 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Site April 2015 LMS/GJO/S00215 This page intentionally left blank U.S. Department of Energy DVP-February 2015, Grand Junction, Colorado, Site April 2015 RIN 15026795 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Site Sample Location Map

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site September 2014 LMS/GUP/S00414 This page intentionally left blank U.S. Department of Energy DVP-April and June 2014, Gunnison, Colorado September 2014 RIN 14046058 and 14066262 Page i Contents Sampling Event Summary ...............................................................................................................1 Gunnison, Colorado, Processing Site Planned Sampling Map

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Naturita, Colorado Processing Site October 2013 LMS/NAP/S00713 This page intentionally left blank U.S. Department of Energy DVP-July 2013, Naturita, Colorado October 2013 RIN 13075483 Page i Contents Sampling Event Summary ...............................................................................................................1 Naturita, Colorado, Sample Location Map ......................................................................................3

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites December 2014 LMS/SRW/SRE/S00914 This page intentionally left blank U.S. Department of Energy DVP-September 2014, Slick Rock, Colorado December 2014 RIN 14096456 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock, Colorado, Processing Sites, Sample Location Map

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites January 2016 LMS/SRE/SRW/S00915 This page intentionally left blank U.S. Department of Energy DVP-September 2015, Slick Rock, Colorado January 2016 RINs 15087319 and 15107424 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock, Colorado, Processing Sites, Sample Location Map

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater and Surface Water Sampling at the Slick Rock East and West, Colorado, Processing Sites November 2013 LMS/SRE/SRW/S0913 This page intentionally left blank U.S. Department of Energy DVP-September 2013, Slick Rock, Colorado November 2013 RIN 13095593 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock East and West, Colorado, Processing Sites, Sample Location Map

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Water Sampling at the Ambrosia Lake, New Mexico, Disposal Site February 2015 LMS/AMB/S01114 This page intentionally left blank U.S. Department of Energy DVP-November 2014, Ambrosia Lake, New Mexico February 2015 RIN 14116607 Page i Contents Sampling Event Summary ...............................................................................................................1 Ambrosia Lake, NM, Disposal Site Planned Sampling Map...........................................................3 Data

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site August 2013 LMS/GRN/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Green River, Utah August 2013 RIN 13065402 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Green River, Utah, Disposal Site August 2014 LMS/GRN/S00614 This page intentionally left blank U.S. Department of Energy DVP-June 2014, Green River, Utah August 2014 RIN 14066228 Page i Contents Sampling Event Summary ...............................................................................................................1 Green River, Utah, Disposal Site Sample Location Map ................................................................5 Data Assessment

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2014 LMS/MON/S01213 This page intentionally left blank U.S. Department of Energy DVP-December 2013, Monument Valley, Arizona March 2014 RIN 13125794 Page i Contents Sampling Event Summary ...............................................................................................................1 Monument Valley, Arizona, Processing Site, Sample Location Map

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monument Valley, Arizona, Processing Site February 2015 LMS/MON/S01214 This page intentionally left blank U.S. Department of Energy DVP-December 2014, Monument Valley, Arizona February 2015 RIN 14126645 Page i Contents Sampling Event Summary ...............................................................................................................1 Monument Valley, Arizona, Disposal Site Sample Location Map ..................................................5

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2014 LMS/MNT/S00414 This page intentionally left blank U.S. Department of Energy DVP-April 2014, Monticello, Utah July 2014 RIN 14046077 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map, April 2014, Monticello, Utah, Processing Site .........................................5 Data Assessment Summary

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2015 LMS/MNT/S00415 This page intentionally left blank U.S. Department of Energy DVP-April 2015, Monticello, Utah July 2015 RIN 15046927 Page i Contents Sampling Event Summary ...............................................................................................................1 Monticello, Utah, Processing Site Sample Location Map ...............................................................5 Data Assessment

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Water Sampling at the Monticello, Utah, Processing Site January 2014 LMS/MNT/S01013 This page intentionally left blank U.S. Department of Energy DVP-October 2013, Monticello, Utah January 2014 RIN 13105661 and 13105711 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map, Monticello, Utah, Processing and Disposal Site, October 2013 ..............5 Data Assessment Summary

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site May 2014 LMS/RVT/S00314 This page intentionally left blank U.S. Department of Energy DVP-March 2014, Riverton, Wyoming May 2014 RIN 14035986 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, WY, Processing Site, Sample Location Map ...................................................................3 Data

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and May 2014 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site June 2014 LMS/SHP/S00314 This page intentionally left blank U.S. Department of Energy DVP-March and May 2014, Shiprock, New Mexico June 2014 RIN 14036011, 14036013, and 14056142 Page i Contents Sampling Event Summary ...............................................................................................................1 Shiprock, New Mexico, Disposal Site, Sample Location Map

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    2015 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site June 2015 LMS/SHP/S00315 This page intentionally left blank U.S. Department of Energy DVP-March 2015, Shiprock, New Mexico June 2015 RIN 15036862 and 15036863 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map Shiprock, New Mexico, Disposal Site

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Tuba City, Arizona Disposal Site June 2015 LMS/TUB/S00215 This page intentionally left blank U.S. Department of Energy DVP-February 2015, Tuba City, Arizona June 2015 RIN 15026775 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map Tuba City, AZ, Disposal Site February 2015 ............................................5 Data

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2013 LMS/TUB/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Tuba City, Arizona November 2013 RIN 13085553 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal Site, Sample Location Map ..............................................................7 Data

  9. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; et al

    2014-06-27

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developedmore » follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically-relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first order approximation in numerical modeling investigations.« less

  10. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; et al

    2015-01-13

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterizationmore » developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration correction, to predictions of the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first-order approximation in numerical modeling investigations.« less

  11. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    responsible contractor's processes and, as a minimum, shall be signed and dated by the following: 1. Technical Approver (see Appendix A for definition) 2. Manager responsible...

  12. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    results shall be reported based on calculated concentration or activity values (whether negative, positive, or zero) using the appropriate blank for each nuclide (see Section...

  13. Contents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Wages and salaries 2 1,575 1,596 1,566 Social security costs 126 120 116 Pension costs ... contracts represent mark-to-market movements on certain physical and financial ...

  14. contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signal is often digitized to around 12 bits of information at the RTU. The communication media between the supervisory site and the RTUs are designed to handle packets of this...

  15. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organization (such as Safety or Quality Assurance). Depending upon the site-specific organizational structure, the following reviewapprovals are recommended: DOERL-92-36,...

  16. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Date: 6107 Vol. 2: iv LIST OF TERMS ALARA as low as reasonably achievable ASTM American Society for Testing and Materials CFR Code of Federal Regulations CWP...

