National Library of Energy BETA

Sample records for ice hybrid electric

  1. Electric and Hybrid Electric Vehicle Sales: December 2010 - June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of ...

  2. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles...

    Open Energy Info (EERE)

    Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric...

  3. NREL: Transportation Research - Hybrid Electric Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Test & Evaluation Hybrid Electric Vehicles Electric & Plug-In Hybrid Vehicles Hydraulic Hybrid Vehicles Alternative Fuel Vehicles Vehicle Operating Data Truck...

  4. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  5. Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Honda Accord Hybrid 2013 Chevrolet Malibu Eco 2013 Ford Cmax Hybrid 2013 Honda CIvic Hybrid 2013 Volkswagen Jetta Hybrid 2011 Hyundai Sonata 2010 Ford Fusion Hybrid 2010 Honda CR-Z 2010 Honda Insight 2010 Mercedes S400h BlueHybrid 2010 Toyota Prius Plug-In Hybrid Electric Vehicles Electric Vehicles Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory

  6. Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in Minnesota Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail Share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Facebook Tweet about Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Twitter Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Google Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air

  7. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test Plan PDF ...

  8. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  9. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  10. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Environmental Management (EM)

    Electricity & Fuel Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and...

  11. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  12. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid ...

  13. JV between Hybrid Electric and Mullen Motors | Open Energy Information

    Open Energy Info (EERE)

    Name: JV between Hybrid Electric and Mullen Motors Product: Joint Venture to develop a vehicle fitted with hybrid and lithium technologies References: JV between Hybrid Electric...

  14. Kentucky Hybrid Electric School Bus Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon tiarravt062settle2010p.pdf More Documents & Publications Kentucky Hybrid Electric School Bus Program Kentucky Hybrid Electric School Bus Program Plug IN Hybrid Vehicle Bus...

  15. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  16. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  17. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at...

  18. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  19. NREL: Learning - Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like...

  20. Electric heat tracing designed to prevent icing

    SciTech Connect (OSTI)

    Lonsdale, J.T.; Norrby, T.

    1985-11-01

    Mobile offshore rigs designed for warmer climates are not capable of operating year-round in the arctic or near-arctic regions. Icing is but one major operational problem in these waters. The danger of instability due to ice loading exists on an oil rig as well as on a ship. From a safety standpoint, ice must be prevented from forming on the helideck, escape passages, escape doors and hatches and handrails. Norsk Hydro A/S, as one of the major operators in the harsh environment outside northern Norway, recognized at an early stage the need for special considerations for the drilling rigs intended for year-round drilling in these regions. In 1982 Norsk Hydro awarded a contract for an engineering study leading to the design of a harsh environment semisubmersible drilling rig. The basic requirement was to develop a unit for safe and efficient year-round drilling operation in the waters of northern Norway. The study was completed in 1983 and resulted in a comprehensive report including a building specification. The electric heat tracing system designed to prevent icing on the unit is described.

  1. Power Conversion Apparatus and Method for Hybrid Electric and Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Engines - Energy Innovation Portal Power Conversion Apparatus and Method for Hybrid Electric and Electric Vehicle Engines Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed a solution to power source problems in hybrid electric vehicle (HEV) and electric vehicle (EV) engines. These engines typically use voltage source inverters. The conventional type of converter requires costly capacitors, has trouble with high

  2. Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and ...

  3. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation 2011 DOE Hydrogen and ...

  4. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  5. Knoxville Area Transit: Propane Hybrid Electric Trolleys

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

  6. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  7. Hybrid electric vehicle power management system

    DOE Patents [OSTI]

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  8. Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Rides in Maryland Hybrid Electric Shuttle Buses Offer Free Rides in Maryland to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle

  9. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy ...

  10. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  11. Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... reduces petroleum use. 15. SUBJECT TERMS fuel economy; fuel savings; emissions reduction; hybrid electric diesel trucks; medium duty hybrid vehicles; United Parcel Service ; NREL

  12. Hybrid Electric Systems: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes the work EERE is doing in the areas of hybrid, plug-in hybrid, and all-electric vehicles.

  13. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    DOE Patents [OSTI]

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  14. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect (OSTI)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy costs, (2) lower building peak electric load, (3) increase energy efficiency, and (4) provide standby power. This new hybrid product is designed to allow the engine to generate electricity or drive the chiller's compressor, based on the market price and conditions of the available energy sources. Building owners can minimize cooling costs by operating with natural gas or electricity, depending on time of day energy rates. In the event of a backout, the building owner could either operate the product as a synchronous generator set, thus providing standby power, or continue to operate a chiller to provide air conditioning with support of a small generator set to cover the chiller's electric auxiliary requirements. The ability to utilize the same piece of equipment as a hybrid gas/electric chiller or a standby generator greatly enhances its economic attractiveness and would substantially expand the opportunities for high efficiency cooling products.

  15. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 ...

  16. Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Gonder, J.; Keyser, M.

    2009-04-01

    Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

  17. Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR

    SciTech Connect (OSTI)

    Markel, T.; Wipke, K.

    2001-01-01

    Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

  18. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & ... Plug-in hybrid electric vehicles (PHEVs) use batteries to power an electric motor and use ...

  19. System Simulations of Hybrid Electric Vehicles with Focus on Emissions

    Broader source: Energy.gov [DOE]

    Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control.

  20. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  1. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use advanced power electronics and electric motors that face barriers because their subcomponents have specific material limitations. Novel propulsion materials

  2. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  3. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect (OSTI)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  4. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models ... EV Everywhere is a Clean Energy Grand Challenge to enable plug-in electric vehicles (PEVs) ...

  5. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  6. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  7. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty Vehicle Field Evaluations ...

  8. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... comprises chassis dynamometer testing of two medium-duty FedEx Express delivery vehicles, a gasoline hybrid electric vehicle (GHEV) and a conventional diesel (baseline) vehicle. ...

  9. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... attributes of three vehicle types: PHEVs, hybrid electric vehicles (HEVs), and ... multiple vehicle categories (passenger cars to light trucks) throughout the 48 ...

  10. Case Study: Ebus Hybrid Electric Buses and Trolleys

    SciTech Connect (OSTI)

    Barnitt, R.

    2006-07-01

    Evaluation focuses on the demonstration of hybrid electric buses and trolleys produced by Ebus Inc. at the Indianapolis Transportation Corporation and the Knoxville Area Transit.

  11. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS, and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  12. Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    McKeever, JW

    2005-06-16

    Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

  13. AVTA: Hybrid Electric Vehicle Specifications and Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Procedure PDF icon ETA-HTP03 Implementation of SAE, J1634 May 1993 - Hybrid Electric Vehicle Energy Consumption and Range Test Procedure PDF icon ETA-HTP04 Electric Vehicle ...

  14. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles An Energy Evolution:Alternative Fueled Vehicle Comparisons

  15. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity » Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. According to many renewable energy experts,

  16. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicle Basics Photo of a parked blue compact car with large decals on the doors stating that it is a plug-in hybrid achieving more than 120 miles per gallon. This Toyota Prius hybrid electric car was converted to a plug-in hybrid for research purposes. Credit: Keith Wipke Image of the cutaway top view of a passenger vehicle showing the drive train that contains an electric motor and a small internal combustion engine side by side in front. The motors are connected by

  17. Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014

    Broader source: Energy.gov [DOE]

    Hybrid electric vehicles (HEVs) are conventional hybrid vehicles that use a gasoline engine with a hybrid electric drive for superior efficiency; they do not plug-in. This type of hybrid vehicle...

  18. Hybrid and Electric Traction Motor | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A World-Class Traction Motor for Hybrid and Electric Vehicles Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) A World-Class Traction Motor for Hybrid and Electric Vehicles Engineers at GE Global Research are advancing motor technology that could have a substantial impact on hybrid and electric vehicles (EVs) of the

  19. NREL: Transportation Research - Electric and Plug-In Hybrid Electric Fleet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Testing Electric and Plug-In Hybrid Electric Fleet Vehicle Testing How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that can run on conventional or alternative fuels and an electric motor that uses energy stored in batteries. The vehicle can be plugged into an electric power

  20. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History

    Broader source: Energy.gov [DOE]

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available in the U.S. in limited numbers for many years. The introduction of the Nissan Leaf and Chevrolet Volt at the...

  1. Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors for Hybrid, Plug-In Hybrid, and Electric Vehicles

    Broader source: Energy.gov [DOE]

    This report traces the connections between DOE energy storage research and downstream energy storage systems used in hybrid electric, plug-in hybrid electric, and fully electric vehicles.

  2. Vehicle Technologies Office- AVTA: Hybrid-Electric Tractor Vehicles

    Broader source: Energy.gov [DOE]

    The following set of reports describes performance data collected from hybrid-electric heavy-duty tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

  3. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... GPS global positioning system HEV hybrid electric vehicle HHDDT Heavy Heavy-Duty Diesel Truck KI kinetic intensity lbs pounds mi miles mph miles per hour NO x nitrogen ...

  4. Case Study: Ebus Hybrid Electric Buses and Trolleys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This advanced combustion process results in a low-emission ... 330 Hybrid Electric Vehicle (HEV) MicroTurbine Performance* Fuel CNG (55 psig) LPG (55 psig) Diesel (5 psig) Overhaul ...

  5. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The following set of reports (part of the medium and heavy-duty truck data) describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was ...

  6. AVTA: Hybrid Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Hybrid Electric Vehicle Specifications and Test Procedures PDF icon Fleet Test and Evaluation Procedure PDF icon HEVAmerica Technical Specifications PDF icon HEV Baseline Test Sequence PDF icon HEV End of Life Test Sequence PDF icon ETA-HTP01 Implementation of SAE Standard J1263 February 1996 - Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques PDF icon ETA-HTP02 Implementation of

  7. Flywheel Energy Storage Device for Hybrid and Electric Vehicles - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Energy Storage Energy Storage Find More Like This Return to Search Flywheel Energy Storage Device for Hybrid and Electric Vehicles Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThis cost-effective technology stores and reuses what would otherwise be wasted energy inside a hybrid electric vehicle engine. The invention, a mechanical flywheel coupled to a rotor inside the engine, stores rotational energy during engine performance,

  8. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  9. Analysis of data from electric and hybrid electric vehicle student competitions

    SciTech Connect (OSTI)

    Wipke, K.B.; Hill, N.; Larsen, R.P.

    1994-01-01

    The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

  10. Hybrid opto-electric manipulation in microfluidics - opportunities and challenges

    SciTech Connect (OSTI)

    Kumar, Aloke [ORNL; Williams, Stuart J. [University of Louisville, Louisville; Chuang, Han-sheng [University of Pennsylvania; Green, Nicolas [University of Southampton, England; Wereley, Steven G. [Purdue University

    2011-01-01

    Hybrid opto-electric manipulation in microfluidics/nanofluidics refers to a set of technologies that employ both optical and electrical forces to achieve particle or fluid manipulation at the micro and nano scale. These technologies, which have emerged primarily over the last decade, have provided a revolutionary and fresh perspective at fundamental electrokinetic processes, as well as have engendered a novel applications and devices. Hybrid opto-electric techniques have been utilized to manipulate objects ranging in diversity from millimeter-sized droplets to nano-particles. This review article discusses the underlying principles, applications and future perspectives of various techniques that have emerged over the last decade under a unified umbrella.

  11. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test Plan PDF icon DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) More Documents & Publications AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing

  12. Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Coast Hybrid and Electric Vehicles Boom Coast to Coast to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Google Bookmark Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Delicious Rank Alternative

  13. Study Released on the Potential of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy ...

  14. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & ... internal combustion engine and an electric motor, which uses energy stored in batteries. ...

  15. Electric machine for hybrid motor vehicle

    DOE Patents [OSTI]

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  16. Hybrid and Plug-In Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Hybrid and Plug-In Electric Vehicle Basics Hybrid and Plug-In Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Text Version Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs)-also called electric drive vehicles collectively-use electricity either as their primary fuel or to improve the efficiency of

  17. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Digg Find

  18. Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Google

  19. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  20. United Parcel Service Evaluates Hybrid Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This fact sheet describes how the National Renewable Energy Laboratory's Fleet Test and Evaluation team evaluated the 12-month, in-service performance of six Class 4 hybrid electric delivery vans - fueled by regular diesel - and six comparable conventional diesel vans operated by the United Parcel Service.

  1. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect (OSTI)

    Simpson, A.

    2006-11-01

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  2. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

  3. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  4. Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Simpson, A.

    2006-10-01

    Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

  5. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  6. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Data Sources and Assumptions Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and

  7. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrid and Plug-In ...

  8. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect (OSTI)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  9. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  10. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  11. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    SciTech Connect (OSTI)

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  12. Adaptive powertrain control for plugin hybrid electric vehicles

    DOE Patents [OSTI]

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  13. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  14. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  15. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-08-27

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  16. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-01-01

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  17. Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank

  18. Hybrid opto-electric techniques for molecular diagnostics

    SciTech Connect (OSTI)

    Haque, Aeraj Ul [Argonne National Laboratory (ANL)

    2012-01-01

    Hybrid optoelectric techniques reflect a new paradigm in microfluidics. In essence, these are microfluidic techniques that employ a synergistic combination of optical and electrical forces to enable noninvasive manipulation of fluids and/or particle-type entities at the micro/nano-scale [1]. Synergy between optical and electrical forces bestows these techniques with several unique features that are promising to bring new opportunities in molecular diagnostics. Within the scope of molecular diagnostics, several aspects of optoelectric techniques promise to play a relevant role. These include, but are not limited to, sample preparation, sorting, purification, amplification and detection.

  19. Vehicle Technologies Office- AVTA: Hybrid-Electric Delivery Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

  20. Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid

  1. Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.

    2009-12-01

    Results of an NREL study of a parallel hybrid electric-diesel propulsion system in United Parcel Service-operated delivery vans show that the hybrids had higher fuel economy than standard diesel vans.

  2. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  3. NREL Evaluates UPS Hybrid-Electric Van Performance - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Evaluates UPS Hybrid-Electric Van Performance New trucks deliver more than 28% fuel savings December 22, 2009 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has collected and analyzed fuel economy, maintenance and other vehicle performance data from UPS's first generation hybrid diesel step delivery vans powered by an Eaton Corp. electric hybrid propulsion system. The diesel hybrid delivery vans improved the on-road fuel economy by 28.9 percent resulting

  4. Evaluation of 2005 Honda Accord Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Burress, T.A.; Marlino, L.D.

    2006-09-11

    The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

  5. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt068_vss_miyasato_2011_o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial

  6. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This work comprises chassis dynamometer testing of two medium-duty FedEx delivery vehicles, a gasoline hybrid electric vehicle (GHEV) and a conventional diesel (baseline) vehicle. ...

  7. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  8. Cold-Start and Warm-Up Driveability Performance of Hybrid Electric Vehicles Using Oxygenated Fuels

    SciTech Connect (OSTI)

    Thornton, M.; Jorgensen, S.; Evans, B.; Wright, K.

    2003-11-01

    Provides analysis and results of the driveability performance testing from four hybrid electric vehicles--Honda Civic, Toyota Prius, and two Honda Insights--that used oxygenated fuels.

  9. Plug-In Hybrid Electric Vehicle Energy Storage System Design: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2006-05-01

    This paper discusses the design options for a plug-in hybrid electric vehicle, including power, energy, and operating strategy as they relate to the energy storage system.

