Sample records for ice towing tank

  1. Ice Towing Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIIIDrive LtdINDEX JumpISEIXYSIbTank

  2. Stennis Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewNameGeothermalStennis Tow Tank Jump

  3. Ohmsett Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformation GreatersourceOhmsett Tow Tank

  4. Construct Mechanical Pike and Tow Tank Chengcheng Feng

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Construct Mechanical Pike and Tow Tank Chengcheng Feng Faculty Mentor: Professor Yahya Modarres to study the influence of different parameters on acceleration. My second goal is to build a water tank by using a particle image velocimetry (PIV) system. This tank is a testing platform that can be utilized

  5. Creating a flexible, Web-enabled learning and research facility at the M.I.T. Towing Tank

    E-Print Network [OSTI]

    Unger, Matthew L. (Matthew Lawrence)

    2006-01-01T23:59:59.000Z

    The M.I.T. Towing Tank has served as an invaluable research and educational platform for over 50 years. The hands-on learning experiences of towing tank tests have helped countless students to grasp the concepts and theories ...

  6. Carderock Rotating Arm Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannonCirculating Water ChannelArm Tow

  7. Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperations JumpTooele County, Utah:Jump

  8. MIT Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill < MHKYOGbioWaveMHL6.6

  9. Davidson Laboratory Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618b No revision has been approvedDavidsonBasic

  10. Carderock Tow Tank 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannonCirculating Water ChannelArm

  11. Carderock Tow Tank 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannonCirculating Water

  12. Carderock Tow Tank 3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannonCirculating Wateroperable carriages

  13. Chase Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.pngGreat Basin-Overseeing

  14. Ship Towing Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,Pvt Ltd Jump to:Shenzhen79. It.ShidaShilohBottom,

  15. Small Towing Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,PvtSouth Dakota)Slovenia: Energy Resources Contact POC

  16. MHL Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger < MHKHydrodynamics Hydrodynamic

  17. Maine Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain:& Haar,GEPPLtdMaili,

  18. Alden Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand785074掳,AlchemixAlcoaAlden

  19. Haynes Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division | OpenReleaseWindProjectHayHaynes

  20. Lakefront Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Airjoin <Nacimiento,ViewLakefield

  1. Aircraft towing feasibility study. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    Energy costs and availability are major concerns in most parts of the world. Many ways of increasing energy supply and reducing consumption are being proposed and investigated. One that holds considerable promise is the extended towing of aircraft between airport runways and terminal gate areas with engines shut down. This study provides a preliminary assessment of the constraints on and feasibility of extended aircraft towing. Past aircraft towing experience and the state-of-the-art in towing equipment are reviewed. Safety and operational concerns associated with aircraft towing are identified, and the benefits and costs of implementing aircraft towing at 20 major US airports are analyzed. It was concluded that extended aircraft towing is technically feasible and that substantial reductions in aircraft fuel consumption and air pollutant emissions can be achieved through its implementation. It was also concluded that, although capital and operating costs associated with towing would be increased, net savings could generally be attained at these airports. Because of the lack of past experience and the necessity of proving the cost effectiveness of the towing concept, a demonstration of the feasibility of large-scale aircraft towing is necessary. The study evaluates the suitability of the 20 study airports as potential demonstration sites and makes recommendations for the first demonstration project.

  2. Acoustic Method for Fish Counting and Fish Sizing in Tanks

    E-Print Network [OSTI]

    Roux, Philippe; Conti, St閜hane; Demer, David; Maurer, Benjamin D.

    2005-01-01T23:59:59.000Z

    measurements in an echoic tank. ICES Journal of Marineto fish counting in a tank. Journal of the Acousticaland materials of the cylindrical tanks for the experiments.

  3. Department of Industrial & Manufacturing Engineering Spring 2011 Log Splitter Tank Quality Improvement

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Industrial & Manufacturing Engineering Spring 2011 Log Splitter Tank around a central hydraulic tank which acts as the base of the log splitter. The tanks can leak due to poor weld integrity, further aggravated by stresses on the tank during towing. Also, internal rust

  4. Designing for effective stationkeeping in ice

    E-Print Network [OSTI]

    N酶rv氓g, Kjetil

    and intervention vessels for Arctic oil and gas. #12;2. An effective Ice Management system 路 Ice Management for the CIVArctic vessel. - Comparison with the ice model tests carried out in the Aker Arctic ice tank in May 2011

  5. Richmond Field Station Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue RidgeUniversity of California, Berkeley Hydrodynamic

  6. A TOWED PUMP AND SHIPBOARD FILTERING SYSTEM FOR SAMPLING

    E-Print Network [OSTI]

    ;452: A TOWED PUMP AND SHIPBOARD FILTERING SYSTEM FOR SAMPLING SMALL ZOOPLANKTERS ,.^^禄禄r, Commissioner BUREAU OF Commercial Fisheries, Donald L. McKernan, Director A TOWED PUMP AND SHIPBOARD FILTERING Performance 13 Discussion 17 Summary 18 Literature cited 19 111 #12;#12;A TOWED PUMP AND SHIPBOARD FILTERING

  7. SELECTIVITY OF TOWED-NET SAMPLERS RICHARD A. BARKLEY'

    E-Print Network [OSTI]

    SELECTIVITY OF TOWED-NET SAMPLERS RICHARD A. BARKLEY' ABSTRACf The ideal sampler for plankton theoretical analysis of one aspect of selectivity, avoidance of towed-net samplers. The theory is evaluated against three sets of paired samples obtained by different nets at different speeds to provide absolute

  8. Effects of assumed tow architecture on the predicted moduli and stresses in woven composites

    E-Print Network [OSTI]

    Chapman, Clinton Dane

    1993-01-01T23:59:59.000Z

    This study deals with the effect of assumed tow architecture on the elastic material properties and stress distributions of plain weave woven composites. Specifically, the examination of how a cross-section is assumed to sweep-out the tows...

  9. Integrated Short Term Navigation of a Towed Underwater Body \\Lambda

    E-Print Network [OSTI]

    LeGland, Fran莽ois

    is con颅 sidered. An underwater body, to be called here颅 after the fish, is towed by a surface ship centimeters, the trajectory of the fish relative to its otherwise unknown initial position, during a few颅 cated on board of the fish, can be integrated. INS measurements are known to track accurately the high

  10. Integrated Short Term Navigation of a Towed Underwater Body*

    E-Print Network [OSTI]

    LeGland, Fran莽ois

    . An underwater body, to be called here- after the fish, is towed by a surface ship at the end of a few hundred of the fish relative to its otherwise unknown initial position, during a few minutes experiment, so, acceleration measurements pro- vided by an INS (inertial navigation system) lo- cated on board of the fish, can

  11. Safety evaluation for packaging (onsite) nitrogen trailers propane tanks

    SciTech Connect (OSTI)

    Ferrell, P.C.

    1998-01-28T23:59:59.000Z

    The purpose of the Safety Evaluation for Packaging (SEP) is the evaluation and authorization of the onsite transport of propane tanks that are mounted on the Lockheed Martin Hanford Corporation Characterization Project`s nitrogen trailers. This SEP authorizes onsite transport of the nitrogen trailers, including the propane tanks, until May 31, 1998. The three nitrogen trailers (HO-64-4966, HO-64-4968, and HO-64-5170) are rated for 1,361 kg (30,000 lb) and are equipped with tandem axles and pintel hitches. Permanently mounted on each trailer is a 5,678 L (1,500 gal) cryogenic dewar that is filled with nitrogen, and a propane fired water bath vaporizer system, and a 454 L (1 20 gal) propane tank. The nitrogen trailer system is operated only when it is disconnected from the tow vehicle and is leveled and stabilized. When the trailers are transported, the propane tanks are isolated via closed supply valves.

  12. Ice sheets

    E-Print Network [OSTI]

    Bentley, Charles G.; Thomas, Robert H.; Velicogna, Isabella

    2007-01-01T23:59:59.000Z

    is eroding West Antarctic Ice Sheet. Geophysical Researchand Yungel, J. (2000). Greenland Ice Sheet: High-Elevation2004). The west Antarctic ice sheet and long term climate

  13. VARIABILITY OF NEARSURFACE ZOOPLANKTON OFF SOUTHERN CALIFORNIA, AS SHOWN BY TOWED-PUMP SAMPLING

    E-Print Network [OSTI]

    VARIABILITY OF NEAR路SURFACE ZOOPLANKTON OFF SOUTHERN CALIFORNIA, AS SHOWN BY TOWED-PUMP SAMPLING Cl of 1962. Samples were collected with a towed pump at a depth of 5 m. Allproximately 162 samples, each repl pump surveys re- llorted here were undertaken to obtain informa- tion on variability and trends

  14. FAFCO Ice Storage test report

    SciTech Connect (OSTI)

    Stovall, T.K.

    1993-11-01T23:59:59.000Z

    The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

  15. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01T23:59:59.000Z

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  16. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

    1999-11-16T23:59:59.000Z

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  17. Passive ice freezing-releasing heat pipe

    DOE Patents [OSTI]

    Gorski, Anthony J. (Lemont, IL); Schertz, William W. (Batavia, IL)

    1982-01-01T23:59:59.000Z

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  18. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-02-24T23:59:59.000Z

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  19. HANFORD TANK CLEANUP UPDATE

    SciTech Connect (OSTI)

    BERRIOCHOA MV

    2011-04-07T23:59:59.000Z

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  20. Passive ice freezing-releasing heat pipe. [Patent application

    DOE Patents [OSTI]

    Gorski, A.J.; Schertz, W.W.

    1980-09-29T23:59:59.000Z

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  1. Tank characterization report: Tank 241-C-109

    SciTech Connect (OSTI)

    Simpson, B.C.; Borshiem, G.L.; Jensen, L.

    1993-09-01T23:59:59.000Z

    Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

  2. Deep-tow study of magnetic anomalies in the Pacific Jurassic Quiet Zone

    E-Print Network [OSTI]

    Tominaga, Masako

    2006-10-30T23:59:59.000Z

    The Jurassic Quiet Zone (JQZ) is a region of low amplitude, difficult-to-correlate magnetic anomalies located over Jurassic oceanic crust. We collected 1200 km of new deep-tow magnetic anomaly profiles over the Pacific JQZ that complement 2 deep...

  3. Autonomous Control of an Autonomous Underwater Vehicle Towing a Vector Sensor Array

    E-Print Network [OSTI]

    Schmidt, Henrik

    Autonomous Control of an Autonomous Underwater Vehicle Towing a Vector Sensor Array Michael R,arjunab@mit.edu Abstract-- This paper is about the autonomous control of an autonomous underwater vehicle (AUV the ability to deploy large sets of autonomous mobile marine platforms over a wide area of the ocean

  4. Septic Tanks (Oklahoma)

    Broader source: Energy.gov [DOE]

    A license from the Department of Environmental Quality is required for cleaning or pumping of septic tanks or holding tanks and disposing of sewage or septage. The rules for the license are...

  5. Tank 241-TX-105 tank characterization plan

    SciTech Connect (OSTI)

    Carpenter, B.C.

    1995-01-01T23:59:59.000Z

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

  6. Tank 241-T-111 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S.

    1995-01-10T23:59:59.000Z

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-111.

  7. DIESEL FUEL TANK FOUNDATIONS

    SciTech Connect (OSTI)

    M. Gomez

    1995-01-18T23:59:59.000Z

    The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

  8. Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization

    SciTech Connect (OSTI)

    Cochran, J.R. [Sandia National Labs., Albuquerque, NM (United States); McDonald, J.R. [Naval Research Lab., Washington, DC (United States); Russell, R.J. [Geo-Centers, Inc., Newton, MA (United States); Robertson, R. [Hughes Associates, Inc., Washington, DC (United States); Hensel, E. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Mechanical Engineering

    1995-10-01T23:59:59.000Z

    This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy`s Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ``... better, faster, safer and cheaper ...`` system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA).

  9. Archimedean Ice

    E-Print Network [OSTI]

    Kari Eloranta

    2009-09-22T23:59:59.000Z

    The striking boundary dependency (the Arctic Circle phenomenon) exhibited in the ice model on the square lattice extends to other planar set-ups. We present these findings for the triangular and the Kagome lattices. Critical connectivity results guarantee that ice configurations can be generated using the simplest and most efficient local actions. Height functions are utilized throughout the analysis. At the end there is a surprise in store: on the remaining Archimedean lattice for which the ice model can be defined, the 3.4.6.4. lattice, the long range behavior is completely different from the other cases.

  10. Tank characterization reference guide

    SciTech Connect (OSTI)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-09-01T23:59:59.000Z

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

  11. Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information

    E-Print Network [OSTI]

    Hanford Tank Waste Information Enclosure 1 1 Hanford Tank Waste Information 1.0 Summary This information demonstrates the wastes in the twelve Hanford Site tanks meet the definition of transuranic (TRU. The wastes in these twelve (12) tanks are not high-level waste (HLW), and contain more than 100 nanocuries

  12. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, Tod H. (O'Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

    1994-01-01T23:59:59.000Z

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  13. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, T.H.; Ott, H.L.

    1994-01-11T23:59:59.000Z

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  14. Standard Test Methods for Properties of Continuous Filament Carbon and Graphite Fiber Tows

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1999-01-01T23:59:59.000Z

    1.1 These test methods cover the preparation and tensile testing of resin-impregnated and consolidated test specimens made from continuous filament carbon and graphite yarns, rovings, and tows to determine their tensile properties. 1.2 These test methods also cover the determination of the density and mass per unit length of the yarn, roving, or tow to provide supplementary data for tensile property calculation. 1.3 These test methods include a procedure for sizing removal to provide the preferred desized fiber samples for density measurement. This procedure may also be used to determine the weight percent sizing. 1.4 These test methods include a procedure for determining the weight percent moisture adsorption of carbon or graphite fiber. 1.5 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of t...

  15. Iced Coffee Iced Yerba Mate "Tea"

    E-Print Network [OSTI]

    Iced Coffee Iced Yerba Mate "Tea" Iced Yerba Mate Latte Iced Chai Tea Latte Original, Green Tea Canned Soda Xing Tea Bottled Water Arizona Teas Energy Drinks Red Bull, SF Red Bull & Bing Jones Sodas $0 Cafe au Lait Hot Tea Yerba Mate "Tea" Yerba Mate Latte Chai Tea Latte - Original, Green Tea, or Sugar

  16. Experimental Investigation of Direct Expansion Dynamic Ice-on-coil Storage System Used in Residential Buildings

    E-Print Network [OSTI]

    Zheng, M.; Kong, F.; Han, Z.; Liu, W.

    2006-01-01T23:59:59.000Z

    better heat exchanger ability caused by the larger surface of sheet ice, steady and low chilled water temperature was directly extracted from an ice storage tank. The longitudinal and axial fin-added coils improved the COP of the refrigerating unit...

  17. The Ashland tank collapse

    SciTech Connect (OSTI)

    Prokop, J.

    1988-05-01T23:59:59.000Z

    The estimated 3.9-million-gallon diesel oil spill from a collapsed storage tank at the Floreffe, Pa., terminal of Ashland Oil Co. has received a lot of attention, and for good reason. On Jan. 2, 1988 a 40-year-old, 48-ft-high, 120-ft-in diameter, reassembled tank suddenly ruptured and emptied its contents in a massive inland-water way fuel spill. An EPA-estimated 750,000 gallons washed over the 10-foot-high dike (with a holding capacity 110 percent that of the tank) into a drainage system on adjacent property to storm sewers that eventually empty into the Monongahela River, which runs into the Ohio River. More than 180,000 gal were recovered by cleanup, while 2.5 to 3.1 MMgal were contained by the tank farm's dike system.

  18. Tank 48 - Chemical Destruction

    SciTech Connect (OSTI)

    Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

    2013-01-09T23:59:59.000Z

    Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

  19. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  20. Storage Tanks (Arkansas)

    Broader source: Energy.gov [DOE]

    The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters...

  1. Numerical simulation of large amplitude liquid sloshing in a rigid rectangular tank

    E-Print Network [OSTI]

    Bridges, Thomas J.

    1981-01-01T23:59:59.000Z

    NUMERICAL SIMULATION OF LARGE AMPLITUDE LIQUID SLOSHING IN A RIGID RECTANGULAR TANK A Thesis by THOMAS JACKSON BRIDGES Submitted to the Graduate College of Texas A8M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIE'ICE December 1981 Major Subject: Ocean Engineering NUMERICAL SIMULATION OF LARGE AMPLITUDE LIQUID SLOSHING IN A RIGID RECTANGULAR TANK A Thesis by THOMAS JACKSON BRIDGES Approved as to sty1e and content by: (Chairman of Commit ee...

  2. IceCube Project Monthly Report -December 2008 Accomplishments

    E-Print Network [OSTI]

    Saffman, Mark

    IceCube Project Monthly Report - December 2008 Accomplishments 路 Drilling and string installation of December 2008 and a total of 16 strings were deployed by January 15th . The deep core prototype string are filled with water, and the controlled freeze of the water in the tanks is underway. 路 Additional

  3. A radio air shower surface detector as an extension for IceCube and IceTop

    E-Print Network [OSTI]

    J. Auffenberg; T. Gaisser; K. Helbing; T. Huege; T. Karg; A. Karle

    2007-08-24T23:59:59.000Z

    The IceCube neutrino detector is built into the Antarctic ice sheet at the South Pole to measure high energy neutrinos. For this, 4800 photomultiplier tubes (PMTs) are being deployed at depths between 1450 and 2450 meters into the ice to measure neutrino induced charged particles like muons. IceTop is a surface air shower detector consisting of 160 Cherenkov ice tanks located on top of IceCube. To extend IceTop, a radio air shower detector could be built to significantly increase the sensitivity at higher shower energies and for inclined showers. As air showers induced by cosmic rays are a major part of the muonic background in IceCube, IceTop is not only an air shower detector, but also a veto to reduce the background in IceCube. Air showers are detectable by radio signals with a radio surface detector. The major emission process is the coherent synchrotron radiation emitted by e+ e- shower particles in the Earths magnetic field (geosynchrotron effect). Simulations of the expected radio signals of air showers are shown. The sensitivity and the energy threshold of different antenna field configurations are estimated.

  4. Ferrocyanide tank waste stability

    SciTech Connect (OSTI)

    Fowler, K.D.

    1993-01-01T23:59:59.000Z

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

  5. Field demonstration of the ICE 250{trademark} Cleaning System

    SciTech Connect (OSTI)

    Johnston, J.L.; Jackson, L.M.

    1999-10-05T23:59:59.000Z

    The ICE 250{trademark} Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moisture was generated, thereby reducing cleanup and disposal costs.

  6. Field demonstration of the ICE 250[trademark] Cleaning System

    SciTech Connect (OSTI)

    Johnston, J.L.; Jackson, L.M.

    1999-10-05T23:59:59.000Z

    The ICE 250[trademark] Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moistur2048s generated, thereby reducing cleanup and disposal costs.

  7. TANK SPACE OPTIONS REPORT

    SciTech Connect (OSTI)

    WILLIS WL; AHRENDT MR

    2009-08-11T23:59:59.000Z

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  8. CURRICULUM VITAE David W. Tank

    E-Print Network [OSTI]

    Tank, David

    CURRICULUM VITAE David W. Tank Personal Birthdate: June 3, 1953 Citizenship : U.S. Address: Dept Physical Society Biophysical Society #12;Research Publications 1. Tank, D.W., Wu, E.-S., and Webb, W, 207-212 (1982). 2. Webb, W.W., Barak, L.S., Tank, D.W. and Wu, E.-S., Molecular mobility on the cell

  9. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01T23:59:59.000Z

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  10. Tank farm nuclear criticality review

    SciTech Connect (OSTI)

    Bratzel, D.R., Westinghouse Hanford

    1996-09-11T23:59:59.000Z

    The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site.

  11. Tank characterization data report: Tank 241-C-112

    SciTech Connect (OSTI)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-04-01T23:59:59.000Z

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

  12. Arctic ice islands

    SciTech Connect (OSTI)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01T23:59:59.000Z

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  13. Tank characterization data report: Tank 241-C-112

    SciTech Connect (OSTI)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01T23:59:59.000Z

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  14. DOE Vehicular Tank Workshop Agenda

    Broader source: Energy.gov (indexed) [DOE]

    948744369 GoalCharter: Identify key issues, including R&D needs, regulations, codes and standards, and a path forward to enable the deployment of hydrogen storage tanks...

  15. Underground Storage Tanks (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

  16. Underground Storage Tanks (New Jersey)

    Broader source: Energy.gov [DOE]

    This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

  17. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, David F. (Idaho Falls, ID); Suciu, Dan F. (Idaho Falls, ID); Harris, Taryl L. (Idaho Falls, ID); Ingram, Jani C. (Idaho Falls, ID)

    1993-01-01T23:59:59.000Z

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  18. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06T23:59:59.000Z

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  19. Tank closure reducing grout

    SciTech Connect (OSTI)

    Caldwell, T.B.