  17. Contents

    National Nuclear Security Administration (NNSA)

    ® ALOHA A R E A L L O C A T I O N S O F H A Z A R D O U S A T M O S P H E R E S User's Manual M A R C H 2 0 0 4 c a e o ® C O M P U T E R - A I D ED M A N A G E M E N T O F E M E R G E N C Y O P E R A T I O N S * U N IT E D STA T E S * E N V IR O N M E N T A L P R O TE C T I O N A G E N C Y NAT I ONA L O C E A N IC A ND ATMOSPH ER IC A D M IN IST RATION U .S . D E P A R TM ENT OF CO M M E R C E U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Chemical

  18. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sullivan, S. C.; Morales Betancourt, R.; Barahona, D.; Nenes, A.

    2015-08-11

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the Barahona and Nenes cirrus formation parameterization to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically-derived spectrum,morea lab-based empirical spectrum, and two field-based empirical spectra that differ in the nucleation threshold for black carbon aerosol and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never unraveled as done here.less

  19. EERE Website Content Checklist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Website Content Checklist EERE Website Content Checklist This checklist is a tool to guide EERE content developers and editors in creating and reviewing content for websites. Microsoft Office document icon EERE Website Content Checklist More Documents & Publications Plain Language Compliance Report (2012) Templates and Examples - Statistics and Search Log Analysis DOE-STD-1029-92

  20. OBSERVATIONAL CONSTRAINTS ON METHANOL PRODUCTION IN INTERSTELLAR AND PREPLANETARY ICES

    SciTech Connect (OSTI)

    Whittet, D. C. B.; Cook, A. M.; Herbst, Eric; Chiar, J. E.; Shenoy, S. S.

    2011-11-20

    Methanol (CH{sub 3}OH) is thought to be an important link in the chain of chemical evolution that leads from simple diatomic interstellar molecules to complex organic species in protoplanetary disks that may be delivered to the surfaces of Earthlike planets. Previous research has shown that CH{sub 3}OH forms in the interstellar medium predominantly on the surfaces of dust grains. To enhance our understanding of the conditions that lead to its efficient production, we assemble a homogenized catalog of published detections and limiting values in interstellar and preplanetary ices for both CH{sub 3}OH and the other commonly observed C- and O-bearing species, H{sub 2}O, CO, and CO{sub 2}. We use this catalog to investigate the abundance of ice-phase CH{sub 3}OH in environments ranging from dense molecular clouds to circumstellar envelopes around newly born stars of low and high mass. Results show that CH{sub 3}OH production arises during the CO freezeout phase of ice-mantle growth in the clouds, after an ice layer rich in H{sub 2}O and CO{sub 2} is already in place on the dust, in agreement with current astrochemical models. The abundance of solid-phase CH{sub 3}OH in this environment is sufficient to account for observed gas-phase abundances when the ices are subsequently desorbed in the vicinity of embedded stars. CH{sub 3}OH concentrations in the ices toward embedded stars show order-of-magnitude object-to-object variations, even in a sample restricted to stars of low mass associated with ices lacking evidence of thermal processing. We hypothesize that the efficiency of CH{sub 3}OH production in dense cores and protostellar envelopes is mediated by the degree of prior CO depletion.

  1. Content of System Design Descriptions

    Office of Environmental Management (EM)

    DOE-STD-3024-2011 August 2011 ________________________ Superseding DOE-STD-3024-98 DOE STANDARD CONTENT OF SYSTEM DESIGN DESCRIPTIONS U.S. Department of Energy AREA EDCO Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-3024-2011 ii Available on the Department of Energy Technical Standards web page at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE-STD-3024-2011 iii CONTENTS PAGE Foreword

  2. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  3. Ice Nucleation of Fungal Spores from the Classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of these Spores

    SciTech Connect (OSTI)

    Haga, D. I.; Burrows, Susannah M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Poschl, U.; Bertram, Allan K.

    2014-08-26

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilagomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan all over the globe. Ustilagomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 C and -29 C, 0.01 between -25.5 C and -31 C, and 0.1 between -26 C and -36 C. On average, the order of ice nucleating ability for these spores is Ustilagomycetes > Agaricomycetes ? Eurotiomycetes. We show that at temperatures below -20 C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98 % of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric transport and global distributions of these spores in the atmosphere. Simulations show that inclusion of ice nucleation scavenging of fungal spores in mixed-phase clouds can decrease the surface annual mean mixing ratios of fungal spores over the oceans and polar regions and decrease annual mean mixing ratios in the upper troposphere.

  4. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect (OSTI)

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Krcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24106 m-2) is obviously less than that from the LP (8.46106 m-2) and BN (5.62106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2) and BN (0.39 W m-2) parameterizations.

  5. Equation of State for Supercooled Water at Pressures up to 400 MPa

    SciTech Connect (OSTI)

    Holten, Vincent; Sengers, Jan V.; Anisimov, Mikhail A.

    2014-12-01

    An equation of state is presented for the thermodynamic properties of cold and supercooled water. It is valid for temperatures from the homogeneous ice nucleation temperature up to 300 K and for pressures up to 400 MPa, and can be extrapolated up to 1000 MPa. The equation of state is compared with experimental data for the density, expansion coefficient, isothermal compressibility, speed of sound, and heat capacity. Estimates for the accuracy of the equation are given. The melting curve of ice I is calculated from the phase-equilibrium condition between the proposed equation and an existing equation of state for ice I.

  6. Supercooled liquid water Estimation Tool

    Energy Science and Technology Software Center (OSTI)

    2012-05-04

    The Cloud Supercooled liquid water Estimation Tool (SEET) is a user driven Graphical User Interface (GUI) that estimates cloud supercooled liquid water (SLW) content in terms of vertical column and total mass from Moderate resolution Imaging Supercooled liquid water Estimation Tool Spectroradiometer (MODIS) spatially derived cloud products and realistic vertical cloud parameterizations that are user defined. It also contains functions for post-processing of the resulting data in tabular and graphical form.

  7. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partialmore » pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.« less

  8. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 10-5 to 2 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partial pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.

  9. Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological Impact

    SciTech Connect (OSTI)

    Qian, Yun; Yasunari, Teppei J.; Doherty, Sarah J.; Flanner, M. G.; Lau, William K.; Ming, J.; Wang, Hailong; Wang, Mo; Warren, Stephen G.; Zhang, Rudong

    2015-01-01

    Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance (a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, andclimatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.

  10. Posters Mesoscale Simulations of Convective Systems with Data...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for wind components, vertical velocity, pressure perturbation, temperature, water vapor, ground temperature, and microphysical water and ice content variables. It has B-grid...

  11. dudhia-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for wind components, vertical velocity, pressure perturbation, temperature, water vapor, ground temperature, and microphysical water and ice content variables. It has an upper...

  12. dudhia-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind components, vertical velocity, pressure perturba- tion, temperature, water vapor, ground temperature and microphysical water and ice content variables. It has an upper...

  13. Section 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for wind components, vertical velocity, pressure perturbation, temperature, water vapor, ground temperature, and micro- physical water and ice content variables. It has an upper...