  10. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  11. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect (OSTI)

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  12. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  13. Fact #877: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids?

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicles (PEVs) include both battery electric vehicles (BEVs) which run only on electricity, and plug-in hybrid electric vehicles (PHEVs) which run on electricity and/or gasoline....

  14. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  15. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  16. Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nationwide Greenhouse Gas Emissions | Department of Energy Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions In the most comprehensive environmental assessment of electric transportation to date, the Electric Power Research Institute (EPRI) and the Natural Resources Defense Council (NRDC) are examining the greenhouse gas emissions

  17. P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing

    SciTech Connect (OSTI)

    J. Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

  18. DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Plug-in Hybrid Electric Vehicle Projects DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects June 12, 2008 - 1:30pm Addthis Adds Plug-in Hybrid Vehicle to Department's Fleet WASHINGTON - U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced up to $30 million in funding over three years for three cost-shared Plug-in Hybrid Electric Vehicles (PHEVs) demonstration and development

  19. AVTA: Plug-In Hybrid Electric School Buses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Hybrid Electric School Buses AVTA: Plug-In Hybrid Electric School Buses The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing several plug-in hybrid

  20. Hybrid Electric Vehicle Fleet and Baseline Performance Testing

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

  1. Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Ireland, J.; Cosgrove, J.

    2013-04-01

    This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

  2. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

  3. Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss092_malikopoulos_2012_p.pdf More Documents & Publications Autonomous Intelligent Hybrid Propulsion Systems The Meritor Dual Mode Hybrid Powertrain CRADA The Meritor Dual Mode Hybrid Powertrain CRADA

  4. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  5. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-01-01

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  6. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  7. NREL Estimates U.S. Hybrid Electric Vehicle Fuel Savings - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Estimates U.S. Hybrid Electric Vehicle Fuel Savings June 20, 2007 Hybrid electric vehicles have saved close to 230 million gallons - or 5.5 million barrels - of fuel in the United States since their introduction in 1999, according to a recent analysis conducted at the U. S. Department of Energy's National Renewable Energy Laboratory (NREL). "Sales of hybrid electric vehicles have increased an average of 72 percent a year for the past five years and in 2006 the average fuel economy

  8. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-01-01

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electricmore » driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  9. Indianapolis Public Transportation Corporation. Advanced Technology Vehicles in Service: Diesel Hybrid Electric Buses (Fact Sheet).

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Web site and in print publications. TESTING ADVANCED VEHICLES INDIANAPOLIS PUBLIC TRANSPORTATION â—† DIESEL HYBRID ELECTRIC BUSES Indianapolis Public Transportation DIESEL HYBRID ELECTRIC BUSES NREL/PIX 13504, 13505, 13583 THE INDIANAPOLIS PUBLIC TRANSPORTATION CORPORATION (INDYGO) provides transit service in the Indianapolis Metropolitan area, using 226 vehicles to serve 28 fixed and demand response routes. IndyGo vehicles accumulated more than 9 million miles and transported 11 million

  10. ETA-HTP02 Hybrid Electric Vehicle Acceleration, Gradeability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Transportation Applications All Rights Reserved i TABLE OF CONTENTS 1. ... Electric Transportation Applications All Rights Reserved 1 1. Objective The objective of ...

  11. Vehicle Technologies Office: Materials for Hybrid and Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power electronic sub-components that lack sufficient tolerance for high temperatures Electrical insulators that inhibit heat transfer from electrical devices, leading to premature ...

  12. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

  13. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  14. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  15. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    SciTech Connect (OSTI)

    Lammert, M.

    2008-06-01

    This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

  16. Electric and hybrid vehicles program. 5th annual report to Congress for Fiscal Year 1981

    SciTech Connect (OSTI)

    1982-03-01

    This fifth annual report on the implementation of the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (Public Law 94-413, as amended by Public Law 95-238, referred to as the Act) complies with the reporting requirements established in Section 14 of the Act. In addition to informing the Congress of the progress and plans of the Department of Energy Electric and Hybrid Vehicles Program, this report is intended to serve as a communication link between the Department and all of the public and private interests involved in making the program a success. The Annual Report represents the major summary of the Electric and Hybrid Vehicles Program activities; since July 1981, DOE has ceased publication of the EHV Quarterly Reports with Congressional approval. The fourth quarter activities for FY 1981 are included in this report. During FY 1981, significant progress was made toward implementing the policies established by Congress in the Act. There has been a noticeable increase in interest shown by both the automobile manufacturing and the supply sectors of our economy in electric and hybrid vehicles. This year, the emphasis in the Electric and Hybrid Vehicles Program shifted from vehicle demonstration and preparation for production readiness to research, development, test, and evaluation of advanced technologies to achieve the attributes necessary to make electric and hybrid vehicles a practical transportation alternative. Research and development efforts in batteries and propulsion components, as well as total vehicle systems, continue to reveal significant progress toward providing industry with technology options that will result in vehicles with greater public acceptance.

  17. Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have system benefits - News Releases | NREL Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could have system benefits February 21, 2007 Xcel Energy today announced the results of a six-month study related to plug-in hybrid electric vehicles (PHEVs) and how an increase in their popularity may affect Colorado. The study found that PHEVs may result in a reduction of the overall expense of owning a vehicle and, with the help of smart-grid technologies, eliminate harmful

  18. Hybrid Electric Vehicles: How They Perform in the Real World | Department

    Energy Savers [EERE]

    of Energy Hybrid Electric Vehicles: How They Perform in the Real World Hybrid Electric Vehicles: How They Perform in the Real World October 5, 2009 - 11:27am Addthis John Lippert One advantage of working on a U.S. Department of Energy (DOE) support team is that I'm exposed to the impressive work DOE is doing to develop and promote advanced energy technologies. I'm particularly impressed with the data DOE has gathered as part of the Advanced Vehicle Testing Activity (AVTA) on many of the

  19. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  20. Performance of electric and hybrid vehicles at the 1995 American Tour de Sol

    SciTech Connect (OSTI)

    Quong, S.; LeBlanc, N.; Buitrago, C.; Duoba, M.; Larsen, R.

    1995-12-31

    Energy consumption and performance data were collected on more than 40 electric and hybrid vehicles during the 1995 American Tour de Sol. At this competition, one electric vehicle drove 229 miles on one charge using nickel metalhydride batteries. The results obtained from the data show that electric vehicle efficiencies reached 9.07 mi./kWh or 70 equivalent mpg of gasoline when compared to the total energy cycle efficiency of electricity and gasoline. A gasoline-fueled 1995 Geo Metro that drove the same route attained 36.4 mpg.

  1. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Related Articles How Would You Use a Neighborhood Electric Vehicle? Will You Be Trading in Your Clunker for Cash--and a More Efficient Vehicle? Honey, Did You Plug in the ...

  2. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for

  3. Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification Gasification The Wabash River Clean Coal Power Plant The Wabash River Clean Coal Power Plant Gasification Technology R&D Coal gasification offers one of the most versatile and clean ways to convert coal into electricity, hydrogen, and other valuable energy products. Coal gasification electric power plants are now operating commercially in the United States and in other nations, and many experts predict that coal gasification will be at the heart of future generations of clean

  4. Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

  5. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    SciTech Connect (OSTI)

    Barnitt, R. A.

    2008-06-01

    The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

  6. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01-1556 In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit Robb A. Barnitt National Renewable Energy Laboratory - U.S. Department of Energy Copyright © 2008 SAE International ABSTRACT The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems' HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid

  7. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    SciTech Connect (OSTI)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  8. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2011-01-01

    This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

  9. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    SciTech Connect (OSTI)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  10. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    SciTech Connect (OSTI)

    Walkowicz, K.; Lammert, M.; Curran, P.

    2012-08-01

    This 13-month evaluation used five Kenworth T370 hybrid tractors and five Freightliner M2106 standard diesel tractors at a Coca Cola Refreshments facility in Miami, Florida. The primary objective was to evaluate the fuel economy, emissions, and operational field performance of hybrid electric vehicles when compared to similar-use conventional diesel vehicles. A random dispatch system ensures the vehicles are used in a similar manner. GPS logging, fueling, and maintenance records and laboratory dynamometer testing are used to evaluate the performance of these hybrid tractors. Both groups drive similar duty cycles with similar kinetic intensity (0.95 vs. 0.69), average speed (20.6 vs. 24.3 mph), and stops per mile (1.9 vs. 1.5). The study demonstrated the hybrid group had a 13.7% fuel economy improvement over the diesel group. Laboratory fuel economy and field fuel economy study showed similar trends along the range of KI and stops per mile. Hybrid maintenance costs were 51% lower per mile; hybrid fuel costs per mile were 12% less than for the diesels; and hybrid vehicle total cost of operation per mile was 24% less than the cost of operation for the diesel group.

  11. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

  12. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

    SciTech Connect (OSTI)

    Ayers, C.W.

    2004-11-23

    Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  13. Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report

    SciTech Connect (OSTI)

    Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

    2001-12-01

    The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

  14. THYME: Toolkit for Hybrid Modeling of Electric Power Systems

    Energy Science and Technology Software Center (OSTI)

    2011-01-01

    THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flowmore » data, and sample models of discrete sensors and controllers.« less

  15. Optimizing the performance of Ice-storage Systems in Electricity Load Management through a credit mechanism. An analytical work for Jiangsu, China

    SciTech Connect (OSTI)

    Han, Yafeng; Shen, Bo; Hu, Huajin; Fan, Fei

    2015-01-12

    Ice-storage air-conditioning is a technique that uses ice for thermal energy storage. Replacing existing air conditioning systems with ice storage has the advantage of shifting the load from on-peak times to off-peak times that often have excess generation. However, increasing the use of ice-storage faces significant challenges in China. One major barrier is the inefficiency in the current electricity tariff structure. There is a lack of effective incentive mechanism that induces ice-storage systems from achieving optimal load-shifting results. This study presents an analysis that compares the potential impacts of ice-storage systems on load-shifting under a new credit-based incentive scheme and the existing incentive arrangement in Jiangsu, China. The study indicates that by changing how ice-storage systems are incentivized in Jiangsu, load-shifting results can be improved.

  16. Optimizing the performance of Ice-storage Systems in Electricity Load Management through a credit mechanism. An analytical work for Jiangsu, China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Yafeng; Shen, Bo; Hu, Huajin; Fan, Fei

    2015-01-12

    Ice-storage air-conditioning is a technique that uses ice for thermal energy storage. Replacing existing air conditioning systems with ice storage has the advantage of shifting the load from on-peak times to off-peak times that often have excess generation. However, increasing the use of ice-storage faces significant challenges in China. One major barrier is the inefficiency in the current electricity tariff structure. There is a lack of effective incentive mechanism that induces ice-storage systems from achieving optimal load-shifting results. This study presents an analysis that compares the potential impacts of ice-storage systems on load-shifting under a new credit-based incentive scheme andmore » the existing incentive arrangement in Jiangsu, China. The study indicates that by changing how ice-storage systems are incentivized in Jiangsu, load-shifting results can be improved.« less

  17. Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles. A Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malikopoulos, Andreas

    2014-03-31

    The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

  18. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Hadley, Stanton W; McGill, Ralph N; Cleary, Timothy

    2010-07-01

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and maintenance costs); (4) Supporting the use of off-peak renewable energy through smart charging practices. However, smart grid technology is not a prerequisite for realizing the benefits of PHEVs; and (5) Potentially using its bidirectional electricity flow capability to aid in emergency situations or to help better manage a building's or entire grid's load.

  19. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid Electric Delivery Vans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans M. Lammert and K. Walkowicz National Renewable Energy Laboratory Technical Report NREL/TP-5400-55658 September 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov

  20. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

  1. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  2. Performance of a stand-alone wind-electric ice maker for remote villages

    SciTech Connect (OSTI)

    Davis, H.C.; Brandemuehl, M.J.; Bergey, M.L.S.

    1995-01-01

    Two ice makers in the 1.1 metric tons per 24 hours (1.2 tons per day) size range were tested to determine their performance when directly coupled to a variable-frequency wind turbine generator. Initial tests were conducted using a dynamometer to simulate to wind to evaluate whether previously determined potential problems were significant and to define basic performance parameters. Field testing in Norman, Oklahoma, was completed to determine the performance of one of the ice makers under real wind conditions. As expected, the ice makers produced more ice at a higher speed than rated, and less ice at a lower speed. Due to the large start-up torque requirement of reciprocating compressors, the ice making system experienced a large start-up current and corresponding voltage drop which required a larger wind turbine that expected to provide the necessary current and voltage. Performance curves for ice production and power consumption are presented. A spreadsheet model was constructed to predict ice production at a user-defined site given the wind conditions for that location. Future work should include long-term performance tests and research on reducing the large start-up currents the system experiences when first coming on line.

  3. Field Testing Plug-in Hybrid Electric Vehicles with Charge Control Technology in the Xcel Energy Territory

    SciTech Connect (OSTI)

    Markel, T.; Bennion K.; Kramer, W.; Bryan, J.; Giedd, J.

    2009-08-01

    Results of a joint study by Xcel Energy and NREL to understand the fuel displacement potential, costs, and emissions impacts of market introduction of plug in hybrid electric vehicles.

  4. Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT â—† PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004. Award-winning accomplishments included KAT's increase in annual ridership

  5. Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2014-01-01

    Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

  6. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.more » Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.« less

  7. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion. Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.

  8. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Energy Savers [EERE]

    EPA Regulation Compliance EPA Regulation Compliance OE offers technical assistance on implementing the new and pending EPA air rules affecting the electric utility industry. Examples of typical assistance include technical information on cost and performance of the various power plant pollution retrofit control technologies; technical information on generation, demand-side or transmission alternatives for any replacement power needed for retiring generating units; and assistance to regulators

  9. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  10. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOE’s Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  11. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  12. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  13. Hybrid Electric Vehicle, Winner of the "FutureCar Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle, Winner of the "FutureCar Challenge," to Recharge at the National Renewable Energy Laboratory, One of Only Three Stops Between Sacramento, Calif. and Washington, D.C. For more information contact: George Douglas (303) 275-4096 or (303) 880-2913 (cellular) Golden, Colo., July 15, 1997 -- Media are invited to photograph "FutureCar" winner and interview students who designed it. What: The "FutureCar Challenge" winner, a modified Ford Taurus,

  14. A Consumer-Oriented Control Framework for Performance Analysis in Hybrid Electric Vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shoultout, Mohamed L.; Malikopoulos, Andreas; Pannala, Sreekanth; Chen, Dongmei

    2015-01-01

    Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce fuel consumption and emissions. The objective of this paper is to enhance our understanding of the associated tradeoffs among the HEV subsystems, e.g., the engine, the motor, and the battery, and investigate the related implications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences. The results of the proposed optimization approach can also be used to investigate the implications for HEV costs related to ownership and warranty.

  15. Electric and Hybrid Vehicles Program. Seventeenth annual report to Congress for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This program, in cooperation with industry, is conducting research, development, testing, and evaluation activities to develop the technologies that would lead to production and introduction of low-and zero-emission electric and hybrid vehicles into the Nation`s transportation fleet. This annual report describes program activities in the areas of advanced battery, fuel cell, and propulsion systems development. Testing and evaluation of new technology in fleet site operations and laboratories are also provided. Also presented is status on incentives (CAFE, 1992 Energy Policy Act) and use of foreign components, and a listing of publications by DOE, national laboratories, and contractors.

