Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Category:Hyperspectral Imaging | Open Energy Information  

Open Energy Info (EERE)

following page. H Hyperspectral Imaging Retrieved from "http:en.openei.orgwindex.php?titleCategory:HyperspectralImaging&oldid794160" Categories: Geothermal Passive Sensors...

2

Hyperspectral Imaging | Open Energy Information  

Open Energy Info (EERE)

Hyperspectral Imaging Hyperspectral Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Hyperspectral Imaging Details Activities (4) Areas (4) Regions (1) NEPA(1) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: mineral maps can be used to show the presence of hydrothermal minerals and mineral assemblages Stratigraphic/Structural: aerial photographs can show structures Hydrological: delineate locations of surface water features Thermal: vegetation maps can show plants stressed due to nearby thermal activity Cost Information Low-End Estimate (USD): 8.63863 centUSD 0.00863 kUSD 8.63e-6 MUSD

3

Definition: Hyperspectral Imaging | Open Energy Information  

Open Energy Info (EERE)

Imaging Imaging Jump to: navigation, search Dictionary.png Hyperspectral Imaging Hyperspectral sensors collect data across a wide range of the spectrum (VNIR-LWIR, plus TIR) at small spectral resolution (5-15 nm) and high spatial resolution (1-5 m). This allows detailed spectral signatures to be identified for different imaged materials - for example hyperspectral imaging can be used to identify specific clay minerals; multispectral imaging can identify only the presence of clay minerals in general. View on Wikipedia Wikipedia Definition Hyperspectral imaging, like other spectral imaging, collects and processes information from across the electromagnetic spectrum. Much as the human eye sees visible light in three bands (red, green, and blue), spectral imaging divides the spectrum into many more bands. This technique

4

Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes AVIRIS airborne hyperspectral imaging. References Melanie J. Hellman, Michael S. Ramsey (2004) Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http://en.openei.org/w/index.php?title=Hyperspectral_Imaging_At_Yellowstone_Region_(Hellman_%26_Ramsey,_2004)&oldid=400435"

5

Hyperspectral Imaging: Training Algorithms & Data Generation  

E-Print Network (OSTI)

Hyperspectral Imaging: Training Algorithms & Data Generation REU Students: Ping Fung and Carl +exp[-2(( + s))1/2 D / 3]} 1-rlSI +(rl - SI )exp[-2(( + s))1/2 D / 3] Data Generation To apply our possible parameters is impractical, so we generate approximate spectra using a physical model based

Mountziaris, T. J.

6

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

7

Hyperspectral Imaging At Salton Sea Area (Reath, Et Al., 2010...  

Open Energy Info (EERE)

Reath, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Salton Sea Area (Reath, Et Al., 2010) Exploration...

8

Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin...  

Open Energy Info (EERE)

Calvin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin, Et Al.,...

9

Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Hyperspectral data was also used to successfully map soil-mineral anomalies that are structurally related in Dixie Valley, Nevada. In the area of the power plant, 20 m spatial resolution AVIRIS data were used. For Dixie Meadows, Nevada, 3 m spatial resolution HyVista HyMap hyperspectral data

10

Visible/near-infrared hyperspectral imaging for beef tenderness prediction  

Science Journals Connector (OSTI)

Beef tenderness is an important quality attribute for consumer satisfaction. The current beef quality grading system does not incorporate a direct measure of tenderness because there is currently no accurate, rapid, nondestructive method for predicting ... Keywords: Beef tenderness, Hyperspectral imaging, Instrument grading, Principal component analysis, Textural co-occurrence matrices

Govindarajan Konda Naganathan; Lauren M. Grimes; Jeyamkondan Subbiah; Chris R. Calkins; Ashok Samal; George E. Meyer

2008-12-01T23:59:59.000Z

11

Dark-field hyperspectral X-ray imaging  

Science Journals Connector (OSTI)

...or to studying static systems. Hyperspectral imaging...integrated circuitry. Systems, currently available...energy-dispersive XRD, defined by collimation through the pinhole...energy broadening from collimation is deltaE/E=9...achievable with our detector system and with large amounts...

2014-01-01T23:59:59.000Z

12

Standoff Hyperspectral Imaging of Explosives Residues Using Broadly Tunable External Cavity Quantum Cascade Laser Illumination  

SciTech Connect

We describe experimental results on the detection of explosives residues using active hyperspectral imaging by illumination of the target surface using an external cavity quantum cascade laser (ECQCL) and imaging using a room temperature microbolometer camera. The active hyperspectral imaging technique forms an image hypercube by recording one image for each tuning step of the ECQCL. The resulting hyperspectral image contains the full absorption spectrum produced by the illumination laser at each pixel in the image which can then be used to identify the explosive type and relative quantity using spectral identification approaches developed initially in the remote sensing community.

Bernacki, Bruce E.; Phillips, Mark C.

2010-05-01T23:59:59.000Z

13

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010)  

Open Energy Info (EERE)

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes "The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument acquired hyperspectral data over northern Fish Lake Valley in March 2003. The AVIRIS sensor is maintained by the Jet Propulsion Laboratory and collects data in 224 wavelengths from the visible to shortwave infrared (0.4 to 2.5 micro-m) at 2 m spatial resolution. The data set covers the

14

RECENT ACTIVITIES IN THE HYPERSPECTRAL IMAGING NETWORK (HYPER-I-NET): A EUROPEAN CONSORTIUM FOSTERING IMAGING SPECTROSCOPY RESEARCH  

E-Print Network (OSTI)

] to advanced data processing [7], and science applica- tions [8]. Although hyperspectral imaging has beenRECENT ACTIVITIES IN THE HYPERSPECTRAL IMAGING NETWORK (HYPER-I-NET): A EUROPEAN CONSORTIUM, and 4) science appli- cations. Along with the description of the progress made in the four main areas

Plaza, Antonio J.

15

Extreme learning machines for soybean classification in remote sensing hyperspectral images  

Science Journals Connector (OSTI)

This paper focuses on the application of Extreme Learning Machines (ELM) to the classification of remote sensing hyperspectral data. The specific aim of the work is to obtain accurate thematic maps of soybean crops, which have proven to be difficult ... Keywords: Agricultural remote sensing, Extreme learning machine, Hyperspectral images

Ramón Moreno; Francesco Corona; Amaury Lendasse; Manuel Graña; Lênio S. Galvão

2014-03-01T23:59:59.000Z

16

Digital Compressive Quantitation and Hyperspectral Imaging  

E-Print Network (OSTI)

Jun 20, 2013 ... produced using multivariate curve resolution (MCR) to pre-process mixture training spectra, thus facilitating the quantitation of mixtures even when no pure chemical component .... simulated annealing to ?nd the rotation matrix elements that ... the image registration was also performed in Matlab R2012a.

2013-07-25T23:59:59.000Z

17

Multispectral detection of organic residues on poultry processing plant equipment based on hyperspectral reflectance imaging technique  

Science Journals Connector (OSTI)

Diluted organic residues, such as feces, ingesta and other biological substances on poultry processing plant equipment surfaces, not easily discernible by human eye, are potential contamination sources for poultry carcasses. Development of sensitive ... Keywords: Fecal contamination, Hyperspectral, Multispectral, Reflectance image

Byoung-Kwan Cho; Yud-Ren Chen; Moon S. Kim

2007-07-01T23:59:59.000Z

18

The Robust Classification of Hyperspectral Images Using Adaptive Wavelet Kernel Support Vector Data Description  

E-Print Network (OSTI)

Detection of targets in hyperspectral images is a specific case of one-class classification. It is particularly relevant in the area of remote sensing and has received considerable interest in the past few years. The thesis proposes the use...

Kollegala, Revathi

2012-07-16T23:59:59.000Z

19

Hyperspectral Imaging At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a...

20

3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.  

SciTech Connect

A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

2007-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Magnetic Imaging Wolfgang Kuch  

E-Print Network (OSTI)

Magnetic Imaging Wolfgang Kuch Freie Universit¨at Berlin, Institut f¨ur Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany kuch@physik.fu-berlin.de Abstract. Imaging of magnetic domains has- ern techniques is used nowadays routinely for magnetic imaging of magnetic ma- terials

Kuch, Wolfgang

22

Nuclear magnetic resonance imaging  

Science Journals Connector (OSTI)

Nuclear magnetic resonance imaging (NMRI) is a powerful imaging modality having a range of important applications to medicine and industry. The basic principles of NMRI are reviewed in...

Rothwell, William P

1985-01-01T23:59:59.000Z

23

Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays  

SciTech Connect

Hyperspectral imaging (HSI), in which each pixel contains a high-resolution spectrum, is a powerful technique that can remotely detect, identify, and quantify a multitude of materials and chemicals. The advent of addressable micro-mirror arrays (MMAs) makes possible a new class of programmable hyperspectral imagers that can perform key spectral processing functions directly in the optical hardware, thus alleviating some of HSI's high computational overhead, as well as offering improved signal-to-noise in certain important regimes (e.g. when using uncooled infrared detectors). We have built and demonstrated a prototype UV-Visible micro-mirror hyperspectral imager that is capable not only of matched-filter imaging, but also of full hyperspectral imagery via the Hadamard transform technique. With this instrument, one can upload a chemical-specific spectral matched filter directly to the MMA, producing an image showing the location of that chemical without further processing. Target chemicals are changeable nearly instantaneously simply by uploading new matched-filter patterns to the MMA. Alternatively, the MMA can implement Hadamard mask functions, yielding a full-spectrum hyperspectral image upon inverting the transform. In either case, the instrument can produce the 2D spatial image either by an internal scan, using the MMA itself, or with a traditional external push-broom scan. The various modes of operation are selectable simply by varying the software driving the MMA. Here the design and performance of the prototype is discussed, along with experimental results confirming the signal-to-noise improvement produced by the Hadamard technique in the noisy-detector regime.

Love, Steven P [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

24

Fast Hyperspectral Imaging Using a Mid-Infrared Tunable External Cavity Quantum Cascade Laser  

SciTech Connect

An active hyperspectral imaging system using an external cavity quantum cascade laser and a focal plane array acquiring images at 25 Hz from 985 cm-1 to 1075 cm-1 with a resolution of 0.3 cm 1 is demonstrated. The chemical imaging of gases is demonstrated in both static and dynamic cases. The system was also used to analyze liquid and solid samples.

Phillips, Mark C.; Ho, Nicolas

2008-04-23T23:59:59.000Z

25

Automation of waste recycling using hyperspectral image analysis Artzai Picon1  

E-Print Network (OSTI)

Automation of waste recycling using hyperspectral image analysis Artzai Picon1 Ovidiu Ghita2 Pedro. In this paper we present a novel methodology to automate the recycling process of non-ferrous metal Waste from that the proposed solution can be used to replace the manual procedure that is currently used in WEEE recycling

Whelan, Paul F.

26

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data  

E-Print Network (OSTI)

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data Javier large spill oil events threatening coastal habitats and species. Some recent examples include the 2002 Prestige tanker oil spill in Galicia, Northern Spain, as well as repeated oil spill leaks evidenced

Plaza, Antonio J.

27

Hyperspectral microscope for in vivo imaging of microstructures and cells in tissues  

DOE Patents (OSTI)

An optical hyperspectral/multimodal imaging method and apparatus is utilized to provide high signal sensitivity for implementation of various optical imaging approaches. Such a system utilizes long working distance microscope objectives so as to enable off-axis illumination of predetermined tissue thereby allowing for excitation at any optical wavelength, simplifies design, reduces required optical elements, significantly reduces spectral noise from the optical elements and allows for fast image acquisition enabling high quality imaging in-vivo. Such a technology provides a means of detecting disease at the single cell level such as cancer, precancer, ischemic, traumatic or other type of injury, infection, or other diseases or conditions causing alterations in cells and tissue micro structures.

Demos; Stavros G. (Livermore, CA)

2011-05-17T23:59:59.000Z

28

The application of hyperspectral image techniques on MODIS data for the detection of oil spills in the RSA1  

E-Print Network (OSTI)

The application of hyperspectral image techniques on MODIS data for the detection of oil spills Oceanography Centre, Empress Dock, Southampton, S014 3ZH, UK ABSTRACT Oil spills pose a serious threat to the sensitive marine ecosystem of the RSA. The study aims to detect and identify oil spills using remote sensing

Quartly, Graham

29

Hyperspectral Imaging of Structure and Composition in Atomically Thin Heterostructures  

Science Journals Connector (OSTI)

Precise vertical stacking and lateral stitching of two-dimensional (2D) materials, such as graphene and hexagonal boron nitride (h-BN), can be used to create ultrathin heterostructures with complex functionalities, but this diversity of behaviors also makes these new materials difficult to characterize. ... It produces transmission or reflection images (see Figure 1c for transmission mode, Figure 5a for reflection mode) with no chromatic aberrations due to its exclusively mirror-based (“catoptric”)(23) optics; additionally, elements were specifically chosen for optimal performance over all DUV–vis-NIR energies (see Supporting Information). ... The at. registry and its absence are consistent with the two different strain-induced deformations we observe; by tilting the samples to break mirror symmetry, we find a high d. of twinned domains in oriented multilayer graphene, where multiple domains of two different stacking configurations coexist, connected by discrete twin boundaries. ...

Robin W. Havener; Cheol-Joo Kim; Lola Brown; Joshua W. Kevek; Joel D. Sleppy; Paul L. McEuen; Jiwoong Park

2013-07-10T23:59:59.000Z

30

Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array  

SciTech Connect

A versatile mid-infrared hyperspectral imaging system is demonstrated by combining a broadly tunable external cavity quantum cascade laser and a microbolometer focal plane array. The tunable mid-infrared laser provided high brightness illumination over a tuning range from 985 cm-1 to 1075 cm-1 (9.30-10.15 ?m). Hypercubes containing images at 300 wavelengths separated by 0.3 cm 1 were obtained in 12 s. High spectral resolution chemical imaging of methanol vapor was demonstrated for both static and dynamic systems. The system was also used to image and characterize multiple component liquid and solid samples.

Phillips, Mark C.; Ho, Nicolas

2008-02-04T23:59:59.000Z

31

Low field magnetic resonance imaging  

DOE Patents (OSTI)

A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

2010-07-13T23:59:59.000Z

32

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Lensless Imaging of Magnetic Nanostructures Lensless Imaging of Magnetic Nanostructures Print Wednesday, 28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

33

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

34

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

35

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

36

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

37

Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral images  

E-Print Network (OSTI)

- 1 - Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral-Philippe.Combe@chimie.univ-nantes.fr Abstract This study presents an innovative approach to map microphytobenthos biomass and fractional cover to microscale intimate mixtures. This prevents the use of classical linear unmixing models to retrieve biomass

Combe, Jean-Philippe

38

VIMS images of the Huygens landing site on Titan: S. Rodriguez et al. Cassini/VIMS hyperspectral observations of the HUYGENS  

E-Print Network (OSTI)

VIMS images of the Huygens landing site on Titan: S. Rodriguez et al. 1 Cassini/VIMS hyperspectral.N. Clark2 , B. Buratti3 , R.H. Brown4 , T.B. McCord5 , P.D. Nicholson6 , K.H. Baines3 and the VIMS science Number of Table(s): 1 Number of figure(s): 11 Running Head: VIMS images of the Huygens probe landing site

Paris-Sud XI, Université de

39

MagLab Audio Dictionary: Magnetic Resonance Imaging (MRI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Resonance Imaging (MRI)? Now Playing: What's Magnetic Resonance Imaging (MRI)? Enable Javascript and Flash to stream the Magnet Minute Sam Grant Associated Links MRI: A...

40

Magnetic Resonance Imaging in Soil Science  

Science Journals Connector (OSTI)

Magnetic resonance imaging is based upon the physical effect of nuclear magnetic resonance (NMR) of spin bearing atomic...1991; Blümich, 2000...). The most important NMR active nuclei in soil science applications...

Andreas Pohlmeier

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Novel Pattern Recognition Techniques for Improved Target Detection in Hyperspectral Imagery  

E-Print Network (OSTI)

........................ 7 C. Spatial Domain Versus Spectral Domain .................................. 9 D. The HSI Data Cube ................................................................... 10 E. Classification Versus Detection... Page 1 General concept of hyperspectral imaging................................................. 7 2 Construction of a typical hyperspectral image........................................... 9 3 Data cube visualization showing spatial...

Sakla, Wesam Adel

2011-02-22T23:59:59.000Z

42

Direct Imaging of Asymmetric Magnetization Reversal  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Imaging of Asymmetric Magnetization Reversal Print Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film, a team from the University of Washington and the Stanford Synchrotron Radiation Laboratory has identified separate magnetic-reversal mechanisms in the two branches of a hysteresis loop. This advance in fundamental understanding will provide new insights for developing the next generation of information storage and sensing devices where exchange bias is expected to play a critical role.

43

Quantitative diffusion magnetic resonance imaging of the brain : validation, acquisition, and analysis  

E-Print Network (OSTI)

Engineering, Magnetic Resonance Imaging, Cognitive Science.on magnetic resonance imaging applications in brain science.

White, Nathan S.

2010-01-01T23:59:59.000Z

44

Instrumentation for parallel magnetic resonance imaging  

E-Print Network (OSTI)

of the art of parallel MR imaging. First, a low-cost desktop MR scanner was developed (< $13,000) for imaging small samples (2.54 cm fields-of view) at low magnetic field strengths (< 0.25 T). The performance of the prototype was verified through bench...

Brown, David Gerald

2007-04-25T23:59:59.000Z

45

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources |  

Open Energy Info (EERE)

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Poster: Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Abstract Demonstrating the effectiveness of hyperspectral sensors to explore for geothermal resources will be critical to our nation's energy security plans. Discovering new geothermal resources will contribute to established renewable energy capacity and lower our dependence upon fuels that contribute to green house gas emissions. The use of hyperspectral data and derived imagery products is currently helping exploration managers gain greater efficiencies and drilling success. However, more work is needed as geologists continue to learn about hyperspectral imaging and, conversely,

46

Magnetic Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold Flooding During Continuous Fuel Cell Operation. Magnetic Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold...

47

Hyperspectral Data Classification Using Spectral-Spatial Approaches  

E-Print Network (OSTI)

Hyperspectral Data Classification Using Spectral-Spatial Approaches Yuliya Tarabalka1 , Jón Atli classification problem AVIRIS image Spatial resolution: 20m/pix Spectral resolution: 200 bands Ground-truth data.tarabalka@nasa.gov) Spectral-Spatial Classification of Hyperspectral Data 6 #12;Introduction Classification using segmentation

Dobigeon, Nicolas

48

E-Print Network 3.0 - airborne hyperspectral sensors Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

imaging activities in Europe, ranging from sensor design and flight operation to data collection... directed towards the improvement of hyperspectral sensor and mission...

49

Hyperspectral Imaging or Imaging Spectroscopy  

E-Print Network (OSTI)

DIFFERENTIATION Every sensor is limited in respect to the size of the smallest area that can be separately V / NIR / SWIR / MWIR / LWIR Optical Region 400 14000 400 0.4 14000 14.0 1500 1.5 3000 3.0 5000 5;Sampling the Spectrum NIR SWIR MWIR LWIR 400 nm 700 1500 3000 RB 5000 14000 nm G Panchromatic: one very

Gilbes, Fernando

50

Magnetic resonance imaging of self-assembled biomaterial scaffolds  

DOE Patents (OSTI)

Compositions and/or mixtures comprising peptide amphiphile compounds comprising one or more contrast agents, as can be used in a range of magnetic resonance imaging applications.

Bull, Steve R; Meade, Thomas J; Stupp, Samuel I

2014-09-16T23:59:59.000Z

51

Designing and characterizing hyperpolarizable silicon nanoparticles for magnetic resonance imaging  

E-Print Network (OSTI)

Magnetic Resonance Imaging (MRI) is one of the most powerful noninvasive tools for diagnosing human disease, but its utility is limited because current contrast agents are ineffective when imaging air-tissue interfaces, ...

Anahtar, Melis Nuray

2008-01-01T23:59:59.000Z

52

Hyperspectral stimulated emission depletion microscopy and methods of use thereof  

DOE Patents (OSTI)

A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

Timlin, Jerilyn A; Aaron, Jesse S

2014-04-01T23:59:59.000Z

53

Variability in functional magnetic resonance imaging : influence of the baseline vascular state and physiological fluctuations  

E-Print Network (OSTI)

cortex by magnetic resonance imaging. Science. 254, 716-719.cortex by magnetic resonance imaging. Science. 254, 716-719.cortex by magnetic resonance imaging. Science. 254, 716-719.

Behzadi, Yashar

2006-01-01T23:59:59.000Z

54

On the dynamics of magnetic fluids in magnetic resonance imaging  

E-Print Network (OSTI)

The hydrodynamics of magnetic fluids, often termed ferrofluids, has been an active area of research since the mid 1960s. However, it is only in the past twenty years that these fluids have begun to be used in magnetic ...

Cantillon-Murphy, Pádraig J

2008-01-01T23:59:59.000Z

55

Magnetic charge crystals imaged in artificial spin ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic charge crystals imaged in artificial spin ice Magnetic charge crystals imaged in artificial spin ice Magnetic charge crystals imaged in artificial spin ice Potential data storage and computational advances could follow August 27, 2013 Potential data storage and computational advances could follow A 3-D depiction of the honeycomb artificial spin ice topography after the annealing and cooling protocols. The light and dark colors represent the north and south magnetic poles of the islands. Image by Ian Gilbert, U. of I. Department of Physics and Frederick Seitz Materials Research Laboratory Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email Siv Schwink U. Illinois (217) 300-2201 Email "The emergence of magnetic monopoles in spin ice systems is a particular case of what physicists call fractionalization, or deconfinement of

56

Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid  

Open Energy Info (EERE)

Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Lake Paiute Reservation, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Lake Paiute Reservation, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: Over 2000 km2 (772 mi2) of 5 m resolution Hymap hyperspectral data was acquired over the Pyramid Lake Paiute Reservation in the Fall of 2004. Subsequent image processing and data analysis has identified reflectance spectra for alunite, kaolinite/halloysite, illite, gypsum, vegetation, and carbonate. A portable spectrometer is being used for in situ validation, along with laboratory measurements and X-ray diffraction analyses of samples collected in the field. We are in the process of

57

An IMAGE Satellite Guide to Exploring the Earth's Magnetic Field 1 An IMAGE Satellite Guide to Exploring the Earth's Magnetic Field 2  

E-Print Network (OSTI)

observed by the IMAGE, HENA instrument. Some representative magnetic field lines are shown in whiteAn IMAGE Satellite Guide to Exploring the Earth's Magnetic Field 1 #12;An IMAGE Satellite Guide to Exploring the Earth's Magnetic Field 2 Dr. James Burch IMAGE Principal Investigator Dr. William Taylor Dr

58

Microfluidically Cryo-Cooled Planar Coils for Magnetic Resonance Imaging  

E-Print Network (OSTI)

High signal-to-noise ratio (SNR) is typically required for higher resolution and faster speed in magnetic resonance imaging (MRI). Planar microcoils as receiver probes in MRI systems offer the potential to be configured into array elements for fast...

Koo, Chiwan

2013-08-09T23:59:59.000Z

59

Hyperspectral imaging signatures detect amyloidopathy in Alzheimer’s mouse retina well before onset of cognitive decline  

Science Journals Connector (OSTI)

The technique was found useful for monitoring retinal and brain amyloidopathy in an ongoing preclinical anti-AD study, attesting to the technique’s sensitivity and specificity. ... Interestingly, the technique was found applicable not just to excised brain tissue, but also to isolated mouse retina. ... With the retina being heralded widely as a (diagnostic) extension of the CNS and retinal amyloidopathy occurring well before that in the brain, this development raises a possibility for the first direct retinal imaging diagnosis of early, asymptomatic Alzheimer’s disease. ...

Swati Sudhakar More; Robert Vince

2014-10-29T23:59:59.000Z

60

Metalloporphyrin Enhancement of Magnetic Resonance Imaging of Human Tumor Xenografts in Nude Mice  

Science Journals Connector (OSTI)

...Weizmann Institute of Science, Rehovot 76100...should be addressed. Magnetic resonance imaging...Multicellular Spheroids: Magnetic Resonance Microimaging1...Weiunann institute of Science, Rehovot 76100, Israel ABSTRACT Magnetic resonance imaging...

Philip Furmanski and Clifford Longley

1988-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic...

62

Towards the invisible cryogenic system for Magnetic Resonance Imaging  

Science Journals Connector (OSTI)

With about 10 000 Magnetic Resonance Imaging (MRI) systems installed worldwide helium cooled magnets have become familiar equipment in hospitals and imaging centers. Patients and operators are only aware of the hissing sound of the Gifford-MacMahon refrigerator. Service technicians however still work with cryogenic fluids and cold gases e.g. for replenishing the helium reservoir inserting retractable current leads for magnet ramps or replacing burst disks after a magnet quench. We will describe the steps taken at Oxford Magnet Technology towards the ultimate goal of a superconducting magnet being as simple as a household fridge. Early steps included the development of resealing quench valves as well as permanently installed transfer siphons that only open when fully cooled to 4K. On recently launched 1.5 Tesla solenoid magnets 500 A current leads are permanently fixed into the service turret with hardly any boil-off penalty (40–50 cc/hr total). Ramping of the magnet has been fully automated including electronic supervision of the gas-cooled current leads. One step ahead the 1 Tesla High Field Open magnet is refrigerated by a single 4K Gifford MacMahon coldhead relieving the user from the necessity to refill with helium. Our conduction cooled 0.2 Tesla HTS magnet testbed does not require liquid cryogens at any time in its life including initial cool-down.

F. Steinmeyer; P. W. Retz; K. White; A. Lang; W. Stautner; P. N. Smith; G. Gilgrass

2002-01-01T23:59:59.000Z

63

Roadmap: Radiologic Imaging Sciences Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-MRHA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended

Sheridan, Scott

64

Roadmap: Radiologic Imaging Sciences -Magnetic Resonance Imaging (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Magnetic Resonance Imaging (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-MRRT] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

65

Roadmap: Radiologic Imaging Sciences Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-MRHA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 11-Apr-12/LNHD This roadmap is a recommended

Sheridan, Scott

66

Roadmap: Radiologic Imaging Sciences -Magnetic Resonance Imaging (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Magnetic Resonance Imaging (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-MRRT] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

67

Method for nuclear magnetic resonance imaging  

DOE Patents (OSTI)

A method for in vivo NMR imaging of the blood vessels and organs of a patient characterized by using a dark dye-like imaging substance consisting essentially of a stable, high-purity concentration of D/sub 2/O in a solution with water.