  14. P:\\JODI\\PGS77-91.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for wind components, vertical velocity, pressure perturbation, temperature, water vapor, ground temperature, and microphysical water and ice content variables B-grid staggering,...

  15. Development and Applications of the Community Ice Sheet Model (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect and Applications of the Community Ice Sheet Model Citation Details In-Document Search Title: Development and Applications of the Community Ice Sheet Model × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this

  16. Ice plug employed on subsea pipeline bend during repair

    SciTech Connect (OSTI)

    1997-12-22

    The first controlled-temperature ice plug in the bend of an offshore gas trunkline has been carried out for Phillips Petroleum Co. Norway on its Norpipe A.S. platform in the German sector of the North Sea. The procedure was part of a subsea valve repair operation. The ice plug was successfully formed offshore and tested to a differential pressure of 1,450 psi. Repair of two valves required only 5 days during which time gas production was operating at close to 50--60% via the platform bypass, says the service company. The paper discusses the procedure.

  17. Predicting Land-Ice Retreat and Sea-Level Rise with the Community...

    Office of Scientific and Technical Information (OSTI)

    Coastal stakeholders need defensible predictions of 21st century sea-level rise (SLR). ... To assess the likelihood of fast retreat of marine ice sheets, we need coupled ice-sheet...

  18. Land-ice modeling for sea-level prediction (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Land-ice modeling for sea-level prediction Citation Details In-Document Search Title: Land-ice modeling for sea-level prediction Authors: Lipscomb, William H 1 ...

  19. Predicting Land-Ice Retreat and Sea-Level Rise with the Community...

    Office of Scientific and Technical Information (OSTI)

    from the marine-based West Antarctic Ice Sheet, linked to changes in Southern Ocean wind stress. To assess the likelihood of fast retreat of marine ice sheets, we need coupled...

  20. Ice at the Interface: Atmosphere-Ice-Ocean Boundary Layer Processes and Their Role in Polar Change---Workshop Report

    SciTech Connect (OSTI)

    Hunke, Elizabeth C.

    2012-07-23

    The atmosphere-ocean boundary layer in which sea ice resides includes many complex processes that require a more realistic treatment in GCMs, particularly as models move toward full earth system descriptions. The primary purpose of the workshop was to define and discuss such coupled processes from observational and modeling points of view, including insight from both the Arctic and Antarctic systems. The workshop met each of its overarching goals, including fostering collaboration among experimentalists, theorists and modelers, proposing modeling strategies, and ascertaining data availability and needs. Several scientific themes emerged from the workshop, such as the importance of episodic or extreme events, precipitation, stratification above and below the ice, and the marginal ice zone, whose seasonal Arctic migrations now traverse more territory than in the past.

  1. SECTION J - TABLE OF CONTENTS

    National Nuclear Security Administration (NNSA)

    Conformed to Mod 0108 DE-NA0000622 Section J Page i PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J LIST OF APPENDICES TABLE OF CONTENTS Appendix A Statement of Work (Replaced by Mod 002; Modified Mod 016; Replaced Mod 029) Appendix B Performance Evaluation Plan (Replaced by Mods 002, 016, 020, 029, 0084) Appendix C Contractor's Transition Plan Appendix D Sensitive Foreign Nations Control Appendix E Performance Guarantee Agreement(s) Appendix F National Work Breakdown

  2. City of Eagan …Civic Ice Arena Renovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City of Eagan …Civic Ice Arena Renovation City of Eagan …Civic Ice Arena Renovation Project objectives: Provide a reliable central ice making and heating system that meets the performance requirements of the owner. Reduce operation and maintenance costs. PDF icon gshp_lutz_eagan_ice_arena.pdf More Documents & Publications GEOTHERMAL POWER GENERATION PLANT Wilders Grove Solid Waste Services Center Decision Analysis for EGS

  3. Purchasing Energy-Efficient Air-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  4. Ice method for production of hydrogen clathrate hydrates

    DOE Patents [OSTI]

    Lokshin, Konstantin (Santa Fe, NM); Zhao, Yusheng (Los Alamos, NM)

    2008-05-13

    The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.

  5. Calibration and Characterization of the IceCube Photomultiplier Tube

    SciTech Connect (OSTI)

    IceCube Collaboration; Abbasi, R.; al., et

    2010-02-11

    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.

  6. ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND RECOMMENDATIONS 2014 ULTRA-DEEPWATER ADVISORY COMMITTEE COMMITTEE FINDINGS AND RECOMMENDATIONS i Table of Contents Research and ...

  7. Effects of Water in Synthetic Lubricant Systems and Clathrate Formation: A Literature Search and Review

    SciTech Connect (OSTI)

    Rohatgi, Ngoc Dung T.

    2001-08-08

    An extensive literature search and a confidential survey were critically analyzed to determine the effects of water on the stability of hydrofluorocarbon/synthetic lubricant systems and to identify key areas requiring further investigation. Following are highlights from the analysis: Clathrate hydrates are solid solutions formed when water molecules are linked through hydrogen bonding creating cavities that can enclose various guest molecules from hydrate formers, such as hydrofluorocarbons R-32, R-125, R-134a, R-407C and R-410A. The four methods for preventing clathrate formation were drying the gas, heating it, reducing its pressure, or using inhibitors. The hydrolysis of polyolester lubricants was mostly acid-catalyzed and its reaction rate constant typically followed the Arrhenius equation of an activated process. Hydrolytic stability improved with hindered molecular structures, and with the presence of acid catcher additives and desiccants. Water vapor can effect the adsorption of long-chain fatty acids and the chemistry of formation of protective oxide film. However, these effects on lubrication can be either positive or negative. Fifty to sixty percent of the moisture injected into an air-conditioning system remained in the refrigerant and the rest mixed with the compressor oil. In an automotive air-conditioning system using R-134a, ice would form at 0 C evaporating temperature when the water content in the vapor refrigerant on the low-pressure side was more than 350 ppm. Moisture would cause the embrittlement of polyethylene terephthalate and the hydrolysis of polyesters, but would reduce the effect of amine additives on fluoroelastomer rubbers. The reactions of water with refrigerants and lubricants would cause formicary and large-pit corrosion in copper tubes, as well as copper plating and sludge formation. Moreover, blockage of capillary tubes increased rapidly in the presence of water. Twenty-four companies responded to the survey. From the responses, the water concentrations specified and expected for different refrigerant/lubricant systems varied depending on the products, their capacities and applications, and also on the companies. Among the problems associated with high moisture level, lubricant breakdown was of greatest concern, followed by acid formation, compressor failure and expansion valve sticking. The following research topics are suggested: 1. The air-conditioning and refrigeration industry needs to measure and record the water content and total acid number of the lubricant of newly installed systems as well as operating systems that are shutdown for service or repair. The reason for the shutdown needs to be documented. A database can then be established to correlate water content with type and cause of breakdown. 2. Detailed studies on the distribution of water in refrigeration and air-conditioning systems should be conducted to pinpoint problem areas associated with free water. 3. Research is needed to validate the current theories and mechanisms of formicary corrosion. Corrosion inhibitors need to be developed. 4. The conditions for clathrate formation and decomposition of other alternative refrigerants, such as R-23, R-41, R-116, R-125, R-143a, R-404A and R-507C, and water should be determined to avoid possible problems associated with tube plugging. The mechanism by which water facilitates or hinders lubrication needs to be studied.

