National Library of Energy BETA

Sample records for ice nucleus abundance

  1. Mobile Ice Nucleus Spectrometer

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Kok, G. L.

    2012-05-07

    This first year report presents results from a computational fluid dynamics (CFD) study to assess the flow and temperature profiles within the mobile ice nucleus spectrometer.

  2. Development of a Mobile Ice Nucleus Counter

    SciTech Connect (OSTI)

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70 deg C, and a single stage system can operate the warm wall at -45 deg C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  3. Neutrino-nucleus interactions

    SciTech Connect (OSTI)

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  4. THE EFFECTS OF INITIAL ABUNDANCES ON NITROGEN IN PROTOPLANETARY DISKS

    SciTech Connect (OSTI)

    Schwarz, Kamber R.; Bergin, Edwin A.

    2014-12-20

    The dominant form of nitrogen provided to most solar system bodies is currently unknown, though available measurements show that the detected nitrogen in solar system rocks and ices is depleted with respect to solar abundances and the interstellar medium. We use a detailed chemical/physical model of the chemical evolution of a protoplanetary disk to explore the evolution and abundance of nitrogen-bearing molecules. Based on this model, we analyze how initial chemical abundances provided as either gas or ice during the early stages of disk formation influence which species become the dominant nitrogen bearers at later stages. We find that a disk with the majority of its initial nitrogen in either atomic or molecular nitrogen is later dominated by atomic and molecular nitrogen as well as NH{sub 3} and HCN ices, where the dominant species varies with disk radius. When nitrogen is initially in gaseous ammonia, it later becomes trapped in ammonia ice except in the outer disk where atomic nitrogen dominates. For a disk with the initial nitrogen in the form of ammonia ice, the nitrogen remains trapped in the ice as NH{sub 3} at later stages. The model in which most of the initial nitrogen is placed in atomic N best matches the ammonia abundances observed in comets. Furthermore, the initial state of nitrogen influences the abundance of N{sub 2}H{sup +}, which has been detected in protoplanetary disks. Strong N{sub 2}H{sup +} emission is found to be indicative of an N{sub 2} abundance greater than n{sub N{sub 2}}/n{sub H{sub 2}}>10{sup ?6} in addition to tracing the CO snow line. Our models also indicate that NO is potentially detectable, with lower N gas abundances leading to higher NO abundances.

  5. ARM - Measurement - Ice nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Ice nuclei Small particles around which ice particles form. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  6. Community Ice Sheet Model (CISM2) Development and Marine Ice...

    Office of Scientific and Technical Information (OSTI)

    Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet Simulations Citation Details In-Document Search Title: Community Ice Sheet Model (CISM2) Development and Marine ...

  7. Arctic ice islands

    SciTech Connect (OSTI)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  8. Functionalized active-nucleus complex sensor

    DOE Patents [OSTI]

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  9. Earth-Abundant Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. The sections below...

  10. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, David F. (Idaho Falls, ID); Suciu, Dan F. (Idaho Falls, ID); Harris, Taryl L. (Idaho Falls, ID); Ingram, Jani C. (Idaho Falls, ID)

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  11. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  12. Equations of state of ice VI and ice VII at high pressure and high temperature

    SciTech Connect (OSTI)

    Bezacier, Lucile; Hanfland, Michael; Journaux, Baptiste; Perrillat, Jean-Philippe; Cardon, Herv; Daniel, Isabelle

    2014-09-14

    High-pressure H{sub 2}O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H{sub 2}O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V{sub 0} = 14.17(2) cm{sup 3}?mol{sup ?1}, K{sub 0} = 14.05(23) GPa, and ?{sub 0} = 14.6(14) 10{sup ?5} K{sup ?1} for ice VI and V{sub 0} = 12.49(1) cm{sup 3}?mol{sup ?1}, K{sub 0} = 20.15(16) GPa, and ?{sub 0} = 11.6(5) 10{sup ?5} K{sup ?1} for ice VII.

  13. Abundant Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Abundant Biofuels Place: Monterey, California Sector: Biofuels Product: Abundant Biofuels plans to develop biodiesel feedstock...

  14. THE STICKINESS OF MICROMETER-SIZED WATER-ICE PARTICLES

    SciTech Connect (OSTI)

    Gundlach, B.; Blum, J.

    2015-01-01

    Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates), water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-sized region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of ?m-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between 114 K and 260 K. We show with our experiments that for low temperatures (below ?210 K), ?m-sized water-ice particles stick below a threshold velocity of 9.6 m s{sup 1}, which is approximately 10times higher than the sticking threshold of ?m-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above 15.3 m s{sup 1}. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

  15. THE STRUCTURE OF SURFACE H{sub 2}O LAYERS OF ICE-COVERED PLANETS WITH HIGH-PRESSURE ICE

    SciTech Connect (OSTI)

    Ueta, S.; Sasaki, T. E-mail: takanori@geo.titech.ac.jp

    2013-10-01

    Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ?} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

  16. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    SciTech Connect (OSTI)

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z.; Grundy, W. M.; Romanishin, W.; Vilas, F. E-mail: David.Cornelison@nau.ed E-mail: wjr@nhn.ou.ed

    2010-12-10

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

  17. Global Simulations of Ice nucleation and Ice Supersaturation...

    Office of Scientific and Technical Information (OSTI)

    Community Atmosphere Model Citation Details In-Document Search Title: Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community ...

  18. Community Ice Sheet Model (CISM2) Development and Marine Ice...

    Office of Scientific and Technical Information (OSTI)

    Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet Simulations Citation ... Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: ...

  19. OBSERVATIONAL CONSTRAINTS ON METHANOL PRODUCTION IN INTERSTELLAR AND PREPLANETARY ICES

    SciTech Connect (OSTI)

    Whittet, D. C. B.; Cook, A. M.; Herbst, Eric; Chiar, J. E.; Shenoy, S. S.

    2011-11-20

    Methanol (CH{sub 3}OH) is thought to be an important link in the chain of chemical evolution that leads from simple diatomic interstellar molecules to complex organic species in protoplanetary disks that may be delivered to the surfaces of Earthlike planets. Previous research has shown that CH{sub 3}OH forms in the interstellar medium predominantly on the surfaces of dust grains. To enhance our understanding of the conditions that lead to its efficient production, we assemble a homogenized catalog of published detections and limiting values in interstellar and preplanetary ices for both CH{sub 3}OH and the other commonly observed C- and O-bearing species, H{sub 2}O, CO, and CO{sub 2}. We use this catalog to investigate the abundance of ice-phase CH{sub 3}OH in environments ranging from dense molecular clouds to circumstellar envelopes around newly born stars of low and high mass. Results show that CH{sub 3}OH production arises during the CO freezeout phase of ice-mantle growth in the clouds, after an ice layer rich in H{sub 2}O and CO{sub 2} is already in place on the dust, in agreement with current astrochemical models. The abundance of solid-phase CH{sub 3}OH in this environment is sufficient to account for observed gas-phase abundances when the ices are subsequently desorbed in the vicinity of embedded stars. CH{sub 3}OH concentrations in the ices toward embedded stars show order-of-magnitude object-to-object variations, even in a sample restricted to stars of low mass associated with ices lacking evidence of thermal processing. We hypothesize that the efficiency of CH{sub 3}OH production in dense cores and protostellar envelopes is mediated by the degree of prior CO depletion.

  20. Arctic Sea ice model sensitivities.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana Stefanova

    2010-12-01

    Arctic sea ice is an important component of the global climate system and, due to feedback effects, the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice state to internal model parameters. A new sea ice model that holds some promise for improving sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of this MPM sea ice code and compare it with the Los Alamos National Laboratory CICE code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness,and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  1. Independent Cost Estimate (ICE)

    Broader source: Energy.gov [DOE]

    Independent Cost Estimate (ICE). On August 8-12, the Office of Project Management Oversight and Assessments (PM) will conduct an ICE on the NNSA Albuquerque Complex Project (NACP) at Albuquerque, NM. This estimate will support the Critical Decision (CD) for establishing the performance baseline and approval to start construction (CD-2/3). This project is at CD-1, with a total project cost range of $183M to $251M.

  2. Climate, Ocean and Sea Ice Modeling (COSIM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences Climate, Ocean and Sea Ice Modeling (COSIM) Climate, Ocean and Sea Ice Modeling (COSIM) The COSIM project develops advanced ocean and ice models for ...

  3. Icing rate meter estimation of in-cloud cable icing

    SciTech Connect (OSTI)

    McComber, P.; Druez, J.; Laflamme, J.

    1994-12-31

    In many northern countries, the design and reliability of power transmission lines are closely related to atmospheric icing overloads. It is becoming increasingly important to have reliable instrument systems to warn of icing conditions before icing loads become sufficient to damage the power transmission network. Various instruments are presently being developed to provide better monitoring of icing conditions. One such instrument is the icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe and can be used to estimate the icing rate on nearby cables. The calibration presently used was originally based on experiments conducted in a cold room. Even though this calibration has shown that the IRM estimation already offers an improvement over model prediction based on standard meteorological parameters, it can certainly be improved further with appropriate field data. For this purpose, the instrument was tested on an icing test site at Mt. Valin (altitude 902 m) Quebec, Canada. In this paper measurements from twelve in-cloud icing events during the 1991--92 winter are divided into one hour periods of icing to provide the experimental icing rate data. The icing rates measured on a 12.5 mm and a 35 mm cables are then compared with the number of IRM signals, also for one hour periods, in relation to initial ice load, temperature, wind velocity and direction. From this analysis, a better calibration for the IRM instrument is suggested. The improvement of the IRM estimation is illustrated by making a comparison with measurements, of the icing load estimation with the old and new calibrations for two complete icing events.

  4. Contractor SOW Template – ICE

    Broader source: Energy.gov [DOE]

    The template presented here is a Statement of Work (SOW) for services of an ICE Support Contractor for assisting OECM in conducting an ICE. Project and review specific information should be incorporated.

  5. ARM - Measurement - Ozone Column Abundance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Column Abundance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ozone Column Abundance The vertically integrated amount of ozone (commonly measured in Dobson Unit, 1 DU = 134 mmol/m^2) Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  6. A NEW SOURCE OF CO{sub 2} IN THE UNIVERSE: A PHOTOACTIVATED ELEY-RIDEAL SURFACE REACTION ON WATER ICES

    SciTech Connect (OSTI)

    Yuan, Chunqing; Cooke, Ilsa R.; Yates, John T. Jr.

    2014-08-20

    CO{sub 2} is one of the most abundant components of ices in the interstellar medium; however, its formation mechanism has not been clearly identified. Here we report an experimental observation of an Eley-Rideal-type reaction on a water ice surface, where CO gas molecules react by direct collisions with surface OH radicals, made by photodissociation of H{sub 2}O molecules, to produce CO{sub 2} ice on the surface. The discovery of this source of CO{sub 2} provides a new mechanism to explain the high relative abundance of CO{sub 2} ice in space.

  7. ARM - TWP-ICE Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWP-ICE Maps Related Links TWP-ICE Home Tropical Western Pacific Home ARM Data Discovery Browse Data Post-Experiment Data Sets Weather Summary (pdf, 6M) New York Workshop Presentations Experiment Planning TWP-ICE Proposal Abstract Detailed Experiment Description Science Plan (pdf, 1M) Operations Plan (pdf, 321K) Maps Contact Info Related Links Daily Report Report Archives Press Media Coverage TWP-ICE Fact Sheet (pdf, 211K) Press Releases TWP-ICE Images ARM flickr site <=""

  8. TWO-PHOTON PHYSICS IN NUCLEUS-NUCLEUS COLLISIONS AT RHIC.

    SciTech Connect (OSTI)

    NYSTRAND,J.

    1998-09-10

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z{sup 2} up to an energy of {approx} 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented.

  9. Ice Storm Supercomputer

    ScienceCinema (OSTI)

    None

    2013-05-28

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  10. Abundant Renewable Energy ARE | Open Energy Information

    Open Energy Info (EERE)

    Abundant Renewable Energy ARE Jump to: navigation, search Name: Abundant Renewable Energy (ARE) Place: Newberg, Oregon Zip: 97132 Sector: Solar, Wind energy Product: Oregon-based...

  11. Nucleus-nucleus total reaction cross sections, and the nuclear interaction radius

    SciTech Connect (OSTI)

    Abu-Ibrahim, Badawy

    2011-04-15

    We study the nucleus-nucleus total reaction cross sections for stable nuclei, in the energy region from 30A MeV to about 1A GeV, and find them to be in proportion to ({radical}({sigma}{sub pp}{sup tot}Z{sub 1}{sup 2/3}+{sigma}{sub pn}{sup tot}N{sub 1}{sup 2/3})+{radical}({sigma}{sub pp}{sup tot}Z{sub 2}{sup 2/3}+{sigma}{sub pn}{sup tot}N{sub 2}{sup 2/3})) {sup 2} in the mass range 8 to 100. Also, we find a parameter-free relation that enables us to predict a total reaction cross section for any nucleus-nucleus within 10% uncertainty at most, using the experimental value of the total reaction cross section of a given nucleus-nucleus. The power of the relation is demonstrated by several examples. The energy dependence of the nuclear interaction radius is deduced; it is found to be almost constant in the energy range from about 200A MeV to about 1A GeV; in this energy range and for nuclei with N=Z, R{sub I}(A)=(1.14{+-}0.02)A{sup 1/3} fm.

  12. Climate Impacts of Ice Nucleation

    SciTech Connect (OSTI)

    Gettelman, A.; Liu, Xiaohong; Barahona, Donifan; Lohmann, U.; Chen, Chih-Chieh

    2012-10-27

    Several different ice nucleation parameterizations in two different General Circulation Models are used to understand the effects of ice nucleation on the mean climate state, and the climate effect of aerosol perturbations to ice clouds. The simulations have different ice microphysical states that are consistent with the spread of observations. These different states occur from different parameterizations of the ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. At reasonable efficiencies, consistent with laboratory measurements and constrained by the global radiative balance, black carbon has a small (-0.06 Wm?2) and not statistically significant climate effect. Indirect effects of anthropogenic aerosols on cirrus clouds occur mostly due to increases in homogeneous nucleation fraction as a consequence of anthropogenic sulfur emissions. The resulting ice indirect effects do not seem strongly dependent on the ice micro-physical balance, but are slightly larger for those states with less homogeneous nucleation in the base state. The total ice AIE is estimated at 0.260.09 Wm?2 (1? uncertainty). This represents an offset of 20-30% of the simulated total Aerosol Indirect Effect for ice and liquid clouds.

  13. Winter Preparedness ? Slips on Ice

    Broader source: Energy.gov (indexed) [DOE]

    can further increase traction; however, they must be removed when ice is no longer present, because their use on floors, smooth concrete, or gravel, presents a different...

  14. ARM - Lesson Plans: When Land Ice Melts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Arctic and Antarctica are covered with large, heavy sheets of ice. Other islands like New Zealand have ice masses in the form of glaciers on them. When land-based ice melts, ...

  15. Therapeutic Hypothermia: Protective Cooling Using Medical Ice...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry Technology available for licensing: Proprietary method and equipment for making an ice slurry coolant to induce...

  16. Biogeochemistry in Sea Ice: CICE model developments

    SciTech Connect (OSTI)

    Jeffery, Nicole; Hunke, Elizabeth; Elliott, Scott; Turner, Adrian

    2012-06-18

    Polar primary production unfolds in a dynamic sea ice environment, and the interactions of sea ice with ocean support and mediate this production. In spring, for example, fresh melt water contributes to the shoaling of the mixed layer enhancing ice edge blooms. In contrast, sea ice formation in the fall reduces light penetration to the upper ocean slowing primary production in marine waters. Polar biogeochemical modeling studies typically consider these types of ice-ocean interactions. However, sea ice itself is a biogeochemically active medium, contributing a significant and, possibly, essential source of primary production to polar regions in early spring and fall. Here we present numerical simulations using the Los Alamos Sea Ice Model (CICE) with prognostic salinity and sea ice biogeochemistry. This study investigates the relationship between sea ice multiphase physics and sea ice productivity. Of particular emphasis are the processes of gravity drainage, melt water flushing, and snow loading. During sea ice formation, desalination by gravity drainage facilitates nutrient exchange between ocean and ice maintaining ice algal blooms in early spring. Melt water flushing releases ice algae and nutrients to underlying waters limiting ice production. Finally, snow loading, particularly in the Southern Ocean, forces sea ice below the ocean surface driving an upward flow of nutrient rich water into the ice to the benefit of interior and freeboard communities. Incorporating ice microphysics in CICE has given us an important tool for assessing the importance of these processes for polar algal production at global scales.

  17. Light propagation in the South Pole ice

    SciTech Connect (OSTI)

    Williams, Dawn; Collaboration: IceCube Collaboration

    2014-11-18

    The IceCube Neutrino Observatory is located in the ice near the geographic South Pole. Particle showers from neutrino interactions in the ice produce light which is detected by IceCube modules, and the amount and pattern of deposited light are used to reconstruct the properties of the incident neutrino. Since light is scattered and absorbed by ice between the neutrino interaction vertex and the sensor, IceCube event reconstruction depends on understanding the propagation of light through the ice. This paper presents the current status of modeling light propagation in South Pole ice, including the recent observation of an azimuthal anisotropy in the scattering.

  18. The New ICE Age | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The New ICE Age The New ICE Age Provides overview of internal combustion engine powertrain developments for the heavy truck market deer12_gruden.pdf (1.84 MB) More Documents & Publications The New ICE Age The New ICE Age Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles

  19. Radiative properties of ice clouds

    SciTech Connect (OSTI)

    Mitchell, D.L.; Koracin, D.; Carter, E.

    1996-04-01

    A new treatment of cirrus cloud radiative properties has been developed, based on anomalous diffraction theory (ADT), which does not parameterize size distributions in terms of an effective radius. Rather, is uses the size distribution parameters directly, and explicitly considers the ice particle shapes. There are three fundamental features which characterize this treatment: (1) the ice path radiation experiences as it travels through an ice crystal is parameterized, (2) only determines the amount of radiation scattered and absorbed, and (3) as in other treatments, the projected area of the size distribution is conserved. The first two features are unique to this treatment, since it does not convert the ice particles into equivalent volume or area spheres in order to apply Mie theory.

  20. Method of forming calthrate ice

    DOE Patents [OSTI]

    Hino, T.; Gorski, A.J.

    1985-09-30

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultransonically so that small crystals are formed in the liquid. Thes small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  1. Method of forming clathrate ice

    DOE Patents [OSTI]

    Hino, Toshiyuki (Tokyo, JP); Gorski, Anthony J. (Lemont, IL)

    1987-01-01

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultrasonically so that small crystals are formed in the liquid. These small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  2. Climate, Ocean and Sea Ice Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ocean and Sea Ice Modeling (COSIM) Summary The COSIM project develops advanced ocean and ice models for evaluating the role of ocean and ice in high-latitude climate change and projecting the impacts of high-latitude change on regions throughout the globe. COSIM researchers develop, test and apply ocean and ice models in support of DOE Climate Change Research and the broader international climate science community. Additional research includes developing a set of next-generation ocean and ice

  3. ARM - Measurement - Ice water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water content The concentration (mass/vol) of ice water particles in a cloud. Categories Cloud Properties, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  4. Highway De-icing Snowmelt Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    De-icing Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name Highway De-icing Snowmelt Low Temperature Geothermal Facility Facility Highway De-icing...

  5. Potassium chloride-bearing ice VII and ice planet dynamics (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: Potassium chloride-bearing ice VII and ice planet dynamics Authors: Frank, Mark R. ; Scott, Henry P. ; Aarestad, Elizabeth ; Prakapenka, Vitali B. 1 ; UC) 2 ; NIU) 2 + ...

  6. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  7. Earth-abundant semiconductors for photovoltaic applications ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth-abundant semiconductors for photovoltaic applications Thin film photovoltaics (solar cells) has the potential to revolutionize our energy landscape by producing clean,...

  8. Water freezing and ice melting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  9. The measured compositions of Uranus and Neptune from their formation on the CO ice line

    SciTech Connect (OSTI)

    Ali-Dib, Mohamad; Mousis, Olivier; Petit, Jean-Marc

    2014-09-20

    The formation mechanisms of the ice giants Uranus and Neptune, and the origin of their elemental and isotopic compositions, have long been debated. The density of solids in the outer protosolar nebula is too low to explain their formation, and spectroscopic observations show that both planets are highly enriched in carbon, very poor in nitrogen, and the ices from which they originally formed might have had deuterium-to-hydrogen ratios lower than the predicted cometary value, unexplained properties that were observed in no other planets. Here, we show that all these properties can be explained naturally if Uranus and Neptune both formed at the carbon monoxide ice line. Due to the diffusive redistribution of vapors, this outer region of the protosolar nebula intrinsically has enough surface density to form both planets from carbon-rich solids but nitrogen-depleted gas, in abundances consistent with their observed values. Water-rich interiors originating mostly from transformed CO ices reconcile the D/H value of Uranus's and Neptune's building blocks with the cometary value. Finally, our scenario generalizes a well known hypothesis that Jupiter formed on an ice line (water snow line) for the two ice giants, and might be a first step toward generalizing this mechanism for other giant planets.

  10. ARM - Measurement - Ice water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    path ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water path A measure of the weight of the ice particles in the atmosphere above a unit surface area in kg m-2. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  11. Ice in Arctic Mixed-phase Stratocumulus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  12. Microsoft Word - IceMountainFinal.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Mountain, in Hampshire County, West Virginia, is marked by a highway historical marker ... Ice Mountain is still open to visitors for guided hikes. Just contact Steve and Terry Lynn ...

  13. Determination of electron-nucleus collisions geometry with forward neutrons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  14. Quarkonium-nucleus bound states from lattice QCD

    SciTech Connect (OSTI)

    Beane, S.  R.; Chang, E.; Cohen, S.  D.; Detmold, W.; Lin, H. -W.; Orginos, K.; Parreño, A.; Savage, M.  J.

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  15. Scaling properties of proton-nucleus total reaction cross sections

    SciTech Connect (OSTI)

    Abu-Ibrahim, Badawy; Kohama, Akihisa

    2010-05-15

    We study the scaling properties of proton-nucleus total reaction cross sections for stable nuclei and propose an approximate expression in proportion to Z{sup 2/3}sigma{sub pp}{sup total}+N{sup 2/3}sigma{sub pn}{sup total}. Based on this expression, we can derive a relation that enables us to predict a total reaction cross section for any stable nucleus within 10% uncertainty at most, using the empirical value of the total reaction cross section of a given nucleus.

  16. Paleotopography of glacial-age ice sheets

    SciTech Connect (OSTI)

    Edwards, R.L.

    1995-01-27

    This is technical comment and response to the subject of paleotophography of glacial age ice sheets. The model presented by Peltier reconstructing the paleotopography of glacial age ice sheets has implications for atmospheric general circulation models of ice age climate. In addition, the model suggests that the glacial-age Antarctic Ice Sheet was significantly larger than today`s. The commentor, Edwards, suggests there is a discrepancy between data from Papua New Guinea and the model results.

  17. Medical ice slurry production device

    DOE Patents [OSTI]

    Kasza, Kenneth E.; Oras, John; Son, HyunJin

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  18. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model

    SciTech Connect (OSTI)

    Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J.

    2011-05-15

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  19. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  20. Abundances for p-process nucleosynthesis

    SciTech Connect (OSTI)

    De Laeter, John R.

    2008-04-15

    An important constraint in developing models of p-process nucleosynthesis is that the abundances of many of the p-process nuclides are not well known. A recent review of the p-process has identified six p-process nuclides that are of particular significance to p-process theorists [M. Arnould and S. Goriely, Phys. Rep. 384, 1 (2003)]. These nuclides are {sup 92,94}Mo, {sup 96,98}Ru, {sup 138}La, and {sup 180}Ta{sup m}. The absence of accurate abundances for these isotopes is due to the fact that the isotopic composition of the elements concerned have not been corrected for isotope fractionation induced by the thermal ionization mass spectrometric instruments used to measure them. To remedy this deficiency, a VG 354 mass spectrometer was calibrated using gravimetric mixtures of enriched isotopes to enable the absolute isotopic compositions of these elements to be obtained. Although the isotopic abundances of {sup 92,94}Mo, {sup 138}La, and {sup 180}Ta{sup m} have previously been reported, the absolute abundances of {sup 96,98}Ru are reported for the first time in this article, with a significant reduction in the magnitude of the values as compared to existing abundances.

  1. Icing on wind-energy systems

    SciTech Connect (OSTI)

    Hoffer, T.; Reale, T.; Elfiqi, A.

    1981-01-01

    A source of icing data is the network of meteorological recording stations within the continental United States which collect meteorological measurements both at the surface and aloft. This report presents procedures for analyzing this data to determine the maximum possible icing to be expected at specified locations. Since the physical processes are different, the procedures for predicting maximum glaze ice and rime are presented in separate sections. Models developed to simulate the maximum possible ice buildup on an exposed surface using the rainfall and cloud water data as input are also presented. In addition to the maximal dynamic and static icing loads, comparative icing values based on an attempt to simulate actual field conditions are also shown. Included are assumptions of droplet splashing and water drainage for the glaze cases and atmospheric mixing during orographic lifting for rime cases.

  2. Recent vs from IceCube

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer R.

    2008-10-03

    IceCube is a 1 km3 neutrino detector now being built at the South Pole. Its 4800 optical modules will detect Cherenkov radiation from charged particles produced in neutrino interactions. IceCube will search for neutrinos of astrophysical origin, with energies from 100 GeV up to 1019 eV. It will be able to separate nue, nu mu and nu tau. In addition to detecting astrophysical neutrinos, IceCube will also search for neutrinos from WIMP annihilation in the Sun and the Earth, look for low-energy (10 MeV) neutrinos from supernovae, and search for a host of exotic signatures. With the associated IceTop surface air shower array, it will study cosmic-ray air showers. IceCube construction is now 50percent complete. After presenting preliminary results from the partial detector, I will discuss IceCube's future plans.

  3. Antarctic sea ice mapping using the AVHRR

    SciTech Connect (OSTI)

    Zibordi, G. ); Van Woert, M.L. . SeaSpace, Inc.)

    1993-08-01

    A sea ice mapping scheme based on Advanced Very High Resolution Radiometer (AVHRR) data from the National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites has been developed and applied to daylight images taken between November 1989 to January 1990 and November 1990 to January 1991 over the Weddell and the Ross Seas. After masking the continent and ice shelves, sea ice is discriminated from clouds and open sea using thresholds applied to the multidimensional space formed by AVHRR Channel 2, 3, and 4 radiances. Sea ice concentrations in cloud-free regions are then computed using the tie-point method. Results based on the analysis of more than 70 images show that the proposed scheme is capable of properly discriminating between sea ice, open sea, and clouds, under most conditions, thus allowing high resolution sea ice maps to be produced during the austral summer season.

  4. IceT users' guide and reference.

    SciTech Connect (OSTI)

    Moreland, Kenneth D.

    2011-01-01

    The Image Composition Engine for Tiles (IceT) is a high-performance sort-last parallel rendering library. In addition to providing accelerated rendering for a standard display, IceT provides the unique ability to generate images for tiled displays. The overall resolution of the display may be several times larger than any viewport that may be rendered by a single machine. This document is an overview of the user interface to IceT.

  5. Automatic Commercial Ice Makers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automatic Commercial Ice Makers Automatic Commercial Ice Makers The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Automatic Commercial Ice Makers -- v2.0 (111.62 KB) More

  6. Southern Great Plains Ice Nuclei Characterization Experiment...

    Office of Scientific and Technical Information (OSTI)

    Characterization Experiment Final Campaign Summary Citation Details In-Document Search Title: Southern Great Plains Ice Nuclei Characterization Experiment Final Campaign ...

  7. Viscosity of interfacial water regulates ice nucleation

    SciTech Connect (OSTI)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; University of Chinese Academy of Sciences, Beijing 100049 ; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun Song, Yanlin

    2014-03-10

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and ?, in the context of classical nucleation theory. From the extracted J{sub 0} and ?, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  8. BISICLES Captures Details of Retreating Antarctic Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Satellite and ground observations show that the ice in this region is thinning and retreating significantly as shifting wind patterns and ocean currents allow warmer water to flow ...

  9. Comparison of 17 Ice Nucleation Measurement Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 Ice Nucleation Measurement Techniques for Immersion Freezing For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research...

  10. Sea ice - atmosphere interaction: Application of multispectral...

    Office of Scientific and Technical Information (OSTI)

    Application of multispectral satellite data in polar surface energy flux estimates. ... Title: Sea ice - atmosphere interaction: Application of multispectral satellite data in ...

  11. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  12. Engineering Density of States of Earth Abundant Semiconductors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced ...

  13. Stellar abundances in the solar neighborhood: The Hypatia Catalog...

    Office of Scientific and Technical Information (OSTI)

    Stellar abundances in the solar neighborhood: The Hypatia Catalog Citation Details In-Document Search Title: Stellar abundances in the solar neighborhood: The Hypatia Catalog We ...

  14. The Dependence of Subhalo Abundance on Halo Concentration (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Dependence of Subhalo Abundance on Halo Concentration Citation Details In-Document Search Title: The Dependence of Subhalo Abundance on Halo Concentration Authors: Mao,...

  15. Reprocessing of ices in turbulent protoplanetary disks: Carbon and nitrogen chemistry

    SciTech Connect (OSTI)

    Furuya, Kenji; Aikawa, Yuri

    2014-08-01

    We study the influence of the turbulent transport on ice chemistry in protoplanetary disks, focusing on carbon- and nitrogen-bearing molecules. Chemical rate equations are solved with the diffusion term, mimicking the turbulent mixing in the vertical direction. Turbulence can bring ice-coated dust grains from the midplane to the warm irradiated disk surface, and the ice mantles are reprocessed by photoreactions, thermal desorption, and surface reactions. The upward transport decreases the abundance of methanol and ammonia ices at r ? 30 AU because warm dust temperature prohibits their reformation on grain surfaces. This reprocessing could explain the smaller abundances of carbon and nitrogen bearing molecules in cometary coma than those in low-mass protostellar envelopes. We also show the effect of mixing on the synthesis of complex organic molecules (COMs) in two ways: (1) transport of ices from the midplane to the disk surface and (2) transport of atomic hydrogen from the surface to the midplane. The former enhances the COMs formation in the disk surface, while the latter suppresses it in the midplane. Then, when mixing is strong, COMs are predominantly formed in the disk surface, while their parent molecules are (re)formed in the midplane. This cycle expands the COMs distribution both vertically and radially outward compared with that in the non-turbulent model. We derive the timescale of the sink mechanism by which CO and N{sub 2} are converted to less volatile molecules to be depleted from the gas phase and find that the vertical mixing suppresses this mechanism in the inner disks.

  16. SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES

    SciTech Connect (OSTI)

    Ciaravella, A.; Candia, R.; Collura, A.; Jimenez-Escobar, A.; Munoz Caro, G. M.; Cecchi-Pestellini, C.; Giarrusso, S.; Barbera, M.

    2012-02-10

    There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ultraviolet radiation is severely inhibited. After H{sub 2}O, CO is often the most abundant component of icy grain mantles in dense interstellar clouds and circumstellar disks. In this work we present irradiation of a pure carbon monoxide ice using a soft X-ray spectrum peaked at 0.3 keV. Analysis of irradiated samples shows formation of CO{sub 2}, C{sub 2}O, C{sub 3}O{sub 2}, C{sub 3}, C{sub 4}O, and CO{sub 3}/C{sub 5}. Comparison of X-rays and ultraviolet irradiation experiments, of the same energy dose, shows that X-rays are more efficient than ultraviolet radiation in producing new species. With the exception of CO{sub 2}, X-ray photolysis induces formation of a larger number of products with higher abundances, e.g., C{sub 3}O{sub 2} column density is about one order of magnitude higher in the X-ray experiment. To our knowledge this is the first report on X-ray photolysis of CO ices. The present results show that X-ray irradiation represents an efficient photo-chemical way to convert simple ices to more complex species.

  17. Turbine anti-icing system

    SciTech Connect (OSTI)

    Ball, B. D.

    1985-12-31

    Exhaust gas is recirculated from the exhaust stack of a gas fired turbine to the air inlet along a constantly-open path to prevent inlet freeze-up. When anti-icing is not needed the exhaust stack is fully opened, creating a partial vacuum in the exhaust stack. At the turbine inlet the recirculation line, is opened to atmosphere. The resultant pressure differential between the opposite ends of the recirculation line creates a driving force for positively purging the recirculation line of unwanted residual exhaust gases. This in turn eliminates a source of unwanted moisture which could otherwise condense, freeze and interfere with turbine operations.

  18. Ice Nuclei in Marine Air: Biogenic Particles or Dust?

    SciTech Connect (OSTI)

    Burrows, Susannah M.; Hoose, C.; Poschl, U.; Lawrence, M.

    2013-01-11

    Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earths energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

  19. Isotopic abundance in atom trap trace analysis

    DOE Patents [OSTI]

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  20. ARM - PI Product - Large Scale Ice Water Path and 3-D Ice Water Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsLarge Scale Ice Water Path and 3-D Ice Water Content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Large Scale Ice Water Path and 3-D Ice Water Content Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM

  1. A direct evidence of vibrationally delocalized response at ice surface

    SciTech Connect (OSTI)

    Ishiyama, Tatsuya; Morita, Akihiro

    2014-11-14

    Surface-specific vibrational spectroscopic responses at isotope diluted ice and amorphous ice are investigated by molecular dynamics (MD) simulations combined with quantum mechanics/molecular mechanics calculations. The intense response specific to the ordinary crystal ice surface is predicted to be significantly suppressed in the isotopically diluted and amorphous ices, demonstrating the vibrational delocalization at the ordinary ice surface. The collective vibration at the ice surface is also analyzed with varying temperature by the MD simulation.

  2. Spongy icing in the marine environment

    SciTech Connect (OSTI)

    Lozowski, E.P.; Blackmore, R.Z.; Forest, T.W.; Shi, J.

    1996-12-01

    Newly formed marine ice accretions may include liquid brine amounts up to about 50% of the total accretion mass. Because they ignore this sponginess, traditional thermodynamic models of icing may significantly underestimate the total marine ice load. In an attempt to improve the capabilities of such models, the authors have undertaken experimental and theoretical research, directed at measuring and predicting the liquid fraction of ice accretions. The experimental work consisted of growing ice accretions on rotating cylinders in the Marine Icing Wind Tunnel at the University of Alberta, over a range of temperatures from {minus}2 C to {minus}25 C, and wind speeds from 19 to 30 m/s, at liquid water contents (3 to 9 g/m) typical of the marine spray environment. A calorimeter was used to measure the liquid fraction of the ice accretions. The experiments indicate that the liquid fraction is almost independent of the environmental conditions and ranges between about 32% and 47%. The authors have also developed a theoretical model of the morphology of the icing process which takes place under a falling supercooled liquid film. Comparisons between the model and experiments show that the model is able to predict accretion growth rate and sponginess with some degree of skill. However, there remain important aspects of the sponginess phenomenon which continue to elude them.

  3. Cable twisting due to atmospheric icing

    SciTech Connect (OSTI)

    McComber, P.; Druez, J.; Savadjiev, K.

    1995-12-31

    Samples of ice accretions collected on cables of overhead transmission lines have shown evidence of twisting of the cable during atmospheric icing. Previous work has attributed cable twisting to the torque created by the weight of an eccentric ice shape and by wind forces. However, testing of stranded cables and conductors has shown that such cables also twist when there is a change in tension in the cable span. This phenomenon is related to the interaction of the different strand layers under tension. When a cable is subjected to atmospheric icing, cable tension increases and this type of twisting should also be considered. In order to determine how the two types of twisting would compare on transmission lines, a numerical simulation was made using characteristics of a typical 35-mm stranded conductor. The twist angle was computed as a function of cable span, sag to span ratio and increasing ice loads. The simulation shows that for transmission lines, twisting due to varying tension will be significant. Since cable tension is influenced by wind speed and ambient temperature as well as ice load, this phenomenon, unless prevented, results in ice accretion more circular in shape and hence eventually in larger ice loads.

  4. Passive ice freezing-releasing heat pipe

    DOE Patents [OSTI]

    Gorski, Anthony J.; Schertz, William W.

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  5. Self-releasing submerged ice maker

    SciTech Connect (OSTI)

    Stewart, W.E. Jr.; Greer, M.E.; Stickler, L.A.