    1997-04-18T23:59:59.000Z

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

  20. Hanford Tank Cleanup Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety144 December Tank

  1. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq (Taichung, TW); Weng, Kuo-Liang (Taichung, TW)

    1998-01-01T23:59:59.000Z

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  2. Using ice cores from the East Antarctic Ice Sheet, scientists have been able to study

    E-Print Network [OSTI]

    Using ice cores from the East Antarctic Ice Sheet, scientists have been able to study ice's ice sheets. Ice sheets are huge areas of permanent ice. There are only three ice sheets on Earth: the Greenland Ice Sheet, the West Antarctic Ice Sheet, and the East Antarctic Ice Sheet. The Greenland Ice Sheet

  3. Underground Storage Tank Act (West Virginia)

    Broader source: Energy.gov [DOE]

    New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored...

  4. Independent Oversight Review, Hanford Tank Farms- November 2011

    Broader source: Energy.gov [DOE]

    Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades

  5. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-12-31T23:59:59.000Z

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report.

  6. Cornell University's Online Aboveground Petroleum Tank Inspection Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Cornell University's Online Aboveground Petroleum Tank Inspection Program How To's What is Cornell University's Online Aboveground Petroleum Tank Inspection Program? Cornell University's Online Aboveground Petroleum Tank Inspection Program enables assigned tank inspectors to record their monthly aboveground tank

  7. DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program

    E-Print Network [OSTI]

    DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program Dr. Neel Sirosh DIRECTOR and validate 5,000 psi storage tanksTank efficiency: 7.5 颅 8.5 wt% 路 Validate 5,000 psi in-tank-pressure regulators 颅 Total storage system efficiency: 5.7 wt% 路 Develop and validate 10,000 psi storage tanksTank

  8. Waste tank characterization sampling limits

    SciTech Connect (OSTI)

    Tusler, L.A.

    1994-09-02T23:59:59.000Z

    This document is a result of the Plant Implementation Team Investigation into delayed reporting of the exotherm in Tank 241-T-111 waste samples. The corrective actions identified are to have immediate notification of appropriate Tank Farm Operations Shift Management if analyses with potential safety impact exceed established levels. A procedure, WHC-IP-0842 Section 12.18, ``TWRS Approved Sampling and Data Analysis by Designated Laboratories`` (WHC 1994), has been established to require all tank waste sampling (including core, auger and supernate) and tank vapor samples be performed using this document. This document establishes levels for specified analysis that require notification of the appropriate shift manager. The following categories provide numerical values for analysis that may indicate that a tank is either outside the operating specification or should be evaluated for inclusion on a Watch List. The information given is intended to translate an operating limit such as heat load, expressed in Btu/hour, to an analysis related limit, in this case cesium-137 and strontium-90 concentrations. By using the values provided as safety flags, the analytical laboratory personnel can notify a shift manager that a tank is in potential violation of an operating limit or that a tank should be considered for inclusion on a Watch List. The shift manager can then take appropriate interim measures until a final determination is made by engineering personnel.

  9. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect (OSTI)

    Rakestraw, L.D.

    1994-11-15T23:59:59.000Z

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  10. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    SciTech Connect (OSTI)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States); McKeen, R.G. [Alliance for Transportation Research, Albuquerque, NM (United States)

    1998-07-01T23:59:59.000Z

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  11. Monthly Tank Inspection Log Name of Campus

    E-Print Network [OSTI]

    Rosen, Jay

    Monthly Tank Inspection Log Name of Campus Street Address of Campus City, State, and Zip Code of Campus 1 of 2 1. Facility PBS Registration Number 6. DISTRIBUTE TO : 2. Tank Number 3. Tank Registered(S) Satisfactory Repair or Adjustment Required Not Applicable Additional Comments Attached ABOVEGROUND STORAGE TANK

  12. Tips For Residential Heating Oil Tank Owners

    E-Print Network [OSTI]

    Maroncelli, Mark

    路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat homes. The tanks can either be aboveground tanks, normally located in basements or utility rooms

  13. Cornell University's Online Aboveground Petroleum Tank

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Cornell University's Online Aboveground Petroleum Tank Inspection Program How To's Petroleum Bulk-material-storage/petroleum-bulk-storage/Documents/Inspect_GD.pdf What is Cornell University's Online Aboveground Petroleum Tank Inspection Program? Cornell University's Online Aboveground Petroleum Tank Inspection Program enables assigned tank inspectors to record

  14. Buffer Tank Design for Acceptable Control Performance

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Buffer Tank Design for Acceptable Control Performance Audun Faanes and Sigurd Skogestad for the design of buffer tanks. We consider mainly the case where the objective of the buffer tank is to dampen- trol system. We consider separately design procedures for (I) mixing tanks to dampen quality

  15. DOE Vehicular Tank Workshop Sandia National Laboratories

    E-Print Network [OSTI]

    DOE Vehicular Tank Workshop Sandia National Laboratories Livermore, CA April 29, 2010 Thursday the deployment of hydrogen storage tanks in early market fuel cell applications for vehicles Workshop Objectives at the first workshop in more detail, including Type 4 tank and PRD testing, tank service life and tracking

  16. Mobile Ice Nucleus Spectrometer

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Kok, G. L.

    2012-05-07T23:59:59.000Z

    This first year report presents results from a computational fluid dynamics (CFD) study to assess the flow and temperature profiles within the mobile ice nucleus spectrometer.

  17. Ice Drilling Gallonmilkjugs

    E-Print Network [OSTI]

    Saffman, Mark

    Ice Drilling Materials 路 Gallonmilkjugs 路 Syringes,largeand small 路 Pitchers 路 Spraybottles 路 13x9? 路Isitbettertosquirtthewaterslowlyorasquicklyaspossible? 路Doestherateatwhichyousquirtthewaterchangethediameteroftheholes? 路Doesthetypeof`drill

  18. Improvement in LNG storage tanks

    SciTech Connect (OSTI)

    NONE

    1999-11-20T23:59:59.000Z

    To develop and produce natural gas fuel tanks for medium duty truck and transit bus end-use to overcome the weight and range problems inherent in current fuel systems.

  19. Light Duty Vehicle CNG Tanks

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

  20. Evolving Robocode Tank Jacob Eisenstein

    E-Print Network [OSTI]

    Fernandez, Thomas

    Evolving Robocode Tank Fighters Jacob Eisenstein AI Memo 2003-023 October 2003 漏 2 0 0 3 m into things hurts. FANTASY 路 Sensors and actuators are noiseless. 路 Radar sensor detects velocity, bearing

  1. Figure 1: A boxcar is towed without friction up a track at an angle 1 with respect to the horizontal. The mass inside the boxcar hangs at an angle 2 with respect to the top of the boxcar.

    E-Print Network [OSTI]

    Texas at Austin. University of

    a m 1 2 Figure 1: A boxcar is towed without friction up a track at an angle 1 with respect: Boxcar on a Hill In the figure, a boxcar of mass M is being towed up a hill by train car without friction. It is accelerating up the slope with a constant acceleration a. Inside the boxcar, an object of mass m hangs

  2. Investigating leaking underground storage tanks

    E-Print Network [OSTI]

    Upton, David Thompson

    1989-01-01T23:59:59.000Z

    INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

  3. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2010-06-21T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  4. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    SciTech Connect (OSTI)

    Becker, D.L.

    1997-11-03T23:59:59.000Z

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding.

  5. ROBOTIC TANK INSPECTION END EFFECTOR

    SciTech Connect (OSTI)

    Rachel Landry

    1999-10-01T23:59:59.000Z

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original intent of the contract, the focus remains on the RTIEE.

  6. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect (OSTI)

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2009-11-15T23:59:59.000Z

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  7. -1 -RECOMMENDATIONS FROM THINK TANK CONVENORS December 7, 2011

    E-Print Network [OSTI]

    - 1 - RECOMMENDATIONS FROM THINK TANK CONVENORS of our expert think tank 'Managing for Uncertainty: Pathogens and Disease Wildlife in Canada (COSEWIC), Australia's Invitational Scientists' Think Tank Managing

  8. Acoustic Method for Fish Counting and Fish Sizing in Tanks

    E-Print Network [OSTI]

    Kuperman, William A.; Roux, Philippe

    2004-01-01T23:59:59.000Z

    Counting and Fish Sizing in Tanks W.A. Kuperman and Philippedistributed among its 97 tanks to maximize feed-conversionrequires inventory- ing tanks regularly. Currently, this is

  9. A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks

    E-Print Network [OSTI]

    Carrington-Crouch, Robert

    1996-01-01T23:59:59.000Z

    s Leaking Underground Fuel Tanks (LUFTs). Submitted to theCalifornia抯 Underground Storage Tank Program. Submitted tos Leaking Underground Fuel Tanks by Samantha Carrington

  10. DOE Selects Washington River Protection Solutions, LLC for Tank...

    Energy Savers [EERE]

    Plateau. The scope of the tank operations contract includes base operations of the tanks, analytical laboratory support, single-shell tank retrieval and closure, Waste...

  11. Evaluation of Tank 241-T-111 Level Data and In-Tank Video Inspection

    SciTech Connect (OSTI)

    Schofield, John S. [Columbia Energy and Environmental Services (United States); Feero, Amie J. [Washington River Protection Solutions, LLC (United States)

    2014-03-17T23:59:59.000Z

    This document summarizes the status of tank T-111 as of January 1, 2014 and estimates a leak rate and post-1994 leak volume for the tank.

  12. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26T23:59:59.000Z

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  13. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04T23:59:59.000Z

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  14. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19T23:59:59.000Z

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  15. Reionization on ice

    E-Print Network [OSTI]

    C. C. Dudley; M. Imanishi; P. R. Maloney

    2006-02-15T23:59:59.000Z

    The case for substantial far infrared ice emission in local ultraluminous infrared galaxies, expected based on the presence of mid-infrared ice absorption in their spectra and the known far infrared optical properties of ice, is still largely unsupported by direct observation owing to insufficient far infrared spectral coverage. Some marginal supportive evidence is presented here. A clear consequence of far infrared ice emission is the need to extend the range of redshifts considered for submillimeter sources. This is demonstrated via the example of HDF 850.1. The solid phase of the ISM during reionization may be dominated by ice, and this could lead to the presence of reionization sources in submillimeter source catalogs. Submillimeter sources not detected at 24 micron in the GOODS-N field are examined. Two candidate reionization sources are identified at 3.6 micron through possible Gunn-Peterson saturation in the Z band.

  16. Auxiliary resonant DC tank converter

    DOE Patents [OSTI]

    Peng, Fang Z. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  17. In-tank recirculating arsenic treatment system

    DOE Patents [OSTI]

    Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

    2009-04-07T23:59:59.000Z

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  18. TANK48 CFD MODELING ANALYSIS

    SciTech Connect (OSTI)

    Lee, S.

    2011-05-17T23:59:59.000Z

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

  19. Very ice rich permafrost Moderately ice rich permafrost

    E-Print Network [OSTI]

    Ruess, Roger W.

    TK lake Very ice rich permafrost Permafrost forest Moderately ice rich permafrost Open Bog Open Fen characteristics (mainly ice content) and burn severity determine trajectories of ecosystem succession post in the presence of moderately ice rich permafrost but have high resilience only under low burn severity in very

  20. Ice Cream with a Heart Create a new Clemson Ice

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    Ice Cream with a Heart Contest! Create a new Clemson Ice Cream flavor! Raise money for your favorite charity! Win a free Clemson Ice Cream party for your organization! Enter at www organizations. The contest is called Ice Cream with a Heart and its purpose is to help student organizations

  1. Tank Waste Disposal Program redefinition

    SciTech Connect (OSTI)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01T23:59:59.000Z

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  2. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    SciTech Connect (OSTI)

    TURNER DA; KIRCH NW; WASHENFELDER DJ; SCHAUS PS; WODRICH DD; WIEGMAN SA

    2010-04-27T23:59:59.000Z

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  3. Technical requirements specification for tank waste retrieval

    SciTech Connect (OSTI)

    Lamberd, D.L.

    1996-09-26T23:59:59.000Z

    This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

  4. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C桭ostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  5. Comparative safety analysis of LNG storage tanks

    SciTech Connect (OSTI)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01T23:59:59.000Z

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  6. Tank 241-BY-103 Tank Characterization Plan. Revision 1

    SciTech Connect (OSTI)

    Schreiber, R.D.

    1995-02-27T23:59:59.000Z

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-103.

  7. Tank 241-U-106 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-U-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  8. Milagro Tank Temperature Study: w/ and w/o Tank Insulation

    E-Print Network [OSTI]

    Milagro Tank Temperature Study: w/ and w/o Tank Insulation John A.J. Matthews and Bill Miller johnm/24 #12;Tank Temperature Study for Northern Auger 路 Auger North site (Colorado) is colder than Auger South. 路 Sept 2006: instrument Milargo outrigger tank to study freezing issues (Left photo) (Milagro experiment

  9. The Fuel Tank Consider a cylindrical fuel tank of radius r and length L, that is

    E-Print Network [OSTI]

    Feldman, Joel

    The Fuel Tank Question Consider a cylindrical fuel tank of radius r and length L, that is lying on its side. Suppose that fuel is being pumped into the tank at a rate q. At what rate is the fuel level rising? r L Solution Here is an end view of the tank. The shaded part of the circle is filled with fuel

  10. DIFFRACTION STUDIES OF ICE Alexe BOSAK

    E-Print Network [OSTI]

    Titov, Anatoly

    Ic 28o halo observed at least 7 times since 1629 octahedral particles of ice Ic! #12;Cooling downDIFFRACTION STUDIES OF ICE Alexe茂 BOSAK European Synchrotron Radiation Facility #12;Ice as the mild threat ice Ih the only ice in the crust #12;Ice as the absolute weapon Ice IX : melting point 45.8掳C

  11. Tank 241-BY-103 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-05T23:59:59.000Z

    Tank 241-BY-103 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-103 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  12. Tank 241-BY-108 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    Tank 241-BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in ``Program Plan for the Resolution of Tank Vapor Issues`` (Osborne and Huckaby 1994). Tank 241-BY-108 was vapor sampled in accordance with ``Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994).

  13. Tank 241-BY-105 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    Tank 241-BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-105 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  14. Tank 241-BY-107 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  15. Tank 241-BY-107 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-05T23:59:59.000Z

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues{close_quotes}. Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution{close_quotes}.

  16. Tank 241-BY-106 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    Tank 241-BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-106 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  17. Tank 241-BY-104 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    Tank 241-BY-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-104 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  18. Global ice sheet modeling

    SciTech Connect (OSTI)

    Hughes, T.J.; Fastook, J.L. [Univ. of Maine, Orono, ME (United States). Institute for Quaternary Studies

    1994-05-01T23:59:59.000Z

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  19. Hanford Communities Issue Briefing on Tank Farms

    Broader source: Energy.gov [DOE]

    Department of Energy Office of River Protection representatives Stacy Charboneau (Deputy Manager) and Tom Fletcher (Tank Farms Assistant Manager) and Washington State Department of Ecology's Suzanne Dahl (Tank Waste Section Manager) discuss Hanford's complex tank waste retrieval mission with members of the community.

  20. Onsite Wastewater Treatment Systems: Pump Tank

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    Pump tanks are concrete, fiberglass or polyethylene containers that collect wastewater to be dosed into the soil at intervals. This publication explains the design and maintenance of pump tanks, and it offers advice on what to do if a pump tank...

  1. Above Ground Storage Tank (AST) Inspection Form

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name: ______________________ Tank No:_______________ Date:_____________ Inspection Parameter Result Comments/Corrective Actions 1. Is there leaking in the interstitial space (not DRY)? YES/NO/NA 2. Tank surface shows signs of leakage? YES/NO/NA 3

  2. A Comparison of Immersive HMD, Fish Tank VR and Fish Tank with Haptics Displays for Volume Visualization

    E-Print Network [OSTI]

    Healey, Christopher G.

    A Comparison of Immersive HMD, Fish Tank VR and Fish Tank with Haptics Displays for Volume: (1) head-mounted display (HMD); (2) fish tank VR (fish tank); and (3) fish tank VR augmented its structure. Fish tank and haptic participants saw the entire volume on-screen and rotated

  3. Ice Formation in Gas-Diffusion Layers

    E-Print Network [OSTI]

    Dursch, Thomas

    2013-01-01T23:59:59.000Z

    the University of California. Ice Formation in Gas-Diffusionsub-freezing conditions, ice forms in the gas-diffusionstrategies exist to prevent ice formation, there is little

  4. ICE Raids: Compounding Production, Contradiction, and Capitalism

    E-Print Network [OSTI]

    Reas, Elizabeth I

    2009-01-01T23:59:59.000Z

    America: Factories and ICE Raids Produce Citizens Americansubjects. ICE raids (re)produce workers contradictoryfactories and ICE raids have come to produce immigrant

  5. ICPP Tank Farm planning through 2012

    SciTech Connect (OSTI)

    Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

    1998-04-01T23:59:59.000Z

    Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed.

  6. Analysis of tank deformation from fire induced ruptures and BLEVEs of 400 l propane tanks

    SciTech Connect (OSTI)

    Kielec, D.J.; Birk, A.M. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Mechanical Engineering

    1996-12-01T23:59:59.000Z

    A series of fire tests were conducted to study the thermal rupture of propane tanks. The tests involved 400 liter ASME automotive propane tanks filled to 80% capacity with commercial propane. The tanks were brought to failure using torches and pool fires. the resulting thermal ruptures varied in severity from minor fissures, measuring a few centimeters in length, to catastrophic failures where the tank was flattened on the ground. The catastrophic failures would typically be called Boiling Liquid Expanding Vapour Explosions (BLEVE). The objective of this work was to develop a correlation between the failure severity and the tank condition at failure. The deformed propane tanks were measured in detail and the extent of deformation was quantified. The tank failure severity was found to be a complex function of a number of tank and lading properties at failure. this paper presents the measured data from the tanks and a step by step description of how the correlation was determined.

  7. Coherent radar ice thickness measurements over the Greenland ice sheet

    E-Print Network [OSTI]

    Gogineni, S. Prasad; Tammana, Dilip; Braaten, David A.; Leuschen, C.; Legarsky, J.; Kanagaratnam, P.; Stiles, J.; Allen, C.; Jezek, K.; Akins, T.

    2001-12-27T23:59:59.000Z

    We developed two 150-MHz coherent radar depth sounders for ice thickness measurements over the Greenland ice sheet. We developed one of these using connectorized components and the other using radio frequency integrated circuits (RFICs). Both...

  8. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    SciTech Connect (OSTI)

    Hommel, S.; Fountain, D.

    2012-03-28T23:59:59.000Z

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  9. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17T23:59:59.000Z

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  10. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30T23:59:59.000Z

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  11. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25T23:59:59.000Z

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  12. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2012-06-21T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  13. MEAT, POULTRY, Still contains ice

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    MEAT, POULTRY, SEAFOOD Still contains ice crystals and feels as cold, there will be some texture and Clavor loss. Discard DAIRY Still contains ice crystals and feels Ice cream, frozen yogurt Discard Discard Cheese (soft and semi-soft) Refreeze. May

  14. The IceCube Collaboration:contributions to the 30 th International Cosmic Ray Conference (ICRC 2007),

    SciTech Connect (OSTI)

    IceCube Collaboration; Ackermann, M.

    2007-11-02T23:59:59.000Z

    This paper bundles 40 contributions by the IceCube collaboration that were submitted to the 30th International Cosmic Ray Conference ICRC 2007. The articles cover studies on cosmic rays and atmospheric neutrinos, searches for non-localized, extraterrestrial {nu}{sub e}, {nu}{sub {mu}} and {nu}{sub {tau}} signals, scans for steady and intermittent neutrino point sources, searches for dark matter candidates, magnetic monopoles and other exotic particles, improvements in analysis techniques, as well as future detector extensions. The IceCube observatory will be finalized in 2011 to form a cubic-kilometer ice-Cherenkov detector at the location of the geographic South Pole. At the present state of construction, IceCube consists of 52 paired IceTop surface tanks and 22 IceCube strings with a total of 1426 Digital Optical Modules deployed at depths up to 2350 m. The observatory also integrates the 19 string AMANDA subdetector, that was completed in 2000 and extends IceCube's reach to lower energies. Before the deployment of IceTop, cosmic air showers were registered with the 30 station SPASE-2 surface array. IceCube's low noise Digital Optical Modules are very reliable, show a uniform response and record waveforms of arriving photons that are resolvable with nanosecond precision over a large dynamic range. Data acquisition, reconstruction and simulation software are running in production mode and the analyses, profiting from the improved data quality and increased overall sensitivity, are well under way.