  8. CONTENTS OF A VISIT REQUEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTENTS OF A VISIT REQUEST All visit requests are required to be submitted via JPAS according to AFI 31-101 and the NISPOM. Our SMO code is KV1MFSCC6. Please do not send an annual visit request for the conference. Use the dates of the conference for the duration of the visit. Please list Bing Serafico, 505-853-0451 as the Point of Contract for the visit. NOTE: Only use the following information if your companies DO NOT have access to JPAS. All faxed visit request for personnel that are in JPAS

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and September 2013 Groundwater and Surface Water Sampling at the Durango, Colorado, Disposal and Processing Sites March 2014 LMS/DUD/DUP/S00613 This page intentionally left blank U.S. Department of Energy DVP-June and September 2013, Durango, Colorado March 2014 RIN 13055370 and 13085577 Page i Contents Sampling Event Summary ...............................................................................................................1 Durango, Colorado, Disposal Site Sample Location Map-June

  10. WATER CONSERVATION PLAN

    National Nuclear Security Administration (NNSA)

    i WATER CONSERVATION PLAN TONOPAH TEST RANGE UNITED STATES DEPARTMENT OF ENERGY January 10, 2011 Prepared for: Tonopah Test Range Post Office Box 871 Tonopah, Nevada 89049 (702) 295-8109 Prepared by: Sandia National Laboratories / New Mexico Post Office Box 5800 Albuquerque, New Mexico 87185-0729 (505) 284-1831 On behalf of: Sandia Site Office Post Office Box 5400 Albuquerque, New Mexico 87185-0184 (505) 845-6036 ii TABLE OF CONTENTS 1.0 INTRODUCTION

  11. Water resources data for Louisiana, water year 1995. Water data report (Annual), 1 October 1994-30 September 1995

    SciTech Connect (OSTI)

    Garrison, C.R.; Lovelace, W.M.; Montgomery, P.A.

    1996-05-01

    Water resources data for the 1995 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 65 gaging stations; stage only for 40 gaging stations and 6 lakes; water quality for 45 surface-water stations (including 23 gage stations) and 76 wells; and water levels for 217 observation wells. Also included are data for 113 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements.

  12. Water resources data for Louisiana, water year 1994. Water-data report (Annual), 1 October 1993-30 September 1994

    SciTech Connect (OSTI)

    Garrison, C.R.; Lovelace, W.M.; Montgomery, P.A.

    1995-03-01

    Water resources data for the 1994 water year for Louisiana consists of records for stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 64 gaging stations; stage only for 45 gaging stations and 6 lakes; water quality for 51 surface-water stations (including 24 gage stations) and 84 wells; and water levels for 209 observations wells. Also included are data for 115 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements.

  13. Water Clustering on Nanostructured Iron Oxide Films

    SciTech Connect (OSTI)

    Merte, L. R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Laegsgaard, E.; Wendt, Stefen; Mavrikakis, Manos; Besenbacher, Fleming

    2014-06-30

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing moleculemolecule and moleculesurface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the are film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moire structure.

  14. On the scalability of the Albany/FELIX first-order Stokes approximation ice

    Office of Scientific and Technical Information (OSTI)

    sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets (Journal Article) | SciTech Connect On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets Citation Details In-Document Search Title: On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets We examine the

  15. A marine biogenic source of atmospheric ice-nucleating particles (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect A marine biogenic source of atmospheric ice-nucleating particles Citation Details In-Document Search Title: A marine biogenic source of atmospheric ice-nucleating particles The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3-11. Here we show that material in the sea

  16. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Security Home/Water Security - Electricity use by water service sector and county. Shown are electricity use by (a) large-scale conveyance, (b) groundwater irrigation pumping, (c) surface water irrigation pumping, (d) drinking water, and (e) wastewater. Aggregate electricity use across these sectors (f) is also mapped. Permalink Gallery Sandians Recognized in Environmental Science & Technology's Best Paper Competition Analysis, Capabilities, Energy, Energy-Water Nexus, Global, Global,

  17. Water Power: 2009 Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind and Water Power Program 2009 Peer Review Report November 2009 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program 2009 Water Power Peer Review Report November 2009 Michael Murphy Chair 2009 Water Power Peer Review Panel Mark Higgins Acting Program Manager U.S. DOE Wind and Water Power Program Mike Reed Water Power Technologies Lead U.S. DOE Wind and Water Power Program Page intentionally left blank. Table of Contents Executive Summary

  18. Appendix E Supporting Information for Ground Water Modeling

    Office of Legacy Management (LM)

    Supporting Information for Ground Water Modeling This page intentionally left blank Contents Section Geologic Map of Site Area ........................................................................................................ E1.O Stream Flow Measurements ...................................................................................................... E2.0 Estimates of Ground Water Flow .............................................................................................. E3.0

  19. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    SciTech Connect (OSTI)

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

  20. Energy.gov Content Management System

    Broader source: Energy.gov [DOE]

    Energy.gov Content Management SystemEERE's websites are hosted in Energy.gov's Drupal content management system (CMS), which is maintained by the U.S. Department of Energy's Public Affairs Office.

  1. Template:ContentAssist | Open Energy Information

    Open Energy Info (EERE)

    ContentAssist Jump to: navigation, search This is the ContentAssist template. It is intended for inclusion on any page and will highlight extracted energy-related terms from the...

  2. The commercial development of water repellent coatings for high voltage transmission lines

    SciTech Connect (OSTI)

    Hunter, S. R.; Daniel, A.

    2013-10-31

    The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy?s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

  3. The commercial development of water repellent coatings for high voltage transmission lines

    SciTech Connect (OSTI)

    Hunter, Scott Robert

    2013-10-01

    The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

  4. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Groups Content Group Activity By term Q & A Feeds Share your own status updates, and follow the updates & activities of others by creating your own...

  5. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface water, storm water and springs. April 12, 2012 Quarterly Groundwater monitoring attended by LANL managers and the Northern New Mexico Citizens Advisory Board LANL scientists brief the Northern New Mexico Citizens Advisory Board during quarterly groundwater monitoring of the well network around Area G. Contact

  6. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Water Security Home/Tag:Water Security - Electricity use by water service sector and county. Shown are electricity use by (a) large-scale conveyance, (b) groundwater irrigation pumping, (c) surface water irrigation pumping, (d) drinking water, and (e) wastewater. Aggregate electricity use across these sectors (f) is also mapped. Permalink Gallery Sandians Recognized in Environmental Science & Technology's Best Paper Competition Analysis,

  7. Water Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership Working Group November 5-6, 2014 Cape Canaveral, FL * Kate McMordie Stoughton - Pacific Northwest National Laboratory * kate.mcmordie@pnnl.gov * Francis Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com Topics * Performance contracting analysis * Water industry terms * Federal reduction goals * Water balance * Water efficiency

  8. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  9. American Indian Complex to Cool Off Using Ice Storage System

    Broader source: Energy.gov [DOE]

    In Oklahoma City, summer temperatures can get above 100 degrees, making cooling more of a necessity than a luxury. But the designers of the American Indian Cultural Center and Museum (AICCM) wanted to make cooling choices that reflect American Indian cultures' respect for the land. So, rather than using conventional air-conditioning, the museum's main complex will use an ice storage system estimated to save 644,000 kilowatt hours of electricity a year.