Kehayias, J.J.; Joel, D.D.; Adams, W.H.; Stein, H.L.

1988-05-26T23:59:59.000Z

68

Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine  

E-Print Network (OSTI)

The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic ...

Shapiro, Mikhail G.

69

Portable low-cost magnetic resonance imaging  

E-Print Network (OSTI)

Purpose: As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as intensive care units (ICUs), physician ...

Cooley, Clarissa Zimmerman

2014-01-01T23:59:59.000Z

70

Array combination for parallel imaging in Magnetic Resonance Imaging  

E-Print Network (OSTI)

Exdx? ? =? ??? null null nullnull [2.7] where ? is the sample conductivity. Substituting Eq. [2.5] into this, it is rewriting in terms of the magnetic vector potential, () () 2 sample V PAxAxd?? ? =? ??? null null null nullnull [2.8] Recalling that power... is also defined as 2 1 2 PIR= , [2.9] then () () 2 2 sample V R Ax Ax dx?? ? =? ??? null null null nullnull [2.10] assuming the magnetic vector potential, A null , is calculated using a unit current. The resistance of a conductive wire...

Spence, Dan Kenrick

2007-09-17T23:59:59.000Z

71

White matter microstructure on diffusion tensor imaging is associated with conventional magnetic resonance imaging findings and  

E-Print Network (OSTI)

White matter microstructure on diffusion tensor imaging is associated with conventional magnetic to evaluate white matter architecture after preterm birth. The goals were (1) to compare white matter if sex, gestational age, birth- weight, white matter injury score from conventional magnetic resonance

Grill-Spector, Kalanit

72

5 Hyperspectral Data Processing Algorithms  

E-Print Network (OSTI)

121 5 Hyperspectral Data Processing Algorithms Antonio Plaza, Javier Plaza, Gabriel Martín), able to cover the wavelength region from 400 to 2500nm using more than 200 spec- tral channels. The special characteristics of hyperspectral data sets pose different processing problems [3], which must

Plaza, Antonio J.

73

Functional magnetic resonance imaging: imaging techniques and contrast mechanisms  

Science Journals Connector (OSTI)

...Furthermore, in a study of motor recovery, fMRI activation...focal lesion. The future should also see further...able to harness this quantum physics phenomenon...Functional imaging of the motor system. Curr. Opin...assessment with a graded motor activation procedure...past, present, and future. Proc. Natl Acad...

1999-01-01T23:59:59.000Z

74

Fluorescently Detectable Magnetic Resonance Imaging Agents  

Science Journals Connector (OSTI)

Images acquired of single cells after injection with these bifunctional agents enabled us to follow the relative motions and reorganizations of different cell layers during amphibian gastrulation and neurulation in Xenopus laevis embryos. ... Approximately 10 nL of a buffered aqueous solution containing each compound at a known concentration was injected into the animal pole of one cell in a two-cell embryo. ... These molecules were designed to be used for embryonic cell lineage analyses. ...

Martina M. Hüber; Andrea B. Staubli; Karen Kustedjo; Mike H. B. Gray; John Shih; Scott E. Fraser; Russell E. Jacobs; Thomas J. Meade

1998-02-27T23:59:59.000Z

75

Integrated magnetic resonance imaging methods for speech science and technology  

Science Journals Connector (OSTI)

This presentation introduces our integration of magnetic resonance imaging(MRI) techniques at ATRBrain Activity Imaging Center (Kyoto Japan) toward research into speech science and technology. The first breakthrough in our application of MRI to speech research was the motion imaging of the speechorgans in articulation using a cardiac cine?MRI method. It enables us to acquire information in the time?space domain to reconstruct successive image frames using utterance repetitions synchronized with MRI scans. This cine?technique was further improved for high?quality imaging and expanded into three?dimensional (3D) visualization of articulatory movements. Using this technique we could successfully obtain temporal changes of vocal?tract area function during a Japanese five?vowel sequence. This effort also contributed to developing other techniques to overcome the limitations of MRI such as the post?hoc inclusion of teeth images in 3D volumes or the phonation?synchronized scan for crystal?sharp static imaging. Further a custom high?sensitivity coil was developed to visualize the fine structures of the lip muscles and laryngeal airway. The potentials of new MRI approaches such as ultra?high?resolution imaging with a higher?field scanner or real?time motion imaging during a single utterance will be discussed toward future contributions to speech science and technology.

Shinobu Masaki; Yukiko Nota; Sayoko Takano; Hironori Takemoto; Tatsuya Kitamura; Kiyoshi Honda

2008-01-01T23:59:59.000Z

76

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials  

DOE Patents (OSTI)

An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

2010-03-30T23:59:59.000Z

77

Spectrally Resolved Magnetic Resonance Imaging of the XenonBiosensor  

SciTech Connect

Due to its ability to non-invasively record images, as well as elucidate molecular structure, nuclear magnetic resonance is the method of choice for applications as widespread as chemical analysis and medical diagnostics. Its detection threshold is, however, limited by the small polarization of nuclear spins in even the highest available magnetic fields. This limitation can, under certain circumstances, be alleviated by using hyper-polarized substances. Xenon biosensors make use of the sensitivity gain of hyperpolarized xenon to provide magnetic resonance detection capability for a specific low-concentration target. They consist of a cryptophane cage, which binds one xenon atom, and which has been connected via a linker to a targeting moiety such as a ligand or antibody. Recent work has shown the possibility of using the xenon biosensor to detect small amounts of a substance in a heterogeneous environment by NMR. Here, we demonstrate that magnetic resonance (MR) provides the capability to obtain spectrally and spatially resolved images of the distribution of immobilized biosensor, opening the possibility for using the xenon biosensor for targeted imaging.

Hilty, Christian; Lowery, Thomas; Wemmer, David; Pines, Alexander

2005-07-15T23:59:59.000Z

78

The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance  

E-Print Network (OSTI)

The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The primary 720s observables were released in mid 2010, including Stokes polarization parameters measured at six wavelengths as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180 degree azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne-Eddington inversion is performed on all full-di...

Hoeksema, J Todd; Hayashi, Keiji; Sun, Xudong; Schou, Jesper; Couvidat, Sebastien; Norton, Aimee; Bobra, Monica; Centeno, Rebecca; Leka, K D; Barnes, Graham; Turmon, Michael J

2014-01-01T23:59:59.000Z

79

Soft x-ray microscopy - a powerful analytical tool to image magnetism down to fundamental length and times scales  

E-Print Network (OSTI)

analytical tool to image magnetism down to fundamentalmicroscopies Research of magnetism in low dimensions has notnanoscience [3]. Solid state magnetism is also a showcase in

Fischer, Peter

2008-01-01T23:59:59.000Z

80

Magnetic Resonance Imaging in Follow-up Assessment of Sciatica  

Science Journals Connector (OSTI)

...treatment leads to physical and emotional suffering for the patient and substantial costs in terms of treatment, sick leave, and pensions for society. Magnetic resonance imaging (MRI), which is considered the imaging procedure of choice for patients in whom lumbar-disk herniation is suspected,, is frequently... In patients with symptomatic lumbar disk herniation treated with surgery or conservative care, there was no significant association between findings on MRI and clinical outcome at 1 year. Disk herniation persisted in 35% with a favorable outcome and 33% with an unfavorable outcome.

el Barzouhi A.; Vleggeert-Lankamp C.L.A.M.; Lycklama à Nijeholt G.J.

2013-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Distribution of Liposomes into Brain and Rat Brain Tumor Models by Convection-Enhanced Delivery Monitored with Magnetic Resonance Imaging  

Science Journals Connector (OSTI)

...Convection-Enhanced Delivery Monitored with Magnetic Resonance Imaging Ryuta Saito...B, T 1-weighted coronal magnetic resonance image of a 9L-2 rat...assistance, Dr. David Newitt (Magnetic Resonance Science Center, University of California...

Ryuta Saito; John R. Bringas; Tracy R. McKnight; Michael F. Wendland; Christoph Mamot; Daryl C. Drummond; Dmitri B. Kirpotin; John W. Park; Mitchel S. Berger; and Krys S. Bankiewicz

2004-04-01T23:59:59.000Z

82

Identification of breast calcification using magnetic resonance imaging  

SciTech Connect

MRI phase and magnitude images provide information about local magnetic field variation ({Delta}B{sub 0}), which can consequently be used to understand tissue properties. Often, phase information is discarded. However, corrected phase images are able to produce contrast as a result of magnetic susceptibility differences and local field inhomogeneities due to the presence of diamagnetic and paramagnetic substances. Three-dimensional (3D) susceptibility weighted imaging (SWI) can be used to probe changes in MRI phase evolution and, subsequently, result in an alternate form of contrast between tissues. For example, SWI has been useful in the assessment of negative phase induced {Delta}B{sub 0} modulation due to the presence of paramagnetic substances such as iron. Very little, however, has been done to assess positive phase induced contrast changes resulting from the presence of diamagnetic substances such as precipitated calcium. As ductal carcinoma in situ, which is the precursor of invasive ductal cancer, is often associated with breast microcalcification, the authors proposed using SWI as a possible visualization technique. In this study, breast phantoms containing calcifications (0.4-1.5 mm) were imaged using mammography, computed tomography (CT), and SWI. Corrected phase and magnitude images acquired using SWI allowed identification and correlation of all calcifications seen on CT. As the approach is a 3D technique, it could potentially allow for more accurate localization and biopsy and maybe even reduce the use of gadolinium contrast. Furthermore, the approach may be beneficial to women with dense breast tissue where the ability to detect microcalcification with mammography is reduced.

Fatemi-Ardekani, Ali; Boylan, Colm; Noseworthy, Michael D. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1 (Canada) and Imaging Research Centre, Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario L8N 4A6 (Canada); Diagnostic Imaging, St. Joseph's Healthcare, Hamilton, Ontario L8N 4A6 (Canada) and Department of Radiology, McMaster University, Hamilton, Ontario L8N 3Z5 (Canada); Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1 (Canada); Imaging Research Centre, Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario L8N 4A6 (Canada); Diagnostic Imaging, St. Joseph's Healthcare, Hamilton, Ontario L8N 4A6 (Canada); Department of Radiology, McMaster University, Hamilton, Ontario L8N 3Z5 (Canada) and Electrical and Computer Engineering, and School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4K1 (Canada)

2009-12-15T23:59:59.000Z

83

THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION  

SciTech Connect

An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

2012-01-01T23:59:59.000Z

84

A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING  

E-Print Network (OSTI)

A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING JENS FISCHER.weiss@pfh.research.philips.com HEIDRUN SCHUMANN University of Rostock, Computer Science Department, D­18051 Rostock,Germany schumann radiologists during invasive and non­invasive magnetic resonance imaging. We use pre­acquired and real time

Schumann, Heidrun

85

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, Name ID# Date  

E-Print Network (OSTI)

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, 2014-2015 Name ID Intro to Sociology 3 DLS Social Sciences course in a second field 3 CID HLTHST 382 Research Methods Pharmacology and Contrast Medias RADSCI 430 Comparative Sectional Imaging RADSCI 440 Principles of Magnetic

Barrash, Warren

86

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, Name ID# Date  

E-Print Network (OSTI)

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, 2012-2013 Name ID Intro to Sociology 3 DLS Social Sciences course in a second field 3 CID HLTHST 382 Research Methods Pharmacology and Contrast Medias RADSCI 430 Comparative Sectional Imaging RADSCI 440 Principles of Magnetic

Barrash, Warren

87

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, Name ID# Date  

E-Print Network (OSTI)

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, 2013-2014 Name ID Intro to Sociology 3 DLS Social Sciences course in a second field 3 CID HLTHST 382 Research Methods Pharmacology and Contrast Medias RADSCI 430 Comparative Sectional Imaging RADSCI 440 Principles of Magnetic

Barrash, Warren

88

A neural network approach for image reconstruction in electron magnetic resonance tomography  

Science Journals Connector (OSTI)

An object-oriented, artificial neural network (ANN) based, application system for reconstruction of two-dimensional spatial images in electron magnetic resonance (EMR) tomography is presented. The standard back propagation algorithm is utilized to train ... Keywords: Artificial neural networks, Back propagation, Electron magnetic resonance tomography, Filtered back projection, Image reconstruction, Multiplicative algebraic reconstruction technique

D. Christopher Durairaj; Murali C. Krishna; Ramachandran Murugesan

2007-10-01T23:59:59.000Z

89

Hyperspectral Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser  

SciTech Connect

Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 µm in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.

Phillips, Mark C.; Bernacki, Bruce E.

2012-12-26T23:59:59.000Z

90

Development of imaging bolometers for magnetic fusion reactors (invited)  

SciTech Connect

Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version of this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 {mu}m, 256x360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF{sub 2} optics and an aluminum mirror. The IRVB foil is 7 cmx9 cmx5 {mu}m tantalum. A noise equivalent power density of 300 {mu}W/cm{sup 2} is achieved with 40x24 channels and a time response of 10 ms or 23 {mu}W/cm{sup 2} for 16x12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U.

Peterson, Byron J.; Parchamy, Homaira; Ashikawa, Naoko [National Institute for Fusion Science, Toki 509-5292 (Japan); Kawashima, Hisato; Konoshima, Shigeru [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Kostryukov, Artem Yu.; Miroshnikov, Igor V. [St. Petersburg State Technical University, St. Petersburg 195251 (Russian Federation); Seo, Dongcheol [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Omori, T. [Graduate University for Advanced Studies, Toki 509-5292 (Japan)

2008-10-15T23:59:59.000Z

91

Testing Hyperspectral Data for Geobatanical Anomaly Mapping,...  

Open Energy Info (EERE)

Area Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Testing Hyperspectral Data for Geobatanical Anomaly Mapping, Dixie Valley, Nevada, Geothermal...

92

Recovery of 3D Solar Magnetic Field Model Parameter Using Image Structure Matching  

Science Journals Connector (OSTI)

An approach to recover a 3D solar magnetic field model parameter using intensity images of the Sun's corona is introduced. The approach is a quantitative approach in which the 3D model parameter is determined via an image structure matching scheme. The ... Keywords: 3D Parameter Recovery, Image-based Modeling, Structure Matching

Jong Kwan Lee; G. Allen Gary

2009-05-01T23:59:59.000Z

93

Characterization of forest crops with a range of nutrient and water treatments using AISA Hyperspectral Imagery.  

SciTech Connect

This research examined the utility of Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for estimating the biomass of three forest crops---sycamore, sweetgum and loblolly pine--planted in experimental plots with a range of fertilization and irrigation treatments on the Savannah River Site near Aiken, South Carolina.

Gong, Binglei; Im, Jungho; Jensen, John, R.; Coleman, Mark; Rhee, Jinyoung; Nelson, Eric

2012-07-01T23:59:59.000Z

94

Artificial Neural Network (ANN) Morphological Classification of Magnetic Resonance Imaging in Multiple Sclerosis  

Science Journals Connector (OSTI)

Multiple Sclerosis (MS) is an autoimmune condition in which the immune system attacks the Central Nervous System. Magnetic Resonance Imaging (MRI) is today a crucial tool for diagnosis of MS by allowing in-vivo d...

Alessia Bramanti; Lilla Bonanno; Placido Bramanti…

2013-01-01T23:59:59.000Z

95

Magnetic resonance spectroscopic imaging with 2D spectroscopy for the detection of brain metabolites  

E-Print Network (OSTI)

While magnetic resonance imaging (MRI) derives its signal from protons in water, additional biochemical compounds are detectable in vivo within the proton spectrum. The detection and mapping of these much weaker signals ...

Kok, Trina

2012-01-01T23:59:59.000Z

96

Accelerating magnetic resonance imaging by unifying sparse models and multiple receivers  

E-Print Network (OSTI)

Magnetic resonance imaging (MRI) is an increasingly versatile diagnostic tool for a variety of medical purposes. During a conventional MRI scan, samples are acquired along a trajectory in the spatial Fourier transform ...

Weller, Daniel (Daniel Stuart)

2012-01-01T23:59:59.000Z

97

New generation of magnetic and luminescent nanoparticles for in vivo real-time imaging  

Science Journals Connector (OSTI)

...through size-dependent diffusion). While ultra-small particles (ca 5 nm) are quickly...Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med...73 Chatterjee, DK , Gnanasammandhan, MK, Zhang, Y. 2010 Small upconverting fluorescent...

2013-01-01T23:59:59.000Z

98

T2*-weighted magnetic resonance imaging used to detect coagulative necrosis in tissue  

E-Print Network (OSTI)

to prevent unnecessary collateral damage to surrounding healthy tissue. This research focuses on using T2*-weighted FLASH magnetic resonance imaging to detect irreversible changes in i . n vitro bovine liver tissue and tissuesimulating polyacrylamide gel...

Van Hyfte, John Bruce

1997-01-01T23:59:59.000Z

99

Doxorubicin Loaded Magnetic Polymersomes: Theranostic Nanocarriers for MR Imaging and Magneto-Chemotherapy  

E-Print Network (OSTI)

Hydrophobically modified magnetic nanoparticles (MNPs) were encapsulated within the membrane of poly(trimethylene carbonate)-b-poly(L-glutamic acid) (PTMC-b-PGA) block copolymer vesicles using a nanoprecipitation process. This formulation method provides a high loading of MNPs (up to 70 wt %) together with a good control over the sizes of the vesicles (100 - 400 nm). The deformation of the vesicle membrane under an applied magnetic field was evidenced by anisotropic SANS. These hybrid objects display contrast enhancement properties in Magnetic Resonance Imaging, a diagnostic method routinely used for three-dimensional and non-invasive scans of the human body. They can also be guided in a magnetic field gradient. The feasibility of drug release triggered by magnetic induction was evidenced using the anticancer drug doxorubicin (DOX), which is co-encapsulated in the membrane. Magnetic polymersomes are thus proposed as multimodal drug nanocarriers for bio-imaging and magneto-chemotherapy.

Charles Sanson; Odile Diou; Julie Thevenot; Emmanuel Ibarboure; Alain Soum; Annie Brûlet; Sylvain Miraux; Eric Thiaudière; Sisareuth Tan; Alain Brisson; Vincent Dupuis; Olivier Sandre; Sébastien Lecommandoux

2012-09-23T23:59:59.000Z

100

Intra-pixel multispectral processing of magnetic resonance brain images for tissue characterisation  

Science Journals Connector (OSTI)

Magnetic resonance (MR) image analysis is generally performed by spatial domainbased image processing, referred to as inter-pixel image processing, which takes advantage of spatial correlation among sample pixels. Unfortunately, in many areas, several tissue substances are usually present and mixed in a single image pixel in which such an inter-pixel processing either fails or is ineffective. To resolve this dilemma, this paper develops an unconventional approach, called intra-pixel processing, which considers MR images as multispectral images where a multispectral MR image pixel is actually a pixel vector, of which each component is captured by a particular image pulse sequence used for MR image acquisition. Since the commonly used receiver operating characteristic (ROC) curves cannot directly deal with the issues arising in intra-pixel processing, a 3D ROC analysis is developed by including a parameter t as the third dimension that represents abundance fractions thresholded by ?.

Clayton Chi-Chang Chen; Englin Wong; Hsian-Min Chen; Shih-Yu Chen; Jyh-Wen Chai; Ching-Wen Yang; San-Kan Lee; Yong-Kie Wong; Chein-I Chang

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection  

SciTech Connect

An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

Chai, Kil-Byoung; Bellan, Paul M. [Applied Physics, Caltech, 1200 E. California Boulevard, Pasadena, California 91125 (United States)] [Applied Physics, Caltech, 1200 E. California Boulevard, Pasadena, California 91125 (United States)

2013-12-15T23:59:59.000Z

102

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

103

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

104

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

105

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

106

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

107

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

108

Magnetic soft x-ray microscopy-imaging fast spin dynamics in magnetic nanostructures  

E-Print Network (OSTI)

fundamental time scale in magnetism is given by the time required to transfer energy and momentum from the electronic

Fischer, Peter; Kim, Dong-Hyun; Mesler, Brooke L.; Chao, Weilun; Sakdinawat, Anne E.; Anderson, Erik H.

2007-01-01T23:59:59.000Z

109

Spectrally programmable light engine for in vitro or in vivo molecular imaging and spectroscopy  

Science Journals Connector (OSTI)

A spectrally and temporally programmable light engine can create any spectral profile for hyperspectral, fluorescence, or principal-component imaging or with medical photonics devices...

MacKinnon, Nicholas; Stange, Ulrich; Lane, Pierre; MacAulay, Calum; Quatrevalet, Mathieu

2005-01-01T23:59:59.000Z

110

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

111

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

112

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

113

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

114

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

115

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic memories much more realistic, it also initiated investigation of the core switching mechanism itself. Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. The group also measured a critical vortex velocity above which reversal occurs. Both these observations provide the first experimental support for the postulated reversal mechanism.

116

Magnetic Resonance Imaging at Princeton, UofV, and UNH | U.S. DOE Office of  

Office of Science (SC) Website

Magnetic Resonance Imaging at Magnetic Resonance Imaging at Princeton, UofV, and UNH Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Magnetic Resonance Imaging at Princeton, UofV, and UNH Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: MRI for hyperpolarized gases Developed at: Princeton, University of Virginia, University of New Hampshire

117

Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging of General Anesthesia  

E-Print Network (OSTI)

It has been long appreciated that anesthetic drugs induce stereotyped changes in electroencephalogram (EEG), but the relationships between the EEG and underlying brain function remain poorly understood. Functional imaging ...

Purdon, Patrick Lee

118

Development for Hardware for Programming of Spatial Magnetic Field Distributions in Nuclear Magnetic Resonance and Magnetic Resonance Imaging  

E-Print Network (OSTI)

The proposal of a project aimed on a design of hardware for programming 3D Magnetic Field shapes over sample volume in NMR and MRI is described.

Vladimir Korostelev

2012-01-13T23:59:59.000Z

119

Phase imaging of magnetic nanostructures using resonant soft x-ray holography  

Science Journals Connector (OSTI)

We demonstrate phase imaging by means of resonant soft x-ray holography. Our holographic phase-contrast method utilizes the strong energy-dependence of the refractive index at a characteristic x-ray absorption resonance. The general concept is shown by using a Co?Pd multilayer sample which exhibits random nanosized magnetic domains. By tuning below the Co L-edge resonance, our quantitative and spectroscopic phase method allows high-contrast imaging of nanoscale electronic and magnetic order while increasing the probing depth and decreasing the radiation dose by an order of magnitude. The complex refractive index is quantitatively obtained through the interference between resonant and nonresonant scattering.

A. Scherz; W. F. Schlotter; K. Chen; R. Rick; J. Stöhr; J. Lüning; I. McNulty; Ch. Günther; F. Radu; W. Eberhardt; O. Hellwig; S. Eisebitt

2007-12-17T23:59:59.000Z

120

3D and 4D magnetic susceptibility tomography based on complex MR images  

DOE Patents (OSTI)

Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

Chen, Zikuan; Calhoun, Vince D

2014-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Scientific Image Gallery from the Applied Superconductivity Center at the National High Magnetic Field Laboratory  

DOE Data Explorer (OSTI)

The Applied Superconductivity Center (ASC) is nested with the National High Magnetic Field Laboratory. Originally located at the University of Wisconsin, ASC transferred to NHMFL or Magnet Lab in 2003. ASC investigates both low and high-temperature materials. Focus areas include grain boundaries; coated conductors, BSCCO, and a new superconductor known as MgB2. The ASC Image Gallery provides graphs with text descriptions and single images with captions. The single images are organized into collections under scientific titles, such as MgB2 mentioned above. Click on the Videos link to see two 3D videos and be sure to check out the link to image collections at other organizations performing superconductivity research.

122

Design of a scanning Josephson junction microscope for submicron-resolution magnetic imaging  

SciTech Connect

We describe a magnetic field scanning instrument designed to extend the spatial resolution of scanning superconducting quantum interference device microscopy into the submicron regime. This instrument, the scanning Josephson junction microscope, scans a single Josephson junction across the surface of a sample, detecting the local magnetic field by the modulation of the junction critical current. By using a submicron junction and a scanning tunneling microscope feedback system to maintain close proximity to the surface, magnetic field sensitivity of 10 {mu}G with a spatial resolution of 0.3 {mu}m should be attainable, opening up new opportunities for imaging vortex configurations and core structure in superconductors and magnetic domains in magnetic materials. {copyright} {ital 1999 American Institute of Physics.}

Plourde, B.L.; Van Harlingen, D.J. [Department of Physics, Science and Technology Center for Superconductivity, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)] [Department of Physics, Science and Technology Center for Superconductivity, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

1999-11-01T23:59:59.000Z

123

Sub-nanometer resolution in three-dimensional magnetic-resonance imaging of individual dark spins  

E-Print Network (OSTI)

Magnetic resonance imaging (MRI) has revolutionized biomedical science by providing non-invasive, three-dimensional biological imaging. However, spatial resolution in conventional MRI systems is limited to tens of microns, which is insufficient for imaging on molecular and atomic scales. Here we demonstrate an MRI technique that provides sub-nanometer spatial resolution in three dimensions, with single electron-spin sensitivity. Our imaging method works under ambient conditions and can measure ubiquitous 'dark' spins, which constitute nearly all spin targets of interest and cannot otherwise be individually detected. In this technique, the magnetic quantum-projection noise of dark spins is measured using a single nitrogen-vacancy (NV) magnetometer located near the surface of a diamond chip. The spatial distribution of spins surrounding the NV magnetometer is imaged with a scanning magnetic-field gradient. To evaluate the performance of the NV-MRI technique, we image the three-dimensional landscape of dark electronic spins at and just below the diamond surface and achieve an unprecedented combination of resolution (0.8 nm laterally and 1.5 nm vertically) and single-spin sensitivity. Our measurements uncover previously unidentified electronic spins on the diamond surface, which can potentially be used as resources for improved magnetic imaging of samples proximal to the NV-diamond sensor. This three-dimensional NV-MRI technique is immediately applicable to diverse systems including imaging spin chains, readout of individual spin-based quantum bits, and determining the precise location of spin labels in biological systems.

M. S. Grinolds; M. Warner; K. De Greve; Y. Dovzhenko; L. Thiel; R. L. Walsworth; S. Hong; P. Maletinsky; A. Yacoby

2014-01-12T23:59:59.000Z

124

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print Wednesday, 26 September 2007 00:00 The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

125

Qualification of a Noninvasive Magnetic Resonance Imaging Biomarker to Assess Tumor Oxygenation  

Science Journals Connector (OSTI)

...23. Ogawa S , Lee TM, Kay AR Tank DW.Brain magnetic resonance imaging with contrast...intensity-modulated radiation therapy for head and neck cancer.Expert Rev Anticancer...Radiation-Induced Toxicity for Patients with Head and Neck Carcinoma in the IMRT Era: A...