  16. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  17. Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-12-01

    Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

  18. Electric and Hybrid Vehicles Program. Sixteenth annual report to Congress for fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This report describes the progress achieved in developing electric and hybrid vehicle technologies, beginning with highlights of recent accomplishments in FY 1992. Detailed descriptions are provided of program activities during FY 1992 in the areas of battery, fuel cell, and propulsion system development, and testing and evaluation of new technology in fleet site operations and in laboratories. This Annual Report also contains a status report on incentives and use of foreign components, as well as a list of publications resulting from the DOE program.

  19. BAE/Orion Hybrid Electric Buses at New York City Transit: A Generational Comparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BAE/Orion Hybrid Electric Buses at New York City Transit A Generational Comparison R. Barnitt Technical Report NREL/TP-540-42217 Revised March 2008 NREL is operated by Midwest Research Institute â—Ź Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No.

  20. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a

    Broader source: Energy.gov (indexed) [DOE]

    Class 4 Parcel Delivery Vehicle | Department of Energy The goal of this project is to provide data to help bridge the gap between R&D and the commercial availability of advanced vehicle technologies that reduce petroleum use in the U.S. and improve air quality. PDF icon p-13_thornton.pdf More Documents & Publications Emissions Effects of Using B20 in the Current Transit Bus Fleet Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles Vehicle Technologies Office - AVTA:

  1. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOE Patents [OSTI]

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  2. The prospects for electric and hybrid electric vehicles: Second-stage results of a two-stage Delphi study

    SciTech Connect (OSTI)

    Ng, H.K.; Anderson, J.L.; Santini, D.J.; Vyas, A.D.

    1996-08-01

    This study was conducted to collect information for a technical and economic assessment of electric (EV) and hybrid (HEV) vehicles. The first-stage worldwide survey was completed in fall 1994, while the second-stage was completed by summer 1995. The paper reports results from the second round of the survey and major differences between the two rounds. This second-stage international survey obtained information from 93 expert respondents from the automotive technology field. Key results: EVs will penetrate the market first, followed by internal combustion engine HEVs, while gas turbine and fuel cell HEVs will come after 2020. By 2020, EVs and internal combustion engine HEVs will have a 15% share of the new vehicle market; they will also cost 18-50% more and will be slightly inferior to 1993 gasoline cars. AC induction motor is projected to be superior to DC and DC brushless motors by 2020, although the DC motor will be less expensive in 2000. DC brushless motors are projected to be the most expensive. Though generally declining, battery costs will remain high. EVs are believed to be effective in reducing urban emissions; however, their costs must be reduced drastically. Petroleum is expected to be the predominant fuel for hybrid vehicles through 2020. Mean energy equivalent fuel economy of electric drivetrain vehicles is projected to be 20-40% greater than for conventional vehicles in 2000, and to rise a few percents during the projection period. Respondents anticipate only a 16% increase in conventional vehicle fuel economy from 2000 to 2020.

  3. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

    Broader source: Energy.gov [DOE]

    The first hybrid electric vehicle was introduced in December 1999 and for the next 45 months (through August 2003) there were a total of 95,778 hybrid vehicles sold. The first mass-marketed plug-in...

  4. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  5. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  6. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  7. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  8. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  9. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  10. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

  11. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population

    SciTech Connect (OSTI)

    Wei, Xile; Zhang, Danhong; Wang, Jiang; Yu, Haitao; Lu, Meili; Che, Yanqiu

    2015-01-15

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.

  12. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    SciTech Connect (OSTI)

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  13. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  14. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun; DeVault, Robert C

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

  15. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    SciTech Connect (OSTI)

    Dr. Malgorzata Gulbinska

    2009-08-24

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  16. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

  17. Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Chakravarthy, Veerathu K; Daw, C Stuart

    2011-01-01

    This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

  18. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  19. 2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS

    SciTech Connect (OSTI)

    Gray, Tyler; Shirk, Matthew; Wishart, Jeffrey

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  20. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  1. Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994

    SciTech Connect (OSTI)

    1995-04-01

    The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

  2. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect (OSTI)

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  3. Equivalence of optical and electrical noise equivalent power of hybrid NbTiN-Al microwave kinetic inductance detectors

    SciTech Connect (OSTI)

    Janssen, R. M. J.; Endo, A.; Visser, P. J. de; Klapwijk, T. M.; Baselmans, J. J. A.

    2014-11-10

    We have measured and compared the response of hybrid NbTiN-Al Microwave Kinetic Inductance Detectors (MKIDs) to changes in bath temperature and illumination by sub-mm radiation. We show that these two stimulants have an equivalent effect on the resonance feature of hybrid MKIDs. We determine an electrical noise equivalent power (NEP) from the measured temperature responsivity, quasiparticle recombination time, superconducting transition temperature, and noise spectrum, all of which can be measured in a dark environment. For the two hybrid NbTiN-Al MKIDs studied in detail, the electrical NEP is within a factor of two of the optical NEP, which is measured directly using a blackbody source.

  4. MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric vehicles

    SciTech Connect (OSTI)

    Marr, W.W.; He, J.

    1995-07-01

    As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.

  5. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect (OSTI)

    Giorgio Rizzoni

    2005-09-30

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

  6. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  7. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  8. Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport Ground Support Equipment – Development and Results

    SciTech Connect (OSTI)

    James Francfort; Kevin Morrow; Dimitri Hochard

    2007-02-01

    This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.

  9. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect (OSTI)

    Hadley, Stanton W

    2006-11-01

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

  10. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  11. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, David F. (Idaho Falls, ID); Suciu, Dan F. (Idaho Falls, ID); Harris, Taryl L. (Idaho Falls, ID); Ingram, Jani C. (Idaho Falls, ID)

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  12. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  13. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect (OSTI)

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H.

    2007-01-01

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  14. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    None, None

    2012-01-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  15. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  16. RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint

    SciTech Connect (OSTI)

    Telias, G.; Day, K.; Dietrich, P.

    2011-01-01

    Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

  17. Electric and hybrid vehicle program site operator program. Quarterly progress report, October 1994--December 1994 (First quarter of FY-95)

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1995-07-01

    The DOE Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. Its mission now includes three ma or activity categories: (1) Advancement of Electric Vehicle (EV) technologies, (2) Development of infrastructure elements needed to support significant EV use, and (3) Increasing public awareness and acceptance of EVs. The 13 Program participants, their geographic locations, and the principal thrusts of their efforts are identified in Table ES-1. The EV inventories of each participant are summarized in Table ES-2.

  18. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/CP-5400-60098. Posted with permission. Presented at the SAE 2013 Commercial Vehicle Engineering Congress. 2013-01-2468 Published 09/24/2013 doi:10.4271/2013-01-2468 saecomveh.saejournals.org In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks Jonathan Burton, Kevin Walkowicz, Petr Sindler, and Adam Duran National Renewable Energy Laboratory ABSTRACT This study compared fuel economy and emissions between heavy-duty

  19. Thirty-Six Month Evaluation of UPS Diesel Hybrid-Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.; Walkowicz, K.

    2012-03-01

    This evaluation compared six hybrids and six standard diesels in UPS facilities in Phoenix, Arizona. Dispatch and maintenance practices are the same at both facilities. GPS logging, fueling, and maintenance records are used to evaluate the performance of these step delivery vans. The hybrids' average monthly mileage rate was 18% less than the diesel vans. The hybrids consistently were driven a fewer number of miles throughout the evaluation period. The hybrids idled more and operating at slower speeds than the diesels, and the diesels spent slightly more time operating at greater speeds, accounting for much of the hybrids fewer monthly miles. The average fuel economy for the hybrid vans is 13.0 mpg, 23% greater than the diesel vans 10.6 mpg. Total hybrid maintenance cost/mile of $0.141 was 9% more than the $0.130 for the diesel vans. Propulsion-related maintenance cost/mile of $0.037 for the hybrid vans was 25% more than the $0.029 for the diesel vans. Neither difference was found to be statistically significant. The hybrid group had a cumulative average of 96.3% uptime, less than the diesel group's 99.0% uptime. The hybrids experienced troubleshooting and recalibration issues related to prototype components that were primarily responsible for the lower uptime figures.

  20. Benefit-Cost Evaluation of U.S. DOE Investment in Energy Storage Technologies for Hybrid and Electric Cars and Trucks

    Broader source: Energy.gov [DOE]

    Benefit-Cost Evaluation of U.S. DOE Investment in Energy Storage Technologies for Hybrid and Electric Cars and Trucks, Final Report, Prepared for Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy.

  1. Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentcost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible...

  2. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Staunton, Robert H; Hsu, John S; Starke, Michael R

    2006-09-01

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

  3. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Hsu, J.S.; Staunton, M.R.; Starke, M.R.

    2006-09-30

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

  4. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  5. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

  6. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Gross, Thomas; Lin, Zhenhong; Sullivan, John; Cleary, Timothy; Ward, Jake

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  7. ETA-HTP04 - Hybrid Electric Vehicle Constant Speed Range Tests...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Transportation Applications All Rights Reserved 1 Procedure ETA-HTP04 Revision 1 ... Electric Transportation Applications All Rights Reserved 2 Procedure ETA-HTP04 Revision 1 ...

  8. ETA-HTP05 - Hybrid Electric Vehicle Rough Road Course Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Transportation Applications All Rights Reserved i TABLE OF CONTENTS 1. ... Electric Transportation Applications All Rights Reserved 1 1. Objective The objective of ...

  9. ETA-HTP10 - Measurement and Evaluation of Hybrid Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Date: ... Donald Karner ETA-HTP10 Revision 0 2004 Electric ... Appendix A - Vehicle Metrology Setup Sheet 7 ETA-HTP10 Revision 0 2004 Electric ...

  10. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  11. Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2012-01-01

    Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

  12. Energy Lab to Evaluate Performance of UPS Hybrid-Electric Vans...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Activity (AVTA), NREL's Fleet Test & Evaluation (FT&E) team is performing a 12-month evaluation of some of these 50 hybrid vans at UPS locations in Dallas and Phoenix. ...

  13. Project Results: Evaluating FedEx Express Hybrid-Electric Delivery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hybrid system manufactured by Azure Dynamics, including a 100-kW alternating current induction motor, regenerative braking, and a 2.45-kWh nickel-metal- hydride battery pack. This...

  14. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon vss023friesner2011o.pdf More Documents & Publications Navistar-Driving efficiency with integrated technology Plug IN Hybrid Vehicle Bus The Business of Near Zero...

  15. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  16. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  17. United Parcel Service Evaluates Hybrid Electric Delivery Vans, Vehicle Technologies Program (VTP) (Fact Sheet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service Testing: Project Design and Data Collection The vans were tested for 12 months, from January through December 2008. The six hybrid vans had been placed in service at a UPS facility in Phoenix during the second half of 2007. The six diesel vans had been placed in service at a facility in nearby Estrella, Arizona, in early 2007. The diesel vans were selected because they had the same size and cargo capacity as the hybrid vans, and they drove a comparable number of miles each day. During

  18. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL’s Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  19. Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... from "Electric Power Monthly" (DOEIEA-0226) for the ... Charging Algorithm - The circuitrymathematical controls ... Standard C101.1, 1986 American Nuclear Society (ANS) ...

  20. King County Metro Transit: Allison Hybrid Electric Transit Bus Laboratory Testing

    SciTech Connect (OSTI)

    Hayes, R. R.; Williams, A.; Ireland, J.; Walkowicz, K.

    2006-09-01

    Paper summarizes chassis dynamometer testing of two 60-foot articulated transit buses, one conventional and one hybrid, at NREL's ReFUEL Laboratory. It includes experimental setup, test procedures, and results from vehicle testing performed at the NREL ReFUEL laboratory.

  1. Development and Deployment of Generation 3 Plug-In Hybrid Electric School

    Broader source: Energy.gov (indexed) [DOE]

    Buses | Department of Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss023_friesner_2011_o.pdf More Documents & Publications Navistar-Driving efficiency with integrated technology Plug IN Hybrid Vehicle Bus The Business of Near Zero

  2. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles traveled during CD operation is 25% for PHEV10 and 51% for PHEV40. Argonne's WTW analysis of PHEVs revealed that the following factors significantly impact the energy use and GHG emissions results for PHEVs and BEVs compared with baseline gasoline vehicle technologies: (1) the regional electricity generation mix for battery recharging and (2) the adjustment of fuel economy and electricity consumption to reflect real-world driving conditions. Although the analysis predicted the marginal electricity generation mixes for major regions in the United States, these mixes should be evaluated as possible scenarios for recharging PHEVs because significant uncertainties are associated with the assumed market penetration for these vehicles. Thus, the reported WTW results for PHEVs should be directly correlated with the underlying generation mix, rather than with the region linked to that mix.

  3. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  4. Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)

    SciTech Connect (OSTI)

    Cosgrove, J.; Gonder, J.; Pesaran, A.

    2013-11-01

    The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

  5. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, January--March 1996

    SciTech Connect (OSTI)

    Francfort, J.E.; Bassett, R.R.; Briasco, S.

    1996-08-01

    Goals of the site operator program include field evaluation of electric vehicles (EVs) in real-world applications and environments, advancement of electric vehicle technologies, development of infrastructure elements necessary to support significant EV use, and increasing the awareness and acceptance of EVs by the public. The site operator program currently consists of 11 participants under contract and two other organizations with data-sharing agreements with the program. The participants (electric utilities, academic institutions, Federal agencies) are geographically dispersed within US and their vehicles see a broad spectrum of service conditions. Current EV inventories of the site operators exceeds 250 vehicles. Several national organizations have joined DOE to further the introduction and awareness of EVs, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for EVs; (2) DOE, DOT, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of EVs. Current focus of the program is collection and dissemination of EV operations and performance data to aid in the evaluation of real- world EV use. This report contains several sections with vehicle evaluation as a focus: EV testing results, energy economics of EVs, and site operators activities.

  6. Battery Test Manual For 12 Volt Start/Stop Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Belt, Jeffrey R.

    2015-05-01

    This manual was prepared by and for the United Stated Advanced Battery Consortium (USABC) Electrochemical Energy Storage Team. It is based on the targets established for 12 Volt Start/Stop energy storage development and is similar (with some important changes) to an earlier manual for the former FreedomCAR program. The specific procedures were developed primarily to characterize the performance of energy storage devices relative to the USABC requirements. However, it is anticipated that these procedures will have some utility for characterizing 12 Volt Start/Stop hybrid energy storage device behavior in general.

  7. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  8. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, October--December 1995 (first quarter of fiscal year 1996)

    SciTech Connect (OSTI)

    Francfort, J.E.; Bassett, R.R.; Briasco, S.

    1996-03-01

    This is the Site Operator Program quarterly report for USDOE electric and hybrid vehicle research. Its mission now includes the three major activity categories of advancement of electric vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use and increasing public awareness and acceptance of EVs. The 11 Site Operator Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of the site operators totals about 250 vehicles. The individual fleets are summarized.