  15. Optimal Tank Farm Operation Sebastian Terrazas-Moreno

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimal Tank Farm Operation Sebastian Terrazas-Moreno Ignacio E. Grossmann John M. Wassick EWOIn collaboration with The Dow Chemical Company #12;A tank farm is a set of storage tanks that hold finished product until it is shipped Each tank can only hold one Loading of product takes place only from storage tanks

  16. DEPARTMENf OF NUCLEAR PHYSICS TANK OPENING REPORT NO 62

    E-Print Network [OSTI]

    Chen, Ying

    DEPARTMENf OF NUCLEAR PHYSICS TANK OPENING REPORT NO 62 This report covers three tank openings; 2 history. We were plagued throughout these tank openings by poor beam transmission and spent most of our have, were manufactured and installed. The first tank opening2 May t.o 6 May 1988. This tank opening

  17. ice | proceedings Forensic Engineering

    E-Print Network [OSTI]

    Mottram, Toby

    ice | proceedings Forensic Engineering Volume 165 Issue FE4 November 2012 Forensic Engineering or economic damage. Research and practice papers are sought on traditional or modern forensic engineering, design and construction. Topics covered also include research and education best practice in forensic

  18. ICPP tank farm closure study. Volume 1

    SciTech Connect (OSTI)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

    1998-02-01T23:59:59.000Z

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  19. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2011-06-23T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  20. FY 1996 Tank waste analysis plan

    SciTech Connect (OSTI)

    Homi, C.S.

    1996-09-18T23:59:59.000Z

    This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

  1. Tank 241-TY-103 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-TY-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  2. Tank 241-SX-106 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-SX-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  3. Tank 241-T-107 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-T-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  4. Tank 241-TY-104 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-TY-104. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  5. Tank 241-C-105 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-105. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  6. Tank 241-C-102 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-102. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  7. Tank 241-TY-101 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-TY-101. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  8. Tank 241-C-106 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  9. Tank 241-B-103 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-B-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  10. Tank 241-BX-104 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-BX-104. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  11. Tank 241-C-109 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-10T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-109. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  12. Tank 241-C-111 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-111. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  13. Tank 241-C-110 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  14. Tank 241-C-107 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  15. Tank 241-BY-110 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    This report presents the details of the Hanford waste tank characterization study for tank 241-BY-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to the tank farm workers due to fugitive emissions from the tank.

  16. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Butterworth, St.W. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States)

    2008-07-01T23:59:59.000Z

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  17. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect (OSTI)

    Rieck, R.H.

    1996-10-03T23:59:59.000Z

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  18. Tank farm backlog soil sample analysis plan

    SciTech Connect (OSTI)

    Ahlers, J.D., Westinghouse Hanford

    1996-07-17T23:59:59.000Z

    This document describes the measures to collect samples, perform testing on samples, and make decisions to obtain a Contained- in Determination for tank farms backlog soil.

  19. High-Pressure Tube Trailers and Tanks

    Broader source: Energy.gov (indexed) [DOE]

    bending stress: continuous fiber vessels and vessels made of replicants Conformable tanks require internal stiffeners (ribs) to efficiently support the pressure and minimize...

  20. Georgia Underground Storage Tank Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (揢STs) of 搑egulated substances other than...

  1. Math 315 Exam #3 Solutions in Brief 1. (20 points) Two tanks contain 10 liters of water each. Initially tank

    E-Print Network [OSTI]

    Math 315 Exam #3 Solutions in Brief 1. (20 points) Two tanks contain 10 liters of water each. Initially tank 1 contains no salt and tank 2 contains 246 grams of salt. Water con- taining 50 grams of salt per liter is added to tank 1 at the rate 2 liters/minute. Water containing no salt is added to tank 2

  2. Tank characterization report for single-shell tank 241-BY-112

    SciTech Connect (OSTI)

    Baldwin, J.H.

    1997-08-22T23:59:59.000Z

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-112. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10. (This tank has been designated a Ferrocyanide Watch List tank.)

  3. ATR/OTR-SY Tank Camera Purge System and in Tank Color Video Imaging System

    SciTech Connect (OSTI)

    Werry, S.M.

    1995-06-06T23:59:59.000Z

    This procedure will document the satisfactory operation of the 101-SY tank Camera Purge System (CPS) and 101-SY in tank Color Camera Video Imaging System (CCVIS). Included in the CPRS is the nitrogen purging system safety interlock which shuts down all the color video imaging system electronics within the 101-SY tank vapor space during loss of nitrogen purge pressure.

  4. Supporting document for the historical tank content estimate for A Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01T23:59:59.000Z

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  5. Tank 241-C-101 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories.

  6. Supporting document for the historical tank content estimate for BY-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28T23:59:59.000Z

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  7. Supporting document for the historical tank content estimate for B Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01T23:59:59.000Z

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  8. Supporting document for the historical tank content estimate for BY Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01T23:59:59.000Z

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the BY Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices contain data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  9. Supporting document for the historical tank content estimate for S tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01T23:59:59.000Z

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  10. Supporting document for the historical tank content estimate for the SX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25T23:59:59.000Z

    This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  11. Supporting document for the historical tank content estimate for the S-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25T23:59:59.000Z

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  12. Supporting document for the historical tank content estimate for AW-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06T23:59:59.000Z

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  13. Supporting document for the historical tank content estimate for AP-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06T23:59:59.000Z

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  14. Supporting document for the historical tank content estimate for AN-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06T23:59:59.000Z

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  15. Supporting document for the historical tank content estimate for AY-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford, Fluor Daniel Hanford

    1997-03-12T23:59:59.000Z

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  16. Hail ice impact on composite structures at glancing angles

    E-Print Network [OSTI]

    Funai, Sho

    2012-01-01T23:59:59.000Z

    investigation of high velocity ice impacts on woven carbon/and ice sphere. .by trailing ice fragments. ..

  17. Tank Waste Remediation System Guide

    SciTech Connect (OSTI)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01T23:59:59.000Z

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties.

  18. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    SciTech Connect (OSTI)

    Girardot, Crystal L. [Washington River Protection Solutions, Richland, WA (United States); Washenfelder, Dennis J. [Washington River Protection Solutions, Richland, WA (United States); Johnson, Jeremy M. [USDOE Office of River Protection, Richland, WA (United States); Engeman, Jason K. [Washington River Protection Solutions, Richland, WA (United States)

    2013-11-14T23:59:59.000Z

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.

  19. Formation of high density amorphous ice by decompression of ice VII and ice VIII at 135 K

    E-Print Network [OSTI]

    McBride, Carl

    of ice Ih and are found to have very similar structures. By cooling liquid water along the water trans- forms into ice VIII when cooled . With this in mind Klug et al. were able to produce low densityFormation of high density amorphous ice by decompression of ice VII and ice VIII at 135 K Carl Mc

  20. Phase Chemistry of Tank Sludge Residual Components

    SciTech Connect (OSTI)

    J.L. Krumhansl

    2002-04-02T23:59:59.000Z

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate nearby groundwaters with radionuclides and RCRA metals. Performance assessment (PA) calculations must be carried out prior to closing the tanks. This requires developing radionuclide release models from the sludges so that the PA calculations can be based on credible source terms. These efforts continued to be hindered by uncertainties regarding the actual nature of the tank contents and the distribution of radionuclides among the various phases. In particular, it is of vital importance to know what radionuclides are associated with solid sludge components. Experimentation on actual tank sludges can be difficult, dangerous and prohibitively expensive. The research funded under this grant for the past three years was intended to provide a cost-effective method for developing the needed radionuclide release models using non-radioactive artificial sludges. Insights gained from this work will also have more immediate applications in understanding the processes responsible for heel development in the tanks and in developing effective technologies for removing wastes from the tanks.

  1. Annual radioactive waste tank inspection program - 1996

    SciTech Connect (OSTI)

    McNatt, F.G.

    1997-04-01T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  2. Annual Radioactive Waste Tank Inspection Program - 1998

    SciTech Connect (OSTI)

    McNatt, F.G.

    1999-10-27T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  3. Annual radioactive waste tank inspection program - 1999

    SciTech Connect (OSTI)

    Moore, C.J.

    2000-04-14T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  4. Battelle determines cause of Ashland tank failure

    SciTech Connect (OSTI)

    Mesloh, R.E.; Marschall, C.W.; Buchheit, R.D.; Kiefner, J.F. (Battelle Memorial Institute, Columbus, OH (US))

    1988-09-26T23:59:59.000Z

    An existing flaw, combined with embrittled steel and residual stresses, led to the catastrophic failure of the fuel oil tank at Ashland Petroleum Co., Floreffe, Pa., last January. Here is a look at the tank's background, events surrounding its rupture, and Battelle's methods for investigating the incident.

  5. Application of infrared imaging in ferrocyanide tanks

    SciTech Connect (OSTI)

    Morris, K.L.; Mailhot, R.B. Jr.; McLaren, J.M.; Morris, K.L.

    1994-09-28T23:59:59.000Z

    This report analyzes the feasibility of using infrared imaging techniques and scanning equipment to detect potential hot spots within ferrocyanide waste tanks at the Hanford Site. A hot spot is defined as a volumetric region within a waste tank with an excessively warm temperature that is generated by radioactive isotopes. The thermal image of a hot spot was modeled by computer. this model determined the image an IR system must detect. Laboratory and field tests of the imaging system are described, and conclusions based on laboratory and field data are presented. The report shows that infrared imaging is capable of detecting hot spots in ferrocyanide waste tanks with depths of up to 3.94 m (155 in.). The infrared imaging system is a useful technology for initial evaluation and assessment of hot spots in the majority of ferrocyanide waste tanks at the Hanford Site. The system will not allow an exact hot spot and temperature determination, but it will provide the necessary information to determine the worst-case hot spot detected in temperature patterns. Ferrocyanide tanks are one type of storage tank on the Watch List. These tanks are identified as priority 1 Hanford Site Tank farm Safety Issues.

  6. Technical Assessment of Compressed Hydrogen Storage Tank Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical report...

  7. Independent Oversight Activity Report, Hanford Tank Farms - March...

    Broader source: Energy.gov (indexed) [DOE]

    10-12, 2014, at the Hanford Tank Farms. The activity consisted of HSS staff observing Hanford Tank Farm operations and a Department of Energy Facility Representative training...

  8. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which includes disposition of the SSTs, ancillary equipment, and soils. The SST (149 tanks) and DST (28 tanks) systems contain both hazardous and radioactive waste (mixed...

  9. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington" and "Environmental Impact Statement for the...

  10. Progress Continues Toward Closure of Two Underground Waste Tanks...

    Office of Environmental Management (EM)

    Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site...

  11. Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

  12. Bonfire Tests of High Pressure Hydrogen Storage Tanks | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Bonfire Tests of High Pressure Hydrogen Storage Tanks Bonfire Tests of High Pressure Hydrogen Storage Tanks These slides were presented at the International Hydrogen Fuel and...

  13. E-Print Network 3.0 - aboveground storage tanks Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: aboveground storage tanks...

  14. Hidden force floating ice

    E-Print Network [OSTI]

    Chang Q. Sun

    2015-01-17T23:59:59.000Z

    Because of the segmental specific-heat disparity of the hydrogen bond (O:H-O) and the Coulomb repulsion between oxygen ions, cooling elongates the O:H-O bond at freezing by stretching its containing angle and shortening the H-O bond with an association of larger O:H elongation, which makes ice less dense than water, allowing it to float.

  15. Ice Storm Supercomputer

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  16. Annual radioactive waste tank inspection program -- 1993

    SciTech Connect (OSTI)

    McNatt, F.G. Sr.

    1994-05-01T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

  17. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  18. Greenland Ice Sheet Retreat Since the Little Ice Age

    E-Print Network [OSTI]

    Beitch, Marci Jillian

    2014-01-01T23:59:59.000Z

    and I. Willis (2012), Greenland's shrinking ice cover: "fastfluctuations in southeast Greenland, Nat. Geosci. , 5(6),T. Decker (2011), Analysis of Greenland marine- terminating

  19. Engineering Notes Ice Shape Characterization Using

    E-Print Network [OSTI]

    Tino, Peter

    Engineering Notes Ice Shape Characterization Using Self-Organizing Maps Stephen T. McClain Baylor. Introduction DURING the validation and verification of ice accretion codes, predicted ice shapes must be compared with experimental measurements of wind-tunnel or atmospheric ice shapes. Current methods for ice

  20. Tank characterization report for single-shell tank 241-BY-104

    SciTech Connect (OSTI)

    Benar, C.J.

    1996-09-26T23:59:59.000Z

    This characterization report summarizes the available information on the historical uses, current status, and the sampling and analysis results of waste contained in underground storage tank 241-BY-104. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09. Tank 241-BY-104 is one of 12 single-shell tanks located in the BY-Tank Farm in the 200 East Area of the Hanford Site. Tank 241-BY-104 entered service in the first quarter of 1950 with a transfer of metal waste from an unknown source. Through cascading, the tank was full of metal waste by the second quarter of 1951. The waste was sluiced in the second quarter of 1954. Uranium recovery (tributyl phosphate) waste was sent from tank 241-BY-107 during the second quarter of 1955 and from tank 241-BY-110 during the third quarter of 1955. Most of this waste was sent to a crib during the fourth quarter of 1955. During the third and fourth quarters of 1956 and the second and third quarters of 1957, the tank received waste from the in-plant ferrocyanide scavenging process (PFeCN2) from tanks 241-BY-106, -107, -108, and -110. This waste type is predicted to compose the bottom layer of waste currently in the tank. The tank received PUREX cladding waste (CWP) periodically from 1961 to 1968. Ion-exchange waste from cesium recovery operations was received from tank 241-BX-104 during the second and third quarters of 1968. Tank 241-BY-104 received evaporator bottoms waste from the in-tank solidification process that was conducted in the BY-Tank Farm 0247from tanks 241 -BY- 109 and 241 -BY- 1 12 from 1970 to 1974. The upper portion of tank waste is predicted to be composed of BY saltcake. Tank 241-BY-104 was declared inactive in 1977. Waste was saltwell pumped from the tank during the third quarter of 1982 and the fourth quarter of 1985. Table ES-1 and Figure ES-1 describe tank 241-BY-104 and its status. The tank has an operating capacity of 2,869 kL and presently contains an estimated 1,234 kL of noncomplexed waste. Of this total volume, 568 kL are estimated to be sludge and 666 kL are estimated to be saltcake. The Hanlon values are not used because they are inconsistent with waste surface level measurements, and they will not be updated until the tank level stabilizes and the new surface photos are taken. This report summarizes the collection and analysis of two rotary-mode core samples obtained in October and November 1995 and reported in the Final Report for Tank 241-BY-104, Rotary Mode Cores 116 and 117. Cores 116 and 117 were obtained from risers 5 and IIA, respectively. The sampling event was performed to satisfy the requirements listed in the following documents: Tank Safety Screening Data Quality Objective , Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objective Process, Data Quality Objective to Support Resolution of the Organic Fuel Rich Tank Safety Issue, Test Plan for Samples from Hanford Waste Tanks 241-BY-103, BY-104, BY-105, BY-106, BY-108, BY-110, YY-103, U-105, U-107, U-108, and U-109.

  1. Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi)

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations for the Certification of Persons who Install, Alter, and Remove Underground Storage Tanks applies to any project that will install, alter or remove...

  2. Ice Mass Balance Buoy: An Instrument to Measure and Attribute Changes in Ice Thickness

    E-Print Network [OSTI]

    Geiger, Cathleen

    Ice Mass Balance Buoy: An Instrument to Measure and Attribute Changes in Ice Thickness Jacqueline A the Ice Mass Balance buoy (IMB) in response to the need for monitoring changes in the thickness of the Arctic sea ice cover. The IMB is an autonomous, ice-based system. IMB buoys provide a time series of ice

  3. Low Temperature Air Distribution with Ice Storage System: A Case Study

    E-Print Network [OSTI]

    Ash, A.

    1990-01-01T23:59:59.000Z

    -05 BLDG CHW RET TEMP 44.9 DEG 5) 02-08 ICE TANK SUP TEMP 36.8 DEG 6) 11-04 CHW BYPASS SETPT 20.0 PSI (S-select for override) 7) 02-03 CHW DIFF PRESSURE 13.7 PSI 8j 12-02 CHW BYPASS VALVE 0.0 PCT (S-select for override) 9) 02-06 PRIMARY LOOP FLOW 212...-previous 3 ICE SYSTEM Status: S- 1) 11-03 CHW MIXING SETPT 2) 0Z-02 MIXED CHW SUP TEMP 3) 12-01 CHW MIXING VRLVE 4) 02-05 BLDG CHW RET TEMP 5) 02-08 ICE TRNK SUP TEMP 6) 11-04 CHW BYPRSS SETPT 7) 02-03 CHW DIFF PRESSURE 8) 12-02 CHW BYPRSS VRLVE 9...

  4. Fire and Ice Issue 9

    E-Print Network [OSTI]

    Multiple Contributors

    2005-01-01T23:59:59.000Z

     FIRE AND ICE # 9 IB FIRE ICE #9 A Blake/Avon slash fanzine r Available from: Kathleen Resch POBox 1766 Temple City, CA 91780 Kathleener@aol.com FIRE AND ICE # 9copyright May, 2005 by Kathleen Resch for the contributors. No reprints... or reproduction without the written permission ofthe author/artist This is an amateur publication and is not p intended to infringe upon the rights ofany holders of"Blake's 7" copyrights. FIRE AND ICE 9 TABLE OF CONTENTS LEAVING ROOM 101 by Nova 2 TOO MANY...

  5. ELIAS Towe, Center Director

    E-Print Network [OSTI]

    Goldstein, Seth Copen

    the generation of hydrogen as a fuel for fuel cells, novel fuel cell technologies, and spectrally broadband photovoltaic cells for solar energy conversion. The secondary focus of the Center is on nano

  6. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  7. TANK 4 CHARACTERIZATION, SETTLING, AND WASHING STUDIES

    SciTech Connect (OSTI)

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-09-29T23:59:59.000Z

    A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na{sub 2}SO{sub 4} {center_dot} Na{sub 2}CO{sub 3}). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form. (3) There is 19% more S than can be accounted for by IC sulfate measurement. This additional soluble S is detected by ICP-AES analysis of the supernate. (4) Total supernate and slurry sulfur by ICP-AES should be monitored during washing in addition to supernate sulfate in order to avoid under estimating the amount of sulfur species removed or remaining in the supernate. (5) OLI simulation calculations show that the presence of undissolved Burkeite in the Tank 4 sample is reasonable, assuming a small difference in the Na concentration that is well within the analytical uncertainties of the reported value. The following conclusions were drawn from the blend studies of Tank 4 and decanted Tank 51-E1: (1) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the degree and time for settling. (2) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the plastic viscosity and yield stress. (3) The SRNL washing test, where nearly all of the wash solution was decanted from the solids, indicates that approximately 96% or more of the total S was removed from the blend in these tests, and the removal of the sulfur tracks closely with that of Na. Insoluble (undissolved) S remaining in the washed sludge was calculated from an estimate of the final slurry liquid fraction, the S result in the slurry digestion, and the S in the final decant (which was very close to the method detection limit). Based on this calculated result, about 4% of the initial total S remained after these washes; this amount is equivalent to about 18% of the initially undissolved S.

  8. Small Waste Tank Sampling and Retrieval System

    SciTech Connect (OSTI)

    Magleby, Mary Theresa

    2002-08-01T23:59:59.000Z

    At the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL), four 1500-gal catch tanks were found to contain RCRAhazardous waste. A system was needed to obtain a representative sample of the liquid, as well as the hardpacked heels, and to ultimately homogenize and remove the tank contents for disposal. After surveying the available technologies, the AEA Fluidic Pulse Mixing and Retrieval System was chosen for a technology demonstration. A demonstration, conducted with nonhazardous surrogate material, proved that the system was capable of loosening the hard-packed heel, homogenizing the entire tank contents, and collecting a representative sample. Based on the success of the demonstration, a detailed evaluation was done to determine the applicability of the system to other tanks. The evaluation included the sorting of data on more than 700 tanks to select candidates for further deployment of the system. A detailed study was also done to determine if the purchase of a second system would be cost effective. The results of the evaluation indicated that a total of thirteen tanks at the INEEL are amenable to sampling and/or remediation using the AEA Fluidic Pulse Mixing and Retrieval System. Although the currently-owned system appears sufficient for the needs of one INEEL program, it is insufficient to meet the combined needs at the INEEL. The INEEL will commence operation of the system on the TRA-730 Catch Tank System in June 2002.