Florence Colliez; Marie-Aline Neveu; Julie Magat; Thanh Trang Cao Pham; Bernard Gallez; Bénédicte F. Jordan

2014-11-01T23:59:59.000Z

126

Performance of reimbursement schemes in valuation of technologies: The example of Magnetic Resonance Imaging  

Science Journals Connector (OSTI)

Different reimbursement schemes for health care providers have been developed worldwide. They have evolved over time and have been influenced by politics, costs, patient needs and technological progress. Different methods in the valuation of technologies ... Keywords: Magnetic Resonance Imaging, Valuation, payment, reimbursement schemes, technologies

R. Blankart; J. Schreyögg; R. Busse

2008-08-01T23:59:59.000Z

127

GPU-accelerated denoising of 3D magnetic resonance images  

SciTech Connect

The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

Howison, Mark; Wes Bethel, E.

2014-05-29T23:59:59.000Z

128

Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields  

DOE Patents (OSTI)

A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

2014-01-21T23:59:59.000Z

129

Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet  

SciTech Connect

Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ?1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

Mariappan, Leo; Hu, Gang [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 (United States)] [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 (United States); He, Bin, E-mail: binhe@umn.edu [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 and Institute of Engineering in Medicine, University of Minnesota, Minnesota 55455 (United States)] [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 and Institute of Engineering in Medicine, University of Minnesota, Minnesota 55455 (United States)

2014-02-15T23:59:59.000Z

130

The development of magnetic resonance imaging for the determination of porosity in reservoir core samples  

E-Print Network (OSTI)

to increase. This is the resonance condition and is the principle upon which magnetic resonance imaging is founded. The resonance frequency, tu, is directly proportional to the magnetic field and can be expressed as: where y is the gyromagnetic ratio and H... system is also precessing about y' with the same rotational frequency as M. This is the rotating frame of reference. By convention, z' is set equal to z and, therefore, H . As long as H remains at a constant strength and is the only field applied...

Sherman, Byron Blake

2012-06-07T23:59:59.000Z

131

Three-dimensional nuclear magnetic resonance imaging of green-state ceramics  

SciTech Connect

Objective is the development of nuclear magnetic resonance imaging techniques and technology applicable to the nondestructive characterization of green-state ceramics. To this end, a three-dimensional (3-D) NMR imaging technique has been developed, based on a back-projection acquisition protocol in combination with image reconstruction techniques that are based on 3-D Radon transform inversion. The method incorporates the experimental flexibility to overcome many of the difficulties associated with imaging of solid and semisolid broad-line materials, and also provides contiguously sampled data in three dimensions. This technique has been evaluated as a nondestructive characterizauon method for determining the spatial distribution of organic additves in green-state injection-molded cylindrical Si{sub 3}N{sup 4} tensile specimens. The technique has been evaluated on the basis of providing moderate image resolution over large sample volumes, high resolution over smaller specimen volumes, and sensitivity to variations in the concentration of organics. Resolution of 200{mu}m has been obtained with excellent sensitivity to concentration. A detailed account of the 3-D imaging results obtained from the study, a discussion of the difficulties and limitations of the imaging technique, and suggestions for technique and system improvements are included.

Dieckman, S.L.; Gopalsami, N.; Ford, J.M.; Raptis, A.C.; Ellingson, W.A. (Argonne National Lab., IL (United States)); Rizo, P. (CEA Centre d'Etudes Nucleaires de Grenoble, 38 (France). Lab. d'Electronique et de Technologie de l'Informatique); Tracey, D.M.; Pujari, V.K. (Norton Co., Northboro, MA (United States))

1991-09-01T23:59:59.000Z

132

Evaluation of Hydatid Disease of the Heart with Magnetic Resonance Imaging  

SciTech Connect

Two patients with cardiac involvement of hydatid disease are presented: one with hydatid cyst of the interventricular septum and pulmonary arteries and the other with multiple pulmonary cysts associated with intracardiac and pericardial cysts. The ability of magnetic resonance imaging (MRI) to provide a global view of cardiac anatomy in any plane with high contrast between flowing blood and soft tissue ensures it an important role in the diagnosis and preoperative assessment of hydatid disease of the heart.

Kotoulas, Grigoris K.; Magoufis, George L.; Gouliamos, Athanasios D.; Athanassopoulou, Alexandra K.; Roussakis, Arcadios C.; Koulocheri, Dimitra P.; Kalovidouris, Angelos; Vlahos, Labros [Department of Radiology, CT-MRI Unit, Areteion Hospital, University of Athens, 76 Vas. Sophias Ave., GR-115 28 Athens (Greece)

1996-05-15T23:59:59.000Z

133

Nuclear magnetic resonance imaging and analysis for determination of porous media properties  

E-Print Network (OSTI)

&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Co-Chairs of Committee, A. Ted Watson John C. Slattery Committee Members, Randall L. Eubank David M. Ford Michael A. Bevan Head of Department, Kenneth R... Co?Chairs of Advisory Committee: Dr. A. Ted Watson Dr. John C. Slattery Advanced nuclear magnetic resonance (NMR) imaging methodologies have been developed to determine porous media properties associated with fluid flow pro- cesses. This dissertation...

Uh, Jinsoo

2007-04-25T23:59:59.000Z

134

Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle  

SciTech Connect

In the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis. The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).

Ryan C. Hruska; Jessica J. Mitchell; Matthew O. Anderson; Nancy F. Glenn

2012-09-01T23:59:59.000Z

135

Construction of a two-parameter empirical model of left ventricle wall motion using cardiac tagged magnetic resonance imaging data  

E-Print Network (OSTI)

visualized using cardiac tagged magnetic resonance imaging (tMRI) covering the contraction and relaxation phases. Based on the characteristics of the overall dynamics of the LV wall, its motion was represented by a combination of two components - radial...

Shi, Jack J; Alenezy, Mohammed D.; Smirnova, Irina V.; Bilgen, Mehmet

2012-10-24T23:59:59.000Z

136

Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches  

Science Journals Connector (OSTI)

Steffen E Petersen et al discuss the rationale, challenges and approaches of the large Cardiovascular Magnetic Resonance imaging study that will be part of the UK Biobank project investigating major life-threatening illnesses such as heart disease and stroke.

Steffen E Petersen; Paul M Matthews; Fabian Bamberg; David A Bluemke; Jane M Francis; Matthias G Friedrich; Paul Leeson; Eike Nagel; Sven Plein; Frank E Rademakers; Alistair A Young; Steve Garratt; Tim Peakman; Jonathan Sellors; Rory Collins; Stefan Neubauer

2013-05-28T23:59:59.000Z

137

Velocity and Concentration Studies of Flowing Suspensions by Nuclear Magnetic Resonance Imaging  

SciTech Connect

Nuclear magnetic resonance imaging (NMRI) techniques were developed to study concentrated suspension flows. Some of the proposed tasks were completed and others partly completed before the funding was terminated. The tasks completed were (1) materials selection for imaging of both particle and fluid components, (2) pipe flow measurements, and (3) flows in complex geometries. The task tackled with good progress is to develop rapid imaging techniques by analog compensation of eddy currents generated by the gradient pulses and real-time image reconstruction from the rapidly obtained data. The most suitable combination of materials arrived at is pharmaceutical beads in silicon oil. Their relaxation times T, are sufficiently different to permit imaging the two components separately. The pipe flow experiment used 3 mm, neutrally buoyant, plastic particles, up to 40% by volume, in 80-90W transmission oil flowing in a 5 cm diameter pipe. A series of distances ranging from 60 cm to 6 m downstream from a commercial mixer was studied. The flow is fully developed at 6 m and the velocity and concentration profiles agree with the earlier lower resolution experiments. The eddy current compensation scheme works well for two channels and is being extended to eight channels including the uniform field compensation term. In addition, we have implemented a rapid reconstruction hardware that processes and displays images in a fraction of a second.

Fukushima, E.

1997-01-01T23:59:59.000Z

138

Magnetic resonance imaging (MRI) of solid materials entails numerous problems from short longitudinal relaxation (T2) times to  

E-Print Network (OSTI)

. Solid-State STRAFI NMR Probe for Material Imaging of Quadrupolar Nuclei, J. Magn. Reson. httpMagnetic resonance imaging (MRI) of solid materials entails numerous problems from short for broadband tuning, sample translation along z-axis, and electrodes for in situ battery studies. An Alderman

Weston, Ken

139

K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems  

E-Print Network (OSTI)

MRI InI Visual MRI Neuroimaging K-InI Inverse solution MEG EEG Electroencephalography channels of a radio-frequency coil array, magnetic resonance inverse imaging (InI) can achieve ultra. Mathematically, the InI reconstruction is a generalization of parallel MRI (pMRI), which includes image space

140

Velocity and Concentration Studies of Flowing Suspensions by Nuclear Magnetic Resonance Imaging  

SciTech Connect

Nuclear magnetic resonance imaging (NMRI) techniques were developed to study concentrated suspension flows. Some of the proposed tasks were completed and others partly completed before the funding was terminated. The tasks completed were (1) materials selection for imaging of both particle and fluid components, (2) pipe flow measurements, and (3) flows in complex geometries. The task tackled with good progress is to develop rapid imaging techniques by analog compensation of eddy currents generated by the gradient pulses and real-time image reconstruction from the rapidly obtained data. The most suitable combination of materials arrived at is pharmaceutical beads in silicon oil. Their relaxation times T, are sufficiently different to permit imaging the two components separately. The pipe flow experiment used 3 mm, neutrally buoyant, plastic particles, up to 40% by volume, in 80-90W transmission oil flowing in a 5 cm diameter pipe. A series of distances ranging from 60 cm to 6 m downstream from a commercial mixer was studied. The flow is fully developed at 6 m and the velocity and concentration profiles agree with the earlier lower resolution experiments.

Fukushima, E.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Non-destructive quantification of water gradient in sludge composting with Magnetic Resonance Imaging  

SciTech Connect

Sludge from a slaughter-house wastewater plant, and mixtures of bulking agent (crushed wood pallet) and sludge were studied by Nuclear Magnetic Resonance (NMR). The NMR spin-spin relaxation (T{sub 2}) and spin-lattice relaxation (T{sub 1}) signals for sludge, wet crushed wood pallet and mixtures of sludge and bulking agent were decomposed into three relaxation time components. Each relaxation time component was explained by a non-homogeneous water distribution on a microscopic length scale and by the porosity of the material. For all samples, the T{sub 2} relaxation time value of each component was directly related to the dry matter content. The addition of wet crushed wood to sludge induced a decrease in the relaxation time, explained by water transfer between the sludge and the wood. Magnetic Resonance Imaging (MRI) and respirometric measurements were performed on sludge and wood mixtures. MR images of the mixtures were successfully obtained at different biodegradation states. Based on specific NMR measurements in an identified area located in the MRI cells, the results showed that grey levels of MR images reflected dry matter content. This preliminary study showed that MRI would be a powerful tool to measure water distribution in sludge and bulking agent mixtures and highlights the potential of this technique to increase the understanding of sludge composting.

Duval, F.P.; Quellec, S. [Cemagref, UR TERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Universite europeenne de Bretagne (France); Tremier, A.; Druilhe, C. [Cemagref, UR GERE, F-35044 Rennes (France); Universite europeenne de Bretagne (France); Mariette, F., E-mail: francois.mariette@cemagref.f [Cemagref, UR TERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Universite europeenne de Bretagne (France)

2010-04-15T23:59:59.000Z

142

Noise-Produced Patterns in Images Constructed from Magnetic Flux Leakage Data  

E-Print Network (OSTI)

Magnetic flux leakage measurements help identify the position, size and shape of corrosion-related defects in steel casings used to protect boreholes drilled into oil and gas reservoirs. Images constructed from magnetic flux leakage data contain patterns related to noise inherent in the method. We investigate the patterns and their scaling properties for the case of delta-correlated input noise, and consider the implications for the method's ability to resolve defects. The analytical evaluation of the noise-produced patterns is made possible by model reduction facilitated by large-scale approximation. With appropriate modification, the approach can be employed to analyze noise-produced patterns in other situations where the data of interest are not measured directly, but are related to the measured data by a complex linear transform involving integrations with respect to spatial coordinates.

Pimenova, Anastasiya V; Levesley, Jeremy; Elkington, Peter; Bacciarelli, Mark

2015-01-01T23:59:59.000Z

143

Three-dimensional magnetic and abundance mapping of the cool Ap star HD 24712 II. Two-dimensional Magnetic Doppler Imaging in all four Stokes parameters  

E-Print Network (OSTI)

Aims: We present a magnetic Doppler imaging study from all Stokes parameters of the cool, chemically peculiar star HD 24712. This is the very first such analysis performed at a resolving power exceeding 10^5. Methods: The analysis is performed on the basis of phase-resolved observations of line profiles in all four Stokes parameters obtained with the HARPSpol instrument attached at the 3.6-m ESO telescope. We use the magnetic Doppler imaging code, INVERS10, which allows us to derive the magnetic field geometry and surface chemical abundance distributions simultaneously. Results: We report magnetic maps of HD 24712 recovered from a selection of FeI, FeII, NdIII, and NaI lines with strong polarization signals in all Stokes parameters. Our magnetic maps successfully reproduce most of the details available from our observation data. We used these magnetic field maps to produce abundance distribution map of Ca. This new analysis shows that the surface magnetic field of HD 24712 has a dominant dipolar component wit...

Rusomarov, N; Ryabchikova, T; Piskunov, N

2014-01-01T23:59:59.000Z

144

CORONAL MAGNETIC FIELD MEASUREMENT FROM EUV IMAGES MADE BY THE SOLAR DYNAMICS OBSERVATORY  

SciTech Connect

By measuring the geometrical properties of the coronal mass ejection (CME) flux rope and the leading shock observed on 2010 June 13 by the Solar Dynamics Observatory (SDO) mission's Atmospheric Imaging Assembly we determine the Alfven speed and the magnetic field strength in the inner corona at a heliocentric distance of {approx}1.4 Rs. The basic measurements are the shock standoff distance ({Delta}R) ahead of the CME flux rope, the radius of curvature of the flux rope (R{sub c}), and the shock speed. We first derive the Alfvenic Mach number (M) using the relationship, {Delta}R/R{sub c} = 0.81[({gamma}-1) M{sup 2} + 2]/[({gamma}+1)(M{sup 2} - 1)], where {gamma} is the only parameter that needed to be assumed. For {gamma} = 4/3, the Mach number declined from 3.7 to 1.5 indicating shock weakening within the field of view of the imager. The shock formation coincided with the appearance of a type II radio burst at a frequency of {approx}300 MHz (harmonic component), providing an independent confirmation of the shock. The shock compression ratio derived from the radio dynamic spectrum was found to be consistent with that derived from the theory of fast-mode MHD shocks. From the measured shock speed and the derived Mach number, we found the Alfven speed to increase from {approx}140 km s{sup -1} to 460 km s{sup -1} over the distance range 1.2-1.5 Rs. By deriving the upstream plasma density from the emission frequency of the associated type II radio burst, we determined the coronal magnetic field to be in the range 1.3-1.5 G. The derived magnetic field values are consistent with other estimates in a similar distance range. This work demonstrates that the EUV imagers, in the presence of radio dynamic spectra, can be used as coronal magnetometers.

Gopalswamy, Nat; Akiyama, Sachiko; Maekelae, Pertti; Yashiro, Seiji [NASA Goddard Space Flight Center, Greenbelt, MD 20771-0001 (United States); Nitta, Nariaki [Lockheed-Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States)

2012-01-01T23:59:59.000Z

145

Identification of a New Blind Geothermal System with Hyperspectral Remote  

Open Energy Info (EERE)

Identification of a New Blind Geothermal System with Hyperspectral Remote Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Abstract Hyperspectral remote sensing-derived mineral maps and follow-up shallow temperature measurements were used to identify a new blind geothermal target in the Columbus Salt Marsh playa, Esmeralda County, Nevada. The hyperspectral survey was conducted with the ProSpecTIR VS2 instrument and consists of 380 km2 of 4-meter spatial resolution data acquired on October

146

Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report  

SciTech Connect

The overall objectives of this program are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are divided into four subtasks: (1) development of NMRI and CT scanning for the determination of rock-fluid and petrophysical properties; (2) development of NMRI and CT scanning for characterizing conventional multiphase displacement processes; (3) development of NMR and CT scanning for characterizing dispersed phase processes; and (4) miscible displacement studies.

Barrufet, M.A.; Flumerfelt, F.W.; Walsh, M.P.; Watson, A.T.

1994-04-01T23:59:59.000Z

147

Abnormal Subendocardial Perfusion in Cardiac Syndrome X Detected by Cardiovascular Magnetic Resonance Imaging  

Science Journals Connector (OSTI)

Between 10 and 20 percent of patients with typical anginal chest pain are found to have normal coronary angiograms. A subgroup of these patients, who also have classic downsloping ST-segment depression on exercise testing, are classified as having cardiac syndrome X. The exact pathophysiological... Patients with cardiac syndrome X have angina and abnormal exercise-test results but normal findings on coronary angiography. Although myocardial ischemia has been suspected to be the cause, this has been difficult to document. In this study, myocardial-perfusion magnetic resonance imaging demonstrated abnormal subendocardial perfusion during adenosine infusion in 20 patients with the syndrome.

Panting J.R.; Gatehouse P.D.; Yang G.-Z.

2002-06-20T23:59:59.000Z

148

Definition: Multispectral Imaging | Open Energy Information  

Open Energy Info (EERE)

Imaging Imaging Jump to: navigation, search Dictionary.png Multispectral Imaging Multispectral surveys image the earth in an average of ten wide bands over a wide spectral range. Multispectral sensors measure the electromagnetic spectrum in discrete, discontinuous bands (unlike the continuous hyperspectral image). Multispectral sensors are capable of relative material delineation. The thermal wavelength range of the multispectral survey senses heat energy from the Earth's surface. It can be used to sense surface temperature, including anomalies associated with active geothermal or volcanic systems. Both multispectral and hyperspectral remote sensing observations are available. This range can also be used to map mineralogy associate with common rock-forming silicates.[1]

149

Imaging and spectroscopic observations of magnetic reconnection and chromospheric evaporation in a solar flare  

E-Print Network (OSTI)

Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfv\\'{e}n speed. Yet, spectroscopic observations of such outflows, especially the downflows, are extremely rare. With observations of the newly launched Interface Region Imaging Spectrograph (IRIS), we report the detection of greatly redshifted ($\\sim$125 km s$^{-1}$ along line of sight) Fe {\\sc{xxi}} 1354.08\\AA{} emission line with a $\\sim$100 km s$^{-1}$ nonthermal width at the reconnection site of a flare. The redshifted Fe {\\sc{xxi}} feature coincides spatially with the loop-top X-Ray source observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). We interpret this large redshift as the signature of downward-moving reconnection outflow/hot retracting loops. Imaging observations from both IRIS and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) also...

Tian, Hui; Reeves, Katharine K; Raymond, John C; Guo, Fan; Liu, Wei; Chen, Bin; Murphy, Nicholas A

2014-01-01T23:59:59.000Z

150

Magnetism  

Science Journals Connector (OSTI)

Historically, magnetism is related to rock magnetism, due to a few minerals exhibiting spontaneous magnetization. Attractive properties of magnetite were already known in Antiquity and were used for navigation...

Guillaume Morin

1998-01-01T23:59:59.000Z

151

magnetism  

Science Journals Connector (OSTI)

magnetism [A class of physical phenomena associated with moving electricity, including the mutual mechanical forces among magnets and electric currents] ? Magnetismus m

2014-08-01T23:59:59.000Z

152

Fusion of multiple image types for the creation of radiometrically-accurate synthetic scenes  

E-Print Network (OSTI)

Fusion of multiple image types for the creation of radiometrically-accurate synthetic scenes-in-the-loop requirements for many aspects of synthetic hyperspectral scene construction. Through a fusion of 3D lidar data: lidar, hyperspectral, fusion, DIRSIG, building reconstruction, synthetic scene 1 INTRODUCTION Over

Kerekes, John

153

Understanding the Fe I Line Measurements Returned by the Helioseismic and Magnetic Imager  

E-Print Network (OSTI)

The Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO) observes the Sun at the Fe I 6173 {\\AA} line and returns full-disk maps of line-of-sight (LOS) observables including the magnetic flux density, velocities, Fe I line width, line depth, and continuum intensity. These data are estimated through an algorithm (the MDI-like algorithm, hereafter), which combines observables obtained at six wavelength positions within the Fe I 6173 {\\AA} line. To properly interpret such data it is important to understand any effects of the instrument and the pipeline that generates these data products. We tested the accuracy of the line width, line depth, and continuum intensity returned by the MDI-like algorithm using various one-dimensional (1D) atmosphere models. It was found that HMI estimates of these quantities are highly dependent on the shape of the line, therefore on the LOS angle and the magnetic flux density associated with the model, and less to line shifts with respect to the central ...

Cohen, Daniel P; Farris, Laurel; Tritschler, Alexandra

2015-01-01T23:59:59.000Z

154

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

SciTech Connect

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Martini, B; Silver, E; Pickles, W; Cocks, P

2004-03-25T23:59:59.000Z

155

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

SciTech Connect

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Pickles, W L; Martini, B A; Silver, E A; Cocks, P A

2004-03-03T23:59:59.000Z

156

Hyperspectral Aerosol Optical Depths from TCAP Flights  

SciTech Connect

4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2013-11-13T23:59:59.000Z

157

Use of Superparamagnetic Nanoparticle/Block Copolymer Electrostatic Complexes as Contrast Agents in Magnetic Resonance Imaging  

E-Print Network (OSTI)

During the past years we have investigated the complexation between nanocolloids and oppositely charged polymers. The nanocolloids examined were ionic surfactant micelles and inorganic oxide nanoparticles. For the polymers, we used homopolyelectrolytes and block copolymers with linear and comb architectures. In general, the attractive interactions between oppositely charged species are strong and as such, the simple mixing of solutions containing dispersed constituents yield to a precipitation, or to a phase separation. We have developed means to control the electrostatically-driven attractions and to preserve the stability of the mixed solution. With these approaches, we designed novel core-shell nanostructures, e.g. as those obtained with polymers and iron oxide superparamagnetic nanoparticles. In this presentation, we show that electrostatic complexation can be used to tailor new functionalized nanoparticles and we provide examples related to biomedical applications in the domain of contrast agents for Magnetic Resonance Imaging.

Jean-Francois Berret; Regis Cartier

2007-01-26T23:59:59.000Z

158

Hydrothermal alteration mineral mapping using hyperspectral imagery in  

Open Energy Info (EERE)

alteration mineral mapping using hyperspectral imagery in alteration mineral mapping using hyperspectral imagery in Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal alteration mineral mapping using hyperspectral imagery in Dixie Valley, Nevada Abstract Hyperspectral (HyMap) data was used to map the location ofoutcrops of high temperature, hydrothermally alterated minerals(including alunite, pyrophyllite, and hematite) along a 15 kmswath of the eastern front of the Stillwater Mountain Range inDixie Valley, Nevada. Analysis of this data set reveals that severaloutcrops of these altered minerals exist in the area, and thatone outcrop, roughly 1 square kilometer in area, shows abundanthigh temperature alteration. Structural analysis of the alteredregion using a

159

Hyperspectral Mineral Mapping In Support Of Geothermal Exploration...  

Open Energy Info (EERE)

aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a...

160

Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley,  

Open Energy Info (EERE)

Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Nevada, USA-Initial Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Nevada, USA-Initial Results Abstract A collaborative effort among U. S. Department of Energy sponsored remote sensing specialists and industry recently culminated in the acquisition of hyperspectral data over a new exploration target in Dixie Valley, Nevada, U. S. A. Related research at the Energy & Geoscience Institute is currently focused on mineralogy mapping at the outcrop level. This will be extended to piedmont and valley fill soils to detect soil mineral anomalies that may be related to buried structures and sinters. Spectral mineral end-members

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MAGNETIZATION ESTIMATION FROM MFM IMAGES Chi-Chun Hsu, Clayton T. Miller, R.S. Indeck, J.A. O'Sullivan, M.W. Muller  

E-Print Network (OSTI)

MAGNETIZATION ESTIMATION FROM MFM IMAGES Chi-Chun Hsu, Clayton T. Miller, R.S. Indeck, J.A. O'Sullivan, M.W. Muller Magnetics and Information Science Center, Washington University, St. Louis, MO 63130 Tel: (314) 935-4767; Fax (314) 935-7500; email: rsi@ee.wustl.edu Magnetic force microscopy (MFM

O'Sullivan, Joseph A.

162

Magnetism  

Science Journals Connector (OSTI)

... dipoles in applied fields". It deals with the classical (Langevin) theory of para-magnetism, anisotropy fields and magnetic measurements. In the next chapter "Atomic structure" the author ... special relevance to ferrites and the inclusion of a quite lengthy discussion of Pauli para-magnetism and of Stoner's treatment of itinerant electron ferromagnetism, though it does much to ...

E. W. LEE

1972-03-31T23:59:59.000Z

163

Magnetic Resonance Imaging at Princeton, UofV, and UNH | U.S...  

Office of Science (SC) Website

benefit to spin-off field: Static & dynamic imaging of lungs, heart, and possibly the brain, possible imaging of astronauts 'Hyperpolarized gas imaging External link ', a new...

164

Coronal Magnetic Field Measurement from EUV Images made by the Solar Dynamics Observatory  

E-Print Network (OSTI)

By measuring the geometrical properties of the coronal mass ejection (CME) flux rope and the leading shock observed on 2010 June 13 by the Solar Dynamics Observatory (SDO) mission's Atmospheric Imaging Assembly (AIA) we determine the Alfv\\'en speed and the magnetic field strength in the inner corona at a heliocentric distance of ~ 1.4 Rs. The basic measurements are the shock standoff distance (deltaR) ahead of the CME flux rope, the radius of curvature of the flux rope (Rc), and the shock speed. We first derive the Alfv\\'enic Mach number (M) using the relationship, deltaR/Rc = 0.81[(gamma-1) M^2 + 2]/[(gamma+1)(M^2-1)], where gamma is the only parameter that needed to be assumed. For gamma =4/3, the Mach number declined from 3.7 to 1.5 indicating shock weakening within the field of view of the imager. The shock formation coincided with the appearance of a type II radio burst at a frequency of ~300 MHz (harmonic component), providing an independent confirmation of the shock. The shock compression ratio derived...