  10. Sandia's ice sheet modeling of Greenland, Antarctica helps predict

    National Nuclear Security Administration (NNSA)

    sea-level rise | National Nuclear Security Administration ice sheet modeling of Greenland, Antarctica helps predict sea-level rise | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  11. Microsoft Word - 11_19_09 ice mkaer.doc

    Office of Environmental Management (EM)

    to: Department of Energy via email: expartecommunications@hq.doe.gov from: Debra Brunk date: November 20, 2009 subject: Exparte Communication This memo memorializes the meeting between AHAM and the Department of Energy on November 19, 2009 for inclusion in the public docket. The purpose of the meeting was to update the Department on the status of AHAM's development of an ice maker energy test procedure. The attendees are as follows: Ronald Lewis, Department of Energy Lucas Adin, Department of

  12. Microsoft Word - 11_4_09 ice maker.doc

    Office of Environmental Management (EM)

    gov from: Debra Brunk, Vice President Technical Services date: November 11, 2009 subject: Exparte Communication This memo memorializes the phone call between AHAM and the Department of Energy on November 4, 2009 for inclusion in the public docket. In summary, the issues discussed during the call were an update on including ice maker energy into the refrigerator-freezer test procedure and questions on the status regarding AHAM's clarification request on clothes washer drum volume determination.

  13. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  14. Decaying leptophilic dark matter at IceCube

    SciTech Connect (OSTI)

    Boucenna, Sofiane M.; Chianese, Marco; Mangano, Gianpiero; Miele, Gennaro; Morisi, Stefano; Pisanti, Ofelia; Vitagliano, Edoardo

    2015-12-29

    We present a novel interpretation of IceCube high energy neutrino events (with energy larger than 60 TeV) in terms of an extraterrestrial flux due to two different contributions: a flux originated by known astrophysical sources and dominating IceCube observations up to few hundreds TeV, and a new flux component where the most energetic neutrinos come from the leptophilic three-body decays of dark matter particles with a mass of few PeV. Differently from other approaches, we provide two examples of elementary particle models that do not require extremely tiny coupling constants. We find the compatibility of the theoretical predictions with the IceCube results when the astrophysical flux has a cutoff of the order of 100 TeV (broken power law). In this case the most energetic part of the spectrum (PeV neutrinos) is due to an extra component such as the decay of a very massive dark matter component. Due to the low statistics at our disposal we have considered for simplicity the equivalence between deposited and neutrino energy, however such approximation does not affect dramatically the qualitative results. Of course, a purely astrophysical origin of the neutrino flux (no cutoff in energy below the PeV scale — unbroken power law) is still allowed. If future data will confirm the presence of a sharp cutoff above few PeV this would be in favor of a dark matter interpretation.

  15. Dimensions and aspect ratios of natural ice crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2015-04-15

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L–W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationships determined in previous studies were within the range of the current data.« less

  16. Dimensions and aspect ratios of natural ice crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2014-12-10

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the Tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign in mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. Dimensions and aspect ratios (AR, dimension of major axis divided by dimension of minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased as temperature increased. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50±1.35 during three campaigns and 6.32±1.34 (5.46±1.34; 4.95±1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < −35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L–W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationship determined in previous studies were within the range of the current data.« less

  17. Realizing three-dimensional artificial spin ice by stacking planar nano-arrays

    SciTech Connect (OSTI)

    Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano

    2014-01-06

    Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in a pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.

  18. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into...

  19. Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds

    SciTech Connect (OSTI)

    Rambukkange, Mahlon P.; Verlinde, J.; Eloranta, E. W.; Flynn, Connor J.; Clothiaux, Eugene E.

    2011-01-31

    Multimodality of cloud radar Doppler spectra is used to partition cloud particle phases and to separate distinct ice populations in the radar sample volume, thereby facilitating analysis of individual ice showers in multilayered mixed-phase clouds. A 35-GHz cloud radar located at Barrow, Alaska, during the Mixed-Phase Arctic Cloud Experiment collected the Doppler spectra. Data from a pair of collocated depolarization lidars confirmed the presence of two liquid cloud layers reported in this study. Surprisingly, both of these cloud layers were embedded in ice precipitation yet maintained their liquid. Our spectral separation of the ice precipitation yielded two distinct ice populations: ice initiated within the two liquid cloud layers and ice precipitation formed in higher cloud layers. Comparisons of ice fall velocity versus radar reflectivity relationships derived for distinct showers reveal that a single relationship might not properly represent the ice showers during this period.

  20. Prediction of Ice Crystal Number in Community Atmospheric Model (CAM3.0)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prediction of Ice Crystal Number in Community Atmospheric Model (CAM3.0) Liu, Xiaohong Pacific Northwest National Laboratory Ghan, Steven Pacific Northwest National Laboratory Wang, M University of Michigan Penner, Joyce University of Michigan Category: Modeling A prognostic equation of ice crystal number concentrations is implemented in the Community Atmospheric Model (CAM3.0) with the aim to study the aerosol effects on climate through changing the ice cloud properties. The microphysical

  1. Statement of Work (SOW) Template (Combined EIR/ICE Support Contractor) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Statement of Work (SOW) Template (Combined EIR/ICE Support Contractor) Statement of Work (SOW) Template (Combined EIR/ICE Support Contractor) PDF icon Contractor SOW Template - EIR & ICE.pdf More Documents & Publications External Independent Review (EIR) Report Template External Independent Review (EIR) Standard Operating Procedure (SOP) September 2010 External Independent Review (EIR) Standard Operating Procedure (SOP) Septemebr 2010

  2. Purchasing Energy-Efficient Air-Cooled Ice Machines | Department of Energy

    Energy Savers [EERE]

    Products & Technologies » Energy-Efficient Products » Covered Product Categories » Purchasing Energy-Efficient Air-Cooled Ice Machines Purchasing Energy-Efficient Air-Cooled Ice Machines The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product

  3. Bio-based Deicing/Anti-Icing Fluids - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Bio-based DeicingAnti-Icing Fluids Battelle Memorial Institute Contact BMI About This...