  9. Los Angeles Department of Water and Power Electric and Hybrid Vehicle Program site operator program

    SciTech Connect (OSTI)

    1998-02-01

    During the term of the above mentioned agreement, the Los Angeles Department of Water and Power (LADWP), a municipal utility serving the citizens of Los Angeles, marked its tenth year of involvement in testing and promoting electric vehicles as part of Los Angeles` overall air quality improvement program, and as a means of improving the regions` economic competitiveness through the creation of new industries. LADWP maintained and operated twenty electric vehicles (EVs) during the test period. These vehicles consisted of six G-Vans, four Chrysler TEVans, five U.S. Electricar pickup trucks, and five U.S. Electricar Prizms. LADWP`s electric transportation program also included infrastructure, public transit development, public and awareness, and legislative and regulatory activities.

  10. Development of auxiliary power units for electric hybrid vehicles. Interim report, July 1993-February 1994

    SciTech Connect (OSTI)

    Owens, E.C.; Steiber, J.

    1997-06-01

    Larger urban commercial vehicles (such as shuttle and transit buses), various delivery and service vehicles (such as panel and step vans), and garbage trucks and school buses are particularly well suited for electric drive propulsion systems due to their relatively short operating routes, and operation and maintenance from central sites. Furthermore, these vehicles contribute a proportionately large amount to metropolitan air pollution by virtue of their continuous operation in those areas. It is necessary to develop auxiliary power units (APUs) that minimize emissions and in addition, increase range of electric vehicles. This report focuses on the first phase study of the development of APUs for large, electric drive commercial vehicles, intended primarily for metropolitan applications. This paper (1) summarizes the differences between available mobile APUs and Electric Vehicle APU requirements, (2) describes the major components in APUs, and (3) discusses APU integration issues. During this phase, three potential APU manufacturers were identified and selected for development of prototype units at 25 kW and 50 kW power levels.

  11. SBIR/STTR FY15 Phase 1 Release 2 Awards Announced—Includes Fuel Cell-Battery Electric Hybrid Truck and Fuel Cell Manufacturing Quality Control Processes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Awards, including projects demonstrating fuel cell-battery electric hybrid trucks and developing a real-time, in-line optical detector for the measurement of fuel cell membrane thickness.

  12. Study Finds DOE-Funded Research in Energy Storage Provides a Vital Foundation for Success of Today's Hybrid and Electric Vehicles

    Broader source: Energy.gov [DOE]

    This report discusses a study that found that U.S. Department of Energy-funded research in energy storage provides a vital foundation for the success of today's hybrid and electric vehicles. The study is from the DOE's Office of Planning, Budget and Analysis, Office of Energy Efficiency and Renewable Energy.

  13. Electric and Hybrid Vehicle Program: Site Operation Program. Quarterly progress report, July--September 1995

    SciTech Connect (OSTI)

    Francfort, J.; Bassett, R.R.; Briasco, S.

    1995-12-01

    The Site Operator Program has evolved substantially since its inception in response to the Electric Vehicle Research and Demonstration Act of 1976. In its original form, a commercialization effort was intended but this was not feasible for lack of vehicle suppliers and infrastructure. Nonetheless, with DOE sponsorship and technical participation, a few results (primarily operating experience and data) were forthcoming. The current Program comprises eleven sites and over 200 vehicles, of which about 50 are latest generation vehicles. DOE partially funds the Program participant expenditures and the INEL receives operating and maintenance data for the DOE-owned, and participant-owned or monitored vehicles, as well as Program reports. As noted elsewhere in this report, participants represent several widely differing categories: electric utilities, academic institutions, and federal agencies. While both the utilities and the academic institutions tend to establish beneficial relationships with the industrial community.

  14. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    SciTech Connect (OSTI)

    Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

    2013-10-01

    This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

  15. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  16. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  17. Electric and hybrid vehicle program, site operator program quarterly progress report for April through June 1996 (third quarter of fiscal year 1996)

    SciTech Connect (OSTI)

    Francfort, J.; Bassett, R.R.; Briasco, S.

    1997-01-01

    The US Department of Energy (DOE) Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. The goals of the Site Operator Program include the field evaluation of electric vehicles (EVs) in real-world applications and environments; the advancement of electric vehicle technologies; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of EVs by the public. The Site Operator Program currently consists of eleven participants under contract and two other organizations that have data-sharing agreements with the Program (Table ES-1). Several national organizations have joined DOE to further the introduction and awareness of electric vehicles, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for electric vehicles; and (2) DOE, the Department of Transportation, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of electric vehicles. The current focus of the Program is the collection and dissemination of EV operations and performance data to aid in the evaluation of real-world EV use. This report contains several sections with vehicle evaluation as a focus.

  18. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond

    2011-03-01

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

  19. Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report

    SciTech Connect (OSTI)

    McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D.

    1997-12-31

    Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

  20. Benefit-Cost Evaluation of U.S. DOE Investment in Energy Storage Technologies for Hybrid and Electric Cars and Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2013 Benefit-Cost Evaluation of U.S. DOE Investment in Energy Storage Technologies for Hybrid and Electric Cars and Trucks Final Report Prepared for Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585 Prepared by Albert N. Link Alan C. O'Connor Troy J. Scott Sara E. Casey Ross J. Loomis J. Lynn Davis RTI International 3040 Cornwallis Road Research Triangle Park, NC 27709 RTI Project Number 0213238

  1. New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors and customer requirements, evaluating performance and durability of alternative

  2. Promote the use of electric and hybrid vehicles through information dissemination & data collection through the NESEA American Tour de Sol. Final project report

    SciTech Connect (OSTI)

    2000-09-12

    A report on information dissemination on alternative fueled vehicles and on efficiency data collected at the NESEA American Tour de Sol is presented. Some of the latest advanced transportation technology vehicles were showcased. Numerous attachments are included, such as the post-event newsletter, press kit, publicity report, results table, technical workshop proceedings, NESEA tour rules and resources, and a paper titled ''Quantifying the fuel use and greenhouse gas reduction potential of electric and hybrid vehicles.''

  3. Data Collection, Testing, and Analysis of Hybrid Electric Trucks and Buses Operating in California Fleets. Final Report

    SciTech Connect (OSTI)

    Thornton, Matthew; Duran, Adam; Ragatz, Adam; Cosgrove, Jon; Sindler, Petr; Russell, Robert; Johnson, Kent

    2015-06-12

    The objective of this project was to evaluate and quantify the emission impacts of commercially available hybrid medium- and heavy-duty vehicles relative to their non-hybrid counterparts. This effort will allow the California Air Resources Board (CARB) and other agencies to more effectively encourage development and commercial deployment of the most efficient, lowest emitting hybrid technologies needed to meet air quality and climate goals.

  4. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    SciTech Connect (OSTI)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.

  5. U.S. Department of Energy electric and hybrid vehicle Site Operator Program at Platte River Power Authority. Final report, July 3, 1991--August 31, 1996

    SciTech Connect (OSTI)

    Emmert, R.A.

    1996-12-31

    The Platte River Power Authority (Platte River) is a political subdivision of the state of Colorado, owned by the four municipalities of Fort Collins, Loveland, Longmont and Estes Park, Colorado. Platte River is a non-profit, publicly owned, joint-action agency formed to construct, operate and maintain generating plants, transmission systems and related facilities for the purpose of delivering to the four municipalities electric energy for distribution and resale. Platte River, as a participant in the US Department of Energy (DOE) Site Operator Program, worked to accomplish the Site Operator Program goals and objectives to field test and evaluate electric and electric-hybrid vehicles and electric vehicle systems in a real world application/environment. This report presents results of Platte River`s program (Program) during the five-years Platte River participated in the DOE Site Operator Program. Platte River participated in DOE Site Operator Program from July 3, 1991 through August 31, 1996. During its Program, Platte River conducted vehicle tests and evaluations, and electric vehicle demonstrations in the Front Range region of Northern Colorado. Platte River also investigated electric vehicle infrastructure issues and tested infrastructure components. Platte River`s Program objectives were as follows: evaluate the year round performance, operational costs, reliability, and life cycle costs of electric vehicles in the Front Range region of Northern Colorado; evaluate an electric vehicle`s usability and acceptability as a pool vehicle; test any design improvements or technological improvements on a component level that may be made available to PRPA and which can be retrofit into vehicles; and develop, test and evaluate, and demonstrate components to be used in charging electric vehicles.

  6. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  7. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY

  8. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  9. Buying and Making Electricity | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Planning renewable systems Solar electric systems Wind electric systems Hybrid wind and solar Microhydropower systems. Follow Us followontwitter.png...

  10. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  11. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    SciTech Connect (OSTI)

    2010-09-14

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  12. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  13. DOE to Provide Nearly $20 Million to Further Development of Advanced Batteries for Plug-in Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    ANN ARBOR, MI - U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced DOE will invest nearly $20 million in plug-in...

  14. Technical Challenges of Plug-In Hybrid Electric Vehicles and Impacts to the US Power System: Distribution System Analysis

    SciTech Connect (OSTI)

    Gerkensmeyer, Clint; Kintner-Meyer, Michael CW; DeSteese, John G.

    2010-01-01

    This report documents work conducted by Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE) to address three basic questions concerning how typical existing electrical distribution systems would be impacted by the addition of PHEVs to residential loads.

  15. Jing Jin Electric JJE | Open Energy Information

    Open Energy Info (EERE)

    Beijing Municipality, China Sector: Vehicles Product: Develops and manufactures high-performance electric motors and electric drive components for hybrid electric vehicles (HEV),...

  16. Hybrids Plus | Open Energy Information

    Open Energy Info (EERE)

    Area Sector: Vehicles Product: Plug in Electric Hybrid Vehicle conversions, chargers, battery systems Website: www.eetrex.com Coordinates: 40.022143, -105.250981 Show Map...

  17. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  18. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  19. Novel Hybrid Materials with High Stability for Electrically Switched Ion Exchange: Carbon Nanotubes/Polyaniline/Nickel Hexacyanoferrate Nanocomposites

    SciTech Connect (OSTI)

    Lin, Yuehe; Cui, Xiaoli

    2005-04-21

    A novel and stable carbon nanotubes /polyaniline /nickel hexacyanoferrates composite film has been synthesized with electrodeposition method, and the possibility for removing cesium through an electrically switched ion exchange has been evaluated in a mixture containing NaNO3 and CsNO3.

  20. Polymer Hybrid Photovoltaics for Inexpensive Electricity Generation: Final Technical Report, 1 September 2001--30 April 2006

    SciTech Connect (OSTI)

    Carter, S. A.

    2006-07-01

    The project goal is to understand the operating mechanisms underlying the performance of polymer hybrid photovoltaics to enable the development of a photovoltaic with a maximum power conversion efficiency over cost ratio that is significantly greater than current PV technologies. Plastic or polymer-based photovoltaics can have significant cost advantages over conventional technologies in that they are compatible with liquid-based plastic processing and can be assembled onto plastic under atmospheric conditions (ambient temperature and pressure) using standard printing technologies, such as reel-to-reel and screen printing. Moreover, polymer-based PVs are lightweight, flexible, and largely unbreakable, which make shipping, installation, and maintenance simpler. Furthermore, a numerical simulation program was developed (in collaboration with IBM) to fully simulate the performance of multicomponent polymer photovoltaic devices, and a manufacturing method was developed (in collaboration with Add-vision) to inexpensively manufacture larger-area devices.

  1. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    SciTech Connect (OSTI)

    Martin, Elijah H; Goniche, M.; Klepper, C Christopher; Hillairet, J.; Isler, Ralph C; Caughman, J. B. O.; Colas, L.; Ekedahl, A.; Colledani, G.; Lotte, Ph.; Litaudon, X; Hillis, Donald Lee; Harris, Jeffrey H

    2015-01-01

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies ($E_{LH}$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. It was found through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $E_{LH}$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.

  2. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin, Elijah H; Goniche, M.; Klepper, C Christopher; Hillairet, J.; Isler, Ralph C; Caughman, J. B. O.; Colas, L.; Ekedahl, A.; Colledani, G.; Lotte, Ph.; et al

    2015-01-01

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies (more » $$E_{LH}$$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. It was found through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $$E_{LH}$$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.« less

  3. Comprehensive Well to Wheel Analysis for Plug-in-Hybrid Electric Vehicles in the U.S.

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Pratt, Robert G.; Schneider, Kevin P.

    2008-09-19

    The U.S. electric power infrastructure is a strategic national asset that is underutilized most of the time. With the proper changes in the operational paradigm, it could generate and deliver the necessary energy to fuel the majority of the U.S. light-duty vehicle (LDV) fleet. In doing so, it would reduce greenhouse gas emissions, improve the economics of the electricity industry, and reduce the U.S. dependency on foreign oil. This paper estimates the regional percentages of the energy requirements for the U.S. LDV stock that could potentially be supported by the existing infrastructure, based on the 12 modified North American Electric Reliability Council regions, as of 2002. For the United States as a whole, about 70% of LDV fleet in the U.S. could be supported by the existing infrastructure with some degree of load management. This has an estimated gasoline displacement potential of 6.5 million barrels of oil equivalent per day, or approximately 52% of the nation's oil imports. The paper also discusses the impact on overall emissions of criteria gases and greenhouse gases as a result of shifting emissions from millions of individual vehicles to a few hundred power plants. Overall, PHEVs could reduce greenhouse gas emissions with regional variations dependent on the local generation mix. Total NOX emissions may or may not increase, dependent on the use of coal generation in the region. Any additional SO2 emissions associated with the expected increase in generation from coal power plants would need to be cleaned up to meet the existing SO2 emissions constraints. Particulate emissions would increase in 8 of the 12 regions. The emissions in urban areas are found to improve across all pollutants and regions as the emission sources shift from millions of tailpipes to a smaller number of large power plants in less-populated areas. This paper concludes with a discussion about possible grid impacts as a result of the PHEV load as well as the likely impacts on the plant and technology mix of future generation-capacity expansions.

  4. Alternative Fuels Data Center: Michigan Transports Students in Hybrid

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric School Buses Michigan Transports Students in Hybrid Electric School Buses to someone by E-mail Share Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Facebook Tweet about Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Twitter Bookmark Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Google Bookmark Alternative Fuels Data Center: Michigan

  5. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  6. Communication: On the stability of ice 0, ice i, and I{sub h}

    SciTech Connect (OSTI)

    Quigley, D.; Alfč, D.; Slater, B.

    2014-10-28

    Using ab initio methods, we examine the stability of ice 0, a recently proposed tetragonal form of ice implicated in the homogeneous freezing of water [J. Russo, F. Romano, and H. Tanaka, Nat. Mater. 13, 670 (2014)]. Vibrational frequencies are computed across the complete Brillouin Zone using Density Functional Theory (DFT), to confirm mechanical stability and quantify the free energy of ice 0 relative to ice I{sub h}. The robustness of this result is tested via dispersion corrected semi-local and hybrid DFT, and Quantum Monte-Carlo calculation of lattice energies. Results indicate that popular molecular models only slightly overestimate the stability of ice zero. In addition, we study all possible realisations of proton disorder within the ice zero unit cell, and identify the ground state as ferroelectric. Comparisons are made to other low density metastable forms of ice, suggesting that the ice i structure [C. J. Fennel and J. D. Gezelter, J. Chem. Theory Comput. 1, 662 (2005)] may be equally relevant to ice formation.