Gopalswamy, Nat; Akiyama, Sachiko; Mäkelä, Pertti; Yashiro, Seiji

2011-01-01T23:59:59.000Z

165

Relaxation nuclear magnetic resonance imaging (R-NMRI) of desiccation in M9787 silicone pads.  

SciTech Connect

The production and aging of silicone materials remains an important issue in the weapons stockpile due to their utilization in a wide variety of components and systems within the stockpile. Changes in the physical characteristics of silicone materials due to long term desiccation has been identified as one of the major aging effects observed in silicone pad components. Here we report relaxation nuclear magnetic resonance imaging (R-NMRI) spectroscopy characterization of the silica-filled and unfilled polydimethylsiloxane (PDMS) and polydiphenylsiloxane (PDPS) copolymer (M9787) silicone pads within desiccating environments. These studies were directed at providing additional details about the heterogeneity of the desiccation process. Uniform NMR spin-spin relaxation time (T2) images were observed across the pad thickness indicating that the drying process is approximately uniform, and that the desiccation of the M9787 silicone pad is not a H2O diffusion limited process. In a P2O5 desiccation environment, significant reduction of T2 was observed for the silica-filled and unfilled M9787 silicone pad for desiccation up to 225 days. A very small reduction in T2 was observed for the unfilled copolymer between 225 and 487 days. The increase in relative stiffness with desiccation was found to be higher for the unfilled copolymer. These R-NMRI results are correlated to local changes in the modulus of the material

Alam, Todd M; Cherry, Brian Ray; Alam, Mary Kathleen

2004-06-01T23:59:59.000Z

166

Magnetic imaging with full-field soft x-ray microscopies  

E-Print Network (OSTI)

71– 2 J. Stoehr, H.C. Siegmann, Magnetism, Springer, Berlin/a fundamental understanding of magnetism continues to be oflength and time scales of magnetism, while the last is a

Fischer, Peter

2014-01-01T23:59:59.000Z

167

DEVELOPMENT OF A WEB-BASED BLIND TEST TO SCORE AND RANK HYPERSPECTRAL CLASSIFICATION ALGORITHMS  

E-Print Network (OSTI)

://dirsapps.cis.rit.edu/classtest/. 1. INTRODUCTION The accuracy of land cover classification algorithms applied to hyperspectral remoteDEVELOPMENT OF A WEB-BASED BLIND TEST TO SCORE AND RANK HYPERSPECTRAL CLASSIFICATION ALGORITHMS K ABSTRACT Remotely sensed hyperspectral imagery plays an important role in land cover classification

Kerekes, John

168

13Moving Magnetic Filaments Near Sunspots These two images were taken by the Hinode (Solar-B) solar observatory on October 30, 2006.  

E-Print Network (OSTI)

13Moving Magnetic Filaments Near Sunspots These two images were taken by the Hinode (Solar-B) solar://spacemath.gsfc.nasa.gov These two images were taken by the Hinode (Solar-B) solar observatory on October 30, 2006. The size of each also use transparent paper or film, overlay the paper on each image, and mark the locations carefully

169

Automatic Landmarking of Magnetic Resonance brain Images Camille Izard*a,b, Bruno M. Jedynaka,b and Craig E.L. Starkc  

E-Print Network (OSTI)

Automatic Landmarking of Magnetic Resonance brain Images Camille Izard*a,b, Bruno M. JedynakaDepartment of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD ABSTRACT Landmarking MR images is crucial in registering brain structures from different images. It consists in locating the voxel

Jedynak, Bruno M.

170

Diffusive magnetic images of upwelling patterns in the core Peter Olson, Ikuro Sumita,1  

E-Print Network (OSTI)

the magnetic field, including stretching of the field lines by the fluid and magnetic diffusion. [3] Since field electrodynamics. The method assumes a frozen magnetic flux balance for the global-scale part of the fluid velocity. The diffusive flux balance implies that local highs and lows in the magnetic field

171

Dots, Clumps, and Filaments: The Intermittent Images of Synchrotron Emission in Random Magnetic Fields of Young Supernova Remnants  

Science Journals Connector (OSTI)

Nonthermal X-ray emission in some supernova remnants originates from synchrotron radiation of ultrarelativistic particles in turbulent magnetic fields. We address the effect of a random magnetic field on synchrotron emission images and spectra. A random magnetic field is simulated to construct synchrotron emission maps of a source with a steady distribution of ultrarelativistic electrons. Nonsteady localized structures (dots, clumps, and filaments), in which the magnetic field reaches exceptionally high values, typically arise in the random field sample. These magnetic field concentrations dominate the synchrotron emission (integrated along the line of sight) from the highest energy electrons in the cutoff regime of the distribution, resulting in an evolving, intermittent, clumpy appearance. The simulated structures resemble those observed in X-ray images of some young supernova remnants. The lifetime of X-ray clumps can be short enough to be consistent with that observed even in the case of a steady particle distribution. The efficiency of synchrotron radiation from the cutoff regime in the electron spectrum is strongly enhanced in a turbulent field compared to emission from a uniform field of the same magnitude.

Andrei M. Bykov; Yury A. Uvarov; Donald C. Ellison

2008-01-01T23:59:59.000Z

172

Magnetism  

Science Journals Connector (OSTI)

... THIS is a good book, and we are glad to see the subject of magnetism fully treated in a popularly written text-book. It is a second edition of ... of importance, accuracy, and exhaustiveness, places the present treatise, as far as terrestrial magnetism is concerned, much before any similar book with which we are acquainted. The correction ...

JAMES STUART

1872-03-07T23:59:59.000Z

173

Helical Tomotherapy Planning for Lung Cancer Based on Ventilation Magnetic Resonance Imaging  

SciTech Connect

To investigate the feasibility of lung ventilation-based treatment planning, computed tomography and hyperpolarized (HP) helium-3 (He-3) magnetic resonance imaging (MRI) ventilation images of 6 subjects were coregistered for intensity-modulated radiation therapy planning in Tomotherapy. Highly-functional lungs (HFL) and less-functional lungs (LFL) were contoured based on their ventilation image intensities, and a cylindrical planning-target-volume was simulated at locations adjacent to both HFL and LFL. Annals of an anatomy-based plan (Plan 1) and a ventilation-based plan (Plan 2) were generated. The following dosimetric parameters were determined and compared between the 2 plans: percentage of total/HFL volume receiving {>=}20 Gy, 15 Gy, 10 Gy, and 5 Gy (TLV{sub 20}, HFLV{sub 20}, TLV{sub 15}, HFLV{sub 15}, TLV{sub 10}, HFLV{sub 10}, TLV{sub 5}, HFLV{sub 5}), mean total/HFL dose (MTLD/HFLD), maximum doses to all organs at risk (OARs), and target dose conformality. Compared with Plan 1, Plan 2 reduced mean HFLD (mean reduction, 0.8 Gy), MTLD (mean reduction, 0.6 Gy), HFLV{sub 20} (mean reduction, 1.9%), TLV{sub 20} (mean reduction, 1.5%), TLV{sub 15} (mean reduction, 1.7%), and TLV{sub 10} (mean reduction, 2.1%). P-values of the above comparisons are less than 0.05 using the Wilcoxon signed rank test. For HFLV{sub 15}, HFLV{sub 10}, TLV{sub 5}, and HTLV{sub 5}, Plan 2 resulted in lower values than plan 1 but the differences are not significant (P-value range, 0.063-0.219). Plan 2 did not significantly change maximum doses to OARs (P-value range, 0.063-0.563) and target conformality (P = 1.000). HP He-3 MRI of patients with lung disease shows a highly heterogeneous ventilation capacity that can be utilized for functional treatment planning. Moderate but statistically significant improvements in sparing functional lungs were achieved using helical tomotherapy plans.

Cai Jing; McLawhorn, Robert [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Altes, Tallisa A.; Lange, Eduard de [Department of Radiology, University of Virginia, Charlottesville, VA (United States); Read, Paul W.; Larner, James M.; Benedict, Stanley H. [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Sheng Ke, E-mail: ks2mc@virginia.edu [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)

2011-01-01T23:59:59.000Z

174

Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging  

DOE Patents (OSTI)

Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

Hu, Jian Zhi (Richland, WA); Sears, Jr., Jesse A. (Kennewick, WA); Hoyt, David W. (Richland, WA); Wind, Robert A. (Kennewick, WA)

2009-05-19T23:59:59.000Z

175

Effect of Background Emissivity on Gas Detection in Thermal Hyperspectral Imagery  

SciTech Connect

Detecting and identifying weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temper- ature, and background clutter. This paper presents an analysis of one formulation of the physics-based radiance model, which describes at-sensor observed radiance. The background emissivity and plume/ground temperatures are isolated, and their effects on net chemical signal are described. This analysis shows that the plume’s physical state, emission or absorption, is directly dependent on the background emissivity. It then describes what conditions on the background emissivity have inhibiting effects on the net chemical signal. These claims are illustrated by analyzing synthetic hyperspectral imaging data with the Adaptive Matched Filter using four chemicals and three distinct background emissivities. Two chemicals (Carbontetrachloride and Tetraflourosilane) in the analysis had a very strong relationship with the background emissivities: they exhibited absorbance over a small range of wavenumbers and the background emissivities showed a consistent ordering at these wavenumbers. Analysis of simulated hyperspectral images containing these chemicals showed complete agreement with the analysis of the physics-based model that described when the background emissivities would have inhibiting effects on gas detection. The other chemicals considered (Ammonia and Tributylphosphate) exhibited very complex absorbance structure across the longwave infrared spectrum. Analysis of images containing these chemicals revealed that the the analysis of the physics-based model did not hold completely for these complex chemicals but did suggest that gas detection was dominated by their dominant absorbance features. These results provide some explanation of the effect of the background emissivity on gas detection and a more general exploration of gas absorbance/background emissivity variability and their effects on gas detection is warranted. i

Walsh, Stephen J.; Tardiff, Mark F.; Chilton, Lawrence K.; Metoyer, Candace N.

2008-10-02T23:59:59.000Z

176

Magnetic Imaging of Micrometer and Nanometer-size Magnetic Structures and Their Flux-Pinning Effects on Superconducting Thin Films  

E-Print Network (OSTI)

to various ferromagnetic structures. These magnetic structures include: (i) alternating iron-brass shims of 275 mu m period, (ii) an array of 4 mu m wide Co stripes with smaller period (9 mu m), (iii) a square array of 50nm diameter, high aspect ratio (5...

Ozmetin, Ali E.

2010-07-14T23:59:59.000Z

177

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY (MR-EIT): A new technique for high resolution conductivity imaging  

E-Print Network (OSTI)

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY (MR-EIT): A new technique for high resolution potentials and the magnetic fields produced by the probing current are measured. Surface potentials are measured by using conventional electrical impedance tomography techniques and high resolution magnetic

Eyüboðlu, Murat

178

Abstract 380: Magnetic nanoplatforms for tumor targeting, imaging and energy delivery  

Science Journals Connector (OSTI)

...cancer cell lines. An inversion...high power field; P 0.0001...the sodium magnetic resonance...human cell lines (DU145...tumors at the magnetic field strength...are: MRI, magnetic resonance...high power field. Fig. 1...time. The lines are the theoretical...

Srinivas Sridhar; Robert Campbell; Dattatri Nagesha; and Evin Gultepe

2011-04-15T23:59:59.000Z

179

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring | Open  

Open Energy Info (EERE)

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Details Activities (1) Areas (1) Regions (0) Abstract: This project's goal is to develop remote sensing methods for early detection and spatial mapping, over whole regions simultaneously, of any surface areas under which there are significant CO2 leaks from deep underground storage formations. If large amounts of CO2 gas percolated up from a storage formation below to within plant root depth of the surface, the CO2 soil concentrations near the surface would become elevated and would affect individual plants and their local plant ecologies. Excessive soil CO2 concentrations are observed to significantly affect local plant

180

Application of topological sensitivity toward tissue elasticity imaging using magnetic resonance data  

E-Print Network (OSTI)

) and brain degeneration imaging (Green et al., 2008) with promising results. Specifically, the MRE estimates

Guzina, Bojan

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits  

DOE Patents (OSTI)

A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

Campbell, Ann. N. (13170-B Central SE #188, Albuquerque, NM 87123); Anderson, Richard E. (2800 Tennessee NE, Albuquerque, NM 87110); Cole, Jr., Edward I. (2116 White Cloud NE, Albuquerque, NM 87112)

1995-01-01T23:59:59.000Z

182

Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits  

DOE Patents (OSTI)

A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.

Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.

1995-11-07T23:59:59.000Z

183

Standoff imaging of chemicals using IR spectroscopy  

SciTech Connect

Here we report on a standoff spectroscopic technique for identifying chemical residues on surfaces. A hand-held infrared camera was used in conjunction with a wavelength tunable mid-IR quantum cascade laser (QCL) to create hyperspectral image arrays of a target with an explosive residue on its surface. Spectral signatures of the explosive residue (RDX) were extracted from the hyperspectral image arrays and compared with a reference spectrum. Identification of RDX was achieved for residue concentrations of 20 g per cm2 at a distance of 1.5 m, and for 5 g per cm2 at a distance of 15 cm.

Senesac, Larry R [ORNL] [ORNL; Thundat, Thomas George [ORNL] [ORNL; Morales Rodriguez, Marissa E [ORNL] [ORNL

2011-01-01T23:59:59.000Z

184

Velocity and concentration studies of flowing suspensions by nuclear magnetic resonance imaging. Final report, October 7, 1994--October 6, 1996  

SciTech Connect

Nuclear magnetic resonance imaging techniques were developed to study concentrated suspension flows. The tasks completed were: (1) materials selection for imaging of both particle and fluid components, (2) pipe flow measurements, and (3) flows in complex geometries. The partially completed task is the development of rapid imaging techniques by analog compensation of eddy currents, generated by the gradient pulses, and real-time image reconstruction from the data. The best combination of materials found is pharmaceutical beads in silicon oil. Their relaxation times T{sub 1} are sufficiently different to permit imaging the two components separately. The pipe flow experiment used 3 mm, neutrally buoyant, plastic particles, up to 40% by volume, in 80--90W transmission oil flowing in a 5 cm diameter pipe. Distances ranging from 60 cm to 6 m downstream from a commercial mixer was studied. The flow is fully developed at 6 m and the concentration and velocity profiles agree with earlier lower resolution experiments. The eddy current compensation scheme works well for two channels and is being extended to eight channels. The authors have also built a rapid reconstruction hardware that processes and displays images in a fraction of a second. They studied the flow of neutrally buoyant concentrated suspension past a step expansion and contraction in a cylindrical pipe. Interesting transition is observed at the expansion whereby the high fluids-fraction outer layer spreads to become the outer layer in the larger pipe.

NONE

1996-12-31T23:59:59.000Z

185

Spectro-polarimetric Imaging Reveals Helical Magnetic Fields in Solar Prominence Feet  

E-Print Network (OSTI)

Solar prominences are clouds of cool plasma levitating above the solar surface and insulated from the million-degree corona by magnetic fields. They form in regions of complex magnetic topology, characterized by non-potential fields, which can evolve abruptly, disintegrating the prominence and ejecting magnetized material into the heliosphere. However, their physics is not yet fully understood because mapping such complex magnetic configurations and their evolution is extremely challenging, and must often be guessed by proxy from photometric observations.Using state-of-the-art spectro-polarimetric data, we reconstruct the structure of the magnetic field in a prominence. We find that prominence feet harbor helical magnetic fields connecting the prominence to the solar surface below.

Gonzalez, M J Martinez; Ramos, A Asensio; Beck, C; Rodriguez, J de la Cruz; Diaz, A J

2015-01-01T23:59:59.000Z

186

Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging  

DOE Patents (OSTI)

An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

Fukushima, Eiichi (Los Alamos, NM); Roeder, Stephen B. W. (La Mesa, CA); Assink, Roger A. (Albuquerque, NM); Gibson, Atholl A. V. (Bryan, TX)

1986-01-01T23:59:59.000Z

187

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis, Fall 2004  

E-Print Network (OSTI)

Provides information relevant to the conduct and interpretation of human brain mapping studies. Provides in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for ...

Gollub, Randy L.

188

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis, Fall 2002  

E-Print Network (OSTI)

Provides information relevant to the conduct and interpretation of human brain mapping studies. Provides in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for ...

Gollub, Randy L.

189

Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution  

E-Print Network (OSTI)

plasmons; (250.5403) Plasmonics. References and Links 1. S. A. Maier, Plasmonics: Fundamentals Spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998). 9. E. D. Palik, ed. Handbook of Optical

Jonsson, Fredrik

190

Estimation of Atmospheric PSF Parameters for Hyperspectral Imaging  

E-Print Network (OSTI)

from the online tutorial: http://personalpages.manchester.ac.uk/staff/ david.foster/Tutorial_HSI2RGB

Plemmons, Robert J.

191

HYPER-I-NET: European Research Network on Hyperspectral Imaging  

E-Print Network (OSTI)

sensor design and cal- ibration/validation [3], [4] to advanced data processing [5]­ [8], and science-I-NET), a recently started Marie Curie Research Training Network. The project is designed to build-I-NET is at the confluence of heterogeneous disciplines, such as sensor design including optics and electronics, aerospace

Plaza, Antonio J.

192

Dark-field hyperspectral X-ray imaging  

Science Journals Connector (OSTI)

...relevant to materials science. The novel aspects...capabilities for materials science applications...aircraft and other aerospace structures [29...Plaza, A , 2009 Recent advances in techniques for...sensing for the earth sciences, vol. 3. New...

2014-01-01T23:59:59.000Z

193

Joint Linear/Nonlinear Spectral Unmixing of Hyperspectral Image Data  

E-Print Network (OSTI)

of the mixing process, several naturally occurring situations exist where nonlinear models may provide the most and flexibility in different applications, there are many naturally occuring situations where nonlinear mixture mixed spectra from the reflected surface radiation of various subpixel constituent materials

Plaza, Antonio J.

194

Decision Fusion of Hyperspectral and SAR data for Trafficability Assessment  

E-Print Network (OSTI)

Decision Fusion of Hyperspectral and SAR data for Trafficability Assessment Capt. Pierre Chouinard assessment. To perform the assessment, different types of classification on the two data sets were performed of using both HSI and SAR data in trafficability assessment. Keywords-component; Decision Fusion

Kerekes, John

195

Correction to “Hyperspectral Aerosol Optical Depths from TCAP Flights”  

SciTech Connect

In the paper “Hyperspectral aerosol optical depths from TCAP flights” by Y. Shinozuka et al. (Journal of Geophysical Research: Atmospheres, 118, doi:10.1002/2013JD020596, 2013), Tables 1 and 2 were published with the column heads out of order. Tables 1 and 2 are published correctly here. The publisher regrets the error.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2014-02-16T23:59:59.000Z

196

magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

I I Painless Physics Articles BEAM COOLING August 2, 1996 By Leila Belkora, Office of Public Affairs ACCELERATION August 16, 1996 By Dave Finley, Accelerator Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART DEUX October 16, 1996 By Peter H. Garbincius, Physics Section and Leila Belkora, Office of Public Affaris CROSS SECTION November 1, 1996 By Doreen Wackeroth, Theoretical Physics Edited by Leila Belkora, Office of Public Affaris MAGNETS PART I November 15, 1996 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs MAGNETS PART II January 10, 1997 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs

197

Near-resonant spatial images of confined Bose-Einstein condensates in a 4-Dee magnetic bottle  

Science Journals Connector (OSTI)

We present quantitative measurements of the spatial density profile of Bose-Einstein condensates of sodium atoms confined in a 4-Dee magnetic bottle. The condensates are imaged in transmission with near-resonant laser light. We demonstrate that the Thomas-Fermi surface of a condensate can be determined to better than 1%. More generally, we obtain excellent agreement with mean-field theory. We conclude that precision measurements of atomic scattering lengths and interactions between phase-separated cold atoms in a harmonic trap can be performed with high precision using this method.

Lene Vestergaard Hau; B. D. Busch; Chien Liu; Zachary Dutton; Michael M. Burns; J. A. Golovchenko

1998-07-01T23:59:59.000Z

198

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean,...

199

FUSION OF HYPERSPECTRAL AND BATHYMETRY DATA FOR IMPROVED BENTHIC HABITAT MAPPING  

E-Print Network (OSTI)

FUSION OF HYPERSPECTRAL AND BATHYMETRY DATA FOR IMPROVED BENTHIC HABITAT MAPPING Maria C. Torres, coastal remote sensing, underwater unmixing, benthic habitat mapping, data fusion. #12;

Gilbes, Fernando

200

E-Print Network 3.0 - airborne hyperspectral imagery Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Fusion of Hyperspectral and Multispectral Imagery with the Objective of Improving Spatial Resolution While Retaining Spectral Data Summary: Development of Algorithm for...

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Magnetic resonance imaging of the left atrial appendage post pulmonary vein isolation: Implications for percutaneous left atrial appendage occlusion  

Science Journals Connector (OSTI)

AbstractBackground There is increasing interest in performing left atrial appendage (LAA) occlusion at the time of atrial fibrillation (AF) ablation procedures. However, to date there has been no description of the acute changes to the LAA immediately following pulmonary vein (PV) isolation and additional left atrium (LA) substrate modification. This study assessed changes in the size and tissue characteristics of the LAA ostium in patients undergoing PV isolation. Methods This series included 8 patients who underwent cardiovascular magnetic resonance evaluation of the LA with delayed enhancement magnetic resonance imaging and contrast enhanced 3-D magnetic resonance angiography pre-, within 48 h of, and 3 months post ablation. Two independent cardiac radiologists evaluated the ostial LAA diameters and area at each time point in addition to the presence of gadolinium enhancement. Results Compared to pre-ablation values, the respective median differences in oblique diameters and LAA area were +1.8 mm, +1.7 mm, and +0.6 cm2 immediately post ablation (all NS) and ?2.7 mm, ?2.3 mm, and ?0.5 cm2 at 3 months (all NS). No delayed enhancement was detected in the LAA post ablation. Conclusion No significant change to LAA diameter, area, or tissue characteristics was noted after PV isolation. While these findings suggest the safety and feasibility of concomitant PV isolation and LAA device occlusion, the variability in the degree and direction of change of the LAA measurements highlights the need for further study.

Sheldon M. Singh; Laura Jimenez-Juan; Asaf Danon; Gorka Bastarrika; Andriy V. Shmatukha; Graham A. Wright; Eugene Crystal

2014-01-01T23:59:59.000Z

202

Geometric accuracy of 3D coordinates of the Leksell stereotactic skull frame in 1.5 Tesla- and 3.0 Tesla-magnetic resonance imaging: a comparison of three different fixation screw materials  

Science Journals Connector (OSTI)

......In addition, spatial accuracy over the entire brain is necessary when multiple metastatic brain tumors are being treated. Regarding image distortion...magnetic resonance imaging for postimplantation deep brain stimulator lead localization. Neurosurgery......

Hisato Nakazawa; Yoshimasa Mori; Osamu Yamamuro; Masataka Komori; Yuta Shibamoto; Yukio Uchiyama; Takahiko Tsugawa; Masahiro Hagiwara

2014-11-01T23:59:59.000Z

203

A 16-Channel Receive Array Insert for Magnetic Resonance Imaging of the Breast at 7T  

E-Print Network (OSTI)

of the second scan divided by the standard deviation of a region in the noise-only image. ..................................................... 36 Figure 4.3. SNR maps of a homogenous canola oil phantom acquired with the volume coil (left) and the 16... for the coupling patterns in the individual receive element field patterns. ................................................................................................................ 49 Figure 5.1: Visible and thermal images of a breast canola oil phantom...

By, Samantha

2014-04-01T23:59:59.000Z

204

Hyperspectral mineral mapping in support of geothermal exploration-  

Open Energy Info (EERE)

mineral mapping in support of geothermal exploration- mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hyperspectral mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA Abstract N/A Authors B. A. Martini, E. A. Silver, W. L. Pickles and P. A. Cocks Conference Geothermal Resources Council Annual Meeting; Morelia, Mexico; 2004 Published Geothermal Resources Council Annual Meeting;, 2004 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hyperspectral mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA

205

Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging  

SciTech Connect

The risks to patients with metal surgical implants who are undergoing nuclear magnetic resonance (NMR) imaging and the artifacts caused by such implants were studied. Twenty-one aneurysm and other hemostatic clips and a variety of other materials (e.g., dental amalgam, 14 karat gold) were used. Longitudinal forces and torques were found to be exerted upon 16 of the 21 clips. With five aneurysm clips, forces and torques sufficient to produce risk of hemorrhage from dislocation of the clip from the vessel or aneurysm, or cerebral injury by clip displacement without dislodgement were identified. The induced ferromagnetism was shown to be related to the composition of the alloys from which the clips were manufactured. Clips with 10-14% nickel are evidently without sufficient induced ferromagnetism to cause hazard. The extent of NMR imaging artifacts was greater for materials with measurable ferromagnetic properties, but metals without measurable ferromagnetism in our tests also resulted in significant artifacts. Dental amalgam and 14 karat gold produced no imaging artifacts, but stainless steels in dentures and orthodontic braces produced extensive artifacts in the facial region.

New, P.F.J. (Massachusetts General Hospital, Boston, MA); Rosen, B.R.; Brady, T.J.; Buonanno, F.S.; Kistler, J.P.; Burt, C.T.; Hinshaw, W.S.; Newhouse, J.H.; Pohost, G.M.; Taveras, J.M.

1983-04-01T23:59:59.000Z

206

In vivo magnetic resonance vascular imaging using laser-polarized 3He microbubbles  

Science Journals Connector (OSTI)

...because of its larger magnetic moment...filled to ?2 atmosphere. Two cubic centimeters of gas (at 1 atmosphere = 101.3 kPa...Squibb) and two plasma volume expanders...both small and large diameter counting...operating at 65.1 MHz and 85.5 MHz...3 He to target areas for MRI. 1 Happer...

Mark S. Chawla; X. Josette Chen; Harald E. Möller; Gary P. Cofer; C. Ted Wheeler; Laurence W. Hedlund; G. Allan Johnson

1998-01-01T23:59:59.000Z

207

A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delineation  

Science Journals Connector (OSTI)

...humidified 5% CO2 atmosphere in DMEM supplemented...resonating at 200 MHz. Multiple slice...CO). The area of each region...not seen with larger magnetic particles...Methods). The areas obtained from...estimation of tumor area by Cy5.5 fluorescence...they are too large to undergo renal...do not bind plasma proteins and...