    1989-03-01

    This study reports the results of a series of experiments which investigated a thermal storage technology whereby slush ice is grown on a submerged cold surface and the resultant growth of slush ice released without auxiliary thermal or mechanical means. The process investigated consists of growing slush ice from an electrolyte solution of low molarity. The cold surface (substrate) upon which the slush ice forms is submerged in the bulk solution. As the buoyancy force on the ice crystals exceeds the adhesion to the cold surface, the slush ice is forced from the substrate and floats away, to the top of the solution. The results of this study reveal the relative insensitivity of the growth rate of ice crystals to solution initial bulk concentration over the range of values tested and to concentration of electrolyte during accumulation of ice crystals. The critical parameter appears to be substrate temperature, which generally cannot be less than approximately 2{degrees}C below the freezing point temperature of the solution, as apparent adhesion increases rapidly with decreasing substrate temperature.

  6. ORTHO-TO-PARA ABUNDANCE RATIO OF WATER ION IN COMET C/2001 Q4 (NEAT): IMPLICATION FOR ORTHO-TO-PARA ABUNDANCE RATIO OF WATER

    SciTech Connect (OSTI)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi; Boice, Daniel C.; Martinez, Susan E.

    2012-04-20

    The ortho-to-para abundance ratio (OPR) of cometary molecules is considered to be one of the primordial characteristics of cometary ices, and contains information concerning their formation. Water is the most abundant species in cometary ices, and OPRs of water in comets have been determined from infrared spectroscopic observations of H{sub 2}O rovibrational transitions so far. In this paper, we present a new method to derive OPR of water in comets from the high-dispersion spectrum of the rovibronic emission of H{sub 2}O{sup +} in the optical wavelength region. The rovibronic emission lines of H{sub 2}O{sup +} are sometimes contaminated by other molecular emission lines but they are not affected seriously by telluric absorption compared with near-infrared observations. Since H{sub 2}O{sup +} ions are mainly produced from H{sub 2}O by photoionization in the coma, the OPR of H{sub 2}O{sup +} is considered to be equal to that of water based on the nuclear spin conservation through the reaction. We have developed a fluorescence excitation model of H{sub 2}O{sup +} and applied it to the spectrum of comet C/2001 Q4 (NEAT). The derived OPR of water is 2.54{sup +0.32}{sub -0.25}, which corresponds to a nuclear spin temperature (T{sub spin}) of 30{sup +10}{sub -4} K. This is consistent with the previous value determined in the near-infrared for the same comet (OPR = 2.6 {+-} 0.3, T{sub spin} = 31{sup +11}{sub -5} K).

  7. Complex systems influence melting of Greenland ice sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things are more complicated...

  8. Polarimetric Scattering Database for Non-spherical Ice Particles...

    Office of Scientific and Technical Information (OSTI)

    Polarimetric Scattering Database for Non-spherical Ice Particles at Microwave Wavelengths Title: Polarimetric Scattering Database for Non-spherical Ice Particles at Microwave ...

  9. Sandia Energy - Ice-Sheet Simulation Code Matures, Leveraging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and as the land ice component of coupled climate simulations in DOE's Earth System Model. The land ice component is responsible for simulating the evolution of the...

  10. Greenland Ice Sheet Modeling Update (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Greenland Ice Sheet Modeling Update Citation Details In-Document Search Title: Greenland Ice Sheet Modeling Update You are accessing a document from the Department of Energy's...

  11. Determination of Large-Scale Cloud Ice Water Concentration by...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Determination of Large-Scale Cloud Ice Water Concentration by Combining ... Title: Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface ...

  12. Department of Energy Land Ice Modeling Efforts (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Energy Land Ice Modeling Efforts Citation Details In-Document Search Title: Department of Energy Land Ice Modeling Efforts Authors: Price, Stephen F. Dr 1 + Show Author...

  13. Anomalous Behavior of the Homogeneous Ice Nucleation Rate in...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land" Prev Next Title: Anomalous Behavior of the Homogeneous Ice Nucleation Rate in ...

  14. Purchasing Energy-Efficient Water-Cooled Ice Machines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Energy-Efficient Water-Cooled Ice Machines Purchasing Energy-Efficient Water-Cooled Ice Machines The Federal Energy Management Program (FEMP) provides efficiency ...

  15. ICR-ICE Standard Operating Procedures (Update Sept 2013) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures Contractor SOW Template - ICR Contractor SOW Template - ICE...

  16. Building a next-generation community ice sheet model: meeting...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Building a next-generation community ice sheet model: meeting summary Citation Details In-Document Search Title: Building a next-generation community ice sheet ...

  17. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 m) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 m), known as the small mode. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud

  18. CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS

    SciTech Connect (OSTI)

    Bordalo, V.; Da Silveira, E. F.; Seperuelo Duarte, E.

    2013-09-10

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified after irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

  19. LABORATORY STUDIES ON THE FORMATION OF FORMIC ACID (HCOOH) IN INTERSTELLAR AND COMETARY ICES

    SciTech Connect (OSTI)

    Bennett, Chris J.; Kim, Yong Seol; Kaiser, Ralf I.; Hama, Tetsuya; Kawasaki, Masahiro

    2011-01-20

    Mixtures of water (H{sub 2}O) and carbon monoxide (CO) ices were irradiated at 10 K with energetic electrons to simulate the energy transfer processes that occur in the track of galactic cosmic-ray particles penetrating interstellar ices. We identified formic acid (HCOOH) through new absorption bands in the infrared spectra at 1690 and 1224 cm{sup -1} (5.92 and 8.17 {mu}m, respectively). During the subsequent warm-up of the irradiated samples, formic acid is evident from the mass spectrometer signal at the mass-to-charge ratio, m/z = 46 (HCOOH{sup +}) as the ice sublimates. The detection of formic acid was confirmed using isotopically labeled water-d2 with carbon monoxide, leading to formic acid-d2 (DCOOD). The temporal fits of the reactants, reaction intermediates, and products elucidate two reaction pathways to formic acid in carbon monoxide-water ices. The reaction is induced by unimolecular decomposition of water forming atomic hydrogen (H) and the hydroxyl radical (OH). The dominating pathway to formic acid (HCOOH) was found to involve addition of suprathermal hydrogen atoms to carbon monoxide forming the formyl radical (HCO); the latter recombined with neighboring hydroxyl radicals to yield formic acid (HCOOH). To a lesser extent, hydroxyl radicals react with carbon monoxide to yield the hydroxyformyl radical (HOCO), which recombined with atomic hydrogen to produce formic acid. Similar processes are expected to produce formic acid within interstellar ices, cometary ices, and icy satellites, thus providing alternative processes for the generation of formic acid whose abundance in hot cores such as Sgr-B2 cannot be accounted for solely by gas-phase chemistry.

  20. The primordial helium abundance from updated emissivities

    SciTech Connect (OSTI)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.; Porter, R.L. E-mail: olive@umn.edu E-mail: skillman@astro.umn.edu

    2013-11-01

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y{sub p}. The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y{sub p}. In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y{sub p} = 0.2465 ± 0.0097, in good agreement with the BBN result, Y{sub p} = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination.

  1. A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b

    SciTech Connect (OSTI)

    Kreidberg, Laura; Bean, Jacob L.; Stevenson, Kevin B.; Désert, Jean-Michel; Line, Michael R.; Fortney, Jonathan J.; Madhusudhan, Nikku; Showman, Adam P.; Kataria, Tiffany; Charbonneau, David; McCullough, Peter R.; Seager, Sara; Burrows, Adam; Henry, Gregory W.; Williamson, Michael; Homeier, Derek

    2014-10-01

    The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the solar system giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 M {sub Jup} short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5 × solar at 1σ confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends the trend observed in the solar system of lower metal enrichment for higher planet masses.

  2. Video monitoring of atmospheric icing

    SciTech Connect (OSTI)

    Wareing, J.B.; Chetwood, P.A.

    1995-12-31

    Over the past six years, EA Technology has been involved in the remote monitoring of test spans and samples of overhead transmission line conductors in the UK in areas chosen for their severe winter weather. The sites are unmanned and regularly suffer gales, blizzards and severe icing conditions. Test samples at the sites are monitored day and night using automate, computer and remotely controlled video and still cameras using both the visible and near infrared spectrum. Video and still picture data is stored on site for periodic collection. Meteorological and load force data is collected and also stored at these remote sites and is sent automatically by mobile phone link to a computer at the EA Technology center. All this data can also be monitored at any time at the center over 200 miles away.

  3. Wind turbine performance under icing conditions

    SciTech Connect (OSTI)

    Jasinski, W.J.; Noe, S.C.; Selig, M.S.; Bragg, M.B.

    1998-02-01

    The effects of rime ice on horizontal axis wind turbine performance were estimated. For typical supercooled fog conditions found in cold northern regions, four rime ice accretions on the S809 wind turbine airfoil were predicted using the NASA LEWICE code. The resulting airfoil/ice profile combinations were wind tunnel tested to obtain the lift, drag, and pitching moment characteristics over the Reynolds number range 1--2 {times} 10{sup 6}. These data were used in the PROPID wind turbine performance prediction code to predict the effects of rime ice on a 450-kW rated-power, 28.7-m diameter turbine operated under both stall-regulated and variable-speed/variable-pitch modes. Performance losses on the order of 20% were observed for the variable-speed/variable-pitch rotor. For the stall-regulated rotor, however, a relatively small rime ice profile yielded significantly larger performance losses. For a larger 0.08c-long rime ice protrusion, however, the rated peak power was exceeded by 16% because at high angles the rime ice shape acted like a leading edge flap, thereby increasing the airfoil C{sub l,max} and delaying stall.

  4. Deep inelastic lepton nucleus scattering and hadronization at HERMES energies

    SciTech Connect (OSTI)

    Gruenewald, D.

    2005-06-14

    Semi-inclusive deep inelastic lepton nucleus scattering is studied. The possible hadron interactions inside the nucleus are taken into account by an absorption model which is based on flavor dependent hadron formation lengths, calculated in the framework of the LUND string fragmentation model. Additionally, the rescaling of parton distribution functions and fragmentation functions in the nuclear medium is considered, due to the hypothesis, that a quark in a bound nucleon has access to a larger region in space than in a free nucleon. The model predictions are compared with recent HERMES results for the multiplicity ratios normalized to deuterium on various hadron species and different nuclei. Beside the proton, a good agreement with the experimental data is found.

  5. NN inversion potentials intermediate energy proton-nucleus elastic scattering

    SciTech Connect (OSTI)

    Arellano, H.F.; Brieva, F.A.; Love, W.G.; Geramb, H.V. von

    1995-10-01

    Recently developed nucleon-nucleon interactions using the quantum inverse scattering method shed new fight on the off-shell properties of the internucleon effective force for nucleon-nucleus scattering. Calculations of proton elastic scattering from {sup 40}Ca and {sup 208}Pb in the 500 MeV region show that variations in off-shell contributions are determined to a great extent by the accuracy with which the nucleon-nucleon phase shifts are reproduced. The study is based on the full-folding approach to the nucleon-nucleus optical potential which allows a deep understanding of the interplay between on- and off-shell effects in nucleon scattering. Results and the promising extension offered by the inversion potentials beyond the range of validity of the low-energy internucleon forces will be discussed.

  6. Methods and compositions for targeting macromolecules into the nucleus

    DOE Patents [OSTI]

    Chook, Yuh Min

    2013-06-25

    The present invention includes compositions, methods and kits for directing an agent across the nuclear membrane of a cell. The present invention includes a Karyopherin beta2 translocation motif in a polypeptide having a slightly positively charged region or a slightly hydrophobic region and one or more R/K/H-X.sub.(2-5)-P-Y motifs. The polypeptide targets the agent into the cell nucleus.

  7. Theory and phenomenology of coherent neutrino-nucleus scattering

    SciTech Connect (OSTI)

    McLaughlin, Gail

    2015-07-15

    We review the theory and phenomenology of coherent elastic neutrino-nucleus scattering (CEνNS). After a brief introduction, we summarize the places where CEνNS is already in use and then turn to future physics opportunities from CEνNS. CEνNS has been proposed as a way to limit or discover beyond the standard model physics, measure the nuclear-neutron radius and constrain the Weinberg angle.

  8. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity

    SciTech Connect (OSTI)

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.; Michaelides, Angelos

    2015-05-14

    Ice formation is one of the most common and important processes on earth and almost always occurs at the surface of a material. A basic understanding of how the physicochemical properties of a material’s surface affect its ability to form ice has remained elusive. Here, we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at a hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water exists for promoting ice nucleation.We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  9. AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC3115

    SciTech Connect (OSTI)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2014-11-20

    NGC3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC3115, with an H? luminosity of L {sub H?} = (4.2 0.4) 10{sup 37} erg s{sup 1}. Our analysis revealed that this AGN is located at a projected distance of ?0.''29 0.''05 (corresponding to ?14.3 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.

  10. A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2012-02-08

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.

  11. Smoothed particle hydrodynamics Non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface ?ows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is veri?ed by simulating Poiseuille ?ow, plane shear ?ow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian ?uid. In the present work, however, the ice is modeled as both viscous Newtonian ?uid and non-Newtonian ?uid, such that the e?ect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glens law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  12. Primordial Li abundance and massive particles

    SciTech Connect (OSTI)

    Latin-Capital-Letter-Eth apo, H.

    2012-10-20

    The problem of the observed lithium abundance coming from the Big Bang Nucleosynthesis is as of yet unsolved. One of the proposed solutions is including relic massive particles into the Big Bang Nucleosynthesis. We investigated the effects of such particles on {sup 4}HeX{sup -}+{sup 2}H{yields}{sup 6}Li+X{sup -}, where the X{sup -} is the negatively charged massive particle. We demonstrate the dominance of long-range part of the potential on the cross-section.

  13. {sup 39}Ar Detection at the 10{sup -16} Isotopic Abundance Level with Atom Trap Trace Analysis

    SciTech Connect (OSTI)

    Jiang, W.; Williams, W.; Bailey, K.; O'Connor, T. P.; Mueller, P.; Davis, A. M.; Hu, S.-M.; Sun, Y. R.; Lu, Z.-T.; Purtschert, R.; Sturchio, N. C.

    2011-03-11

    Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric {sup 39}Ar (half-life=269 yr), a cosmogenic isotope with an isotopic abundance of 8x10{sup -16}. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors.

  14. De-icing: recovery of diffraction intensities in the presence of ice rings

    SciTech Connect (OSTI)

    Chapman, Michael S.; Somasundaram, Thayumanasamy

    2010-11-03

    Macromolecular structures are routinely determined at cryotemperatures using samples flash-cooled in the presence of cryoprotectants. However, sometimes the best diffraction is obtained under conditions where ice formation is not completely ablated, with the result that characteristic ice rings are superimposed on the macromolecular diffraction. In data processing, the reflections that are most affected by the ice rings are usually excluded. Here, an alternative approach of subtracting the ice diffraction is tested. High completeness can be retained with little adverse effect upon the quality of the integrated data. This offers an alternate strategy when high levels of cryoprotectant lead to loss of crystal quality.

  15. Communication: On the stability of ice 0, ice i, and I{sub h}

    SciTech Connect (OSTI)

    Quigley, D.; Alf, D.; Slater, B.

    2014-10-28

    Using ab initio methods, we examine the stability of ice 0, a recently proposed tetragonal form of ice implicated in the homogeneous freezing of water [J. Russo, F. Romano, and H. Tanaka, Nat. Mater. 13, 670 (2014)]. Vibrational frequencies are computed across the complete Brillouin Zone using Density Functional Theory (DFT), to confirm mechanical stability and quantify the free energy of ice 0 relative to ice I{sub h}. The robustness of this result is tested via dispersion corrected semi-local and hybrid DFT, and Quantum Monte-Carlo calculation of lattice energies. Results indicate that popular molecular models only slightly overestimate the stability of ice zero. In addition, we study all possible realisations of proton disorder within the ice zero unit cell, and identify the ground state as ferroelectric. Comparisons are made to other low density metastable forms of ice, suggesting that the ice i structure [C. J. Fennel and J. D. Gezelter, J. Chem. Theory Comput. 1, 662 (2005)] may be equally relevant to ice formation.

  16. Developing and Evaluating Ice Cloud Parameterizations by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by remote sensing is that the transfer functions which relate the observables (e. g., radar Doppler spectrum) to cloud properties (e. g., ice water content, or IWC) are not...

  17. Spreading of oil spilled under ice

    SciTech Connect (OSTI)

    Yapa, P.D.; Chowdhury, T. )

    1990-12-01

    A new set of equations is presented to describe the process of oil spreading under ice in clam waters. These equations consider the gravity (buoyancy)-inertia phase, the gravity (buoyancy)-viscous phase, and the termination of spreading during the buoyancy-surface-tension phase. The derivation considers both the constant discharge mode and the constant volume mode. Therefore, a complete description of the spreading phenomena from the time of initial spill to the termination of spreading is presented. Laboratory experiments were conducted using both real ice covers in a cold room and artificial ice covers. The experiments included different ice-cover roughnesses from smooth to rough, oils of different viscosities, and a variety of discharge conditions. The experimental data show close agreement with the theory. These equations can be used during cleanup or environmental impact assessment to estimate the area of an oil slick with respect to time.

  18. The Next ICE Age | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies to further increase engine efficiency and external drivers deer12_foster.pdf (976.38 KB) More Documents & Publications The Next ICE Age Fuel Modification t Facilitate Future Combustion Regimes? Optimization of Advanced Diesel Engine Combustion Strategies

  19. Hydrogen Material Compatibility for Hydrogen ICE | Department...

    Broader source: Energy.gov (indexed) [DOE]

    pm04smith.pdf (1.52 MB) More Documents & Publications Hydrogen Materials Compatibility for the H-ICE Engine Friction Reduction Through Surface Finish and Coatings Vehicle ...

  20. An analysis of selected atmospheric icing events on test cables

    SciTech Connect (OSTI)

    Druez, J.; McComber, P.; Laflamme, J.

    1996-12-01

    In cold countries, the design of transmission lines and communication networks requires the knowledge of ice loads on conductors. Atmospheric icing is a stochastic phenomenon and therefore probabilistic design is used more and more for structure icing analysis. For strength and reliability assessments, a data base on atmospheric icing is needed to characterize the distributions of ice load and corresponding meteorological parameters. A test site where icing is frequent is used to obtain field data on atmospheric icing. This test site is located on the Mt. Valin, near Chicoutimi, Quebec, Canada. The experimental installation is mainly composed of various instrumented but non-energized test cables, meteorological instruments, a data acquisition system, and a video recorder. Several types of icing events can produce large ice accretions dangerous for land-based structures. They are rime due to in-cloud icing, glaze caused by freezing rain, wet snow, and mixtures of these types of ice. These icing events have very different characteristics and must be distinguished, before statistical analysis, in a data base on atmospheric icing. This is done by comparison of data from a precipitation gauge, an icing rate meter and a temperature sensor. An analysis of selected icing periods recorded on the cables of two perpendicular test lines during the 1992--1993 winter season is presented. Only significant icing events have been considered. A comparative analysis of the ice load on the four test cables is drawn from the data, and typical accretion and shedding parameters are calculated separately for icing events related to in-cloud icing and precipitation icing.

  1. Icing modelling in NSMB with chimera overset grids

    SciTech Connect (OSTI)

    Pena, D.; Deloze, T.; Laurendeau, E.; Hoarau, Y.

    2015-03-10

    In aerospace Engineering, the accurate simulation of ice accretion is a key element to increase flight safety and avoid accidents related to icing effects. The icing code developed in the NSMB solver is based on an Eulerian formulation for droplets tracking, an iterative Messinger model using a modified water runback scheme for ice thickness calculation and mesh deformation to track the ice/air interface through time. The whole process is parallelized with MPI and applied with chimera grids.

  2. Melting of ice wedges adds to arctic warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can we someday predict earthquakes? Melting of ice wedges adds to arctic warming New ways of looking at seismic information and innovative laboratory experiments are offering tantalizing clues to what triggers earthquakes-and when. March 14, 2016 Ice throughout the Arctic is vanishing due to a rapidly warming climate. Ice throughout the Arctic is vanishing due to a rapidly warming climate. Melting of ice wedges adds to arctic warming Ice wedges are a particularly cool surface feature in the

  3. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    SciTech Connect (OSTI)

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.; González-Jiménez, R.; Donnelly, T. W.; Ivanov, M.; Udías, J. M.

    2015-05-15

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  4. MEASUREMENTS OF ABSOLUTE ABUNDANCES IN SOLAR FLARES

    SciTech Connect (OSTI)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-05-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (f). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is f = 1.17 0.22. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation occurs.

  5. Seeking solutions for icing at dams and hydro plants

    SciTech Connect (OSTI)

    Haynes, F.D. )

    1993-12-01

    Hydroelectric plant operators in the northern US and Canada often encounter icing problems that interfere with normal operations. Icing can cause problems in machinery, valves, and gates, and frazil ice can block water intakes. (Frazil ice is a slightly super-cooled, slush-type ice commonly formed on northern rivers in a rapids area or any area without an ice cover.) Icing problems, especially blockage of water intakes, can shut down a hydropower plant and cause a considerable loss of power generation. The US Army Corps of Engineers' Cold Regions Research and Engineering Laboratory (CRREL) surveyed hydro plant operators about icing problems experienced at their facilities and solutions to these problems. By sharing the survey results, CRREL researchers hope to spread solutions among operators and to identify those problems for which no solutions are currently known that require more research. CRREL researchers also are developing promising technology that may help to alleviate icing problems.

  6. De-icing: recovery of diffraction intensities in the presence of ice rings

    SciTech Connect (OSTI)

    Chapman, Michael S.; Somasundaram, Thayumanasamy

    2010-06-01

    Correction for ice-rings in diffraction images is demonstrated as an alternative to exclusion of affected reflections. Completeness can be increased without significant loss of quality in the integrated data. Macromolecular structures are routinely determined at cryotemperatures using samples flash-cooled in the presence of cryoprotectants. However, sometimes the best diffraction is obtained under conditions where ice formation is not completely ablated, with the result that characteristic ice rings are superimposed on the macromolecular diffraction. In data processing, the reflections that are most affected by the ice rings are usually excluded. Here, an alternative approach of subtracting the ice diffraction is tested. High completeness can be retained with little adverse effect upon the quality of the integrated data. This offers an alternate strategy when high levels of cryoprotectant lead to loss of crystal quality.

  7. The Role of Snow and Ice in the Climate System

    SciTech Connect (OSTI)

    Barry, Roger

    2007-12-19

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  8. The Role of Snow and Ice in the Climate System

    ScienceCinema (OSTI)

    Barry, Roger G.

    2009-09-01

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  9. Soft X-ray irradiation of methanol ice: Formation of products as a function of photon energy

    SciTech Connect (OSTI)

    Chen, Y.-J.; Juang, K.-J.; Yih, T.-S.; Ciaravella, A.; Cecchi-Pestellini, C.; Muoz Caro, G. M.; Jimnez-Escobar, A.

    2013-12-01

    Pure methanol ices have been irradiated with monochromatic soft X-rays of 300 and 550 eV close to the 1s resonance edges of C and O, respectively, and with a broadband spectrum (250-1200 eV). The infrared (IR) spectra of the irradiated ices show several new products of astrophysical interest such as CH{sub 2}OH, H{sub 2}CO, CH{sub 4}, HCOOH, HCOCH{sub 2}OH, CH{sub 3}COOH, CH{sub 3}OCH{sub 3}, HCOOCH{sub 3}, and (CH{sub 2}OH){sub 2}, as well as HCO, CO, and CO{sub 2}. The effect of X-rays is the result of the combined interactions of photons and electrons with the ice. A significant contribution to the formation and growth of new species in the CH{sub 3}OH ice irradiated with X-rays is given by secondary electrons, whose energy distribution depends on the energy of X-ray photons. Within a single experiment, the abundances of the new products increase with the absorbed energy. Monochromatic experiments show that product abundances also increase with the photon energy. However, the abundances per unit energy of newly formed species show a marked decrease in the broadband experiment as compared to irradiations with monochromatic photons, suggesting a possible regulatory role of the energy deposition rate. The number of new molecules produced per absorbed eV in the X-ray experiments has been compared to those obtained with electron and ultraviolet (UV) irradiation experiments.

  10. Neutrino-nucleus reactions based on recent structure studies

    SciTech Connect (OSTI)

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reactions are studied with the use of new shell model Hamiltonians, which have proper tensor components in the interactions and prove to be successful in the description of Gamow-Teller (GT) strengths in nuclei. The new Hamiltonians are applied to obtain new neutrino-nucleus reaction cross sections in {sup 12}C, {sup 13}C, {sup 56}Fe and {sup 56}Ni induced by solar and supernova neutrinos. The element synthesis by neutrino processes in supernova explosions is discussed with the new cross sections. The enhancement of the production yields of {sup 7}Li, {sup 11}B and {sup 55}Mn is obtained while fragmented GT strength in {sup 56}Ni with two-peak structure is found to result in smaller e-capture rates at stellar environments. The monopole-based universal interaction with tensor force of π+ρ meson exchanges is used to evaluate GT strength in {sup 40}Ar and ν-induced reactions on {sup 40}Ar. It is found to reproduce well the experimental GT strength in {sup 40}Ar.

  11. Deformations and magnetic rotations in the {sup 60}Ni nucleus

    SciTech Connect (OSTI)

    Torres, D. A.; Cristancho, F.; Andersson, L.-L.; Johansson, E. K.; Rudolph, D.; Fahlander, C.; Ekman, J.; Rietz, R. du; Andreoiu, C.; Carpenter, M. P.; Seweryniak, D.; Zhu, S.; Charity, R. J.; Chiara, C. J.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.; Baktash, C.

    2008-11-15

    Data from three experiments using the heavy-ion fusion evaporation-reaction {sup 36}Ar+{sup 28}Si have been combined to study high-spin states in the residual nucleus {sup 60}Ni, which is populated via the evaporation of four protons from the compound nucleus {sup 64}Ge. The GAMMASPHERE array was used for all the experiments in conjunction with a 4{pi} charged-particle detector arrays (MICROBALL, LUWUSIA) and neutron detectors (NEUTRON SHELL) to allow for the detection of {gamma} rays in coincidence with the evaporated particles. An extended {sup 60}Ni level scheme is presented, comprising more than 270{gamma}-ray transitions and 110 excited states. Their spins and parities have been assigned via directional correlations of {gamma} rays emitted from oriented states. Spherical shell-model calculations in the fp-shell characterize some of the low-spin states, while the experimental results of the rotational bands are analyzed with configuration-dependent cranked Nilsson-Strutinsky calculations.

  12. Coulomb Excitation of the N = 50 nucleus {sup 80}Zn

    SciTech Connect (OSTI)

    Van de Walle, J.; Cocolios, T. E.; Huyse, M.; Ivanov, O.; Mayet, P.; Raabe, R.; Sawicka, M.; Stefanescu, I.; Duppen, P. van; Aksouh, F.; Behrens, T.; Gernhauser, R.; Kroell, T.; Kruecken, R.; Bildstein, V.; Blazhev, A.; Eberth, J.

    2008-05-12

    Neutron rich Zinc isotopes, including the N = 50 nucleus {sup 80}Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2{sup +} states. For the first time, an excited state in {sup 80}Zn was observed and the 2{sub 1}{sup +} state in {sup 78}Zn was established. The measured B(E2,2{sub 1}{sup +}{yields}0{sub 1}{sup +}) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus {sup 78}Ni.

  13. Aircraft de-icing best management plans

    SciTech Connect (OSTI)

    Simpson, A.

    1997-12-31

    The purpose of this paper is to summarize the environmental impact of glycol-based de-icing fluids and the best management practices utilized at Canadian airports. The operational, safety and environmental effects of glycol are discussed as well as the management instruments available to address these areas of concern. In today`s highly mobile society, increasing air travel necessitates an awareness of flight safety by the aviation industry. This is most evident during the inclement winter season when de-icing operations are mandatory. De-icing fluids are both a safety and an environmental concern. Although glycol-based de-icers are applied to ensure flight safety, the release of this chemical has a detrimental effect on the environment.

  14. Hydrogen behavior in ice condenser containments

    SciTech Connect (OSTI)

    Lundstroem, P.; Hongisto, O.; Theofanous, T.G.

    1995-09-01

    A new hydrogen management strategy is being developed for the Loviisa ice condenser containment. The strategy relies on containment-wide natural circulations that develop, once the ice condenser doors are forced open, to effectively produce a well-mixed behavior, and a correspondingly slow rise in hydrogen concentration. Levels can then be kept low by a distributed catalytic recombiner system, and (perhaps) an igniter system as a backup, while the associated energy releases can be effectively dissipated in the ice bed. Verification and fine-tuning of the approach is carried out experimentally in the VICTORIA facility and by associated scaling/modelling studies. VICTORIA represents an 1/15th scale model of the Loviisa containment, hydrogen is simulated by helium, and local concentration measurements are obtained by a newly developed instrument specifically for this purpose, called SPARTA. This paper is focused on experimental results from several key experiments that provide a first delineation of key behaviors.

  15. Land Ice Verification and Validation Kit

    Energy Science and Technology Software Center (OSTI)

    2015-07-15

    To address a pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice-sheet models is underway. The associated verification and validation process of these models is being coordinated through a new, robust, python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVV). This release provides robust and automated verification and a performance evaluation on LCF platforms. The performance V&Vmore » involves a comprehensive comparison of model performance relative to expected behavior on a given computing platform. LIVV operates on a set of benchmark and test data, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-4-bit evaluation, and plots of tests where differences occur.« less

  16. Land Ice Verification and Validation Kit

    SciTech Connect (OSTI)

    2015-07-15

    To address a pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice-sheet models is underway. The associated verification and validation process of these models is being coordinated through a new, robust, python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVV). This release provides robust and automated verification and a performance evaluation on LCF platforms. The performance V&V involves a comprehensive comparison of model performance relative to expected behavior on a given computing platform. LIVV operates on a set of benchmark and test data, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-4-bit evaluation, and plots of tests where differences occur.

  17. Flight Path 30L - About ICE House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. About ICE House Irradiation of Chips Electronics (ICE House) is located on the 30° flight path of WNR. At this angle, the shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by

  18. Energy conservation in ice skating rinks

    SciTech Connect (OSTI)

    Dietrich, B.K.; McAvoy, T.J.

    1980-01-01

    An economic and energy analysis of ice rinks was made to examine the areas in which energy could be profitably conserved. The areas where new equipment could make a major reduction in energy use are: the use of waste heat for space heating, the installation of a low emissivity false ceiling to reduce radiant heat, the use of a load cycling controller to reduce refrigeration costs, and the installation of more efficient lighting systems. Changes in rink operating procedure that could cut energy use are: higher refrigerant temperatures, thinner ice, the use of colder resurfacing water, turning the compressors and pumps off at night, and reducing ventilation.

  19. CHEMISTRY IN EVAPORATING ICES-UNEXPLORED TERRITORY

    SciTech Connect (OSTI)

    Cecchi-Pestellini, Cesare; Rawlings, Jonathan M. C.; Viti, Serena; Williams, David A. E-mail: jcr@star.ucl.ac.u E-mail: daw@star.ucl.ac.u

    2010-12-20

    We suggest that three-body chemistry may occur in warm high-density gas evaporating in transient co-desorption events on interstellar ices. Using a highly idealized computational model we explore the chemical conversion from simple species of the ice to more complex species containing several heavy atoms, as a function of density and of adopted three-body rate coefficients. We predict that there is a wide range of densities and rate coefficients in which a significant chemical conversion may occur. We discuss the implications of this idea for the astrochemistry of hot cores.

  20. A Nano Surface Icephobic Coating Delays Ice Formation | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Surface Icephobic Coating Delays Ice Formation Click to email this to a friend (Opens ... A Nano Surface Icephobic Coating Delays Ice Formation Azar Alizadeh 2012.03.08 Hi folks, ...

  1. Nanotextured Anti-Icing Surfaces | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrate Promising Anti-icing Nano Surfaces Click to email this to a friend (Opens in ... GE Scientists Demonstrate Promising Anti-icing Nano Surfaces GE Global Research today ...

  2. Ice Sheet Model Reveals Most Comprehensive Projections for West...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has been stage to dramatic thinning in recent years. The West Antarctic Ice Sheet (WAIS) is out of balance because it is losing significant amounts of ice to the ocean, with...

  3. Modeling the Effect of Ice Nuclei on ARM Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upper-Tropospheric Ice Water Content in TWP-ICE Xiping Zeng, Wei-Kuo Tao, Minghua Zhang, and Shaochen Xie March 31, 2009 Papers Published Recently * Zeng, X., W.-K. Tao, M. Zhang,...

  4. ARM - What About Melting Polar Ice Caps and Sea Levels?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What About Melting Polar Ice Caps and Sea Levels? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What About Melting Polar Ice Caps and Sea Levels? As the northern polar zone warms up, sea ice could melt (very probable) and the sea/ice interface could retreat to the north. This is likely to

  5. Covered Product Category: Water-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and federal efficiency requirements for water-cooled ice machines.

  6. Rapid Cooling Using Ice Slurries for Industrial and Medical Applications -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Rapid Cooling Using Ice Slurries for Industrial and Medical Applications Argonne National Laboratory Contact ANL About This Technology Schematic of distributed-load ice slurry building cooling system Schematic of distributed-load ice slurry building cooling system Endoscopic view of a swine kidney covered with ice slurry delivered

  7. Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry Technology available for licensing: Proprietary method and equipment for making an ice slurry coolant to induce therapeutic hypothermia. Portable, automatic Advantageous for emergency care, cooling during surgeries, organ harvesting PDF icon ice_slurry

  8. MINER{nu}A, a Neutrino--Nucleus Interaction Experiment

    SciTech Connect (OSTI)

    Solano Salinas, C. J.; Chamorro, A.; Romero, C.

    2007-10-26

    With the fantastic results of KamLAND and SNO for neutrino physics, a new generation of neutrino experiments are being designed and build, specially to study the neutrino oscillations to resolve most of the incognita still we have in the neutrino physics. At FERMILAB we have the experiments MINOS and, in a near future, NO{nu}A, to study this kind of oscillations. One big problem these experiments will have is the lack of a good knowledge of the Physics of neutrino interactions with matter, and this will generate big systematic errors. MINER{nu}A, also at FERMILAB, will cover this space studying with high statistics and great precision the neutrino--nucleus interactions.

  9. Semi-inclusive charged-current neutrino-nucleus reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moreno, O.; Donnelly, T. W.; Van Orden, J. W.; Ford, W. P.

    2014-07-17

    The general, universal formalism for semi-inclusive charged-current (anti)neutrino-nucleus reactions is given for studies of any hadronic system, namely, either nuclei or the nucleon itself. The detailed developments are presented with the former in mind and are further specialized to cases where the final-state charged lepton and an ejected nucleon are presumed to be detected. General kinematics for such processes are summarized and then explicit expressions are developed for the leptonic and hadronic tensors involved and for the corresponding responses according to the usual charge, longitudinal and transverse projections, keeping finite the masses of all particles involved. In the case ofmore » the hadronic responses, general symmetry principles are invoked to determine which contributions can occur. As a result, the general leptonic-hadronic tensor contraction is given as well as the cross section for the process.« less

  10. One-pion production in neutrino-nucleus collisions

    SciTech Connect (OSTI)

    Hernández, E.; Nieves, J.; Vicente-Vacas, J. M.

    2015-05-15

    We use our model for neutrino pion production on the nucleon to study pion production on a nucleus. The model is conveniently modified to include in-medium corrections and its validity is extended up to 2 GeV neutrino energies by the inclusion of new resonant contributions in the production process. Our results are compared with recent MiniBooNE data measured in mineral oil. Our total cross sections are below data for neutrino energies above ≈ 1 GeV. As with other theoretical calculations, the agreement with data improves if we neglect pion final state interaction. This is also the case for differential cross sections convoluted over the neutrino flux.

  11. Semi-inclusive charged-current neutrino-nucleus reactions

    SciTech Connect (OSTI)

    Moreno, O.; Donnelly, T. W.; Van Orden, J. W.; Ford, W. P.

    2014-07-17

    The general, universal formalism for semi-inclusive charged-current (anti)neutrino-nucleus reactions is given for studies of any hadronic system, namely, either nuclei or the nucleon itself. The detailed developments are presented with the former in mind and are further specialized to cases where the final-state charged lepton and an ejected nucleon are presumed to be detected. General kinematics for such processes are summarized and then explicit expressions are developed for the leptonic and hadronic tensors involved and for the corresponding responses according to the usual charge, longitudinal and transverse projections, keeping finite the masses of all particles involved. In the case of the hadronic responses, general symmetry principles are invoked to determine which contributions can occur. As a result, the general leptonic-hadronic tensor contraction is given as well as the cross section for the process.