  7. ARM - Measurement - Ice nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Ice nuclei Small particles around which ice particles form. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  8. A counter-charge layer in generalized solvents framework for electrical double layers in neat and hybrid ionic liquid electrolytes

    SciTech Connect (OSTI)

    Huang, Jingsong; Feng, Guang; Sumpter, Bobby G; Qiao, Rui; Meunier, Vincent

    2011-01-01

    Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure capacitance relationships for these systems. Here we present a theoretical framework termed counter-charge layer in generalized solvents (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominately by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) and in a mixture of [BMIM][BF4] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF4]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero to 50% although the dielectric constant of bulk ACN is more than two times higher than that of neat [BMIM][BF4]; (2) the capacitance of EDLs near negative electrodes (with BMIM+ ion as the counter-ion) is smaller than that near positive electrodes (with BF4as counter-ion) although the closest approaches of both ions to the electrode surface are nearly identical.

  9. Hybrid Molten Salt Reactor (HMSR): Method and System to fully...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Molten Salt Reactor (HMSR): Method and System to fully fission actinides for electric power production without ... produce heat suitable for efficient electricity production. ...

  10. Alternative Fuels Data Center: Emissions from Hybrid and Plug...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Emissions from Hybrid ...

  11. Alternative Fuels Data Center: Deployment of Hybrid and Plug...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Deployment of Hybrid ...

  12. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 2: Select Value Propositions/Business Model for Further Study

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun

    2008-04-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007 served as the Task 1 Milestone for this study. Feedback from all five Workshop breakout sessions has been documented in a Workshop Summary Report, which can be found at www.sentech.org/phev. In this report, the project team compiled and presented a comprehensive list of potential value propositions that would later serve as a 'grab bag' of business model components in Task 2. After convening with the Guidance and Evaluation Committee and other PHEV stakeholders during the Workshop, several improvements to the technical approach were identified and incorporated into the project plan to present a more realistic and accurate case study and evaluation. The assumptions and modifications that will have the greatest impact on the case study selection process in Task 2 are described in more detail in this deliverable. The objective of Task 2 is to identify the combination of value propositions that is believed to be achievable by 2030 and collectively hold promise for a sustainable PHEV market by 2030. This deliverable outlines what the project team (with input from the Committee) has defined as its primary scenario to be tested in depth for the remainder of Phase 1. Plans for the second and third highest priority/probability business scenarios are also described in this deliverable as proposed follow up case studies in Phase 2. As part of each case study description, the proposed utility system (or subsystem), PHEV market segment, and facilities/buildings are defined.

  13. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    SciTech Connect (OSTI)

    Sikes, Karen R; Hinds, Shaun; Hadley, Stanton W; McGill, Ralph N; Markel, Lawrence C; Ziegler, Richard E; Smith, David E; Smith, Richard L; Greene, David L; Brooks, Daniel L; Wiegman, Herman; Miller, Nicholas; Marano, Dr. Vincenzo

    2008-07-01

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  14. PROJECT PROFILE: Opportunistic Hybrid Communications Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    distributed solar power is added to the electric power grid and becomes an increasing proportion of total energy generation... a hybrid communications system to meet the needs of ...

  15. Wind-electric icemaking project: Analysis and dynamometer testing. Volume 1

    SciTech Connect (OSTI)

    Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

    1998-07-01

    The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

  16. Arctic ice islands

    SciTech Connect (OSTI)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  17. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  18. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  19. Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Maintenance

  20. Microsoft Word - 1 Million Electric Vehicle Report Final | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Microsoft Word - 1 Million Electric Vehicle Report Final More Documents & Publications FY 2012 Annual Progress Report for Energy Storage R&D Hybrid Electric Systems ...

  1. Recovery Act: State Assistance for Recovery Act Related Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency, renewable energy, carbon capture and storage, transmission lines, energy storage, smart grid, demand response equipment, and electric and hybrid-electric vehicles. ...

  2. Fire In The Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a quarterly publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in

  3. Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in ...

  4. Global Simulations of Ice nucleation and Ice Supersaturation with an

    Office of Scientific and Technical Information (OSTI)

    Improved Cloud Scheme in the Community Atmosphere Model (Journal Article) | SciTech Connect Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model Citation Details In-Document Search Title: Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model A process-based treatment of ice supersaturation and ice-nucleation is implemented in the National Center for

  5. Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles

    Broader source: Energy.gov [DOE]

    The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in January 2000 and 324 were sold in the first month. The Chevrolet Volt, a hybrid-electric plug-in, and the...

  6. Community Ice Sheet Model (CISM2) Development and Marine Ice...

    Office of Scientific and Technical Information (OSTI)

    Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet Simulations Citation ... Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: ...

  7. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  8. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  9. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA: Plug-In Hybrid Electric School Buses Medium and Heavy Duty Vehicle and Engine Testing Medium- and Heavy-Duty Electric Drive Vehicle Simulation ...

  10. Hybrid electroluminescent devices

    DOE Patents [OSTI]

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  11. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  12. Project Overview: United Parcel Service's Second-Generation Hybrid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and ...

  13. Arctic Sea ice model sensitivities.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana Stefanova

    2010-12-01

    Arctic sea ice is an important component of the global climate system and, due to feedback effects, the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice state to internal model parameters. A new sea ice model that holds some promise for improving sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of this MPM sea ice code and compare it with the Los Alamos National Laboratory CICE code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness,and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  14. National Drive Electric Week | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener | Photo courtesy of Dennis Schroeder, National Renewable Energy ...

  15. BreezElectric | Open Energy Information

    Open Energy Info (EERE)

    Product: Electricity supplier for small grids on remote islands using a hybrid wind-diesel power system. References: BreezElectric1 This article is a stub. You can help OpenEI...

  16. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect (OSTI)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  17. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    button highlighted Stopped Button subbanner graphic: gray bar BRAKING: PART 1 Regenerative braking converts otherwise wasted energy from braking into electricity and stores it in the battery. In regenerative braking, the electric motor is reversed so that, instead of using electricity to turn the wheels, the rotating wheels turn the motor and create electricity. Using energy from the wheels to turn the motor slows the vehicle down. Go to nextÂ… stage graphic: vertical blue rule Main stage: See

  18. Icing rate meter estimation of in-cloud cable icing

    SciTech Connect (OSTI)

    McComber, P.; Druez, J.; Laflamme, J.

    1994-12-31

    In many northern countries, the design and reliability of power transmission lines are closely related to atmospheric icing overloads. It is becoming increasingly important to have reliable instrument systems to warn of icing conditions before icing loads become sufficient to damage the power transmission network. Various instruments are presently being developed to provide better monitoring of icing conditions. One such instrument is the icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe and can be used to estimate the icing rate on nearby cables. The calibration presently used was originally based on experiments conducted in a cold room. Even though this calibration has shown that the IRM estimation already offers an improvement over model prediction based on standard meteorological parameters, it can certainly be improved further with appropriate field data. For this purpose, the instrument was tested on an icing test site at Mt. Valin (altitude 902 m) Quebec, Canada. In this paper measurements from twelve in-cloud icing events during the 1991--92 winter are divided into one hour periods of icing to provide the experimental icing rate data. The icing rates measured on a 12.5 mm and a 35 mm cables are then compared with the number of IRM signals, also for one hour periods, in relation to initial ice load, temperature, wind velocity and direction. From this analysis, a better calibration for the IRM instrument is suggested. The improvement of the IRM estimation is illustrated by making a comparison with measurements, of the icing load estimation with the old and new calibrations for two complete icing events.

  19. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  20. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  1. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  2. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  3. ARM - Measurement - Ice water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water content The concentration (massvol) of ice water...

  4. ARM - Measurement - Ice water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water path A measure of the weight of the ice particles in...

  5. ARM - Measurement - Cloud ice particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle...

  6. ARM - TWP-ICE Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheet (pdf, 211K) Press Releases TWP-ICE Images ARM flickr site <"" li"" height"14" width"16"> TWP-ICE Maps map1 map2 Download TWP-ICEDarwin annotated maps (pdf, 246K)....

  7. Hybrid: Starting

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    button highlighted Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar STARTING When the vehicle is started, the gasoline engine "warms up." If necessary, the electric motor acts as a generator, converting energy from the engine into electricity and storing it in the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline

  8. Hybrid anode for semiconductor radiation detectors

    DOE Patents [OSTI]

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  9. Hybrid powertrain controller

    DOE Patents [OSTI]

    Jankovic, Miroslava; Powell, Barry Kay

    2000-12-26

    A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

  10. Electrically heated particulate filter regeneration methods and systems for

    Office of Scientific and Technical Information (OSTI)

    hybrid vehicles (Patent) | DOEPatents Electrically heated particulate filter regeneration methods and systems for hybrid vehicles Title: Electrically heated particulate filter regeneration methods and systems for hybrid vehicles A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls

  11. Hybrid power source

    DOE Patents [OSTI]

    Singh, Harmohan N.

    2012-06-05

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  12. Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Los Angeles Saves With Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles Saves With

  13. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Button Stopped button highlighted subbanner graphic: gray bar STOPPED When the vehicle is stopped, such as at a red light, the gasoline engine and electric motor shut off automatically so that energy is not wasted in idling. The battery continues to power auxillary systems, such as the air conditioning and dashboard displays. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Main stage: See

  14. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  15. Ice Storm Supercomputer

    ScienceCinema (OSTI)

    None

    2013-05-28

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  16. Building America Webinar: New Construction Hybrid-Ductless Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study: Resistance is Futile | Department of Energy New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile This webinar on June 24, 2015, focused on the use of ductless heat pumps (DHP) as a hybrid "all-electric" heating system in new high-performance homes. In a DHP/hybrid heating system, the DHP fan coil is located in the main living area in combination with electric

  17. Building America Webinar: New Construction Hybrid-Ductless Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study: Resistance is Futile | Department of Energy New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile This webinar will focus on the use of ductless heat pumps (DHP) as a hybrid "all-electric" heating system in new high-performance homes. In a DHP/hybrid heating system, the DHP fan coil is located in the main living area in combination with electric resistance zone

  18. NREL Releases Report on Testing Electric Vehicles to Optimize...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    designers and utilities to evaluate the performance of various EVs and hybrids to optimize how they connect with electric utility grids today - and "smart grids" in the future. ...

  19. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of ...

  20. Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report...

    Office of Scientific and Technical Information (OSTI)

    Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report Citation Details In-Document Search Title: Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report The ...

  1. Alnico and Ferrite Hybrid Excitation Electric Machines

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Hybrid Electric Systems | Department of Energy

    Energy Savers [EERE]

    Energy? | Department of Energy Earl - Where Is It Headed and What Does It Have to Do With Energy? Hurricane Earl - Where Is It Headed and What Does It Have to Do With Energy? September 1, 2010 - 5:50pm Addthis Dr. Richard Newell Dr. Richard Newell Hurricane Earl has the East Coast of the United States in his sights. Earl is moving northward from the Bahamas, and is expected to skirt the U.S. Atlantic coast from Cape Hatteras to New England, before making landfall in Nova Scotia over the

  3. Hybrid Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-10-15

    HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of —Diesel generator sets —Photovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generationmore » systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hour ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.« less

  4. Winter Preparedness ? Slips on Ice

    Broader source: Energy.gov (indexed) [DOE]

    can further increase traction; however, they must be removed when ice is no longer present, because their use on floors, smooth concrete, or gravel, presents a different...

  5. Climate Impacts of Ice Nucleation

    SciTech Connect (OSTI)

    Gettelman, A.; Liu, Xiaohong; Barahona, Donifan; Lohmann, U.; Chen, Chih-Chieh

    2012-10-27

    Several different ice nucleation parameterizations in two different General Circulation Models are used to understand the effects of ice nucleation on the mean climate state, and the climate effect of aerosol perturbations to ice clouds. The simulations have different ice microphysical states that are consistent with the spread of observations. These different states occur from different parameterizations of the ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. At reasonable efficiencies, consistent with laboratory measurements and constrained by the global radiative balance, black carbon has a small (-0.06 Wm?2) and not statistically significant climate effect. Indirect effects of anthropogenic aerosols on cirrus clouds occur mostly due to increases in homogeneous nucleation fraction as a consequence of anthropogenic sulfur emissions. The resulting ice indirect effects do not seem strongly dependent on the ice micro-physical balance, but are slightly larger for those states with less homogeneous nucleation in the base state. The total ice AIE is estimated at 0.26±0.09 Wm?2 (1? uncertainty). This represents an offset of 20-30% of the simulated total Aerosol Indirect Effect for ice and liquid clouds.

  6. ARM - Lesson Plans: When Land Ice Melts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Arctic and Antarctica are covered with large, heavy sheets of ice. Other islands like New Zealand have ice masses in the form of glaciers on them. When land-based ice melts, ...

  7. GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to purchasing plug-in hybrid electric vehicles, GSA is leveraging our position as the government's centralized supplier to invest in emerging clean energy technologies, increase ...

  8. New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eberts, E.; Eudy, L.

    2006-01-01

    This report focuses on the evaluation of compressed natural gas (CNG) and diesel hybrid electric bus propulsion systems in New York City Transit's transit buses.

  9. Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)

    SciTech Connect (OSTI)

    Simpson, A.

    2006-08-24

    Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.

  10. Hybrid vehicle control

    DOE Patents [OSTI]

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  11. AVTA: Full-Size Electric Vehicle Specifications and Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Procedure PDF icon ETA-HP003 Implementation of SAE J1634, May 1993 - Hybrid Electric Vehicle Energy Consumption and Range Test Procedure PDF icon ETA-TP004 Electric Vehicle ...

  12. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For plug-in hybrid electric vehicles, the internal combustion engine will turn on more quickly, increasing fuel cost and emissions. All-Electric Range and Very Hot or Cold Weather ...

  13. EV Everywhere: Maximizing All-Electric Range | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduced all-electric range in a plug-in hybrid electric vehicle will result in the internal combustion engine turning on more quickly, increasing fuel cost and emissions. There are ...

  14. Extended Battery Life in Electric Vehicles | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Fuel Cell Bus Uses New Durathon(tm) Battery 3-4-2-v A World-Class Traction Motor for Hybrid and Electric Vehicles Q&A About Electric Vehicle Flow Battery Technology

  15. Biogeochemistry in Sea Ice: CICE model developments

    SciTech Connect (OSTI)

    Jeffery, Nicole; Hunke, Elizabeth; Elliott, Scott; Turner, Adrian

    2012-06-18

    Polar primary production unfolds in a dynamic sea ice environment, and the interactions of sea ice with ocean support and mediate this production. In spring, for example, fresh melt water contributes to the shoaling of the mixed layer enhancing ice edge blooms. In contrast, sea ice formation in the fall reduces light penetration to the upper ocean slowing primary production in marine waters. Polar biogeochemical modeling studies typically consider these types of ice-ocean interactions. However, sea ice itself is a biogeochemically active medium, contributing a significant and, possibly, essential source of primary production to polar regions in early spring and fall. Here we present numerical simulations using the Los Alamos Sea Ice Model (CICE) with prognostic salinity and sea ice biogeochemistry. This study investigates the relationship between sea ice multiphase physics and sea ice productivity. Of particular emphasis are the processes of gravity drainage, melt water flushing, and snow loading. During sea ice formation, desalination by gravity drainage facilitates nutrient exchange between ocean and ice maintaining ice algal blooms in early spring. Melt water flushing releases ice algae and nutrients to underlying waters limiting ice production. Finally, snow loading, particularly in the Southern Ocean, forces sea ice below the ocean surface driving an upward flow of nutrient rich water into the ice to the benefit of interior and freeboard communities. Incorporating ice microphysics in CICE has given us an important tool for assessing the importance of these processes for polar algal production at global scales.