  4. FELIX: advances in modeling forward and inverse ice-sheet problems...

    Office of Scientific and Technical Information (OSTI)

    Title: FELIX: advances in modeling forward and inverse ice-sheet problems. Abstract not provided. Authors: Salinger, Andrew G. ; Perego, Mauro ; Hoffman, Mattew ; Leng, Wei ; ...

  5. Development of a land ice core for the Model for Prediction Across...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Development of a land ice core for the Model ... Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: ...

  6. Microsoft PowerPoint - TWP-ICE_2006Nov_Rad.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWP-ICE: Surface Radiation Chuck Long PNNL ARM Atmospheric Radiation Measurement Radiation Sites ARM Atmospheric Radiation Measurement Available Data ARM Atmospheric Radiation ...

  7. QER- Comment of American Water

    Broader source: Energy.gov [DOE]

    Dear QER Team; Thank you for the opportunity to provide comments to the Quadrennial Energy Review Task Force to discuss the water and energy nexus, advances in water innovative technologies, and the impact of climate change on water issues. On behalf of American Water, I wish to submit the following White Papers which we have prepared on these critical issues: Innovations in Energy Use Sustainability and Resiliency Planning for Water Utilities One Water Water/Energy Correlation The Value of Water Challenges in the Water Industry: Climate Change Challenges in the Water Industry: Meeting Demand in the West Innovation Solutions Within the Water Industry: Desalination Innovation Solutions Within the Water Industry: Going Green Innovation Solutions Within the Water Industry: Water Reuse Bridging the Water Innovation Gap. Founded in 1886, American Water is the largest publicly traded U.S. water and wastewater utility company. With headquarters in Voorhees, NJ, the company employs approximately 6,600 dedicated professionals who provide drinking water, wastewater and other related services to an estimated 14 million people in more than 40 states. Please feel free to contact me if you have any questions or if there is any way American Water can be helpful to your mission. Respectfully Yours, Martin (See attached file: White Papers.pdf) Martin D. Kerckhoff Vice President and Divisional General Counsel Central Division American Water CONFIDENTIAL & PRIVILEGED COMMUNICATION This email and any attachments hereto constitute a legally confidential communication from the Legal Department of American Water. The information contained herein is subject to attorney-client privilege and is for the sole use of the intended original addressee. If you are not the intended original addressee, you are hereby notified that any reading, disclosure, copying, distribution, use, or taking of any action in reliance on the contents contained herein is strictly prohibited. If you have received this message in error, please immediately notify us at 314.966.2241 and delete this message from your system. WARNING: Although American Water has taken reasonable precautions to ensure that no viruses are present in this email, it is the responsibility of the recipient to ensure that it is virus free. No responsibility is accepted by American Water for any loss or damage arising in any way from the receipt and/or use of this email.

  8. arm08_poster.ltrsize.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    satellite observations of cloud ice from other ARM PIs are used to estimate the cloud ice water content in convective clouds and to compare with single column model output. To this...

  9. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ice water content (IWC) and the effective diameter (Mitchell et al. 1998; Wyser and Yang 1998), defined as D eff IWC ( i P t ), (1) where i bulk ice density...

  10. Structures of water molecules in carbon nanotubes under electric fields

    SciTech Connect (OSTI)

    Winarto,; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-03-28

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate.

  11. Water vapor distribution in protoplanetary disks

    SciTech Connect (OSTI)

    Du, Fujun; Bergin, Edwin A.

    2014-09-01

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Ly? photons, since the Ly? line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup 2}. A small amount of hot water vapor with temperature higher than ?300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.

  12. Standard Format and Content for Emergency Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume addresses recommended emergency plan format and content for Operational Emergency Base Programs and Operational Emergency Hazardous Material Programs. Canceled by DOE G 151.1-3.

  13. Application Content and Evaluation Criteria/Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Manager Preliminary Application Content * Separate applications for each topic * Title should identify the topic area * Application - SF 424 * Project Narrative -...

  14. Training Program Content, 4/10/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's program for establishing the content of training programs. The process to be evaluated includes (1)...

  15. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  16. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  17. Radiation damage and associated phase change effect on photodesorption rates from icesLy? studies of the surface behavior of CO{sub 2}(ice)

    SciTech Connect (OSTI)

    Yuan, Chunqing; Yates, John T. Jr.

    2014-01-01

    Photodesorption from a crystalline film of CO{sub 2}(ice) at 75 K has been studied using Ly? (10.2 eV) radiation. We combine quantitative mass spectrometric studies of gases evolved and transmission IR studies of species trapped in the ice. Direct CO desorption is observed from the primary CO{sub 2} photodissociation process, which occurs promptly for CO{sub 2} molecules located on the outermost surface of the ice (Process I). As the fluence of Ly? radiation increases to ?5.5 10{sup 17} photons cm{sup 2}, extensive damage to the crystalline ice occurs and photo-produced CO molecules from deeper regions (Process II) are found to desorb at a rapidly increasing rate, which becomes two orders of magnitude greater than Process I. It is postulated that deep radiation damage to produce an extensive amorphous phase of CO{sub 2} occurs in the 50 nm ice film and that CO (and CO{sub 2}) diffusive transport is strongly enhanced in the amorphous phase. Photodesorption in Process II is a combination of electronic and thermally activated processes. Radiation damage in crystalline CO{sub 2} ice has been monitored by its effects on the vibrational line shapes of CO{sub 2}(ice). Here the crystalline-to-amorphous phase transition has been correlated with the occurrence of efficient molecular transport over long distances through the amorphous phase of CO{sub 2}(ice). Future studies of the composition of the interstellar region, generated by photodesorption from ice layers on grains, will have to consider the significant effects of radiation damage on photodesorption rates.

  18. U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan

    Office of Legacy Management (LM)

    GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction

  19. Implantation of energetic D{sup +} ions into carbon dioxide ices and implications for our solar system: formation of D{sub 2}O and D{sub 2}CO{sub 3}

    SciTech Connect (OSTI)

    Bennett, Chris J.; Ennis, Courtney P.; Kaiser, Ralf I.

    2014-10-10

    Carbon dioxide (CO{sub 2}) ices were irradiated with energetic D{sup +} ions to simulate the exposure of oxygen-bearing solar system ices to energetic protons from the solar wind and magnetospheric sources. The formation of species was observed online and in situ by exploiting FTIR spectroscopy. Molecular products include ozone (O{sub 3}), carbon oxides (CO{sub 3}(C {sub 2v}, D {sub 3h}), CO{sub 4}, CO{sub 5}, CO{sub 6}), D2-water (D{sub 2}O), and D2-carbonic acid (D{sub 2}CO{sub 3}). Species released into the gas phase were sampled via a quadrupole mass spectrometer, and possible minor contributions from D2-formaldehyde (D{sub 2}CO), D4-methanol (CD{sub 3}OD), and D2-formic acid (DCOOD) were additionally identified. The feasibility of several reaction networks was investigated by determining their ability to fit the observed temporal column densities of 10 key species that were quantified during the irradiation period. Directly relevant to the CO{sub 2}-bearing ices of comets, icy satellites in the outer solar system, and the ice caps on Mars, this work illustrates for the first time that D2-water is formed as a product of the exposure of CO{sub 2} ices to D{sup +} ions. These findings provide strong support for water formation from oxygen-bearing materials via non-thermal hydrogen atoms, and predict reaction pathways that are likely to be unfolding on the surfaces of asteroids and the Moon.