  12. Thorium: Crustal abundance, joint production, and economic availability

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Thorium: Crustal abundance, joint production, and economic availability Citation Details In-Document Search Title: Thorium: Crustal abundance, joint production, and economic availability Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic

  13. The influence of ice nucleation mode and ice vapor growth on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of ice crystals. Without depletion even the MPACE-derived IN lead to rapid glaciation and loss of all liquid water. These results suggest that in order to more accurately simulate...

  14. Electric heat tracing designed to prevent icing

    SciTech Connect (OSTI)

    Lonsdale, J.T.; Norrby, T.

    1985-11-01

    Mobile offshore rigs designed for warmer climates are not capable of operating year-round in the arctic or near-arctic regions. Icing is but one major operational problem in these waters. The danger of instability due to ice loading exists on an oil rig as well as on a ship. From a safety standpoint, ice must be prevented from forming on the helideck, escape passages, escape doors and hatches and handrails. Norsk Hydro A/S, as one of the major operators in the harsh environment outside northern Norway, recognized at an early stage the need for special considerations for the drilling rigs intended for year-round drilling in these regions. In 1982 Norsk Hydro awarded a contract for an engineering study leading to the design of a harsh environment semisubmersible drilling rig. The basic requirement was to develop a unit for safe and efficient year-round drilling operation in the waters of northern Norway. The study was completed in 1983 and resulted in a comprehensive report including a building specification. The electric heat tracing system designed to prevent icing on the unit is described.

  15. The Next ICE Age | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    developments in diesel engines for light- and heavy-duty applications deer12_ruth.pdf (2.95 MB) More Documents & Publications The Next ICE Age Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks SuperTruck Program: Engine Project Review

  16. Early solar mass loss, opacity uncertainties, and the solar abundance...

    Office of Scientific and Technical Information (OSTI)

    Early solar mass loss, opacity uncertainties, and the solar abundance problem Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  17. Atomic weight and isotopic abundance data analysis 1993

    SciTech Connect (OSTI)

    Holden, N.E.

    1993-08-01

    Literature on isotopic abundance measurements and their variation in nature have been reviewed for impact on standard atomic weight values and associated uncertainties for recent measurements.

  18. Discovery of bridgmanite, the most abundant mineral in Earth...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite Citation Details In-Document Search Title: ...

  19. Early solar mass loss, opacity uncertainties, and the solar abundance...

    Office of Scientific and Technical Information (OSTI)

    Early solar mass loss, opacity uncertainties, and the solar abundance problem Citation Details In-Document Search Title: Early solar mass loss, opacity uncertainties, and the solar ...

  20. High-Performance Thermoelectric Devices Based on Abundant Silicide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  1. Antiproton Production in 11.5A GeV/c Au+Pb Nucleus-Nucleus Collisions

    SciTech Connect (OSTI)

    De Cataldo, G.; Giglietto, N.; Raino, A.; Spinelli, P.; Huang, H.Z.; Hill, J.C.; Libby, B.; Wohn, F.K.; Rabin, M.S.; Haridas, P.; Pless, I.A.; Van Buren, G.; Armstrong, T.A.; Lewis, R.A.; Reid, J.D.; Smith, G.A.; Toothacker, W.S.; Davies, R.; Hirsch, A.S.; Porile, N.T.; Rimai, A.; Scharenberg, R.P.; Srivastava, B.K.; Tincknell, M.L.; Greene, S.V.; Bennett, S.J.; Cormier, T.M.; Dee, P.; Fachini, P.; Kim, B.; Li, Q.; Li, Y.; Munhoz, M.G.; Pruneau, C.A.; Wilson, W.K.; Zhao, K.; Barish, K.N.; Bennett, M.J.; Chikanian, A.; Coe, S.D.; Diebold, G.E.; Finch, L.E.; George, N.K.; Kumar, B.S.; Lajoie, J.G.; Majka, R.D.; Nagle, J.L.; Pope, J.K.; Rotondo, F.S.; Sandweiss, J.; Slaughter, A.J.; Wolin, E.J.

    1997-11-01

    We present the first results from the E864 Collaboration on the production of antiprotons in 10{percent} central 11.5A GeV /c Au+Pb nucleus collisions at the Brookhaven Alternating Gradient Synchrotron. We report invariant multiplicities for antiproton production in the kinematic region 1.4{lt}y{lt}2.2 and 50{lt} p{sub T}{lt} 300 MeV/c , and compare our data with a first collision scaling model and previously published results from the E878 Collaboration. The differences between the E864 and E878 antiproton measurements and the implications for antihyperon production are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  2. ARM - Field Campaign - SGP Ice Nuclei Characterization Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSGP Ice Nuclei Characterization Experiment Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : SGP Ice Nuclei Characterization Experiment 2014.04.22 - 2014.06.14 Lead Scientist : Paul DeMott For data sets, see below. Abstract Ice nucleating particles are required to trigger the formation of ice crystals in the mixed-phase (liquid and ice) regions of clouds,

  3. Modeling the Fracture of Ice Sheets on Parallel Computers

    SciTech Connect (OSTI)

    Waisman, Haim; Tuminaro, Ray

    2013-10-10

    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  4. Extended Glauber Model of Antiproton-Nucleus Annihilation for All Energies and Mass Numbers

    SciTech Connect (OSTI)

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2014-01-01

    Previous analytical formulas in the Glauber model for high-energy nucleus-nucleus collisions developed by Wong are utilized and extended to study Antiproton-nucleus annihilations for both high and low energies, after taking into account the effects of Coulomb and nuclear interactions, and the change of the antiproton momentum inside a nucleus. The extended analytical formulas capture the main features of the experimental antiproton-nucleus annihilation cross sections for all energies and mass numbers. At high antiproton energies, they exhibit the granular property for the lightest nuclei and the black-disk limit for the heavy nuclei. At low antiproton energies, they display the effect of the antiproton momentum increase due to the nuclear interaction for the light nuclei, and the effect of the magnification due to the attractive Coulomb interaction for the heavy nuclei.

  5. How to measure the wind accurately in icing conditions

    SciTech Connect (OSTI)

    Kenyon, P.R.; Blittersdorf, D.C.

    1995-12-31

    Atmospheric icing occurs frequently in the northwestern, Midwestern and northeastern United States from early October through April at locations with high average wind speeds. It has caused wind data recovery problems at sites as far south as Texas. Icing slows anemometers used to assess the wind resource. Data recovered from sites prone to icing will show lower average wind speeds than actual, undervaluing them. The assessment of a wind site must present the actual wind potential. Anemometers used at these sites must remain free of ice. This report presents a description of icing types and the data distortion they cause based on NRG field experience. A brief history of anti-icing anemometers available today for remote site and turbine site monitoring follows. Comparative data of NRG`s IceFree anemometers and the industry standard unheated anemometer is included.

  6. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS

    SciTech Connect (OSTI)

    Aoki, Wako; Inoue, Susumu; Barklem, Paul S.; Beers, Timothy C.; Christlieb, Norbert; Perez, Ana E. GarcIa; Norris, John E.; Carollo, Daniela E-mail: Paul.Barklem@physics.uu.se E-mail: N.Christlieb@lsw.uni-heidelberg.de E-mail: jen@mso.anu.edu.au E-mail: inoue@tap.scphys.kyoto-u.ac.jp

    2009-06-20

    We have determined Li abundances for eleven metal-poor turnoff stars, among which eight have [Fe/H] <-3, based on LTE analyses of high-resolution spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope. The Li abundances for four of these eight stars are determined for the first time by this study. Effective temperatures are determined by a profile analysis of H{alpha} and H{beta}. While seven stars have Li abundances as high as the Spite Plateau value, the remaining four objects with [Fe/H] <-3 have A(Li) =log (Li/H)+ 12 {approx}< 2.0, confirming the existence of extremely metal-poor (EMP) turnoff stars having low Li abundances, as reported by previous work. The average of the Li abundances for stars with [Fe/H]<-3 is lower by 0.2 dex than that of the stars with higher metallicity. No clear constraint on the metallicity dependence or scatter of the Li abundances is derived from our measurements for the stars with [Fe/H]<-3. Correlations of the Li abundance with effective temperatures, with abundances of Na, Mg, and Sr, and with the kinematical properties are investigated, but no clear correlation is seen in the EMP star sample.

  7. The lithium abundances of a large sample of red giants

    SciTech Connect (OSTI)

    Liu, Y. J.; Tan, K. F.; Wang, L.; Zhao, G.; Li, H. N.; Sato, Bun'ei; Takeda, Y. E-mail: gzhao@nao.cas.cn

    2014-04-20

    The lithium abundances for 378 G/K giants are derived with non-local thermodynamic equilibrium correction considered. Among these are 23 stars that host planetary systems. The lithium abundance is investigated, as a function of metallicity, effective temperature, and rotational velocity, as well as the impact of a giant planet on G/K giants. The results show that the lithium abundance is a function of metallicity and effective temperature. The lithium abundance has no correlation with rotational velocity at v sin i < 10 km s{sup –1}. Giants with planets present lower lithium abundance and slow rotational velocity (v sin i < 4 km s{sup –1}). Our sample includes three Li-rich G/K giants, 36 Li-normal stars, and 339 Li-depleted stars. The fraction of Li-rich stars in this sample agrees with the general rate of less than 1% in the literature, and the stars that show normal amounts of Li are supposed to possess the same abundance at the current interstellar medium. For the Li-depleted giants, Li-deficiency may have already taken place at the main sequence stage for many intermediate mass (1.5-5 M {sub ☉}) G/K giants. Finally, we present the lithium abundance and kinematic parameters for an enlarged sample of 565 giants using a compilation of the literature, and confirm that the lithium abundance is a function of metallicity and effective temperature. With the enlarged sample, we investigate the differences between the lithium abundance in thin-/thick-disk giants, which indicate that the lithium abundance in thick-disk giants is more depleted than that in thin-disk giants.

  8. Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica

    SciTech Connect (OSTI)

    Bougamont, M.; Christoffersen, P.; Price, S. F.; Fricker, H. A.; Tulaczyk, S.; Carter, S. P.

    2015-10-21

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leading to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.

  9. Ab initio description of the exotic unbound 7He nucleus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-01-11

    In this study, the neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2– resonance is well established, there is a controversy concerning the excited 1/2– resonance reported in some experiments as low lying and narrow (ER~1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-coremore » shell model combined with the resonating-group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2– resonance above 2 MeV.« less

  10. Deuterium target data for precision neutrino-nucleus cross sections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meyer, Aaron S.; Betancourt, Minerba; Gran, Richard; Hill, Richard J.

    2016-06-23

    Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, FA(q2), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of FA from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of FA. A complete error budget for the nucleon isovector axial radius leads to rA2 = 0.46(22)fm2, with a much larger uncertainty than determined inmore » the original analyses. The quasielastic neutrino-neutron cross section is determined as σ(νμn → μ-p)|Ev=1GeV = 10.1(0.9)×10-39cm2. The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. Furthermore, these techniques can be readily extended to other amplitudes and processes.« less

  11. Flight Path 30L - ICE House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. The Invisible Neutron Threat LANSCE - A Key Facility for National Science and Defense Neutron-Induced Failures in Semiconductor Devices THE ICE HOUSE - Neutron Testing Leads to More-Reliable Electronic

  12. Flight Path 30L - ICE House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. The Invisible Neutron Threat LANSCE - A Key Facility for National Science and Defense Neutron-Induced Failures in Semiconductor Devices THE ICE HOUSE - Neutron Testing Leads to More-Reliable Electronics

  13. Flight Path 30R - ICE II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. The Invisible Neutron Threat LANSCE - A Key Facility for National Science and Defense Neutron-Induced Failures in Semiconductor Devices THE ICE HOUSE - Neutron Testing Leads to More-Reliable Electronic

  14. Flight Path 30R - ICE II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. The Invisible Neutron Threat LANSCE - A Key Facility for National Science and Defense Neutron-Induced Failures in Semiconductor Devices THE ICE HOUSE-Neutron Testing Leads to More-Reliable Electronics

  15. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  16. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    2008-01-15

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  17. Stellar abundances in the solar neighborhood: The Hypatia Catalog

    SciTech Connect (OSTI)

    Hinkel, Natalie R.; Timmes, F.X.; Young, Patrick A.; Pagano, Michael D.; Turnbull, Margaret C.

    2014-09-01

    We compile spectroscopic abundance data from 84 literature sources for 50 elements across 3058 stars in the solar neighborhood, within 150 pc of the Sun, to produce the Hypatia Catalog. We evaluate the variability of the spread in abundance measurements reported for the same star by different surveys. We also explore the likely association of the star within the Galactic disk, the corresponding observation and abundance determination methods for all catalogs in Hypatia, the influence of specific catalogs on the overall abundance trends, and the effect of normalizing all abundances to the same solar scale. The resulting stellar abundance determinations in the Hypatia Catalog are analyzed only for thin-disk stars with observations that are consistent between literature sources. As a result of our large data set, we find that the stars in the solar neighborhood may reveal an asymmetric abundance distribution, such that a [Fe/H]-rich group near the midplane is deficient in Mg, Si, S, Ca, Sc II, Cr II, and Ni as compared to stars farther from the plane. The Hypatia Catalog has a wide number of applications, including exoplanet hosts, thick- and thin-disk stars, and stars with different kinematic properties.

  18. Resonant vibrational energy transfer in ice Ih

    SciTech Connect (OSTI)

    Shi, L.; Li, F.; Skinner, J. L.

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Frster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  19. HST/COS OBSERVATIONS OF GALACTIC HIGH-VELOCITY CLOUDS: FOUR ACTIVE GALACTIC NUCLEUS SIGHT LINES THROUGH COMPLEX C

    SciTech Connect (OSTI)

    Shull, J. Michael; Stevans, Matthew; Danforth, Charles; Penton, Steven V. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Lockman, Felix J. [National Radio Astronomy Observatory, Green Bank, WV 29444 (United States); Arav, Nahum, E-mail: michael.shull@colorado.edu, E-mail: matthew.stevans@colorado.edu, E-mail: charles.danforth@colorado.edu, E-mail: steven.penton@colorado.edu, E-mail: jlockman@nrao.edu, E-mail: arav@vt.edu [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2011-10-01

    We report ultraviolet spectra of Galactic high-velocity clouds (HVCs) in Complex C, taken by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), together with new 21 cm spectra from the Green Bank Telescope. The wide spectral coverage and higher signal-to-noise ratio, compared to previous HST spectra, provide better velocity definition of the HVC absorption, additional ionization species (including high ions), and improved abundances in this halo gas. Complex C has a metallicity of 10%-30% solar and a wide range of ions, suggesting dynamical and thermal interactions with hot gas in the Galactic halo. Spectra in the COS medium-resolution G130M (1133-1468 A) and G160M (1383-1796 A) gratings detect ultraviolet absorption lines from eight elements in low-ionization states (O I, N I, C II, S II, Si II, Al II, Fe II, P II) and three elements in intermediate- and high-ionization states (Si III, Si IV, C IV, N V). Our four active galactic nucleus sight lines toward Mrk 817, Mrk 290, Mrk 876, and PG 1259+593 have high-velocity H I and O VI column densities, log N{sub Hi}= 19.39-20.05 and log N{sub Ovi}= 13.58-14.10, with substantial amounts of kinematically associated photoionized gas. The high-ion abundance ratios are consistent with cooling interfaces between photoionized and collisionally ionized gas: N(C IV)/N(O VI) {approx} 0.3-0.5, N(Si IV)/N(O VI) {approx} 0.05-0.11, N(N V)/N(O VI) {approx} 0.07-0.13, and N(Si IV)/N(Si III) {approx}0.2.

  20. SOFT X-RAY IRRADIATION OF H{sub 2}S ICE AND THE PRESENCE OF S{sub 2} IN COMETS

    SciTech Connect (OSTI)

    Jimenez-Escobar, A.; Munoz Caro, G. M.; Ciaravella, A.; Candia, R.; Micela, G.; Cecchi-Pestellini, C.

    2012-06-01

    Little is known about the effects of X-rays in interstellar ices. To understand the sulfur depletion in dense clouds and the presence of S{sub 2} in comets, we simulated experimentally the soft X-ray processing (0.3 keV) of H{sub 2}S ice for the first time. Experiments were performed under ultrahigh vacuum conditions at 8 K using infrared and quadrupole mass spectrometry to monitor the solid and gas phases, respectively. A UV irradiation experiment using a similar dose was made for comparison. After X-ray irradiation, an infrared absorption appears near 4.0 {mu}m which is attributed to H{sub 2}S{sub 2} formation in the ice. This identification is also supported by the desorption at 133 K of m/z 66, 65, 64, corresponding to the mass fragments of H{sub 2}S{sub 2}. The H{sub 2}S{sub 2} species is expected to be present in interstellar and cometary ices that were processed by X-rays. Further irradiation leads to dissociation of this molecule forming S{sub 2} and larger S-molecules up to S{sub 8}, which may explain the depletion of sulfur in dense clouds. CS{sub 2} was so far the parent molecule proposed for S{sub 2} formation in comets. But the abundance of H{sub 2}S{sub 2}, formed by irradiation of pure H{sub 2}S or H{sub 2}S in an H{sub 2}O-ice matrix, should be larger than that of CS{sub 2} in the ice, the latter requiring a carbon source for its formation. Based on our experimental results, we propose that S{sub 2} in comets could be formed by dissociation of H{sub 2}S{sub 2} in the ice.

  1. Micro-Spectroscopic Imaging and Characterization of Individually Identified Ice Nucleating Particles from a Case Field Study

    SciTech Connect (OSTI)

    Knopf, Daniel A.; Alpert, Peter A.; Wang, Bingbing; O'Brien, Rachel E.; Kelly, Stephen T.; Laskin, Alexander; Gilles, Mary K.; Moffet, Ryan C.

    2014-09-03

    The effect of anthropogenic and biogenic organic particles on atmospheric glaciation processes is poorly understood. We use an optical microscopy (OM) setup to identify the location of ice nuclei (IN) active in immersion freezing and deposition ice nucleation for temperatures of 200-273 K within a large population of particles sampled from an ambient environment. Applying multi-modal micro-spectroscopy methods we characterize the physicochemical properties of individual IN in particle populations collected in central California. Chemical composition and mixing state analysis of particle populations are performed to identify characteristic particle-type classes. All particle-types contained organic material. Particles in these samples take up water at subsaturated conditions, induce immersion freezing at subsaturated and saturated conditions above 226 K, and act as deposition IN below 226 K. The identified IN belong to the most common particle-type classes observed in the field samples: organic coated sea salt, Na-rich, and secondary and refractory carbonaceous particles. Based on these observations, we suggest that the IN are not always particles with unique chemical composition and exceptional ice nucleation propensity; rather, they are common particles in the ambient particle population. Thus, particle composition and morphology alone are insufficient to assess their potential to act as IN. The results suggest that particle-type abundance is also a crucial factor in determining the ice nucleation efficiency of specific IN types. These findings emphasize that ubiquitous organic particles can induce ice nucleation under atmospherically relevant conditions and that they may play an important role in atmospheric glaciation processes.

  2. NuTeV Anomaly Helps Shed Light on Physics of the Nucleus | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NuTeV Anomaly Helps Shed Light on Physics of the Nucleus NuTeV Anomaly Helps Shed Light on Physics of the Nucleus NEWPORT NEWS, VA, June 29, 2009 - A new calculation clarifies the complicated relationship between protons and neutrons in the atomic nucleus and offers a fascinating resolution of the famous NuTeV Anomaly. The calculation, published in the journal Physical Review Letters on June 26, was carried out by a collaboration of researchers from the Department of Energy's Thomas Jefferson

  3. IceVeto: Extended PeV neutrino astronomy in the Southern Hemisphere with IceCube

    SciTech Connect (OSTI)

    Auffenberg, Jan; Collaboration: IceCube Collaboration

    2014-11-18

    IceCube, the world's largest high-energy neutrino observatory, built at the South Pole, recently reported evidence of an astrophysical neutrino flux extending to PeV energies in the Southern Hemisphere. This observation raises the question of how the sensitivity in this energy range could be further increased. In the down-going sector, in IceCube's case the Southern Hemisphere, backgrounds from atmospheric muons and neutrinos pose a challenge to the identification of an astrophysical neutrino flux. The IceCube analysis, that led to the evidence for astrophysical neutrinos, is based on an in-ice veto strategy for background rejection. One possibility available to IceCube is the concept of an extended surface detector, IceVeto, which could allow the rejection of a large fraction of atmospheric backgrounds, primarily for muons from cosmic ray (CR) air showers as well as from neutrinos in the same air showers. Building on the experience of IceTop/IceCube, possibly the most cost-effective and sensitive way to build IceVeto is as an extension of the IceTop detector, with simple photomultiplier based detector modules for CR air shower detection. Initial simulations and estimates indicate that such a veto detector will significantly increase the sensitivity to an astrophysical flux of ?{sub ?} induced muon tracks in the Southern Hemisphere compared to current analyses. Here we present the motivation and capabilities based on initial simulations. Conceptual ideas for a simplified surface array will be discussed briefly.

  4. HYDROGEN-DEUTERIUM EXCHANGE IN PHOTOLYZED METHANE-WATER ICES

    SciTech Connect (OSTI)

    Weber, Amanda S.; Hodyss, Robert; Johnson, Paul V.; Willacy, Karen; Kanik, Isik

    2009-09-20

    Previous work has concluded that H-D exchange occurs readily in polycyclic aromatic hydrocarbons frozen in deuterated water (D{sub 2}O) irradiated with ultraviolet light. Here, we examine H-D exchange in methane-water ices following exposure to ultraviolet radiation and analyze the products formed as a result. We find that H-D exchange also occurs in methane-water ices by means of ultraviolet photolysis. Exchange proceeds through a radical mechanism that implies that almost all organic species will undergo significant H-D exchange with the matrix in water ices exposed to ultraviolet radiation. Given sufficient energetic processing of the ice, the H/D ratio of an ice matrix may be transferred to the organic species in the ice.

  5. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    SciTech Connect (OSTI)

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  6. Earth-Abundant Cu-based Chalcogenide Materials as Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) conversion is demonstrated for the first time in Cu 3 PSe 4 , a member ... Earth-Abundant Cu-based Chalcogenide Materials as Photovoltaic Absorbers Research Details ...

  7. Thorium: Crustal abundance, joint production, and economic availabilit...

    Office of Scientific and Technical Information (OSTI)

    nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear ...

  8. Redox Active Catalysts Utilizing Earth Abundant Metals | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Active Catalysts Utilizing Earth Abundant Metals 14 Mar 2014 Ryan Trovitch has recently joined the team of the BISfuel PIs. He is an Assistant Professor at the Department of...

  9. Managing an Abundant Resource: An Interview with Paula Gant

    Broader source: Energy.gov [DOE]

    Paula Gant, Deputy Assistant Secretary for the Office of Oil and Gas in the Energy Department's Office of Fossil Energy, discusses challenges posed by the new abundance of fossil fuels made possible by the hydraulic fracturing boom.

  10. Ice Sheet Model Reveals Most Comprehensive Projections for West

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antarctica's Future Most Comprehensive Projections for West Antarctica's Future Revealed Ice Sheet Model Reveals Most Comprehensive Projections for West Antarctica's Future BISICLES Simulations Run at NERSC Help Estimate Ice Loss, Sea Level Rise August 18, 2015 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov IceSheet Retreat in the Amundsen Sea Embayment in 2154 (Credit: Cornford et al., The Cryosphere, 2015) A new international study is the first to use a high-resolution, large-scale

  11. Magnetic charge crystals imaged in artificial spin ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic charge crystals imaged in artificial spin ice Magnetic charge crystals imaged in artificial spin ice Potential data storage and computational advances could follow August 27, 2013 Potential data storage and computational advances could follow A 3-D depiction of the honeycomb artificial spin ice topography after the annealing and cooling protocols. The light and dark colors represent the north and south magnetic poles of the islands. Image by Ian Gilbert, U. of I. Department of Physics

  12. Initial results from ensemble SCM simulations of TWP-ICE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Status of the TWP Status of the TWP Status of the TWP - - - ICE SCM ICE SCM ICE SCM intercomparison intercomparison intercomparison Laura Davies, Christian Jakob Monash University, Australia Thanks to Kenneth Cheung and Marty Singh March 2009 Outline * Forcing method * Upper level temperature biases? The whys and wherefores.... * Initial single column model results * Future directions * GCSS intercomparison project March 2009 Forcing methods Forcing methods Forcing methods March 2009 Forcing

  13. STATEMENT OF WORK (SOW) TEMPLATE FOR ICE SUPPORT CONTRACTOR

    Office of Environmental Management (EM)

    ICE SUPPORT CONTRACTOR The template presented below is a Statement of Work (SOW) for services of an ICE Support Contractor for assisting OECM in conducting an ICE. Project and review specific information should be incorporated. Explanatory text appears in italics, while information that should be selected appears in <<brackets>>. The format and contents of this SOW is not compulsory, and the use is at the discretion of the OECM Analysts, tailored as appropriate for the desired

  14. Sandia's ice sheet modeling of Greenland, Antarctica helps predict

    National Nuclear Security Administration (NNSA)

    sea-level rise | National Nuclear Security Administration | (NNSA) Sandia's ice sheet modeling of Greenland, Antarctica helps predict sea-level rise Wednesday, March 2, 2016 - 12:00am Sandia California researchers Irina Tezaur and Ray Tuminaro analyze a model of Antarctica. They are part of a Sandia team working to improve the reliability and efficiency of computational models that describe ice sheet behavior and dynamics. The Greenland and Antarctic ice sheets will make a dominant

  15. Natural Abundance 17O Nuclear Magnetic Resonance and Computational Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies of Lithium Based Liquid Electrolytes - Joint Center for Energy Storage Research March 14, 2015, Research Highlights Natural Abundance 17O Nuclear Magnetic Resonance and Computational Modeling Studies of Lithium Based Liquid Electrolytes (Top) Example of natural abundance 17O NMR spectra of LiTFSI in mixture of EC, PC and EMC (4:1:5 by weight). (Bottom) The solvation structure of LiTFSI derived from the results obtained by both NMR and quantum chemistry calculations Scientific

  16. Stronger warming effects on microbial abundances in colder regions

    SciTech Connect (OSTI)

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra, and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.

  17. Stronger warming effects on microbial abundances in colder regions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra,more » and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.« less

  18. Nanotextured Anti-Icing Surfaces | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrate Promising Anti-icing Nano Surfaces Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Scientists Demonstrate Promising Anti-icing Nano Surfaces GE Global Research today presented new research findings on its nanotextured anti-icing surfaces. In addition to dramatically reducing ice adhesion, these surfaces

  19. Marine Ice Nuclei Collections - MAGIC (MAGIC-IN) Final Campaign...

    Office of Scientific and Technical Information (OSTI)

    for offline processing to measure ice nucleating particle (INP) number concentrations. ... time of this report, will include single particle analyses of marine boundary layer ...

  20. Radiative transfer in atmosphere-sea ice-ocean system

    SciTech Connect (OSTI)

    Jin, Z.; Stamnes, K.; Weeks, W.F.; Tsay, S.C.

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  1. Rapid development of an ice sheet climate application using the...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Rapid development of an ice sheet climate ... Country of Publication: United States Language: English Word Cloud More Like This Full ...

  2. ARM - Tropical Warm Pool - International Cloud Experiment (TWP-ICE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links TWP-ICE Home Tropical Western Pacific Home ARM Data Discovery Browse Data Post-Experiment Data Sets Weather Summary (pdf, 6M) New York Workshop Presentations Experiment Planning TWP-ICE Proposal Abstract Detailed Experiment Description Science Plan (pdf, 1M) Operations Plan (pdf, 321K) Maps Contact Info Related Links Daily Report Report Archives Press Media Coverage TWP-ICE Fact Sheet (pdf, 211K) Press Releases TWP-ICE Images ARM flickr site <="" li=""

  3. A marine biogenic source of atmospheric ice-nucleating particles

    SciTech Connect (OSTI)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  4. The Rush to Exploit an Increasingly Ice-Free Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rush to Exploit an Increasingly Ice-Free Arctic - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ...

  5. An Ice Sheet Model Initialization Procedure for Smooth Coupling...

    Office of Scientific and Technical Information (OSTI)

    Procedure for Smooth Coupling with Climate Forcing. Citation Details In-Document Search Title: An Ice Sheet Model Initialization Procedure for Smooth Coupling with Climate Forcing. ...

  6. Optimal Initial Conditions for Coupling Ice Sheet Models to Earth...

    Office of Scientific and Technical Information (OSTI)

    Optimal Initial Conditions for Coupling Ice Sheet Models to Earth System Models. Citation ... Country of Publication: United States Language: English Word Cloud More Like This Full ...

  7. Sea ice-atmospheric interaction: Application of multispectral...

    Office of Scientific and Technical Information (OSTI)

    Annual progress report This is the third annual report on: Sea Ice-Atmosphere Interaction ... Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL ...

  8. IceCube: A Cubic Kilometer Radiation Detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer R; Klein, S.R.

    2008-06-01

    IceCube is a 1 km{sup 3} neutrino detector now being built at the Amudsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate {nu}{sub {mu}}, {nu}{sub t}, and {nu}{sub {tau}} interactions because of their different topologies. IceCube construction is currently 50% complete.

  9. Determining Cloud Ice Water Path from High-Frequency Microwave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining Cloud Ice Water Path from High-Frequency Microwave Measurements G. Liu ... A better understanding of cloud water content and its large-scale distribution ...

  10. Covered Product Category: Air-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, which are covered by the ENERGY STAR program.

  11. Reducing uncertainty in high-resolution sea ice models.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2013-07-01

    Arctic sea ice is an important component of the global climate system, reflecting a significant amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice have shown a significant decline in recent decades with implications for global climate as well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects make predictive mathematical modeling of sea ice a task of tremendous practical import. Satellite data obtained over the last few decades have provided a wealth of information on sea ice motion and deformation. The data clearly show that ice deformation is focused along narrow linear features and this type of deformation is not well-represented in existing models. To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the impact of material parameters on sea ice response functions. Two material strength parameters that exhibited the most significant impact on responses were further analyzed to evaluate their influence on quantitative comparisons between model output and data. The sensitivity analysis along with ten year model runs indicate that while the anisotropic rheology provides some benefit in velocity predictions, additional improvements are required to make this material model a viable alternative for global sea ice simulations.

  12. optimal initial conditions for coupling ice sheet models to earth...

    Office of Scientific and Technical Information (OSTI)

    optimal initial conditions for coupling ice sheet models to earth system models Perego, Mauro Sandia National Laboratories Sandia National Laboratories; Price, Stephen F. Dr...

  13. Single Particle Database of Natural Ice Crystals: Dimensions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Database of Natural Ice Crystals: Dimensions and Aspect Ratios For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights...

  14. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-04-21

    This study investigates the maintenance of cloud ice production in Arctic mixed phase stratocumulus in large-eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  15. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-09-25

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  16. Code System for Retrieving EXFOR Cross Section Data According to a Given Target Nucleus.

    Energy Science and Technology Software Center (OSTI)

    1985-10-10

    Version 00 X4R retrieves EXFOR data according to a given target nucleus, reaction type, year range and incident energy range. These are then converted to a data table form which can easily be processed by computer.

  17. JLab Physicists Measure the Skin of a Nucleus (Science) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physicists Measure the Skin of a Nucleus (Science) External Link: http://news.sciencemag.org/sciencenow/2012/03/physicists-measure-the-skin-of-a.h... By jlab_admin on Fri, 2012-03-02

  18. A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars

    SciTech Connect (OSTI)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Burley, Gregory S.; Kelson, Daniel D.; Sneden, Christopher

    2014-06-01

    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.

  19. Criticality of the electron-nucleus cusp condition to local effective potential-energy theories

    SciTech Connect (OSTI)

    Pan Xiaoyin; Sahni, Viraht

    2003-01-01

    Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on the assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.

  20. Heat recovery anti-icing system

    SciTech Connect (OSTI)

    Cummins, J.R.

    1982-05-11

    A heat recovery anti-icing system is disclosed. The heat recovery system includes a blower which removes air from the air flow path of a combustion turbine power generating system and circulates the air through a heat exchanger located in the exhaust stack of the combustion turbine. The heated air circulating through the heat exchanger is returned to an inlet filter compartment in the air flow path so as to maintain the temperature of the air in the inlet filter compartment at an elevated level.

  1. Flight Path 30L - ICE House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L The shape of the neutron spectrum on the 30° flight paths is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Target 4 Flight Path 30L (ICE House) Target 4 Flight Path 30L (4FP30L) utilizes the neutrons that scatter off the tungsten spallation source at approximately 30 degrees to beam left. The experiments

  2. Flight Path 30R | ICE II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Target 4 Flight Path 30R (ICE II) Target 4 Flight Path 30R (4FP30R) utilizes the neutrons that scatter off the tungsten spallation source at approximately 30 degrees to beam right. The experiments utilizing this flight path

  3. The role of ice nuclei recycling in the maintenance of cloud...

    Office of Scientific and Technical Information (OSTI)

    The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus Citation Details In-Document Search Title: The role of ice nuclei recycling in ...

  4. Controls on Arctic sea ice from first-year and multi-year survival rates

    SciTech Connect (OSTI)

    Hunke, Jes

    2009-01-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi year ice. The transition to an Arctic that is populated by thinner first year sea ice has important implications for future trends in area and volume. Here we develop a reduced model for Arctic sea ice with which we investigate how the survivability of first year and multi year ice control the mean state, variability, and trends in ice area and volume.

  5. Stellar chemical abundances: in pursuit of the highest achievable precision

    SciTech Connect (OSTI)

    Bedell, Megan; Bean, Jacob L.; Meléndez, Jorge; Leite, Paulo; Asplund, Martin

    2014-11-01

    The achievable level of precision on photospheric abundances of stars is a major limiting factor on investigations of exoplanet host star characteristics, the chemical histories of star clusters, and the evolution of the Milky Way and other galaxies. While model-induced errors can be minimized through the differential analysis of spectrally similar stars, the maximum achievable precision of this technique has been debated. As a test, we derive differential abundances of 19 elements from high-quality asteroid-reflected solar spectra taken using a variety of instruments and conditions. We treat the solar spectra as being from unknown stars and use the resulting differential abundances, which are expected to be zero, as a diagnostic of the error in our measurements. Our results indicate that the relative resolution of the target and reference spectra is a major consideration, with use of different instruments to obtain the two spectra leading to errors up to 0.04 dex. Use of the same instrument at different epochs for the two spectra has a much smaller effect (∼0.007 dex). The asteroid used to obtain the solar standard also has a negligible effect (∼0.006 dex). Assuming that systematic errors from the stellar model atmospheres have been minimized, as in the case of solar twins, we confirm that differential chemical abundances can be obtained at sub-0.01 dex precision with due care in the observations, data reduction, and abundance analysis.

  6. Passive ice freezing-releasing heat pipe. [Patent application

    DOE Patents [OSTI]

    Gorski, A.J.; Schertz, W.W.

    1980-09-29

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  7. Third international workshop on ice storage for cooling applications

    SciTech Connect (OSTI)

    Gorski, A.J.

    1986-04-01

    The third international workshop on ice storage for cooling applications which was informal and interactive in nature, was open to persons interested in all ice-growing technologies and in ice storage, both seasonal and diurnal. Presentations were made on some 20 topics, ranging from freezers in Alaska to ice cooling of commercial jet aircraft. Workshop tours included visits to ice-storage systems at Commonwealth Edison's facilities in Bolingbrook and Des Plaines Valley, the A.C. Neilsen builing in Northbrook, and the new State of Illinois Center in Chicago. The first workshop in the present series considered the future of ice storage and predicted applications in the agricultural sector, desalinization, and commercial ice production. Progress has been rapid in the intervening two years, and an important topic at the third workshop was the possible use of ''warm ices'' (clathrate hydrates) for energy storage. This report consists primarily of abstracts of presentations made at the workshop. Persons wishing to obtain further information about particular papers should contact the speakers directly; speakers' addresses and telephone numbers are listed in this report.

  8. Freezing a Droplet to Stop the Ice | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Freezing a Droplet to Stop the Ice Advances in simulating water molecules in droplets ... Million molecule simulation of ice formation in a single water droplet. The location of ...