  9. ICE Raids: Compounding Production, Contradiction, and Capitalism

    E-Print Network [OSTI]

    Reas, Elizabeth I

    2009-01-01T23:59:59.000Z

    is just a cheap way of boosting ICE 慶riminal alien arrestRegardless of whether or not ICE is motivated by maintainingWorkers in America: Factories and ICE Raids Produce Citizens

  10. ICE Pulse Oximeter Smart Alarm App Requirements

    E-Print Network [OSTI]

    Huth, Michael

    ICE Pulse Oximeter Smart Alarm App Requirements 6 March 2012 Revision 0 for an Integrated Clinical Environment (ICE) pulse oximetry monitoring app that provides.2 References [Purpose: List all ICE standards, and other standards and references

  11. TANK MIXING STUDY WITH FLOW RECIRCULATION

    SciTech Connect (OSTI)

    Lee, S.

    2014-06-25T23:59:59.000Z

    The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

  12. CHEN 3650 -Lab 6 -Interacting Tanks Part A Computer Exercise

    E-Print Network [OSTI]

    Ashurst, W. Robert

    CHEN 3650 - Lab 6 - Interacting Tanks Part A 颅 Computer Exercise This laboratory exercise units. Consider the train of tanks as depicted in Fig. 1. You may have seen similar tanks before, the area of tank 3 is also zero. Therefore, you may wish to start your simulation at steady state. Part B

  13. CHEN 3650 SP14 -Lab 2 Two Tanks in Series

    E-Print Network [OSTI]

    Ashurst, W. Robert

    CHEN 3650 SP14 - Lab 2 Two Tanks in Series Part A 颅 Computer Exercise This laboratory exercise is related to the classical system consisting of two tanks in series. That is, the output of one tank is the input to another tank. Usually, this problem is encountered in a process control class

  14. The Boeing Company Project Fuel Tank Design Project Recap

    E-Print Network [OSTI]

    Demirel, Melik C.

    The Boeing Company Project Fuel Tank Design Project Recap The Boeing Company came. Using solid baffles helps to separate the tank into separate and smaller sub tanks which helps to distribute and minimize the force of the slosh on the fuel tank. The problem in using solid baffles

  15. Global Intermodal Tank Container Management for the Chemical Industry

    E-Print Network [OSTI]

    Erera, Alan

    Global Intermodal Tank Container Management for the Chemical Industry Alan L. Erera, Juan C on asset management problems faced by tank container operators, and formulates an operational tank modes: pipeline, bulk tankers, parcel tankers, tank containers, or drums. Pipeline and bulk tankers

  16. August 2012 Who Are Our Dirt Tanks Named After?

    E-Print Network [OSTI]

    August 2012 Who Are Our Dirt Tanks Named After? Jornada Experimental Range Maxwell Tank In 2001 as coordinator and pilot. Maxwell Tank was named in her honor in 2002. Although Maxwell enjoys the notoriety of having a dirt tank named after her, she has yet to see her namesake. F. N. Ares F.W. Engholm K

  17. THINK TANK Online Data Privacy Policy Personal Information

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    THINK TANK Online Data Privacy Policy Personal Information The THINK TANK at the University and Guidelines Security When users submit personally identifiable information via the THINK TANK Web Site, the information is protected both online and off-line. All personally identifiable information the THINK TANK

  18. Enclosure 1 Additional Information on Hanford Tank Wastes

    E-Print Network [OSTI]

    Enclosure 1 Additional Information on Hanford Tank Wastes Introduction The U. S. Nuclear Regulatory of Energy to the U. S. Environmental Protection Agency addressing the Hanford Tank and K Basin Wastes (CBFO stored in two tanks (designated as tanks 241-AW-103 and 241-AW-105) at the Hanford Site are not high

  19. Tank 241-BY-104 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-10T23:59:59.000Z

    Tank BY-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-104 using the vapor sampling system (VSS) on June 24, 1994 by WHC Sampling and Mobile Laboratories. Air from the tank BY-104 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

  20. Therapeutic Hypothermia: Protective Cooling Using Medical Ice...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry Technology available for licensing: Proprietary method and equipment for making an ice slurry coolant to induce...

  1. Biogeochemistry in Sea Ice: CICE model developments

    SciTech Connect (OSTI)

    Jeffery, Nicole [Los Alamos National Laboratory; Hunke, Elizabeth [Los Alamos National Laboratory; Elliott, Scott [Los Alamos National Laboratory; Turner, Adrian [Los Alamos National Laboratory

    2012-06-18T23:59:59.000Z

    Polar primary production unfolds in a dynamic sea ice environment, and the interactions of sea ice with ocean support and mediate this production. In spring, for example, fresh melt water contributes to the shoaling of the mixed layer enhancing ice edge blooms. In contrast, sea ice formation in the fall reduces light penetration to the upper ocean slowing primary production in marine waters. Polar biogeochemical modeling studies typically consider these types of ice-ocean interactions. However, sea ice itself is a biogeochemically active medium, contributing a significant and, possibly, essential source of primary production to polar regions in early spring and fall. Here we present numerical simulations using the Los Alamos Sea Ice Model (CICE) with prognostic salinity and sea ice biogeochemistry. This study investigates the relationship between sea ice multiphase physics and sea ice productivity. Of particular emphasis are the processes of gravity drainage, melt water flushing, and snow loading. During sea ice formation, desalination by gravity drainage facilitates nutrient exchange between ocean and ice maintaining ice algal blooms in early spring. Melt water flushing releases ice algae and nutrients to underlying waters limiting ice production. Finally, snow loading, particularly in the Southern Ocean, forces sea ice below the ocean surface driving an upward flow of nutrient rich water into the ice to the benefit of interior and freeboard communities. Incorporating ice microphysics in CICE has given us an important tool for assessing the importance of these processes for polar algal production at global scales.

  2. Fire and Ice Issue 2

    E-Print Network [OSTI]

    Multiple Contributors

    1993-01-01T23:59:59.000Z

    ^ $$% i&l /P^ \\0 rffej FIRE AND ICE AVAILABLE FROM Kathleen Resch PO Box 1766 Temple City, CA 91780 FIRE AND ICE II TABLE OF CONTENTS COVER by Phoenix FRONTISPIECE by Gayle Feyrer "Flashpoint" by Rachel Duncan 1 PEDESTAL by Thomas 2 "A Damn Fine...

  3. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    SciTech Connect (OSTI)

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01T23:59:59.000Z

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or {open_quotes}REDOX{close_quotes} process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as {open_quotes}assumed leakers{close_quotes} and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report.

  4. EM Tank Waste Subcommittee Report for SRS and Hanford Tank Waste...

    Office of Environmental Management (EM)

    liability. EM estimates that retrieval and processing of waste contained within these tanks will be completed between the years 2050 and 2062. A number of strategies are being...

  5. Tank characterization report for single-shell tank 241-U-102

    SciTech Connect (OSTI)

    Hu, T.A., Westinghouse Hanford

    1997-01-24T23:59:59.000Z

    This characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in tank 241-U-102.

  6. Tank characterization report for single-shell tank 241-U-109

    SciTech Connect (OSTI)

    Baldwin, J.H.

    1996-09-05T23:59:59.000Z

    This characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in tank 241-U-109.

  7. Tank characterization report for single-shell tank 241-U-108

    SciTech Connect (OSTI)

    Bell, K.E., Fluor Daniel Hanford

    1997-03-20T23:59:59.000Z

    This characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in tank 241-U-108.

  8. Tank characterization report for single-shell tank 241-BY-110

    SciTech Connect (OSTI)

    Schreiber, R.D.

    1996-09-16T23:59:59.000Z

    This characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in tank 241-BY-110.

  9. The Hanford Story: Tank Waste Cleanup

    Broader source: Energy.gov [DOE]

    This fourth chapter of The Hanford Story explains how the DOE Office of River Protection will use the Waste Treatment Plant to treat the 56 million gallons of radioactive waste in the Tank Farms.

  10. Underground Storage Tank Management (District of Columbia)

    Broader source: Energy.gov [DOE]

    The installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

  11. Dynamics of ice shelf rift propagation and iceberg calving inferred from geodetic and seismic observations

    E-Print Network [OSTI]

    Bassis, Jeremy N.

    2007-01-01T23:59:59.000Z

    2. Ice Shelves . . . . . . . . . . . . . . . . .5. Ice Rheology . . . . . . . . . . . . . 6.vi Calving Glaciers and Ice

  12. Viewing Systems for Large Underground Storage Tanks.

    SciTech Connect (OSTI)

    Heckendorn, F.M., Robinson, C.W., Anderson, E.K. [Westinghouse Savannah River Co., Aiken, SC (United States)], Pardini, A.F. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-12-31T23:59:59.000Z

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction.

  13. Vapor characterization of Tank 241-C-103

    SciTech Connect (OSTI)

    Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

    1994-06-01T23:59:59.000Z

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

  14. Double shell tank waste analysis plan

    SciTech Connect (OSTI)

    Mulkey, C.H.; Jones, J.M.

    1994-12-15T23:59:59.000Z

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

  15. RECENT PROGRESS IN DOE WASTE TANK CLOSURE

    SciTech Connect (OSTI)

    Langton, C

    2008-02-01T23:59:59.000Z

    The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

  16. Analysis of ICPP tank farm infiltration

    SciTech Connect (OSTI)

    Richards, B.T.

    1993-10-01T23:59:59.000Z

    This report addresses water seeping into underground vaults which contain high-level liquid waste (HLLW) storage tanks at the Idaho Chemical Processing Plant (ICPP). Each of the vaults contains from one to three sumps. The original purpose of the sumps was to serve as a backup leak detection system for release of HLLW from the storage tanks. However, water seeps into most of the vaults, filling the sumps, and defeating their purpose as a leak detection system. Leak detection for the HLLW storage tanks is based on measuring the level of liquid inside the tank. The source of water leaking into the vaults was raised as a concern by the State of Idaho INEL Oversight Group because this source could also be leaching contaminants released to soil in the vicinity of the tank farm and transporting contaminants to the aquifer. This report evaluates information concerning patterns of seepage into vault sumps, the chemistry of water in sumps, and water balances for the tank farm to determine the sources of water seeping into the vaults.

  17. Chemical Stabilization of Hanford Tank Residual Waste

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy N.; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

    2014-03-01T23:59:59.000Z

    Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in-situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of the three most significant mobile contaminants of concern from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. For uranium, all three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective MCLs for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste. This innovative approach has the potential to revolutionize Hanford抯 tank retrieval process, by allowing larger volumes of residual waste to be left in tanks while providing an acceptably low level of risk with respect to contaminant release that is protective of the environment and human health. Such an approach could enable DOE to realize significant cost savings through streamlined retrieval and closure operations.

  18. Examinations of ice formation processes in Florida cumuli using ice nuclei measurements of anvil ice crystal particle residues

    E-Print Network [OSTI]

    importance of different ice formation processes in cumuli and the cirrus anvils they produce. Cirrus playExaminations of ice formation processes in Florida cumuli using ice nuclei measurements of anvil ice crystal particle residues Anthony J. Prenni,1 Paul J. DeMott,1 Cynthia Twohy,2 Michael R. Poellot

  19. Tank farms criticality safety manual

    SciTech Connect (OSTI)

    FORT, L.A.

    2003-03-27T23:59:59.000Z

    This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

  20. Underground storage tank management plan

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  1. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  2. E-Print Network 3.0 - automated tank calibrations Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Reviewed 809) Summary: Safe Operating Procedure (Reviewed 809) UNDERGROUND STORAGE TANKS - AUTOMATIC TANK GAUGING... tank gauging (ATG) system requirements for Underground...

  3. A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks

    E-Print Network [OSTI]

    Kujat, Jonathon D.

    1999-01-01T23:59:59.000Z

    Underground Storage Tanks. Chelsea: Lewis Publishers.and Underground Storage Tank Sites. Database on-line.Michigan Underground Storage Tank Rules. Database on-line.

  4. E-Print Network 3.0 - ax tank farm Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In collaboration with The Dow Chemical Company 12;A tank farm is a set of storage tanks that hold finished product... product Dedicated Tanks Without available storage ......

  5. Evaluation of TANK water heater simulation model as embedded in HWSim

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    this scheme for operating TANK with HWSim is successful.LBNL # Evaluation of TANK water heater simulation model asCalifornia. Evaluation of TANK water heater simulation model

  6. E-Print Network 3.0 - alcohol tank installed Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND ENVIRONMENTAL SCIENCES Summary: inspection. Risers should be installed on all new tanks and can even be retrofitted for existing tanks. All... that the septic tank needs...

  7. Regulation of Leaky Underground Fuel Tanks: An Anatomy of Regulatory Failure

    E-Print Network [OSTI]

    White, Christen Carlson

    1995-01-01T23:59:59.000Z

    any leaks. (b) Most storage tank owners have only vagueaddition, regulations for tanks installed prior to Januarypertaining to existing tanks are more appropriately termed

  8. Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements

    E-Print Network [OSTI]

    Cutter, W. Bowman

    2008-01-01T23:59:59.000Z

    Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

  9. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    Survey of Electric Storage Tank Water Heater Efficiency andSurvey of Electric Storage Tank Water Heater Efficiency andby electric resistance storage tank water heaters (geysers),

  10. Ice deformation near SHEBA R. W. Lindsay

    E-Print Network [OSTI]

    Lindsay, Ron

    in the vicinity of the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp that is suitable for forcing factor for regional heat fluxes, ice growth and melt rates, and ice strength [Maykut, 1982Ice deformation near SHEBA R. W. Lindsay Polar Science Center, University of Washington, Seattle

  11. 4, 709732, 2007 Ice-shelf ocean

    E-Print Network [OSTI]

    Boyer, Edmond

    OSD 4, 709732, 2007 Ice-shelf ocean interactions at Fimbul Ice Shelf M. R. Price Title Page published in Ocean Science Discussions are under open-access review for the journal Ocean Science Ice-shelf ocean interactions at Fimbul Ice Shelf, Antarctica from oxygen isotope ratio measurements M. R. Price 1

  12. Climate Change and Variability Lake Ice, Fishes

    E-Print Network [OSTI]

    Sheridan, Jennifer

    #12;Climate Change and Variability Lake Ice, Fishes and Water Levels John J. Magnuson Center to everything else." #12;The Invisible Present The Invisible Place Magnuson 2006 #12;Ice-on Day 2007 Peter W. Schmitz Photo Local Lake Mendota #12;Ice Breakup 2010 Lake Mendota March 20 #12;March 21 Ice Breakup 2010

  13. 2011-12 PROSPECTUS2011-12 PROSPECTUS WESLEYAN MEN'S ICE HOCKEYWESLEYAN MEN'S ICE HOCKEY

    E-Print Network [OSTI]

    Devoto, Stephen H.

    - ponents in its inaugural season. Former bench boss Dave Snyder, in whose honor the Wesleyan ice rink2011-12 PROSPECTUS2011-12 PROSPECTUS WESLEYAN MEN'S ICE HOCKEYWESLEYAN MEN'S ICE HOCKEY #12....................................Chris Potter/Jeff Gilarde Men's Ice Hockey..............Chris Potter Women's Ice Hockey.........Jodi Mc

  14. Impact of underwater-ice evolution on Arctic summer sea ice

    E-Print Network [OSTI]

    Worster, M. Grae

    Impact of underwater-ice evolution on Arctic summer sea ice Dirk Notz,1,4 Miles G. McPhee,2 M. Grae the simultaneous growth and ablation of a layer of ice between an under-ice melt pond and the underlying ocean. Such ``false bottoms'' are the only significant source of ice formation in the Arctic during summer. Analytical

  15. Ice Shelf Water plume flow beneath Filchner-Ronne Ice Shelf, Antarctica

    E-Print Network [OSTI]

    Feltham, Daniel

    Ice Shelf Water plume flow beneath Filchner-Ronne Ice Shelf, Antarctica Paul R. Holland,1 Daniel L Filchner- Ronne Ice Shelf, Antarctica and its underlying ocean cavity. Ice Shelf Water (ISW) plumes are initiated by the freshwater released from a melting ice shelf and, if they rise, may become supercooled

  16. ORIGINAL PAPER A bacterial ice-binding protein from the Vostok ice core

    E-Print Network [OSTI]

    Christner, Brent C.

    to produce a 54 kDa ice-binding protein (GenBank EU694412) that is similar to ice-binding proteins previously- vival at sub-zero temperatures by producing proteins that bind to and inhibit the growth of ice crystalsORIGINAL PAPER A bacterial ice-binding protein from the Vostok ice core James A. Raymond ? Brent C

  17. The Effects of Rotation and Ice Shelf Topography on Frazil-Laden Ice Shelf Water Plumes

    E-Print Network [OSTI]

    Feltham, Daniel

    , Antarctica. In addition, it is found that the model only produces reasonable marine ice formation rates whenThe Effects of Rotation and Ice Shelf Topography on Frazil-Laden Ice Shelf Water Plumes PAUL R of the dynamics and thermodynamics of a plume of meltwater at the base of an ice shelf is presented. Such ice

  18. Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community

    E-Print Network [OSTI]

    Gettelman, Andrew

    and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentiallyGlobal simulations of ice nucleation and ice supersaturation with an improved cloud scheme

  19. Sea-ice thickness measurement based on the dispersion of ice swell

    E-Print Network [OSTI]

    -azimuth angles. The parameterization, that includes finding the best modeled ice thickness, is performed by usingSea-ice thickness measurement based on the dispersion of ice swell David Marsana) ISTerre, CNRS propagating in the Arctic sea ice cover is exploited in order to locally measure the ice thickness

  20. NOTES AND CORRESPONDENCE Surface Melting over Ice Shelves and Ice Sheets as Assessed from Modeled

    E-Print Network [OSTI]

    Meissner, Katrin Juliane

    NOTES AND CORRESPONDENCE Surface Melting over Ice Shelves and Ice Sheets as Assessed from Modeled of ice shelves and their progenitor ice sheets. To explore the magnitude of surface melt occurring over) and most of the Greenland Ice Sheet (GIS) by the year 2500. Capping CO2 concentrations at present

  1. Electrical properties of saline ices and ice-silicate mixtures: geophysical and astrobiological consequences (Invited)

    E-Print Network [OSTI]

    Stillman, David E.

    MR22A-05 Electrical properties of saline ices and ice-silicate mixtures: geophysical) electrical-properties measurements of laboratory- produced saline ice, salt hydrates, and ice-silicate cutoff. In ice-silicate mixtures, brine channels are evident above the eutectic temperature only when

  2. Comment on ``A quantitative framework for interpretation of basal ice facies formed by ice

    E-Print Network [OSTI]

    Worster, M. Grae

    heave would be expected to produce were revealed beneath the Kamb Ice Stream by the pioneering boreholeComment on ``A quantitative framework for interpretation of basal ice facies formed by ice quantitative framework for interpretation of basal ice facies formed by ice accretion over subglacial sediment

  3. Tank characterization report for single-shell tank 241-BX-107

    SciTech Connect (OSTI)

    Raphael, G.F.

    1996-02-28T23:59:59.000Z

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents.

  4. Tank 241-BY-110 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-10T23:59:59.000Z

    Tank BY-110 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-110 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-110 using the vapor sampling system (VSS) on November 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-110 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 12B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

  5. Tank 241-BY-108 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-10T23:59:59.000Z

    Tank BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-108 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-108 using the vapor sampling system (VSS) on october 27, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 25.7 C. Air from the Tank BY-108 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 1, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

  6. Tank 241-BY-105 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-10T23:59:59.000Z

    Tank BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-105 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-105 using the vapor sampling system (VSS) on July 7, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 26 C. Air from the Tank BY-105 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

  7. Tank 241-BY-106 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-10T23:59:59.000Z

    Tank BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-106 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-106 using the vapor sampling system (VSS) on July 8, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-106 headspace was withdrawn via a heated sampling probe mounted in riser 10B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

  8. Stress evaluation of the primary tank of a double-shell underground storage tank facility

    SciTech Connect (OSTI)

    Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-12-01T23:59:59.000Z

    A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

  9. Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102

    SciTech Connect (OSTI)

    Harrington, Stephanie J. [Washington River Protection Systems, Richland, WA (United States); Sams, Terry L. [Washington River Protection Systems, Richland, WA (United States)

    2013-11-06T23:59:59.000Z

    A routine video inspection of the annulus space between the primary tank and secondary liner of double-shell tank 241-AY-102 was performed in August 2012. During the inspection, unexpected material was discovered. A subsequent video inspection revealed additional unexpected material on the opposite side of the tank, none of which had been observed during inspections performed in December 2006 and January 2007. A formal leak assessment team was established to review the tank's construction and operating histories, and preparations for sampling and analysis began to determine the material's origin. A new sampling device was required to collect material from locations that were inaccessible to the available sampler. Following its design and fabrication, a mock-up test was performed for the new sampling tool to ensure its functionality and capability of performing the required tasks. Within three months of the discovery of the unexpected material, sampling tools were deployed, material was collected, and analyses were performed. Results indicated that some of the unknown material was indicative of soil, whereas the remainder was consistent with tank waste. This, along with the analyses performed by the leak assessment team on the tank's construction history, lead to the conclusion that the primary tank was leaking into the annulus. Several issues were encountered during the deployment of the samplers into the annulus. As this was the first time samples had been required from the annulus of a double-shell tank, a formal lessons learned was created concerning designing equipment for unique purposes under time constraints.