  16. Therapeutic Hypothermia: Protective Cooling Using Medical Ice...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry Technology available for licensing: Proprietary method and equipment for making an ice slurry coolant to induce...

  17. Light propagation in the South Pole ice

    SciTech Connect (OSTI)

    Williams, Dawn; Collaboration: IceCube Collaboration

    2014-11-18

    The IceCube Neutrino Observatory is located in the ice near the geographic South Pole. Particle showers from neutrino interactions in the ice produce light which is detected by IceCube modules, and the amount and pattern of deposited light are used to reconstruct the properties of the incident neutrino. Since light is scattered and absorbed by ice between the neutrino interaction vertex and the sensor, IceCube event reconstruction depends on understanding the propagation of light through the ice. This paper presents the current status of modeling light propagation in South Pole ice, including the recent observation of an azimuthal anisotropy in the scattering.

  18. Electrical and Electronics Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Electrical and Electronics Technical Team’s (EETT's) mission is to enable cost-effective, smaller, lighter, and efficient power electronics and electric motors for electric traction drive systems (ETDSs) while maintaining performance of internal combustion engine (ICE)-based vehicles. The EETT also identifies technology gaps, establishes R&D targets, develops a roadmap to achieve technical targets and goals, and evaluates the R&D progress toward meeting the established R&D targets and goals.

  19. NREL: News - Hybrid Buses Operate With Lower Emissions, Greater Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Hybrid Buses Operate With Lower Emissions, Greater Fuel Efficiency Golden, Colo., August 1, 2002 A recently released study by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) concludes that hybrid buses operate with lower emissions and greater fuel efficiency than conventional diesel buses. The yearlong evaluation of 10 prototype diesel hybrid-electric buses in the Metropolitan Transportation Authority's New York City Transit (NYCT) fleet of

  20. Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicles (PEVs) include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The first mass marketed PEVs were introduced in 2010 with the Nissan Leaf,...

  1. Microsoft Word - Plug-in Hybrids.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. ...

  2. King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Walkowicz, K.

    2006-12-01

    Final technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington. The evaluation lasted 12 months.

  3. Building America Webinar: New Construction Hybrid-Ductless Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This webinar will focus on the use of ductless heat pumps (DHP) as a hybrid "all-electric" heating system in new high-performance homes. In a DHPhybrid heating system, the DHP fan ...

  4. Building America Webinar: New Construction Hybrid-Ductless Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This webinar on June 24, 2015, focused on the use of ductless heat pumps (DHP) as a hybrid "all-electric" heating system in new high-performance homes. In a DHPhybrid heating ...

  5. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    miles on electricity alone PHEV40 plug-in hybrid electric vehicle which can travel up to ... the percent of carbon reduction in PHEVs (cars and light trucks) when cars are charged ...

  6. Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range

    Broader source: Energy.gov [DOE]

    For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric driving range that is drawn from a plug and...

  7. Present state-of-the-art of transmission line icing

    SciTech Connect (OSTI)

    Pohlman, J.C.; Landers, P.

    1982-08-01

    Icing of overhead power lines is a serious problem for electric utilities. The loads resulting from iced conductors take many forms. Existing Codes and Guides offer little help in establishing adequate design criteria. Each transmission line designer must, therefore, rely heavily on intuitive judgment to set performance levels for transmission lines to be built within his particular service area. A special study was undertaken by author Pohlman in behalf of the Electric Power Research Institute (EPRI) to accomplish the following objectives: Improve the general understanding of the total problem; Sample utility perceptions and experience with the problem; Accumulate and review professional opinion on the subject; Inventory past and on-going research activities; Consolidate the above into a definition of the present state-of-the-art to define the need for future research.

  8. Community Ice Sheet Model (CISM2) Development and Marine Ice...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: CESM Land Ice Working Group ; 2015-06-17 - 2015-06-17 ; Breckenridge, Colorado, United ...

  9. Mihai Anitescu on Electric Grids | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mihai Anitescu on Electric Grids Share Description Senior Computational Mathematician Mihai Anitescu (MCS) discusses Electric Grids. Speakers Mihai Anitescu, Senior Computational Mathematician at Argonne National Laboratory Duration 2:08 Topic Energy Energy usage Smart Grid Credit Argonne National Laboratory Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen

  10. American Indian Complex to Cool Off Using Ice Storage System

    Broader source: Energy.gov [DOE]

    In Oklahoma City, summer temperatures can get above 100 degrees, making cooling more of a necessity than a luxury. But the designers of the American Indian Cultural Center and Museum (AICCM) wanted to make cooling choices that reflect American Indian cultures' respect for the land. So, rather than using conventional air-conditioning, the museum's main complex will use an ice storage system estimated to save 644,000 kilowatt hours of electricity a year.

  11. Method of forming calthrate ice

    DOE Patents [OSTI]

    Hino, T.; Gorski, A.J.

    1985-09-30

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultransonically so that small crystals are formed in the liquid. Thes small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  12. Method of forming clathrate ice

    DOE Patents [OSTI]

    Hino, Toshiyuki (Tokyo, JP); Gorski, Anthony J. (Lemont, IL)

    1987-01-01

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultrasonically so that small crystals are formed in the liquid. These small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  13. EV Everywhere: Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Electric Vehicle Basics EV Everywhere: Electric Vehicle Basics Just as there are a variety of technologies available in conventional vehicles, plug-in electric vehicles (also known as electric cars or EVs) have different capabilities that can accommodate different drivers' needs. EVs' major feature is that drivers can plug them in to charge from an off-board electric power source. This distinguishes them from hybrid electric vehicles, which supplement an internal combustion engine

  14. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The first hybrid electric vehicle was introduced in December 1999 and for the next 45 months (through August 2003) there were a total of 95,778 hybrid vehicles sold. The first mass...

  15. New Cost Tool Helps Fleet Managers Evaluate Hybrid Vehicles - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL New Cost Tool Helps Fleet Managers Evaluate Hybrid Vehicles August 3, 2005 Golden, Colo. - A new software tool that compares the costs and emissions of hybrid electric vehicles (HEVs) to conventional vehicles is now available for government and business fleet managers interested in reducing fuel costs and protecting air quality. The tool, called the Hybrid Electric Vehicle Fleet Cost and Benefits Calculator Tool, was developed by the U.S. Department of Energy's (DOE's) National

  16. Highway De-icing Snowmelt Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    De-icing Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name Highway De-icing Snowmelt Low Temperature Geothermal Facility Facility Highway De-icing...

  17. Hybrid options for light-duty vehicles.

    SciTech Connect (OSTI)

    An, F., Stodolsky, F.; Santini, D.

    1999-07-19

    Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

  18. Mesoscale hybrid calibration artifact

    DOE Patents [OSTI]

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  19. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center (OSTI)

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  20. Hybrid armature projectile

    DOE Patents [OSTI]

    Hawke, Ronald S. (Livermore, CA); Asay, James R. (Los Lunas, NM); Hall, Clint A. (Albuquerque, NM); Konrad, Carl H. (Albuquerque, NM); Sauve, Gerald L. (Berthoud, CO); Shahinpoor, Mohsen (Albuquerque, NM); Susoeff, Allan R. (Pleasanton, CA)

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  1. Hybrid armature projectile

    DOE Patents [OSTI]

    Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

    1993-03-02

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

  2. Advanced Actuators and Transducers: Hybrid actuator systems recover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environment energy to power devices - Energy Innovation Portal Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Advanced Actuators and Transducers: Hybrid actuator systems recover environment energy to power devices National Aeronautics and Space Administration Contact NASA About This Technology Technology Marketing SummaryActuators and transducers are deployed to

  3. Visualizing Electric Vehicle Sales | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 1/20/15.

  4. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  5. Additive manufacturing of hybrid circuits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  6. Water freezing and ice melting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  7. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R.; Hope, Mark E.; Zou, Zhanjiang; Kang, Xiaosong

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  8. De-icing thermostat for air conditioners

    SciTech Connect (OSTI)

    Levine, M.R.

    1986-12-09

    This patent describes an electronic thermostat adapted to be connected to an air-cooling apparatus to control the operative state of the apparatus. The thermostat includes a means for generating a digital electrical signal representative of a desired temperature setpoint and means for generating a digital electrical signal representative of the ambient temperature at the thermostat. The improvement described here comprises: means for generating control signals for the aircooling apparatus in order to inhibit the accumulation of ice on the cooling element of the air-cooling apparatus when the ambient temperature is above the temperature setpoint; means, responsive to the control signals, for deenergizing the compressor in the air-cooling apparatus for a first preselected period of time whenever the compressor is determined to have run continuously for a second preselected period of time; and means for adaptively adjusting the length of at least one of the first or second preselected periods of time as a function of the change in the rate of change of the ambient temperature.

  9. The New ICE Age | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for the heavy truck market PDF icon deer12gruden.pdf More Documents & Publications The New ICE Age The New ICE Age Roadmapping Engine Technology for Post-2020 Heavy Duty ...

  10. Climate, Ocean and Sea Ice Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    role of ocean and ice in high-latitude climate change and projecting the impacts of ... COSIM researchers develop, test and apply ocean and ice models in support of DOE Climate ...

  11. Ice in Arctic Mixed-phase Stratocumulus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  12. Visualizing Electric Vehicle Sales | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales July 25, 2013 - 2:48pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 1/20/15. Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs More on eGallon: Read more about electric vehicle sales and eGallon's continued

  13. From fire to ice

    SciTech Connect (OSTI)

    Adcock, P.W.

    1995-06-01

    Absorption chillers are heat-operate refrigeration without harmful environmental emissions (CFCs, HCFCS, and HFCS). The machine uses either steam or a gas-fired burner as the energy source and utilizes endothermic evaporation to provide refrigeration to an external process fluid, usually chilled water. In the United States, absorption chillers are used in regions where the cost of electricity is high relative to natural gas. Absorption chillers are also used in applications where steam is readily available or in areas where seasonal load peaks cause utilities to subsidize gas cooling. This paper will describe the history of absorption, the basic absorption refrigeration cycle and some advanced high efficiency cycles. Practical applications of absorption refrigeration to commercial end uses will also be discussed.

  14. Contractor SOW Template - ICE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ICE Contractor SOW Template - ICE The template presented below is a Statement of Work (SOW) for services of an ICE Support Contractor for assisting OECM in conducting an ICE. Project and review specific information should be incorporated. Explanatory text appears in italics, while information that should be selected appears in <<brackets>>. The format and contents of this SOW is not compulsory, and the use is at the discretion of the OECM Analysts, tailored as appropriate for the

  15. Climate, Ocean and Sea Ice Modeling (COSIM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences » Climate, Ocean and Sea Ice Modeling (COSIM) Climate, Ocean and Sea Ice Modeling (COSIM) The COSIM project develops advanced ocean and ice models for evaluating the role of ocean and ice in high-latitude climate change and projecting the impacts of high-latitude change on regions throughout the globe. Contact Us Phil Jones Fluid Dynamics and Solid Mechanics Email Wilbert Weijer Computational Physics and Methods Email Elizabeth Hunke Fluid Dynamics and Solid Mechanics

  16. Microsoft Word - 1 Million Electric Vehicle Report Final

    Energy Savers [EERE]

    One Million Electric Vehicles By 2015 February 2011 Status Report 2 Introduction In his 2011 State of the Union address, President Obama called for putting one million electric vehicles on the road by 2015 - affirming and highlighting a goal aimed at building U.S. leadership in technologies that reduce our dependence on oil. 1 Electric vehicles ("EVs") - a term that includes plug-in hybrids, extended range electric vehicles and all- electric vehicles -- represent a key pathway for

  17. Vehicle Technologies Office: Electric Drive Technologies Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Electric Drive Technologies Research and Development Vehicle Technologies Office: Electric Drive Technologies Research and Development Electric drive technologies, including the electric motor, inverter, boost converter, and on-board charger, are essential components of hybrid and plug-in electric vehicles (PEV) propulsion systems. The Vehicle Technologies Office (VTO) supports research and development (R&D) to reduce the cost and improve the

  18. Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report Citation Details In-Document Search Title: Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report The Norwegian Young Sea Ice (N-ICE) experiment was conducted aboard the R/V Lance research vessel from January through June 2015. The primary purpose of the experiment was to better understand thin, first-year sea ice. This includes understanding of how different components of the Arctic system

  19. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  20. Medical ice slurry production device

    DOE Patents [OSTI]

    Kasza, Kenneth E.; Oras, John; Son, HyunJin

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  1. Simultaneous production of desalinated water and power using a hybrid-cycle OTEC plant

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1987-05-01

    A systems study for simultaneous production of desalinated water and electric power using the hybrid-cycle OTEC system was carried out. The hybrid cycle is a combination of open and closed-cycle OTEC systems. A 10 MWe shore-based hybrid-cycle OTEC plant is discussed and corresponding operating parameters are presented. Design and plant operating criteria for adjusting the ratio of water production to power generation are described and their effects on the total system were evaluated. The systems study showed technical advantages of the hybrid-cycle power system as compared to other leading OTEC systems for simultaneous production of desalinated water and electric power generation.

  2. Look to the Right, Kids: Five Solar/Wind Hybrids | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Look to the Right, Kids: Five Solar/Wind Hybrids Look to the Right, Kids: Five Solar/Wind Hybrids September 1, 2010 - 2:16pm Addthis Genoa Township, Mich., installed five wind/solar hybrid units that will supply up to 20 percent of the township hall’s electrical needs. | Photo Courtesy of Genoa Township Genoa Township, Mich., installed five wind/solar hybrid units that will supply up to 20 percent of the township hall's electrical needs. | Photo Courtesy of Genoa Township Stephen Graff

  3. Hybrid Poplar Research

    SciTech Connect (OSTI)

    2006-09-01

    This Congressionally-mandated project focuses on characterizing and improving hybrid poplar plantation forestry systems with the ultimate goal of using poplars as a dedicated energy crop.

  4. Brake blending strategy for a hybrid vehicle

    DOE Patents [OSTI]

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  5. Hybrid stretchable circuits on silicone substrate

    SciTech Connect (OSTI)

    Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk [Nanoscience Centre, University of Cambridge, Cambridge CB01FF (United Kingdom); Liu, Q.; Suo, Z. [School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States); Lacour, S. P., E-mail: stephanie.lacour@epfl.ch [Centre for Neuroprosthetics and Laboratory for Soft Bioelectronics Interfaces, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 (Switzerland)

    2014-04-14

    When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

  6. Energy Cost Calculator for Commercial Ice Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ice Machines Energy Cost Calculator for Commercial Ice Machines Vary capacity size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Ice Cube Machine Ice Making Head Self-Contained Remote Condensing Unit Ice Making Head Type of Condenser Air Cooled Water Cooled Air Cooled Ice Harvest Rate (lbs. ice per 24 hrs.) lbs. per 24 hrs. 500 lbs. per 24 hrs. Energy

  7. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic

    Office of Scientific and Technical Information (OSTI)

    mixed-phase stratocumulus (Journal Article) | SciTech Connect The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus Citation Details In-Document Search Title: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus This study investigates the maintenance of cloud ice production in Arctic mixed phase stratocumulus in large-eddy simulations that include a prognostic ice nuclei (IN) formulation and a

  8. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic

    Office of Scientific and Technical Information (OSTI)

    mixed-phase stratocumulus (Journal Article) | SciTech Connect The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus Citation Details In-Document Search Title: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a

  9. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Compositional Variation Within Hybrid Nanostructures Print Wednesday, 29 September 2010 00:00 The inherently high surface area...