  9. Determination of Ice Water Path Over the ARM SGP Using Combined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of Ice Water Path Over the ARM SGP Using Combined Surface and Satellite ... Global information of cloud ice water path (IWP) is urgently needed for testing ...

  10. FELIX: The Albany Ice Sheet Modeling Code. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    FELIX: The Albany Ice Sheet Modeling Code. Citation Details In-Document Search Title: FELIX: The Albany Ice Sheet Modeling Code. Abstract not provided. Authors: Kalashnikova, Irina ...

  11. The chemical abundances of the Ap star HD94660

    SciTech Connect (OSTI)

    Giarrusso, M. [Universit di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, 95123 Catania (Italy); INAF - Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania (Italy); INFN - Laboratori Nazionali del Sud (Italy)

    2014-05-09

    In this work I present the determination of chemical abundances of the Ap star HD94660, a possible rapid oscillating star. As all the magnetic chemically peculiar objects, it presents CNO underabundance and overabundance of iron peak elements of ?100 times and of rare earths up to 4 dex with respect to the Sun. The determination was based on the conversion of the observed equivalent widths into abundances simultaneously to the determination of effective temperature and gravity. Since the Balmer lines of early type stars are very sensitive to the surface gravity while the flux distribution is sensitive to the effective temperature, I have adopted an iterative procedure to match the H{sub ?} line profile and the observed UV-Vis-NIR magnitudes of HD94660 looking for a consistency between the metallicity of the atmosphere model and the derived abundances. From my spectroscopic analysis, this star belongs to the no-rapid oscillating class.

  12. Metaproteomics reveals abundant transposase expression in mutualistic endosymbionts

    SciTech Connect (OSTI)

    Kleiner, Manuel; Young, Jacque C; Shah, Manesh B; Verberkmoes, Nathan C; Dubilier, Nicole

    2013-01-01

    Transposases, enzymes that catalyze the movement of mobile genetic elements, are the most abundant genes in nature. While many bacteria encode an abundance of transposases in their genomes, the current paradigm is that transposase gene expression is tightly regulated and generally low due to its severe mutagenic effects. In the current study, we detected the highest number of transposase proteins ever reported in bacteria, in symbionts of the gutless marine worm Olavius algarvensis using metaproteomics. At least 26 different transposases from 12 different families were detected and genomic and proteomic analyses suggest many of these are active. This high expression of transposases indicates that the mechanisms for their tight regulation have been disabled or destroyed. Based on recent studies on other symbionts and pathogens that showed high transposase transcription, we speculate that abundant transposase expression might be common in symbionts and pathogens.

  13. Calculational method for determination of carburetor icing rate

    SciTech Connect (OSTI)

    Nazarov, V.I.; Emel'yanov, V.E.; Gonopol'ska, A.F.; Zaslavskii, A.A.

    1986-05-01

    This paper investigates the dependence of the carburetor icing rate on the density, distillation curve, and vapor pressure of gasoline. More than 100 gasoline samples, covering a range of volatility, were investigated. No clear-cut relationship can be observed between the carburetor icing rate and any specific property index of the gasoline. At the same time, there are certain variables that cannot be observed directly but can be interpreted readily through which the influence of gasoline quality on the carburetor icing rate can be explained. The conversion to these variables was accomplished with regard for the values of the variance and correlation of the carburetor icing rate. Equations are presented that may be used to predict the carburetor icing rate when using gasolines differing in quality. The equations can also determine the need for incorporating antiicing additives in the gasoline.

  14. THE PHASES OF WATER ICE IN THE SOLAR NEBULA

    SciTech Connect (OSTI)

    Ciesla, Fred J.

    2014-03-20

    Understanding the phases of water ice that were present in the solar nebula has implications for understanding cometary and planetary compositions as well as the internal evolution of these bodies. Here we show that amorphous ice formed more readily than previously recognized, with formation at temperatures <70K being possible under protoplanetary disk conditions. We further argue that photodesorption and freeze-out of water molecules near the surface layers of the solar nebula would have provided the conditions needed for amorphous ice to form. This processing would be a natural consequence of ice dynamics and would allow for the trapping of noble gases and other volatiles in water ice in the outer solar nebula.

  15. Field demonstration of the ICE 250{trademark} Cleaning System

    SciTech Connect (OSTI)

    Johnston, J.L.; Jackson, L.M.

    1999-10-05

    The ICE 250{trademark} Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moisture was generated, thereby reducing cleanup and disposal costs.

  16. Methods and apparatus for rotor blade ice detection

    DOE Patents [OSTI]

    LeMieux, David Lawrence

    2006-08-08

    A method for detecting ice on a wind turbine having a rotor and one or more rotor blades each having blade roots includes monitoring meteorological conditions relating to icing conditions and monitoring one or more physical characteristics of the wind turbine in operation that vary in accordance with at least one of the mass of the one or more rotor blades or a mass imbalance between the rotor blades. The method also includes using the one or more monitored physical characteristics to determine whether a blade mass anomaly exists, determining whether the monitored meteorological conditions are consistent with blade icing; and signaling an icing-related blade mass anomaly when a blade mass anomaly is determined to exist and the monitored meteorological conditions are determined to be consistent with icing.

  17. Ice Nucleation of Fungal Spores from the Classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of these Spores

    SciTech Connect (OSTI)

    Haga, D. I.; Burrows, Susannah M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Poschl, U.; Bertram, Allan K.

    2014-08-26

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilagomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan all over the globe. Ustilagomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 C and -29 C, 0.01 between -25.5 C and -31 C, and 0.1 between -26 C and -36 C. On average, the order of ice nucleating ability for these spores is Ustilagomycetes > Agaricomycetes ? Eurotiomycetes. We show that at temperatures below -20 C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98 % of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric transport and

  18. ChemCam data abundant at Planetary Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ChemCam data abundant at Planetary Conference ChemCam data abundant at Planetary Conference Members of the Mars Science Laboratory Curiosity rover ChemCam team will present more than two dozen posters and talks during the 44th Lunar and Planetary Science Conference. March 15, 2013 This image shows the ChemCam mast unit mounted on the Curiosity rover as it is being prepared in the clean room prior to the launch of NASA's Mars Science Laboratory mission. ChemCam fires a powerful laser that can

  19. High-Performance Thermoelectric Devices Based on Abundant Silicide

    Broader source: Energy.gov (indexed) [DOE]

    Materials for Vehicle Waste Heat Recovery | Department of Energy Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology shi.pdf (4.76

  20. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  1. THE NUCLEUS OF MAIN-BELT COMET 259P/GARRADD

    SciTech Connect (OSTI)

    MacLennan, Eric M.; Hsieh, Henry H. E-mail: emaclenn@utk.edu

    2012-10-10

    We present observations of the main-belt comet 259P/Garradd, previously known as P/2008 R1 (Garradd), obtained in 2011 and 2012 using the Gemini North Telescope on Mauna Kea in Hawaii and the SOAR telescope at Cerro Pachon in Chile, with the goal of computing the object's phase function and nucleus size. We find an absolute magnitude of H{sub R} = 19.71 {+-} 0.05 mag and slope parameter of G{sub R} = -0.08 {+-} 0.05 for the inactive nucleus, corresponding to an effective nucleus radius of r{sub e} = 0.30 {+-} 0.02 km, assuming an R-band albedo of p{sub R} = 0.05. We also revisit observations reported for 259P while it was active in 2008 to quantify the dust mass loss and compare the object with other known main-belt comets.

  2. Scientists create 'magnetic charge ice' | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    create 'magnetic charge ice' By Jared Sagoff * May 25, 2016 Tweet EmailPrint A team of scientists working at the U.S. Department of Energy's (DOE's) Argonne National Laboratory has created a new material, called "rewritable magnetic charge ice," that permits an unprecedented degree of control over local magnetic fields and could pave the way for new computing technologies. The scientists' research report on development of magnetic charge ice is published in the May 20 issue of the

  3. Melting of Ice Under Pressure | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Melting of Ice Under Pressure Authors: Schwegler, E., Sharma, M., Gygi, F., Galli, G. The melting of ice under pressure is investigated with a series of first-principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10 Publication Date: August, 2008 Name of Publication Source: The National Academy of Sciences Proceedings Publisher: The National Academy of Sciences of the USA Volume: 0 Issue: 0

  4. Searching for Cosmic Accelerators via IceCube

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Searching for Cosmic Accelerators via IceCube Searching for Cosmic Accelerators via IceCube Berkeley Lab Researchers Part of an International Hunt November 21, 2013 Lynn Yarris, lcyarris@lbl.gov, 510.486.5375 Bert.jpg This event display shows "Bert," one of two neutrino events discovered at IceCube whose energies exceeded one petaelectronvolt (PeV). The colors show when the light arrived, with reds being the earliest, succeeded by yellows, greens and blues. The size of the circle

  5. Really Cool Models of Ice Nucleation | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Really Cool Models of Ice Nucleation Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Really Cool Models of Ice Nucleation Rick Arthur 2013.08.20 I'm excited to highlight some progress GE Research has made in modeling the formation of ice from water droplets in contact with cold surfaces. For several years, a

  6. Development, sensitivity analysis, and uncertainty quantification of high-fidelity arctic sea ice models.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana S.

    2010-09-01

    Arctic sea ice is an important component of the global climate system and due to feedback effects the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice to model physical parameters. A new sea ice model that has the potential to improve sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of the Los Alamos National Laboratory CICE code and the MPM sea ice code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness, and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  7. Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bougamont, M.; Christoffersen, P.; Price, S. F.; Fricker, H. A.; Tulaczyk, S.; Carter, S. P.

    2015-10-21

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less

  8. Microphysical Consequences of the Spatial Distribution of Ice Nucleation in Mixed-Phase Stratiform Clouds

    SciTech Connect (OSTI)

    Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2014-07-28

    Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation, leads to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. [2013]. The sensitivity of the wi-ni relationship to the spatial distribution of ice nucleation is confirmed by Lagrangian tracking and ice growth with cloud-volume, cloud-top, and cloud-base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from ISDAC, a lower bound of 0.006 m^3/s is obtained for the ice crystal formation rate.

  9. Minimalist Model of Ice Microphysics in Mixed-phase Stratiform Clouds

    SciTech Connect (OSTI)

    Yang, F.; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2013-07-28

    The question of whether persistent ice crystal precipitation from super cooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model, and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power law relationship with ice number concentration ni. wi and ni from a LES cloud model with stochastic ice nucleation also confirm the 2.5 power law relationship. The prefactor of the power law is proportional to the ice nucleation rate, and therefore provides a quantitative link to observations of ice microphysical properties.

  10. Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations

    SciTech Connect (OSTI)

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

    2014-10-01

    Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

  11. ARM-UAV TWP-ICE Activities and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The instrument operational status, data availability and daily flight details for the ARM-UAV Proteus payload flown during the TWP-ICE experiment are presented. Data was also ...

  12. A New Approach for Representing Ice Particles in Weather

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mass mixing ratio, qi, c) cloud water mass mixing ratio, qc, d) rain mass mixing ratio, qr, e) rime mass fraction, Fr, f) mass-weighted mean ice particle density, p, g)...

  13. doe sc arm 16 029 ACAPEX Shipbased Ice nuclei Collections

    Office of Scientific and Technical Information (OSTI)

    9 ACAPEX - Ship-Based Ice Nuclei Collections Field Campaign Report PJ DeMott TCJ Hill April 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work ...

  14. Ice Particle Projected Area- and Mass-dimension Expressions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m-D and A-D expressions in BMPs is described in this paper. Figure 1. The m-D expression (black curve) for synoptic ice clouds between -20C and -40C based on SCPP m-D...

  15. Melting of ice wedges adds to arctic warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice wedges are a particularly cool surface feature in the Arctic tundra. And new research suggests they are melting fast, which is bad news for the ecosystem at the top of the ...

  16. Arctic sea ice modeling with the material-point method.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2010-04-01

    Arctic sea ice plays an important role in global climate by reflecting solar radiation and insulating the ocean from the atmosphere. Due to feedback effects, the Arctic sea ice cover is changing rapidly. To accurately model this change, high-resolution calculations must incorporate: (1) annual cycle of growth and melt due to radiative forcing; (2) mechanical deformation due to surface winds, ocean currents and Coriolis forces; and (3) localized effects of leads and ridges. We have demonstrated a new mathematical algorithm for solving the sea ice governing equations using the material-point method with an elastic-decohesive constitutive model. An initial comparison with the LANL CICE code indicates that the ice edge is sharper using Materials-Point Method (MPM), but that many of the overall features are similar.

  17. Oil spreading in surface waters with an ice cover

    SciTech Connect (OSTI)

    Yapa, P.D.; Weerasuriya, S.A.; Belaskas, D.P.; Chowdhury, T.

    1993-02-01

    A study of oil spreading in surface waters in the presence of a floating ice cover is presented. The ice can be solid or fragmented. Both axi-symmetrical and uni-directional spreading are studied. The report describes the analytical and numerical model development, the experimental set-up, results from the laboratory experiments, and their comparison with the derived theory and the numerical simulation. To analyze the spreading of oil under solid ice, new equations are derived. These equations consider gravity (buoyancy) - inertia phase, gravity (buoyancy) - viscous phase, and the termination of spreading during the buoyancy - surface tension phase. The derivation considers both the constant discharge mode and the constant volume mode. Therefore, a complete description of the spreading phenomena from the time of initial spill to termination of spreading is presented. The emphasis of the study is on the dominant spreading mechanism for oil under ice, which is the buoyancy-viscous phase.

  18. Ice Nucleation of Fungal Spores from the Classes Agaricomycetes...

    Office of Scientific and Technical Information (OSTI)

    Simulations show that inclusion of ice nucleation scavenging of fungal spores in mixed-phase clouds can decrease the surface annual mean mixing ratios of fungal spores over the ...

  19. Greenland Ice Sheet "Sliding" a Small Contributor to Future Sea...

    Office of Science (SC) Website

    A wide range of observations suggests that water generated by melt at the ice sheet ... vertical well-like shafts within a glacier through which water enters from the surface). ...

  20. Operating Experience Level 3, Winter Preparedness: Slips on Ice

    Broader source: Energy.gov [DOE]

    OE-3 2015-06: This Operating Experience Level 3 (OE-3) document provides information about the hazards of slips, trips, and falls on ice across the Department of Energy (DOE) Complex.

  1. The TWP-ICE CRM Intercomparison Specification and First Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWP-ICE CRM Intercomparison Specification and First Results Ann Fridlind (ann.fridlind@nasa.gov), Andrew Ackerman (andrew.ackerman@nasa.gov), Adrian Hill (adrian.hill@metoffice.gov...

  2. Magnetization plateaus of dipolar spin ice on kagome lattice

    SciTech Connect (OSTI)

    Xie, Y. L.; Wang, Y. L.; Yan, Z. B.; Liu, J.-M.

    2014-05-07

    Unlike spin ice on pyrochlore lattice, the spin ice structure on kagome lattice retains net magnetic charge, indicating non-negligible dipolar interaction in modulating the spin ice states. While it is predicted that the dipolar spin ice on kagome lattice exhibits a ground state with magnetic charge order and ?3???3 spin order, our work focuses on the magnetization plateau of this system. By employing the Wang-Landau algorithm, it is revealed that the lattice exhibits the fantastic three-step magnetization in response to magnetic field h along the [10] and [01] directions, respectively. For the h//[1 0] case, an additional ?3/6M{sub s} step, where M{sub s} is the saturated magnetization, is observed in a specific temperature range, corresponding to a new state with charge order and short-range spin order.

  3. PW Vulpeculae - A nova with nearly solar abundances

    SciTech Connect (OSTI)

    Saizar, P.; Ferland, G.J.; Wagner, R.M.; Starrfield, S.; Truran, J.W. Arizona State Univ., Tempe Illinois Univ., Urbana )

    1991-01-01

    Optical spectrophotometry of PW Vulpeculae is combined with ultraviolet data to estimate electron temperatures, densities, and abundances in the ejecta of this slow classical nova. The reddening, the distance, and the evolution of the ultraviolet spectrum are discussed. Abundances are nearly solar, with the exception of nitrogen, which is substantially higher. Although neon has been reported to be enhanced in several novae, it does not seem to be the case for PW Vul. Photoionization model calculations of the ejecta that give a reasonable match of the observed emission spectrum are presented. A strong featureless continuum shows that very hot, presumably shock-heated, gas plays a major role in determining the energetics of this nova. Emission from this hot gas is responsible for the ionization of the nebular gas. A calculation of the masses of both the hot coronal gas and the cooler nebular gas shows that the former may account for most of the mass of the ejecta. 32 refs.

  4. [?/Fe]ABUNDANCES OF FOUR OUTER M31 HALO STARS

    SciTech Connect (OSTI)

    Vargas, Luis C.; Geha, Marla; Tollerud, Erik J. [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Gilbert, Karoline M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kirby, Evan N. [California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Guhathakurta, Puragra, E-mail: luis.vargas@yale.edu [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2014-12-10

    We present alpha element to iron abundance ratios, [?/Fe], for four stars in the outer stellar halo of the Andromeda Galaxy (M31). The stars were identified as high-likelihood field halo stars by Gilbert et al. and lie at projected distances between 70 and 140 kpc from M31's center. These are the first alpha abundances measured for a halo star in a galaxy beyond the Milky Way. The stars range in metallicity between [Fe/H] = 2.2 and [Fe/H] = 1.4. The sample's average [?/Fe] ratio is +0.20 0.20. The best-fit average value is elevated above solar, which is consistent with rapid chemical enrichment from Type II supernovae. The mean [?/Fe] ratio of our M31 outer halo sample agrees (within the uncertainties) with that of Milky Way inner/outer halo stars that have a comparable range of [Fe/H].

  5. Harvesting Energy from Abundant, Low Quality Sources of Heat - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Harvesting Energy from Abundant, Low Quality Sources of Heat Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing SummaryThe basic concept of energy harvesting is to collect energy from solar or other free sources of thermal energy that exist in the environment and convert them to

  6. Dielectric Properties of Ice and Liquid Water from First Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations | Argonne Leadership Computing Facility Dielectric Properties of Ice and Liquid Water from First Principles Calculations Authors: Lu, D., Gygi, F., Galli, G. We present a first-principles study of the static dielectric properties of ice and liquid water. The eigenmodes of the dielectric matrix ϵ are analyzed in terms of maximally localized dielectric functions similar, in their definition, to maximally localized Wannier orbitals obtained from Bloch eigenstates of the electronic

  7. COLLOQUIUM: Extending the Ice Core Record of Atmospheric Composition and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Global Carbon and Oxygen Cycles Beyond 1 Million Years | Princeton Plasma Physics Lab 1, 2016, 2:15pm to 3:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Extending the Ice Core Record of Atmospheric Composition and the Global Carbon and Oxygen Cycles Beyond 1 Million Years Professor John Higgins Princeton University Ice cores serve as a critical archive of past environmental conditions, providing constraints on global atmospheric composition and the climate of polar regions.

  8. Complex systems influence melting of Greenland ice sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex systems influence melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things are more complicated than we thought December 22, 2014 The newly discovered rolling movement shown in (A) three-dimensional cryo-electron microscopy image of ribosome, and (B) computer-generated atomic-resolution model of the human ribosome consistent with microscopy. An international team of researchers deployed to

  9. IceCube: An Instrument for Neutrino Astronomy

    SciTech Connect (OSTI)

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  10. Dynamical Model for Meson Production off Nucleon and Application to Neutrino-Nucleus Reactions

    SciTech Connect (OSTI)

    Nakamura, Satoshi X.

    2011-11-23

    I explain the Sato-Lee (SL) model and its extension to the neutrino-induced pion production off the nucleon. Then I discuss applications of the SL model to incoherent and coherent pion productions in the neutrino-nucleus scattering. I mention a further extension of this approach with a dynamical coupled-channels model developed in Excited Baryon Analysis Center of JLab.

  11. De-icing thermostat for air conditioners

    SciTech Connect (OSTI)

    Levine, M.R.

    1986-12-09

    This patent describes an electronic thermostat adapted to be connected to an air-cooling apparatus to control the operative state of the apparatus. The thermostat includes a means for generating a digital electrical signal representative of a desired temperature setpoint and means for generating a digital electrical signal representative of the ambient temperature at the thermostat. The improvement described here comprises: means for generating control signals for the aircooling apparatus in order to inhibit the accumulation of ice on the cooling element of the air-cooling apparatus when the ambient temperature is above the temperature setpoint; means, responsive to the control signals, for deenergizing the compressor in the air-cooling apparatus for a first preselected period of time whenever the compressor is determined to have run continuously for a second preselected period of time; and means for adaptively adjusting the length of at least one of the first or second preselected periods of time as a function of the change in the rate of change of the ambient temperature.

  12. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sullivan, S. C.; Morales Betancourt, R.; Barahona, D.; Nenes, A.

    2015-08-11

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the Barahona and Nenes cirrus formation parameterization to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically-derived spectrum,morea lab-based empirical spectrum, and two field-based empirical spectra that differ in the nucleation threshold for black carbon aerosol and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never unraveled as done here.less

  13. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  14. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. In conclusion, Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  15. ICE MINERALOGY ACROSS AND INTO THE SURFACES OF PLUTO, TRITON, AND ERIS

    SciTech Connect (OSTI)

    Tegler, S. C.; Grundy, W. M.; Olkin, C. B.; Young, L. A.; Romanishin, W.; Cornelison, D. M.; Khodadadkouchaki, R. E-mail: W.Grundy@lowell.edu E-mail: layoung@boulder.swri.edu E-mail: DavidCornelison@MissouriState.edu

    2012-05-20

    We present three near-infrared spectra of Pluto taken with the Infrared Telescope Facility and SpeX, an optical spectrum of Triton taken with the MMT and the Red Channel Spectrograph, and previously published spectra of Pluto, Triton, and Eris. We combine these observations with a two-phase Hapke model and gain insight into the ice mineralogy on Pluto, Triton, and Eris. Specifically, we measure the methane-nitrogen mixing ratio across and into the surfaces of these icy dwarf planets. In addition, we present a laboratory experiment that demonstrates it is essential to model methane bands in spectra of icy dwarf planets with two methane phases-one highly diluted by nitrogen and the other rich in methane. For Pluto, we find bulk, hemisphere-averaged, methane abundances of 9.1% {+-} 0.5%, 7.1% {+-} 0.4%, and 8.2% {+-} 0.3% for sub-Earth longitudes of 10 Degree-Sign , 125 Degree-Sign , and 257 Degree-Sign . Application of the Wilcoxon rank sum test to our measurements finds these small differences are statistically significant. For Triton, we find bulk, hemisphere-averaged, methane abundances of 5.0% {+-} 0.1% and 5.3% {+-} 0.4% for sub-Earth longitudes of 138 Degree-Sign and 314 Degree-Sign . Application of the Wilcoxon rank sum test to our measurements finds the differences are not statistically significant. For Eris, we find a bulk, hemisphere-averaged, methane abundance of 10% {+-} 2%. Pluto, Triton, and Eris do not exhibit a trend in methane-nitrogen mixing ratio with depth into their surfaces over the few centimeter range probed by these observations. This result is contrary to the expectation that since visible light penetrates deeper into a nitrogen-rich surface than the depths from which thermal emission emerges, net radiative heating at depth would drive preferential sublimation of nitrogen leading to an increase in the methane abundance with depth.

  16. Standard big bang nucleosynthesis and primordial CNO abundances after Planck

    SciTech Connect (OSTI)

    Coc, Alain [Centre de Sciences Nuclaires et de Sciences de la Matire (CSNSM), CNRS/IN2P3, Universit Paris Sud 11, UMR 8609, Btiment 104, F91405 Orsay Campus (France); Uzan, Jean-Philippe; Vangioni, Elisabeth, E-mail: coc@csnsm.in2p3.fr, E-mail: uzan@iap.fr, E-mail: vangioni@iap.fr [Institut d'Astrophysique de Paris, UMR-7095 du CNRS, Universit Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France)

    2014-10-01

    Primordial or big bang nucleosynthesis (BBN) is one of the three historical strong evidences for the big bang model. The recent results by the Planck satellite mission have slightly changed the estimate of the baryonic density compared to the previous WMAP analysis. This article updates the BBN predictions for the light elements using the cosmological parameters determined by Planck, as well as an improvement of the nuclear network and new spectroscopic observations. There is a slight lowering of the primordial Li/H abundance, however, this lithium value still remains typically 3 times larger than its observed spectroscopic abundance in halo stars of the Galaxy. According to the importance of this ''lithium problem{sup ,} we trace the small changes in its BBN calculated abundance following updates of the baryonic density, neutron lifetime and networks. In addition, for the first time, we provide confidence limits for the production of {sup 6}Li, {sup 9}Be, {sup 11}B and CNO, resulting from our extensive Monte Carlo calculation with our extended network. A specific focus is cast on CNO primordial production. Considering uncertainties on the nuclear rates around the CNO formation, we obtain CNO/H?(5-30)10{sup -15}. We further improve this estimate by analyzing correlations between yields and reaction rates and identified new influential reaction rates. These uncertain rates, if simultaneously varied could lead to a significant increase of CNO production: CNO/H?10{sup -13}. This result is important for the study of population III star formation during the dark ages.

  17. DIVERSITY OF TYPE Ia SUPERNOVAE IMPRINTED IN CHEMICAL ABUNDANCES

    SciTech Connect (OSTI)

    Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan); Shigeyama, Toshikazu, E-mail: taku.tsujimoto@nao.ac.jp [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-12-01

    A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit an SN-Ia-like elemental feature including a very low [Mg/Fe] ( Almost-Equal-To - 1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr, Mn, Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth and give a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nicely explains the different [Cr, Mn, Ni/Fe] features between the two galaxies as well as the puzzling feature seen in the LMC stars exhibiting very low Ca but normal Mg abundances. Furthermore, the corresponding channel of slow SN Ia is exemplified by performing detailed nucleosynthesis calculations in the scheme of SNe Ia resulting from a 0.8 + 0.6 M{sub Sun} white dwarf merger.

  18. Platinum-group element abundance patterns in different mantle environments

    SciTech Connect (OSTI)

    Rehkaemper, M.; Halliday, A.N.; Barfod, D.; Fitton, J.G.; Dawson, J.B.

    1997-11-28

    Mantle-derived xenoliths from the Cameroon Line and northern Tanzania display differences in their platinum-group element (PGE) abundance patterns. The Cameroon Line lherzolites have uniform PGE patterns indicating a homogeneous upper mantle over several hundreds of kilometers, with approximately chondritic PGE ratios. The PGE patterns of the Tanzanian peridotites are similar to the PGE systematics of ultramafic rocks from ophiolites. The differences can be explained if the northern Tanzanian lithosphere developed in a fluid-rich suprasubduction zone environment, whereas the Cameroon Line lithosphere only experienced melt extraction from anhydrous periodotites. 32 refs., 2 figs., 1 tab.

  19. LITHIUM ABUNDANCES IN CARBON-ENHANCED METAL-POOR STARS

    SciTech Connect (OSTI)

    Masseron, Thomas; Johnson, Jennifer A.; Lucatello, Sara; Karakas, Amanda; Plez, Bertrand; Beers, Timothy C.; Christlieb, Norbert E-mail: jaj@astronomy.ohio-state.edu

    2012-05-20

    Carbon-enhanced metal-poor (CEMP) stars are believed to show the chemical imprints of more massive stars (M {approx}> 0.8 M{sub Sun }) that are now extinct. In particular, it is expected that the observed abundance of Li should deviate in these stars from the standard Spite lithium plateau. We study here a sample of 11 metal-poor stars and a double-lined spectroscopic binary with -1.8 < [Fe/H] < -3.3 observed with the Very Large Telescope/UVES spectrograph. Among these 12 metal-poor stars, there are 8 CEMP stars for which we measure or constrain the Li abundance. In contrast to previous arguments, we demonstrate that an appropriate regime of dilution permits the existence of 'Li-Spite plateau and C-rich' stars, whereas some of the 'Li-depleted and C-rich' stars call for an unidentified additional depletion mechanism that cannot be explained by dilution alone. We find evidence that rotation is related to the Li depletion in some CEMP stars. Additionally, we report on a newly recognized double-lined spectroscopic binary star in our sample. For this star, we develop a new technique from which estimates of stellar parameters and luminosity ratios can be derived based on a high-resolution spectrum alone, without the need for input from evolutionary models.

  20. EVOLUTION OF SNOW LINE IN OPTICALLY THICK PROTOPLANETARY DISKS: EFFECTS OF WATER ICE OPACITY AND DUST GRAIN SIZE

    SciTech Connect (OSTI)

    Oka, Akinori; Nakamoto, Taishi; Ida, Shigeru, E-mail: akinorioka1@gmail.com, E-mail: nakamoto@geo.titech.ac.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo (Japan)

    2011-09-10

    Evolution of a snow line in an optically thick protoplanetary disk is investigated with numerical simulations. The ice-condensing region in the disk is obtained by calculating the temperature and the density with the 1+1D approach. The snow line migrates as the mass accretion rate ( M-dot ) in the disk decreases with time. Calculations are carried out from an early phase with high disk accretion rates ( M-dot {approx}10{sup -7} M{sub sun} yr{sup -1}) to a later phase with low disk accretion rates ( M-dot {approx}10{sup -12} M{sub sun} yr{sup -1}) using the same numerical method. It is found that the snow line moves inward for M-dot {approx}>10{sup -10} M{sub sun} yr{sup -1}, while it gradually moves outward in the later evolution phase with M-dot {approx}<10{sup -10} M{sub sun} yr{sup -1}. In addition to the silicate opacity, the ice opacity is taken into consideration. In the inward migration phase, the additional ice opacity increases the distance of the snow line from the central star by a factor of 1.3 for dust grains {approx}< 10 {mu}m in size and of 1.6 for {approx}> 100 {mu}m. It is inevitable that the snow line comes inside Earth's orbit in the course of the disk evolution if the viscosity parameter {alpha} is in the range 0.001-0.1, the dust-to-gas mass ratio is higher than a tenth of the solar abundance value, and the dust grains are smaller than 1 mm. The formation of water-devoid planetesimals in the terrestrial planet region seems to be difficult throughout the disk evolution, which imposes a new challenge to planet formation theory.

  1. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect (OSTI)

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Krcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24106 m-2) is obviously less than that from the LP (8.46106 m-2) and BN (5.62106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2) and BN

  2. J/ψ production and suppression in high-energy proton-nucleus collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this resultmore » provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.« less

  3. J/ψ production and suppression in high-energy proton-nucleus collisions

    SciTech Connect (OSTI)

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this result provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.

  4. Neutron and weak-charge distributions of the 48Ca nucleus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hagen, Gaute; Forssen, Christian; Nazarewicz, Witold; Papenbrock, Thomas F.; Bacca, S.; Barnea, Nir; Carlsson, Boris; Drischler, Christian; Hebeler, Kai; Hjorth-Jensen, M.; et al

    2015-11-02

    What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions)more » is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Here, based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.« less

  5. The sticking of atomic hydrogen on amorphous water ice

    SciTech Connect (OSTI)

    Veeraghattam, Vijay K.; Manrodt, Katie; Lewis, Steven P.; Stancil, P. C. E-mail: lewis@physast.uga.edu

    2014-07-20

    Using classical molecular dynamics, we have simulated the sticking and scattering process of a hydrogen atom on an amorphous ice film to predict the sticking probability of hydrogen on ice surfaces. A wide range of initial kinetic energies of the incident hydrogen atom (10 K-600 K) and two different ice temperatures (10 K and 70 K) were used to investigate this fundamental process in interstellar chemistry. We report here the sticking probability of atomic hydrogen as a function of incident kinetic energy, gas temperature, and substrate temperature, which can be used in astrophysical models. The current results are compared to previous theoretical and experimental studies that have reported a wide range in the sticking coefficient.

  6. What Is the Size of the Atomic Nucleus? | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Is the Size of the Atomic Nucleus? Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: Email Us More Information » 02.29.16 What Is

  7. A three-body model of the {sup 11}B nucleus

    SciTech Connect (OSTI)

    Dubovichenko, S. B.

    2011-08-15

    The binding energy and the rms charge and mass radii have been calculated in terms of the single-channel three-body {sup 4}He{sup 4}He{sup 3}H model of the {sup 11}B nucleus with an expansion of the three-body wave function in a nonorthogonal Gaussian basis. Parameters of the wave function are presented and convergence of the three-body energy depending on the number of expansion terms is demonstrated.

  8. Asymptotic near-nucleus structure of the electron-interaction potential in local effective potential theories

    SciTech Connect (OSTI)

    Qian, Zhixin; Sahni, Viraht

    2007-03-15

    In local effective potential theories of electronic structure, the electron correlations due to the Pauli exclusion principle, Coulomb repulsion, and correlation-kinetic effects, are all incorporated in the local electron-interaction potential v{sub ee}(r). In previous work, it has been shown that for spherically symmetric or sphericalized systems, the asymptotic near-nucleus expansion of this potential is v{sub ee}(r)=v{sub ee}(0)+{beta}r+O(r{sup 2}), with v{sub ee}(0) being finite. By assuming that the Schroedinger and local effective potential theory wave functions are analytic near the nucleus of atoms, we prove the following via quantal density functional theory (QDFT): (i) Correlations due to the Pauli principle and Coulomb correlations do not contribute to the linear structure; (ii) these Pauli and Coulomb correlations contribute quadratically; (iii) the linear structure is solely due to correlation-kinetic effects, the contributions of these effects being determined analytically. We also derive by application of adiabatic coupling constant perturbation theory via QDFT (iv) the asymptotic near-nucleus expansion of the Hohenberg-Kohn-Sham theory exchange v{sub x}(r) and correlation v{sub c}(r) potentials. These functions also approach the nucleus linearly with the linear term of v{sub x}(r) being solely due to the lowest-order correlation kinetic effects, and the linear term of v{sub c}(r) being due solely to the higher-order correlation kinetic contributions. The above conclusions are equally valid for systems of arbitrary symmetry, provided spherical averages of the properties are employed.

  9. Nuclear effects in lepton-pair production in hadron-nucleus collisions

    SciTech Connect (OSTI)

    Berdnikov, Ya. A.; Zavatsky, M. E.; Kim, V. T.; Kosmach, V. F.; Ryzhinskiy, M. M. Samsonov, V. M.

    2006-03-15

    The results of experimental investigations of Drell-Yan dimuon production in pBe and pW collisions at an energy of 800 GeV on a fixed target are analyzed. The ratios of the inclusive differential cross sections for lepton-pair production are calculated. It is shown that allowance for the effect of multiple soft rescattering of a projectile-hadron quark inside the target nucleus improves agreement between theoretical and experimental results.

  10. Challenges of deflecting an asteroid or comet nucleus with a nuclear burst

    SciTech Connect (OSTI)

    Bradley, Paul A; Plesko, Cathy S; Clement, Ryan R. C.; Conlon, Le Ann M; Weaver, Robert P; Guzik, Joyce A; Pritchett - Sheets, Lori A; Huebner, Walter F

    2009-01-01

    There are many natural disasters that humanity has to deal with over time. These include earthquakes, tsunamis, hurricanes, floods, asteroid strikes, and so on. Some of these disasters occur slowly enough that some advance warning is possible for affected areas. In this case, the response is to evacuate the affected area and deal wilh the damage later. The Katrina and Rita hurricane evacuations on the U.S. Gulf Coasl in 2005 demonstrated the chaos that can result from such a response. In contrast with other natural disasters, it is likely that an asteroid or comet nucleus on a collision course with Earth will be detected with enough warning time to possibly deflect it away. Thanks to Near-Earth Object (NED) surveys, people are working towards a goal of cataloging at least 90% of all near-Earth objects with diameters larger than {approx} 140 meters in the next fifteen years. The important question then, is how to mitigate the threat from an asteroid or comet nucleus found to be on a collision course with Earth. In this paper. we briefly review some possible deflection methods, describe their good and bad points, and then embark on a more detailed description of using nuclear munitions in a standoff mode to deflect the asteroid or comet nucleus before it can hit Earth.