  10. Tank characterization report for single-shell tank 241-B-109

    SciTech Connect (OSTI)

    Benar, C.J.

    1997-05-29T23:59:59.000Z

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-109. This tank has been listed on the Organic Salts Watch List. This-report supports the requirements of the Tri-Party Agreement Milestone M 44-10.

  11. Tank characterization report for single-shell tank 241-T-110

    SciTech Connect (OSTI)

    McCain, D.J.

    1998-02-25T23:59:59.000Z

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-T-110. This report supports the requirements of the Tri-Party Agreement Milestone M-44-15B. Tank 241-T-110 is listed on the Hydrogen Watch List.

  12. Supporting document for the historical tank content estimate for SY-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1997-08-12T23:59:59.000Z

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

  13. Tank 241-C-106 in-tank imaging system operational test report

    SciTech Connect (OSTI)

    Pedersen, L.T.

    1998-07-07T23:59:59.000Z

    This document presents the results of operational testing of the 241-C-106 In-Tank Video Camera Imaging System. This imaging system was installed as a component of Project W-320 to monitor sluicing and waste retrieval activities in Tank 241-C-106.

  14. System for removing liquid waste from a tank

    DOE Patents [OSTI]

    Meneely, Timothy K. (Penn Hills, PA); Sherbine, Catherine A. (N. Versailles Township, Allegheny County, PA)

    1994-01-01T23:59:59.000Z

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

  15. System for removing liquid waste from a tank

    DOE Patents [OSTI]

    Meneely, T.K.; Sherbine, C.A.

    1994-04-26T23:59:59.000Z

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

  16. Method of forming clathrate ice

    DOE Patents [OSTI]

    Hino, Toshiyuki (Tokyo, JP); Gorski, Anthony J. (Lemont, IL)

    1987-01-01T23:59:59.000Z

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultrasonically so that small crystals are formed in the liquid. These small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  17. Method of forming calthrate ice

    DOE Patents [OSTI]

    Hino, T.; Gorski, A.J.

    1985-09-30T23:59:59.000Z

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultransonically so that small crystals are formed in the liquid. Thes small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  18. Rethinking the Hanford Tank Waste Program

    SciTech Connect (OSTI)

    Parker, F. L.; Clark, D. E.; Morcos, N.

    2002-02-26T23:59:59.000Z

    The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms.

  19. Ferrocyanide tank waste stability. Supplement 2

    SciTech Connect (OSTI)

    Fowler, K.D.

    1993-01-01T23:59:59.000Z

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove {sup 137}CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

  20. An experimental and theoretical study of the ice accretion process during artificial and natural icing conditions

    E-Print Network [OSTI]

    Kirby, Mark Samuel

    1986-01-01T23:59:59.000Z

    Real-time measurements of ice growth during artificial and natural icing conditions were conducted using an ultrasonic pulse-echo technique. This technique allows ice thickness to be measured with an accuracy of ?0.5 mm; ...

  1. Neglecting ice-atmosphere interactions underestimates ice sheet melt in millennial-scale deglaciation simulations

    E-Print Network [OSTI]

    Pritchard, M. S.; Bush, A. B.; Marshall, S. J.

    2008-01-01T23:59:59.000Z

    Laurentide and Innutian ice sheets during the Last Glacialclimate of the laurentide ice sheet at the LGM, J. Clim. ,1958), The flow law of ice: A discussion of the assumptions

  2. amorphous ice transition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    artificial and natural icing conditions MIT - DSpace Summary: Real-time measurements of ice growth during artificial and natural icing conditions were conducted using an...

  3. alpine deep ice: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    artificial and natural icing conditions MIT - DSpace Summary: Real-time measurements of ice growth during artificial and natural icing conditions were conducted using an...

  4. E-Print Network 3.0 - actual hanford tank Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T. M. Poston Summary: -West Areas on the Hanford Site. The tank farms house 177 tanks (149 single-shell tanks and 28 double... Hanford's tank waste). Hanford At A Glance...

  5. CORROSION TESTING IN SIMULATED TANK SOLUTIONS

    SciTech Connect (OSTI)

    Hoffman, E.

    2010-12-09T23:59:59.000Z

    Three simulated waste solutions representing wastes from tanks SY-102 (high nitrate, modified to exceed guidance limits), AN-107, and AY-102 were supplied by PNNL. Out of the three solutions tested, both optical and electrochemical results show that carbon steel samples corroded much faster in SY-102 (high nitrate) than in the other two solutions with lower ratios of nitrate to nitrite. The effect of the surface preparation was not as strong as the effect of solution chemistry. In areas with pristine mill-scale surface, no corrosion occurred even in the SY-102 (high nitrate) solution, however, corrosion occurred in the areas where the mill-scale was damaged or flaked off due to machining. Localized corrosion in the form of pitting in the vapor space of tank walls is an ongoing challenge to overcome in maintaining the structural integrity of the liquid waste tanks at the Savannah River and Hanford Sites. It has been shown that the liquid waste condensate chemistry influences the amount of corrosion that occurs along the walls of the storage tanks. To minimize pitting corrosion, an effort is underway to gain an understanding of the pitting response in various simulated waste solutions. Electrochemical testing has been used as an accelerated tool in the investigation of pitting corrosion. While significant effort has been undertaken to evaluate the pitting susceptibility of carbon steel in various simulated waste solutions, additional effort is needed to evaluate the effect of liquid waste supernates from six Hanford Site tanks (AY-101, AY-102, AN-102, AN-107, SY-102 (high Cl{sup -}), and SY-102 (high nitrate)) on carbon steel. Solutions were formulated at PNNL to replicate tank conditions, and in the case of SY-102, exceed Cl{sup -} and NO{sub 3}{sup -} conditions, respectively, to provide a contrast between in and out of specification limits. The majority of previous testing has been performed on pristine polished samples. To evaluate the actual tank carbon steel surface, efforts are needed to compare the polished surfaces to corroded and mill-scale surfaces, which are more likely to occur in application. Additionally, due to the change in liquid waste levels within the tanks, salt deposits are highly likely to be present along the tank wall. When the level of the tank decreases, a salt deposit will form as the solution evaporates. The effects of this pre-existing salt, or supernate deposit, are unknown at this time on the corrosion effect and thus require investigation. Additionally, in the presence of radiation, moist air undergoes radiolysis, forming a corrosive nitric acid condensate. This condensate could accelerate the corrosion process in the vapor space. To investigate this process, an experimental apparatus simulating the effects of radiation was designed and constructed to provide gamma irradiation while coupons are exposed to a simulate tank solution. Additionally, ammonia vapors will also be introduced to further represent the tank environment.

  6. Double Shell Tank (DST) Utilities Specification

    SciTech Connect (OSTI)

    SUSIENE, W.T.

    2000-04-27T23:59:59.000Z

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  7. Tank characterization report for single-shell tank 241-C-106

    SciTech Connect (OSTI)

    Schreiber, R.D.

    1996-09-25T23:59:59.000Z

    This tank characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in single-shell underground tank 241-C-106. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-C-106 is the only tank on the High-Heat Load Watch List. As a result of the analyses addressed by this report, the supernate and upper 60 percent of the sludge in the tank do not pose any safety concerns in addition to the high-heat load issue based on the decision limits of the safety screening data quality objective (DQO) (Dukelow et al. 1995). The lower 40 percent of the sludge was not sampled; therefore, no statements regarding the safety of this waste can be made. A portion of the tank sludge is scheduled to be retrieved in fiscal year 1997 in order to mitigate the high-heat load in the tank.

  8. Tank characterization report for single-shell tank 241-SX-106

    SciTech Connect (OSTI)

    FIELD, J.G.

    1999-02-24T23:59:59.000Z

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-SX-106. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-106 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Documents developed for 1998.''

  9. Drift Tube Linac Conditioning of Tank1

    E-Print Network [OSTI]

    Shafqat, N; Toor, W A

    2014-01-01T23:59:59.000Z

    Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 祍 long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 祍. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

  10. Technical Assessment of Compressed Hydrogen Storage Tank Systems...

    Broader source: Energy.gov (indexed) [DOE]

    carbon fiber-resin (CF) composite-wrapped single tank systems, with a high density polyethylene (HDPE) liner (i.e., Type IV tanks) capable of storing 5.6 kg usable hydrogen....

  11. TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY

    SciTech Connect (OSTI)

    HOLM MJ

    2009-06-25T23:59:59.000Z

    This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

  12. Authorization basis status report (miscellaneous TWRS facilities, tanks and components)

    SciTech Connect (OSTI)

    Stickney, R.G.

    1998-04-29T23:59:59.000Z

    This report presents the results of a systematic evaluation conducted to identify miscellaneous TWRS facilities, tanks and components with potential needed authorization basis upgrades. It provides the Authorization Basis upgrade plan for those miscellaneous TWRS facilities, tanks and components identified.

  13. Independent Oversight Review of the Hanford Tank Farms Safety...

    Energy Savers [EERE]

    of liquid or semi-solid radioactive and chemical waste stored in 177 underground tanks at the Hanford Site. ORP serves as DOE line management for two functions: the Tank...

  14. FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS AND ENERGY CONSUMPTION Prepared For: California to Tank, Criteria Pollutants, Multi-media impacts, EMFAC #12;#12;vii Table of Contents Acknowledgements

  15. DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project...

    Broader source: Energy.gov (indexed) [DOE]

    Delivery High-Pressure Tanks and Analysis Project Review Meeting DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting On February 8-9, 2005, the Department...

  16. Retooling Michigan: Tanks to Turbines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tanks to Turbines Retooling Michigan: Tanks to Turbines June 8, 2010 - 6:13pm Addthis Joshua DeLung Editor's Note: This story was updated Oct. 13, 2010, to reflect the additional...

  17. Tank characterization report for single-shell tank 241-U-107

    SciTech Connect (OSTI)

    Jo, J.

    1996-09-18T23:59:59.000Z

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste contained in double-shell underground storage tank 241-AY-101. This report supports the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-44-09 (Ecology et al. 1996). This report summarizes the collection and analysis of grab samples acquired in February 1996. The sampling was performed to satisfy requirements listed in Tank Safety Screening Data Quality Objective (Dukelow et al. 1995), the Data Quality Objectives for Tank Farin Waste Compatibility Program (Fowler 1995), and the 242-A Evaporator Liquid Effluent Retention Facility Data Quality Objectives (Von Bargen 1995).

  18. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria, E-mail: Valeria.Molinero@utah.edu [Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)

    2014-11-14T23:59:59.000Z

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  19. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    SciTech Connect (OSTI)

    CANTRELL KJ; CONNELLY MP

    2010-03-09T23:59:59.000Z

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  20. Treatment options for tank farms long-length contaminated equipment

    SciTech Connect (OSTI)

    Josephson, W.S.

    1995-10-16T23:59:59.000Z

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  1. Underground storage tank 431-D1U1, Closure Plan

    SciTech Connect (OSTI)

    Mancieri, S.

    1993-09-01T23:59:59.000Z

    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  2. Ross Ice Shelf in situ radio-frequency ice attenuation

    E-Print Network [OSTI]

    Taylor Barrella; Steven Barwick; David Saltzberg

    2012-05-01T23:59:59.000Z

    We have measured the in situ average electric field attenuation length for radio-frequency signals broadcast vertically through the Ross Ice Shelf. We chose a location, Moore Embayment, south of Minna Bluff, known for its high reflectivity at the ice-sea interface. We confirmed specular reflection and used the return pulses to measure the average attenuation length from 75-1250 MHz over the round-trip distance of 1155 m. We find the average electric field attenuation length to vary from 500 m at 75 MHz to 300 m at 1250 MHz, with an experimental uncertainty of 55 to 15 m. We discuss the implications for neutrino telescopes that use the radio technique and include the Ross Ice Shelf as part of their sensitive volume.

  3. A radiological characterization of remediated tank battery sites

    SciTech Connect (OSTI)

    Hebert, M.B. [NORMCO, Amelia, LA (United States); Scott, L.M. [Louisiana State Univ., Baton Rouge, LA (United States); Zrake, S.J. [Ashland Exploration, Inc., Houston, TX (United States)

    1995-03-01T23:59:59.000Z

    Tank battery sites have historically been used for the initial processing of crude oil which separates water and sediment from the produced oil. Typically, one or more producing wells is connected to a tank battery site consisting of storage and separation tanks. Historical operating practices also included a production holding pit for increaesd separation of oil, water, and sediment.

  4. Justification for Continued Operation for Tank 241-Z-361

    SciTech Connect (OSTI)

    BOGEN, D.M.

    1999-09-01T23:59:59.000Z

    This justification for continued operations (JCO) summarizes analyses performed to better understand and control the potential hazards associated with Tank 241-2-361. This revision to the JCO has been prepared to identify and control the hazards associated with sampling the tank using techniques developed and approved for use in the Tank Waste Remediation System (TWRS) at Hanford.

  5. Double Shell Tank AY-102 Radioactive Waste Leak Investigation

    SciTech Connect (OSTI)

    Washenfelder, Dennis J.

    2014-04-10T23:59:59.000Z

    PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford抯 Double-Shell Tank Integrity Program.

  6. Enhancing Fish Tank VR Jurriaan D. Mulder, Robert van Liere

    E-Print Network [OSTI]

    Liere, Robert van

    Enhancing Fish Tank VR Jurriaan D. Mulder, Robert van Liere Center for Mathematics and Computer Science CWI Amsterdam, the Netherlands mullie隆 robertl垄 @cwi.nl Abstract Fish tank VR systems provide that resides at a fixed location. Therefore, fish tank VR systems provide only a limited virtual workspace

  7. STUDENT APPLICATION ACADEMIC THINK TANK: REFUGEE RESETTLEMENT IN THE TRIAD

    E-Print Network [OSTI]

    Saidak, Filip

    STUDENT APPLICATION ACADEMIC THINK TANK: REFUGEE RESETTLEMENT IN THE TRIAD Please print growth, the Resettling Refugees in the Triad Think Tank will ask students to learn from and contribute and to better assist those who seek safety in Greensboro. APPLICATION REQUIREMENTS Admission to the Think Tank

  8. Page 1 of 2 Yellow Tank Operation Short version

    E-Print Network [OSTI]

    Page 1 of 2 Yellow Tank Operation 颅 Short version Pressure Gauge Accuracy: Note that the pressure gauge (Alcatel 74009 ACC 1009) on the yellow tank is accurate to 30% of the value read, so readings have downstairs): 1. Make sure Yellow Tank is completely sealed, fire vent closed. Main door bolts should

  9. Introduction Hall and Tank (2005) present estimates of ecosystem metab-

    E-Print Network [OSTI]

    Lewis Jr., William M.

    213 Introduction Hall and Tank (2005) present estimates of ecosystem metab- olism for Giltner in the estimation of ecosystem metabolism by open-channel methods (McCutchan et al. 2002; Hall and Tank 2005). To estimate metabolism in Giltner Spring Creek, Hall and Tank (2005) employ a mass-balance equation

  10. ECOSYSTEM COMPONENT CHARACTERIZATION 461 Failing or nearby septic tank systems

    E-Print Network [OSTI]

    Pitt, Robert E.

    ECOSYSTEM COMPONENT CHARACTERIZATION 461 路 Failing or nearby septic tank systems 路 Exfiltration from sanitary sewers in poor repair 路 Leaking underground storage tanks and pipes 路 Landfill seepage or natural environment Leaks from underground storage tanks and pipes are a common source of soil

  11. Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing

    E-Print Network [OSTI]

    Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel for integrated module including in-tank regulator 路 Developed high efficiency H2 fuel storage systems for DOE tank efficiency, the highest weight efficiency ever demonstrated, in partnership with Lawrence

  12. FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For be divided into two parts: 路 Well-to-Tank (WTT) Feedstock extraction, transport, storage, processing, distribution, transport, and storage 路 Tank-to-Wheels (TTW) Refueling, consumption and evaporation The full

  13. Microfluidic Facility, Harvard Medical School LIQUID NITROGEN TANK HANDLING

    E-Print Network [OSTI]

    Paulsson, Johan

    Microfluidic Facility, Harvard Medical School LIQUID NITROGEN TANK HANDLING HMS microfluidics/microfabrication facility has one high pressure liquid nitrogen tank which supplies the nitrogen for some equipment normal operation. In case the liquid nitrogen tank is malfunctioning and requires to be shut down or replaced make

  14. Mineral formation during simulated leaks of Hanford waste tanks

    E-Print Network [OSTI]

    Flury, Markus

    Mineral formation during simulated leaks of Hanford waste tanks Youjun Deng a , James B. Harsh a handling by M. Gascoyne Abstract Highly-alkaline waste solutions have leaked from underground tanks mimicking tank leak conditions at the US DOE Hanford Site. In batch experiments, Si-rich solutions

  15. A Systematic Approach to the Design of Buffer Tanks

    E-Print Network [OSTI]

    Skogestad, Sigurd

    #12;A Systematic Approach to the Design of Buffer Tanks Audun Faanes 拢 陆 Sigurd Skogestad Abstract: Buffer tanks are often designed and implemented for control purposes, yet control theory is rarely used when sizing and designing buffer tanks and their control system. Instead, rules of thumb

  16. 14 UD Tank Opening Report July 31st

    E-Print Network [OSTI]

    Chen, Ying

    14 UD Tank Opening Report #123 8th July 颅 31st July 2014 Team leader N. Lobanov Report compiled by P. Linardakis, G. Crook, J, Heighway, N. Lobanov Tank crew G. Crook, J. Heighway, P. Linardakis, N 2 3 Contents 1 Reason for tank opening

  17. A Systematic Approach to the Design of Buffer Tanks

    E-Print Network [OSTI]

    Skogestad, Sigurd

    #12; A Systematic Approach to the Design of Buffer Tanks Audun Faanes #3;;1 Sigurd Skogestad #3 Trondheim, NORWAY Abstract: Buffer tanks are often designed and implemented for control purposes, yet control theory is rarely used when sizing and designing buffer tanks and their control system. Instead

  18. PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES

    E-Print Network [OSTI]

    Paris-Sud XI, Universit茅 de

    PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES Fabien FouiHen, INERIS, Parc. Reflections led on this accident have pushed to consider the phenomenon of tank pressurization as a potential initiating event of the fire ball observed. In concrete terms, when a fixed roof storage tank is surrounded

  19. SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION

    SciTech Connect (OSTI)

    Bannochie, C.; Click, D.; Pareizs, J.

    2010-05-21T23:59:59.000Z

    Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

  20. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    SciTech Connect (OSTI)

    HEDENGREN, D.C.

    2000-09-28T23:59:59.000Z

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  1. Potential for criticality in Hanford tanks resulting from retrieval of tank waste

    SciTech Connect (OSTI)

    Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V. [and others

    1996-09-01T23:59:59.000Z

    This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

  2. Tank characterization report for single-shell tank 241-BX-106

    SciTech Connect (OSTI)

    Sasaki, L.M.

    1996-06-12T23:59:59.000Z

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-BX-106. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  3. Tank characterization report for single-shell tank 241-C-103

    SciTech Connect (OSTI)

    Winters, W.I., Westinghouse Hanford

    1996-06-26T23:59:59.000Z

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-C-103. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  4. Tank characterization report for single-shell tank 241-B-201

    SciTech Connect (OSTI)

    Conner, J.M., Fluor Daniel Hanford

    1997-02-03T23:59:59.000Z

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-201. This report supports the requirements of the Ri- Party Agreement Milestone M-44-05.

  5. Tank characterization report for single-shell tank 241-T-104

    SciTech Connect (OSTI)

    Sasaki, L.M., Fluor Daniel Hanford

    1997-02-04T23:59:59.000Z

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-T-104. This report supports the requirements of the Tri- Party Agreement Milestone M-44-05.

  6. Tank characterization report for double-shell tank 241-AN-107

    SciTech Connect (OSTI)

    Jo, J., Westinghouse Hanford

    1996-08-15T23:59:59.000Z

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AN-107. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  7. Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote

    E-Print Network [OSTI]

    Feldman, Joel

    Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote by h(t) the height of water in the tank at time t, v(t) the speed of the water leaving through the hole at time t, A(h) the cross-sectional area of the tank at height h and a the cross- sectional area

  8. Physical Controls on Ice Variability in the Bering Sea /

    E-Print Network [OSTI]

    Li, Linghan

    2013-01-01T23:59:59.000Z

    region. The model also produces less ice near much of thewinds (Figure 3.13c,d) produce more ice growth and more iceThe model produces variations in total ice area anomalies

  9. NOAA Technical Memorandum GLERL-135 Great Lakes Ice Cover Climatology

    E-Print Network [OSTI]

    ____________________________________________________________________________ Great Lakes Ice Cover Climatology Update: Winters 2003, 2004, and 2005 Raymond A. Assel NOAA, Great..................................................................................................6 DATES OF FIRST (LAST) ICE AND ICE DURATION. .............................................................7 SEASONAL PROGRESSION OF ICE COVER

  10. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect (OSTI)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2007-02-14T23:59:59.000Z

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global buckling of the tank under increased vacuum) could occur.