Moritz F. Kircher; Umar Mahmood; Raymond S. King; Ralph Weissleder; and Lee Josephson

2003-12-01T23:59:59.000Z

208

New generation of magnetic and luminescent nanoparticles for in vivo real-time imaging  

Science Journals Connector (OSTI)

...Clinical MRI is based on the relaxation of the nuclear spin of water protons in a strong magnetic...of special interest because of its low-cost, high-sensitivity, high-spatial resolution...H, Boyle, TJ, Oliver, JM, Wilson, BS, Han, SM. 2007 Water-soluble germanium...

2013-01-01T23:59:59.000Z

209

Cassini/VIMS hyperspectral observations of the HUYGENS landing site on Titan  

E-Print Network (OSTI)

Titan is one of the primary scientific objectives of the NASA ESA ASI Cassini Huygens mission. Scattering by haze particles in Titan's atmosphere and numerous methane absorptions dramatically veil Titan's surface in the visible range, though it can be studied more easily in some narrow infrared windows. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini spacecraft successfully imaged its surface in the atmospheric windows, taking hyperspectral images in the range 0.4 5.2 ?m. On 26 October (TA flyby) and 13 December 2004 (TB flyby), the Cassini Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. We report here on the analysis of VIMS images of the Huygens landing site acquired at TA and TB, with a spatial resolution ranging from 16 to14.4 km/pixel. The pure atmospheric backscattering component is corrected by using both an empirical method and a first-order theoretical model. Both approaches provide consistent results. After the removal of scat...

Rodríguez, S; Sotin, C; Clénet, H; Clark, R N; Buratti, B; Brown, R H; Mccord, T B; Nicholson, P D; Baines, K H; 10.1016/J.PSS.2006.06.016

2009-01-01T23:59:59.000Z

210

Evaluating the Effects of Spatial Resolution on Hyperspectral Fire Detection and Temperature Retrieval  

E-Print Network (OSTI)

and background land cover. Previous work has used hyperspectral data acquired from airborne platforms, limiting (Riaño et al., 2002). Hyperspectral sensors utilize a large number of contiguous bands, each, like all airborne sensors, faces issues of varying spatial resolutions and has limited spatial

211

Gas Plume Species Identification in LWIR Hyperspectral Imagery by Regression Analyses  

E-Print Network (OSTI)

Gas Plume Species Identification in LWIR Hyperspectral Imagery by Regression Analyses by David Title of Thesis: Gas Plume Species Identification in LWIR Hyperspectral Imagery by Regression Analyses I in whole or in part. Any reproduction will not be for commercial use or profit. Signature Date ii #12;Gas

Salvaggio, Carl

212

Folic Acid-Conjugated MnO Nanoparticles as a T1 Contrast Agent for Magnetic Resonance Imaging of Tiny Brain Gliomas  

Science Journals Connector (OSTI)

Folic Acid-Conjugated MnO Nanoparticles as a T1 Contrast Agent for Magnetic Resonance Imaging of Tiny Brain Gliomas ... Detection of brain gliomas at the earliest stage is of great importance to improve the outcomes but remains the most challenging task. ... Accordingly, the in vivo MR images demonstrated that MnO-TETT-FA NPs could efficiently enhance the MRI contrast for tiny brain gliomas. ...

Ning Chen; Chen Shao; Yanming Qu; Shuai Li; Wei Gu; Tingting Zheng; Ling Ye; Chunjiang Yu

2014-10-21T23:59:59.000Z

213

Advanced Magnetic Resonance Imaging of the Physical Processes in Human Glioblastoma  

Science Journals Connector (OSTI)

...disease. Application of MR Physics to Glioblastoma In most clinical...series of images of the first-pass passage of the CA through the...signal recorded during the first pass of the CA depends on the architecture...In brief, a relaxation rate curve (deltaR2*) proportional...

Jayashree Kalpathy-Cramer; Elizabeth R. Gerstner; Kyrre E. Emblem; Ovidiu C. Andronesi; and Bruce Rosen

2014-09-01T23:59:59.000Z

214

Hart AG, Bowtell RW, Kckenberger W, Wenseleers T, Ratnieks FLW. 2003. Magnetic resonance imaging in entomology: a critical review. 9pp. Journal of Insect Science, 3:5, Available online: insectscience.org/3.5  

E-Print Network (OSTI)

.5 Journal of Insect Science insectscience.org Magnetic resonance imaging in entomology: a critical reviewHart AG, Bowtell RW, Köckenberger W, Wenseleers T, Ratnieks FLW. 2003. Magnetic resonance imaging in entomology: a critical review. 9pp. Journal of Insect Science, 3:5, Available online: insectscience.org/3

Wenseleers, Tom

215

Noninvasive Assessment of Tumor Microenvironment Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging and {sup 18}F-Fluoromisonidazole Positron Emission Tomography Imaging in Neck Nodal Metastases  

SciTech Connect

Purpose: To assess noninvasively the tumor microenvironment of neck nodal metastases in patients with head-and-neck cancer by investigating the relationship between tumor perfusion measured using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and hypoxia measured by {sup 18}F-fluoromisonidazole ({sup 18}F-FMISO) positron emission tomography (PET). Methods and Materials: Thirteen newly diagnosed head-and-neck cancer patients with metastatic neck nodes underwent DCE-MRI and {sup 18}F-FMISO PET imaging before chemotherapy and radiotherapy. The matched regions of interests from both modalities were analyzed. To examine the correlations between DCE-MRI parameters and standard uptake value (SUV) measurements from {sup 18}F-FMISO PET, the nonparametric Spearman correlation coefficient was calculated. Furthermore, DCE-MRI parameters were compared between nodes with {sup 18}F-FMISO uptake and nodes with no {sup 18}F-FMISO uptake using Mann-Whitney U tests. Results: For the 13 patients, a total of 18 nodes were analyzed. The nodal size strongly correlated with the {sup 18}F-FMISO SUV ({rho} = 0.74, p < 0.001). There was a strong negative correlation between the median k{sub ep} (redistribution rate constant) value ({rho} = -0.58, p = 0.042) and the {sup 18}F-FMISO SUV. Hypoxic nodes (moderate to severe {sup 18}F-FMISO uptake) had significantly lower median K{sup trans} (volume transfer constant) (p = 0.049) and median k{sub ep} (p = 0.027) values than did nonhypoxic nodes (no {sup 18}F-FMISO uptake). Conclusion: This initial evaluation of the preliminary results support the hypothesis that in metastatic neck lymph nodes, hypoxic nodes are poorly perfused (i.e., have significantly lower K{sup trans} and k{sub ep} values) compared with nonhypoxic nodes.

Jansen, Jacobus [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Schoeder, Heiko [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Lee, Nancy Y. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Wang Ya [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

2010-08-01T23:59:59.000Z

216

Automated GIS-based derivation of urban ecological indicators using hyperspectral remote sensing and height information  

Science Journals Connector (OSTI)

Abstract Urban ecological indicators allow the objective and quantitative characterisation of ecological conditions in a spatially continuous way by evaluating the influence of urban surface types with respect to ecological functions and ecosystem services. Although the concept had already been developed in the 1980s, the variety of existing indicators had not been widely applied yet in urban planning practice, because of the high manual mapping effort that is required for spatially differentiated urban surface mapping. This paper presents a new automated remote sensing and GIS-based system for the flexible and user-defined derivation of urban ecological indicators. The system is based on automated surface material mapping using airborne hyperspectral image data and height information. Because the material classes obtained from remote sensing analysis differ in part from the surface types needed for the calculation of urban ecological indicators, they have been transformed into so-called linking categories representing the basis for the automated GIS-based derivation of urban ecological indicators. For this purpose, a computer-based system for flexible indicator derivation has been developed, allowing the user-defined integration of indicators based on the variable determination of mapping units, linking categories and respective weighting factors. Based on a comprehensive review of existing ecological indicators, 14 indicators have been selected and implemented in the system. To demonstrate the potential of the new system, a variety of indicators has been derived for two test sites situated in the German cities of Dresden and Potsdam, using city blocks defined by the municipal authorities as spatial mapping units. The initial mapping of surface materials was automatically performed on the basis of airborne hyperspectral image data acquired by the HyMAP system. The results of subsequent GIS-based indicator calculation were validated using results from field-based reference mapping that had been carried out for selected city blocks situated in both cities. An accuracy assessment for these reference city blocks has revealed mean errors of approximately 4%, confirming the suitability of the developed automated GIS-based system for flexible and efficient indicator calculation.

Robert Behling; Mathias Bochow; Saskia Foerster; Sigrid Roessner; Hermann Kaufmann

2015-01-01T23:59:59.000Z

217

A Prospective Study of the Utility of Magnetic Resonance Imaging in Determining Candidacy for Partial Breast Irradiation  

SciTech Connect

Purpose: Retrospective data have demonstrated that breast magnetic resonance imaging (MRI) may change a patient's eligibility for partial breast irradiation (PBI) by identifying multicentric, multifocal, or contralateral disease. The objective of the current study was to prospectively determine the frequency with which MRI identifies occult disease and to establish clinical factors associated with a higher likelihood of MRI prompting changes in PBI eligibility. Methods and Materials: At The University of Chicago, women with breast cancer uniformly undergo MRI in addition to mammography and ultrasonography. From June 2009 through May 2011, all patients were screened prospectively in a multidisciplinary conference for PBI eligibility based on standard imaging, and the impact of MRI on PBI eligibility according to National Surgical Adjuvant Breast and Bowel Project protocol B-39/Radiation Therapy Oncology Group protocol 0413 entry criteria was recorded. Univariable analysis was performed using clinical characteristics in both the prospective cohort and in a separate cohort of retrospectively identified patients. Pooled analysis was used to derive a scoring index predictive of the risk that MRI would identify additional disease. Results: A total of 521 patients were screened for PBI eligibility, and 124 (23.8%) patients were deemed eligible for PBI based on standard imaging. MRI findings changed PBI eligibility in 12.9% of patients. In the pooled univariable analysis, tumor size ?2 cm on mammography or ultrasonography (P=.02), age <50 years (P=.01), invasive lobular histology (P=.01), and HER-2/neu amplification (P=.01) were associated with a higher likelihood of MRI changing PBI eligibility. A predictive score was generated by summing the number of significant risk factors. Patients with a score of 0, 1, 2, and 3 had changes to eligibility based on MRI findings in 2.8%, 13.2%, 38.1%, and 100%, respectively (P<.0001). Conclusions: MRI identified additional disease in a significant number of patients eligible for PBI, based on standard imaging. Clinical characteristics may be useful in directing implementation of MRI in the staging of PBI candidates.

Dorn, Paige L.; Al-Hallaq, Hania A.; Haq, Farah; Goldberg, Mira [Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois (United States)] [Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois (United States); Abe, Hiroyuki [Department of Radiology, University of Chicago Medical Center, Chicago, Illinois (United States)] [Department of Radiology, University of Chicago Medical Center, Chicago, Illinois (United States); Hasan, Yasmin [Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois (United States)] [Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois (United States); Chmura, Steven J., E-mail: schmura@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois (United States)

2013-03-01T23:59:59.000Z

218

Multispectral Imaging At Rangely Oilfield Area (Pickles & Cover, 2004) |  

Open Energy Info (EERE)

Multispectral Imaging At Rangely Oilfield Area (Pickles & Cover, 2004) Multispectral Imaging At Rangely Oilfield Area (Pickles & Cover, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Rangely Oilfield Area (Pickles & Cover, 2004) Exploration Activity Details Location Rangely Oilfield Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Airborne hyperspectral imaging applied to determine vegetation and CO2 leakage in the Rangely oilfield of northwest Colorado - results may be useful for geothermal exploration. References W. Pickles, W. Cover (2004) Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Rangely_Oilfield_Area_(Pickles_%26_Cover,_2004)&oldid=511013"

219

Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Print Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the "water window" (300-500 eV). Nanomagnetism studies require the energy range characteristic of iron, cobalt, and nickel (600-900 eV). Mid- and far-infrared (energies below 1 eV) microprobes using synchrotron radiation are being used to address problems such as chemistry in biological tissues, chemical identification and molecular conformation, environmental biodegradation, mineral phases in geological and astronomical specimens, and electronic properties of novel materials. Infrared synchrotron radiation is focused through, or reflected from, a small spot on the specimen and then analyzed using a spectrometer. Tuning to characteristic vibrational frequencies serves as a sensitive fingerprint for molecular species. Images of the various species are built up by raster scanning the specimen through the small illuminated spot.

220

Hyperspectral microscopy using an external cavity quantum cascade laser and its applications for explosives detection  

SciTech Connect

A hyperspectral infrared microscope using external cavity quantum cascade laser illumination and a microbolometer focal plane array is used to characterize nanogram-scale particles of the explosives RDX, tetryl, and PETN at fast acquisition rates.

Phillips, Mark C.; Suter, Jonathan D.; Bernacki, Bruce E.

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A HYPERSPECTRAL VIEW OF THE CRAB NEBULA  

SciTech Connect

We have obtained spatially resolved spectra of the Crab nebula in the spectral ranges 450-520 nm and 650-680 nm, encompassing the H{beta}, [O III] {lambda}4959, {lambda}5007, H{alpha}, [N II] {lambda}6548, {lambda}6584, and [S II] {lambda}6717, {lambda}6731 emission lines, with the imaging Fourier transform spectrometer SpIOMM at the Observatoire du Mont-Megantic's 1.6 m telescope. We first compare our data with published observations obtained either from a Fabry-Perot interferometer or from a long-slit spectrograph. Using a spectral deconvolution technique similar to the one developed by Cadez et al., we identify and resolve multiple emission lines separated by large Doppler shifts and contained within the rapidly expanding filamentary structure of the Crab. This allows us to measure important line ratios, such as [N II]/H{alpha}, [S II]/H{alpha}, and [S II] {lambda}6717 /[S II] {lambda}6731 of individual filaments, providing a new insight on the SE-NW asymmetry in the Crab. From our analysis of the spatial distribution of the electronic density and of the respective shocked versus photoionized gas components, we deduce that the skin-less NW region must have evolved faster than the rest of the nebula. Assuming a very simple expansion model for the ejecta material, our data provide us with a complete tridimensional view of the Crab.

Charlebois, M.; Drissen, L.; Bernier, A.-P. [Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, Quebec G1V 0A6 (Canada); Grandmont, F. [ABB Bomem Inc., 585 boulevard Charest est, Suite 300, Quebec, Quebec G1K 9H4 (Canada); Binette, L., E-mail: maxime.charlebois.1@ulaval.c, E-mail: ldrissen@phy.ulaval.c, E-mail: anne-pier.bernier.1@ulaval.c [Instituto de AstronomIa, UNAM, Ap.70-264, 04510 Mexico, DF (Mexico)

2010-05-15T23:59:59.000Z

222

Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of 166Ho Microspheres in Liver Radioembolization  

Science Journals Connector (OSTI)

Purpose To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional 166Ho activity distribution to estimate radiation-absorbed dose distributions in 166Ho-loaded poly (L-lactic acid) microsphere (166Ho-PLLA-MS) liver radioembolization. Methods and Materials MRI, computed tomography (CT), and single photon emission CT (SPECT) experiments were conducted on an anthropomorphic gel phantom with tumor-simulating gel samples and on an excised human tumor-bearing liver, both containing known amounts of 166Ho-PLLA-MS. Three-dimensional radiation-absorbed dose distributions were estimated at the voxel level by convolving the 166Ho activity distribution, derived from quantitative MRI data, with a 166Ho dose point-kernel generated by MCNP (Monte Carlo N-Particle transport code) and from Medical Internal Radiation Dose Pamphlet 17. MRI-based radiation-absorbed dose distributions were qualitatively compared with CT and autoradiography images and quantitatively compared with SPECT-based dose distributions. Both MRI- and SPECT-based activity estimations were validated against dose calibrator measurements. Results Evaluation on an anthropomorphic phantom showed that MRI enables accurate assessment of local 166Ho-PLLA-MS mass and activity distributions, as supported by a regression coefficient of 1.05 and a correlation coefficient of 0.99, relating local MRI-based mass and activity calculations to reference values obtained with a dose calibrator. Estimated MRI-based radiation-absorbed dose distributions of 166Ho-PLLA-MS in an ex vivo human liver visually showed high correspondence to SPECT-based radiation-absorbed dose distributions. Quantitative analysis revealed that the differences in local and total amounts of 166Ho-PLLA-MS estimated by MRI, SPECT, and the dose calibrator were within 10%. Excellent agreement was observed between MRI- and SPECT-based dose–volume histograms. Conclusions Quantitative MRI was demonstrated to provide accurate three-dimensional 166Ho-PLLA-MS activity distributions, enabling localized intrahepatic radiation-absorbed dose estimation by convolution with a 166Ho dose point-kernel for liver radioembolization treatment optimization and evaluation.

Peter R. Seevinck; Gerrit H. van de Maat; Tim C. de Wit; Maarten A.D. Vente; Johannes F.W. Nijsen; Chris J.G. Bakker

2012-01-01T23:59:59.000Z

223

Definition of structural patterns using dipmeter and magnetism data within the poorly seismic imaged field of Avocette, presalt Gabonese Basin  

SciTech Connect

In the Gabonese southern Onshore Basin, several oil fields occur below an Aptian salt sequence. Because of the presence of diapirs and salt walls related to post aptian salt tectonics, the quality of the 2D or 3D seismic imaging of the presalt formations stays very insufficient to well define the structural patterns within the traps below the salt. This problem is particularly important in the Avocette oil field where the poor quality of the seismic is also related to very high dips within the presalt formations. Indeed the dipmeter analysis demonstrates that the values of dips can reach 80 deg. to be vertical within some of the reservoirs. To define the complex geometry of the field, depth cross-sections have been constructed using: (1) magnetism and gravimetric data which allow to propose a depth and also a structural framework for the basement; (2) dipmeter analysis which provides for the whole presalt sequence very good results for the geometry, but also for the age of deformation. Indeed, the biostratigraphy is well defined and it is possible to date characteristic features as growth faulting demonstrated by the dipmeter. This allows to propose a presalt kinematic evolution for the field and adjacent area which can be summarized as follow: the structure corresponds to a faulted roll-over anticline, related to Upper Barremian to Aptian progressive gravity spreading of thick lacustrine deltaic sequences. During Upper Aptian the roll-over anticline is partially eroded and overlaid by a regional sandstone deposits. Last movements on the major faults deformed this horizon which constitutes now the main reservoir of the Avocette oil field.

Guerin, G. (Elf Petroleum Norge, Stavanger (Norway)); Lecanu, H.; Icart, J.C. (Elf Aquitaine Production, Pau-Paris (France)) (and others)

1996-01-01T23:59:59.000Z

224

Definition of structural patterns using dipmeter and magnetism data within the poorly seismic imaged field of Avocette, presalt Gabonese Basin  

SciTech Connect

In the Gabonese southern Onshore Basin, several oil fields occur below an Aptian salt sequence. Because of the presence of diapirs and salt walls related to post aptian salt tectonics, the quality of the 2D or 3D seismic imaging of the presalt formations stays very insufficient to well define the structural patterns within the traps below the salt. This problem is particularly important in the Avocette oil field where the poor quality of the seismic is also related to very high dips within the presalt formations. Indeed the dipmeter analysis demonstrates that the values of dips can reach 80 deg. to be vertical within some of the reservoirs. To define the complex geometry of the field, depth cross-sections have been constructed using: (1) magnetism and gravimetric data which allow to propose a depth and also a structural framework for the basement; (2) dipmeter analysis which provides for the whole presalt sequence very good results for the geometry, but also for the age of deformation. Indeed, the biostratigraphy is well defined and it is possible to date characteristic features as growth faulting demonstrated by the dipmeter. This allows to propose a presalt kinematic evolution for the field and adjacent area which can be summarized as follow: the structure corresponds to a faulted roll-over anticline, related to Upper Barremian to Aptian progressive gravity spreading of thick lacustrine deltaic sequences. During Upper Aptian the roll-over anticline is partially eroded and overlaid by a regional sandstone deposits. Last movements on the major faults deformed this horizon which constitutes now the main reservoir of the Avocette oil field.

Guerin, G. [Elf Petroleum Norge, Stavanger (Norway); Lecanu, H.; Icart, J.C. [Elf Aquitaine Production, Pau-Paris (France)] [and others

1996-12-31T23:59:59.000Z

225

Hyperspectral Mineral Mapping In Support Of Geothermal Exploration-  

Open Energy Info (EERE)

Mineral Mapping In Support Of Geothermal Exploration- Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Details Activities (2) Areas (2) Regions (0) Abstract: Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic

226

Improved nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging  

DOE Patents (OSTI)

An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.

1984-01-01T23:59:59.000Z

227

Information-Efficient Spectral Imaging Sensor With Tdi  

DOE Patents (OSTI)

A programmable optical filter for use in multispectral and hyperspectral imaging employing variable gain time delay and integrate arrays. A telescope focuses an image of a scene onto at least one TDI array that is covered by a multispectral filter that passes separate bandwidths of light onto the rows in the TDI array. The variable gain feature of the TDI array allows individual rows of pixels to be attenuated individually. The attenuations are functions of the magnitudes of the positive and negative components of a spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. This system provides for a very efficient determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

Rienstra, Jeffrey L. (Albuquerque, NM); Gentry, Stephen M. (Albuquerque, NM); Sweatt, William C. (Albuquerque, NM)

2004-01-13T23:59:59.000Z

228

Magnetic Resonance Imaging  

Science Journals Connector (OSTI)

The diagnosis of diastolic heart failure requires a combination of clinical, laboratory, and technical findings, providing evidence of the existence of heart failure, the absence of (significant) systolic abno...

Frank E. Rademakers MD; PhD; Jan Bogaert MD; PhD

2008-01-01T23:59:59.000Z

229

Estimating biodiversity of dry forests and coral reefs with hyperspectral data: a NASA EPSCOR project at UPRM  

E-Print Network (OSTI)

Estimating biodiversity of dry forests and coral reefs with hyperspectral data: a NASA EPSCOR and modelsensing and field data to assess and model components of ecosystem biodiversity · Utilize hyperspectral service in PR and PR department ofp Natural Resources #12;What is ecosystem biodiversity ?biodiversity ? D

Gilbes, Fernando

230

Erroneous and inappropriate use of gamma fits to tracer-dilution curves in magnetic resonance imaging and nuclear medicine1  

E-Print Network (OSTI)

imaging and nuclear medicine1 Xingfeng Lia , Jie Tiana , R.K. Millardb, * a Medical Image Processing Group applica- tions of this versatile fitting function occur in nuclear med- icine [2,3], with the same of particles, taking account of back-dispersion in diffusion processes. An up-to-date introduction

Tian, Jie

231

Near-electrode imager  

DOE Patents (OSTI)

An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmont, IL); Woelk, Klaus (Wachtberg, DE); Gerald, II, Rex E. (Brookfield, IL)

2000-01-01T23:59:59.000Z

232

Magnetic Stereoscopy  

E-Print Network (OSTI)

The space mission STEREO will provide images from two viewpoints. An important aim of the STEREO mission is to get a 3D view of the solar corona. We develop a program for the stereoscopic reconstruction of 3D coronal loops from images taken with the two STEREO spacecraft. A pure geometric triangulation of coronal features leads to ambiguities because the dilute plasma emissions complicates the association of features in image 1 with features in image 2. As a consequence of these problems the stereoscopic reconstruction is not unique and multiple solutions occur. We demonstrate how these ambiguities can be resolved with the help of different coronal magnetic field models (potential, linear and non-linear force-free fields). The idea is that, due to the high conductivity in the coronal plasma, the emitting plasma outlines the magnetic field lines. Consequently the 3D coronal magnetic field provides a proxy for the stereoscopy which allows to eliminate inconsistent configurations. The combination of stereoscopy and magnetic modelling is more powerful than one of these tools alone. We test our method with the help of a model active region and plan to apply it to the solar case as soon as STEREO data become available.

Thomas Wiegelmann; Bernd Inhester

2006-12-21T23:59:59.000Z

233

Combining Vis–NIR hyperspectral imagery and legacy measured soil profiles to map subsurface soil properties in a Mediterranean area (Cap-Bon, Tunisia)  

Science Journals Connector (OSTI)

Abstract Previous studies have demonstrated that Visible Near InfraRed (Vis–NIR) hyperspectral imagery is a cost-efficient way to map soil properties at fine resolutions (~ 5 m) over large areas. However, such mapping is only feasible for the soil surface because the effective penetration depths of optical sensors do not exceed several millimeters. This study aims to determine how Vis–NIR hyperspectral imagery can serve to map the subsurface properties at four depth intervals (15–30 cm, 30–60 cm, 60–100 cm and 30–100 cm) when used with legacy soil profiles and images of parameters derived from digital elevation model (DEM). Two types of surface–subsurface functions, namely linear models and random forests, that estimate subsurface property values from surface values and landscape covariates were first calibrated over the set of legacy measured profiles. These functions were then applied to map the soil properties using the hyperspectral-derived digital surface soil property maps and the images of landscape covariates as input. Error propagation was addressed using a Monte Carlo approach to estimate the mapping uncertainties. The study was conducted in a pedologically contrasted 300 km2-cultivated area located in the Cap Bon region (Northern Tunisia) and tested on three soil surface properties (clay and sand contents and cation exchange capacity). The main results were as follows: i) fairly satisfactory (cross-validation R2 between 0.55 and 0.81) surface–subsurface functions were obtained for predicting the soil properties at 15–30 cm and 30–60 cm, whereas predictions at 60–100 cm were less accurate (R2 between 0.38 and 0.43); ii) linear models outperformed random-forest models in developing surface–subsurface functions; iii) due to the error propagations, the final predicted maps of the subsurface soil properties captured from 1/3 to 2/3 of the total variance with a significantly decreasing performance with depth; and iv) these maps brought significant improvements over the existing soil maps of the region and showed soil patterns that largely agreed with the local pedological knowledge. This paper demonstrates the added value of combining modern remote sensing techniques with old legacy soil databases.

Philippe Lagacherie; Anne-Ruth Sneep; Cécile Gomez; Sinan Bacha; Guillaume Coulouma; Mohamed Hédi Hamrouni; Insaf Mekki

2013-01-01T23:59:59.000Z

234

Using Realistic MHD Simulations for Modeling and Interpretation of Quiet-Sun Observations with the Solar Dynamics Observatory Helioseismic and Magnetic Imager  

E-Print Network (OSTI)

The solar atmosphere is extremely dynamic, and many important phenomena develop on small scales that are unresolved in observations with the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). For correct calibration and interpretation, it is very important to investigate the effects of small-scale structures and dynamics on the HMI observables, such as Doppler shift, continuum intensity, spectral line depth, and width. We use 3D radiative hydrodynamics simulations of the upper turbulent convective layer and the atmosphere of the Sun, and a spectro-polarimetric radiative transfer code to study observational characteristics of the Fe I 6173A line observed by HMI in quiet-Sun regions. We use the modeling results to investigate the sensitivity of the line Doppler shift to plasma velocity, and also sensitivities of the line parameters to plasma temperature and density, and determine effective line formation heights for observations of solar regions located at different dista...