  10. How Would You Use a Neighborhood Electric Vehicle? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We know many of you are driving hybrid electric vehicles, but what do you think about ... Each Thursday, you have the chance to share your thoughts on a question about energy ...

  11. Plug-in Electric Vehicles Charge Forward in Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... EV Everywhere Charges Up the Workplace Project Overview Positive Impact More plug-in hybrid and all-electric vehicles in Oregon. Oregon is planning for the large-scale deployment ...

  12. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  13. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    SciTech Connect (OSTI)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-04-15

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  14. Wireless Power Transfer for Electric Vehicles

    SciTech Connect (OSTI)

    Scudiere, Matthew B; McKeever, John W

    2011-01-01

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  15. [Test and evaluation of electric vehicles]. Final technical report, September 9, 1990--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    LA Dept. of Water and Power currently operates 11 electric vehicles: 6 G-Vans, 4 Chrysler TEVans, and 1 Hybrid minivan. LADWP`s participation in US DOE`s site operator program involves the Hybrid electric minivan (mfd. by Unique Mobility, Englewood, CO) and one Chrysler TEVan. The program efforts are described.

  16. Icing on wind-energy systems

    SciTech Connect (OSTI)

    Hoffer, T.; Reale, T.; Elfiqi, A.

    1981-01-01

    A source of icing data is the network of meteorological recording stations within the continental United States which collect meteorological measurements both at the surface and aloft. This report presents procedures for analyzing this data to determine the maximum possible icing to be expected at specified locations. Since the physical processes are different, the procedures for predicting maximum glaze ice and rime are presented in separate sections. Models developed to simulate the maximum possible ice buildup on an exposed surface using the rainfall and cloud water data as input are also presented. In addition to the maximal dynamic and static icing loads, comparative icing values based on an attempt to simulate actual field conditions are also shown. Included are assumptions of droplet splashing and water drainage for the glaze cases and atmospheric mixing during orographic lifting for rime cases.

  17. Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    ... This includes understanding how different components of the Arctic system affect sea ice (e.g., atmosphere, ocean), but also how changing sea ice affects the system (e.g., ecology, ...

  18. Vehicle Technologies Office: Electric Motors Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Technologies Office: Electric Motors Research and Development Vehicle Technologies Office: Electric Motors Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to improve motors in hybrid and plug-in electric vehicles, with a particular focus on reducing the use of rare earth materials currently used for permanent magnet-based motors. In an electric drive

  19. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and

    Office of Scientific and Technical Information (OSTI)

    Local Storage (Conference) | SciTech Connect Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage Citation Details In-Document Search Title: Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant

  20. Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint

    Broader source: Energy.gov [DOE]

    To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9, 2010

  1. Marginal Ice Zone Observations and Processes Experiment

    Office of Scientific and Technical Information (OSTI)

    46 Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and Near the Marginal Ice Zone: The "Marginal Ice Zone Observations and Processes Experiment" (MIZOPEX) Final Campaign Summary JA Maslanik February 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any

  2. Automatic Commercial Ice Makers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automatic Commercial Ice Makers Automatic Commercial Ice Makers The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Automatic Commercial Ice Makers -- v2.0 More Documents

  3. Hybrid matrix fiber composites

    DOE Patents [OSTI]

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  4. Realizing a supercapacitor in an electrical circuit

    SciTech Connect (OSTI)

    Fukuhara, Mikio Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2014-11-17

    Capacitors are commonly used in electronic resonance circuits; however, capacitors have not been used for storing large amounts of electrical energy in electrical circuits. Here, we report a superior RC circuit which serves as an electrical storage system characterized by quick charging and long-term discharging of electricity. The improved energy storage characteristics in this mixed electric circuit (R{sub 1}?+?R{sub 2}C{sub 1}) with small resistor R{sub 1}, large resistor R{sub 2}, and large capacitor C{sub 1} are derived from the damming effect by large R{sub 2} in simple parallel R{sub 2}C{sub 1} circuit. However, no research work has been carried out previously on the use of capacitors as electrical energy storage devices in circuits. Combined with nanotechnology, we hope that our finding will play a remarkable role in a variety of applications such as hybrid electric vehicles and backup power supplies.

  5. Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet

    Office of Scientific and Technical Information (OSTI)

    Simulations (Conference) | SciTech Connect Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet Simulations Citation Details In-Document Search Title: Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet Simulations Authors: Lipscomb, William [1] ; Leguy, Gunter [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-06-17 OSTI Identifier: 1186039 Report Number(s): LA-UR-15-24514 DOE Contract Number: AC52-06NA25396 Resource Type:

  6. Potassium chloride-bearing ice VII and ice planet dynamics (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect SciTech Connect Search Results Journal Article: Potassium chloride-bearing ice VII and ice planet dynamics Citation Details In-Document Search Title: Potassium chloride-bearing ice VII and ice planet dynamics Authors: Frank, Mark R. ; Scott, Henry P. ; Aarestad, Elizabeth ; Prakapenka, Vitali B. [1] ; UC) [2] ; NIU) [2] + Show Author Affiliations Indiana ( Publication Date: 2015-12-10 OSTI Identifier: 1229896 Resource Type: Journal Article Resource Relation:

  7. 54.5 MPG and Beyond: Hybridization Moves Vehicles Forward | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hybridization Moves Vehicles Forward 54.5 MPG and Beyond: Hybridization Moves Vehicles Forward November 29, 2012 - 4:01pm Addthis With help from the Clean Cities National Parks Initiative, Grand Teton National Park was able to purchase hybrid electric vehicles, which the park's Wildlife Brigade use to spark discussions about emission and fuel efficiency. | Photo courtesy of the National Park Service. With help from the Clean Cities National Parks Initiative, Grand Teton National Park

  8. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  9. NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy September 28, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently completed a performance evaluation report that showed significant fuel economy benefits of hybrid electric delivery vans compared to similar conventional vans. "During the on-road portion of our study, the hybrid vans demonstrated a 13 to 20 percent higher fuel economy than the

  10. Sea ice - atmosphere interaction: Application of multispectral...

    Office of Scientific and Technical Information (OSTI)

    Application of multispectral satellite data in polar surface energy flux estimates. ... Title: Sea ice - atmosphere interaction: Application of multispectral satellite data in ...

  11. Southern Great Plains Ice Nuclei Characterization Experiment...

    Office of Scientific and Technical Information (OSTI)

    Characterization Experiment Final Campaign Summary Citation Details In-Document Search Title: Southern Great Plains Ice Nuclei Characterization Experiment Final Campaign ...

  12. Viscosity of interfacial water regulates ice nucleation

    SciTech Connect (OSTI)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; University of Chinese Academy of Sciences, Beijing 100049 ; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun Song, Yanlin

    2014-03-10

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and ?, in the context of classical nucleation theory. From the extracted J{sub 0} and ?, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  13. BISICLES Captures Details of Retreating Antarctic Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Satellite and ground observations show that the ice in this region is thinning and retreating significantly as shifting wind patterns and ocean currents allow warmer water to flow ...

  14. Comparison of 17 Ice Nucleation Measurement Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 Ice Nucleation Measurement Techniques for Immersion Freezing For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research...

  15. King County Metro Transit Hybrid Articulated Transit Buses: Interim Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Walkowicz, K.

    2006-04-01

    Interim technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington.

  16. Electrical Safety

    Energy Savers [EERE]

    ... Electrical Design Criteria ... of High-Voltage and Low-Current ... as a higher level of authority. Per the Integrated Safety Management model, ...

  17. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  18. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  19. Lower Hybrid Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    erating at 800 MHz is being used to launch lower hybrid waves into MST to assess the feasibility of this approach. Parameter studies show that edge density is a major factor in...

  20. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  1. Turbine anti-icing system

    SciTech Connect (OSTI)

    Ball, B. D.

    1985-12-31

    Exhaust gas is recirculated from the exhaust stack of a gas fired turbine to the air inlet along a constantly-open path to prevent inlet freeze-up. When anti-icing is not needed the exhaust stack is fully opened, creating a partial vacuum in the exhaust stack. At the turbine inlet the recirculation line, is opened to atmosphere. The resultant pressure differential between the opposite ends of the recirculation line creates a driving force for positively purging the recirculation line of unwanted residual exhaust gases. This in turn eliminates a source of unwanted moisture which could otherwise condense, freeze and interfere with turbine operations.

  2. Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric School Buses | Department of Energy up to $10 Million to Support Plug-In Hybrid Electric School Buses Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid Electric School Buses April 17, 2009 - 12:00am Addthis WASHINGTON, DC -- As part of the Department of Energy's commitment to advancing the next generation of electric vehicles in the United States, Energy Secretary Steven Chu today announced the selection of a new demonstration and testing project to develop a

  3. Roles of electricity: Electric steelmaking

    SciTech Connect (OSTI)

    Burwell, C.C.

    1986-07-01

    Electric steel production from scrap metal continues to grow both in total quantity and in market share. The economics of electric-steel production in general, and of electric minimills in particular, seem clearly established. The trend towards electric steelmaking provides significant economic and competitive advantages for producers and important overall economic, environmental, and energy advantages for the United States at large. Conversion to electric steelmaking offers up to a 4-to-1 advantage in terms of the overall energy used to produce a ton of steel, and s similar savings in energy cost for the producer. The amount of old scrap used to produce a ton of steel has doubled since 1967 because of the use of electric furnaces.

  4. A direct evidence of vibrationally delocalized response at ice surface

    SciTech Connect (OSTI)

    Ishiyama, Tatsuya; Morita, Akihiro

    2014-11-14

    Surface-specific vibrational spectroscopic responses at isotope diluted ice and amorphous ice are investigated by molecular dynamics (MD) simulations combined with quantum mechanics/molecular mechanics calculations. The intense response specific to the ordinary crystal ice surface is predicted to be significantly suppressed in the isotopically diluted and amorphous ices, demonstrating the vibrational delocalization at the ordinary ice surface. The collective vibration at the ice surface is also analyzed with varying temperature by the MD simulation.

  5. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  6. Full Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Braking button highlighted Stopped button BRAKING PART 1 Regenerative braking converts otherwise wasted energy from braking into electricity and stores it in the battery. In regenerative braking, the electric motor is reversed so that, instead of using electricity to turn the wheels, the rotating wheels turn the motor and create electricity. Using energy from the wheels to turn the motor slows the vehicle down. Go to nextÂ… stage graphic: vertical blue rule Main stage: See through car with

  7. Spongy icing in the marine environment

    SciTech Connect (OSTI)

    Lozowski, E.P.; Blackmore, R.Z.; Forest, T.W.; Shi, J.

    1996-12-01

    Newly formed marine ice accretions may include liquid brine amounts up to about 50% of the total accretion mass. Because they ignore this sponginess, traditional thermodynamic models of icing may significantly underestimate the total marine ice load. In an attempt to improve the capabilities of such models, the authors have undertaken experimental and theoretical research, directed at measuring and predicting the liquid fraction of ice accretions. The experimental work consisted of growing ice accretions on rotating cylinders in the Marine Icing Wind Tunnel at the University of Alberta, over a range of temperatures from {minus}2 C to {minus}25 C, and wind speeds from 19 to 30 m/s, at liquid water contents (3 to 9 g/m) typical of the marine spray environment. A calorimeter was used to measure the liquid fraction of the ice accretions. The experiments indicate that the liquid fraction is almost independent of the environmental conditions and ranges between about 32% and 47%. The authors have also developed a theoretical model of the morphology of the icing process which takes place under a falling supercooled liquid film. Comparisons between the model and experiments show that the model is able to predict accretion growth rate and sponginess with some degree of skill. However, there remain important aspects of the sponginess phenomenon which continue to elude them.

  8. Cable twisting due to atmospheric icing

    SciTech Connect (OSTI)

    McComber, P.; Druez, J.; Savadjiev, K.

    1995-12-31

    Samples of ice accretions collected on cables of overhead transmission lines have shown evidence of twisting of the cable during atmospheric icing. Previous work has attributed cable twisting to the torque created by the weight of an eccentric ice shape and by wind forces. However, testing of stranded cables and conductors has shown that such cables also twist when there is a change in tension in the cable span. This phenomenon is related to the interaction of the different strand layers under tension. When a cable is subjected to atmospheric icing, cable tension increases and this type of twisting should also be considered. In order to determine how the two types of twisting would compare on transmission lines, a numerical simulation was made using characteristics of a typical 35-mm stranded conductor. The twist angle was computed as a function of cable span, sag to span ratio and increasing ice loads. The simulation shows that for transmission lines, twisting due to varying tension will be significant. Since cable tension is influenced by wind speed and ambient temperature as well as ice load, this phenomenon, unless prevented, results in ice accretion more circular in shape and hence eventually in larger ice loads.

  9. Passive ice freezing-releasing heat pipe

    DOE Patents [OSTI]

    Gorski, Anthony J.; Schertz, William W.

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  10. Sandia Energy - Ice-Sheet Simulation Code Matures, Leveraging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and as the land ice component of coupled climate simulations in DOE's Earth System Model. The land ice component is responsible for simulating the evolution of the...

  11. Complex systems influence melting of Greenland ice sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things are more complicated...

  12. STATEMENT OF WORK (SOW) TEMPLATE FOR ICE SUPPORT CONTRACTOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ICE Scope: Perform a <ICE Contractor may mutually agree to add or delete particular sections, based ...

  13. ICR-ICE Standard Operating Procedures (Update Sept 2013) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures Contractor SOW Template - ICR Contractor SOW Template - ICE...

  14. Building a next-generation community ice sheet model: meeting...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Building a next-generation community ice sheet model: meeting summary Citation Details In-Document Search Title: Building a next-generation community ice sheet ...

  15. New climate model predicts likelihood of Greenland ice melt,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New climate model predicts likelihood of Greenland ice melt New climate model predicts likelihood of Greenland ice melt, sea level rise and dangerous temperatures A new computer ...

  16. Greenland Ice Sheet Modeling Update (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Greenland Ice Sheet Modeling Update Citation Details In-Document Search Title: Greenland Ice Sheet Modeling Update You are accessing a document from the Department of Energy's...

  17. Determination of Large-Scale Cloud Ice Water Concentration by...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Determination of Large-Scale Cloud Ice Water Concentration by Combining ... Title: Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface ...

  18. Optimal Initial Conditions for Coupling Ice Sheet Models to Earth...

    Office of Scientific and Technical Information (OSTI)

    for Coupling Ice Sheet Models to Earth System Models. Citation Details In-Document Search Title: Optimal Initial Conditions for Coupling Ice Sheet Models to Earth System Models. ...