  20. Observed hemispheric asymmetry in global sea ice changes

    SciTech Connect (OSTI)

    Cavalieri, D.J.; Gloersen, P.; Parkinson, C.L.; Comiso, J.C.; Zwally, H.J.

    1997-11-07

    From November 1978 through December 1996, the areal extent of sea ice decreased by 2.9 {+-} 0.4 percent decade in the Arctic and increased by 1.3 {+-} 0.2 percent per decade in the Antarctic. The observed hemispheric asymmetry in these trends is consistent with a modeled response to a carbon dioxide-induced climate warming. The interannual variations, which are 2.3 percent of the annual mean in the Arctic, with a predominant period of about 5 years, and 3.4 percent of the annual mean in the Antarctic, with a predominant period of about 3 years, are uncorrelated. 29 refs., 2 figs., 1 tab.

  1. Impact of Ice Crystal Roughness on Satellite Retrieved Cloud Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Crystal Roughness on Satellite Retrieved Cloud Properties P. Minnis 1 , P. W. Heck 2 , R. F. Arduini 3 , R. Palikonda 3 , J. K. Ayers 3 , M. M. Khaiyer 3 , P. Yang 4 , Y. Xie 4 3 Science Systems & Applications, Inc. Hampton, VA 1 NASA Langley Research Center Hampton, VA Current Cirrus Models Inadequate Cirrus cloud optical depths τ (heights z e ) are often over (under) estimated when derived from solar reflectances. In situ data suggest smaller asymmetry factors, g, than used in most

  2. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  3. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  4. Constraints on the hadronic content of gamma ray bursts

    SciTech Connect (OSTI)

    Yacobi, Lee; Guetta, Dafne; Behar, Ehud [Department of Physics, Technion (Israel)

    2014-09-20

    The IceCube High-energy Neutrino Telescope has been collecting data since 2006. Conversely, hundreds of gamma-ray bursts (GRBs) have been detected by the GRB Monitor on board Fermi since its launch in 2008. So far no neutrino event has been associated with a GRB, despite many models predicting the generation of high-energy neutrinos through GRB photon interaction with PeV protons in the GRB jet. We use the non-detection of neutrinos to constrain the hadronic content of GRB jets independent of jet model parameters. Assuming a generic particle spectrum of E {sup ?} with ? = 2, we find that the ratio of the energy carried by pions to that in electrons has to be small f {sub ?}/f{sub e} ? 0.24 at 95% confidence level. A distribution of spectral slopes can lower f {sub ?}/f{sub e} by orders of magnitude. Another limit, independent of neutrinos, is obtained if one ascribes the measured Fermi/Large Area Telescope GeV gamma-ray emission to pair-photon cascades of high-energy photons resulting from (the same photon-hadronic interactions and subsequent) neutral pion decays. Based on the generally observed MeV-to-GeV GRB fluence ratio of ?10, we show that f {sub ?}/f{sub e} ? 0.3. In some bursts, this ratio is as low as unity, f {sub ?}/f{sub e} ? 0.03. These findings add to mounting doubts regarding the presence of PeV protons in GRB jets.

  5. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power - NearyFig1 Permalink Gallery University of Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential bed erosion effects Energy, Modeling & Analysis, News, Partnership, Renewable Energy, Water Power University of Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential bed erosion effects Sandia Labs Water Power Technologies Department promotes open-source marine hydrokinetic research by disseminating information on MHK technology designs

  6. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Water Power - Water PowerTara Camacho-Lopez2016-02-16T18:27:48+00:00 Enabling a successful water power industry. Hydropower Optimization Developing tools for optimizing the U.S. hydropower fleet's performance with minimal environmental impact. Technology Development Improving the power performance and reliability of marine hydrokinetic technologies. Market Acceleration & Deployment Addressing barriers to development, deployment, and evaluation of

  7. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  8. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into the environment. April 12, 2012 Water from cooling the supercomputer is release to maintain a healthy wetland. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We reuse the same water up to six times before releasing it back into the environment

  9. Testing a New Cirrus Cloud Parameterizaton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute of Oceanography La Jolla, California Introduction Cirrus cloud cover and ice water content (IWC) are the two most important properties of cirrus clouds. However, in...

  10. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to be highly inhomogeneous in terms of ice and liquid water content. The horizontal dimension is important to proper interpretation of remotely sensed data where properties...

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microwave radiometer on same grid - Classify targets, correct radar attenuation, add errors... Level 2a IWC (observational grid) - Ice water content reported with errors on...

  12. Microsoft PowerPoint - Stephens-talk.ppt [Compatibility Mode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1988 fundamentally governed by cloud profile Workshop identified profiles of diabatic p p heating, water & ice contents as critical issues for climate modeling. Subsequent...

  13. Ice Nuclei in Marine Air: Biogenic Particles or Dust?

    SciTech Connect (OSTI)

    Burrows, Susannah M.; Hoose, C.; Poschl, U.; Lawrence, M.

    2013-01-11

    Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earths energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

  14. Performance of a stand-alone wind-electric ice maker for remote villages

    SciTech Connect (OSTI)

    Davis, H.C.; Brandemuehl, M.J.; Bergey, M.L.S.

    1995-01-01

    Two ice makers in the 1.1 metric tons per 24 hours (1.2 tons per day) size range were tested to determine their performance when directly coupled to a variable-frequency wind turbine generator. Initial tests were conducted using a dynamometer to simulate to wind to evaluate whether previously determined potential problems were significant and to define basic performance parameters. Field testing in Norman, Oklahoma, was completed to determine the performance of one of the ice makers under real wind conditions. As expected, the ice makers produced more ice at a higher speed than rated, and less ice at a lower speed. Due to the large start-up torque requirement of reciprocating compressors, the ice making system experienced a large start-up current and corresponding voltage drop which required a larger wind turbine that expected to provide the necessary current and voltage. Performance curves for ice production and power consumption are presented. A spreadsheet model was constructed to predict ice production at a user-defined site given the wind conditions for that location. Future work should include long-term performance tests and research on reducing the large start-up currents the system experiences when first coming on line.

  15. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect (OSTI)

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the full storage mode was about equal to what could be expected through a simple rooftop efficiency upgrade, the operating costs for the Roofberg system could be much more favorable depending on the utility rate structure. The ability of Roofberg to move much of the cooling load to off-peak periods enables it to take advantage of on-peak demand charges and time-of-use electricity rates. The Roofberg system, as installed, was able to reduce the on-peak energy use of the cooling system to 35% of the on-peak energy consumption of the baseline system. A comparative analysis of a rooftop replacement and Roofberg indicated that the Roofberg system on Building 2518 would be the better economic choice over a range of demand charges and on-off peak energy prices which are typical of utility rate tariffs for commercial buildings.