Kitiashvili, Irina N; Lagg, Andreas

2014-01-01T23:59:59.000Z

235

Information-efficient spectral imaging sensor  

DOE Patents (OSTI)

A programmable optical filter for use in multispectral and hyperspectral imaging. The filter splits the light collected by an optical telescope into two channels for each of the pixels in a row in a scanned image, one channel to handle the positive elements of a spectral basis filter and one for the negative elements of the spectral basis filter. Each channel for each pixel disperses its light into n spectral bins, with the light in each bin being attenuated in accordance with the value of the associated positive or negative element of the spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. The attenuated light in the channels is re-imaged onto separate detectors for each pixel and then the signals from the detectors are combined to give an indication of the presence or not of the target in each pixel of the scanned scene. This system provides for a very efficient optical determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

Sweatt, William C. (Albuquerque, NM); Gentry, Stephen M. (Albuquerque, NM); Boye, Clinton A. (Albuquerque, NM); Grotbeck, Carter L. (Albuquerque, NM); Stallard, Brian R. (Albuquerque, NM); Descour, Michael R. (Tucson, AZ)

2003-01-01T23:59:59.000Z

236

Image 2006 DESY A Beamline Simulation  

E-Print Network (OSTI)

precise #12;Image © 2006 DESY A Zero Schematic BPM BPM BPM BPM BPM Yellow Magnet Kicker Corrector Magnet Spectrometer Magnet 1 2 3 4 5 BPM: Beam Position Monitor Yellow Magnet: Not part of experiment, suppose · BPM resolution · Time step · Yellow Magnet field strength · Kicker field strength · Corrector Magnet

Gollin, George

237

Journal of Magnetism and Magnetic Materials 286 (2005) 324328 Light-free magnetic resonance force microscopy for studies of  

E-Print Network (OSTI)

Journal of Magnetism and Magnetic Materials 286 (2005) 324­328 Light-free magnetic resonance force for Physical Sciences, College Park, MD, USA Available online 4 November 2004 Abstract Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its

238

Noninvasive Monitoring of Microvascular Changes With Partial Irradiation Using Dynamic Contrast-Enhanced and Blood Oxygen Level-Dependent Magnetic Resonance Imaging  

SciTech Connect

Purpose: The microvasculature of a tumor plays an important role in its response to radiation therapy. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) and blood oxygen level-dependent (BOLD) MRI are both sensitive to vascular characteristics. The present study proposed a partial irradiation approach to a xenograft tumor to investigate the intratumoral response to radiation therapy using DCE and BOLD MRI. Methods and Materials: TRAMP-C1 tumors were grown in C57BL/6J mice. Partial irradiation was performed on the distal half of the tumor with a single dose of 15 Gy. DCE MRI was performed to derive the endothelium transfer constant, K{sup trans}, using pharmacokinetic analysis. BOLD MRI was performed using quantitative R2* measurements with carbogen breathing. The histology of the tumor was analyzed using hematoxylin and eosin staining and CD31 staining to detect endothelial cells. The differences between the irradiated and nonirradiated regions of the tumor were assessed using K{sup trans} values, ?R2* values in response to carbogen and microvascular density (MVD) measurements. Results: A significantly increased K{sup trans} and reduced BOLD response to carbogen were found in the irradiated region of the tumor compared with the nonirradiated region (P<.05). Histologic analysis showed a significant aggregation of giant cells and a reduced MVD in the irradiated region of the tumor. The radiation-induced difference in the BOLD response was associated with differences in MVD and K{sup trans}. Conclusions: We demonstrated that DCE MRI and carbogen-challenge BOLD MRI can detect differential responses within a tumor that may potentially serve as noninvasive imaging biomarkers to detect microvascular changes in response to radiation therapy.

Lin, Yu-Chun [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China) [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Department of Electrical Engineering, Chang Gung University, Linkou, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Wang, Jiun-Jie [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China) [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Hong, Ji-Hong [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China) [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Lin, Yi-Ping [Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan (China)] [Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Lee, Chung-Chi [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China) [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Wai, Yau-Yau; Ng, Shu-Hang; Wu, Yi-Ming [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China) [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Wang, Chun-Chieh, E-mail: jjwang@adm.cgmh.org.tw [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China) [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan (China)

2013-04-01T23:59:59.000Z

239

Directly Mapping Magnetic Field Effects of Neuronal Activity by Magnetic Resonance  

E-Print Network (OSTI)

Directly Mapping Magnetic Field Effects of Neuronal Activity by Magnetic Resonance Imaging Jinhu Xiong,* Peter T. Fox, and Jia-Hong Gao Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas Abstract: Magnetic resonance imaging (MRI) of brain functional

Gabrieli, John

240

Systematic Review of the Value of Ultrasound and Magnetic Resonance Musculoskeletal Imaging in the Evaluation of Response to Treatment of Gout  

Science Journals Connector (OSTI)

AbstractBackground Imaging may be useful for monitoring response to therapy. Within the OMERACT proposal for the core set domains for outcome measures in chronic gout, serum urate levels, recurrence of gouty flares, tophus regression, and joint damage imaging have been included, among other proposed issues. Objectives To perform a systematic literature review of the usefulness of magnetic resonance imaging (MRI) and ultrasound (US) on assessment of treatment response in patients with gout. Methods MEDLINE, EMBASE, Cochrane Library (up to February 2012), and abstracts presented at the 2010 and 2011 meetings of the American College of Rheumatology and European League Against Rheumatism were searched for treatment studies of any duration and therapeutic options, examining the ability of MRI/US to assess treatment response in gouty patients. Meta-analyses, systematic reviews, randomized clinical trials, cohort and case-control studies and validation studies were included. Quality was appraised using validated scales. Results There were only 3 US published studies in the literature that analyzed US utility on assessment of response to treatment in patients with gout. All of them were prospective case studies with a small number of patients and they were reviewed in a detailed manner. A total of 36 patients with gout were examined with US. All of them had a baseline serum urate >6 mg/dL. US features of gout (double contour sign, hyperechoic spots in synovial fluid, hyperechoic cloudy areas, tophus diameter and volume) achieved significant reduction in patients who reached the objective of uricemia ?6 mg/dL in all the studies; however, patients in whom levels did not drop below 6 mg/dL had no change of US features of gout. Other parameters evaluated in one study included ESR, CRP, number of tender joints (TRN), number of swollen joints, and pain score (SP). All of them decreased with uricemia reduction, but only TRN and SP were statistically significant. No data were found on the value of MRI on treatment response assessment in patients with gout. Conclusions The improvement in ultrasound features shows concurrent validity with uric acid reduction. According to the published evidence, US can be a useful tool for monitoring treatment of gouty patients, although more research is needed. The value of MRI on treatment response assessment in patients with gout remains to be determined.

Virginia Villaverde; María Piedad Rosario; Estíbaliz Loza; Fernando Pérez

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Role of Diffusion-Weighted Magnetic Resonance Imaging in Predicting Sensitivity to Chemoradiotherapy in Muscle-Invasive Bladder Cancer  

SciTech Connect

Purpose: In chemoradiation (CRT)-based bladder-sparing approaches for muscle invasive bladder cancer (MIBC), patients who respond favorably to induction CRT enjoy the benefits of bladder preservation, whereas nonresponders do not. Thus, accurate prediction of CRT sensitivity would optimize patient selection for bladder-sparing protocols. Diffusion-weighted MRI (DW-MRI) is a functional imaging technique that quantifies the diffusion of water molecules in a noninvasive manner. We investigated whether DW-MRI predicts CRT sensitivity of MIBC. Methods and Materials: The study cohort consisted of 23 MIBC patients (cT2/T3 = 7/16) who underwent induction CRT consisting of radiotherapy to the small pelvis (40 Gy) with two cycles of cisplatin (20 mg/day for 5 days), followed by partial or radical cystectomy. All patients underwent DW-MRI before the initiation of treatment. Associations of apparent diffusion coefficient (ADC) values with CRT sensitivity were analyzed. The proliferative potential of MIBC was also assessed by analyzing the Ki-67 labeling index (LI) in pretherapeutic biopsy specimens. Results: Thirteen patients (57%) achieved pathologic complete response (pCR) to CRT. These CRT-sensitive MIBCs showed significantly lower ADC values (median, 0.63 Multiplication-Sign 10{sup -3} mm{sup 2}/s; range, 0.43-0.77) than CRT-resistant (no pCR) MIBCs (median, 0.84 Multiplication-Sign 10{sup -3} mm{sup 2}/s; range, 0.69-1.09; p = 0.0003). Multivariate analysis identified ADC value as the only significant and independent predictor of CRT sensitivity (p < 0.0001; odds ratio per 0.001 Multiplication-Sign 10{sup -3} mm{sup 2}/s increase, 1.03; 95% confidence interval, 1.01-1.08). With a cutoff ADC value at 0.74 Multiplication-Sign 10{sup -3} mm{sup 2}/s, sensitivity/specificity/accuracy in predicting CRT sensitivity was 92/90/91%. Ki-67 LI was significantly higher in CRT-sensitive MIBCs (p = 0.0005) and significantly and inversely correlated with ADC values ({rho} = -0.67, p = 0.0007). Conclusions: DW-MRI is a potential biomarker for predicting CRT sensitivity in MIBC. DW-MRI may be useful to optimize patient selection for CRT-based bladder-sparing approaches.

Yoshida, Soichiro [Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo (Japan); Koga, Fumitaka, E-mail: f-koga.uro@tmd.ac.jp [Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo (Japan); Kobayashi, Shuichiro [Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo (Japan); Ishii, Chikako; Tanaka, Hiroshi [Department of Radiology, Ochanomizu Surugadai Clinic, Tokyo (Japan); Tanaka, Hajime; Komai, Yoshinobu; Saito, Kazutaka; Masuda, Hitoshi; Fujii, Yasuhisa; Kawakami, Satoru; Kihara, Kazunori [Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo (Japan)

2012-05-01T23:59:59.000Z

242

Inductively coupled plasma chemistry examinations with visible acousto-optic tunable filter hyperspectral imaging{  

E-Print Network (OSTI)

to be a powerful tool for plasma chemistry research. Introduction Inductively coupled plasma optical emission

Duffin, Kirk

243

Hyperspectral Imaging in Diabetic Foot Wound Care Dmitry Yudovsky, M.S.,1  

E-Print Network (OSTI)

, Los Angeles, CA; 2 Department of Surgery, UCLA/Olive View Medical Center, Sylmar, CA; and 3 Biomedical of California, Los Angeles, CA Abbreviations: (CCD) charge-coupled device, (LED) light-emitting diode, (MAD

Pilon, Laurent

244

Mapping Localized Surface Plasmons within Silver Nanocubes Using Cathodoluminescence Hyperspectral Imaging  

Science Journals Connector (OSTI)

The vial cap was replaced loosely, and approximately 9 min was allowed to elapse before addition of 1.5 mL of the PVP solution in two 0.75 mL aliquots, followed immediately by 0.5 mL of the AgNO3 solution. ... The emitted luminescence was collected and collimated using a Schwarzschild-type reflecting objective with a numerical aperture of 0.28 that was oriented with its optical axis perpendicular to the beam. ... The collimated light was brought to an f/#-matched focus at the 100-?m entrance slit of a 1/8-m spectrograph using an off-axis paraboloidal mirror and detected using an Andor-cooled electron-multiplying charge-coupled device (EMCCD). ...

Paul R. Edwards; David Sleith; Alastair W. Wark; Robert W. Martin

2011-06-27T23:59:59.000Z

245

Active hyperspectral imaging using a quantum cascade laser (QCL) array and digital-pixel focal  

E-Print Network (OSTI)

, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55(5), 34 (2002). 13. Daylight Solutions, Inc., www.daylightsolutions.com; Block Engineering LLC, www.blockeng.com. 14. B. G. Lee, M. A

Capasso, Federico

246

Supporting Information for: Hyperspectral imaging of structure and composition in atomically thin heterostructures  

E-Print Network (OSTI)

The central mirror of a Schwarzschild objective obscures the central portion of the collected light cone (see. Light exiting the monochromator is focused with parabolic mirrors into a solarization a reflective (Schwarzschild) objective with an N.A. of 0.65, an effective magnification of ~100Ã?, and spatial

McEuen, Paul L.

247

Project 1640: the world's first ExAO coronagraphic hyperspectral imager for comparative planetary science  

E-Print Network (OSTI)

Zimmermang a American Museum of Natural History, Dept. of Astrophysics, Central Park West at 79th Street, New of inquiry. Exoplanetary science (the study of planets exterior to the solar system), which is nearly two These measurements and associated survey work have transformed our view of the solar neighborhood. It is full

248

Multispectral Imaging At The Needles Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Needles Area (Laney, 2005) Needles Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At The Needles Area (Laney, 2005) Exploration Activity Details Location The Needles Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to

249

Fiber-Optic Stethoscope: A Cardiac Monitoring and Gating System for Magnetic Resonance Microscopy  

E-Print Network (OSTI)

during magnetic resonance imaging (MRI) is the distortion of the ECG due to electromagnetic interference

250

residual magnetism  

Science Journals Connector (OSTI)

The magnetization, i.e., the magnetic polarization, that remains in a magnetized material after all attempts to remove the magnetization have been made. Note: An example of residual magnetization is the magnetiza...

2001-01-01T23:59:59.000Z

251

RAPID EVOLUTION OF THE SOLAR ATMOSPHERE DURING THE IMPULSIVE PHASE OF A MICROFLARE OBSERVED WITH THE EXTREME-ULTRAVIOLET IMAGING SPECTROMETER ABOARD HINODE: HINTS OF CHROMOSPHERIC MAGNETIC RECONNECTION  

SciTech Connect

We obtained rapid cadence (11.2 s) EUV stare spectra of a solar microflare with the Extreme-ultraviolet Imaging Spectrometer aboard Hinode. The intensities of lines formed at temperatures too cool to be found in the corona brightened by factors around 16 early during this event, indicating that we observed a site of energy deposition in the chromosphere. We derive the density evolution of the flare plasma at temperature around 2 MK from the intensity ratio of Fe XIV lines at 264.789 Å and 274.204 Å. From both lines we removed the bright pre-flare quiescent emission, and from 274.204 we removed the blended emission of Si VII ?274.180 based on the Si VII ?274.180/275.361 intensity ratio, which varies only slightly with density. In this way the flare electron density is derived with emission from only the flare plasma. The density increased by an order of magnitude from its pre-flare quiescent average of (3.43 ± 0.19) × 10{sup 9} cm{sup –3} to its maximum impulsive phase value of (3.04 ± 0.57) × 10{sup 10} cm{sup –3} in 2 minutes. The fact that this rapid increase in density is not accompanied by systematic, large upward velocities indicates that the density increase is not due to the filling of loops with evaporated chromospheric material, but rather due to material being directly heated in the chromosphere, likely by magnetic reconnection. The density increase may be due to a progression of reconnection sites to greater depths in the chromosphere, where it has access to larger densities, or it may be due to compression of 2 MK plasma by the 10 MK plasma as it attempts to expand against the high-density chromospheric plasma.

Brosius, Jeffrey W., E-mail: Jeffrey.W.Brosius@nasa.gov [Catholic University of America at NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States)

2013-11-10T23:59:59.000Z

252

Fundamentals of Magnetic Resonance Imaging  

Science Journals Connector (OSTI)

All the materials and living objects around us are composed of atoms. Atoms consist of three main particles that are positively charged protons, negatively charged electrons, and neutrons without any charge. T...

Muhammed Elmao?lu; Azim Çelik PhD

2012-01-01T23:59:59.000Z

253

Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) |  

Open Energy Info (EERE)

Martin, Et Al., 2004) Martin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References B. Martin, E. Silver, W. Pickles, P. Cocks (Unknown) Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Long_Valley_Caldera_Area_(Martin,_Et_Al.,_2004)&oldid=511009" Categories: Exploration Activities DOE Funded

254

Nuclear magnetic resonance measurements of velocity distributions in an ultrasonically vibrated granular bed  

Science Journals Connector (OSTI)

...Eakins, Fabrice Pierron and Clive Siviour Nuclear magnetic resonance measurements of velocity...Part 1) . We report the results of nuclear magnetic resonance imaging experiments...granular bed|ultrasonic fluidization|nuclear magnetic resonance|magnetic resonance...

2014-01-01T23:59:59.000Z

255

National High Magnetic Field Laboratory - Basic Science  

NLE Websites -- All DOE Office Websites (Extended Search)

fruits of Faraday's discovery of electromagnetic induction. A more recent example is magnetic resonance imaging (MRI), which originated in basic research that started in the...

256

A Small Scale Magnetic Particle Relaxometer  

E-Print Network (OSTI)

Magnetic Particle Imaging (MPI) is a newly found imaging modality. It utilizes superparamagnetic materials as tracers in the blood stream to obtain very high resolutions. MPI promises to have high sensitivity, high spatial resolution...

El Ghamrawy, Ahmed

2013-12-09T23:59:59.000Z

257

Investigations of Spheromak plasma dynamics: High-speed imaging at the Sustained Spheromak Physics Experiment and magnetic diagnostics at the Caltech Spheromak experiment.  

E-Print Network (OSTI)

??This thesis consists of two parts. The first part describes a specially designed high-speed imaging system installed at the Sustained Spheromak Physics Experiment (SSPX). Thousands… (more)

Romero Talamás, Carlos Alejandro

2005-01-01T23:59:59.000Z

258

Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2 Department of Geography, University of South Carolina, Columbia, SC 29208, USA; E-Mail: johnj@mailbox.sc.edu 3 Department of Geography, Brigham Young University, Provo, UT 84605, USA; E-Mail: ryan.jensen@byu.edu 4 Savannah River National Laboratory, Department of Energy, Aiken, SC 29808, USA;

259

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing-Based Approach  

SciTech Connect

Abstract For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent-and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required ~100 hours until termination, whereas a parallel approach required only ~2.5 hours (42 compute nodes) a 40x speed-up. Tools developed for this parallel execution are discussed.

Filippi, Anthony M [ORNL; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

260

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing Based Approach  

SciTech Connect

For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent- and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required {approx}100 hours until termination, whereas a parallel approach required only {approx}2.5 hours (42 compute nodes) - a 40x speed-up. Tools developed for this parallel execution are discussed.

Fillippi, Anthony [Texas A& M University; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Magnetic Spinner  

Science Journals Connector (OSTI)

A science toy sometimes called the “magnetic spinner” is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays above two triangular magnets fixed to the base. The magnetic repulsive force experienced by the circular magnets is independent of their orientation; therefore the holder of these magnets can be rotated without affecting its stability. The holder with the circular magnets can be oscillated up and down as a horizontally suspended physical pendulum.

P. J. Ouseph

2006-01-01T23:59:59.000Z

262

Magnetism Digest  

Science Journals Connector (OSTI)

... and Institute of Electrical and Electronic Engineers, on the occasion of their annual conferences on magnetism and magnetic materials in the United States, have sponsored the production of a Magnetic ... references, drawn from a large number of sources, to work in the field of magnetism and magnetic materials published in the preceding year. They therefore provide a very convenient ...

J. H. PHILLIPS

1966-06-25T23:59:59.000Z

263

A Novel Nuclear Magnetic Resonance (NMR) Imaging Method for Measuring the Water Front Penetration Rate in Hydrophilic Polymer Matrix Capsule Plugs and Its Role in Drug Release  

Science Journals Connector (OSTI)

An NMR imaging method was developed to estimate the rate of water movement in slow-release capsule ... transverse plane of each plug. The water penetration rate was determined by comparison of the cut ... the plu...

Muhammad Ashraf; Virginia L. luorno; David Coffin-Beach…

1994-05-01T23:59:59.000Z

264

USING HYPERSPECTRAL IMAGERY TO ASSIST FEDERAL FOREST MONITORING AND RESTORATION PROJECTS IN THE SOUTHERN ROCKY MOUNTAINS, COLORADO  

E-Print Network (OSTI)

catastrophic wildfires. Many of the restoration techniques that were proposed do not differ greatly from what is currently being applied by various governmental agencies in Colorado. The most relevant research publications related to forest monitoring... USING HYPERSPECTRAL IMAGERY TO ASSIST FEDERAL FOREST MONITORING AND RESTORATION PROJECTS IN THE SOUTHERN ROCKY MOUNTAINS, COLORADO BY Kyle Wamser Submitted to the graduate degree program in Department of Geography and the Faculty...

Wamser, William Kyle

2012-12-31T23:59:59.000Z

265

Magnetic particle mixing with magnetic micro-convection for microfluidics  

Science Journals Connector (OSTI)

Abstract In this paper we discuss the magnetic micro-convection phenomenon as a tool for mixing enhancement in microfluidics systems in cases when one of the miscible fluids is a magnetic particle colloid. A system of a water-based magnetic fluid and water is investigated experimentally under homogeneous magnetic field in a Hele–Shaw cell. Subsequent image analysis both qualitatively and quantitatively reveals the high enhancement of mixing efficiency provided by this method. The mixing efficiency dependence on the magnetic field and the physical limits is discussed. A suitable model for a continuous-flow microfluidics setup for mixing with magnetic micro-convection is also proposed and justified with an experiment. In addition, possible applications in improving the speed of ferrohydrodynamic sorting and magnetic label or selected tracer mixing in lab on a chip systems are noted.

Guntars Kitenbergs; Kaspars E¯rglis; Régine Perzynski; Andrejs C?bers

2014-01-01T23:59:59.000Z

266

User Science Images  

NLE Websites -- All DOE Office Websites (Extended Search)

User Science Images User Science Images User Science Images Sort by: Default | Name | Date (low-high) | Date (high-low) | Category NIMROD-1.png FES: NIMROD Simulation February 18, 2010 | Author(s): Dr. Charlson C. Kim (University of Washington) | Category: Fusion Energy | URL: https://nimrodteam.org/ Download Image: NIMROD-1.png | png | 1.5 MB Trajectory of an energetic ion in a Field Reverse Configuration (FRC) magnetic field. Magnetic separatrix denoted by green surface. Spheres are colored by azimuthal velocity. Image courtesy of Charlson Kim, University of Washington; NERSC repos m487, mp21, m1552 Scheibe.png BER: Pore-Scale Fluid Flow for Subsurface Reactive Transport January 1, 2008 | Author(s): Timothy D. Scheibe, PNNL | Category: Environmental Science | URL: http://http://subsurface.pnl.gov/

267

Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) |  

Open Energy Info (EERE)

Multispectral Imaging At Buffalo Valley Hot Springs Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to put additional wells that were drilled at the site. Task 2: Initial analysis of Landsat and ASTER data for Buffalo Valley and Pyramid Lake was

268

Magnetism and magnetic materials probed with neutron scattering  

Science Journals Connector (OSTI)

Abstract Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale.

S.G.E. te Velthuis; C. Pappas

2014-01-01T23:59:59.000Z

269

Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET  

SciTech Connect

Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

Jansen, Jacobus F.A. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Radiology, Maastricht University Medical Center, Maastricht (Netherlands); Schoeder, Heiko [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Lee, Nancy Y. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Stambuk, Hilda E. [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wang Ya [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Fury, Matthew G. [Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Patel, Senehal G. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Pfister, David G. [Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shah, Jatin P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Koutcher, Jason A. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shukla-Dave, Amita, E-mail: davea@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

2012-01-01T23:59:59.000Z

270

Magnetism.1  

Science Journals Connector (OSTI)

... each complete magnets with a pair of poles. The general character of the earth's magnetism has long been known—that the earth behaves with regard to magnets as though it ... and that these poles have a slow secular motion. For many years the earth's magnetism has been the subject of careful study by the most powerful minds. Gauss organized ...

1890-01-16T23:59:59.000Z

271

Flows and Non-thermal Velocities in Solar Active Regions Observed with the Extreme-ultraviolet Imaging Spectrometer on Hinode: A Tracer of Active Region Sources of Heliospheric Magnetic Fields?  

E-Print Network (OSTI)

From Doppler velocity maps of active regions constructed from spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft we observe large areas of outflow (20-50 km/s) that can persist for at least a day. These outflows occur in areas of active regions that are faint in coronal spectral lines formed at typical quiet Sun and active region temperatures. The outflows are positively correlated with non-thermal velocities in coronal plasmas. The bulk mass motions and non-thermal velocities are derived from spectral line centroids and line widths, mostly from a strong line of Fe XII at 195.12 Angstroms. The electron temperature of the outflow regions estimated from an Fe XIII to Fe XII line intensity ratio is about 1.2-1.4 MK. The electron density of the outflow regions derived from a density sensitive intensity ratio of Fe XII lines is rather low for an active region. Most regions average around 7E10+8 cm(-3), but there are variations on pixel spatial scales of about a factor of 4. We discuss results in detail for two active regions observed by EIS. Images of active regions in line intensity, line width, and line centroid are obtained by rastering the regions. We also discuss data from the active regions obtained from other orbiting spacecraft that support the conclusions obtained from analysis of the EIS spectra. The locations of the flows in the active regions with respect to the longitudinal photospheric magnetic fields suggest that these regions might be tracers of long loops and/or open magnetic fields that extend into the heliosphere, and thus the flows could possibly contribute significantly to the solar wind.

G. A. Doschek; H. P. Warren; J. T. Mariska; K. Muglach; J. L. Culhane; H. Hara; T Watanabe

2008-07-17T23:59:59.000Z

272

Earth’s magnetism  

Science Journals Connector (OSTI)

Earth’s magnetism, geomagnetism, terrestrial magnetism [The magnetism of the Earth] ? Erdmagnetismus m, Geomagnetismus

2014-08-01T23:59:59.000Z

273

Rotating copper plasmoid in external magnetic field  

SciTech Connect

Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

Pandey, Pramod K.; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208 016 (India)

2013-02-15T23:59:59.000Z

274

Methods for functional brain imaging  

E-Print Network (OSTI)

Magnetic resonance imaging (MRI) has demonstrated the potential for non-invasive mapping of structure and function (fMRI) in the human brain. In this thesis, we propose a series of methodological developments towards ...