  11. DOE Vehicular Tank Workshop Sandia National Laboratories

    E-Print Network [OSTI]

    DOE Vehicular Tank Workshop Sandia National Laboratories Livermore, CA Nondestructive Evaluation for Ultrasonic Testing of Flat Panel Composites and Sandwich Core Materials Used in Aerospace Applications 颅 E2581-07 Std Practice for Shearography of Polymer Matrix Composites, Sandwich Core Materials

  12. Explosion proof vehicle for tank inspection

    DOE Patents [OSTI]

    Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

    2012-02-28T23:59:59.000Z

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  13. Acceptance test report for the Tank 241-C-106 in-tank imaging system

    SciTech Connect (OSTI)

    Pedersen, L.T.

    1998-05-22T23:59:59.000Z

    This document presents the results of Acceptance Testing of the 241-C-106 in-tank video camera imaging system. The purpose of this imaging system is to monitor the Project W-320 sluicing of Tank 241-C-106. The objective of acceptance testing of the 241-C-106 video camera system was to verify that all equipment and components function in accordance with procurement specification requirements and original equipment manufacturer`s (OEM) specifications. This document reports the results of the testing.

  14. Setting up the Blossom Gulch Aquarium, Oct 20, 2007 Richard Emlet Please note that each tank design has it's own considerations. Your school tank might have

    E-Print Network [OSTI]

    Setting up the Blossom Gulch Aquarium, Oct 20, 2007 Richard Emlet Please note that each tank design has it's own considerations. Your school tank might have different valves, filters, etc. However, much of the following information is relevant to other school tanks. I. Setting up a tank Stage 1: Readying the tank

  15. Supporting document for the north east quadrant historical tank content estimate report for C-Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01T23:59:59.000Z

    This Supporting Document provides historical in-depth characterization information gathered on C-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quadrant and the Hanford 200 East Areas.

  16. Supporting document for the North East Quandrant Historical Tank Content Estimate Report for BX-Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1994-06-01T23:59:59.000Z

    This supporting document provides historical in-depth characterization information gathered on BX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quandrant and the Hanford 200 East Areas.

  17. Accelerated Tank Closure Demonstrations at the Hanford Site

    SciTech Connect (OSTI)

    Sams, Terry L.; Riess, Mark J.; Cammann, Jerry W.; Lee, Timothy A.; Nichols, David

    2003-02-27T23:59:59.000Z

    Among the highest priorities for action under the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a), hereafter referred to as the Tri-Party Agreement, is the retrieval, treatment and disposal of Hanford Site tank waste. Tank waste is recognized as one of the primary threats to the Columbia River and one of the most complex technical challenges. Progress has been made in resolving safety issues, characterizing tank waste and past tank leaks, enhancing double-shell tank waste transfer and operations systems, retrieving single-shell tank waste, deploying waste treatment facilities, and planning for the disposal of immobilized waste product. However, limited progress has been made in developing technologies and providing a sound technical basis for tank system closure. To address this limitation the Accelerated Tank Closure Demonstration Project was created to develop information through technology demonstrations in support of waste retrieval and closure decisions. To complete its mission the Accelerated Tank Closure Demonstration Project has adopted performance objectives that include: Protecting human health and the environment; Minimizing/eliminating potential waste releases to the soil and groundwater; Preventing water infiltration into the tank; Maintaining accessibility of surrounding tanks for future closure; Maintaining tank structural integrity; Complying with applicable waste retrieval, disposal, and closure regulations; Maintaining flexibility for final closure options in the future. This paper provides an overview of the Hanford Site tank waste mission with emphasis on the Accelerated Tank Closure Demonstration Project. Included are discussions of single-shell tank waste retrieval and closure challenges, progress made to date, lessons learned, regulatory approach, data acquisition, near-term retrieval opportunities, schedule, and cost.

  18. Tank characterization report for single-shell tank 241-BX-110

    SciTech Connect (OSTI)

    RASMUSSEN, J.H.

    1999-02-23T23:59:59.000Z

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-BX-110. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-BX-110 waste, and (2) to provide a standard characterization of the waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the tank's safety status and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for 1998.''

  19. Thermal Storage with Ice Harvesting Systems

    E-Print Network [OSTI]

    Knebel, D. E.

    1986-01-01T23:59:59.000Z

    Application of Harvesting Ice Storage Systems. Thermal storage systems are becoming widely accepted techniques for utility load management. This paper discusses the principles of ice harvesting equipment and their application to the multi...

  20. Quantum Ice : a quantum Monte Carlo study

    E-Print Network [OSTI]

    Nic Shannon; Olga Sikora; Frank Pollmann; Karlo Penc; Peter Fulde

    2011-12-13T23:59:59.000Z

    Ice states, in which frustrated interactions lead to a macroscopic ground-state degeneracy, occur in water ice, in problems of frustrated charge order on the pyrochlore lattice, and in the family of rare-earth magnets collectively known as spin ice. Of particular interest at the moment are "quantum spin ice" materials, where large quantum fluctuations may permit tunnelling between a macroscopic number of different classical ground states. Here we use zero-temperature quantum Monte Carlo simulations to show how such tunnelling can lift the degeneracy of a spin or charge ice, stabilising a unique "quantum ice" ground state --- a quantum liquid with excitations described by the Maxwell action of 3+1-dimensional quantum electrodynamics. We further identify a competing ordered "squiggle" state, and show how both squiggle and quantum ice states might be distinguished in neutron scattering experiments on a spin ice material.

  1. Heavy ion irradiation of crystalline water ice

    E-Print Network [OSTI]

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01T23:59:59.000Z

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  2. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect (OSTI)

    WEISS, E.V.

    2000-12-15T23:59:59.000Z

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  3. WRPS MEETING THE CHALLENGE OF TANK WASTE

    SciTech Connect (OSTI)

    BRITTON JC

    2012-02-21T23:59:59.000Z

    Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two-and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record-setting safety performance. Since WRPS took over the Hanford Tank Operations Contract in October 2

  4. Home Atmosphere Sea Ice Ocean Land Greenland Biology Greenland Ice Sheet Mass Balance

    E-Print Network [OSTI]

    Box, Jason E.

    Home Atmosphere Sea Ice Ocean Land Greenland Biology Greenland Ice Sheet Mass Balance E. Hanna 1 ice loss over Greenland. Recent warm events are about the same magnitude, if not smaller, than those warming, remain incompletely understood. Satellite Observations The Greenland ice sheet (GrIS) contains 7

  5. Ice Stream C slowdown is not stabilizing West Antarctic Ice Sheet S Anandakrishnan RB Alleyy

    E-Print Network [OSTI]

    Jacobel, Robert W.

    Ice Stream C slowdown is not stabilizing West Antarctic Ice Sheet S Anandakrishnan RB Alleyy RW Jacobelz H Conwayx March 24, 1999 Abstract Changes in the flow of ice stream C likely indicate a continuing part of ice stream C, West Antarctica largely stagnated over the last few centuries, while upglacier

  6. Quenched by ice: Transient grating measurements of vibronic dynamics in bromine-doped ice

    E-Print Network [OSTI]

    Apkarian, V. Ara

    Quenched by ice: Transient grating measurements of vibronic dynamics in bromine-doped ice I. U April 2006; published online 25 May 2006 In both water and in ice, the absorption spectra of bromine of the trapped molecule in its electronic B 3 0u state in ice. Independent of the initial excitation energy

  7. Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation

    E-Print Network [OSTI]

    Noone, David

    associated with diabatic heating. The interior deuterium excess response is more strongly affected by sea ice ice and the local conditions may have remote influences [Jacobs and Comiso, 1997; StammerjohnSea ice control of water isotope transport to Antarctica and implications for ice core

  8. New study details glacier ice loss following ice shelf July 25, 2011

    E-Print Network [OSTI]

    Cambridge, University of

    and Ted #12;Scambos of the NSIDC produced detailed ice loss maps from 2001 to 2009 for the main tributaryNew study details glacier ice loss following ice shelf collapse July 25, 2011 Contact: Anthony Lane UMBC (410) 455-5793 alane@umbc.edu Katherine Leitzell National Snow and Ice Data Center University

  9. Ice Sample Production Techniques and Indentation Tests for Laboratory Experiments Simulating Ship Collisions with Ice

    E-Print Network [OSTI]

    Bruneau, Steve

    questions involving the fracture of ice. METHODS For STePS2 investigations ice is variously produced usingIce Sample Production Techniques and Indentation Tests for Laboratory Experiments Simulating Ship Collisions with Ice Stephen E. Bruneau1 , Anna K. Dillenburg2 , and Simon Ritter2 1 Prof. of Civil

  10. Numerical Age Computation of the Antarctic Ice Sheet for Dating Deep Ice Cores

    E-Print Network [OSTI]

    Calov, Reinhard

    Numerical Age Computation of the Antarctic Ice Sheet for Dating Deep Ice Cores Bernd M篓ugge1 for the computation of the age of ice is discussed within the frame of numerical ice sheet modelling. The first method of a numerical diffusion term to stabilize the solution and therefore produces arbitrary results in a near

  11. LABORATORY INDENTATION TESTS SIMULATING ICE-STRUCTURE INTERACTIONS USING CONE-SHAPED ICE

    E-Print Network [OSTI]

    Bruneau, Steve

    involving closing speeds over 1500m/s. Ice was produced using distilled and chilled water, unLABORATORY INDENTATION TESTS SIMULATING ICE- STRUCTURE INTERACTIONS USING CONE-SHAPED ICE SAMPLES describes the results of a series of tests from 2010-2012 in which cone-shaped ice samples were crushed

  12. Gas isotopes in ice reveal a vegetated central Greenland during ice sheet invasion

    E-Print Network [OSTI]

    Chappellaz, J茅r么me

    = ) in the silty ice, reaching values as high as 22 mM [Tison et al., 1998]. Ammonium oxalate is produced duringGas isotopes in ice reveal a vegetated central Greenland during ice sheet invasion R. Souchez,1 J prevailing during build-up of the Greenland Ice Sheet (GIS) are not yet established. Here we use results from

  13. 115GLACIERS AND ICE CAPSCHAPTER 6B Glaciers and Ice Caps

    E-Print Network [OSTI]

    Fountain, Andrew G.

    115GLACIERS AND ICE CAPSCHAPTER 6B 6B Glaciers and Ice Caps Michael Zemp (lead author, Department of Sciences, China) #12;116 GLOBAL OUTLOOK FOR ICE AND SNOW Summary Glaciers and ice caps are among the most hazards. Because they are close to the melting point and react strongly to climate change, glaciers

  14. Developing Great Lakes Ice Model (GLIM) using CIOM (Coupled Ice-Ocean Model) in Lake Erie

    E-Print Network [OSTI]

    Developing Great Lakes Ice Model (GLIM) using CIOM (Coupled Ice- Ocean Model) in Lake Erie Primary of the ice-ocean models, assistance with development of project reports and scientific presentations will first start the implementation of the CIOM in Lake Erie, assemble satellite observations of ice cover

  15. Satellite SAR Remote Sensing of Great Lakes Ice Cover, Part 2. Ice Classification and Mapping

    E-Print Network [OSTI]

    Satellite SAR Remote Sensing of Great Lakes Ice Cover, Part 2. Ice Classification and Mapping (freshwater) ice types using the Jet Propulsion Laboratory C-band scatterometer, together with surface-based ice physical characterization measurements and environmental parameters, were acquired concurrently

  16. Fire and Ice Issue 3

    E-Print Network [OSTI]

    Multiple Contributors

    1995-01-01T23:59:59.000Z

    ,fpl ^1 FIRE AND ICE Available from: Kathleen Resch PO Box 1766 Temple City,CA 91780 III May, 1995 by Kathleen Resch for the contributors. No reprints or reproduction without the written permission of the author/artist. This is an amateur... publication and is not intended to infringe upon the rightsof "Blake's 7" copyright holders.. FIRE AND ICE TABLE OF CONTENTS THE GIFT by Pat Terra 1 "innerspace" by Pat Terra 24 WILD, BEAUTIFUL AND DAMNED by Gemini 25 SET THE NIGHT ON FIRE by Riley Cannon 40...

  17. AMSR-E Algorithm Theoretical Basis Document: Sea Ice Products

    E-Print Network [OSTI]

    Waliser, Duane E.

    the Arctic perennial ice regions, and the ice temperature is produced from an algorithm similar to the Nimbus1 AMSR-E Algorithm Theoretical Basis Document: Sea Ice Products Thorsten Markus and Donald J 20771 1. Overview The AMSR-E sea ice standard level 3 products include sea ice concentration, sea ice

  18. EIS-0189: Tank Waste Remediation System (TWRS), Richland, WA (Programmatic)

    Broader source: Energy.gov [DOE]

    This environmental impact statement evaluates the Department of Energy (DOE)'s, in cooperation with the Washington State Department of Ecology (Ecology), decisions on how to properly manage and dispose of Hanford Site tank waste and encapsulated cesium and strontium to reduce existing and potential future risk to the public, Site workers, and the environment. The waste includes radioactive, hazardous, and mixed waste currently stored in 177 underground storage tanks, approximately 60 other smaller active and inactive miscellaneous underground storage tanks (MUSTs), and additional Site waste likely to be added to the tank waste, which is part of the tank farm system. In addition, DOE proposes to manage and dispose of approximately 1,930 cesium and strontium capsules that are by-products of tank waste. The tank waste and capsules are located in the 200 Areas of the Hanford Site near Richland, Washington.

  19. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    SciTech Connect (OSTI)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

    2011-10-01T23:59:59.000Z

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  20. IceCube Project Monthly Report Accomplishments

    E-Print Network [OSTI]

    Saffman, Mark

    staff from UW, IceCube collaborators, and Raytheon. 路 Conducted a Quarterly Status Meeting at UW-loaded schedule for on-ice activities that is coordinated with the Raytheon on-ice schedules. Construction Cost accurate application of escalation rates and revisions to actual cost data. Raytheon earned value data

  1. Surface Impedance Tomography for Antarctic Sea Ice

    E-Print Network [OSTI]

    Golden, Kenneth M.

    Surface Impedance Tomography for Antarctic Sea Ice C. Sampsona , K. M. Goldena , A. Gullya , A. P, Australia Abstract During the 2007 SIPEX expedition in pack ice off the coast of East Antarctica, we measured the electrical conductivity of sea ice via surface impedance tomography. Resistance data from

  2. 8, 87438771, 2008 Inhibition of ice

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    ACPD 8, 87438771, 2008 Inhibition of ice crystallisation B. J. Murray Title Page Abstract Chemistry and Physics Discussions Inhibition of ice crystallisation in highly viscous aqueous organic acid8771, 2008 Inhibition of ice crystallisation B. J. Murray Title Page Abstract Introduction Conclusions

  3. 5, 37233745, 2005 characteristics of ice

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    ACPD 5, 37233745, 2005 Chemical characteristics of ice nuclei in anvil cirrus clouds C. H. Twohy and Physics Discussions Chemical characteristics of ice residual nuclei in anvil cirrus clouds: evidence for homogeneous and heterogeneous ice formation C. H. Twohy 1 and M. R. Poellot 2 1 College of Oceanic

  4. The convective desalination of sea ice

    E-Print Network [OSTI]

    Rees Jones, David

    2014-07-01T23:59:59.000Z

    containing both liquid brine and solid (pure water) ice. Frad is the flux of penetrating solar radiation. Thus the thermal properties of sea ice are composed of those of the solid and liquid phases that make up sea ice. Fixed-salinity models used in older...

  5. Ice Cream in a Bag Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Ice Cream in a Bag Ingredients: 1 tablespoon sugar 1/4 teaspoon vanilla extract 2 tablespoons soft fruit 1/2 cup skim milk For the freezer bag; not to be eaten: 1/3 cup rock salt Ice cubes Directions 1. Open a gallon size plastic bag. Add rock salt and fill half way up with ice. Shake to mix the salt

  6. 3, 9991020, 2007 Summer sea ice

    E-Print Network [OSTI]

    Boyer, Edmond

    CPD 3, 9991020, 2007 Summer sea ice during the early Holocene H. Goosse et al. Title Page Abstract on the early Holocene climate constrains the summer sea ice projections for the 21st century H. Goosse, E #12;CPD 3, 9991020, 2007 Summer sea ice during the early Holocene H. Goosse et al. Title Page

  7. 2, 879921, 2006 Ice-sheet evolution

    E-Print Network [OSTI]

    Boyer, Edmond

    CPD 2, 879921, 2006 Ice-sheet evolution during the last climatic cycle S. Charbit et al. Title reconstructions of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle S. Charbit1 , C921, 2006 Ice-sheet evolution during the last climatic cycle S. Charbit et al. Title Page Abstract

  8. Formation and character of an ancient 19-m ice cover and underlying trapped brine in an ``ice-sealed'' east

    E-Print Network [OSTI]

    Priscu, John C.

    Formation and character of an ancient 19-m ice cover and underlying trapped brine in an ``ice bed year-round. New ice-core analysis and tempera- ture data show that beneath 19 m of ice is a water癈. The ice cover thickens at both its base and surface, sealing concentrated brine beneath. The ice

  9. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    SciTech Connect (OSTI)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29T23:59:59.000Z

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.

  10. Medical ice slurry production device

    DOE Patents [OSTI]

    Kasza, Kenneth E. (Palos Park, IL); Oras, John (Des Plaines, IL); Son, HyunJin (Naperville, IL)

    2008-06-24T23:59:59.000Z

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  11. Annual report of tank waste treatability

    SciTech Connect (OSTI)

    Barker, S.A. (Westinghouse Hanford Co., Richland, WA (United States)); Lane, A.G. (Los Alamos Technical Associates, Inc., NM (United States))

    1992-09-01T23:59:59.000Z

    This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00C for fiscal year 1992. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1991 report and is intended to provide traceability for the documentation of the areas listed above by statusing the studies, activities, and issues which occurred in these areas over the period of March 1, 1991, through February 29, 1992.

  12. Annual report of tank waste treatability

    SciTech Connect (OSTI)

    Lane, A.G. [Los Alamos Technical Associates, Inc., NM (United States); Kirkbride, R.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-01T23:59:59.000Z

    This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order* (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00D for fiscal year 1993. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1992 report and is intended to provide traceability for the documentation by statusing the studies, activities, and issues which occurred in these areas listed above over the period of March 1, 1992, through February 28, 1993. Therefore, ongoing studies, activities, and issues which were documented in the previous (1992) report are addressed in this (1993) report.

  13. Tank characterization report for single-shell tank 241-C-110. Revision 1

    SciTech Connect (OSTI)

    Benar, C.J.

    1997-06-14T23:59:59.000Z

    One of the major functions of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-C-110. The objectives of this report are to use characterization data in response to technical issues associated with 241-C-110 waste and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. While only the results from recent sample events will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-C-110 are provided included surveillance information, records pertaining to waste transfers and tank operations, and1124 expected tank contents derived from a process knowledge model. The sampling events are listed, as well as sample data obtained before 1989. The results of the 1992 sampling events are also reported in the data package. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-C-110 and its respective waste types is contained in Appendix E. The reports listed in Appendix E may be found in the Lockheed Martin Hanford Corporation Tank Characterization and Safety Resource Center.

  14. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17T23:59:59.000Z

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

  15. Tank waste remediation system mission analysis report

    SciTech Connect (OSTI)

    Acree, C.D.

    1998-01-09T23:59:59.000Z

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

  16. Organic Tanks Safety Program: Waste aging studies

    SciTech Connect (OSTI)

    Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

    1994-11-01T23:59:59.000Z

    The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

  17. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    1999-04-05T23:59:59.000Z

    Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

  18. Evaluating Feed Delivery Performance in Scaled Double-Shell Tanks

    SciTech Connect (OSTI)

    Lee, Kearn P. [AREVA Federal Services LLC (United States); Thien, Michael G. [Washington River Protection Systems, Richland, WA (United States)

    2013-11-07T23:59:59.000Z

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOCs' ability to adequately mix and sample high-level waste feed to meet the WTP WAC Data Quality Objectives must be demonstrated. The tank mixing and feed delivery must support both TOC and WTP operations. The tank mixing method must be able to remove settled solids from the tank and provide consistent feed to the WTP to facilitate waste treatment operations. Two geometrically scaled tanks were used with a broad spectrum of tank waste simulants to demonstrate that mixing using two rotating mixer jet pumps yields consistent slurry compositions as the tank is emptied in a series of sequential batch transfers. Testing showed that the concentration of slow settling solids in each transfer batch was consistent over a wide range of tank operating conditions. Although testing demonstrated that the concentration of fast settling solids decreased by up to 25% as the tank was emptied, batch-to-batch consistency improved as mixer jet nozzle velocity in the scaled tanks increased.