  11. A Proposal for First-Ever Measurement of Coherent Neutrino-Nucleus Scattering

    SciTech Connect (OSTI)

    Winant, C D; Bernstein, A; Foxe, M P; Hagmann, C A; Jovanovic, I; Kazkaz, K M; Stoeffl, W S

    2008-02-05

    We propose to build and deploy a 10-kg dual-phase argon ionization detector for the detection of coherent neutrino-nucleus scattering, which is described by the reaction; {nu} + (Z,N) {yields} {nu} + (Z,N), where {nu} is the scattering neutrino, and (Z,N) is the target nucleus of atomic number Z and neutron number N. Its detection would validate central tenets of the Standard Model. We have built a gas-phase argon ionization detector to determine the feasibility of measuring the small recoil energies ({approx} 1keV) predicted from coherent neutrino scattering, and to characterize the recoil spectrum of the argon nuclei induced by scattering from medium-energy neutrons. We present calibrations made with 55-Fe, a low-energy X-ray source, and report on measurements to date of the recoil spectra from the 2-MeV LINAC Li-target neutron source at LLNL. A high signal-to-noise measurement of the recoil spectrum will not only serve as an important milestone in achieving the sensitivity necessary for measuring coherent neutrino-nucleus scattering, but will break new scientific ground on its own.

  12. Ice plug employed on subsea pipeline bend during repair

    SciTech Connect (OSTI)

    1997-12-22

    The first controlled-temperature ice plug in the bend of an offshore gas trunkline has been carried out for Phillips Petroleum Co. Norway on its Norpipe A.S. platform in the German sector of the North Sea. The procedure was part of a subsea valve repair operation. The ice plug was successfully formed offshore and tested to a differential pressure of 1,450 psi. Repair of two valves required only 5 days during which time gas production was operating at close to 50--60% via the platform bypass, says the service company. The paper discusses the procedure.

  13. Progress on a TWP-ICE Monsoon Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outline Introduction 25-mb large-scale forcing 10-mb large-scale forcing Tracers Future work Progress on a TWP-ICE Monsoon Case Study Ann Fridlind and Andrew Ackerman * NASA GISS thanks to Jon Petch * ECMWF Shaocheng Xie * LLNL TWP-ICE and ACTIVE Science Teams DOE ARM Program and Data Archive NASA Radiation Sciences Program NASA Advanced Supercomputing Division 18th Annual ARM Science Team Meeting 10 March 2008 Outline Introduction 25-mb large-scale forcing 10-mb large-scale forcing Tracers

  14. Bio-based Deicing/Anti-Icing Fluids - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Bio-based DeicingAnti-Icing Fluids Battelle Memorial ... and typically bio-based deicinganti-icing fluids for aerospace and non-aerospace ...

  15. Bio-based Deicing/Anti-Icing Fluids - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Bio-based DeicingAnti-Icing Fluids Battelle Memorial ... and in particular to deicinganti-icing fluids.DescriptionThis technology is for ...

  16. Radiation Dry Bias in the TWP-ICE Radiosonde Soundings Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Dry Bias in the TWP-ICE Radiosonde Soundings Solar Zenith Angle Correction ... used in TWP-ICE, is known to be affected by a significant day-time radiation dry bias. ...

  17. Development of a land ice core for the Model for Prediction Across...

    Office of Scientific and Technical Information (OSTI)

    a land ice core for the Model for Prediction Across Scales (MPAS) Citation Details In-Document Search Title: Development of a land ice core for the Model for Prediction Across Scales ...

  18. Time-resolved x-ray diffraction across water-ices VI/VII transformatio...

    Office of Scientific and Technical Information (OSTI)

    diffraction across water-ices VIVII transformations using dynamic-DAC Citation Details In-Document Search Title: Time-resolved x-ray diffraction across water-ices VIVII ...

  19. Fast proton hopping detection in ice I{sub h} by quasi-elastic...

    Office of Scientific and Technical Information (OSTI)

    Fast proton hopping detection in ice Isub h by quasi-elastic neutron scattering. Citation Details In-Document Search Title: Fast proton hopping detection in ice Isub h by ...

  20. An update on land-ice modeling in the CESM (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    approximation; and there is no ice-ocean coupling. During the next year we plan to implement two-way coupling (including ice-ocean coupling with a dynamic Antarcticmore ...

  1. Statement of Work (SOW) Template (Combined EIR/ICE Support Contractor)

    Broader source: Energy.gov [DOE]

    The template presented below is a Statement of Work (SOW) for services of an EIR/ICE Support Contractor for assisting OECM in conducting a combined EIR/ICE at CD-2.

  2. Neutrinos at IceCube from heavy decaying dark matter (Journal...

    Office of Scientific and Technical Information (OSTI)

    Neutrinos at IceCube from heavy decaying dark matter Citation Details In-Document Search Title: Neutrinos at IceCube from heavy decaying dark matter Authors: Feldstein, Brian ; ...

  3. An update on land-ice modeling in the CESM (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    LJWG efforts to date have led to the inclusion of a dynamic ice-sheet model (the Glimmer Community Ice Sheet Model, or Glimmer-CISM) in the Community Earth System Model (CESM), ...

  4. Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores...

    Office of Science (SC) Website

    Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Nuclear Physics (NP) NP Home ... Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Precision analytical ...

  5. Land-ice modeling for sea-level prediction (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Land-ice modeling for sea-level prediction Citation Details In-Document Search Title: Land-ice modeling for sea-level prediction Authors: Lipscomb, William H 1 ...

  6. Predicting Land-Ice Retreat and Sea-Level Rise with the Community...

    Office of Scientific and Technical Information (OSTI)

    from the marine-based West Antarctic Ice Sheet, linked to changes in Southern Ocean wind stress. To assess the likelihood of fast retreat of marine ice sheets, we need coupled...

  7. Impact of individual nuclear masses on r-process abundances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mumpower, M. R.; Surman, R.; Fang, D. -L.; Beard, M.; Möller, P.; Kawano, T.; Aprahamian, A.

    2015-09-15

    We have performed for the first time a comprehensive study of the sensitivity of r-process nucleosynthesis to individual nuclear masses across the chart of nuclides. Using the latest version (2012) of the Finite-Range Droplet Model, we consider mass variations of ±0.5 MeV and propagate each mass change to all affected quantities, including Q values, reaction rates, and branching ratios. We find such mass variations can result in up to an order of magnitude local change in the final abundance pattern produced in an r-process simulation. As a result, we identify key nuclei whose masses have a substantial impact on abundancemore » predictions for hot, cold, and neutron star merger r-process scenarios and could be measured at future radioactive beam facilities.« less

  8. Thorium: Crustal abundance, joint production, and economic availability

    SciTech Connect (OSTI)

    Jordan, Brett W.; Eggert, Roderick G.; Dixon, Brent W.; Carlsen, Brett W.

    2015-03-02

    Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic limits of uranium resources. This paper provides an economic assessment of thorium availability by creating cumulative-availability and potential mining-industry cost curves, based on known thorium resources. These tools provide two perspectives on the economic availability of thorium. In the long term, physical quantities of thorium likely will not be a constraint on the development of a thorium fuel cycle. In the medium term, however, thorium supply may be limited by constraints associated with its production as a by-product of rare earth elements and heavy mineral sands. As a result, environmental concerns, social issues, regulation, and technology also present issues for the medium and long term supply of thorium.

  9. Thorium: Crustal abundance, joint production, and economic availability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jordan, Brett W.; Eggert, Roderick G.; Dixon, Brent W.; Carlsen, Brett W.

    2015-03-02

    Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic limits of uranium resources. This paper provides an economic assessment of thorium availability by creating cumulative-availability and potential mining-industry cost curves, based on known thorium resources. These tools provide two perspectives on the economic availability of thorium. In the long term, physical quantities of thorium likely will not be a constraint on the development of a thorium fuelmore » cycle. In the medium term, however, thorium supply may be limited by constraints associated with its production as a by-product of rare earth elements and heavy mineral sands. As a result, environmental concerns, social issues, regulation, and technology also present issues for the medium and long term supply of thorium.« less

  10. Ice at the Interface: Atmosphere-Ice-Ocean Boundary Layer Processes and Their Role in Polar Change---Workshop Report

    SciTech Connect (OSTI)

    Hunke, Elizabeth C.

    2012-07-23

    The atmosphere-ocean boundary layer in which sea ice resides includes many complex processes that require a more realistic treatment in GCMs, particularly as models move toward full earth system descriptions. The primary purpose of the workshop was to define and discuss such coupled processes from observational and modeling points of view, including insight from both the Arctic and Antarctic systems. The workshop met each of its overarching goals, including fostering collaboration among experimentalists, theorists and modelers, proposing modeling strategies, and ascertaining data availability and needs. Several scientific themes emerged from the workshop, such as the importance of episodic or extreme events, precipitation, stratification above and below the ice, and the marginal ice zone, whose seasonal Arctic migrations now traverse more territory than in the past.

  11. New climate model predicts likelihood of Greenland ice melt, sea level rise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and dangerous temperatures New climate model predicts likelihood of Greenland ice melt New climate model predicts likelihood of Greenland ice melt, sea level rise and dangerous temperatures A new computer model of accumulated carbon emissions predicts the likelihood of crossing several dangerous climate change thresholds. November 20, 2015 Greenland ice loss. Greenland ice loss. Contact Kevin Roark Communications Office (505) 665-9202 Email "The model is based on idealized

  12. City of Eagan …Civic Ice Arena Renovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City of Eagan …Civic Ice Arena Renovation City of Eagan …Civic Ice Arena Renovation Project objectives: Provide a reliable central ice making and heating system that meets the performance requirements of the owner. Reduce operation and maintenance costs. gshp_lutz_eagan_ice_arena.pdf (1.84 MB) More Documents & Publications GEOTHERMAL POWER GENERATION PLANT Wilders Grove Solid Waste Services Center Decision Analysis for EGS

  13. First-principles Study of the Infrared Spectrum of the Ice Ih (0001)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface | Argonne Leadership Computing Facility principles Study of the Infrared Spectrum of the Ice Ih (0001) Surface Authors: Pham, T.A., Huang, P., Schwegler, E., Galli, G. Ice particles catalyze a number of processes relevant to atmospheric and environmental chemistry, and the elucidation of these reactions require knowledge of the ice surface structure. Although it is well known that the structure of bulk ice-Ih is proton disordered, the understanding of the microscopic structure of the

  14. Ice formation on nitric acid coated dust particles: Laboratory and modeling studies

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun; Nandasiri, Manjula I.; Shutthanandan, V.; Liu, Xiaohong; Fast, Jerome D.; Berg, Larry K.

    2015-08-16

    Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperature and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.

  15. The direct detection of boosted dark matter at high energies and PeV events at IceCube

    SciTech Connect (OSTI)

    Bhattacharya, A.; Gandhi, R.; Gupta, A.

    2015-03-13

    We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle χ, created via the decay of a significantly more massive and long-lived non-thermal relic Φ, which forms the bulk of DM. If χ interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelastic scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 1 – 2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC.

  16. The direct detection of boosted dark matter at high energies and PeV events at IceCube

    SciTech Connect (OSTI)

    Bhattacharya, A.; Gandhi, R.; Gupta, A.

    2015-03-13

    We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle χ, created via the decay of a significantly more massive and long-lived non-thermal relic ϕ, which forms the bulk of DM. If χ interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelastic scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 1−2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC.

  17. The direct detection of boosted dark matter at high energies and PeV events at IceCube

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhattacharya, A.; Gandhi, R.; Gupta, A.

    2015-03-13

    We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle χ, created via the decay of a significantly more massive and long-lived non-thermal relic Φ, which forms the bulk of DM. If χ interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelasticmore » scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 1 – 2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC.« less

  18. Characterization of Superhydrophobic Surfaces for Anti-icing in a Low-Temperature Wind Tunnel

    SciTech Connect (OSTI)

    Swarctz, Christopher; Alijallis, Elias; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2010-01-01

    In this study, a closed loop low-temperature wind tunnel was custom-built and uniquely used to investigate the anti-icing mechanism of superhydrophobic surfaces in regulated flow velocities, temperatures, humidity, and water moisture particle sizes. Silica nanoparticle-based hydrophobic coatings were tested as superhydrophobic surface models. During tests, images of ice formation were captured by a camera and used for analysis of ice morphology. Prior to and after wind tunnel testing, apparent contact angles of water sessile droplets on samples were measured by a contact angle meter to check degradation of surface superhydrophobicity. A simple peel test was also performed to estimate adhesion of ice on the surfaces. When compared to an untreated sample, superhydrophobic surfaces inhibited initial ice formation. After a period of time, random droplet strikes attached to the superhydrophobic surfaces and started to coalesce with previously deposited ice droplets. These sites appear as mounds of accreted ice across the surface. The appearance of the ice formations on the superhydrophobic samples is white rather than transparent, and is due to trapped air. These ice formations resemble soft rime ice rather than the transparent glaze ice seen on the untreated sample. Compared to untreated surfaces, the icing film formed on superhydrophobic surfaces was easy to peel off by shear flows.

  19. Purchasing Energy-Efficient Water-Cooled Ice Machines

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program (FEMP) provides efficiency requirements and acquisition guidance for water-cooled ice machines. Federal laws and requirements mandate that agencies purchase FEMP-designated products or ENERGY STAR-qualified products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  20. Purchasing Energy-Efficient Air-Cooled Ice Machines

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  1. Ice method for production of hydrogen clathrate hydrates

    DOE Patents [OSTI]

    Lokshin, Konstantin; Zhao, Yusheng

    2008-05-13

    The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.

  2. Calibration and Characterization of the IceCube Photomultiplier Tube

    SciTech Connect (OSTI)

    IceCube Collaboration; Abbasi, R.; al., et

    2010-02-11

    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.

  3. ESTIMATION OF THE NEON/OXYGEN ABUNDANCE RATIO AT THE HELIOSPHERIC TERMINATION SHOCK AND IN THE LOCAL INTERSTELLAR MEDIUM FROM IBEX OBSERVATIONS

    SciTech Connect (OSTI)

    Bochsler, P.; Petersen, L.; Moebius, E.; Schwadron, N. A.; Wurz, P.; Scheer, J. A.; Fuselier, S. A.; McComas, D. J.; Bzowski, M.; Frisch, P. C.

    2012-02-01

    We report the first direct measurement of the Ne/O abundance ratio of the interstellar neutral gas flowing into the inner heliosphere. From the first year of Interstellar Boundary Explorer IBEX data collected in spring 2009, we derive the fluxes of interstellar neutral oxygen and neon. Using the flux ratio at the location of IBEX at 1 AU at the time of the observations, and using the ionization rates of neon and oxygen prevailing in the heliosphere during the period of solar minimum, we estimate the neon/oxygen ratios at the heliospheric termination shock and in the gas phase of the inflowing local interstellar medium. Our estimate is (Ne/O){sub gas,ISM} = 0.27 {+-} 0.10, which is-within the large given uncertainties-consistent with earlier measurements from pickup ions. Our value is larger than the solar abundance ratio, possibly indicating that a significant fraction of oxygen in the local interstellar medium is hidden in grains and/or ices.

  4. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice numbermore » is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.« less

  5. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-12-01

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  6. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  7. A surface ice module for wind turbine dynamic response simulation using FAST

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Bingbin; Karr, Dale G.; Song, Huimin; Sirnivas, Senu

    2016-06-03

    It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamicmore » response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind

  8. ELECTRON IRRADIATION OF CARBON DISULFIDE-OXYGEN ICES: TOWARD THE FORMATION OF SULFUR-BEARING MOLECULES IN INTERSTELLAR ICES

    SciTech Connect (OSTI)

    Maity, Surajit; Kaiser, Ralf I. [Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822 (United States)

    2013-08-20

    The formation of sulfur-bearing molecules in interstellar ices was investigated during the irradiation of carbon disulfide (CS{sub 2})-oxygen (O{sub 2}) ices with energetic electrons at 12 K. The irradiation-induced chemical processing of these ices was monitored online and in situ via Fourier transform infrared spectroscopy to probe the newly formed products quantitatively. The sulfur-bearing molecules produced during the irradiation were sulfur dioxide (SO{sub 2}), sulfur trioxide (SO{sub 3}), and carbonyl sulfide (OCS). Formations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and ozone (O{sub 3}) were observed as well. To fit the temporal evolution of the newly formed products and to elucidate the underlying reaction pathways, kinetic reaction schemes were developed and numerical sets of rate constants were derived. Our studies suggest that carbon disulfide (CS{sub 2}) can be easily transformed to carbonyl sulfide (OCS) via reactions with suprathermal atomic oxygen (O), which can be released from oxygen-containing precursors such as water (H{sub 2}O), carbon dioxide (CO{sub 2}), and/or methanol (CH{sub 3}OH) upon interaction with ionizing radiation. This investigation corroborates that carbonyl sulfide (OCS) and sulfur dioxide (SO{sub 2}) are the dominant sulfur-bearing molecules in interstellar ices.

  9. STELLAR ELEMENTAL ABUNDANCE PATTERNS: IMPLICATIONS FOR PLANET FORMATION

    SciTech Connect (OSTI)

    Chambers, J. E.

    2010-11-20

    The solar photosphere is depleted in refractory elements compared to most solar twins, with the degree of depletion increasing with an element's condensation temperature. Here, I show that adding 4 Earth masses of Earth-like and carbonaceous-chondrite-like material to the solar convection zone brings the Sun's composition into line with the mean value for the solar twins. The observed solar composition could have arisen if the Sun's convection zone accreted material from the solar nebula that was depleted in refractory elements due to the formation of the terrestrial planets and ejection of rocky protoplanets from the asteroid belt. Most solar analogs are missing 0-10 Earth masses of rocky material compared to the most refractory-rich stars, providing an upper limit to the mass of rocky terrestrial planets that they possess. The missing mass is correlated with stellar metallicity. This suggests that the efficiency of planetesimal formation increases with stellar metallicity. Stars with and without known giant planets show a similar distribution of abundance trends. If refractory depletion is a signature of the presence of terrestrial planets, this suggests that there is not a strong correlation between the presence of terrestrial and giant planets in the same system.

  10. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    SciTech Connect (OSTI)

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M.; Dinelli, B. M.; Adriani, A.; D'Aversa, E.; Moriconi, M. L.; Boersma, C.; Allamandola, L. J.

    2013-06-20

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  11. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    SciTech Connect (OSTI)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  12. Pairing phenomenon in doubly odd neutron rich {sup 136}Sb nucleus

    SciTech Connect (OSTI)

    Laouet, N.; Benrachi, F.

    2012-06-27

    Based on p-n and n-n pairing gap energies giving by K. Kaneko et al. (2003), we make modifications on the kh5082 interaction. Calculations and study of some nuclear properties for {sup 136}Sb nucleus are developed in the framework of the nuclear shell model by means of OXBASH structure code. We get the same energetic sequence as the recent experimental values of single particle energies. The effective charge values e{sub p}=1.35e and e{sub n}=0.9e, and factors given by V. I. Isakov are used to evaluate multipole electromagnetic moments.

  13. Neutrino-nucleus scattering of {sup 95,97}Mo and {sup 116}Cd

    SciTech Connect (OSTI)

    Ydrefors, E.; Almosly, W.; Suhonen, J.

    2013-12-30

    Accurate knowledge about the nuclear responses to supernova neutrinos for relevant nuclear targets is important both for neutrino detection and for astrophysical applications. In this paper we discuss the cross sections for the charged-current neutrino-nucleus scatterings off {sup 95,97}Mo and {sup 116}Cd. The microscopic quasiparticle-phonon model is adopted for the odd-even nuclei {sup 95,97}Mo. In the case of {sup 116}Cd we present cross sections both for the Bonn one-boson-exchange potential and self-consistent calculations based on modern Skyrme interactions.

  14. AN EMBEDDED ACTIVE NUCLEUS IN THE OH MEGAMASER GALAXY IRAS16399–0937

    SciTech Connect (OSTI)

    Sales, Dinalva A.; Robinson, A.; Axon, D. J.; Curran, R. L.; O'Dea, C.; Mittal, R.; Gallimore, J.; Kharb, P.; Baum, S.; Elitzur, M.

    2015-01-20

    We present a multiwavelength study of the OH megamaser galaxy IRAS16399–0937, based on new Hubble Space Telescope (HST)/Advanced Camera for Surveys F814W and Hα+[N II] images and archive data from HST, Two Micron All Sky Survey, Spitzer, Herschel and the Very Large Array. This system has a double nucleus, whose northern (IRAS16399N) and southern (IRAS16399S) components have a projected separation of ∼6'' (3.4 kpc) and have previously been identified based on optical spectra as a low ionization nuclear emission line region (LINER) and starburst nucleus, respectively. The nuclei are embedded in a tidally distorted common envelope, in which star formation is mostly heavily obscured. The infrared spectrum is dominated by strong polycyclic aromatic hydrocarbon, but deep silicate and molecular absorption features are also present, and are strongest in the IRAS16399N nucleus. The 0.435-500 μm spectral energy distribution was fitted with a model including stellar, interstellar medium and active galactic nucleus (AGN) torus components using our new Markov Chain Monte Carlo code, CLUMPYDREAM. The results indicate that the IRAS16399N contains an AGN (L {sub bol} ∼ 10{sup 44} erg s{sup –1}) deeply embedded in a quasi-spherical distribution of optically thick clumps with a covering fraction ≈1. We suggest that these clumps are the source of the OHM emission in IRAS16399–0937. The high torus covering fraction precludes AGN photoionization as the origin of the LINER spectrum, however, the spectrum is consistent with shocks (v ∼ 100-200 km s{sup –1}). We infer that the ∼10{sup 8} M {sub ☉} black hole in IRAS16399N is accreting at a small fraction (∼1%) of its Eddington rate. The low accretion rate and modest nuclear star formation rates suggest that while the gas-rich major merger forming the IRAS16399–0937 system has triggered widespread star formation, the massive gas inflows expected from merger simulations have not yet fully developed.

  15. Molecular interactions with ice: Molecular embedding, adsorption, detection, and release

    SciTech Connect (OSTI)

    Gibson, K. D.; Langlois, Grant G.; Li, Wenxin; Sibener, S. J.; Killelea, Daniel R.

    2014-11-14

    The interaction of atomic and molecular species with water and ice is of fundamental importance for chemistry. In a previous series of publications, we demonstrated that translational energy activates the embedding of Xe and Kr atoms in the near surface region of ice surfaces. In this paper, we show that inert molecular species may be absorbed in a similar fashion. We also revisit Xe embedding, and further probe the nature of the absorption into the selvedge. CF{sub 4} molecules with high translational energies (?3 eV) were observed to embed in amorphous solid water. Just as with Xe, the initial adsorption rate is strongly activated by translational energy, but the CF{sub 4} embedding probability is much less than for Xe. In addition, a larger molecule, SF{sub 6}, did not embed at the same translational energies that both CF{sub 4} and Xe embedded. The embedding rate for a given energy thus goes in the order Xe > CF{sub 4} > SF{sub 6}. We do not have as much data for Kr, but it appears to have a rate that is between that of Xe and CF{sub 4}. Tentatively, this order suggests that for Xe and CF{sub 4}, which have similar van der Waals radii, the momentum is the key factor in determining whether the incident atom or molecule can penetrate deeply enough below the surface to embed. The more massive SF{sub 6} molecule also has a larger van der Waals radius, which appears to prevent it from stably embedding in the selvedge. We also determined that the maximum depth of embedding is less than the equivalent of four layers of hexagonal ice, while some of the atoms just below the ice surface can escape before ice desorption begins. These results show that energetic ballistic embedding in ice is a general phenomenon, and represents a significant new channel by which incident species can be trapped under conditions where they would otherwise not be bound stably as surface adsorbates. These findings have implications for many fields including environmental science, trace gas

  16. THE CORONAL ABUNDANCES OF MID-F DWARFS

    SciTech Connect (OSTI)

    Wood, Brian E.; Laming, J. Martin [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States)

    2013-05-10

    A Chandra spectrum of the moderately active nearby F6 V star {pi}{sup 3} Ori is used to study the coronal properties of mid-F dwarfs. We find that {pi}{sup 3} Ori's coronal emission measure distribution is very similar to those of moderately active G and K dwarfs, with an emission measure peak near log T = 6.6 seeming to be ubiquitous for such stars. In contrast to coronal temperature, coronal abundances are known to depend on spectral type for main sequence stars. Based on this previously known relation, we expected {pi}{sup 3} Ori's corona to exhibit an extremely strong ''first ionization potential (FIP) effect'', a phenomenon first identified on the Sun where elements with low FIP are enhanced in the corona. We instead find that {pi}{sup 3} Ori's corona exhibits a FIP effect essentially identical to that of the Sun and other early G dwarfs, perhaps indicating that the increase in FIP bias toward earlier spectral types stops or at least slows for F stars. We find that {pi}{sup 3} Ori's coronal characteristics are significantly different from two previously studied mid-F stars, Procyon (F5 IV-V) and {tau} Boo (F7 V). We believe {pi}{sup 3} Ori is more representative of the coronal characteristics of mid-F dwarfs, with Procyon being different because of luminosity class, and {tau} Boo being different because of the effects of one of two close companions, one stellar ({tau} Boo B: M2 V) and one planetary.

  17. A MINOR MERGER CAUGHT IN THE ACT OF FUELING THE ACTIVE GALACTIC NUCLEUS IN Mrk 509

    SciTech Connect (OSTI)

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Storchi-Bergmann, T.; Riffel, R. A.

    2015-02-01

    In recent observations by the Hubble Space Telescope (HST) as part of a campaign to discover locations and kinematics of AGN outflows, we found that Mrk 509 contains a 3'' (∼2100 pc) linear filament in its central region. Visible in both optical continuum and [O III] imaging, this feature resembles a ''check mark'' of several knots of emission that travel northwest to southeast before jutting toward the nucleus from the southwest. Space Telescope Imaging Spectrograph (STIS/HST) observations along the inner portion of the filament reveal redshifted velocities, indicating that the filament is inflowing. We present further observations of the nucleus in Mrk 509 using the Gemini Near-Infrared Integral Field Spectrograph, from which we conclude that this structure cannot be related to previously studied, typical narrow line region outflows and instead embodies the remains of an ongoing minor merger with a gas-rich dwarf galaxy, therefore providing a great opportunity to study the fueling of an AGN by a minor merger in progress.

  18. Neutron and weak-charge distributions of the 48Ca nucleus

    SciTech Connect (OSTI)

    Hagen, Gaute; Forssen, Christian; Nazarewicz, Witold; Papenbrock, Thomas F.; Bacca, S.; Barnea, Nir; Carlsson, Boris; Drischler, Christian; Hebeler, Kai; Hjorth-Jensen, M.; Miorelli, Mirko; Orlandini, Giuseppina; Schwenk, Achim; Simonis, Johannes; Jansen, Gustav R.; Ekstrom, A.; Wendt, K. A.

    2015-11-02

    What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions) is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Here, based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.

  19. Near-yrast, medium-spin structure of the {sup 109}Tc nucleus

    SciTech Connect (OSTI)

    Urban, W.; Pinston, J. A.; Smith, A. G.; Ahmad, I.

    2010-12-15

    Excited levels in the {sup 109}Tc nucleus, populated in the spontaneous fission of {sup 248}Cm, have been studied using the EUROGAM2 array. In {sup 109}Tc we have found a new band corresponding to the {pi}5/2{sup -}[303] configuration and a three-quasiparticle band with I{sup {pi}}=(15/2{sup -}) band-head level at 1749.5 keV. The structure of the 1749.5-keV level probably involves the {l_brace}{pi}5/2{sup +}[422]{nu}(5/2{sup -}[532],5/2{sup +}[413]){r_brace}{sub 15/2}{sup -} prolate configuration. The quasiparticle-rotor model calculations performed in this work show that the odd-proton configurations observed in {sup 107}Tc and {sup 109}Tc are consistent with the scheme of proton excitations in a prolate triaxial potential. Significant differences between the degree of triaxiality observed for positive- and negative-parity excitations may be due to blocking of the triaxial shape by the odd proton populating negative-parity orbitals. The properties of the new 494.5-, 1440.7-, and 1748.8-keV levels found in {sup 109}Tc may indicate a change toward an oblate shape in this nucleus.

  20. Present state-of-the-art of transmission line icing

    SciTech Connect (OSTI)

    Pohlman, J.C.; Landers, P.

    1982-08-01

    Icing of overhead power lines is a serious problem for electric utilities. The loads resulting from iced conductors take many forms. Existing Codes and Guides offer little help in establishing adequate design criteria. Each transmission line designer must, therefore, rely heavily on intuitive judgment to set performance levels for transmission lines to be built within his particular service area. A special study was undertaken by author Pohlman in behalf of the Electric Power Research Institute (EPRI) to accomplish the following objectives: Improve the general understanding of the total problem; Sample utility perceptions and experience with the problem; Accumulate and review professional opinion on the subject; Inventory past and on-going research activities; Consolidate the above into a definition of the present state-of-the-art to define the need for future research.

  1. Probing Planck scale physics with IceCube

    SciTech Connect (OSTI)

    Anchordoqui, Luis A.; Goldberg, Haim; Gonzalez-Garcia, M.C.; Halzen, Francis; Hooper, Dan; Sarkar, Subir; Weiler, Thomas J.

    2005-09-15

    Neutrino oscillations can be affected by decoherence induced e.g. by Planck scale suppressed interactions with the space-time foam predicted in some approaches to quantum gravity. We study the prospects for observing such effects at IceCube, using the likely flux of TeV antineutrinos from the Cygnus spiral arm. We formulate the statistical analysis for evaluating the sensitivity to quantum decoherence in the presence of the background from atmospheric neutrinos, as well as from plausible cosmic neutrino sources. We demonstrate that IceCube will improve the sensitivity to decoherence effects of O(E{sup 2}/M{sub Pl}) by 17 orders of magnitude over present limits and, moreover, that it can probe decoherence effects of O(E{sup 3}/M{sub Pl}{sup 2}) which are well beyond the reach of other experiments.

  2. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  3. Indirect heating system for turbine anti-icing

    SciTech Connect (OSTI)

    Wagar, S.N.

    1980-03-01

    Gas-transmission service in northern Minnesota has verified the effectiveness of American Air Filter Co.'s indirect-heating method of preventing gas-turbine icing at compressor stations. By routing hot exhaust gases through a heat exchanger rather than directly into the inlet-air system, the indirect-heating method avoids turbine fouling, raises the air temperature at a constant specific humidity, and provides a uniform cross section of heated intake air for good turbine efficiency.

  4. American Indian Complex to Cool Off Using Ice Storage System

    Broader source: Energy.gov [DOE]

    In Oklahoma City, summer temperatures can get above 100 degrees, making cooling more of a necessity than a luxury. But the designers of the American Indian Cultural Center and Museum (AICCM) wanted to make cooling choices that reflect American Indian cultures' respect for the land. So, rather than using conventional air-conditioning, the museum's main complex will use an ice storage system estimated to save 644,000 kilowatt hours of electricity a year.

  5. Microsoft Word - 11_19_09 ice mkaer.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to: Department of Energy via email: expartecommunications@hq.doe.gov from: Debra Brunk date: November 20, 2009 subject: Exparte Communication This memo memorializes the meeting between AHAM and the Department of Energy on November 19, 2009 for inclusion in the public docket. The purpose of the meeting was to update the Department on the status of AHAM's development of an ice maker energy test procedure. The attendees are as follows: Ronald Lewis, Department of Energy Lucas Adin, Department of

  6. Microsoft Word - 11_4_09 ice maker.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gov from: Debra Brunk, Vice President Technical Services date: November 11, 2009 subject: Exparte Communication This memo memorializes the phone call between AHAM and the Department of Energy on November 4, 2009 for inclusion in the public docket. In summary, the issues discussed during the call were an update on including ice maker energy into the refrigerator-freezer test procedure and questions on the status regarding AHAM's clarification request on clothes washer drum volume determination.

  7. Decaying leptophilic dark matter at IceCube

    SciTech Connect (OSTI)

    Boucenna, Sofiane M.; Chianese, Marco; Mangano, Gianpiero; Miele, Gennaro; Morisi, Stefano; Pisanti, Ofelia; Vitagliano, Edoardo

    2015-12-29

    We present a novel interpretation of IceCube high energy neutrino events (with energy larger than 60 TeV) in terms of an extraterrestrial flux due to two different contributions: a flux originated by known astrophysical sources and dominating IceCube observations up to few hundreds TeV, and a new flux component where the most energetic neutrinos come from the leptophilic three-body decays of dark matter particles with a mass of few PeV. Differently from other approaches, we provide two examples of elementary particle models that do not require extremely tiny coupling constants. We find the compatibility of the theoretical predictions with the IceCube results when the astrophysical flux has a cutoff of the order of 100 TeV (broken power law). In this case the most energetic part of the spectrum (PeV neutrinos) is due to an extra component such as the decay of a very massive dark matter component. Due to the low statistics at our disposal we have considered for simplicity the equivalence between deposited and neutrino energy, however such approximation does not affect dramatically the qualitative results. Of course, a purely astrophysical origin of the neutrino flux (no cutoff in energy below the PeV scale — unbroken power law) is still allowed. If future data will confirm the presence of a sharp cutoff above few PeV this would be in favor of a dark matter interpretation.

  8. Isolation and characterization of Microtox{reg_sign}-active components from aircraft de-icing/anti-icing fluids

    SciTech Connect (OSTI)

    Cancilla, D.A.; Holtkamp, A.; Fang, X.; Matassa, L.

    1997-03-01

    The goal of this project was to isolate and identify individual components from aircraft de-icing/anti-icing fluids (ADAFs) through a toxicity-based bioassay analysis. A Microtox{reg_sign} bioassay fractionation scheme was used to isolate a number of active fractions from ADAFs. Active fractions were identified using multiple spectral techniques, including nuclear magnetic resonance, gas chromatograph-mass spectrometry, liquid chromatography-mass spectrometry, and ultraviolet characterization. The primary Microtox-active fraction was shown to be a mixture of benzotriazole and tolyltriazoles, which are used as corrosion inhibitors in ADAF formulations. The identity of the compounds was confirmed through spectral and Microtox-toxicity analysis and comparison of commercially available standards.

  9. Dimensions and aspect ratios of natural ice crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2014-12-10

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the Tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign in mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. Dimensions and aspect ratios (AR, dimension of major axis divided by dimension of minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased as temperature increased. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50±1.35 during three campaigns and 6.32±1.34 (5.46±1.34; 4.95±1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < −35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L–W relationships of columns

  10. Dimensions and aspect ratios of natural ice crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2015-04-15

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L

  11. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    SciTech Connect (OSTI)

    Hickox, Ryan C.; Chen, Chien-Ting J.; Civano, Francesca M.; Hainline, Kevin N.; Mullaney, James R.; Alexander, David M.; Goulding, Andy D.

    2014-02-10

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (?100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ?100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L {sub AGN} in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  12. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    SciTech Connect (OSTI)

    Mousseau, Joel A.

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  13. Realizing three-dimensional artificial spin ice by stacking planar nano-arrays

    SciTech Connect (OSTI)

    Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano

    2014-01-06

    Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in a pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.

  14. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOE Patents [OSTI]

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  15. Evidence of a slight nuclear transparency in the alpha-nucleus systems

    SciTech Connect (OSTI)

    Chamon, L. C.; Gasques, L. R.; Nobre, G. P. A.; Rossi, Jr., E. S.; deBoer, R. J.; Seymour, C.; Wiescher, M.; Kiss, G. G.

    2015-02-19

    In earlier works, we proposed a model for the nuclear potential of the α + α and α + ¹²C systems. In addition, this theoretical model successfully described data related to the elastic and inelastic scattering processes as well as resonances that correspond to the capture reaction channel. In the present work, we extend the same model to obtain bare nuclear potentials for several α-nucleus systems. We adopt this parameter-free interaction to analyze fusion, elastic, and inelastic scattering data within the context of the coupled-channel formalism. Our results indicate that, for these systems, the absorption of flux of the elastic channel at internal distances of interaction is not complete. In addition, we present new experimental angular distributions for the 2⁺ inelastic target excitation of α on ¹²⁰,¹³⁰Te.

  16. In-Beam Gamma-ray Spectroscopy in the sdpf {sup 37}Ar Nucleus

    SciTech Connect (OSTI)

    Silveira, M. A. G.; Medina, N. H.; Seale, W. A.; Ribas, R. V.; Oliveira, J. R. B. de; Zilio, S.; Lenzi, S. M.; Napoli, D. R.; Marginean, N.; Vedova, F. Della; Farnea, E.; Ionescu-Bujor, M.; Iordachescu, A.

    2007-10-26

    The nucleus {sup 37}Ar has been studied with {gamma}-ray spectroscopy in the {sup 24}Mg({sup 16}O,2pn) reaction at a beam energy of 70 MeV. Twenty two new excited states up to an excitation energy of 13 MeV have been observed. We compare the first negative and positive parity yrast states with large-scale-shell-model calculations using the Antoine code and the SDPF interaction, considering the excitation of the 1d{sub 5/2},2s{sub 1/2} and 1d{sub 3/2} nucleons to 1f{sub 7/2} and 2p{sub 3/2} in the sdpf valence space.