Witzel, Thomas, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

275

Magnetic Resonance Imaging- Versus Computed Tomography-Based Target Volume Delineation of the Glandular Breast Tissue (Clinical Target Volume Breast) in Breast-Conserving Therapy: An Exploratory Study  

SciTech Connect

Purpose: To examine MRI and CT for glandular breast tissue (GBT) volume delineation and to assess interobserver variability. Methods and Materials: Fifteen breast cancer patients underwent a planning CT and MRI, consecutively, in the treatment position. Four observers (two radiation oncologists and two radiologists) delineated the GBT according to the CT and separately to the MR images. Volumes, centers of mass, maximum extensions with standard deviations (SD), and interobserver variability were quantified. Observers viewed delineation differences between MRI and CT and delineation differences among observers. Results: In cranio-lateral and cranio-medial directions, GBT volumes were delineated larger using MRI when compared with those delineated with CT. Center of mass on MRI shifted a mean (SD) 17% (4%) into the cranial direction and a mean 3% (4%) into the dorsal direction when compared with that on the planning CT. Only small variations between observers were noted. The GBT volumes were approximately 4% larger on MRI (mean [SD] ratio MRI to CT GBT volumes, 1.04 [0.06]). Findings were concordant with viewed MRI and CT images and contours. Conformity indices were only slightly different; mean conformity index was 77% (3%) for MRI and 79% (4%) for CT. Delineation differences arising from personal preferences remained recognizable irrespective of the imaging modality used. Conclusions: Contoured GBT extends substantially further into the cranio-lateral and cranio-medial directions on MRI when compared with CT. Interobserver variability is comparable for both imaging modalities. Observers should be aware of existing personal delineation preferences. Institutions are recommended to review and discuss target volume delineations and to design supplementary guidelines if necessary.

Giezen, Marina, E-mail: marinagiezen@zonnet.nl [Radiotherapy Center West, The Hague (Netherlands); Kouwenhoven, Erik [Radiotherapy Center West, The Hague (Netherlands); Scholten, Astrid N. [Department of Clinical Oncology, Leiden University Medical Center, Leiden (Netherlands); Coerkamp, Emile G.; Heijenbrok, Mark [Department of Radiology, Medical Center Haaglanden, The Hague (Netherlands); Jansen, Wim P.A. [Department of Clinical Oncology, Leiden University Medical Center, Leiden (Netherlands); Mast, Mirjam E.; Petoukhova, Anna L. [Radiotherapy Center West, The Hague (Netherlands); Struikmans, Henk [Radiotherapy Center West, The Hague (Netherlands); Department of Clinical Oncology, Leiden University Medical Center, Leiden (Netherlands)

2011-11-01T23:59:59.000Z

276

Pretreatment Endorectal Coil Magnetic Resonance Imaging Findings Predict Biochemical Tumor Control in Prostate Cancer Patients Treated With Combination Brachytherapy and External-Beam Radiotherapy  

SciTech Connect

Purpose: To investigate the utility of endorectal coil magenetic resonance imaging (eMRI) in predicting biochemical relapse in prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Methods and Materials: Between 2000 and 2008, 279 men with intermediate- or high-risk prostate cancer underwent eMRI of their prostate before receiving brachytherapy and supplemental intensity-modulated radiotherapy. Endorectal coil MRI was performed before treatment and retrospectively reviewed by two radiologists experienced in genitourinary MRI. Image-based variables, including tumor diameter, location, number of sextants involved, and the presence of extracapsular extension (ECE), were incorporated with other established clinical variables to predict biochemical control outcomes. The median follow-up was 49 months (range, 1-13 years). Results: The 5-year biochemical relapse-free survival for the cohort was 92%. Clinical findings predicting recurrence on univariate analysis included Gleason score (hazard ratio [HR] 3.6, p = 0.001), PSA (HR 1.04, p = 0.005), and National Comprehensive Cancer Network risk group (HR 4.1, p = 0.002). Clinical T stage and the use of androgen deprivation therapy were not correlated with biochemical failure. Imaging findings on univariate analysis associated with relapse included ECE on MRI (HR 3.79, p = 0.003), tumor size (HR 2.58, p = 0.04), and T stage (HR 1.71, p = 0.004). On multivariate analysis incorporating both clinical and imaging findings, only ECE on MRI and Gleason score were independent predictors of recurrence. Conclusions: Pretreatment eMRI findings predict for biochemical recurrence in intermediate- and high-risk prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Gleason score and the presence of ECE on MRI were the only significant predictors of biochemical relapse in this group of patients.

Riaz, Nadeem [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Afaq, Asim; Akin, Oguz [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Pei Xin; Kollmeier, Marisa A.; Cox, Brett [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Hricak, Hedvig [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Zelefsky, Michael J., E-mail: zelefskm@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

2012-11-01T23:59:59.000Z

277

Multispectral Imaging At The Needles Area (Kratt, Et Al., 2005) | Open  

Open Energy Info (EERE)

Multispectral Imaging At The Needles Area (Kratt, Et Al., 2005) Multispectral Imaging At The Needles Area (Kratt, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At The Needles Area (Kratt, Et Al., 2005) Exploration Activity Details Location The Needles Area Exploration Technique Multispectral Imaging Activity Date Usefulness not indicated DOE-funding Unknown Notes Over 2000 km2 of 5-m resolution Hymap hyperspectral data was acquired in 2004. Subsequent image processing and data analysis has identified reflectance spectra for alunite, kaolinite/halloysite, illite, gypsum, vegetation, and carbonate. A portable spectrometer is being used for in situ validation, along with laboratory measurements and x-ray diffraction analyses of samples collected in teh field. We are in the process of

278

Video Toroid Cavity Imager  

DOE Patents (OSTI)

A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

2004-08-10T23:59:59.000Z

279

Partnering with Engineers to Identify and Empirically Evaluate Delays in Magnetic Resonance Imaging: Laying the Foundations for Quality Improvement and System-based Practice in Radiology  

Science Journals Connector (OSTI)

Rationale and Objectives The aim of this study was to evaluate the feasibility of partnering with engineering students and critically examining the merit of the problem identification and analyses students generated in identifying sources impeding effective turnaround in a large university department of diagnostic radiology. Turnaround involves the time and activities beginning when a patient enters the magnetic resonance scanner room until the patient leaves, minus the time the scanner is conducting the protocol. Materials and Methods A prospective observational study was conducted, in which four senior undergraduate industrial and operations engineering students interviewed magnetic resonance staff members and observed all shifts. On the basis of 150 hours of observation, the engineering students identified 11 process steps (eg, changing coils). They charted machine use for all shifts, providing a breakdown of turnaround time between appropriate process and non-value-added time. To evaluate the processes occurring in the scanning room, the students used a work-sampling schedule in which a beeper sounded 2.5 times per hour, signaling the technologist to identify which of 11 process steps was occurring. This generated 2147 random observations over a 3-week period. Results The breakdown of machine use over 105 individual studies showed that non-value-added time accounted for 62% of turnaround time. Analysis of 2147 random samples of work showed that scanners were empty and waiting for patients 15% of the total time. Analyses showed that poor communication delayed the arrival of patients and that no one had responsibility for communicating when scanning was done. Conclusions Engineering students used rigorous study design and sampling methods to conduct interviews and observations. This led to data-driven definition of problems and potential solutions to guide systems-based improvement.

Catherine J. Brandon; Michael Holody; Geoffrey Inch; Michael Kabcenell; Diane Schowalter; Patricia B. Mullan

2012-01-01T23:59:59.000Z

280

Modern Magnetism  

Science Journals Connector (OSTI)

... BATES‘S "Modern Magnetism", first published in 1939, is widely appreciated as a general survey in which ... grateful to the author for collecting together so much interesting information about recent work in magnetism. ...

E. C. S.

1948-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Liposome-based mucus-penetrating particles (MPP) for mucosal theranostics: Demonstration of diamagnetic chemical exchange saturation transfer (diaCEST) magnetic resonance imaging (MRI)  

Science Journals Connector (OSTI)

Abstract Mucus barriers lining mucosal epithelia reduce the effectiveness of nanocarrier-based mucosal drug delivery and imaging (“theranostics”). Here, we describe liposome-based mucus-penetrating particles (MPP) capable of loading hydrophilic agents, e.g., the diaCEST MRI contrast agent barbituric acid (BA). We observed that polyethylene glycol (PEG)-coated liposomes containing ? 7 mol% PEG diffused only ~ 10-fold slower in human cervicovaginal mucus (CVM) compared to their theoretical speeds in water. 7 mol%-PEG liposomes contained sufficient BA loading for diaCEST contrast, and provided improved vaginal distribution compared to 0 and 3 mol%-PEG liposomes. However, increasing PEG content to ~ 12 mol% compromised BA loading and vaginal distribution, suggesting that PEG content must be optimized to maintain drug loading and in vivo stability. Non-invasive diaCEST MRI illustrated uniform vaginal coverage and longer retention of BA-loaded 7 mol%-PEG liposomes compared to unencapsulated BA. Liposomal MPP with optimized PEG content hold promise for drug delivery and imaging at mucosal surfaces.

Tao Yu; Kannie W.Y. Chan; Abraham Anonuevo; Xiaolei Song; Benjamin S. Schuster; Sumon Chattopadhyay; Qingguo Xu; Nikita Oskolkov; Himatkumar Patel; Laura M. Ensign; Peter C.M. van Zjil; Michael T. McMahon; Justin Hanes

2014-01-01T23:59:59.000Z

282

Migratory magnetism  

Science Journals Connector (OSTI)

... in tune with the Earth's magnetic field. But how, exactly, do creatures sense magnetism? This is one of the most intriguing questions in modern biology - and also ... move preferentially in a north-south direction. This finding hints at the possible influence of magnetism on their movements. ...

Henry Gee

1999-10-06T23:59:59.000Z

283

arthritis magnetic resonance: Topics by E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

during magnetic resonance imaging (MRI) is the distortion of the ECG due to electromagnetic interference cardiac activity that, unlike the ECG, is immune to electromagnetic...

284

National High Magnetic Field Laboratory - Science Starts Here...  

NLE Websites -- All DOE Office Websites (Extended Search)

Postdoctoral associate, University of Florida, College of Medicine and Advanced Magnetic Resonance Imaging and Spectroscopy facility. Current work Fatma works on C.elegans, a...

285

MagLab - Pioneers in Electricity and Magnetism: Paul Lauterbur  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul Lauterbur (1929-2007) Paul Lauterbur Chemist Paul Lauterbur pioneered the use of nuclear magnetic resonance (NMR) for medical imaging. Lauterbur developed a technique, now...

286

Submitted to LLB highlights 2011 Doxorubicin Loaded Magnetic Polymersomes  

E-Print Network (OSTI)

Submitted to LLB highlights 2011 Doxorubicin Loaded Magnetic Polymersomes: Theranostic Nanocarriers for cancer diagnostics and treatment open the field of "theranostics", i.e. combination of imaging

287

Image Charge Differential  

E-Print Network (OSTI)

Image Charge Differential Amplifier FT 0 Crude Oil Time (s) 543210 Frequency (kHz) m/z m q B f Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) uses the frequency of cyclotron motion of the ions in a static magnetic field to determine the mass-to-charge ratio, which is then used

Weston, Ken

288

Magnetic Testing of Bonded Magnets  

Science Journals Connector (OSTI)

Many techniques exist to characterize the magnetic properties of bonded magnets. We will review the common and not so common techniques in use, with emphasis on the advantages and disadvantages of each one, an...

S. R. Trout

2003-01-01T23:59:59.000Z

289

Medical Image Segmentation Xiaolei Huang  

E-Print Network (OSTI)

(CAT), Magnetic Resonance Imaging (MRI), Ultrasound, and X-Ray, in standard DICOM formats are often for searching and mining in medical image archives. A chal- lenging problem is to segment regions with boundary-based classification approaches. We first review these two categories of methods and discuss the potential

Huang, Xiaolei

290

Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation  

SciTech Connect

We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Société Civile Synchrotron SOLEIL, L'Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

2014-06-23T23:59:59.000Z

291

Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour  

SciTech Connect

Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

Aslian, Hossein [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sadeghi, Mahdi [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of); Mahdavi, Seied Rabie [Department of Medical Physics, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Babapour Mofrad, Farshid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Astarakee, Mahdi, E-mail: M-Astarakee@Engineer.com [Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khaledi, Navid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Fadavi, Pedram [Department of Radiation Oncology, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

2013-09-01T23:59:59.000Z

292

High Field Magnetic Resonance Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

HFMRF Overview HFMRF Overview Section 2-3-1 High Field Magnetic Resonance Facility The High Field Magnetic Resonance Facility (HFMRF) focuses a significant portion of its research on developing a fundamental, molecular-level understanding of biochemical and biological systems and their response to environmental effects. A secondary focus is materials science, including catalysis and chemical mechanisms and processes. Staff and science consultants within this facility offer expertise in the areas of structural biology, solid-state materials characterization, and magnetic resonance imaging (MRI) techniques. Research activities in the HFMRF include: * structure determination of large molecular assemblies such as protein-DNA (normal and damaged DNA) and protein-RNA complexes

293

Magnetic Barcoded Hydrogel Microparticles for Multiplexed Detection  

E-Print Network (OSTI)

Magnetic polymer particles have been used in a wide variety of applications ranging from targeting and separation to diagnostics and imaging. Current synthesis methods have limited these particles to spherical or deformations ...

Bong, Ki Wan

294

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

295

Magnetic shielding  

DOE Patents (OSTI)

A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

Kerns, J.A.; Stone, R.R.; Fabyan, J.

1987-10-06T23:59:59.000Z

296

Magnetic shielding  

DOE Patents (OSTI)

A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

Kerns, John A. (Livermore, CA); Stone, Roger R. (Walnut Creek, CA); Fabyan, Joseph (Livermore, CA)

1987-01-01T23:59:59.000Z

297

Strange Magnetism  

E-Print Network (OSTI)

We present an analytic and parameter-free expression for the momentum dependence of the strange magnetic form factor of the nucleon and its corresponding radius which has been derived in Heavy Baryon Chiral Perturbation Theory. We also discuss a model-independent relation between the isoscalar magnetic and the strange magnetic form factors of the nucleon based on chiral symmetry and SU(3) only. These limites are used to derive bounds on the strange magnetic moment of the proton from the recent measurement by the SAMPLE collaboration.

Thomas R. Hemmert; Ulf-G. Meissner; Sven Steininger

1998-11-09T23:59:59.000Z

298

Optical Magnetism  

Science Journals Connector (OSTI)

Magnetic dipole radiation one fourth as intense as electric dipole radiation, as well as a novel nonlinear magneto-optical effect are reported in dielectric media.

Oliveira, Samuel L; Rand, Stephen C

299

Magnetic Field Safety Magnetic Field Safety  

E-Print Network (OSTI)

Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

McQuade, D. Tyler

300

Magnetic Field Safety Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Training Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain...

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Magnetic insulation  

Science Journals Connector (OSTI)

... by Winterberg1, led me to look into the background of the idea of 'magnetic insulation'. The purpose of this letter is to point out that the scheme described in ... were presented earlier in a longer article2. In that article he suggested that 'magnetic insulation' might make possible a transformer for 109 V. A year later the same objections ...

JOHN P. BLEWETT

1974-06-28T23:59:59.000Z

302

Magnetism1  

Science Journals Connector (OSTI)

... is reached, the rate of diminution becomes very rapid indeed, until, finally, the magnetism of the iron disappears at the same time as for small forces. Instead of ... a lower maximum, and its rise is less rapid. The critical temperature at which magnetism disappears changes rapidly with the composition of the steel. For very soft charcoal iron ...

1890-01-23T23:59:59.000Z

303

Magnetism Group  

Science Journals Connector (OSTI)

... of the Institute of Physics and the Physical Society has announced the establishment of a Magnetism Group. The aim of the new Group is to further interest in ... Group. The aim of the new Group is to further interest in magnetism by holding regular discussion meetings and in other ways. It is intended that these ...

1965-09-04T23:59:59.000Z

304

Terrestrial Magnetism*  

Science Journals Connector (OSTI)

... A similar investigation of the effect of the moon's action on terrestrial magnetism requires a series of observations made at much less distant intervals than the monthly ones ... heat, from the central body of our system, or merely having its own inherent magnetism modified by solar action, then we must choose as our unit the lunation, or ...

1873-01-09T23:59:59.000Z

305

Terrestrial Magnetism*  

Science Journals Connector (OSTI)

... IN bringing before you this evening, gentlemen, the subject of terrestrial magnetism, it is not my intention to attempt to present you with an exhaustive paper ... clearly as I am able, what is the actual condition of our knowledge respecting the magnetism of the globe, and what the nature of its complex variations, without, however, ...

1873-01-02T23:59:59.000Z

306

Terrestrial Magnetism  

Science Journals Connector (OSTI)

... THE present activity of the department of terrestrial magnetism of the Carnegie Institution of Washington and the largeness of its future aims are alike ... a “progress report” which he contributes to the latest (March) number of Terrestrial Magnetism. The department, which has lately entered on its eleventh year, has under construetion ...

C. CHREE

1914-07-23T23:59:59.000Z

307

Remanent Magnetism  

Science Journals Connector (OSTI)

... STUDY of the natural remanent magnetism of rocks is becoming a familiar method for determining the direction of the Earth's ... the geomagnetic poles or of the continents themselves. An alternative use for measurements of remanent magnetism, namely, the determination of the temperature of formation of pyroclastic deposits, is described ...

1958-03-22T23:59:59.000Z

308

Magnetic shielding  

DOE Patents (OSTI)

A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

Kerns, J.A.; Stone, R.R.; Fabyan, J.

1985-02-12T23:59:59.000Z

309

Superconducting Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

Mit Hilfe der Technologie supraleitender Magnete lassen sich in Mit Hilfe der Technologie supraleitender Magnete lassen sich in Ringbeschleunigern höhere Energien erreichen. Weil supraleitende Spulen keinen elektrischen Widerstand aufweisen, können damit stärkere Magnetfelder erzeugt werden. In normal leitenden Elektromagneten wird - wegen des elektrischen Widerstands der Drähte - die Spule aufgeheizt. Auf diese Weise geht sehr viel Energie in Form von Wärme verloren, was die Energiekosten dieser Magnete in die Höhe treibt. Supraleitende Spulen erlauben es, Magnete grosser Feldstärke unter günstigen Bedingungen zu betreiben und damit die Energiekosten zu senken. Durch den Einbau supraleitender Spulen in den Ringbeschleuniger von Fermilab konnte dessen Energie verdoppelt werden.Auch der im Bau befindliche "Large Hadron Collider" am CERN wird supraleitende Magnete

310

Magnetic nanotubes  

DOE Patents (OSTI)

A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

2010-11-16T23:59:59.000Z

311

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

312

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

313

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

314

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

315

Multispectral Imaging At Brady Hot Springs Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Multispectral Imaging At Brady Hot Springs Area Multispectral Imaging At Brady Hot Springs Area (Laney, 2005) Exploration Activity Details Location Brady Hot Springs Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to put additional wells that were drilled at the site. Task 2: Initial analysis of Landsat and ASTER data for Buffalo Valley and Pyramid Lake was

316

Linear chain magnetism  

Science Journals Connector (OSTI)

Linear chain magnetism ... A brief introduction to this concept, which is also called lower dimensional magnetism. ...

Richard L. Carlin

1991-01-01T23:59:59.000Z

317

Estimating radiological background using imaging spectroscopy  

SciTech Connect

Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km – 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

2014-06-13T23:59:59.000Z

318

Low dimensional magnetism  

E-Print Network (OSTI)

Magnetism in Ultracold Gases 4 Magnetic phase diagram of aMagnetism . . . . . . . . . . . .1.3 Magnetism in condensedIntroduction 1 Brief introduction to magnetism 1.1 Classic

Kjall, Jonas Alexander

2012-01-01T23:59:59.000Z

319

Magnetic Viscosity  

Science Journals Connector (OSTI)

1 January 1893 research-article Magnetic Viscosity J. Hopkinson E. Wilson F. Lydall The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1893-01-01T23:59:59.000Z

320

Rock magnetism  

Science Journals Connector (OSTI)

The past three decades have witnessed a new paradigm, the plate tectonics paradigm, in Earth sciences. The record of the Earth's magnetic field stored in rocks played a major role in the establishment of this par...

Ronald T. Merrill

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Learning About Magnets!  

NLE Websites -- All DOE Office Websites (Extended Search)

the the National High Magnetic Field Laboratory Learning About Name A magnet is a material or object that creates a magnetic fi eld. This fi eld is invisible, but it creates a force that can "attract" or "repel" other magnets and magnetic materials, like iron or nickel. What is a Magnet? This bar magnet is a permanent magnet. Permanent magnets can be found in the Earth as rocks and metals. Magnets have

322

106 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 1, JANUARY 2010 Feature Based Nonrigid Brain MR Image Registration  

E-Print Network (OSTI)

106 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 1, JANUARY 2010 Feature Based Nonrigid Brain MR Image Registration With Symmetric Alpha Stable Filters Shu Liao* and Albert C. S. Chung Abstract--A new feature based nonrigid image registration method for magnetic resonance (MR) brain images

Chung, Albert C. S.

323

128 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 1, JANUARY 2006 Unwrapping of MR Phase Images Using a  

E-Print Network (OSTI)

128 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 1, JANUARY 2006 Unwrapping of MR Phase of blood flow [1], [2]. Extracting the phase image from its measured complex MR image is nontrivial because, phase unwrapping. I. INTRODUCTION A. Background Magnetic resonance (MR) phase images often contain

Koetter, Ralf

324

Polarization transfer NMR imaging  

DOE Patents (OSTI)

A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

Sillerud, Laurel O. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM)

1990-01-01T23:59:59.000Z

325

Tiny images  

E-Print Network (OSTI)

The human visual system is remarkably tolerant to degradations in image resolution: in a scene recognition task, human performance is similar whether $32 \\times 32$ color images or multi-mega pixel images are used. With ...

Torralba, Antonio

2007-04-23T23:59:59.000Z

326

Controlling Magnetism at the Nanoscale  

E-Print Network (OSTI)

Manipulation of Magnetism - External148 Conclusion A The Magnetism Cheat Sheet A.1 Magnetic157 A.2 Magnetism Unit Conversion

Wong, Jared

2012-01-01T23:59:59.000Z

327

On the Dynamics of Magnetic Fluids in Magnetic Resonance Padraig J. Cantillon-Murphy  

E-Print Network (OSTI)

On the Dynamics of Magnetic Fluids in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of Electric'algngineering and Computer Science May 22nd, 2008. Certified

328

Next Generation Magnetic Resonance Imaging Contrast Agents  

E-Print Network (OSTI)

E. A. ; MacRenaris, K. W. ; Parigi, G. ; Luchinat, C. ; Ho,R. ; Eckermann, A. L. ; Parigi, G. ; Luchinat, C. ; Meade,E. A. ; MacRenaris, K. W. ; Parigi, G. ; Luchinat, C. ; Ho,

Klemm, Piper Julia

2012-01-01T23:59:59.000Z

329

Next Generation Magnetic Resonance Imaging Contrast Agents  

E-Print Network (OSTI)

RE 2 O 3 nanodiscs passivated with PAA-mPEO x alongside Gd-General Synthesis of PAA 28-x -mPEO x Graft Copolymers (Weegen and Mark Bailey): PAA (28 eq–CO 2 H per polymer) was

Klemm, Piper Julia

2012-01-01T23:59:59.000Z

330

Neutrino magnetic moment in a magnetized plasma  

E-Print Network (OSTI)

The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

N. V. Mikheev; E. N. Narynskaya

2010-11-08T23:59:59.000Z

331

Evaluation of LDH-A and Glutaminase Inhibition In Vivo by Hyperpolarized 13C-Pyruvate Magnetic Resonance Spectroscopy of Tumors  

Science Journals Connector (OSTI)

...Neurology and Brain Science Institute, Johns Hopkins...Hyperpolarized 13C magnetic resonance spectroscopy...31P and 13C nuclear magnetic resonance.Science 1979;205:160-6...hyperpolarized 13C magnetic resonance imaging for...

Prasanta Dutta; Anne Le; David L. Vander Jagt; Takashi Tsukamoto; Gary V. Martinez; Chi V. Dang; and Robert J. Gillies

2013-07-15T23:59:59.000Z

332

Petroglyphs, Lighting, and Magnetism  

E-Print Network (OSTI)

1950 Electricity and Magnetism: Theory and Applications.I Petroglyphs, Lightning, and Magnetism | Walker Figure 8.I Petroglyphs, Lightning, and Magnetism | Walker Figure IL

Walker, Merle F

2007-01-01T23:59:59.000Z

333

Carbon Joins the Magnetic Club  

NLE Websites -- All DOE Office Websites (Extended Search)

Press Release 29 May 2007 Carbon Joins the Magnetic Club summary written by Brad Plummer, SLAC Communication Office The exclusive club of magnetic elements officially has a new member-carbon. Using a proton beam and advanced x-ray techniques, SLAC researchers in collaboration with colleagues from LBNL and the University of Leipzig in Germany have finally put to rest doubts about carbon's ability to be made magnetic. "In the past, some groups thought they had discovered magnetic carbon," said Hendrik Ohldag, the paper's lead author and SSRL staff scientist. "Unfortunately, they realized later that they were misled by small amounts of iron, cobalt or nickel in their samples." In Leipzig, Ohldag's team applied a beam of protons to disrupt and align a portion of the electrons in samples of pure carbon, magnetizing tiny, measurable spots within the carbon. The team then used the x-ray microscope at ALS to obtain images of the magnetized portions-a measurement only possible with a state-of-the-art microscope that uses the brilliant x-ray beams generated when electrons accelerate around the ring of a synchrotron. The x-ray beam also enabled the team to verify beyond doubt that the sample remained free of impurities during the experiments, unlike the case in previous studies.

334

Magnetic Catalysis vs Magnetic Inhibition  

E-Print Network (OSTI)

We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former would enhance the chiral-symmetry breaking at finite B according to the Magnetic Catalysis, while the latter would suppress the chiral condensate once B exceeds the scale of the hadron structure. Using a chiral model we demonstrate how neutral mesons are subject to the dimensional reduction and the low dimensionality favors the chiral-symmetric phase. We point out that this effect, the Magnetic Inhibition, can be a feasible explanation for recent lattice-QCD data indicating the decreasing behavior of the chiral-restoration temperature with increasing B.

Kenji Fukushima; Yoshimasa Hidaka

2012-09-06T23:59:59.000Z

335

E-Print Network 3.0 - angle lipomas magnetic Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology and Medicine ; Engineering 4 JBO Letters Revealing retroperitoneal Summary: - phy, and magnetic resonance imaging are used to pre-operatively detect and evaluate the LS...

336

Ultra-low field magnetic resonance using optically pumped noble gases and SQUID detection  

E-Print Network (OSTI)

McGeer. Science, Positron tomography and nuclear magneticmagnetic resonance technology for medical studies. Science,magnetic resonance images of the human arm. M easur'ement Science (

Wong-Foy, Annjoe G.