  16. On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tezaur, Irina K.; Tuminaro, Raymond S.; Perego, Mauro; Salinger, Andrew G.; Price, Stephen F.

    2015-01-01

    We examine the scalability of the recently developed Albany/FELIX finite-element based code for the first-order Stokes momentum balance equations for ice flow. We focus our analysis on the performance of two possible preconditioners for the iterative solution of the sparse linear systems that arise from the discretization of the governing equations: (1) a preconditioner based on the incomplete LU (ILU) factorization, and (2) a recently-developed algebraic multigrid (AMG) preconditioner, constructed using the idea of semi-coarsening. A strong scalability study on a realistic, high resolution Greenland ice sheet problem reveals that, for a given number of processor cores, the AMG preconditionermore » results in faster linear solve times but the ILU preconditioner exhibits better scalability. A weak scalability study is performed on a realistic, moderate resolution Antarctic ice sheet problem, a substantial fraction of which contains floating ice shelves, making it fundamentally different from the Greenland ice sheet problem. Here, we show that as the problem size increases, the performance of the ILU preconditioner deteriorates whereas the AMG preconditioner maintains scalability. This is because the linear systems are extremely ill-conditioned in the presence of floating ice shelves, and the ill-conditioning has a greater negative effect on the ILU preconditioner than on the AMG preconditioner.« less

  17. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    SciTech Connect (OSTI)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  18. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques

    SciTech Connect (OSTI)

    Hiranuma, Naruki; Augustin-Bauditz, Stefanie; Bingemer, Heinz; Budke, Carsten; Curtius, J.; Danielczok, Anja; Diehl, K.; Dreischmeier, Katharina; Ebert, Martin; Frank, F.; Hoffmann, Nadine; Kandler, Kondrad; Kiselev, Alexei; Koop, Thomas; Leisner, Thomas; Mohler, Ottmar; Nillius, Bjorn; Peckhaus, Andreas; Rose, Diana; Weinbruch, Stephan; Wex, Heike; Boose, Yvonne; DeMott, Paul J.; Hader, John D.; Hill, Thomas; Kanji, Zamin; Kulkarni, Gourihar R.; Levin, Ezra; McCluskey, Christina; Murakami, Masataka; Murray, Benjamin J.; Niedermeier, Dennis; Petters, Markus D.; O'Sullivan, Daniel; Saito, Atsushi; Schill, Gregory; Tajiri, Takuya; Tolbert, Margaret A.; Welti, Andre; Whale, Thomas; Wright, Timothy; Yamashita, Katsuya

    2015-01-01

    Immersion freezing is the most relevant heterogeneous ice nucleation mechanism 3 through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing 4 number of laboratory experiments utilizing a variety of instruments have examined immersion 5 freezing activity of atmospherically relevant ice nucleating particles (INPs). However, an 6 inter-comparison of these laboratory results is a difficult task because investigators have used 7 different ice nucleation (IN) measurement methods to produce these results. A remaining 8 challenge is to explore the sensitivity and accuracy of these techniques and to understand how 9 the IN results are potentially influenced or biased by experimental parameters associated with 10 these techniques. 11 Within the framework of INUIT (Ice Nucleation research UnIT), we distributed an 12 illite rich sample (illite NX) as a representative surrogate for atmospheric mineral dust 13 particles to investigators to perform immersion freezing experiments using different IN 14 measurement methods and to obtain IN data as a function of particle concentration, 15 temperature (T), cooling rate and nucleation time. Seventeen measurement methods were 16 involved in the data inter-comparison. Experiments with seven instruments started with the 17 test sample pre-suspended in water before cooling, while ten other instruments employed 18 water vapor condensation onto dry-dispersed particles followed by immersion freezing. The 19 resulting comprehensive immersion freezing dataset was evaluated using the ice nucleation 20 active surface-site density (ns) to develop a representative ns(T) spectrum that spans a wide 21 temperature range (-37 C < T < -11 C) and covers nine orders of magnitude in ns. 22 Our inter-comparison results revealed a discrepancy between suspension and dry-23 dispersed particle measurements for this mineral dust. While the agreement was good below ~-24 26 C, the ice nucleation activity, expressed in ns, was smaller for the wet suspended samples 25 and higher for the dry-dispersed aerosol samples between about -26 and -18 C. Only 26 instruments making measurement techniques with wet suspended samples were able to 27 measure ice nucleation above -18 C. A possible explanation for the deviation between -26 28 and -18 C is discussed. In general, the seventeen immersion freezing measurement 29 techniques deviate, within the range of about 7 C in terms of temperature, by three orders of 30 magnitude with respect to ns. In addition, we show evidence that the immersion freezing 31 efficiency (i.e., ns) of illite NX particles is relatively independent on droplet size, particle 32 mass in suspension, particle size and cooling rate during freezing. A strong temperature-33 2 dependence and weak time- and size-dependence of immersion freezing efficiency of illite-34 rich clay mineral particles enabled the ns parameterization solely as a function of temperature. 35 We also characterized the ns(T) spectra, and identified a section with a steep slope between -36 20 C and -27 C, where a large fraction of active sites of our test dust may trigger immersion 37 freezing. This slope was followed by a region with a gentler slope at temperatures below -27 38 C. A multiple exponential distribution fit is expressed as ns(T) = exp(23.82 exp(-exp(0.16 39 (T + 17.49))) + 1.39) based on the specific surface area and ns(T) = exp(25.75 exp(-exp(0.13 40 (T + 17.17))) + 3.34) based on the geometric area (ns and T in m-2 and C, respectively). 41 These new fits, constrained by using an identical reference samples, will help to compare IN 42 measurement methods that are not included in the present study and, thereby, IN data from 43 future IN instruments.

  19. Water Wars

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    Sandia National Laboratories and Intel Corporation are cooperating on a project aimed at developing serious games to assist in resource planners in conducting open and participatory projects. Water Wars serves as a prototype game focused on water issues. Water Wars is a multi-player, online role-playing "serious game" combining large-scale simulation (e.g. SimCity), with strategy and interpersonal interaction (e.g. Diplomacy). The game is about water use set in present-day New Mexico. Players enact various stakeholder rolesmore » and compete for water while simultaneously cooperating to prevent environmental collapse. The gamespace utilizes immersive 3D graphics to bring the problem alive. The game integrates Intel's OpenSim visualization engine with Sandia developed agent-based and system dynamics models.« less

  20. Table of Contents for Desk Guide

    Energy Savers [EERE]

    September, 2014 U. S. Department of Energy - Real Estate Desk Guide Revised 2014 Real Estate Desk Guide Table of Contents Chapter 1-- Purpose of Desk Guide............................................................................... 1 Chapter 2-- Introduction ................................................................................................. 3 Chapter 3-- Planning Policy ........................................................................................... 9 Chapter 4-- Real