  19. Hanford Tank Farms Vadose Zone, Addendum to the T Tank Farm Report

    SciTech Connect (OSTI)

    Spatz, Robert

    2000-07-01T23:59:59.000Z

    This addendum to the T Tank Farm Report (GJO-99-101-TARA, GJO-HAN-27) published in September 1999 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the T Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the T Tank Farm at the DOE Hanford Site in the state of Washington.

  20. C-106 tank process ventilation test

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-20T23:59:59.000Z

    Project W-320 Acceptance Test Report for tank 241-C-106, 296-C-006 Ventilation System Acceptance Test Procedure (ATP) HNF-SD-W320-012, C-106 Tank Process Ventilation Test, was an in depth test of the 296-C-006 ventilation system and ventilation support systems required to perform the sluicing of tank C-106. Systems involved included electrical, instrumentation, chiller and HVAC. Tests began at component level, moved to loop level, up to system level and finally to an integrated systems level test. One criteria was to perform the test with the least amount of risk from a radioactive contamination potential stand point. To accomplish this a temporary configuration was designed that would simulate operation of the systems, without being connected directly to the waste tank air space. This was done by blanking off ducting to the tank and connecting temporary ducting and an inlet air filter and housing to the recirculation system. This configuration would eventually become the possible cause of exceptions. During the performance of the test, there were points where the equipment did not function per the directions listed in the ATP. These events fell into several different categories. The first and easiest problems were field configurations that did not match the design documentation. This was corrected by modifying the field configuration to meet design documentation and reperforming the applicable sections of the ATP. A second type of problem encountered was associated with equipment which did not operate correctly, at which point an exception was written against the ATP, to be resolved later. A third type of problem was with equipment that actually operated correctly but the directions in the ATP were in error. These were corrected by generating an Engineering Change Notice (ECN) against the ATP. The ATP with corrected directions was then re-performed. A fourth type of problem was where the directions in the ATP were as the equipment should operate, but the design of the equipment was not correct for that type of operation. To correct this problem an ECN was generated against the design documents, the equipment modified accordingly, and the ATP re-performed. The last type of problem was where the equipment operated per the direct ions in the ATP, agreed with the design documents, yet violated requirements of the Basis of Interim Operation (BIO). In this instance a Non Conformance Report (NCR) was generated. To correct problems documented on an NCR, an ECN was generated to modify the design and field work performed, followed by retesting to verify modifications corrected noted deficiencies. To expedite the completion of testing and maintain project schedules, testing was performed concurrent with construct on, calibrations and the performance of other ATP`s.

  1. New ice rules for nanoconfined monolayer ice from first principles

    E-Print Network [OSTI]

    Corsetti, Fabiano; Artacho, Emilio

    2015-01-01T23:59:59.000Z

    Understanding the structural tendencies of nanoconfined water is of great interest for nanoscience and biology, where nano/micro-sized objects may be separated by very few layers of water. Here we investigate the properties of ice confined to a quasi-2D monolayer by a featureless, chemically neutral potential, using density-functional theory simulations with a non-local van der Waals density functional. An ab initio random structure search reveals all the energetically competitive monolayer configurations to belong to only two of the previously-identified families, characterized by a square or honeycomb hydrogen-bonding network, respectively. From an in-depth analysis we show that the well-known ice rules for bulk ice need to be revised for the monolayer, with distinct new rules appearing for the two networks. All identified stable phases for both are found to be non-polar (but with a topologically non-trivial texture for the square) and, hence, non-ferroelectric, in contrast to the predictions of empirical f...

  2. Tank characterization report for Single-Shell Tank 241-BX-107

    SciTech Connect (OSTI)

    Raphael, G.F.

    1994-09-01T23:59:59.000Z

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents. The results of this is study revealed that tank BX-107, a 2,006,050 L (530,000 gal) cylindrical single-shell, dished-bottom carbon-steel tank in the 200 East Area of the Hanford Site, was classified as sound. It has been interim stabilized and thus contains less than 189,250 L (50,000 gal) of interstitial liquid, and less than 18,925 L (5,000 gal) of supernatant. It has also been partially interim isolated, whereby all inlets to the tank are sealed to prevent inadvertent addition of liquid. At a residual waste level of {approximately}3.07 m (120.7 {+-} 2 in. from sidewall bottom or {approximately}132.9 in. from center bottom), it is estimated that the tank BX-107 contents are equivalent to 1,305,825 L (345,000 gal). The vapor space pressure is at atmospheric. The latest temperature readings, which were taken in July 1994, show a moderate temperature value of 19{degrees}C (66{degrees}F). Two supernatant samples were collected in 1974 and 1990, prior to interim stabilization. Sludge core samples were obtained in 1979 and 1992.

  3. Analysis of Enriched Uranyl Nitrate in Nested Annular Tank Array

    SciTech Connect (OSTI)

    John D. Bess; James D. Cleaver

    2009-06-01T23:59:59.000Z

    Two series of experiments were performed at the Rocky Flats Critical Mass Laboratory during the 1980s using highly enriched (93%) uranyl nitrate solution in annular tanks. [1, 2] Tanks were of typical sizes found in nuclear production plants. Experiments looked at tanks of varying radii in a co-located set of nested tanks, a 1 by 2 array, and a 1 by 3 array. The co-located set of tanks had been analyzed previously [3] as a benchmark for inclusion within the International Handbook of Evaluated Criticality Safety Benchmark Experiments. [4] The current study represents the benchmark analysis of the 1 by 3 array of a series of nested annular tanks. Of the seventeen configurations performed in this set of experiments, twelve were evaluated and nine were judged as acceptable benchmarks.

  4. BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT

    E-Print Network [OSTI]

    Paris-Sud XI, Universit茅 de

    2000-41 BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT will significantly reduce the volume of the necessary tank(s). Whatever this pressure and whatever the volume of the tank(s), the storage System must be designed in such a way that the consequences of an accident

  5. 004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop

    E-Print Network [OSTI]

    004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing Discuss CNG Field Performance Data Discuss Safety Testing of Type 4 Tanks Current work to support Codes & Standards Development #12;3 Storage Tank Technologies 4 basic types of tank designs Type 1 颅 all metal

  6. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    SciTech Connect (OSTI)

    Bhatia, P.K.

    1995-01-31T23:59:59.000Z

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  7. 241-SY Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect (OSTI)

    JENSEN, C.E.

    1999-09-21T23:59:59.000Z

    This report presents the results of the integrity assessment of the 241-SY double-shell tank farm facility located in the 200 West Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

  8. Double-Shell Tank Construction: Extent of Condition

    SciTech Connect (OSTI)

    Venetz, Theodore J.; Gunter, Jason R.

    2014-05-13T23:59:59.000Z

    This presentation covers: quick recap of Hanford DSTs and the contribution of construction difficulties which led to the leak in tank AY-102; approach to Extent of Condition reviews; typical DST construction sequence; presentation of construction information resulting from extent of condition reviews of other DST farms with comparison to tank AY-102; and overall conclusion and impact of issues on the other DST tank farms.

  9. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect (OSTI)

    JENSEN, C.E.

    1999-09-21T23:59:59.000Z

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  10. 241-AZ Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect (OSTI)

    JENSEN, C.E.

    1999-09-21T23:59:59.000Z

    This report presents the results of the integrity assessment of the 241-A2 double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

  11. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy抯 FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  12. ICE Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energythe SecondInformation 3 -2ICE Solar Jump

  13. Ice Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to: navigation, searchIbervilleIce

  14. Radionuclide Releases During Normal Operations for Ventilated Tanks

    SciTech Connect (OSTI)

    Blunt, B.

    2001-09-24T23:59:59.000Z

    This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

  15. PERFORMANCE OBJECTIVES FOR TANK FARM CLOSURE PERFORMANCE ASSESSMENTS

    SciTech Connect (OSTI)

    MANN, F.M.; CRUMPLER, J.D.

    2005-09-30T23:59:59.000Z

    This report documents the performance objectives (metrics, times of analyses, and times of compliance) to be used in performance assessments of Hanford Site tank farm closure.

  16. Tank SY-102 remediation project: Flowsheet and conceptual design report

    SciTech Connect (OSTI)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Dunn, S.L.; Jarvinen, G.D.; Marsh, S.F.; Pope, N.G.; Agnew, S.; Birnbaum, E.R.; Thomas, K.W.; Ortic, E.A.

    1994-01-01T23:59:59.000Z

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. A major program in TWRS is pretreatment which was established to process the waste prior to disposal. Pretreatment is needed to resolve tank safety issues and to separate wastes into high-level and low-level fractions for subsequent immobilization and disposal. There is a fixed inventory of actinides and fission products in the tank which must be prepared for disposal. By segregating the actinides and fission products from the bulk of the waste, the tank`s contents can be effectively managed. Due to the high public visibility and environmental sensitivity of this problem, real progress and demonstrated efforts toward addressing it must begin as soon as possible. As a part of this program, personnel at the Los Alamos National Laboratory (LANL) have developed and demonstrated a flowsheet to remediate tank SY-102 which is located in the 200 West Area and contains high-level radioactive waste. This report documents the results of the flowsheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. The tank waste was characterized using both a tank history approach and an exhaustive evaluation of the available core sample analyses. This report also presents a conceptual design complete with a working material flow model, a major equipment list, and cost estimates.

  17. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site and lists the plants and animals evaluated in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. Potential...

  18. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cumulative impacts presented in Chapter 6 of this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. The cumulative...

  19. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    orders of magnitude within the same series of figures. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington 5-396 Figure...

  20. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Hanford under Waste Management Alternative 1. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington 5-1164 Table...

  1. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    describes the public comment process for the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM...

  2. Independent Oversight Review, Hanford Site Tank Farms 222-S Laboratory...

    Office of Environmental Management (EM)

    2014 Review of the Hanford Tank Farms Safety Management Program Implementation Electrical Safety in the 222-S Laboratory The U.S. Department of Energy (DOE) Office of...

  3. Tank Waste and Waste Processing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    breakthrough immobilization technologies. Currently projects are focusing on: In-tank sludge washing at Hanford Enhanced waste processing at Idaho, Hanford, and Savannah River...

  4. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides information on the basis for the chemical and radionuclide composition in the tanks, as well as equipment, soils, and waste forms. These data, along with information...

  5. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to releases of radionuclides and chemicals from the high-level radioactive waste tanks, Fast Flux Test Facility decommissioning, and waste management activities over long...

  6. Bonfire Tests of High Pressure Hydrogen Storage Tanks

    Broader source: Energy.gov (indexed) [DOE]

    Bonfire Tests of High Pressure Hydrogen Storage Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010Beijing, P.R. China September 27, 2010 Bonfire Tests of High...

  7. Independent Oversight Activity Report, Hanford Waste Tank Farms...

    Office of Environmental Management (EM)

    Previously Identified Items Regarding Positive Ventilation of Hanford Underground Waste Tanks HIAR-HANFORD-2013-10-28 This Independent Oversight Activity Report documents an...

  8. Final Environmental Impact Statement for the Tank Waste Remediation...

    Broader source: Energy.gov (indexed) [DOE]

    hazardous, and mixed waste. This waste is stored in 177 large underground storage tanks and in approximately 60 smaller active and inactive miscellaneous underground storage...

  9. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    SciTech Connect (OSTI)

    TC MACKEY; JE DEIBLER; MW RINKER; KI JOHNSON; SP PILLI; NK KARRI; FG ABATT; KL STOOPS

    2009-01-14T23:59:59.000Z

    The essential difference between Revision 1 and the original issue of this report is the analysis of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. The reevaluation of the AP anchor bolts showed that (for a given temperature increase) the anchor shear load distribution did not change significantly from the initially higher stiffness to the new secant shear stiffness. Therefore, the forces and displacements of the other tank components such as the primary tanks stresses, secondary liner strains, and concrete tank forces and moments also did not change significantly. Consequently, the revised work in Revision 1 focused on the changes in the anchor bolt responses and a full reevaluation of all tank components was judged to be unnecessary.

  10. An Ice Lithography Instrument Anpan Han 1, John Chervinsky2

    E-Print Network [OSTI]

    Page 1 An Ice Lithography Instrument Anpan Han 1, John Chervinsky2 , Daniel Branton3 , and J. A a new nano-patterning method called ice lithography, where ice is used as the resist. Water vapor. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice

  11. Proton Ordering of Cubic Ice Ic: Spectroscopy and Computer Simulations

    E-Print Network [OSTI]

    Dellago, Christoph

    by producing rotational Bjerrum L-defects.1 Ambient-pressure hexagonal ice, ice Ih, shows the lowest produced from ice Ih using hydroxide doping, for example, by freezing a 0.1 M KOH solution. Because ice IhProton Ordering of Cubic Ice Ic: Spectroscopy and Computer Simulations Philipp Geiger, Christoph

  12. Selection of AT-Tank Analysis Equipment for Determining Completion of Mixing and Particle Concentration in Hanford Waste Tanks

    SciTech Connect (OSTI)

    Dodson, M.G.; Ozanich, R.M.; Bailey, S.A.

    1999-06-10T23:59:59.000Z

    This document will describe the functions and requirements of the at-tank analysis system concept developed by the Robotics Technology Development Program (RTDP) and Berkeley Instruments. It will discuss commercially available at-tank analysis equipment, and compare those that meet the stated functions and requirements. This is followed by a discussion of the considerations used in the selection of instrumentation for the concept design, and an overall description of the proposed at-tank analysis system.

  13. Controlling ice nucleation through surface hydrophilicity

    E-Print Network [OSTI]

    Stephen J. Cox; Shawn M. Kathmann; Ben Slater; Angelos Michaelides

    2015-01-08T23:59:59.000Z

    Ice formation is one of the most common and important processes on Earth and almost always occurs at the surface of a material. A basic understanding of how the physiochemical properties of a material's surface affects its ability to form ice has remained elusive. Here we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at an hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water exists for promoting ice nucleation. We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability.

  14. Neglecting ice-atmosphere interactions underestimates ice sheet melt in millennial-scale deglaciation simulations

    E-Print Network [OSTI]

    Pritchard, M. S.; Bush, A. B.; Marshall, S. J.

    2008-01-01T23:59:59.000Z

    produce an interactive coupled integration: Atmospheric dynamics were equilibrated to an initial iceconstant ice albedos. None of these cases is able to produceproduce substantial deglaciation on a realistic timescale is attributed to the use of temporally invariant ice

  15. Tank characterization report for single-shell tank 241-BY-109

    SciTech Connect (OSTI)

    Jo, J.

    1998-04-14T23:59:59.000Z

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-109. This report supports the requirements of the Tri-Party Agreement Milestone M-44-15B.

  16. Summer ICE@Tech Computing Camps

    E-Print Network [OSTI]

    Guzdial, Mark

    Summer ICE@Tech Computing Camps Session I: June 5th - June 9th Session II: July 10th July 14th (404) 385-2273 Fax (404) 385-0965 http://www.cc.gatech.edu/campice 1 #12;2 Summer ICE@Tech Program Handbook #12;3 Summer ICE@Tech is a computing and technology program for students entering 10th , 11th

  17. 100-N Area underground storage tank closures

    SciTech Connect (OSTI)

    Rowley, C.A.

    1993-08-01T23:59:59.000Z

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  18. Tank Waste Committee Summaries - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWPCarbonTakeRV 14800TankSection

  19. Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates

    E-Print Network [OSTI]

    Powell, Brian A.

    2008-01-01T23:59:59.000Z

    in Hanford waste tank sludge simulants. J. Nucl. Sci.from simulated tank waste sludges. Sep. Sci. Tech. 38(2),Dissolution of Waste Tank Sludge Surrogates. In preparation,

  20. Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates

    E-Print Network [OSTI]

    Powell, Brian A.

    2008-01-01T23:59:59.000Z

    speciation in Hanford waste tank sludge simulants. J. Nucl.and Sr(II) from simulated tank waste sludges. Sep. Sci.Promoted Dissolution of Waste Tank Sludge Surrogates. In

  1. SLOSHING OF LIQUIDS IN RIGID ANNULAR CYLINDRICAL AND TORUS TANKS DUE TO SEISMIC GROUND MOTIONS

    E-Print Network [OSTI]

    Aslam, M.

    2013-01-01T23:59:59.000Z

    response of water in annular tank model of water = 1 underof Fixed-Base Liquid Storage Tank,'' U.S. , Japan Seminar onSloshing in Axisymmetric Tanks, 11 Ph.D. Dissertation,

  2. Quantifying the Reactive Uptake of OH by Organic Aerosols in a Continuous Flow Stirred Tank Reactor

    E-Print Network [OSTI]

    Che, Dung L.

    2010-01-01T23:59:59.000Z

    in a Continuous Flow Stirred Tank Reactor Dung L. Che, 1,2a continuous flow stirred tank reactor. This approach isa continuous flow stirred tank reactor (CFSTR) at lower OH

  3. E-Print Network 3.0 - active catch tanks Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catch tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: active catch tanks Page: << < 1 2 3 4 5 > >> 1 Tips For Residential Heating Oil Tank...

  4. The Detection of Light and Heavy Mesotrons Outside the Tank of the 184-inch Cyclotron

    E-Print Network [OSTI]

    Panofsky, Wolfgang

    2010-01-01T23:59:59.000Z

    Heavy Mesotrons Outside the Tank of the 184 00 Oyolotron byHeavy Mesotrons Outside the Tank of the 184" Cyclotron byexperiments outside the tank. Thus far only photographic

  5. Thermal buckling of metal oil tanks subject to an adjacent fire

    E-Print Network [OSTI]

    Liu, Ying

    2011-01-01T23:59:59.000Z

    Fire is one of the main hazards associated with storage tanks containing flammable liquids. These tanks are usually closely spaced and in large groups, so where a petroleum fire occurs, adjacent tanks are susceptible to ...

  6. Thermal buckling of metal oil tanks subject to an adjacent fire

    E-Print Network [OSTI]

    Liu, Ying

    2011-11-22T23:59:59.000Z

    Fire is one of the main hazards associated with storage tanks containing flammable liquids. These tanks are usually closely spaced and in large groups, so where a petroleum fire occurs, adjacent tanks are susceptible to ...

  7. Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges

    E-Print Network [OSTI]

    Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

    2006-01-01T23:59:59.000Z

    Aluminum Dissolution in Tank Waste Sludges Brian A. PowellThe underground storage tanks at the Hanford site containtime, the material in the tanks has stratified to produce a

  8. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    SciTech Connect (OSTI)

    Rast, Richard S. [Washington River Protection Systems, Richland, WA (United States); Washenfelder, Dennis J. [Washington River Protection Systems, Richland, WA (United States); Johnson, Jeremy M. [USDOE Office of River Protection, Richland, WA (United States)

    2013-11-14T23:59:59.000Z

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tanks, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford Single-Shell Tanks is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65 year old tank was tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar completed. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide indication of Hanford Single-Shell Tank structural integrity.

  9. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect (OSTI)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30T23:59:59.000Z

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the retrieval of the waste is under way and is being conducted to achieve the completion criteria established in the Hanford Federal Facility Agreement and Consent Order.

  10. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    SciTech Connect (OSTI)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10T23:59:59.000Z

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

  11. INDICATOR: LAKE ERIE ICE COVER Winter ice cover on Lake Erie affects the amount of heat and moisture transferred

    E-Print Network [OSTI]

    102 INDICATOR: LAKE ERIE ICE COVER Background Winter ice cover on Lake Erie affects the amount of heat and moisture transferred between the lake and the atmosphere. During winter, ice and snow can decrease the amount of light available below the ice surface for photosynthesis. In the absence of an ice

  12. Assessment of performing an MST strike in Tank 21H

    SciTech Connect (OSTI)

    Poirier, Michael R.