  17. Competing decay modes of a high-spin isomer in the proton-unbound nucleus ??Ta*

    SciTech Connect (OSTI)

    Carroll, R. J.; Page, R. D.; Joss, D. T.; Uusitalo, J.; Darby, I. G.; Andgren, K.; Cederwall, B.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; Greenlees, P. T.; Hadinia, B.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppnen, A. -P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarn, J.; Scholey, C.; Seweryniak, D.; Simpson, J.

    2015-01-01

    An isomeric state at high spin and excitation energy was recently observed in the proton-unbound nucleus 158Ta. This state was observed to decay by both ? and ? decay modes. The large spin change required to decay via ?-ray emission incurs a lifetime long enough for ? decay to compete. The ? decay has an energy of 8644(11) keV, which is among the highest observed in the region, a partial half-life of 440(70) ?s and changes the spin by 11?. In this study, additional evidence supporting the assignment of this ? decay to the high-spin isomer in 158Ta will be presented.

  18. Mechanism of elastic and inelastic proton scattering on a {sup 15}C nucleus in diffraction theory

    SciTech Connect (OSTI)

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.

    2012-11-15

    The amplitudes for elastic and inelastic proton scattering on the neutron-rich nucleus {sup 15}C (to its J{sup {pi}} = 5/2{sup +} level in the latter case) in inverse kinematics were calculated within Glauber diffraction theory. First- and second-order terms were taken into account in the multiple-scattering operator. The {sup 15}C wave function in the multiparticle shell model was used. This made it possible to calculate not only respective differential cross sections but also the contribution of proton scattering on nucleons occurring in different shells. The differential cross sections for elastic and inelastic scattering were calculated at the energies of 0.2, 0.6, and 1 GeV per nucleon.

  19. Evidence of a slight nuclear transparency in the alpha-nucleus systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chamon, L. C.; Gasques, L. R.; Nobre, G. P. A.; Rossi, Jr., E. S.; deBoer, R. J.; Seymour, C.; Wiescher, M.; Kiss, G. G.

    2015-02-19

    In earlier works, we proposed a model for the nuclear potential of the α + α and α + ¹²C systems. In addition, this theoretical model successfully described data related to the elastic and inelastic scattering processes as well as resonances that correspond to the capture reaction channel. In the present work, we extend the same model to obtain bare nuclear potentials for several α-nucleus systems. We adopt this parameter-free interaction to analyze fusion, elastic, and inelastic scattering data within the context of the coupled-channel formalism. Our results indicate that, for these systems, the absorption of flux of the elasticmore » channel at internal distances of interaction is not complete. In addition, we present new experimental angular distributions for the 2⁺ inelastic target excitation of α on ¹²⁰,¹³⁰Te.« less

  20. Systematic structure of the neutron drip-line {sup 22}C nucleus

    SciTech Connect (OSTI)

    Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.

    2014-10-24

    In the present work we systematically discuss the nuclear structure of the the heaviest particle-bound carbon isotope, {sup 22}C. The ground state wave function of the carbon isotope is calculated using the {sup 20}C core plus two-valence neutron based on a phenomenological mean-field MF potential. We apply the deduced wave function to provide the nuclear matter density which is necessary in the calculations of the total reaction cross section. Calculations show that there is a reasonable good description of the experimental binding energy BE and root-mean square RMS radius. The exotic structure and configuration of the ground state carbon isotope is explained and a consistent explanation on the two-neutron halo (Borromean) nucleus is given.

  1. Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds

    SciTech Connect (OSTI)

    Rambukkange, Mahlon P.; Verlinde, J.; Eloranta, E. W.; Flynn, Connor J.; Clothiaux, Eugene E.

    2011-01-31

    Multimodality of cloud radar Doppler spectra is used to partition cloud particle phases and to separate distinct ice populations in the radar sample volume, thereby facilitating analysis of individual ice showers in multilayered mixed-phase clouds. A 35-GHz cloud radar located at Barrow, Alaska, during the Mixed-Phase Arctic Cloud Experiment collected the Doppler spectra. Data from a pair of collocated depolarization lidars confirmed the presence of two liquid cloud layers reported in this study. Surprisingly, both of these cloud layers were embedded in ice precipitation yet maintained their liquid. Our spectral separation of the ice precipitation yielded two distinct ice populations: ice initiated within the two liquid cloud layers and ice precipitation formed in higher cloud layers. Comparisons of ice fall velocity versus radar reflectivity relationships derived for distinct showers reveal that a single relationship might not properly represent the ice showers during this period.

  2. Direct method gas-phase oxygen abundances of four Lyman break analogs

    SciTech Connect (OSTI)

    Brown, Jonathan S.; Croxall, Kevin V.; Pogge, Richard W.

    2014-09-10

    We measure the gas-phase oxygen abundances in four Lyman break analogs using auroral emission lines to derive direct abundances. The direct method oxygen abundances of these objects are generally consistent with the empirically derived strong-line method values, confirming that these objects are low oxygen abundance outliers from the mass-metallicity (MZ) relation defined by star forming Sloan Digital Sky Survey galaxies. We find slightly anomalous excitation conditions (Wolf-Rayet features) that could potentially bias the empirical estimates toward high values if caution is not exercised in the selection of the strong-line calibration. The high rate of star formation and low oxygen abundance of these objects is consistent with the predictions of the fundamental metallicity relation, in which the infall of relatively unenriched gas simultaneously triggers an episode of star formation and dilutes the interstellar medium of the host galaxy.

  3. A PHOTOMETRIC SYSTEM FOR DETECTION OF WATER AND METHANE ICES ON KUIPER BELT OBJECTS

    SciTech Connect (OSTI)

    Trujillo, Chadwick A.; Sheppard, Scott S.; Schaller, Emily L. E-mail: sheppard@dtm.ciw.edu

    2011-04-01

    We present a new near-infrared photometric system for detection of water ice and methane ice in the solar system. The system consists of two medium-band filters in the K-band region of the near-infrared, which are sensitive to water ice and methane ice, plus continuum observations in the J band and Y band. The primary purpose of this system is to distinguish between three basic types of Kuiper Belt Objects (KBOs)-those rich in water ice, those rich in methane ice, and those with little absorbance. In this work, we present proof-of-concept observations of 51 KBOs using our filter system, 21 of which have never been observed in the near-infrared spectroscopically. We show that our custom photometric system is consistent with previous spectroscopic observations while reducing telescope observing time by a factor of {approx}3. We use our filters to identify Haumea collisional family members, which are thought to be collisional remnants of a much larger body and are characterized by large fractions of water ice on their surfaces. We add 2009 YE{sub 7} to the Haumea collisional family based on our water ice band observations (J - H{sub 2}O = -1.03 {+-} 0.27) which indicate a high amount of water ice absorption, our calculated proper orbital elements, and the neutral optical colors we measured, V - R = 0.38 {+-} 0.04, which are all consistent with the rest of the Haumea family. We identify several objects dynamically similar to Haumea as being distinct from the Haumea family as they do not have water ice on their surfaces. In addition, we find that only the largest KBOs have methane ice, and Haumea itself has significantly less water ice absorption than the smaller Haumea family members. We find no evidence for other families in the Kuiper Belt.

  4. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect (OSTI)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice

  5. Purchasing Energy-Efficient Air-Cooled Ice Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Categories » Purchasing Energy-Efficient Air-Cooled Ice Machines Purchasing Energy-Efficient Air-Cooled Ice Machines The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition

  6. Modeling hot gas flow in the low-luminosity active galactic nucleus of NGC 3115

    SciTech Connect (OSTI)

    Shcherbakov, Roman V.; Reynolds, Christopher S.; Wong, Ka-Wah; Irwin, Jimmy A.

    2014-02-20

    Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with ?{sup 2}/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 10{sup 9} M {sub ?}. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r {sub st} ? 1'', so that most of the gas, including the gas at a Bondi radius r{sub B} = 2''-4'', outflows from the region. We put an upper limit on the accretion rate at 2 10{sup 3} M {sub ?} yr{sup 1}. We find a shallow density profile n?r {sup ?} with ? ? 1 over a large dynamic range. This density profile is determined in the feeding region 0.''5-10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r ? 1'', and (4) the outflow at r ? 1''. The gas temperature is close to the virial temperature T{sub v} at any radius.

  7. Spatially resolved spectra of the 'teacup' active galactic nucleus: tracing the history of a dying quasar

    SciTech Connect (OSTI)

    Gagne, J. P.; Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Keel, W. C.; Rafter, S.; Bennert, V. N.; Schawinski, K.

    2014-09-01

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] ?6716/?6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  8. Understanding Ice Loss in Earth's Coldest Regions | U.S. DOE...

    Office of Science (SC) Website

    Thus, for accurate measurements in these environments, the processes of solar radiation ... The team investigated two processes: (1) penetration of solar radiation into the ice and ...

  9. Determination of 3-D Cloud Ice Water Contents by Combining Multiple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data Sources from Satellite, Ground Radar, and a Numerical Model Liu, Guosheng Florida State University Seo,...

  10. FELIX: advances in modeling forward and inverse ice-sheet problems...

    Office of Scientific and Technical Information (OSTI)

    Title: FELIX: advances in modeling forward and inverse ice-sheet problems. Abstract not provided. Authors: Salinger, Andrew G. ; Perego, Mauro ; Hoffman, Mattew ; Leng, Wei ; ...

  11. Progress in coupling Land Ice and Ocean Models in the MPAS Framework...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Community Earth System Model Land Ice Working Group Meeting ... Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: ...

  12. Update on Greenland Ice Sheet Simulations In CISM and CESM (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Update on Greenland Ice Sheet Simulations In CISM and CESM Authors: Lipscomb, William Henry 1 + Show Author Affiliations Los Alamos National Laboratory Publication Date: ...

  13. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison...

    Office of Scientific and Technical Information (OSTI)

    is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. ...

  14. Radiation damage and associated phase change effect on photodesorption rates from icesLy? studies of the surface behavior of CO{sub 2}(ice)

    SciTech Connect (OSTI)

    Yuan, Chunqing; Yates, John T. Jr.

    2014-01-01

    Photodesorption from a crystalline film of CO{sub 2}(ice) at 75 K has been studied using Ly? (10.2 eV) radiation. We combine quantitative mass spectrometric studies of gases evolved and transmission IR studies of species trapped in the ice. Direct CO desorption is observed from the primary CO{sub 2} photodissociation process, which occurs promptly for CO{sub 2} molecules located on the outermost surface of the ice (Process I). As the fluence of Ly? radiation increases to ?5.5 10{sup 17} photons cm{sup 2}, extensive damage to the crystalline ice occurs and photo-produced CO molecules from deeper regions (Process II) are found to desorb at a rapidly increasing rate, which becomes two orders of magnitude greater than Process I. It is postulated that deep radiation damage to produce an extensive amorphous phase of CO{sub 2} occurs in the 50 nm ice film and that CO (and CO{sub 2}) diffusive transport is strongly enhanced in the amorphous phase. Photodesorption in Process II is a combination of electronic and thermally activated processes. Radiation damage in crystalline CO{sub 2} ice has been monitored by its effects on the vibrational line shapes of CO{sub 2}(ice). Here the crystalline-to-amorphous phase transition has been correlated with the occurrence of efficient molecular transport over long distances through the amorphous phase of CO{sub 2}(ice). Future studies of the composition of the interstellar region, generated by photodesorption from ice layers on grains, will have to consider the significant effects of radiation damage on photodesorption rates.

  15. Long-range azimuthal correlations in protonproton and protonnucleus collisions from the incoherent scattering of partons

    SciTech Connect (OSTI)

    Ma, Guo -Liang; Bzdak, Adam

    2014-11-04

    In this study, we show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest partonparton cross-section of ? = 1.5 3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in protonproton and protonnucleus collisions at the Large Hadron Collider.

  16. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  17. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  18. Observed hemispheric asymmetry in global sea ice changes

    SciTech Connect (OSTI)

    Cavalieri, D.J.; Gloersen, P.; Parkinson, C.L.; Comiso, J.C.; Zwally, H.J.

    1997-11-07

    From November 1978 through December 1996, the areal extent of sea ice decreased by 2.9 {+-} 0.4 percent decade in the Arctic and increased by 1.3 {+-} 0.2 percent per decade in the Antarctic. The observed hemispheric asymmetry in these trends is consistent with a modeled response to a carbon dioxide-induced climate warming. The interannual variations, which are 2.3 percent of the annual mean in the Arctic, with a predominant period of about 5 years, and 3.4 percent of the annual mean in the Antarctic, with a predominant period of about 3 years, are uncorrelated. 29 refs., 2 figs., 1 tab.

  19. SUBMILLIMETER INTERFEROMETRY OF THE LUMINOUS INFRARED GALAXY NGC 4418: A HIDDEN HOT NUCLEUS WITH AN INFLOW AND AN OUTFLOW

    SciTech Connect (OSTI)

    Sakamoto, Kazushi; Ohyama, Youichi; Aalto, Susanne; Costagliola, Francesco; Martin, Sergio; Wiedner, Martina C.; Wilner, David J.

    2013-02-10

    We have observed the nucleus of the nearby luminous infrared galaxy NGC 4418 with subarcsec resolution at 860 and 450 {mu}m for the first time to characterize its hidden power source. A {approx}20 pc (0.''1) hot dusty core was found inside a 100 pc scale concentration of molecular gas at the galactic center. The 860 {mu}m continuum core has a deconvolved (peak) brightness temperature of 120-210 K. The CO(3-2) peak brightness temperature there is as high as 90 K at 50 pc resolution. The core has a bolometric luminosity of about 10{sup 11} L {sub Sun }, which accounts for most of the galaxy luminosity. It is Compton thick (N {sub H} {approx}> 10{sup 25} cm{sup -2}) and has a high luminosity-to-mass ratio (L/M) {approx} 500 L {sub Sun} M {sub Sun} {sup -1} as well as a high luminosity surface density 10{sup 8.5{+-}0.5} L {sub Sun} pc{sup -2}. These parameters are consistent with an active galactic nucleus to be the main luminosity source (with an Eddington ratio about 0.3), while they can be also due to a young starburst near its maximum L/M. We also found an optical color (reddening) feature that we attribute to an outflow cone emanating from the nucleus. The hidden hot nucleus thus shows evidence of both an inflow, previously seen with absorption lines, and the new outflow reported here in a different direction. The nucleus must be rapidly evolving with these gas flows.

  20. A man-made enhanced geothermal system (EGS) can extract the abundant heat resour

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    man-made enhanced geothermal system (EGS) can extract the abundant heat resource tens of thousands of feet below the surface and put it to good use. This would require: With an enhanced geothermal reservoir, you can generate power anywhere with hot rocks at depth! What makes EGS? + + Small pathways to conduct fluid through the hot rocks Fluid to carry heat from the rocks Abundant heat found in rocks at depth Abundant heat found in rocks at depth Limited pathways to conduct fluid Insufficient

  1. C/2013 R1 (Lovejoy) at IR wavelengths and the variability of CO abundances among Oort Cloud comets

    SciTech Connect (OSTI)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L.; Bonev, B. P.; DiSanti, M. A.; Keane, J. V.; Meech, K. J.; Blake, G. A.; Gibb, E. L.

    2014-08-20

    We report production rates, rotational temperatures, and related parameters for gases in C/2013 R1 (Lovejoy) using the Near InfraRed SPECtrometer at the Keck Observatory, on six UT dates spanning heliocentric distances (R{sub h} ) that decreased from 1.35 AU to 1.16 AU (pre-perihelion). We quantified nine gaseous species (H{sub 2}O, OH*, CO, CH{sub 4}, HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, NH{sub 3}, and NH{sub 2}) and obtained upper limits for two others (C{sub 2}H{sub 2} and H{sub 2}CO). Compared with organics-normal comets, our results reveal highly enriched CO, (at most) slightly enriched CH{sub 3}OH, C{sub 2}H{sub 6}, and HCN, and CH{sub 4} consistent with {sup n}ormal{sup ,} yet depleted, NH{sub 3}, C{sub 2}H{sub 2}, and H{sub 2}CO. Rotational temperatures increased from ?50 K to ?70 K with decreasing R{sub h} , following a power law in R{sub h} of 2.0 0.2, while the water production rate increased from 1.0 to 3.9 10{sup 28} molecules s{sup 1}, following a power law in R{sub h} of 4.7 0.9. The ortho-para ratio for H{sub 2}O was 3.01 0.49, corresponding to spin temperatures (T {sub spin}) ? 29 K (at the 1? level). The observed spatial profiles for these emissions showed complex structures, possibly tied to nucleus rotation, although the cadence of our observations limits any definitive conclusions. The retrieved CO abundance in Lovejoy is more than twice the median value for comets in our IR survey, suggesting this comet is enriched in CO. We discuss the enriched value for CO in comet C/2013 R1 in terms of the variability of CO among Oort Cloud comets.

  2. Hygroscopicity of fuels with anti-icing additives

    SciTech Connect (OSTI)

    Bedrik, B.G.; Golubushkin, V.N.; Uspenskii, S.I.

    1984-03-01

    This article investigates the accumulation of water by hydrocarbon fuels under static and dynamic conditions. Standard TS-1 fuel (aviation kerosine) is examined without an anti-icing additive (AIA) and blended with ethyl cellosolve or tetrahydrofurfuryl alcohol in the concentrations that are added to fuel before refueling flight vehicles under service conditions in order to prevent the formation of ice crystals in the fuel. The fuel hygroscopicity under static conditions is measured in desiccators over saturated salt solutions giving air relative humidities from 37% to 97% at 20/sup 0/C. It is determined that tetrahydrofurfuryl alcohol increases the fuel hygroscopicity to a greater degree than does the ethyl cellosolve. The fuel containing the AIA becomes a medium for the transfer of water from the ambient medium to the emulsion droplets, and these droplets in turn form a liquid phase. It is shown that the rate at which the fuel with the AIA becomes saturated with water under dynamic conditions is much greater than under static conditions. In the fuel without the AIA no water emulsion is formed, even with prolonged contact (more than 2 days) with 100% humidity air, whereas in the fuel with the AIA (even with 0.1% ethyl cellosolve), emulsion and liquid phase are formed. It is concluded that the physical stability of fuel containing AIA depends on the AIA concentration. Includes 3 tables.

  3. Paleoclimatology: Second clock supports orbital pacing of the ice ages

    SciTech Connect (OSTI)

    Kerr, R.A.

    1997-05-02

    For a while, it looked as if a water-filled crack in the Nevada desert might doom the accepted explanation of the ice ages. Twenty years ago, the so-called astronomical theory had carried the day. Oceanographers had found evidence implying that the march of ice ages over the last million years was paced by the cyclical stretching and squeezing of Earth`s orbit around the sun, which would have altered the way sunlight fell on the planet`s surface. But in 1988, researchers scuba diving in Nevada`s Devils Hole came up with a climate record--captured in carbonate deposits in the crack-that seemed to contradict this chronology. This article discusses the findings and the puzzles that still remain. The records of sea-level change in Barbados coral appear to be right and the astronomical theory is on solid ground using a new clock based on the radioactive decay of uranium-235 to protactinium-231. However, the Devils Hole record also seems to be correct.

  4. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect (OSTI)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per [Royal Institute of Technology, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Brinellvaegen 68, 10044 Stockholm (Sweden)

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  5. Performance of a stand-alone wind-electric ice maker for remote villages

    SciTech Connect (OSTI)

    Davis, H.C.; Brandemuehl, M.J.; Bergey, M.L.S.

    1995-01-01

    Two ice makers in the 1.1 metric tons per 24 hours (1.2 tons per day) size range were tested to determine their performance when directly coupled to a variable-frequency wind turbine generator. Initial tests were conducted using a dynamometer to simulate to wind to evaluate whether previously determined potential problems were significant and to define basic performance parameters. Field testing in Norman, Oklahoma, was completed to determine the performance of one of the ice makers under real wind conditions. As expected, the ice makers produced more ice at a higher speed than rated, and less ice at a lower speed. Due to the large start-up torque requirement of reciprocating compressors, the ice making system experienced a large start-up current and corresponding voltage drop which required a larger wind turbine that expected to provide the necessary current and voltage. Performance curves for ice production and power consumption are presented. A spreadsheet model was constructed to predict ice production at a user-defined site given the wind conditions for that location. Future work should include long-term performance tests and research on reducing the large start-up currents the system experiences when first coming on line.

  6. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect (OSTI)

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the

  7. Earth-abundant Solar Cells: Can Iron Complexes Serve as Photosensitize...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth-abundant Solar Cells: Can Iron Complexes Serve as Photosensitizers in DSSCs November 10, 2015 11:00AM to 12:00PM Presenter Elena Jakubikova, North Carolina State University...

  8. High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  9. Asteroseismic estimate of helium abundance of a solar analog binary system

    SciTech Connect (OSTI)

    Verma, Kuldeep; Antia, H. M.; Faria, Joo P.; Monteiro, Mrio J. P. F. G.; Basu, Sarbani; Mazumdar, Anwesh; Appourchaux, Thierry; Chaplin, William J.; Garca, Rafael A.

    2014-08-01

    16 Cyg A and B are among the brightest stars observed by Kepler. What makes these stars more interesting is that they are solar analogs. 16 Cyg A and B exhibit solar-like oscillations. In this work we use oscillation frequencies obtained using 2.5 yr of Kepler data to determine the current helium abundance of these stars. For this we use the fact that the helium ionization zone leaves a signature on the oscillation frequencies and that this signature can be calibrated to determine the helium abundance of that layer. By calibrating the signature of the helium ionization zone against models of known helium abundance, the helium abundance in the envelope of 16 Cyg A is found to lie in the range of 0.231 to 0.251 and that of 16 Cyg B lies in the range of 0.218 to 0.266.

  10. Discovery of a ternary pseudobrookite phase in the earth-abundant...

    Office of Scientific and Technical Information (OSTI)

    Title: Discovery of a ternary pseudobrookite phase in the earth-abundant TiZnO system Authors: Perry, Nicola H. ; Stevanovic, Vladan ; Lime, Linda Y. ; Mason, Thomas O. 1 ; CSM) ...

  11. A man-made enhanced geothermal system (EGS) can extract the abundant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    man-made enhanced geothermal system (EGS) can extract the abundant heat resource tens of thousands of feet below the surface and put it to good use. This would require: With an ...

  12. No Confinement Needed: Observation of a Metastable Hydrophobic Wetting Two-Layer Ice on Graphene

    SciTech Connect (OSTI)

    Kimmel, Gregory A.; Matthiesen, Jesper; Baer, Marcel; Mundy, Christopher J.; Petrik, Nikolay G.; Smith, R. Scott; Dohnalek, Zdenek; Kay, Bruce D.

    2009-09-09

    The structure of water at interfaces is crucial for processes ranging from photocatalysis to protein folding. Here, we investigate the structure and lattice dynamics of two-layer crystalline ice films grown on a hydrophobic substrate - graphene on Pt(111) - with low energy electron diffraction, reflection-absorption infrared spectroscopy, rare-gas adsorption/desorption, and ab-initio molecular dynamics. Unlike hexagonal ice, which consists of stacks of puckered hexagonal "bilayers", this new ice polymorph consists of two flat hexagonal sheets of water molecules in which the hexagons in each sheet are stacked directly on top of each other. Such two-layer ices have been predicted for water confined between hydrophobic slits, but not previously observed. Our results show that the two-layer ice forms even at zero pressure at a single hydrophobic interface by maximizing the number of hydrogen bonds at the expense of adopting a non-tetrahedral geometry with weakened bonds.

  13. On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tezaur, Irina K.; Tuminaro, Raymond S.; Perego, Mauro; Salinger, Andrew G.; Price, Stephen F.

    2015-01-01

    We examine the scalability of the recently developed Albany/FELIX finite-element based code for the first-order Stokes momentum balance equations for ice flow. We focus our analysis on the performance of two possible preconditioners for the iterative solution of the sparse linear systems that arise from the discretization of the governing equations: (1) a preconditioner based on the incomplete LU (ILU) factorization, and (2) a recently-developed algebraic multigrid (AMG) preconditioner, constructed using the idea of semi-coarsening. A strong scalability study on a realistic, high resolution Greenland ice sheet problem reveals that, for a given number of processor cores, the AMG preconditionermore » results in faster linear solve times but the ILU preconditioner exhibits better scalability. A weak scalability study is performed on a realistic, moderate resolution Antarctic ice sheet problem, a substantial fraction of which contains floating ice shelves, making it fundamentally different from the Greenland ice sheet problem. Here, we show that as the problem size increases, the performance of the ILU preconditioner deteriorates whereas the AMG preconditioner maintains scalability. This is because the linear systems are extremely ill-conditioned in the presence of floating ice shelves, and the ill-conditioning has a greater negative effect on the ILU preconditioner than on the AMG preconditioner.« less

  14. The abundance properties of nearby late-type galaxies. I. The data

    SciTech Connect (OSTI)

    Pilyugin, L. S.; Grebel, E. K.; Kniazev, A. Y. E-mail: grebel@ari.uni-heidelberg.de

    2014-06-01

    We investigate the oxygen and nitrogen abundance distributions across the optical disks of 130 nearby late-type galaxies using around 3740 published spectra of H II regions. We use these data in order to provide homogeneous abundance determinations for all objects in the sample, including H II regions in which not all of the usual diagnostic lines were measured. Examining the relation between N and O abundances in these galaxies we find that the abundances in their centers and at their isophotal R {sub 25} disk radii follow the same relation. The variation in N/H at a given O/H is around 0.3 dex. We suggest that the observed spread in N/H may be partly caused by the time delay between N and O enrichment and the different star formation histories in galaxies of different morphological types and dimensions. We study the correlations between the abundance properties (central O and N abundances, radial O and N gradients) of a galaxy and its morphological type and dimension.

  15. The Ne-to-O abundance ratio of the interstellar medium from IBEX-Lo observations

    SciTech Connect (OSTI)

    Park, J.; Kucharek, H.; Möbius, E.; Leonard, T.; Bzowski, M.; Sokół, J. M.; Kubiak, M. A.; Fuselier, S. A.; McComas, D. J.

    2014-11-01

    In this paper we report on a two-year study to estimate the Ne/O abundance ratio in the gas phase of the local interstellar cloud (LIC). Based on the first two years of observations with the Interstellar Boundary Explorer, we determined the fluxes of interstellar neutral (ISN) O and Ne atoms at the Earth's orbit in spring 2009 and 2010. A temporal variation of the Ne/O abundance ratio at the Earth's orbit could be expected due to solar cycle-related effects such as changes of ionization. However, this study shows that there is no significant change in the Ne/O ratio at the Earths orbit from 2009 to 2010. We used time-dependent survival probabilities of the ISNs to calculate the Ne/O abundance ratio at the termination shock. Then we estimated the Ne/O abundance ratio in the gas phase of the LIC with the use of filtration factors and the ionization fractions. From our analysis, the Ne/O abundance ratio in the LIC is 0.33 ± 0.07, which is in agreement with the abundance ratio inferred from pickup-ion measurements.

  16. Investigation of low-lying electric dipole strength in the semimagic nucleus {sup 44}Ca

    SciTech Connect (OSTI)

    Isaak, J.; Fritzsche, M.; Hartmann, T.; Pietralla, N.; Romig, C.; Sonnabend, K.; Savran, D.; Galaviz, D.; Kamerdzhiev, S.; Kelley, J. H.; Kwan, E.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Zilges, A.

    2011-03-15

    The dipole-strength distribution in the semimagic nucleus {sup 44}Ca has been measured up to 10 MeV excitation energy in photon-scattering experiments using bremsstrahlung and monoenergetic 100% linearly polarized photon beams. The combination of both measurements allows a clear determination of spin and parity quantum numbers of the excited states as well as absolute cross sections and transition probabilities. The results show that the majority of the dipole strength in {sup 44}Ca below 10 MeV is due to E1 transitions while M1 strength plays only a minor role. The experimental results are compared to the strength in the neighboring doubly magic nuclei {sup 40,48}Ca and to microscopic calculations within the extended theory of finite Fermi systems in order to investigate the evolution of the low-lying E1 strength in this isotopic chain. Both, experiment and calculations, show a nontrivial dependence of the total E1 strength as a function of the neutron number.

  17. MHD SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS IN A DYNAMIC GALAXY CLUSTER MEDIUM

    SciTech Connect (OSTI)

    Mendygral, P. J.; Jones, T. W.; Dolag, K.

    2012-05-10

    We present a pair of three-dimensional magnetohydrodynamical simulations of intermittent jets from a central active galactic nucleus (AGN) in a galaxy cluster extracted from a high-resolution cosmological simulation. The selected cluster was chosen as an apparently relatively relaxed system, not having undergone a major merger in almost 7 Gyr. Despite this characterization and history, the intracluster medium (ICM) contains quite active 'weather'. We explore the effects of this ICM weather on the morphological evolution of the AGN jets and lobes. The orientation of the jets is different in the two simulations so that they probe different aspects of the ICM structure and dynamics. We find that even for this cluster, which can be characterized as relaxed by an observational standard, the large-scale, bulk ICM motions can significantly distort the jets and lobes. Synthetic X-ray observations of the simulations show that the jets produce complex cavity systems, while synthetic radio observations reveal bending of the jets and lobes similar to wide-angle tail radio sources. The jets are cycled on and off with a 26 Myr period using a 50% duty cycle. This leads to morphological features similar to those in 'double-double' radio galaxies. While the jet and ICM magnetic fields are generally too weak in the simulations to play a major role in the dynamics, Maxwell stresses can still become locally significant.

  18. Investigation of the {sup 128}Ba nucleus with the (p,t) reaction

    SciTech Connect (OSTI)

    Pascu, S.; Cata-Danil, Gh.; Bucurescu, D.; Marginean, N.; Zamfir, N. V.; Graw, G.; Gollwitzer, A.; Hofer, D.; Valnion, B. D.

    2009-06-15

    The low lying states in {sup 128}Ba have been investigated for the first time with the {sup 130}Ba(p,t){sup 128}Ba reaction. The experiment was performed at the Munich Q3D magnetic spectrograph with a 25-MeV proton beam and a high-resolution, 1.5-m-long focal plane detector. As a result of this experiment 27 excited levels with energies below 3.7 MeV have been observed for the first time, significantly increasing (by {approx}50%) the number of levels observed in {sup 128}Ba. Angular distributions of tritons were measured and their comparison with the distorted wave Born approximation calculation allowed in most cases spin and parity assignments for the nuclear levels. The experimental two-neutron transition strengths with transferred angular momentum L=0 and 2 are compared with the predictions of the IBA-1 model with a new set of parameters. The results indicate for the first time from a hadronic probe perspective a transitional structure close to the O(6) symmetry for the {sup 128}Ba nucleus, confirming previous conclusions of {gamma}-ray spectroscopy studies.

  19. {phi} Production in Proton-Nucleus and Indium-Indium Collisions at the CERN SPS

    SciTech Connect (OSTI)

    Floris, M.; Cicalo, C.; De Falco, A.; Masoni, A.; Puddu, G.; Serci, S.; Usai, G.; Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Averbeck, R.; Drees, A.; Banicz, K.; Castor, J.; Devaux, A.; Force, P.; Manso, F.

    2006-04-11

    The quality of the dimuon measurements made by NA60, in proton-nucleus and heavy-ion collisions, is much better than that reached by previous experiments, such as NA38 and NA50. The most important improvement is due to the use of a radiation-tolerant silicon vertex telescope, placed immediately downstream of the target. This allows NA60 to do a high quality measurement of {phi} meson yields and pT distributions.This paper presents results obtained in p-Be, p-In and p-Pb collisions at 400 GeV, from data collected in 2002, and in In-In collisions at 158 AGeV, as a function of centrality, from the 2003 running period. In particular, we show that the inverse mT slope measured in In-In collisions, in the {phi} {yields} {mu}{mu} decay channel, increases with the number of nucleons participating in the collisions, rather than following a flat trend as seen in the NA50 data collected in the same decay channel but restricted to high pT values. We also show that our measurements seem to agree with the values previously measured by NA49, using {phi} {yields} KK decays, in Pb-Pb and other collision systems.

  20. MULTIDIMENSIONAL CHEMICAL MODELING OF YOUNG STELLAR OBJECTS. III. THE INFLUENCE OF GEOMETRY ON THE ABUNDANCE AND EXCITATION OF DIATOMIC HYDRIDES

    SciTech Connect (OSTI)

    Bruderer, S.; Benz, A. O.; Staeuber, P.; Doty, S. D.

    2010-09-10

    The Herschel Space Observatory enables observations in the far-infrared at high spectral and spatial resolution. A particular class of molecules will be directly observable: light diatomic hydrides and their ions (CH, OH, SH, NH, CH{sup +}, OH{sup +}, SH{sup +}, NH{sup +}). These simple constituents are important both for the chemical evolution of the region and as tracers of high-energy radiation. If outflows of a forming star erode cavities in the envelope, protostellar far-UV (FUV; 6 < E{sub {gamma}} < 13.6 eV) radiation may escape through such low-density regions. Depending on the shape of the cavity, the FUV radiation then irradiates the quiescent envelope in the walls along the outflow. The chemical composition in these outflow walls is altered by photoreactions and heating via FUV photons in a manner similar to photo-dominated regions. In this work, we study the effect of cavity shapes, outflow density, and of a disk with the two-dimensional chemical model of a high-mass young stellar object introduced in the second paper in this series. The model has been extended with a self-consistent calculation of the dust temperature and a multi-zone escape probability method for the calculation of the molecular excitation and the prediction of line fluxes. We find that the shape of the cavity is particularly important in the innermost part of the envelope, where the dust temperatures are high enough ({approx}>100 K) for water ice to evaporate. If the cavity shape allows FUV radiation to penetrate this hot-core region, the abundance of FUV-destroyed species (e.g., water) is decreased. On larger scales, the shape of the cavity is less important for the chemistry in the outflow wall. In particular, diatomic hydrides and their ions CH{sup +}, OH{sup +}, and NH{sup +} are enhanced by many orders of magnitude in the outflow walls due to the combination of high gas temperatures and rapid photodissociation of more saturated species. The enhancement of these diatomic hydrides

  1. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    SciTech Connect (OSTI)

    Yang, Rui Gudipati, Murthy S.

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this shockwave mediated surface resonance enhanced subsurface ablation technique as two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers. This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processesablation and ionization

  2. ELEMENTAL ABUNDANCE DIFFERENCES IN THE 16 CYGNI BINARY SYSTEM: A SIGNATURE OF GAS GIANT PLANET FORMATION?

    SciTech Connect (OSTI)

    RamIrez, I.; Roederer, I. U.; Fish, J. R.; Melendez, J.

    2011-10-20

    The atmospheric parameters of the components of the 16 Cygni binary system, in which the secondary has a gas giant planet detected, are measured accurately using high-quality observational data. Abundances relative to solar are obtained for 25 elements with a mean error of {sigma}([X/H]) = 0.023 dex. The fact that 16 Cyg A has about four times more lithium than 16 Cyg B is normal considering the slightly different masses of the stars. The abundance patterns of 16 Cyg A and B, relative to iron, are typical of that observed in most of the so-called solar twin stars, with the exception of the heavy elements (Z > 30), which can, however, be explained by Galactic chemical evolution. Differential (A-B) abundances are measured with even higher precision ({sigma}({Delta}[X/H]) = 0.018 dex, on average). We find that 16 Cyg A is more metal-rich than 16 Cyg B by {Delta}[M/H] = +0.041 {+-} 0.007 dex. On an element-to-element basis, no correlation between the A-B abundance differences and dust condensation temperature (T{sub C}) is detected. Based on these results, we conclude that if the process of planet formation around 16 Cyg B is responsible for the observed abundance pattern, the formation of gas giants produces a constant downward shift in the photospheric abundance of metals, without a T{sub C} correlation. The latter would be produced by the formation of terrestrial planets instead, as suggested by other recent works on precise elemental abundances. Nevertheless, a scenario consistent with these observations requires the convective envelopes of {approx_equal} 1 M{sub sun} stars to reach their present-day sizes about three times quicker than predicted by standard stellar evolution models.

  3. Long-range azimuthal correlations in proton–proton and proton–nucleus collisions from the incoherent scattering of partons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Guo -Liang; Bzdak, Adam

    2014-11-04

    In this study, we show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton–parton cross-section of σ = 1.5 – 3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton–proton and proton–nucleus collisions at the Large Hadron Collider.