  19. Department of Energy Land Ice Modeling Efforts (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Energy Land Ice Modeling Efforts Citation Details In-Document Search Title: Department of Energy Land Ice Modeling Efforts Authors: Price, Stephen F. Dr 1 + Show Author...

  20. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  1. Merging photovoltaic hardware development with hybrid applications in the USA

    SciTech Connect (OSTI)

    Bower, W.

    1993-11-01

    The use of multi-source power systems, ``hybrids,`` is one of the fastest growing, potentially significant markets for photovoltaic (PV) system technology today. Cost-effective applications today include remote facility power, remote area power supplies, remote home and village power, and power for dedicated electrical loads such as communications systems. This market sector is anticipated to be one of the most important growth opportunities for PV over the next five years. The US Department of Energy (USDOE) and Sandia National Laboratories (SNL) are currently engaged in an effort to accelerate the adoption of market-driven PV hybrid power systems and to effectively integrate PV with other energy sources. This paper provides details of this development and the ongoing hybrid activities in the United States. Hybrid systems are the primary focus of this paper.

  2. Fusion-fission hybrid studies in the United States

    SciTech Connect (OSTI)

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-05-20

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or /sup 233/U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of /sup 238/U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical.

  3. Hybrid Energy System Modeling in Modelica

    SciTech Connect (OSTI)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  4. Highway vehicle electric drive in the United States : 2009 status and issues.

    SciTech Connect (OSTI)

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  5. SolarHybrid AG | Open Energy Information

    Open Energy Info (EERE)

    SolarHybrid AG Jump to: navigation, search Name: SolarHybrid AG Place: Germany Sector: Solar Product: Germany-based solar thermal hybrid product manufacturer References:...

  6. Advanced hybrid vehicle propulsion system study

    SciTech Connect (OSTI)

    Schwarz, R.

    1982-05-01

    Results of a study of an advanced heat engine/electric automotive hybrid propulsion system are presented. The system uses a rotary stratified charge engine and an ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system parameters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 l/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  7. Hybrid baryons in QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less

  8. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  9. Electrical properties of ternary Si-C-N ceramics

    SciTech Connect (OSTI)

    Haluschka, C.; Engel, C.; Riedel, R.

    1996-12-31

    Ternary Si-C-N ceramics were derived from silicon containing polymers by thermally induced hybrid processing. These silicon carbonitrides were investigated by impedance spectroscopy depending on the synthesis conditions. The electrical behavior correlates with the solid state reactions and phase transformations, which take place during the processing. It has also been shown that the electrical properties can be controlled in a wide range.

  10. Electrical Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Fig. 1-1. Flow down of Electrical AHJ and worker responsibility. 3 DOE-HDBK-1092-2013 2.0 ... When equipment contains storage batteries, workers should be protected from the various ...

  11. Video monitoring of atmospheric icing

    SciTech Connect (OSTI)

    Wareing, J.B.; Chetwood, P.A.

    1995-12-31

    Over the past six years, EA Technology has been involved in the remote monitoring of test spans and samples of overhead transmission line conductors in the UK in areas chosen for their severe winter weather. The sites are unmanned and regularly suffer gales, blizzards and severe icing conditions. Test samples at the sites are monitored day and night using automate, computer and remotely controlled video and still cameras using both the visible and near infrared spectrum. Video and still picture data is stored on site for periodic collection. Meteorological and load force data is collected and also stored at these remote sites and is sent automatically by mobile phone link to a computer at the EA Technology center. All this data can also be monitored at any time at the center over 200 miles away.

  12. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  13. Wind turbine performance under icing conditions

    SciTech Connect (OSTI)

    Jasinski, W.J.; Noe, S.C.; Selig, M.S.; Bragg, M.B.

    1998-02-01

    The effects of rime ice on horizontal axis wind turbine performance were estimated. For typical supercooled fog conditions found in cold northern regions, four rime ice accretions on the S809 wind turbine airfoil were predicted using the NASA LEWICE code. The resulting airfoil/ice profile combinations were wind tunnel tested to obtain the lift, drag, and pitching moment characteristics over the Reynolds number range 1--2 {times} 10{sup 6}. These data were used in the PROPID wind turbine performance prediction code to predict the effects of rime ice on a 450-kW rated-power, 28.7-m diameter turbine operated under both stall-regulated and variable-speed/variable-pitch modes. Performance losses on the order of 20% were observed for the variable-speed/variable-pitch rotor. For the stall-regulated rotor, however, a relatively small rime ice profile yielded significantly larger performance losses. For a larger 0.08c-long rime ice protrusion, however, the rated peak power was exceeded by 16% because at high angles the rime ice shape acted like a leading edge flap, thereby increasing the airfoil C{sub l,max} and delaying stall.

  14. Technique for Measuring Hybrid Electronic Component Reliability

    SciTech Connect (OSTI)

    Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

    1999-01-01

    Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

  15. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be caused by electrical effects. Subsequently, extensive theoretical, bench-scale, and pilot-scale investigations were completed to find an approach to prevent bag damage without compromising AHPC performance. Results showed that the best bag protection and AHPC performance were achieved by using a perforated plate installed between the discharge electrodes and bags. This perforated-plate design was then installed in the 2.5-MW AHPC at Big Stone Power Plant in Big Stone City, South Dakota, and the AHPC was operated from March to June 2001. Results showed that the perforated-plate design solved the bag damage problem and offered even better AHPC performance than the previous design. All of the AHPC performance goals were met, including ultrahigh collection efficiency, high air-to-cloth ratio, reasonable pressure drop, and long bag-cleaning interval.

  16. hybrid | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Dc(266) Contributor 19 February, 2015 - 15:08 2016 Toyota Mirai Fuel Cell Car First Drive - HybridCars.com Review 2016 car fuel cell hybrid mirai toyota vehicle...

  17. Full Hybrid: Stopped

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Braking button Stopped button STOPPED When the vehicle is stopped, such as at a red light, the gasoline engine and electric motor shut off automatically so that energy is not wasted in idling. All other systems, including the electric air conditioning, continue to run. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery,

  18. Scenario analysis of hybrid class 3-7 heavy vehicles.

    SciTech Connect (OSTI)

    An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

    1999-12-23

    The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

  19. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity

    SciTech Connect (OSTI)

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.; Michaelides, Angelos

    2015-05-14

    Ice formation is one of the most common and important processes on earth and almost always occurs at the surface of a material. A basic understanding of how the physicochemical properties of a material’s surface affect its ability to form ice has remained elusive. Here, we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at a hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water exists for promoting ice nucleation.We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  20. Magnetic vortex crystal formation in the antidot complement of square artificial spin ice

    SciTech Connect (OSTI)

    Araujo, C. I. L. de Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R.; Mól, L. A. S.

    2014-03-03

    We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.

  1. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect (OSTI)

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the full storage mode was about equal to what could be expected through a simple rooftop efficiency upgrade, the operating costs for the Roofberg system could be much more favorable depending on the utility rate structure. The ability of Roofberg to move much of the cooling load to off-peak periods enables it to take advantage of on-peak demand charges and time-of-use electricity rates. The Roofberg system, as installed, was able to reduce the on-peak energy use of the cooling system to 35% of the on-peak energy consumption of the baseline system. A comparative analysis of a rooftop replacement and Roofberg indicated that the Roofberg system on Building 2518 would be the better economic choice over a range of demand charges and on-off peak energy prices which are typical of utility rate tariffs for commercial buildings.

  2. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  3. Nuclear hybrid energy infrastructure

    SciTech Connect (OSTI)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  4. The influence of ice nucleation mode and ice vapor growth on simulation of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arctic mixed-phase clouds The influence of ice nucleation mode and ice vapor growth on simulation of arctic mixed-phase clouds Avramov, Alexander The Pennsylvania State University Category: Modeling Mixed-phase arctic stratus clouds are the predominant cloud type in the Arctic . Perhaps one of the most intriguing of their features is that they tend to have liquid tops that precipitate ice. Despite the fact that this situation is colloidally unstable, these cloud systems are quite long lived

  5. A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2012-02-08

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.

  6. Smoothed particle hydrodynamics Non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface ?ows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is veri?ed by simulating Poiseuille ?ow, plane shear ?ow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian ?uid. In the present work, however, the ice is modeled as both viscous Newtonian ?uid and non-Newtonian ?uid, such that the e?ect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glen’s law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  7. De-icing: recovery of diffraction intensities in the presence of ice rings

    SciTech Connect (OSTI)

    Chapman, Michael S.; Somasundaram, Thayumanasamy

    2010-11-03

    Macromolecular structures are routinely determined at cryotemperatures using samples flash-cooled in the presence of cryoprotectants. However, sometimes the best diffraction is obtained under conditions where ice formation is not completely ablated, with the result that characteristic ice rings are superimposed on the macromolecular diffraction. In data processing, the reflections that are most affected by the ice rings are usually excluded. Here, an alternative approach of subtracting the ice diffraction is tested. High completeness can be retained with little adverse effect upon the quality of the integrated data. This offers an alternate strategy when high levels of cryoprotectant lead to loss of crystal quality.

  8. Developing and Evaluating Ice Cloud Parameterizations by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by remote sensing is that the transfer functions which relate the observables (e. g., radar Doppler spectrum) to cloud properties (e. g., ice water content, or IWC) are not...

  9. Spreading of oil spilled under ice

    SciTech Connect (OSTI)

    Yapa, P.D.; Chowdhury, T. )

    1990-12-01

    A new set of equations is presented to describe the process of oil spreading under ice in clam waters. These equations consider the gravity (buoyancy)-inertia phase, the gravity (buoyancy)-viscous phase, and the termination of spreading during the buoyancy-surface-tension phase. The derivation considers both the constant discharge mode and the constant volume mode. Therefore, a complete description of the spreading phenomena from the time of initial spill to the termination of spreading is presented. Laboratory experiments were conducted using both real ice covers in a cold room and artificial ice covers. The experiments included different ice-cover roughnesses from smooth to rough, oils of different viscosities, and a variety of discharge conditions. The experimental data show close agreement with the theory. These equations can be used during cleanup or environmental impact assessment to estimate the area of an oil slick with respect to time.

  10. An analysis of selected atmospheric icing events on test cables

    SciTech Connect (OSTI)

    Druez, J.; McComber, P.; Laflamme, J.

    1996-12-01

    In cold countries, the design of transmission lines and communication networks requires the knowledge of ice loads on conductors. Atmospheric icing is a stochastic phenomenon and therefore probabilistic design is used more and more for structure icing analysis. For strength and reliability assessments, a data base on atmospheric icing is needed to characterize the distributions of ice load and corresponding meteorological parameters. A test site where icing is frequent is used to obtain field data on atmospheric icing. This test site is located on the Mt. Valin, near Chicoutimi, Quebec, Canada. The experimental installation is mainly composed of various instrumented but non-energized test cables, meteorological instruments, a data acquisition system, and a video recorder. Several types of icing events can produce large ice accretions dangerous for land-based structures. They are rime due to in-cloud icing, glaze caused by freezing rain, wet snow, and mixtures of these types of ice. These icing events have very different characteristics and must be distinguished, before statistical analysis, in a data base on atmospheric icing. This is done by comparison of data from a precipitation gauge, an icing rate meter and a temperature sensor. An analysis of selected icing periods recorded on the cables of two perpendicular test lines during the 1992--1993 winter season is presented. Only significant icing events have been considered. A comparative analysis of the ice load on the four test cables is drawn from the data, and typical accretion and shedding parameters are calculated separately for icing events related to in-cloud icing and precipitation icing.

  11. Icing modelling in NSMB with chimera overset grids

    SciTech Connect (OSTI)

    Pena, D.; Deloze, T.; Laurendeau, E.; Hoarau, Y.

    2015-03-10

    In aerospace Engineering, the accurate simulation of ice accretion is a key element to increase flight safety and avoid accidents related to icing effects. The icing code developed in the NSMB solver is based on an Eulerian formulation for droplets tracking, an iterative Messinger model using a modified water runback scheme for ice thickness calculation and mesh deformation to track the ice/air interface through time. The whole process is parallelized with MPI and applied with chimera grids.

  12. Investigations of Spatial and Temporal Variability of Ocean and Ice

    Office of Scientific and Technical Information (OSTI)

    Conditions in and Near the Marginal Ice Zone. The "Marginal Ice Zone Observations and Processes Experiment" (MIZOPEX) Final Campaign Summary (Technical Report) | SciTech Connect Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and Near the Marginal Ice Zone. The "Marginal Ice Zone Observations and Processes Experiment" (MIZOPEX) Final Campaign Summary Citation Details In-Document Search Title: Investigations of Spatial and Temporal

  13. Melting of ice wedges adds to arctic warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can we someday predict earthquakes? Melting of ice wedges adds to arctic warming New ways of looking at seismic information and innovative laboratory experiments are offering tantalizing clues to what triggers earthquakes-and when. March 14, 2016 Ice throughout the Arctic is vanishing due to a rapidly warming climate. Ice throughout the Arctic is vanishing due to a rapidly warming climate. Melting of ice wedges adds to arctic warming Ice wedges are a particularly cool surface feature in the

  14. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  15. Development of a Mobile Ice Nucleus Counter

    SciTech Connect (OSTI)

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70 deg C, and a single stage system can operate the warm wall at -45 deg C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  16. Lower hybrid wavepacket stochasticity revisited

    SciTech Connect (OSTI)

    Fuchs, V.; Krlín, L.; Pánek, R.; Preinhaelter, J.; Seidl, J.; Urban, J.

    2014-02-12

    Analysis is presented in support of the explanation in Ref. [1] for the observation of relativistic electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [1,2]. LH power from the WEGA TE11 circular waveguide, 9 cm diameter, un-phased, 2.45 GHz antenna, is radiated into a B?0.5 T, Đś„n{sub e}?5×10{sup 17} 1/m{sup 3} plasma at T{sub e}?10 eV bulk temperature with an EC generated 50 keV component [1]. The fast electrons cycle around flux or drift surfaces with few collisions, sufficient for randomizing phases but insufficient for slowing fast electrons down, and thus repeatedly interact with the rf field close to the antenna mouth, gaining energy in the process. Our antenna calculations reveal a standing electric field pattern at the antenna mouth, with which we formulate the electron dynamics via a relativistic Hamiltonian. A simple approximation of the equations of motion leads to a relativistic generalization of the area-preserving Fermi-Ulam (F-U) map [3], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna conditions, the F-U map predicts an LH driven current of about 230 A, at about 225 W of dissipated power, in good agreement with the measurements and analysis reported in [1].

  17. Recent Analysis of UCAPs in Mild Hybrids (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Gonder, J.

    2006-05-01

    This report presents the analysis of ultracapacitors for mild/moderate hybrid electric vehicle (HEV) performance. The objectives of this report are to: (1) review the fuel economy improvement trends of today's HEVs with respect to degree of hybridization; (2) perform analysis to see the extent of fuel economy improvement possible with various strategies in mild/moderate HEVs, with no engine downsizing, using either batteries or ultracapacitors; (3) identify energy requirements of various driving events/functions--what matches a limited ucap's energy; and (4) discuss potential roles for high-voltage ultracapacitors in HEVs, if any.

  18. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  19. Performance evaluation of stand alone hybrid PV-wind generator

    SciTech Connect (OSTI)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  20. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    DOE Patents [OSTI]

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.