    2014-09-29T23:59:59.000Z

    Previous Savannah River National Laboratory (SRNL) tank mixing studies performed for the Small Column Ion Exchange (SCIX) project have shown that 3 Submersible Mixer Pumps (SMPs) installed in Tank 41 are sufficient to support actinide removal by MST sorption as well as subsequent resuspension and removal of settled solids. Savannah River Remediation (SRR) is pursuing MST addition into Tank 21 as part of the Large Tank Strike (LTS) project. The preliminary scope for LTS involves the use of three standard slurry pumps (installed in N, SE, and SW risers) in a Type IV tank. Due to the differences in tank size, internal interferences, and pump design, a separate mixing evaluation is required to determine if the proposed configuration will allow for MST suspension and strontium and actinide sorption. The author performed the analysis by reviewing drawings for Tank 21 [W231023] and determining the required cleaning radius or zone of influence for the pumps. This requirement was compared with previous pilot-scale MST suspension data collected for SCIX that determined the cleaning radius, or zone of influence, as a function of pump operating parameters. The author also reviewed a previous Tank 50 mixing analysis that examined the ability of standard slurry pumps to suspend sludge particles. Based on a review of the pilot-scale SCIX mixing tests and Tank 50 pump operating experience, three standard slurry pumps should be able to suspend sludge and MST to effectively sorb strontium and actinides onto the MST. Using the SCIX data requires an assumption about the impact of cooling coils on slurry pump mixing. The basis for this assumption is described in this report. Using the Tank 50 operating experience shows three standard slurry pumps should be able to suspend solids if the shear strength of the settled solids is less than 160 Pa. Because Tank 21 does not contain cooling coils, the shear strength could be larger.

  13. Underground storage tank 291-D1U1: Closure plan

    SciTech Connect (OSTI)

    Mancieri, S.; Giuntoli, N.

    1993-09-01T23:59:59.000Z

    The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

  14. Relationships between Water Wettability and Ice Adhesion

    E-Print Network [OSTI]

    Meuler, Adam J.

    Ice formation and accretion may hinder the operation of many systems critical to national infrastructure, including airplanes, power lines, windmills, ships, and telecommunications equipment. Yet despite the pervasiveness ...

  15. Dynamics of colloidal particles in ice

    E-Print Network [OSTI]

    Melissa Spannuth; S. G. J. Mochrie; S. S. L. Peppin; J. S. Wettlaufer

    2010-12-31T23:59:59.000Z

    We use X-ray Photon Correlation Spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high-particle-density, where some of the colloids were forced into contact and formed disordered aggregates. We find that the particles in these high density regions underwent ballistic motion coupled with both stretched and compressed exponential decays of the intensity autocorrelation function, and that the particles' characteristic velocity increased with temperature. We explain this behavior in terms of ice grain boundary migration.

  16. BISICLES Captures Details of Retreating Antarctic Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    suggest that the shrinking West Antarctic ice sheet is contributing to global sea level rise. But until recently, scientists could not accurately model the physical...

  17. Viscosity of interfacial water regulates ice nucleation

    SciTech Connect (OSTI)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China) [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Shun; Zhou, Xin [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China)] [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Cui, Dapeng; Wang, Jianjun, E-mail: wangj220@iccas.ac.cn; Song, Yanlin [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)] [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-10T23:59:59.000Z

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and ?, in the context of classical nucleation theory. From the extracted J{sub 0} and ?, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  18. white paper, 9 March 2009 An ice core to reconstruct Greenland ice sheet mass balance

    E-Print Network [OSTI]

    Box, Jason E.

    white paper, 9 March 2009 1 An ice core to reconstruct Greenland a handful of years suggest a profound Greenland ice sheet mass balance sensitivity (2000) found that the Greenland ice sheet lost as much as 2/3 its current

  19. Past Accumulation Rates of the Western Antarctic Ice Sheet Near an Ice Divide

    E-Print Network [OSTI]

    Child, Sarah

    2009-08-12T23:59:59.000Z

    The study of accumulation rates of ice is a direct link to the evolution of ice sheet. It is believed by scientists that ice sheet evolution will aid in the mystery of climate change and may lead to predictions about climates in the future...

  20. The last Scandinavian Ice Sheet in northwestern Russia: ice flow patterns and decay dynamics

    E-Print Network [OSTI]

    Ing贸lfsson, ?lafur

    U N C O R R EC TED PR O O F The last Scandinavian Ice Sheet in northwestern Russia: ice flow Sheet in northwestern Russia: ice flow patterns and decay dynamics. Boreas, Vol. 35, pp. xxx脕xxx. Oslo) in northwestern Russia took place after a period of periglacial conditions. Till of the last SIS, Bobrovo till

  1. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Diagram 1: A Typical Tank Water Heater Source: http://to-unit comparisons of tank versus tankless water heaters.Energy Use MJ/(unit*year) Tank Tankless MJ/(unit*year) Tank

  2. Hail Ice Damage of Stringer-Stiffened Curved Composite Panels /

    E-Print Network [OSTI]

    Le, Jacqueline Linh

    2013-01-01T23:59:59.000Z

    Damage. Composite Structures 2003;62:21321. Ice Drop.How to make clear ice. 28 February 2011. Victoria, BC,2011/02/how-to- make-clear-ice-that-actually-works/ Graham,

  3. ARKTOS: An intelligent system for SAR sea ice image classification

    E-Print Network [OSTI]

    Soh, L. K.; Tsatsoulis, Costas; Gineris, D.; Bertoia, C.

    2004-01-01T23:59:59.000Z

    We present an intelligent system for satellite sea ice image analysis named Advanced Reasoning using Knowledge for T ping Of Sea ice (ARKTOS). ARKTOS performs fully automated analysis of synthetic aperture radar (SAR) sea ice images by mimicking...

  4. Annual report of tank waste treatability

    SciTech Connect (OSTI)

    Giese, K.A.

    1991-09-01T23:59:59.000Z

    This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement Milestone M-04-00 for fiscal year 1991. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods of disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1990 report and is intended to provide traceability for the documentation of the areas listed above by statusing the studies, activities, and issues which occurred in these areas over the period of March 1, 1990, through February 28, 1991. Therefore, ongoing studies, activities, and issues which were documented in the previous (1990) report are addressed in this subsequent (1991) report. 40 refs., 4 figs., 3 tabs.

  5. TRANSIENT HEAT TRANSFER ANALYSIS FOR SRS RADIOACTIVE TANK OPERATION

    SciTech Connect (OSTI)

    Lee, S.

    2013-06-27T23:59:59.000Z

    The primary objective of the present work is to perform a heat balance study for type-I waste tank to assess the impact of using submersible mixer pumps during waste removal. The temperature results calculated by the model will be used to evaluate the temperatures of the slurry waste under various tank operating conditions. A parametric approach was taken to develop a transient model for the heat balance study for type-I waste tanks such as Tank 11, during waste removal by SMP. The tank domain used in the present model consists of two SMP?s for sludge mixing, one STP for the waste removal, cooling coil system with 36 coils, and purge gas system. The sludge waste contained in Tank 11 also has a decay heat load of about 43 W/m{sup 3} mainly due to the emission of radioactive gamma rays. All governing equations were established by an overall energy balance for the tank domain, and they were numerically solved. A transient heat balance model used single waste temperature model, which represents one temperature for the entire waste liquid domain contained in the tank at each transient time.

  6. Program plan for the resolution of tank vapor issues

    SciTech Connect (OSTI)

    Osborne, J.W.; Huckaby, J.L.

    1994-05-01T23:59:59.000Z

    Since 1987, workers at the Hanford Site waste tank farms in Richland, Washington, have reported strong odors emanating from the large, underground high-level radioactive waste storage tanks. Some of these workers have complained of symptoms (e.g., headaches, nausea) related to the odors. In 1992, the U.S. Department of Energy, which manages the Hanford Site, and Westinghouse Hanford Company determined that the vapor emissions coming from the tanks had not been adequately characterized and represented a potential health risk to workers in the immediate vicinity of the tanks. At that time, workers in certain areas of the tank farms were required to use full-face, supplied-breathing-air masks to reduce their exposure to the fugitive emissions. While use of supplied breathing air reduced the health risks associated with the fugitive emissions, it introduced other health and safety risks (e.g., reduced field of vision, air-line tripping hazards, and heat stress). In 1992, an aggressive program was established to assure proper worker protection while reducing the use of supplied breathing air. This program focuses on characterization of vapors inside the tanks and industrial hygiene monitoring in the tank farms. If chemical filtration systems for mitigation of fugitive emissions are deemed necessary, the program will also oversee their design and installation. This document presents the plans for and approach to resolving the Hanford Site high-level waste tank vapor concerns. It is sponsored by the Department of Energy Office of Environmental Restoration and Waste Management.

  7. Tanks Focus Area Site Needs Assessment FY 2000

    SciTech Connect (OSTI)

    Allen, Robert W.

    2000-03-10T23:59:59.000Z

    This document summarizes the Tanks Focus Area (TFA's) process of collecting, analyzing, and responding to high-level radioactive tank waste science and technology needs developed from across the DOE complex in FY 2000. The document also summarizes each science and technology need, and provides an initial prioritization of TFA's projected work scope for FY 2001 and FY 2002.

  8. Hanford Waste Tank Bump Accident and Consequence Analysis

    SciTech Connect (OSTI)

    BRATZEL, D.R.

    2000-06-20T23:59:59.000Z

    This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks.

  9. Maximum surface level and temperature histories for Hanford waste tanks

    SciTech Connect (OSTI)

    Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

    1994-09-02T23:59:59.000Z

    Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data.

  10. Gaseous analytes of concern at Hanford Tank Farms. Topical report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    Large amounts of toxic and radioactive waste materials are stored in underground tanks at DOE sites. When the vapors in the tank headspaces vent to the open atmosphere a potentially dangerous situation can occur for personnel in the area. An open-path atmospheric pollution monitor is being developed for DOE to monitor the open air space above these tanks. In developing this monitor it is important to know what hazardous gases are most likely to be found in dangerous concentrations. These gases are called the Analytes of Concern. At the present time, measurements in eight tanks have detected thirty-one analytes in at least two tanks and fifteen analytes in only one tank. In addition to these gases, Carbon tetrachloride is considered to be an Analyte of Concern because it permeates the ground around the tanks. These Analytes are described and ranked according to a Hazard Index which combines their vapor pressure, density, and approximate danger level. The top sixteen ranked analytes which have been detected in at least two tanks comprise an {open_quotes}Analytes of Concern Test List{close_quotes} for determining the system performance of the atmospheric pollution monitor under development. A preliminary examination of the infrared spectra, barring atmospheric interferences, indicates that: The pollution monitor will detect all forty-seven Analytes!

  11. Waste Acceptance for Vitrified Sludge from Oak Ridge Tank Farms

    SciTech Connect (OSTI)

    Harbour, J.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Andrews, M.K.

    1998-03-01T23:59:59.000Z

    The Tanks Focus Area of the DOE`s Office of Science and Technology (EM-50) has funded the Savannah River Technology Center (SRTC) to develop formulations which can incorporate sludges from Oak Ridge Tank Farms into immobilized glass waste forms. The four tank farms included in this study are: Melton Valley Storage Tanks (MVST), Bethel Valley Evaporation Service Tanks (BVEST), Gunite and Associated Tanks (GAAT), and Old Hydrofracture Tanks (OHF).The vitrified waste forms must be sent for disposal either at the Waste Isolation Pilot Plant (WIPP) or the Nevada Test Site (NTS). Waste loading in the glass is the major factor in determining where the waste will be sent and whether the waste will be remote-handled (RH) or contact-handled (CH). In addition, the waste loading significantly impacts the costs of vitrification operations and transportation to and disposal within the repository.This paper focuses on disposal options for the vitrified Oak Ridge Tank sludge waste as determined by the WIPP (1) and NTS (2) Waste Acceptance Criteria (WAC). The concentrations for both Transuranic (TRU) and beta/gamma radionuclides in the glass waste form will be presented a a function of sludge waste loading. These radionuclide concentrations determine whether the waste forms will be TRU (and therefore disposed of at WIPP) and whether the waste forms will be RH or CH.

  12. Permanent Closure of the TAN-664 Underground Storage Tank

    SciTech Connect (OSTI)

    Bradley K. Griffith

    2011-12-01T23:59:59.000Z

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  13. Engineering report of plasma vitrification of Hanford tank wastes

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1995-05-12T23:59:59.000Z

    This document provides an analysis of vendor-derived testing and technology applicability to full scale glass production from Hanford tank wastes using plasma vitrification. The subject vendor testing and concept was applied in support of the Hanford LLW Vitrification Program, Tank Waste Remediation System.

  14. Caustic Leaching of Hanford Tank S-110 Sludge

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Carson, Katharine J.; Darnell, Lori P.; Greenwood, Lawrence R.; Hoopes, Francis V.; Sell, Richard L.; Sinkov, Sergey I.; Soderquist, Chuck Z.; Urie, Michael W.; Wagner, John J.

    2001-10-31T23:59:59.000Z

    This report describes the Hanford Tank S-110 sludge caustic leaching test conducted in FY 2001 at the Pacific Northwest National Laboratory. The data presented here can be used to develop the baseline and alternative flowsheets for pretreating Hanford tank sludge. The U.S. Department of Energy funded the work through the Efficient Separations and Processing Crosscutting Program (ESP; EM?50).

  15. Underground storage tank 511-D1U1 closure plan

    SciTech Connect (OSTI)

    Mancieri, S.; Giuntoli, N.

    1993-09-01T23:59:59.000Z

    This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

  16. Safety criteria for organic watch list tanks at the Hanford Site

    SciTech Connect (OSTI)

    Meacham, J.E., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    This document reviews the hazards associated with the storage of organic complexant salts in Hanford Site high-level waste single- shell tanks. The results of this analysis were used to categorize tank wastes as safe, unconditionally safe, or unsafe. Sufficient data were available to categorize 67 tanks; 63 tanks were categorized as safe, and four tanks were categorized as conditionally safe. No tanks were categorized as unsafe. The remaining 82 SSTs lack sufficient data to be categorized.Historic tank data and an analysis of variance model were used to prioritize the remaining tanks for characterization.

  17. E-Print Network 3.0 - aqueous tank waste Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: by tank truck. The various wastes, when received, are pumped to storage tanks, then blended to produce... of Liquid Fluid Wastes General Description Light...

  18. E-Print Network 3.0 - aluminium electrolysis tanks Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: aluminium electrolysis tanks Page: << < 1 2 3 4 5 > >> 1 PRE-INVESTIGATION WATER ELECTROLYSIS...

  19. E-Print Network 3.0 - anechoic water tank Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2, and 3 including steam drums, water drums, firebox, and exhaust stack. All tanks including... Side of Surface Condenser < Fuel Oil Storage Tanks < Chilled Water...

  20. E-Print Network 3.0 - analysis tank characterization Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1100. 20. Peek, R. and Jennings, P.C. (1988). "Simplified Analysis of Unanchored Tanks", Earthquake Engrg... ANALYTIC NON-STATIONARY SEISMIC RESPONSE OF TANKS Pranesh...

  1. E-Print Network 3.0 - activity tank waste Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology 4 Suffolk County Department of Health Services Summary: -Filled Tanks: Aboveground tanks with a nominal capacity of 1,100 gallons or less (predominantly...

  2. E-Print Network 3.0 - acidic tank waste Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    > >> 1 Attachment A PPOP 08.10 Summary: but not limited to: < East and West Condensate Tanks < DFT < Waste Pit < Surge Tank < Softeners < Polishers < RO... < Refrigerant Storage...

  3. E-Print Network 3.0 - actual tank 48h Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    septic... Purdue AgronomyPurdue Agronomy CROP, SOIL, AND ENVIRONMENTAL SCIENCES Septic Tanks: The Primary... Introduction Septic tanks play an essential role in effectively...

  4. MIXING STUDY FOR JT-71/72 TANKS

    SciTech Connect (OSTI)

    Lee, S.

    2013-11-26T23:59:59.000Z

    All modeling calculations for the mixing operations of miscible fluids contained in HBLine tanks, JT-71/72, were performed by taking a three-dimensional Computational Fluid Dynamics (CFD) approach. The CFD modeling results were benchmarked against the literature results and the previous SRNL test results to validate the model. Final performance calculations were performed by using the validated model to quantify the mixing time for the HB-Line tanks. The mixing study results for the JT-71/72 tanks show that, for the cases modeled, the mixing time required for blending of the tank contents is no more than 35 minutes, which is well below 2.5 hours of recirculation pump operation. Therefore, the results demonstrate the adequacy of 2.5 hours mixing time of the tank contents by one recirculation pump to get well mixed.

  5. Tanks Focus Area FY98 midyear technical review

    SciTech Connect (OSTI)

    Schlahta, S.N.; Brouns, T.M.

    1998-06-01T23:59:59.000Z

    The Tanks Focus Area (TFA) serves as the DOE`s Office of Environmental Management`s national technology and solution development program for radioactive waste tank remediation. Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. In total, 17 technologies and technical solutions were selected for review. The purpose of each review was to understand the state of development of each technology selected for review and to identify issues to be resolved before the technology or technical solution progressed to the next level of maturity. The reviewers provided detailed technical and programmatic recommendations and comments. The disposition of these recommendations and comments and their impact on the program is documented in this report.

  6. Nondestructive examination of DOE high-level waste storage tanks

    SciTech Connect (OSTI)

    Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-05-01T23:59:59.000Z

    A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack.

  7. Tank 41-H salt level fill history 1985 to 1987

    SciTech Connect (OSTI)

    Ross, R.H.

    1996-05-16T23:59:59.000Z

    The fill rate of the evaporator drop waste tank (i.e., salt tank) at Savannah River Site contained in the Waste Management Technology (WMT) monthly data record is based upon a simple formula that apportioned 10 percent of the evaporator output concentrate to the salt fill volume. Periodically, the liquid level of the salt tank would be decanted below the salt level surface and a visual inspection of the salt profile would be accomplished. The salt volume of the drop tank would then be corrected, if necessary, based upon the visual elevation of the salt formation. This correction can erroneously indicate an excess amount of salt fill occurred in a short time period. This report established the correct fill history for Tank 41H.

  8. Preliminary characterization of abandoned septic tank systems. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This report documents the activities and findings of the Phase I Preliminary Characterization of Abandoned Septic Tank Systems. The purpose of the preliminary characterization activity was to investigate the Tiger Team abandoned septic systems (tanks and associated leachfields) for the purpose of identifying waste streams for closure at a later date. The work performed was not to fully characterize or remediate the sites. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. A total of 20 sites were investigated for the preliminary characterization of identified abandoned septic systems. Of the 20 sites, 19 were located and characterized through samples collected from each tank(s) and, where applicable, associated leachfields. The abandoned septic tank systems are located in Areas 5, 12, 15, 25, and 26 on the Nevada Test Site.

  9. Ice particle size matters | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScience atIan Smith smit306 Primary tabsIce

  10. Sandia National Laboratories: ice storms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performancestoragei-GATE ECIS and i-GATE:ice

  11. The Patty Ice Arena User Responsibilities and Conduct is designed to create better communication between the patrons of the Patty Ice Arena and the Facilities Services' Patty Ice

    E-Print Network [OSTI]

    Wagner, Diane

    PURPOSE: The Patty Ice Arena User Responsibilities and Conduct is designed to create better communication between the patrons of the Patty Ice Arena and the Facilities Services' Patty Ice Arena management or other misuse of any part of the Patty Ice Arena may result in an individual, team, or organization being

  12. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    SciTech Connect (OSTI)

    Not Available

    1994-05-19T23:59:59.000Z

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

  13. Hail Ice Damage of Stringer-Stiffened Curved Composite Panels /

    E-Print Network [OSTI]

    Le, Jacqueline Linh

    2013-01-01T23:59:59.000Z

    of projectile SHI. Thus, the ice produces a more large-areaproduce uneven pressure/forces being applied onto the ice

  14. Nanotextured Anti-Icing Surfaces | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrate Promising Anti-icing Nano Surfaces GE Scientists Demonstrate Promising Anti-icing Nano Surfaces GE Global Research today presented new research findings on its...

  15. Sandia National Laboratories: NASA Award for Marginal Ice Zone...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECClimateAnalysisNASA Award for Marginal Ice Zone Observations and Process Experiment (MIZOPEX) NASA Award for Marginal Ice Zone Observations and Process Experiment...

  16. Heterogeneous Nucleation of Ice on Anthropogenic Organic Particles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nucleation of Ice on Anthropogenic Organic Particles Collected in Mexico City. Heterogeneous Nucleation of Ice on Anthropogenic Organic Particles Collected in Mexico City....

  17. Crystalline Ice Growth on Pt(111): Observation of a Hydrophobic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystalline Ice Growth on Pt(111): Observation of a Hydrophobic Water Monolayer. Crystalline Ice Growth on Pt(111): Observation of a Hydrophobic Water Monolayer. Abstract: The...

  18. The dependence of ice microphysics on aerosol concentration in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. The dependence of ice microphysics on aerosol...

  19. Complex systems influence melting of Greenland ice sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex systems influence melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things...

  20. NASA's sea ice program: present and future

    E-Print Network [OSTI]

    Kuligowski, Bob

    路 New remote sensing applications Infer properties such as sea ice thickness from ICESat Research 路 WhatNASA's sea ice program: present and future Thomas Wagner, PhD Program Scientist, Cryosphere NASA for remote sensing 路 New algorithms to interpret satellite data Improvements to long term satellite record