  4. Long-range azimuthal correlations in proton-proton and proton-nucleus collisions from the incoherent scattering of partons

    SciTech Connect (OSTI)

    Ma, Guo -Liang; Bzdak, Adam

    2014-11-04

    We show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest partonparton cross-section of ?=1.53 mb?=1.53 mb, naturally explains the long-range two-particle azimuthal correlation as observed in protonproton and protonnucleus collisions at the Large Hadron Collider.

  5. Special features of the isospin splitting of the giant dipole resonance in the {sup 90}Zr nucleus

    SciTech Connect (OSTI)

    Varlamov, V. V. Peskov, N. N.; Stepanov, M. E.

    2009-02-15

    Data on the proton and neutron channels of the {sup 90}Zr photodisintegration were analyzed in detail, basic parameters of the isospin splitting of the giant dipole resonance in {sup 90}Zr being determined by the properties of these channels. New data concerning the cross sections for the partial photoneutron reactions {sup 90}Zr({gamma}, n){sup 89}Zr and {sup 90}Zr({gamma}, 2n){sup 88}Zr and resulting from a simultaneous correction of data from experiments performed in Livermore (USA) and Saclay (France) by using beams of quasimonoenergetic annihilation photons were invoked. Use was made of information about the positions on the energy scale of states characterized by different isospin values in the {sup 90}Zr nucleus and nuclei neighboring it, which are members of the respective isospin multiplet. New data on the parameters of the isospin splitting of the giant dipole resonance in the {sup 90}Zr nucleus were obtained on the basis of a global analysis of data on the giant-dipole-resonance states of the {sup 90}Zr nucleus, which are manifested in the respective photoneutron and photoproton cross sections and in their decay channels involving states of different isospin in neighboring nuclei.

  6. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    SciTech Connect (OSTI)

    Liu, Yang; Hu, Hui; Chen, Wen-Li; Bond, Leonard J.

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  7. Laboratory studies of oil spill behavior in broken ice fields. Final report Nov 80-Nov 81

    SciTech Connect (OSTI)

    Free, A.P.; Cox, J.C.; Schultz, L.A.

    1981-10-01

    This study examined the short-term behavior of oil spilled in or near a field of broken ice. The mechanics of oil seeping through the spaces between the ice blocks were examined, both on the level of a single straight gap and on the level of a random broken ice field, through experiments performed in ARCTEC, Incorporated's Ice Flume. The spreading of oil due to movement of the ice pack is discussed. The effects of the environment in the spill area, especially currents and winds, are taken into account throughout the study. The report gives information which permits the determination of the one-dimensional spread rate of oil spilled in a broken ice field, such as might be encountered in a natural lead or in a ship channel. The results are presented as a set of recommendations for use in oil spill response planning or for use by on-site response personnel in predicting the behavior of oil spilled in broken ice fields.

  8. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greene, S.; Walter Anthony, K. M.; Archer, D.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2014-12-08

    Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominatesmore » annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.« less

  9. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greene, S.; Walter Anthony, K. M.; Archer, D.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2014-07-15

    Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominatesmore » annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.« less

  10. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    SciTech Connect (OSTI)

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; Das, Sarah; King, Matt A.; Stevens, Laura; Lizarralde, Dan

    2015-06-25

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicity in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.

  11. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus

    SciTech Connect (OSTI)

    Cohen, Samuel M.; Li, Boxing; Tsien, Richard W. Ma, Huan

    2015-04-24

    Reliance on Ca{sup 2+} signaling has been well-preserved through the course of evolution. While the complexity of Ca{sup 2+} signaling pathways has increased, activation of transcription factors including CREB by Ca{sup 2+}/CaM-dependent kinases (CaMKs) has remained critical for long-term plasticity. In C. elegans, the CaMK family is made up of only three members, and CREB phosphorylation is mediated by CMK-1, the homologue of CaMKI. CMK-1 nuclear translocation directly regulates adaptation of thermotaxis behavior in response to changes in the environment. In mammals, the CaMK family has been expanded from three to ten members, enabling specialization of individual elements of a signal transduction pathway and increased reliance on the CaMKII subfamily. This increased complexity enables private line communication between Ca{sup 2+} sources at the cell surface and specific cellular targets. Using both new and previously published data, we review the mechanism of a γCaMKII-CaM nuclear translocation. This intricate pathway depends on a specific role for multiple Ca{sup 2+}/CaM-dependent kinases and phosphatases: α/βCaMKII phosphorylates γCaMKII to trap CaM; CaN dephosphorylates γCaMKII to dispatch it to the nucleus; and PP2A induces CaM release from γCaMKII so that CaMKK and CaMKIV can trigger CREB phosphorylation. Thus, while certain basic elements have been conserved from C. elegans, evolutionary modifications offer opportunities for targeted communication, regulation of key nodes and checkpoints, and greater specificity and flexibility in signaling.

  12. AN OUTFLOW PERPENDICULAR TO THE RADIO JET IN THE SEYFERT NUCLEUS OF NGC5929

    SciTech Connect (OSTI)

    Riffel, Rogemar A.; Storchi-Bergmann, Thaisa; Riffel, Rogrio E-mail: thaisa@ufrgs.br

    2014-01-10

    We report the observation of an outflow perpendicular to the radio jet in near-infrared integral field spectra of the inner 250pc of the Seyfert2 galaxy NGC5929. The observations were obtained with the Gemini Near-infrared Integral Field Spectrograph at a spatial resolution of ?20pc and spectral resolution of R ? 5300 and reveal a region ?50pc wide crossing the nucleus and extending by ?300pc perpendicularly to the known radio jet in this galaxy. Along this structurewhich we call the south-east-north-west (SE-NW) stripthe emission line profiles show two velocity components, one blueshifted and the other redshifted by 150km s{sup 1} and 150km s{sup 1}, respectively, relative to the systemic velocity. We interpret these two components as being due to an outflow perpendicular to the radio jet, which is supported by low-frequency radio emission observed along the same region. We attribute this feature to the interaction of ambient gas with an ''equatorial outflow'' predicted in recent accretion disk and torus wind models. Perpendicularly to the SE-NW strip, thus approximately along the radio jet, single-component profiles show blueshifts of ? 150km s{sup 1} to the north-east and similar redshifts to the south-west, which can be attributed to gas counter-rotating relative to the stellar kinematics. More double-peaked profiles are observed in association with the two radio hot spots, attributed to interaction of the radio jet with the surrounding gas.

  13. HUBBLE SPACE TELESCOPE IMAGING OF THE BINARY NUCLEUS OF THE PLANETARY NEBULA EGB 6

    SciTech Connect (OSTI)

    Liebert, James; Bond, Howard E.; Ciardullo, Robin; Dufour, P.; Meakes, Michael G.; Renzini, Alvio; Gianninas, A. E-mail: bond@stsci.edu E-mail: mgmeakes@gmail.com E-mail: alvio.renzini@oapd.inaf.it

    2013-05-20

    EGB 6 is an ancient, low-surface-brightness planetary nebula. The central star, also cataloged as PG 0950+139, is a very hot DAOZ white dwarf (WD) with an apparent M dwarf companion, unresolved from the ground but detected initially through excesses in the JHK bands. Its kinematics indicates membership in the Galactic disk population. Inside of EGB 6 is an extremely dense emission knot-completely unexpected since significant mass loss from the WD should have ceased {approx}10{sup 5} yr ago. The electron density of the compact nebula is very high (2.2 Multiplication-Sign 10{sup 6} cm{sup -3}), as indicated by collisional de-excitation of forbidden emission lines. Hubble Space Telescope imaging and grism spectroscopy are reported here. These resolve the WD and apparent dM companion-at a separation of 0.''166, or a projected 96{sub -45}{sup +204} AU at the estimated distance of 576{sub -271}{sup +1224} pc (using the V magnitude). Much to our surprise, we found that the compact emission nebula is superposed on the dM companion, far from the photoionizing radiation of the WD. Moreover, a striking mid-infrared excess has recently been reported in the Spitzer/IRAC and MIPS bands, best fit with two dust shells. The derived ratio L{sub IR}/L{sub WD} = 2.7 Multiplication-Sign 10{sup -4} is the largest yet found for any WD or planetary nucleus. The compact nebula has maintained its high density for over three decades. We discuss two possible explanations for the origin and confinement of the compact nebula, neither of which is completely satisfactory. This leaves the genesis and confinement of the compact nebula an astrophysical puzzle, yet similar examples appear in the literature.

  14. ISOTROPIC HEATING OF GALAXY CLUSTER CORES VIA RAPIDLY REORIENTING ACTIVE GALACTIC NUCLEUS JETS

    SciTech Connect (OSTI)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-05-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P{sub jet} = 10{sup 44-45} erg s{sup -1}, typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  15. Q2122-444: A NAKED ACTIVE GALACTIC NUCLEUS FULLY DRESSED

    SciTech Connect (OSTI)

    Gliozzi, M.; Satyapal, S.; Panessa, F.; Franca, F. La; Saviane, I.; Monaco, L.; Foschini, L.; Kedziora-Chudczer, L.; Sambruna, R. M.

    2010-12-20

    Based on previous spectral and temporal optical studies, Q2122-444 has been classified as a naked active galactic nucleus (AGN) or true type 2 AGN, that is, an AGN that genuinely lacks a broad-line region (BLR). Its optical spectrum seemed to possess only narrow forbidden emission lines that are typical of type 2 (obscured) AGNs, but the long-term optical light curve, obtained from a monitoring campaign over more than two decades, showed strong variability, apparently ruling out the presence of heavy obscuration. Here we present the results from a {approx}40 ks XMM-Newton observation of Q2122-444 carried out to shed light on the energetics of this enigmatic AGN. The X-ray analysis was complemented with Australia Telescope Compact Array radio data to assess the possible presence of a jet, and with new NTT/EFOSC2 optical spectroscopic data to verify the actual absence of a BLR. The higher-quality optical data revealed the presence of strong and broad Balmer lines that are at odds with the previous spectral classification of this AGN. The lack of detection of radio emission rules out the presence of a jet. The X-ray data combined with simultaneous UV observations carried out by the Optical Monitor (OM) aboard XMM-Newton confirm that Q2122-444 is a typical type 1 AGN without any significant intrinsic absorption. New estimates of the black hole mass independently obtained from the broad Balmer lines and from a new scaling technique based on X-ray spectral data suggest that Q2122-444 is accreting at a relatively high rate in Eddington units.

  16. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    SciTech Connect (OSTI)

    Salvato, M.; Hasinger, G.; Ilbert, O.; Rau, A.; Brusa, M.; Bongiorno, A.; Civano, F.; Elvis, M.; Zamorani, G.; Vignali, C.; Comastri, A.; Bardelli, S.; Bolzonella, M.; Cappelluti, N.; Aussel, H.; Le Floc'h, E.; Mainieri, V.; Capak, P.; Caputi, K.; and others

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy {sigma}{sub {Delta}z/(1+z{sub s{sub p{sub e{sub c)}}}}}{approx}0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg{sup 2} of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by {Delta}z > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H{sub AB} = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  17. THE COSMOS ACTIVE GALACTIC NUCLEUS SPECTROSCOPIC SURVEY. I. XMM-NEWTON COUNTERPARTS

    SciTech Connect (OSTI)

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Huchra, John P.; Civano, Francesca; Hao, Heng; McCarthy, Patrick J.; Scoville, Nick Z.; Smolcic, Vernesa; Brusa, Marcella; Cappelluti, Nico; Hasinger, Gunther; Salvato, Mara; Capak, Peter; Comastri, Andrea; Jahnke, Knud; Schinnerer, Eva; Lilly, Simon J.

    2009-05-10

    We present optical spectroscopy for an X-ray and optical flux-limited sample of 677 XMM-Newton selected targets covering the 2 deg{sup 2} Cosmic Evolution Survey field, with a yield of 485 high-confidence redshifts. The majority of the spectra were obtained over three seasons (2005-2007) with the Inamori Magellan Areal Camera and Spectrograph instrument on the Magellan (Baade) telescope. We also include in the sample previously published Sloan Digital Sky Survey spectra and supplemental observations with MMT/Hectospec. We detail the observations and classification analyses. The survey is 90% complete to flux limits of f {sub 0.5-10keV} > 8 x 10{sup -16} erg cm{sup -2} s{sup -1} and i {sup +} {sub AB} < 22, where over 90% of targets have high-confidence redshifts. Making simple corrections for incompleteness due to redshift and spectral type allows for a description of the complete population to i {sup +} {sub AB} < 23. The corrected sample includes a 57% broad emission line (Type 1, unobscured) active galactic nucleus (AGN) at 0.13 < z < 4.26, 25% narrow emission line (Type 2, obscured) AGN at 0.07 < z < 1.29, and 18% absorption line (host-dominated, obscured) AGN at 0 < z < 1.22 (excluding the stars that made up 4% of the X-ray targets). We show that the survey's limits in X-ray and optical fluxes include nearly all X-ray AGNs (defined by L {sub 0.5-10keV} > 3 x 10{sup 42} erg s{sup -1}) to z < 1, of both optically obscured and unobscured types. We find statistically significant evidence that the obscured-to-unobscured AGN ratio at z < 1 increases with redshift and decreases with luminosity.

  18. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    de la Peña, S.; Howat, I. M.; Nienow, P. W.; van den Broeke, M. R.; Mosley-Thompson, E.; Price, S. F.; Mair, D.; Noël, B.; Sole, A. J.

    2015-06-11

    Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone,more » which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging –0.80 ± 0.39 m yr⁻¹ between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. If current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.« less

  19. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.; Merrelli, Aronne J.; Shupe, Matthew D.; Turner, David D.

    2016-04-15

    Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. This paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 gm–2 or less, themore » cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225 GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. As a result, this measured ice signature was then compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less

  20. Evaluating and Constraining Ice Cloud Parameterizations in CAM5 using Aircraft Measurements from the SPARTICUS Campaign

    SciTech Connect (OSTI)

    Zhang, Kai; Liu, Xiaohong; Wang, Minghuai; Comstock, Jennifer M.; Mitchell, David; Mishra, Subhashree; Mace, Gerald G.

    2013-01-01

    This study uses aircraft measurements of relative humidity and ice crystal size distribution collected in synoptic cirrus during the SPARTICUS (Small PARTicles In CirrUS) field campaign to evaluate and constrain ice cloud parameterizations in the Community Atmosphere Model version 5. The probability density function (PDF) of ice crystal number concentration (Ni) derived from high frequency (1 Hz) measurements features a strong dependence on ambient temperature. As temperature decreases from -35C to -62C, the peak in the PDF shifts from 10-20 L-1 to 200-1000 L-1, while the ice crystal number concentration shows a factor of 6-7 increase. Model simulations are performed with two different insitu ice nucleation schemes. One of the schemes can reproduce a clear increase of Ni with decreasing temperature, by using either an observation based ice nuclei spectrum or a classical theory based spectrum with a relatively low (5%-10%) maximum freezing ratio for dust aerosols. The simulation with the other scheme, which assumes a high maximum freezing ratio (100%), shows much weaker temperature dependence of Ni. Simulations are also performed to test empirical parameters related to water vapor deposition and the auto-conversion of ice crystals to snow. Results show that a value between 0.05 and 0.1 for the water vapor deposition coefficient and 250 um for the critical ice crystal size can produce good agreements between model simulation and the SPARTICUS measurements in terms of ice crystal number concentration and effective radius. The climate impact of perturbing these parameters is also discussed.

  1. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    SciTech Connect (OSTI)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O.; Yang, P.

    2008-12-10

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in cirrus clouds using a detailed microphysical model and remote sensing measurements obtained at the Department of Energys Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. To help understand dynamic scales important in cirrus formation, we force the model using both large-scale forcing derived using ARM variational analysis, and mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where we have implemented a rigorous classical theory heterogeneous nucleation scheme to compare with empirical representations. We evaluate model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. This approach allows for independent verification of both the large and small particle modes of the particle size distribution. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities, while nucleation mechanism is secondary. Slow ice crystal growth tends to overestimate the number of small ice crystals, but does not seem to influence bulk properties such as ice water path and cloud thickness. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Ice crystal number concentrations on the order of 10-100 L-1 produce results consistent with both lidar and radar observations during a cirrus event observed on 7 December 1999, which has an optical depth range typical of

  2. Closing the window on strongly interacting dark matter with IceCube

    SciTech Connect (OSTI)

    Albuquerque, Ivone F. M.; Perez de los Heros, Carlos

    2010-03-15

    We use the recent results on dark matter searches of the 22-string IceCube detector to probe the remaining allowed window for strongly interacting dark matter in the mass range 10{sup 4}IceCube detector from the annihilation of such particles captured in the Sun and compare it to the detected background. As a result, the remaining allowed region in the mass versus cross section parameter space is ruled out. We also show the expected sensitivity of the complete IceCube detector with 86 strings.

  3. Laboratory Investigation of Contact Freezing and the Aerosol to Ice Crystal Transformation Process

    SciTech Connect (OSTI)

    Shaw, Raymond A.

    2014-10-28

    This project has been focused on the following objectives: 1. Investigations of the physical processes governing immersion versus contact nucleation, specifically surface-induced crystallization; 2. Development of a quadrupole particle trap with full thermodynamic control over the temperature range 0 to –40 °C and precisely controlled water vapor saturation ratios for continuous, single-particle measurement of the aerosol to ice crystal transformation process for realistic ice nuclei; 3. Understanding the role of ice nucleation in determining the microphysical properties of mixed-phase clouds, within a framework that allows bridging between laboratory and field measurements.

  4. On the Equivalence of Trapped Colloids, Pinned Vortices, and Spin Ice

    SciTech Connect (OSTI)

    Nisoli, Cristiano

    2014-04-23

    We investigate the recently reported analogies between pinned vortices in nano-structured superconductors or colloids in optical traps, and spin ice materials. The frustration of the two models, one describing colloids and vortices, the other describing spin ice, differs essentially. However, their effective energetics is made identical by the contribution of an emergent field associated to a topological charge. This equivalence extends to the local low-energy dynamics of the ice manifold, yet breaks down in lattices of mixed coordination, because of topological charge transfer between sub-latices.

  5. Meltwater effects on flow of Greenland's ice sheet less severe for sea

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    level rise than earlier feared, scientists say Side effects of increasing meltwater less severe than feared Meltwater effects on flow of Greenland's ice sheet less severe for sea level rise than earlier feared, scientists say The team found that accelerating ice sheet movement from increasing meltwater lubrication is likely to have only a minor role in future sea-level rise. August 19, 2013 A stream of meltwater on the surface of the Greenland Ice Sheet enters a moulin connecting to the

  6. Meltwater effects on flow of Greenland's ice sheet less severe for sea

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    level rise than earlier feared, scientists say Stories » Side effects of increasing meltwater less severe than feared Meltwater effects on flow of Greenland's ice sheet less severe for sea level rise than earlier feared, scientists say The team found that accelerating ice sheet movement from increasing meltwater lubrication is likely to have only a minor role in future sea-level rise. August 19, 2013 A stream of meltwater on the surface of the Greenland Ice Sheet enters a moulin connecting

  7. A LARGE C+N+O ABUNDANCE SPREAD IN GIANT STARS OF THE GLOBULAR CLUSTER NGC 1851

    SciTech Connect (OSTI)

    Yong, David; Karakas, Amanda I.; Norris, John E.; Grundahl, Frank; D'Antona, Francesca; Lattanzio, John C. E-mail: akarakas@mso.anu.edu.au E-mail: fgj@phys.au.dk E-mail: John.Lattanzio@sci.monash.edu.au

    2009-04-10

    Abundances of C, N, and O are determined in four bright red giants that span the known abundance range for light (Na and Al) and s-process (Zr and La) elements in the globular cluster NGC 1851. The abundance sum C+N+O exhibits a range of 0.6 dex, a factor of 4, in contrast to other clusters in which no significant C+N+O spread is found. Such an abundance range offers support for the Cassisi et al. scenario in which the double subgiant branch populations are coeval but with different mixtures of C+N+O abundances. Further, the Na, Al, Zr, and La abundances are correlated with C+N+O, and therefore NGC 1851 is the first cluster to provide strong support for the scenario in which asymptotic giant branch stars are responsible for the globular cluster light element abundance variations.

  8. Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices

    SciTech Connect (OSTI)

    Hardegree-Ullman, E. E.; Gudipati, M. S.; Werner, M.; Boogert, A. C. A.; Lignell, H.; Allamandola, L. J.; Stapelfeldt, K. R. E-mail: gudipati@jpl.nasa.gov

    2014-04-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 ?m) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 ?m. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ?50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 ?m spectral region, taking into account the strength of the 3.25 ?m CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 ?m region.

  9. Toward construction of the unified lepton-nucleus interaction model from a few hundred MeV to GeV region

    SciTech Connect (OSTI)

    Nakamura, S. X.; Hayato, Y.; Hirai, M.; Saito, K.; Kamano, H.; Kumano, S.; Sakuda, M.; Sato, T.

    2015-05-15

    Next generation neutrino oscillation experiments will need a quantitative understanding of neutrino-nucleus interaction far better than ever. Kinematics covered by the relevant neutrino-nucleus interaction spans wide region, from the quasi-elastic, through the resonance region, to the deeply inelastic scattering region. The neutrino-nucleus interaction in each region has quite different characteristics. Obviously, it is essential to combine different expertise to construct a unified model that covers all the kinematical region of the neutrino-nucleus interaction. Recently, several experimentalists and theorists got together to form a collaboration to tackle this problem. In this contribution, we report the collaborations recent activity and a goal in near future.

  10. CHEMICAL ABUNDANCE ANALYSIS OF A NEUTRON-CAPTURE ENHANCED RED GIANT IN THE BULGE PLAUT FIELD

    SciTech Connect (OSTI)

    Johnson, Christian I.; Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States)] [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); McWilliam, Andrew, E-mail: cijohnson@astro.ucla.edu, E-mail: rmr@astro.ucla.edu, E-mail: cjohnson@cfa.harvard.edu, E-mail: andy@obs.carnegiescience.edu [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)] [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2013-09-20

    We present chemical abundances for 27 elements ranging from oxygen to erbium in the metal-poor ([Fe/H] = 1.67) bulge red giant branch star 2MASS 18174532-3353235. The results are based on equivalent width and spectrum synthesis analyses of a high-resolution (R ? 30, 000) spectrum obtained with the Magellan-MIKE spectrograph. While the light (Z ?< 30) element abundance patterns match those of similar metallicity bulge and halo stars, the strongly enhanced heavy element abundances are more similar to 'r-II' halo stars (e.g., CS 22892-052) typically found at [Fe/H] ?< 2.5. We find that the heaviest elements (Z ? 56) closely follow the scaled-solar r-process abundance pattern. We do not find evidence supporting significant s-process contributions; however, the intermediate mass elements (e.g., Y and Zr) appear to have been produced through a different process than the heaviest elements. The light and heavy element abundance patterns of 2MASS 18174532-3353235 are in good agreement with the more metal-poor r-process enhanced stars CS 22892-052 and BD +17{sup o}3248. 2MASS 18174532-3353235 also shares many chemical characteristics with the similar metallicity but comparatively ?-poor Ursa Minor dwarf galaxy giant COS 82. Interestingly, the Mo and Ru abundances of 2MASS 18174532-3353235 are also strongly enhanced and follow a similar trend recently found to be common in moderately metal-poor main-sequence turn-off halo stars.

  11. VOLATILE TRANSPORT INSIDE SUPER-EARTHS BY ENTRAPMENT IN THE WATER-ICE MATRIX

    SciTech Connect (OSTI)

    Levi, A.; Podolak, M.; Sasselov, D.

    2013-05-20

    Whether volatiles can be entrapped in a background matrix composing planetary envelopes and be dragged via convection to the surface is a key question in understanding atmospheric fluxes, cycles, and composition. In this paper, we consider super-Earths with an extensive water mantle (i.e., water planets), and the possibility of entrapment of methane in their extensive water-ice envelopes. We adopt the theory developed by van der Waals and Platteeuw for modeling solid solutions, often used for modeling clathrate hydrates, and modify it in order to estimate the thermodynamic stability field of a new phase called methane filled ice Ih. We find that in comparison to water ice VII the filled ice Ih structure may be stable not only at the high pressures but also at the high temperatures expected at the core-water mantle transition boundary of water planets.

  12. Webinar: Energy Conservation Standards for Automatic Commercial Ice Makers; Notice of Public Meeting

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar for the notice of public meeting regarding energy conservation standards for automatic commercial ice makers. For more information, please visit the...

  13. Polarimetric Scattering Database for Non-spherical Ice Particles at Microwave Wavelengths

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Aydin, Kultegin; Verlinde, Johannes; Clothiaux, Eugene; Lu, Yinghui; Jiang, Zhiyuan; Botta, Giovanni

    2016-06-21

    A database containing polarimetric single-scattering properties of various types of ice particles at millimeter to centimeter wavelengths is presented. This database is complementary to earlier ones in that it contains complete (polarimetric) scattering property information for each ice particle - 44 plates, 30 columns, 405 branched planar crystals, 660 aggregates, and 640 conical graupel - and direction of incident radiation but is limited to four frequencies (W-, Ka-, Ku- and X-bands), does not include temperature dependencies of the single-scattering properties and does not include scattering properties averaged over randomly oriented ice particles. Rules for constructing the morphologies of ice particles from one database to the next often differ; consequently, analyses that incorporate all of the different databases will contain the most variability, while illuminating important differences between them.

  14. Predicting Land-Ice Retreat and Sea-Level Rise with the Community...

    Office of Scientific and Technical Information (OSTI)

    Title: Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model Coastal stakeholders need defensible predictions of 21st century sea-level rise (SLR). ...

  15. Time-resolved x-ray diffraction across water-ices VI/VII transformatio...

    Office of Scientific and Technical Information (OSTI)

    Conference: Time-resolved x-ray diffraction across water-ices VIVII transformations using dynamic-DAC Citation Details In-Document Search Title: Time-resolved x-ray diffraction ...

  16. Progress on MPAS Land Ice Model Development (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Title: Progress on MPAS Land Ice Model Development You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of ...

  17. Predicting Land-Ice Retreat and Sea-Level Rise with the Community...

    Office of Scientific and Technical Information (OSTI)

    Recent studies suggest a potential large contribution (approx0.5 mcentury) from the marine-based West Antarctic Ice Sheet, linked to changes in Southern Ocean wind stress. To ...

  18. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss

    SciTech Connect (OSTI)

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

  19. Predicting Land-Ice Retreat and Sea-Level Rise with the Community...

    Office of Scientific and Technical Information (OSTI)

    with the Community Earth System Model Citation Details In-Document Search Title: Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model You are ...

  20. Progress on an ARM/GCSS/SPARC TWP-ICE Monsoon Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress on an ARMGCSSSPARC TWP-ICE Monsoon Case Study Ann Fridlind and Andrew Ackerman ann.fridlind@nasa.gov * www.giss.nasa.govfridlind Introduction Source: Lori Chappel, ...

  1. Development of a land ice core for the Model for Prediction Across...

    Office of Scientific and Technical Information (OSTI)

    for the Model for Prediction Across Scales (MPAS) Citation Details In-Document Search Title: Development of a land ice core for the Model for Prediction Across Scales (MPAS) No ...

  2. Impact of heterogeneous ice nuclei on homogeneous freezing events in cirrus clouds

    SciTech Connect (OSTI)

    Spichtinger, Peter; Cziczo, Daniel J.

    2010-07-29

    The influence of initial heterogeneous nucleation on subsequent homogeneous nucleation events in cirrus clouds is investigated using a box model which includes the explicit impact of aerosols on the nucleation of ice crystals and sedimentation. Different effects are discussed, namely the impact of external mixtures of heterogeneous ice nuclei and the influence of size-dependent freezing thresholds. Several idealized experiments are carried out, which show that the treatment of external mixtures of ice nuclei can strongly change later homogeneous nucleation events (i.e., the ice crystal number densities) in different matters. The use of size-dependent freezing thresholds can also change the cloud prop erties when compared to more simple parameterizations. This size effect is most important for large IN concentrations. Based upon these findings, recommendations for future modeling and measurement efforts are presented.

  3. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    SciTech Connect (OSTI)

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S.; Wild, Vivienne; Hayward, Christopher C.

    2014-09-10

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post

  4. Role of Dipolar Correlations in the Infrared Spectra of Water and Ice |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Role of Dipolar Correlations in the Infrared Spectra of Water and Ice Authors: Chen, W., Sharma, M., Resta, R., Galli, G., Car, R. We report simulated infrared (IR) spectra of deuterated water and ice using Car-Parrinello molecular dynamics with maximally localized Wannier functions. Experimental features are accurately reproduced within the harmonic approximation. By decomposing the line shapes in terms of intramolecular and intermolecular dipole

  5. ARM - PI Product - Polarimetric Scattering Database for Non-spherical Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particles at Microwave Wavelengths ProductsPolarimetric Scattering Database for Non-spherical Ice Particles at Microwave Wavelengths Citation DOI: 10.5439/1258029 [ What is this? ] ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Polarimetric Scattering Database for Non-spherical Ice Particles at Microwave Wavelengths [ research data - External funding ] The atmospheric science community has entered

  6. Moving loads on sea ice: A juxtaposition of theory and experiment

    SciTech Connect (OSTI)

    Rayner, G.D.; Enlow, R.L.; Squire, V.A.; Robinson, W.H.

    1994-12-31

    New in situ experimental data relating to strains induced by the ground effect of overflying aircraft and vehicles operating on an ice sheet are examined alongside the sophisticated theoretical predictions of Strathdee et al. (1991). The dataset is very complete, allowing directional features as well as the magnitude of the induced strain field to be determined and compared with theory. Results have a direct application to safe operating criteria for dynamic loading of ice plates.

  7. Unusual dynamic properties of water near the ice-binding plane of hyperactive antifreeze protein

    SciTech Connect (OSTI)

    Kuffel, Anna; Czapiewski, Dariusz; Zielkiewicz, Jan

    2015-10-07

    The dynamical properties of solvation water of hyperactive antifreeze protein from Choristoneura fumiferana (CfAFP) are analyzed and discussed in context of its antifreeze activity. The protein comprises of three well-defined planes and one of them binds to the surface of ice. The dynamical properties of solvation water around each of these planes were analyzed separately; the results are compared with the dynamical properties of solvation water of ice around its two crystallographic planes: basal and prism. Three main conclusions are inferred from our investigations. The first one is that the solvation shell of CfAFP does not seem to be particularly far-ranged, at least not beyond what is usually observed for proteins that do not interact with ice. Therefore, it does not appear to us that the antifreeze activity is enhanced by a long-ranged retardation of water mobility. Also the correlation between the collective mobility of water and the collective mobility of protein atoms highly resembles the one measured for the protein that does not interact with ice. Our second conclusion is that the dynamical properties of solvation water of CfAFP are non-uniform. The dynamics of solvation water of ice-binding plane is, in some respects, different from the dynamics of solvation water of the two remaining planes. The feature that distinguishes the dynamics of solvation water of the three planes is the activation energy of diffusion process. The third conclusion is that—from the three analyzed solvation shells of CfAFP—the dynamical properties of solvation water of the ice-binding plane resemble the most the properties of solvation water of ice; note, however, that these properties still clearly differ from the dynamic properties of solvation water of ice.

  8. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    SciTech Connect (OSTI)

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modest reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.

  9. Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts | Department of Energy Future ICE and Fuel-Cell Powered Vehicles and Their Potential Impacts Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential Impacts 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Massachusetts Institute of Technology 2004_deer_heywood.pdf (261.78 KB) More Documents & Publications An Energy Evolution:Alternative Fueled Vehicle Comparisons Fuel Cell and Battery Electric Vehicles Compared WORKSHOP REPORT:Light-Duty

  10. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less

  11. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach

    SciTech Connect (OSTI)

    Baustian, Kelly J.; Cziczo, Daniel J.; Wise, M. A.; Pratt, Kerri; Kulkarni, Gourihar R.; Hallar, Anna G.; Tolbert, Margaret A.

    2012-03-30

    In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

  12. NREL Explores Earth-Abundant Materials for Future Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    Researchers at the National Renewable Energy Laboratory (NREL) are using a theory-driven technique - sequential cation mutation - to understand the nature and limitations of promising solar cell materials that can replace today's technologies. Finding new materials that use Earth-abundant elements and are easily manufactured is important for large-scale solar electricity deployment.

  13. Solar Cells from Earth-Abundant Semiconductors with Plasmon-Enhanced Light Absorption

    SciTech Connect (OSTI)

    Atwater, Harry

    2012-04-30

    Progress is reported in these areas: Plasmonic Light Trapping in Thin Film a-Si Solar Cells; Plasmonic Light Trapping in Thin InGaN Quantum Well Solar Cells; and Earth Abundant Cu{sub 2}O and Zn{sub 3}P{sub 2} Solar Cells.

  14. SODIUM AND OXYGEN ABUNDANCES IN THE OPEN CLUSTER NGC 6791 FROM APOGEE H-BAND SPECTROSCOPY

    SciTech Connect (OSTI)

    Cunha, Katia; Souto, Diogo; Smith, Verne V.; Johnson, Jennifer A.; Bergemann, Maria; Mészáros, Szabolcs; Shetrone, Matthew D.; Prieto, Carlos Allende; Schiavon, Ricardo P.; Frinchaboy, Peter; Zasowski, Gail; Bizyaev, Dmitry; Holtzman, Jon; García Pérez, Ana E.; Majewski, Steven R.; Nidever, David; Beers, Timothy; Carrera, Ricardo; Geisler, Doug; Gunn, James; and others

    2015-01-10

    The open cluster NGC 6791 is among the oldest, most massive, and metal-rich open clusters in the Galaxy. High-resolution H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) of 11 red giants in NGC 6791 are analyzed for their chemical abundances of iron, oxygen, and sodium. The abundances of these three elements are found to be homogeneous (with abundance dispersions at the level of ∼0.05-0.07 dex) in these cluster red giants, which span much of the red-giant branch (T {sub eff} ∼ 3500-4600 K), and include two red clump giants. From the infrared spectra, this cluster is confirmed to be among the most metal-rich clusters in the Galaxy (([Fe/H]) = 0.34 ± 0.06) and is found to have a roughly solar value of [O/Fe] and slightly enhanced [Na/Fe]. Our non-LTE calculations for the studied Na I lines in the APOGEE spectral region (16373.86 Å and 16388.85 Å) indicate only small departures from LTE (≤0.04 dex) for the parameter range and metallicity of the studied stars. The previously reported double population of cluster members with different Na abundances is not found among the studied sample.

  15. Fingerprints of anomalous primordial Universe on the abundance of large scale structures

    SciTech Connect (OSTI)

    Baghram, Shant; Abolhasani, Ali Akbar; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: abolhasani@ipm.ir E-mail: MohammadHossein.Namjoo@utdallas.edu

    2014-12-01

    We study the predictions of anomalous inflationary models on the abundance of structures in large scale structure observations. The anomalous features encoded in primordial curvature perturbation power spectrum are (a): localized feature in momentum space, (b): hemispherical asymmetry and (c): statistical anisotropies. We present a model-independent expression relating the number density of structures to the changes in the matter density variance. Models with localized feature can alleviate the tension between observations and numerical simulations of cold dark matter structures on galactic scales as a possible solution to the missing satellite problem. In models with hemispherical asymmetry we show that the abundance of structures becomes asymmetric depending on the direction of observation to sky. In addition, we study the effects of scale-dependent dipole amplitude on the abundance of structures. Using the quasars data and adopting the power-law scaling k{sup n{sub A}-1} for the amplitude of dipole we find the upper bound n{sub A}<0.6 for the spectral index of the dipole asymmetry. In all cases there is a critical mass scale M{sub c} in which for MM{sub c}) the enhancement in variance induced from anomalous feature decreases (increases) the abundance of dark matter structures in Universe.

  16. A data-driven approach for retrieving temperatures and abundances in brown dwarf atmospheres

    SciTech Connect (OSTI)

    Line, Michael R.; Fortney, Jonathan J.; Marley, Mark S.; Sorahana, Satoko

    2014-09-20

    Brown dwarf spectra contain a wealth of information about their molecular abundances, temperature structure, and gravity. We present a new data driven retrieval approach, previously used in planetary atmosphere studies, to extract the molecular abundances and temperature structure from brown dwarf spectra. The approach makes few a priori physical assumptions about the state of the atmosphere. The feasibility of the approach is first demonstrated on a synthetic brown dwarf spectrum. Given typical spectral resolutions, wavelength coverage, and noise, property precisions of tens of percent can be obtained for the molecular abundances and tens to hundreds of K on the temperature profile. The technique is then applied to the well-studied brown dwarf, Gl 570D. From this spectral retrieval, the spectroscopic radius is constrained to be 0.75-0.83 R {sub J}, log (g) to be 5.13-5.46, and T {sub eff} to be between 804 and 849 K. Estimates for the range of abundances and allowed temperature profiles are also derived. The results from our retrieval approach are in agreement with the self-consistent grid modeling results of Saumon et al. This new approach will allow us to address issues of compositional differences between brown dwarfs and possibly their formation environments, disequilibrium chemistry, and missing physics in current grid modeling approaches as well as a many other issues.

  17. ABUNDANCES OF C, N, Sr, AND Ba ON THE RED GIANT BRANCH OF {omega} CENTAURI

    SciTech Connect (OSTI)

    Stanford, Laura M.; Da Costa, G. S.; Norris, John E. E-mail: gdc@mso.anu.edu.a

    2010-05-10

    Abundances relative to iron for carbon, nitrogen, strontium, and barium are presented for 33 stars on the red giant branch (RGB) of the globular cluster {omega} Centauri. They are based on intermediate-resolution spectroscopic data covering the blue spectral region analyzed using spectrum synthesis techniques. The data reveal the existence of a broad range in the abundances of these elements, and a comparison with similar data for main-sequence stars enables insight into the evolutionary history of the cluster. The majority of the RGB stars were found to be depleted in carbon, i.e., [C/Fe] < 0, while [N/Fe] for the same stars shows a range of {approx}1 dex, from [N/Fe] {approx} 0.7 to 1.7 dex. The strontium-to-iron abundance ratios varied from solar to mildly enhanced (0.0 {<=} [Sr/Fe] {<=} 0.8), with [Ba/Fe] generally equal to or greater than [Sr/Fe]. The carbon and nitrogen abundance ratios for the one known CH star in the sample, ROA 279, are [C/Fe] = 0.6 and [N/Fe] = 0.5 dex. Evidence for evolutionary mixing on the RGB is found from the fact that the relative carbon abundances on the main sequence are generally higher than those on the RGB. However, comparison of the RGB and main-sequence samples shows that the upper level of nitrogen enhancement is similar in both sets at [N/Fe] {approx} 2.0 dex. This is most likely the result of primordial rather than evolutionary mixing processes. One RGB star, ROA 276, was found to have Sr and Ba abundance ratios similar to the anomalous Sr-rich main-sequence star S2015448. High-resolution spectra of ROA 276 were obtained with the Magellan Telescope/MIKE spectrograph combination to confirm this result, revealing that ROA 276 is indeed an unusual star. For this star, calculations of the depletion effect, the potential change in surface abundance that results from the increased depth of the convective envelope as a star moves from the main sequence to the RGB, strongly suggest that the observed Sr enhancement in ROA 276 is of

  18. Black carbon aerosols and the third polar ice cap

    SciTech Connect (OSTI)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  19. Comprehensive {gamma}-ray spectroscopy of rotational bands in the N=Z+1 nucleus {sup 61}Zn

    SciTech Connect (OSTI)

    Andersson, L.-L.; Rudolph, D.; Johansson, E. K.; Andreoiu, C.; Ekman, J.; Fahlander, C.; Rietz, R. du; Ragnarsson, I.; Torres, D. A.; Carpenter, M. P.; Seweryniak, D.; Zhu, S.; Charity, R. J.; Chiara, C. J.; Hoel, C.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.; Pechenaya, O. L.

    2009-02-15

    The {sub 30}{sup 61}Zn{sub 31} nucleus has been studied via the combined data of two fusion-evaporation reaction experiments using a {sup 36}Ar beam and a {sup 28}Si target foil. The experimental setups involved the Ge array GAMMASPHERE and neutron and charged particle detectors placed around the target position. The resulting level scheme comprises about 120 excited states connected via some 180 {gamma}-ray transitions. In total, seven rotational structures were identified up to I{approx}25 or higher and compared with predictions from cranked Nilsson-Strutinsky calculations.

  20. Anaerobic treatment of aircraft de-icing agent using the SNC-LAVALIN Multiplate Reactor

    SciTech Connect (OSTI)

    Mulligan, C.; Chebib, J.; Safi, B.

    1997-12-31

    A system for the anaerobic treatment of aircraft de-icing agent has been developed by SNC Research Corp., a subsidiary of the SNC-LAVALIN Group (Montreal, Canada). The de-icing agent used in the evaluation contains 54% ethylene glycol, 46% water and trace additives such as surfactants and colorants. The process is comprised of a buffer tank and the SNC-LAVALIN Multiplate Reactor and is as follows. The effluent containing the aircraft de-icing agent with ethylene glycol as the major component enters the buffer tank where the temperature and pH adjustment and the addition of nutrients takes place. The water is then sent to the SNC-LAVALIN Multiplate Reactor. Here, the de-icing agent is converted to biogas which contains 80% methane and the liquid effluent which is essentially ethylene glycol free is discharged. The biogas can be either burned in a flare or used for heating purposes. The following results are typical for the aircraft de-icing agent: Greater than 90% total COD and 99% ethylene glycol removal at an organic load of 15 kg COD/m{sup 3}-day. The de-icing agent can be collected and subsequently treated on-site using the SNC-LAVALIN system. The advantages of the SNC-LAVALIN system are low capital and operating costs, possibility of treating a wide range of de-icing agent concentrations and other liquid effluents unlike evaporation processes, potential recuperation of the biogas and a gentle technology for the environment without generation of VOCs.

  1. Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles

    SciTech Connect (OSTI)

    Hiranuma, Naruki; Hoffmann, Nadine; Kiselev, Alexei; Dreyer, Axel; Zhang, Kai; Kulkarni, Gourihar R.; Koop, Thomas; Mohler, Ottmar

    2014-03-05

    In this paper, the effect of the morphological modification of aerosol particles with respect to heterogeneous ice nucleation is comprehensively investigated for laboratory-generated hematite particles as a model substrate for atmospheric dust particles. The surface area-scaled ice nucleation efficiencies of monodisperse cubic hematite particles and milled hematite particles were measured with a series of expansion cooling experiments using the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber. Complementary off-line characterization of physico-chemical properties of both hematite subsets were also carried out with scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, dynamic light scattering (DLS), and an electro-kinetical particle charge detector to further constrain droplet-freezing measurements of hematite particles. Additionally, an empirical parameterization derived from our laboratory measurements was implemented in the single-column version of the Community Atmospheric Model version 5 (CAM5) to investigate the model sensitivity in simulated ice crystal number concentration on different ice nucleation efficiencies. From an experimental perspective, our results show that the immersion mode ice nucleation efficiency of milled hematite particles is almost an order of magnitude higher at -35.2 ?C < T < -33.5 ?C than that of the cubic hematite particles, indicating a substantial effect of morphological irregularities on immersion mode freezing. Our modeling results similarly show that the increased droplet-freezing rates of milled hematite particles lead to about one order magnitude higher ice crystal number in the upper troposphere than cubic hematite particles. Overall, our results suggest that the surface irregularities and associated active sites lead to greater ice activation through droplet-freezing.

  2. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; Das, Sarah; King, Matt A.; Stevens, Laura; Lizarralde, Dan

    2015-06-25

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicitymore » in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.« less

  3. Neutron-halo nuclei in cold synthesis and cluster decay of heavy nuclei: {ital Z}=104 nucleus as an example

    SciTech Connect (OSTI)

    Gupta, R.K.; Singh, S.; Muenzenberg, G.; Scheid, W.

    1995-05-01

    Nuclei at the neutron-drip line are studied. The light neutron-halo nuclei are found to play an important role for both cold fusion reactions and exotic cluster decay studies of heavy nuclei at the neutron-drip line. For cold fusion reactions, beams of neutron-halo nuclei are shown to occur as natural extensions of the conventional lighter beams but with the corresponding target nuclei as the heavy neutron-rich radioactive nuclei. Thus, in synthesizing the various isotopes of a neutron-rich cool compound nucleus, both the target and projectile nuclei have to be richer in neutrons, with their proton numbers remaining the same. On the other hand, neutron-halo (cluster) decays are favored for a relatively less neutron-rich parent nucleus. Possible consequences of this work for the shell structure effects in neutron-rich heavy nuclei are also pointed out. This follows from the fact that the so far observed phenomena of both cold fusion and cluster radioactivity are associated with closed or nearly closed shell nuclei. Calculations are made for {sup 274,288}104, using the quantum mechanical fragmentation theory for cold fusion reaction studies and a performed cluster model for cluster decay studies.

  4. The IceCube Collaboration:contributions to the 30 th International Cosmic Ray Conference (ICRC 2007),

    SciTech Connect (OSTI)

    IceCube Collaboration; Ackermann, M.

    2007-11-02

    This paper bundles 40 contributions by the IceCube collaboration that were submitted to the 30th International Cosmic Ray Conference ICRC 2007. The articles cover studies on cosmic rays and atmospheric neutrinos, searches for non-localized, extraterrestrial {nu}{sub e}, {nu}{sub {mu}} and {nu}{sub {tau}} signals, scans for steady and intermittent neutrino point sources, searches for dark matter candidates, magnetic monopoles and other exotic particles, improvements in analysis techniques, as well as future detector extensions. The IceCube observatory will be finalized in 2011 to form a cubic-kilometer ice-Cherenkov detector at the location of the geographic South Pole. At the present state of construction, IceCube consists of 52 paired IceTop surface tanks and 22 IceCube strings with a total of 1426 Digital Optical Modules deployed at depths up to 2350 m. The observatory also integrates the 19 string AMANDA subdetector, that was completed in 2000 and extends IceCube's reach to lower energies. Before the deployment of IceTop, cosmic air showers were registered with the 30 station SPASE-2 surface array. IceCube's low noise Digital Optical Modules are very reliable, show a uniform response and record waveforms of arriving photons that are resolvable with nanosecond precision over a large dynamic range. Data acquisition, reconstruction and simulation software are running in production mode and the analyses, profiting from the improved data quality and increased overall sensitivity, are well under way.

  5. Impact of individual nuclear masses on r-process abundances

    SciTech Connect (OSTI)

    Mumpower, M. R.; Surman, R.; Fang, D. -L.; Beard, M.; Möller, P.; Kawano, T.; Aprahamian, A.

    2015-09-15

    We have performed for the first time a comprehensive study of the sensitivity of r-process nucleosynthesis to individual nuclear masses across the chart of nuclides. Using the latest version (2012) of the Finite-Range Droplet Model, we consider mass variations of ±0.5 MeV and propagate each mass change to all affected quantities, including Q values, reaction rates, and branching ratios. We find such mass variations can result in up to an order of magnitude local change in the final abundance pattern produced in an r-process simulation. As a result, we identify key nuclei whose masses have a substantial impact on abundance predictions for hot, cold, and neutron star merger r-process scenarios and could be measured at future radioactive beam facilities.

  6. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    SciTech Connect (OSTI)

    Helton, L. Andrew; Vacca, William D.; Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P.; Wagner, R. Mark; Evans, Aneurin; Krautter, Joachim; Schwarz, Greg J.; Starrfield, Sumner

    2012-08-10

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  7. Much Cheaper, More Abundant Catalyst May Lower Hydrogen-Powered Car Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Much Cheaper, More Abundant Catalyst May Lower Hydrogen-Powered Car Costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear

  8. Multidimensional metrics for estimating phage abundance, distribution, gene density, and sequence coverage in metagenomes

    SciTech Connect (OSTI)

    Aziz, Ramy K.; Dwivedi, Bhakti; Akhter, Sajia; Breitbart, Mya; Edwards, Robert A.

    2015-05-08

    Phages are the most abundant biological entities on Earth and play major ecological roles, yet the current sequenced phage genomes do not adequately represent their diversity, and little is known about the abundance and distribution of these sequenced genomes in nature. Although the study of phage ecology has benefited tremendously from the emergence of metagenomic sequencing, a systematic survey of phage genes and genomes in various ecosystems is still lacking, and fundamental questions about phage biology, lifestyle, and ecology remain unanswered. To address these questions and improve comparative analysis of phages in different metagenomes, we screened a core set of publicly available metagenomic samples for sequences related to completely sequenced phages using the web tool, Phage Eco-Locator. We then adopted and deployed an array of mathematical and statistical metrics for a multidimensional estimation of the abundance and distribution of phage genes and genomes in various ecosystems. Experiments using those metrics individually showed their usefulness in emphasizing the pervasive, yet uneven, distribution of known phage sequences in environmental metagenomes. Using these metrics in combination allowed us to resolve phage genomes into clusters that correlated with their genotypes and taxonomic classes as well as their ecological properties. By adding this set of metrics to current metaviromic analysis pipelines, where they can provide insight regarding phage mosaicism, habitat specificity, and evolution.

  9. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    SciTech Connect (OSTI)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F.; Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K.; and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  10. Multidimensional metrics for estimating phage abundance, distribution, gene density, and sequence coverage in metagenomes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aziz, Ramy K.; Dwivedi, Bhakti; Akhter, Sajia; Breitbart, Mya; Edwards, Robert A.

    2015-05-08

    Phages are the most abundant biological entities on Earth and play major ecological roles, yet the current sequenced phage genomes do not adequately represent their diversity, and little is known about the abundance and distribution of these sequenced genomes in nature. Although the study of phage ecology has benefited tremendously from the emergence of metagenomic sequencing, a systematic survey of phage genes and genomes in various ecosystems is still lacking, and fundamental questions about phage biology, lifestyle, and ecology remain unanswered. To address these questions and improve comparative analysis of phages in different metagenomes, we screened a core set ofmore » publicly available metagenomic samples for sequences related to completely sequenced phages using the web tool, Phage Eco-Locator. We then adopted and deployed an array of mathematical and statistical metrics for a multidimensional estimation of the abundance and distribution of phage genes and genomes in various ecosystems. Experiments using those metrics individually showed their usefulness in emphasizing the pervasive, yet uneven, distribution of known phage sequences in environmental metagenomes. Using these metrics in combination allowed us to resolve phage genomes into clusters that correlated with their genotypes and taxonomic classes as well as their ecological properties. By adding this set of metrics to current metaviromic analysis pipelines, where they can provide insight regarding phage mosaicism, habitat specificity, and evolution.« less

  11. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  12. An update on modeling land-ice/ocean interactions in CESM

    SciTech Connect (OSTI)

    Asay-davis, Xylar

    2011-01-24

    This talk is an update on ongoing land-ice/ocean coupling work within the Community Earth System Model (CESM). The coupling method is designed to allow simulation of a fully dynamic ice/ocean interface, while requiring minimal modification to the existing ocean model (the Parallel Ocean Program, POP). The method makes use of an immersed boundary method (IBM) to represent the geometry of the ice-ocean interface without requiring that the computational grid be modified in time. We show many of the remaining development challenges that need to be addressed in order to perform global, century long climate runs with fully coupled ocean and ice sheet models. These challenges include moving to a new grid where the computational pole is no longer at the true south pole and several changes to the coupler (the software tool used to communicate between model components) to allow the boundary between land and ocean to vary in time. We discuss benefits for ice/ocean coupling that would be gained from longer-term ocean model development to allow for natural salt fluxes (which conserve both water and salt mass, rather than water volume).

  13. Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates

    SciTech Connect (OSTI)

    Dewald, E; Kozioziemski, B; Moody, J; Koch, J; Mapoles, E; Montesanti, R; Youngblood, K; Letts, S; Nikroo, A; Sater, J; Atherton, J

    2008-06-26

    We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close to that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.

  14. Sensitivity of CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation Parameterization

    SciTech Connect (OSTI)

    Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; Zhang, Yuying

    2013-08-01

    Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model version 5 to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN number concentrations at all latitudes while changes in cloud amount and cloud properties are mainly seen in high latitudes and middle latitude storm tracks. In the Arctic, there is a considerable increase in mid-level clouds and a decrease in low clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and the large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path due to the slow-down of the Bergeron-Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low cloud simulations over most of the Arctic, but produces too many mid-level clouds. Considerable improvements are seen in the simulated low clouds and their properties when compared to Arctic ground-based measurements. Issues with the observations and the model-observation comparison in the Arctic region are discussed.

  15. Laser desorption time-of-flight mass spectrometry of ultraviolet photo-processed ices

    SciTech Connect (OSTI)

    Paardekooper, D. M. Bossa, J.-B.; Isokoski, K.; Linnartz, H.

    2014-10-01

    A new ultra-high vacuum experiment is described that allows studying photo-induced chemical processes in interstellar ice analogues. MATRICES - a Mass Analytical Tool to study Reactions in Interstellar ICES applies a new concept by combining laser desorption and time-of-flight mass spectrometry with the ultimate goal to characterize in situ and in real time the solid state evolution of organic compounds upon UV photolysis for astronomically relevant ice mixtures and temperatures. The performance of the experimental setup is demonstrated by the kinetic analysis of the different photoproducts of pure methane (CH?) ice at 20 K. A quantitative approach provides formation yields of several new species with up to four carbon atoms. Convincing evidence is found for the formation of even larger species. Typical mass resolutions obtained range from M/?M ~320 to ~400 for CH? and argon, respectively. Additional tests show that the typical detection limit (in monolayers) is ?0.02 ML, substantially more sensitive than the regular techniques used to investigate chemical processes in interstellar ices.

  16. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    SciTech Connect (OSTI)

    Mukundan, Rangachary; Luhan, Roger W; Davey, John R; Spendelow, Jacob S; Borup, Rodney L; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  17. AGB sodium abundances in the globular cluster 47 Tucanae (NGC 104)

    SciTech Connect (OSTI)

    Johnson, Christian I.; McDonald, Iain; Zijlstra, Albert A. E-mail: iain.mcdonald-2@manchester.ac.uk; and others

    2015-02-01

    A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the MagellanClay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be ?RV{sub helio.}? = ?18.56 km s{sup ?1} (? = 10.21 km s{sup ?1}) and ?[Fe/H]? = ?0.68 (? = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (?20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will ascend the AGB.

  18. Impact of Solvent on Photocatalytic Mechanisms: Reactions of Photodesorption Products with Ice Overlayers on the TiO2(110) Surface

    SciTech Connect (OSTI)

    Shen, Mingmin; Henderson, Michael A.

    2011-04-07

    The effects of water and methanol ice overlayers on the photodecomposition of acetone on rutile TiO2(110) were evaluated in ultrahigh vacuum (UHV) using photon stimulated desorption (PSD) and temperature programmed desorption (TPD). In the absence of ice overlayers, acetone photodecomposed on TiO2(110) at 95 K by ejection of a methyl radical into the gas phase and formation of acetate on the surface. With ice overlayers, the methyl radicals are trapped at the interface between TiO2(110) and the ice. When water ice was present, these trapped methyl radicals reacted either with each other to form ethane or with other molecules in the ice (e.g., water or displaced acetone) to form methane (CH4), ethane (CH3CH3) and other products (e.g., methanol), with all of these products trapped in the ice. The new products were free to revisit the surface or depart during desorption of the ice. When methanol ice was present, methane formation came about only from reaction of trapped methyl radicals with the methanol ice. Methane and ethane slowly leaked through methanol ice overlayers into vacuum at 95 K, but not through water ice overlayers. Different degrees of site competition between water and acetone, and between methanol and acetone led to different hydrogen abstraction pathways in the two ices. These results provide new insights into product formation routes and solution-phase radical formation mechanisms that are important in heterogeneous photocatalysis.

  19. Influence of the surface liquid film on cylinder icing under marine conditions

    SciTech Connect (OSTI)

    Lozowski, E.P.; Kobos, A.M.; Kachurin, L.G.

    1996-05-01

    A new steady-state icing model is presented which explicitly takes into account the dynamics and thermodynamics of a liquid film on the ice accretion surface under high liquid fluxes. The film is generated by excess unfrozen impinging liquid, is set in motion by the aerodynamic shear stress, and is eventually shed. In order to keep the model simple, it is formulated for a rotating cylinder subjected to a continuous supercooled freshwater spray. The model is used to explore the physics of the liquid film, and confirms that the film is thin and laminar except possibly under extreme liquid fluxes. It predicts supercooling of several degrees at the film surface, in agreement with recent observations. Further, the model is used to investigate the dependence of the icing rate on the following parameters: liquid water content, air temperature, wind speed, spray temperature, cylinder diameter, and heat transfer coefficient.

  20. Ab initio investigation of electronic and vibrational contributions to linear and nonlinear dielectric properties of ice

    SciTech Connect (OSTI)

    Casassa, S.; Baima, J.; Mahmoud, A.; Kirtman, B.

    2014-06-14

    Electronic and vibrational contributions to the static and dynamic (hyper)polarizability tensors of ice XI and model structures of ordinary hexagonal ice have been theoretically investigated. Calculations were carried out by the finite field nuclear relaxation method for periodic systems (FF-NR) recently implemented in the CRYSTAL code, using the coupled-perturbed Kohn-Sham approach (CPKS) for evaluating the required electronic properties. The effect of structure on the static electronic polarizabilities (dielectric constants) and second-hyperpolarizabilities is minimal. On the other hand, the vibrational contributions to the polarizabilities were found to be significant. A reliable evaluation of these (ionic) contributions allows one to discriminate amongst ice phases characterized by different degrees of proton-order, primarily through differences caused by librational motions. Transverse static and dynamic vibrational (hyper)polarizabilities were found by extrapolating calculations for slabs of increasing size, in order to eliminate substantial surface contributions.

  1. Sterile neutrinos and indirect dark matter searches in IceCube

    SciTech Connect (OSTI)

    Argüelles, Carlos A.; Kopp, Joachim E-mail: jkopp@fnal.gov

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  2. Sensitivity of IceCube-DeepCore to neutralino dark matter in the MSSM-25

    SciTech Connect (OSTI)

    Silverwood, Hamish; Adams, Jenni; Brown, Anthony M; Scott, Pat; Danninger, Matthias; Savage, Christopher; Edsj, Joakim; Hultqvist, Klas E-mail: patscott@physics.mcgill.ca E-mail: savage@physics.utah.edu E-mail: jenni.adams@canterbury.ac.nz E-mail: klas.hultqvist@fysik.su.se

    2013-03-01

    We analyse the sensitivity of IceCube-DeepCore to annihilation of neutralino dark matter in the solar core, generated within a 25 parameter version of the minimally supersymmetric standard model (MSSM-25). We explore the 25-dimensional parameter space using scanning methods based on importance sampling and using DarkSUSY 5.0.6 to calculate observables. Our scans produced a database of 6.02 million parameter space points with neutralino dark matter consistent with the relic density implied by WMAP 7-year data, as well as with accelerator searches. We performed a model exclusion analysis upon these points using the expected capabilities of the IceCube-DeepCore Neutrino Telescope. We show that IceCube-DeepCore will be sensitive to a number of models that are not accessible to direct detection experiments such as SIMPLE, COUPP and XENON100, indirect detection using Fermi-LAT observations of dwarf spheroidal galaxies, nor to current LHC searches.

  3. Final Report. Coupled simulations of Antarctic Ice-sheet/ocean interactions using POP and CISM

    SciTech Connect (OSTI)

    Asay-Davis, Xylar Storm

    2015-12-30

    The project performed under this award, referred to from here on as CLARION (CoupLed simulations of Antarctic Ice-sheet/Ocean iNteractions), included important advances in two models of ice sheet and ocean interactions. Despite its short duration (one year), the project made significant progress on its three major foci. First, together with collaborator Daniel Martin at Lawrence Berkeley National Laboratory (LBNL), I developed the POPSICLES coupled ice sheet-ocean model to the point where it could perform a number of pan-Antarctic simulations under various forcing conditions. The results were presented at a number of major conferences and workshops worldwide, and are currently being incorporated into two manuscripts in preparation.

  4. In Situ Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baumgardner, Darrel; Kok, Greg; Avallone, L.; Bansemer, A.; Borrmann, S.; Brown, P.; Bundke, U.; Chuang, P. Y.; Cziczo, D.; Field, P.; et al

    2012-02-01

    A meeting of 31 international experts on in situ measurements from aircraft was held to identify unresolved questions concerning ice formation and evolution in ice clouds, assess the current state of instrumentation that can address these problems, introduce emerging technology that may overcome current measurement issues and recommend future courses of action that can improve our understanding of ice cloud microphysical processes and their impact on the environment. The meeting proceedings and outcome has been described in detail in a manuscript submitted to the Bulletin of the American Meteorological Society (BAMS) on March 24, 2011. This paper is currently undermore » review. The remainder of this summary, in the following pages, is the text of the BAMS article. A technical note that will be published by the National Center for Atmospheric Research is currently underway and is expected to be published before the end of the year.« less

  5. In Situ Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds

    SciTech Connect (OSTI)

    Baumgardner, Darrel; Kok, Greg; Avallone, L.; Bansemer, A.; Borrmann, S.; Brown, P.; Bundke, U.; Chuang, P. Y.; Cziczo, D.; Field, P.; Gallagher, M.; Gayet, J. -F.; Korolev, A.; Kraemer, M.; McFarquhar, G.; Mertes, S.; Moehler, O.; Lance, S.; Lawson, P.; Petters, M. D.; Pratt, K.; Roberts, G.; Rogers, D.; Stetzer, O.; Stith, J.; Strapp, W.; Twohy, C.; Wendisch, M.

    2012-02-01

    A meeting of 31 international experts on in situ measurements from aircraft was held to identify unresolved questions concerning ice formation and evolution in ice clouds, assess the current state of instrumentation that can address these problems, introduce emerging technology that may overcome current measurement issues and recommend future courses of action that can improve our understanding of ice cloud microphysical processes and their impact on the environment. The meeting proceedings and outcome has been described in detail in a manuscript submitted to the Bulletin of the American Meteorological Society (BAMS) on March 24, 2011. This paper is currently under review. The remainder of this summary, in the following pages, is the text of the BAMS article. A technical note that will be published by the National Center for Atmospheric Research is currently underway and is expected to be published before the end of the year.

  6. Multilayer formation and evaporation of deuterated ices in prestellar and protostellar cores

    SciTech Connect (OSTI)

    Taquet, Vianney; Charnley, Steven B.; Sipil, Olli

    2014-08-10

    Extremely large deuteration of several molecules has been observed toward prestellar cores and low-mass protostars for a decade. New observations performed toward low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimensional model of a collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H{sub 2} and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation toward the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices, while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes, but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics, important for the prebiotic chemistry, shows good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.

  7. Effects of exchange bias on magnetotransport in permalloy kagome artificial spin ice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le, B. L.; Rench, D. W.; Misra, R.; O’Brien, L.; Leighton, C.; Samarth, N.; Schiffer, P.

    2015-02-01

    We investigate the magnetotransport properties of connected kagome artificial spin ice networks composed of permalloy nanowires. Our data show clear evidence of magnetic switching among the wires, both in the longitudinal and transverse magnetoresistance. An unusual asymmetry with field sweep direction appears at temperatures below about 20 K that appears to be associated with exchange bias resulting from surface oxidation of permalloy, and which disappears in alumina-capped samples. These results demonstrate that exchange bias is a phenomenon that must be considered in understanding the physics of such artificial spin ice systems, and that opens up new possibilities for their control.

  8. Entropic description of gas hydrate ice/liquid equilibrium via enhanced sampling of coexisting phases

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malolepsza, Edyta; Kim, Jaegil; Keyes, Tom

    2015-04-28

    Metastable β ice holds small guest molecules in stable gas hydrates, so its solid/liquid equilibrium is of interest. However, aqueous crystal/liquid transitions are very difficult to simulate. A new MD algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting phases with a selectable enthalpy. Furthermore, with replicas spanning the range between β ice and liquid water we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.

  9. Laboratory investigations of irradiated acetonitrile-containing ices on an interstellar dust analog

    SciTech Connect (OSTI)

    Abdulgalil, Ali G. M.; Marchione, Demian; Rosu-Finsen, Alexander; Collings, Mark P.; McCoustra, Martin R. S.

    2012-07-15

    Reflection-absorption infrared spectroscopy is used to study the impact of low-energy electron irradiation of acetonitrile-containing ices, under conditions close to those in the dense star-forming regions in the interstellar medium. Both the incident electron energy and the surface coverage were varied. The experiments reveal that solid acetonitrile is desorbed from its ultrathin solid films with a cross section of the order of 10{sup -17} cm{sup 2}. Evidence is presented for a significantly larger desorption cross section for acetonitrile molecules at the water-ice interface, similar to that previously observed for the benzene-water system.

  10. Development of a land ice core for the Model for Prediction Across Scales

    Office of Scientific and Technical Information (OSTI)

    (MPAS) (Conference) | SciTech Connect Development of a land ice core for the Model for Prediction Across Scales (MPAS) Citation Details In-Document Search Title: Development of a land ice core for the Model for Prediction Across Scales (MPAS) No abstract prepared. Authors: Hoffman, Matthew J [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2012-06-25 OSTI Identifier: 1044843 Report Number(s): LA-UR-12-22469 TRN: US201214%%525 DOE Contract Number: AC52-06NA25396

  11. Neutrino oscillations with IceCube DeepCore and PINGU

    SciTech Connect (OSTI)

    DeYoung, T.; Collaboration: IceCube-PINGU Collaboration

    2014-11-18

    The IceCube neutrino telescope was augmented with the DeepCore infill array, completed in the 2010/11 austral summer, to enhance its response to neutrinos below 100 GeV. At these energies, neutrino oscillation effects are visible in the flux of atmospheric neutrinos traversing path lengths comparable to the Earth's diameter. Initial measurements of muon neutrino disappearance parameters using data from DeepCore are presented, as well as an estimate of potential future precision. In addition, plans for a Precision IceCube Next Generation Upgrade (PINGU), which could permit determination of the neutrino mass hierarchy within the coming decade, are discussed.

  12. Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth

    Office of Scientific and Technical Information (OSTI)

    System Model (Conference) | SciTech Connect Conference: Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model Citation Details In-Document Search Title: Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model Coastal stakeholders need defensible predictions of 21st century sea-level rise (SLR). IPCC assessments suggest 21st century SLR of {approx}0.5 m under aggressive emission scenarios. Semi-empirical models project SLR of

  13. Progress in coupling Land Ice and Ocean Models in the MPAS Framework

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Progress in coupling Land Ice and Ocean Models in the MPAS Framework Citation Details In-Document Search Title: Progress in coupling Land Ice and Ocean Models in the MPAS Framework Authors: Hoffman, Matthew J. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-02-14 OSTI Identifier: 1063255 Report Number(s): LA-UR-13-20973 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Community

  14. Properties of the 0{sub 2}{sup +} state and isospin excitation in the N=Z nucleus {sup 68}Se

    SciTech Connect (OSTI)

    Al-Khudair, Falih H.; Li, Y. S.; Long, G. L. [Key Laboratory for Quantum Information and Measurements and Department of Physics, Tsinghua University, Beijing 100084 (China); Center of Nuclear Theory, Lanzhou National Laboratory of Accelerators, Lanzhou 730000 (China)

    2007-05-15

    Band structure and electromagnetic transition properties of the low-lying states in the N=Z {sup 68}Se nucleus were studied within the framework of interacting boson model 3. The isospin excitation states with T>T{sub Z} are identified. The M1 and E2 matrix elements for low-lying states have been investigated and were used to identify the low-lying mixed symmetry states. Special attention is given to the occurrence of 0{sub 2}{sup +} state, recently predicted by the projected shell-model (PSM) calculation. The present predicted spectrum for {sup 68}Se is close to the recent PSM results and confirms the results for the 0{sub 2}{sup +} state. The calculated results are compared with available experimental data, and they are in general good agreement.

  15. Competing decay modes of a high-spin isomer in the proton-unbound nucleus ¹⁵⁸Ta*

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carroll, R. J.; Page, R. D.; Joss, D. T.; Uusitalo, J.; Darby, I. G.; Andgren, K.; Cederwall, B.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; et al

    2015-01-01

    An isomeric state at high spin and excitation energy was recently observed in the proton-unbound nucleus 158Ta. This state was observed to decay by both α and γ decay modes. The large spin change required to decay via γ-ray emission incurs a lifetime long enough for α decay to compete. The α decay has an energy of 8644(11) keV, which is among the highest observed in the region, a partial half-life of 440(70) μs and changes the spin by 11ℏ. In this study, additional evidence supporting the assignment of this α decay to the high-spin isomer in 158Ta will bemore » presented.« less

  16. Ultrarelativistic nucleus-nucleus collisions at CERN

    SciTech Connect (OSTI)

    Odyniec, G.

    1989-10-01

    The aim of the NA-35 experiment is to study nuclear matter under extreme conditions. Evidence that conditions reached in 60 GeV/N and 200 GeV/N relativistic heavy ion collisions are adequate for the formation of a quark-gluon plasma where color would no longer be confined to hadronic dimensions is presented. Future plans for experiments in 1990--1991 with {sup 32}S beams and 1993 and up with Pb beams at the SPS are discussed. 26 refs., 23 figs., 3 tabs.

  17. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore » in deep crevasses.« less

  18. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    SciTech Connect (OSTI)

    Lthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  19. DETAILED ABUNDANCES OF TWO VERY METAL-POOR STARS IN DWARF GALAXIES

    SciTech Connect (OSTI)

    Kirby, Evan N.; Cohen, Judith G.

    2012-12-01

    The most metal-poor stars in dwarf spheroidal galaxies (dSphs) can show the nucleosynthetic patterns of one or a few supernovae (SNe). These SNe could have zero metallicity, making metal-poor dSph stars the closest surviving links to Population III stars. Metal-poor dSph stars also help to reveal the formation mechanism of the Milky Way (MW) halo. We present the detailed abundances from Keck/HIRES spectroscopy for two very metal-poor stars in two MW dSphs. One star, in the Sculptor dSph, has [Fe I/H] = -2.40. The other star, in the Ursa Minor dSph, has [Fe I/H] = -3.16. Both stars fall in the previously discovered low-metallicity, high-[{alpha}/Fe] plateau. Most abundance ratios of very metal-poor stars in these two dSphs are largely consistent with very metal-poor halo stars. However, the abundances of Na and some r-process elements lie at the lower end of the envelope defined by inner halo stars of similar metallicity. We propose that the metallicity dependence of SN yields is the cause. The earliest SNe in low-mass dSphs have less gas to pollute than the earliest SNe in massive halo progenitors. As a result, dSph stars at -3 < [Fe/H] < -2 sample SNe with [Fe/H] << -3, whereas halo stars in the same metallicity range sample SNe with [Fe/H] {approx} -3. Consequently, enhancements in [Na/Fe] and [r/Fe] were deferred to higher metallicity in dSphs than in the progenitors of the inner halo.

  20. ORIGIN OF THE UNUSUALLY LOW NITROGEN ABUNDANCES IN YOUNG POPULATIONS OF THE LARGE MAGELLANIC CLOUD

    SciTech Connect (OSTI)

    Bekki, Kenji [ICRAR, M468, University of Western Australia, 35 Stirling Highway, Crawley Western Australia 6009 (Australia); Tsujimoto, Takuji [National Astronomical Observatory, Mitaka-shi, Tokyo 181-8588 (Japan)

    2010-10-01

    It is a longstanding problem that H II regions and very young stellar populations in the Large Magellanic Cloud (LMC) have nitrogen abundances ([N/H]) that are a factor of {approx}7 lower than the solar value. We here discuss a new scenario in which the observed unusually low nitrogen abundances can be closely associated with recent collisions and subsequent accretion of H I high velocity clouds (HVCs) that surround the Galaxy and have low nitrogen abundances. We show that if the observed low [N/H] is limited to very young stars with ages less than {approx}10{sup 7} yr, then the collision/accretion rate of the HVCs onto the LMC needs to be {approx}0.2 M{sub sun} yr{sup -1} (corresponding to the total HVC mass of 10{sup 6}-10{sup 7} M{sub sun}) to dilute the original interstellar medium (ISM) before star formation. The required accretion rate means that even if the typical mass of HVCs accreted onto the LMC is {approx}10{sup 7} M{sub sun}, the Galaxy needs to have {approx}2500 massive HVCs within the LMC's orbital radius with respect to the Galactic center. The rather large number of required massive HVCs drives us to suggest that the HVCs are not likely to efficiently dilute the ISM of the LMC and consequently lower the [N/H]. We thus suggest the transfer of gas with low [N/H] from the Small Magellanic Cloud to the LMC as a promising scenario that can explain the observed low [N/H].