2010-01-01T23:59:59.000Z

337

E-Print Network 3.0 - abdominal magnetic resonance Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

between men and women at rest and during lower Summary: resonance-compatible exercise bicycle, magnetic resonance imaging techniques, and custom data processing... at all. We have...

338

In Vivo Metabolic Fingerprinting of Neutral Lipids with Hyperspectral Stimulated Raman Scattering Microscopy  

Science Journals Connector (OSTI)

Coherent anti-Stokes Ramam scattering (CARS) and Stimulated Raman scattering (SRS) largely overcome this problem by improving the imaging sensitivity by 4–5 orders of magnitude. ... (25) The yeast mutant strains—FYS252 (lacking Are1 and Are2) and FYS242 (lacking Dga1 and Lro1)—have defective SE and TAG synthesis, respectively. ...

Dan Fu; Yong Yu; Andrew Folick; Erin Currie; Robert V. Farese, Jr.; Tsung-Huang Tsai; Xiaoliang Sunney Xie; Meng C. Wang

2014-05-28T23:59:59.000Z

339

Ultracold Plasma Expansion in a Magnetic Field  

Science Journals Connector (OSTI)

We measure the expansion of an ultracold plasma across the field lines of a uniform magnetic field. We image the ion distribution by extracting the ions with a high-voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma (magnetic field (up to 70 G). We observe that the expansion velocity scales as B-1/2, explained by a nonlinear ambipolar diffusion model with anisotropic diffusion in two different directions.

X. L. Zhang; R. S. Fletcher; S. L. Rolston; P. N. Guzdar; M. Swisdak

2008-06-13T23:59:59.000Z

340

People Images  

NLE Websites -- All DOE Office Websites (Extended Search)

Images People Images Several hundred of the 1700 U.S. scientists contributing to the LHC accelerator and experiments gathered in June 2008 in CERN's building 40 CE0252 Joel...

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

magnets2  

NLE Websites -- All DOE Office Websites (Extended Search)

II II Painless Physics Articles BEAM COOLING August 2, 1996 By Leila Belkora, Office of Public Affairs ACCELERATION August 16, 1996 By Dave Finley, Accelerator Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART DEUX October 16, 1996 By Peter H. Garbincius, Physics Section and Leila Belkora, Office of Public Affaris CROSS SECTION November 1, 1996 By Doreen Wackeroth, Theoretical Physics Edited by Leila Belkora, Office of Public Affaris MAGNETS PART I November 15, 1996 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs MAGNETS PART II January 10, 1997 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs

342

Magnetic Reconnection  

SciTech Connect

We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

Masaaki Yamada, Russell Kulsrud and Hantao Ji

2009-09-17T23:59:59.000Z

343

Exploring the magnetic topologies of cool stars  

E-Print Network (OSTI)

Magnetic fields of cool stars can be directly investigated through the study of the Zeeman effect on photospheric spectral lines using several approaches. With spectroscopic measurement in unpolarised light, the total magnetic flux averaged over the stellar disc can be derived but very little information on the field geometry is available. Spectropolarimetry provides a complementary information on the large-scale component of the magnetic topology. With Zeeman-Doppler Imaging (ZDI), this information can be retrieved to produce a map of the vector magnetic field at the surface of the star, and in particular to assess the relative importance of the poloidal and toroidal components as well as the degree of axisymmetry of the field distribution. The development of high-performance spectropolarimeters associated with multi-lines techniques and ZDI allows us to explore magnetic topologies throughout the Hertzsprung-Russel diagram, on stars spanning a wide range of mass, age and rotation period. These observations b...

Morin, J; Petit, P; Albert, L; Auriere, M; Cabanac, R; Catala, C; Delfosse, X; Dintrans, B; Fares, R; Forveille, T; Gastine, T; Jardine, M; Konstantinova-Antova, R; Lanoux, J; Lignieres, F; Morgenthaler, A; Paletou, F; Velez, J C Ramirez; Solanki, S K; Theado, S; Van Grootel, V

2010-01-01T23:59:59.000Z

344

Microscopic reversal behavior of magnetically capped nanospheres  

Science Journals Connector (OSTI)

The magnetic switching behavior of Co/Pd multilayer-capped nanospheres is investigated by x-ray spectro-holography. Images of the magnetic state of individual nanocaps are recorded as a function of externally applied magnetic field and the angle under which the field is applied, pertaining to magnetic data storage applications with patterned, tilted, and perpendicular storage media. Dispersed nanospheres with different coverage in the submonolayer regime are investigated simultaneously in a multiplexed experiment. In clustered nanosphere arrangements, we find that individual switching events are influenced by dipolar magnetostatic interactions. Micromagnetic simulations of the switching behavior complement the experimental observations, corroborating the influence of thermal activation processes and magnetostatic interactions in this system. Such magnetostatic interactions could lead to undesired cross-talk between bits in ultrahigh-density magnetic recording applications.

C. M. Günther; O. Hellwig; A. Menzel; B. Pfau; F. Radu; D. Makarov; M. Albrecht; A. Goncharov; T. Schrefl; W. F. Schlotter; R. Rick; J. Lüning; S. Eisebitt

2010-02-17T23:59:59.000Z

345

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

346

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

347

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

348

Magnetic Reconnection in Astrophysical and  

E-Print Network (OSTI)

Magnetic Reconnection in Astrophysical and Laboratory Plasmas Ellen G. Zweibel1 and Masaaki Yamada2 astrophysics, magnetic fields, magnetic reconnection Abstract Magnetic reconnection is a topological rearrangement of magnetic field that converts magnetic energy to plasma energy. Astrophysical flares, from

349

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00...

350

National High Magnetic Field Laboratory Audio Dictionary: Magnetic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Magnets from Mini to Mighty Meet the Magnets How to Make an Electromagnet (audio slideshow) Compasses in Magnetic Fields (interactive tutorial) Magnetic Field Around a...

351

E-Print Network 3.0 - arcminute microkelvin imager Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

search results for: arcminute microkelvin imager Page: << < 1 2 3 4 5 > >> 1 Giant Viscosity Enhancement in a Spin-Polarized Fermi Liquid National High Magnetic Field Laboratory...

352

In vivo imaging with a cell-permeable porphyrin-based MRI contrast agent  

E-Print Network (OSTI)

Magnetic resonance imaging (MRI) with molecular probes offers the potential to monitor physiological parameters with comparatively high spatial and temporal resolution in living subjects. For detection of intracellular ...

Lee, Taekwan

353

In Vivo Imaging with a Cell-Permeable Porphyrin-Based MRI Contrast  

E-Print Network (OSTI)

Magnetic resonance imaging (MRI) with molecular probes offers the potential to monitor physiological parameters with comparatively high spatial and temporal resolution in living subjects. For detection of intracellular ...

Lee, Taekwan

354

E-Print Network 3.0 - alternative imaging modality Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: traditional imaging modalities such as magnetic resonance (MR), computed tomography (CT) and ultrasound (US... detection and characterization of breast cancer pathology...

355

THE STATISTICAL RELATIONSHIP BETWEEN THE PHOTOSPHERIC MAGNETIC PARAMETERS AND THE  

E-Print Network (OSTI)

. Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 ABSTRACT Using line-of-sight Michelson Doppler Imager (MDI) magnetograms of 89 ac- tive regions and Solar Geophysical Data (SGD) flare magnetic flux systems carry significant electric currents and the relaxation of such magnetic

356

Superconducting magnet  

DOE Patents (OSTI)

A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

Satti, John A. (Naperville, IL)

1980-01-01T23:59:59.000Z

357

Image Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Mosaic of earth and sky images Mosaic of earth and sky images Image Resources Free image resources covering energy, environment, and general science. Here are some links to energy- and environment-related photographic databases. Berkeley Lab Photo Archive Berkeley Lab's online digital image collection. National Science Digital Library (NSDL) NSDL is the Nation's online library for education and research in science, technology, engineering, and mathematics. The World Bank Group Photo Library A distinctive collection of over 11,000 images that illustrate development through topics such as Agriculture, Education, Environment, Health, Trade and more. Calisphere Compiles the digital collections of libraries, museums, and cultural heritage organizations across California, and organizes them by theme, such

358

Direct visualization of the perforant pathway in the human brain with ex vivo diffusion tensor imaging  

E-Print Network (OSTI)

Ex vivo magnetic resonance imaging yields high resolution images that reveal detailed cerebral anatomy and explicit cytoarchitecture in the cerebral cortex, subcortical structures, and white matter in the human brain. Our ...

Augustinack, Jean C.

359

EMSL - Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

imaging en Diffusional Motion of Redox Centers in Carbonate Electrolytes . http:www.emsl.pnl.govemslwebpublicationsdiffusional-motion-redox-centers-carbonate-electrolytes

360

Magnetic resonance elastography  

Science Journals Connector (OSTI)

The goal of our research is to develop MRI?based methods for assessing the mechanical properties of tissues in vivo. We have focused on a novel MRI technique for visualizing propagating acoustic shear waves [Science 269 1854–1857 (1995)]. Suitable dynamic shear stress for Magnetic Resonance Elastography (MRE) can be generated by surface drivers inertial effects acoustic radiation pressure or endogenous physiologic mechanisms. The MRE acquisition sequence is capable of visualizing cyclic tissue motion of less than 1 micron in displacement amplitude with imaging times ranging from 100 ms to several minutes. Inversion algorithms based on continuum mechanics are used to process the acquired data to generate maps of mechanical properties such as depict stiffness viscosity attenuation and anisotropic behavior. We have applied MRE to assess specimens of a variety of tissues ranging in stiffness from lung to cartilage. Human studies have demonstrated that it is feasible to apply MRE to quantitatively image the mechanical properties of skeletal muscles gray and white matter in the brain thyroid kidney liver and skin. Our preliminary clinical studies have to date applied MRE to observe changes in tissue mechanical properties in patients with breast brain and thyroid tumors liver fibrosis and diffuse diseases of skeletal muscle.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Learning About Magnets!  

NLE Websites -- All DOE Office Websites (Extended Search)

by the National High Magnetic Field Laboratory Learning About Name A magnet is a material or object that creates a magnetic fi eld. This fi eld is invisible, but it creates a...

362

Interface Magnetism in Multiferroics  

E-Print Network (OSTI)

1.2.1 Magnetism . . . . . . . . . . . . . . . . . . . 1.2.2domain walls . . . . . 3 Magnetism of domain walls in BiFeOof electrical control of magnetism in mixed phase BiFeO 3

He, Qing

2011-01-01T23:59:59.000Z

363

Magnetic Switching under Pressure | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Revealing the Secrets of Chemical Bath Deposition Revealing the Secrets of Chemical Bath Deposition DNA Repair Protein Caught in the Act of Molecular Theft Velcro for Nanoparticles A Molecular Fossil Ultrafast Imaging of Electron Waves in Graphene Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Magnetic Switching under Pressure DECEMBER 2, 2010 Bookmark and Share A schematic representation of the pressure-induced magnetic switching effect. The colored images highlight the direction of the magnetic orbital (grey plane) for the copper centers (green balls: copper, blue: nitrogen, red: oxygen/water, yellow: fluoride). A material's properties are a critical factor in the way that material

364

Data Image  

Science Journals Connector (OSTI)

Data image refers to the sum of all information 74/100,000 available in all datasets linked to a specific name; to all those who have access to databases that name is actually the data image of the real person...

2008-01-01T23:59:59.000Z

365

Femtosecond Opto-Magnetism  

Science Journals Connector (OSTI)

We demonstrate that circularly polarized laser pulses may selectively excite different modes of magnetic resonance, realize quantum control of magnons, trigger magnetic phase...

Kimel, Alexey; Kirilyuk, A; Rasing, Th

366

Magnetic nanoparticles-based diagnostics and theranostics  

Science Journals Connector (OSTI)

In recent years, enormous efforts have been made to translate nanotechnology innovations into medical practice. The main focuses were diagnosis and therapy with recent emphasis on multi-modal imaging. Since in many instance the sites for imaging and therapy are the same it became apparent that targeted magnetic nanoparticles (MNPs), which can be imaged, can also be used as a platform for theranostics applications. MNPs, which are characterized by high surface-to-volume ratios, are not only excellent scaffolds for loading targeting moieties, imaging tags and drugs, but can themselves be used to induce therapeutic effects making them the platform of choice for theranostics applications. In the current assay we will outline some of the recent progress in the synthesis and functionalization of MNPs, as well as their applications in multimodal imaging. The main body of the present essay, however, focuses on recent theranostic applications of such MNPs.

Yoram Cohen; Shani Yariv Shoushan

2013-01-01T23:59:59.000Z

367

Methods for characterizing magnetic footprints of perpendicular magnetic recording writer heads  

SciTech Connect

In this work, the magnetic footprints, along with some of its dynamic features in recording process, of perpendicular magnetic recording writer heads have been characterized by using three different techniques. Those techniques are the spin-stand stationary footprint technique, the spin-stand dynamic footprint technique, and the coherent writing technique combined with magnetic force microscope imaging method. The characteristics of those techniques have been compared to one another. It was found experimentally that the spin-stand stationary method could not precisely catch some peculiar recording dynamics of the write heads in certain conditions. The advantages and disadvantages among all those techniques are also examined and discussed in detail.

Li, Shaoping, E-mail: shaoping.li@wdc.com; Lin, Ed; George, Zach; Terrill, Dave; Mendez, H.; Santucci, J.; Yie, Derek [Western Digital Corp., 44100 Osgood Road, Fremont, California 94539 (United States)

2014-05-07T23:59:59.000Z

368

Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection  

DOE Patents (OSTI)

A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

Xu,Shoujun (Berkeley, CA); Lowery, Thomas L. (Belmont, MA); Budker, Dmitry (El Cerrito, CA); Yashchuk, Valeriy V. (Richmond, CA); Wemmer, David E. (Berkeley, CA); Pines, Alexander (Berkeley, CA)

2009-08-11T23:59:59.000Z

369

Quadrupole magnets measurement  

SciTech Connect

A rotating coil setup is designed for quadrupole magnet measurement at the Accelerator Test Facility (ATF); Hall probe measurement was also performed for one of each type of quadrupole magnet. Both mechanical and magnetic properties of the quadrupole magnets were measured, the results are reported here. 5 refs., 12 figs., 12 tabs.

Wang, Xijie (California Univ., Los Angeles, CA (USA). Center for Advanced Accelerators Physics); Sylvester, C. (Brookhaven National Lab., Upton, NY (USA))

1991-01-01T23:59:59.000Z

370

Magnetism in Nanocrystalline Gold  

Science Journals Connector (OSTI)

Magnetism in Nanocrystalline Gold ... Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. ... gold; nanocrystalline film; magnetism; cluster deposition; SQUID magnetometry ...

Vladimir Tuboltsev; Alexander Savin; Alexandre Pirojenko; Jyrki Räisänen

2013-07-07T23:59:59.000Z

371

Magnetism of spiral galaxies  

Science Journals Connector (OSTI)

... magnetic fields of spiral galaxies has taken a special place in the study of cosmic magnetism, but magnetic fields are a universal property of all galactic-type objects, as is ... . The past ten years have been notable for rapid, qualitative progress in understanding the magnetism of spiral galaxies, a result of both theoretical and observational developments. A few decades ...

Alexander Ruzmaikin; Dmitry Sokoloff; Anvar Shukurov

1988-11-24T23:59:59.000Z

372

Magnetism in microquasars  

Science Journals Connector (OSTI)

...Lynden-Bell, E. R. Priest and N. O. Weiss Magnetism in microquasars I. F. Mirabel Centre...binaries|magnetic field|plasma physics| Magnetism in microquasars By I. F. Mirabel Centre...Trans. R. Soc. Lond. A (2000) Magnetism in microquasars 843 At rst glance it...

2000-01-01T23:59:59.000Z

373

Early History of Magnetism  

Science Journals Connector (OSTI)

... 2, Dr. J. B. Kramer read a paper on “The Early History of Magnetism”, in which he discussed the various accounts of the first discovery of a magnet ... accounts of the first discovery of a magnet, and the development of the science of magnetism down to A.D. 1600. His remarks were divided into five sections, the ...

1932-03-19T23:59:59.000Z

374

Evaluation of magnetic flux distribution from magnetic domains in [Co/Pd] nanowires by magnetic domain scope method using contact-scanning of tunneling magnetoresistive sensor  

SciTech Connect

Current-driven magnetic domain wall motions in magnetic nanowires have attracted great interests for physical studies and engineering applications. The magnetic force microscope (MFM) is widely used for indirect verification of domain locations in nanowires, where relative magnetic force between the local domains and the MFM probe is used for detection. However, there is an occasional problem that the magnetic moments of MFM probe influenced and/or rotated the magnetic states in the low-moment nanowires. To solve this issue, the “magnetic domain scope for wide area with nano-order resolution (nano-MDS)” method has been proposed recently that could detect the magnetic flux distribution from the specimen directly by scanning of tunneling magnetoresistive field sensor. In this study, magnetic domain structure in nanowires was investigated by both MFM and nano-MDS, and the leakage magnetic flux density from the nanowires was measured quantitatively by nano-MDS. Specimen nanowires consisted from [Co (0.3)/Pd (1.2)]{sub 21}/Ru(3) films (units in nm) with perpendicular magnetic anisotropy were fabricated onto Si substrates by dual ion beam sputtering and e-beam lithography. The length and the width of the fabricated nanowires are 20??m and 150?nm. We have succeeded to obtain not only the remanent domain images with the detection of up and down magnetizations as similar as those by MFM but also magnetic flux density distribution from nanowires directly by nano-MDS. The obtained value of maximum leakage magnetic flux by nano-MDS is in good agreement with that of coercivity by magneto-optical Kerr effect microscopy. By changing the protective diamond-like-carbon film thickness on tunneling magnetoresistive sensor, the three-dimensional spatial distribution of leakage magnetic flux could be evaluated.

Okuda, Mitsunobu, E-mail: okuda.m-ky@nhk.or.jp; Miyamoto, Yasuyoshi; Miyashita, Eiichi; Hayashi, Naoto [NHK Science and Technology Research Laboratories, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan)

2014-05-07T23:59:59.000Z

375

Ultrasensitive Magnetometry and Imaging with NV Diamond  

E-Print Network (OSTI)

resolution can be obtained with this higher gradient field. By making the gradient wire structures out of coplanar stripline design a high microwave gradient field can be easily obtained. 5 Microdevice for Imaging: Magnetometer One of the key... by using a rotating sample. However this is very inconvenient for micro-imaging applications because of 6 the difficulty of maintaining high spatial resolution while rotating at high speeds. An alternative is to rotate the magnetic field using micro-stripline...

Kim, Changdong

2011-08-08T23:59:59.000Z

376

Magnetic Fields Analogous to electric field, a magnet  

E-Print Network (OSTI)

characteristic of elementary particles such as an electron #12;Magnetic Fields Magnetic field lines Direction;Magnetic Fields Magnetic field lines enter one end (south) of magnet and exit the other end (north) Opposite magnetic poles attract like magnetic poles repel #12;Like the electric field lines

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

377

HTS Magnet Program | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

HTS Magnet Program HTS Magnet Program High Temperature Superconductors (HTS) have the potential to revolutionize the field of superconducting magnets for particle accelerators, energy storage and medical applications. This is because of the fact that as compared to the conventional Low Temperature Superconductors (LTS), the critical current density (Jc ) of HTS falls slowly both: as a function of increasing field, and as a function of increasing temperature These unique properties can be utilized to design and build: HTS magnets that produce very high fields (20 - 50 T) HTS magnets that operate at elevated temperatures (20 - 77 K) This is a significant step forward over the convention LTS magnets which generally operate at a temperature of ~4 K and with field usually limited

378

Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets  

SciTech Connect

Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

None

2010-10-01T23:59:59.000Z

379

How to use magnetic field information for coronal loop identification?  

E-Print Network (OSTI)

The structure of the solar corona is dominated by the magnetic field because the magnetic pressure is about four orders of magnitude higher than the plasma pressure. Due to the high conductivity the emitting coronal plasma (visible e.g. in SOHO/EIT) outlines the magnetic field lines. The gradient of the emitting plasma structures is significantly lower parallel to the magnetic field lines than in the perpendicular direction. Consequently information regarding the coronal magnetic field can be used for the interpretation of coronal plasma structures. We extrapolate the coronal magnetic field from photospheric magnetic field measurements into the corona. The extrapolation method depends on assumptions regarding coronal currents, e.g. potential fields (current free) or force-free fields (current parallel to magnetic field). As a next step we project the reconstructed 3D magnetic field lines on an EIT-image and compare with the emitting plasma structures. Coronal loops are identified as closed magnetic field lines with a high emissivity in EIT and a small gradient of the emissivity along the magnetic field.

T. Wiegelmann; B. Inhester; A. Lagg; S. K. Solanki

2008-01-30T23:59:59.000Z

380

Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana  

SciTech Connect

Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-yr timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to nearinfrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9th, 2008, pure carbon dioxide gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a ''FieldSpec Pro'' spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants.

Male, E.J.; Pickles, W.L.; Silver, E.A.; Hoffmann, G.D.; Lewicki, J.; Apple, M.; Repasky, K.; Burton, E.A.

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

History Images  

NLE Websites -- All DOE Office Websites (Extended Search)

History Images History Images Los Alamos History in Images Los Alamos has a proud history and heritage of almost 70 years of science and innovation. The people of the Laboratory work on advanced technologies to provide the best scientific and engineering solutions to many of the nation's most crucial security challenges. Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Back in the day Back in the day LA bridge in Los Alamos LA bridge in Los Alamos 1945 Army-Navy "E" Award 1945 Army-Navy "E" Award Louis Rosen Louis Rosen Bob Van Ness Robert Kuckuck and Michael Anastasio Bob Van Ness Robert Kuckuck and Michael Anastasio TA-18 TA-18 Elmer Island TU-4 assembly area Elmer Island TU-4 assembly area

382

Bioinspired synthesis of magnetic nanoparticles  

SciTech Connect

The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambient temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite particles. The overall goal of this project is to understand the mechanism of magnetite particle synthesis in the presence of the biomineralization proteins, mms6 and C25. Previous work has hypothesized that the mms6 protein helps to template magnetite and cobalt ferrite particle synthesis and that the C25 protein templates cobalt ferrite formation. However, the effect of parameters such as the protein concentration on the particle formation is still unknown. It is expected that the protein concentration significantly affects the nucleation and growth of magnetite. Since the protein provides iron-binding sites, it is expected that magnetite crystals would nucleate at those sites. In addition, in the previous work, the reaction medium after completion of the reaction was in the solution phase, and magnetic particles had a tendency to fall to the bottom of the medium and aggregate. The research presented in this thesis involves solid Pluronic gel phase reactions, which can be studied readily using small-angle x-ray scattering, which is not possible for the solution phase experiments. In addition, the concentration effect of both of the proteins on magnetite crystal formation was studied.

David, Anand

2009-05-26T23:59:59.000Z

383

Tamper resistant magnetic stripes  

DOE Patents (OSTI)

This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.

Naylor, Richard Brian (Albuquerque, NM); Sharp, Donald J. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

384

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

385

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

386

Argonne CNM Highlight: Biofunctionalized magnetic-vortex microdiscs for  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction Magnetic microdisks Reflection optical microscope image of a dried suspension of the discs prepared via magnetron sputtering and optical lithography. Magnetic spin vortex Model of magnetic-vortex spin distribution in a disc. Users from Argonne's Materials Science Division and University of Chicago's Pritzker School of Medicine, working collaboratively on a user science project with CNM's Nanobio Interfaces Group, have discovered that nanostructured magnetic materials offer exciting avenues for probing cell mechanics, activating mechanosensitive ion channels, and advancing potential cancer therapies. Their new report describes an approach based on interfacing cells with lithographically defined microdiscs (1-micron

387

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning Stochastic Domain-Wall Depinning in Magnetic Nanowires Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Wednesday, 29 July 2009 00:00 Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

388

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

389

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

390

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

391

Direct Imaging of Antiferromagnetic Vortex States  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Imaging of Antiferromagnetic Vortex States Print Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study of vortex states in FM disks, there has been no direct observation of such states in an AFM microstructure, although theory predicts many interesting and unique properties for the AFM vortex state. Recently, a research team from Berkeley, Korea, and China has taken the first direct image of an AFM vortex in multilayered magnetic disk structures using x-ray magnetic linear dichroism (XMLD) and photoemission electron microscopy (PEEM) at ALS Beamlines 4.0.2 and 11.0.1 , respectively. The experiments observed two types of AFM vortices, one of which has no analogue in FM vortices.

392

Direct Imaging of Antiferromagnetic Vortex States  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Imaging of Antiferromagnetic Vortex States Print Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study of vortex states in FM disks, there has been no direct observation of such states in an AFM microstructure, although theory predicts many interesting and unique properties for the AFM vortex state. Recently, a research team from Berkeley, Korea, and China has taken the first direct image of an AFM vortex in multilayered magnetic disk structures using x-ray magnetic linear dichroism (XMLD) and photoemission electron microscopy (PEEM) at ALS Beamlines 4.0.2 and 11.0.1 , respectively. The experiments observed two types of AFM vortices, one of which has no analogue in FM vortices.

393

Direct Imaging of Antiferromagnetic Vortex States  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Imaging of Antiferromagnetic Vortex States Print Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study of vortex states in FM disks, there has been no direct observation of such states in an AFM microstructure, although theory predicts many interesting and unique properties for the AFM vortex state. Recently, a research team from Berkeley, Korea, and China has taken the first direct image of an AFM vortex in multilayered magnetic disk structures using x-ray magnetic linear dichroism (XMLD) and photoemission electron microscopy (PEEM) at ALS Beamlines 4.0.2 and 11.0.1 , respectively. The experiments observed two types of AFM vortices, one of which has no analogue in FM vortices.

394

Cover image Darwin and physics? The relevance  

E-Print Network (OSTI)

CharlesSantoriandYoshihisaYamamoto 174 Nuclear magnetic resonance: The benefits of travel Alison.C.Glattli,M.-S.Choi,C.MoraandT.Kontos N&Vp175 213 imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor W.D.Wise

Loss, Daniel

395

National High Magnetic Field Laboratory: An Introduction to Magnets...  

NLE Websites -- All DOE Office Websites (Extended Search)

resistive magnet is here at the Magnet Lab: It can generate a sustained magnetic field of 35 tesla. (Were not counting here our world-record hybrid magnet or the stronger,...

396

3D analysis of magnetization distribution magnetized by capacitor-discharge impulse magnetizer  

Science Journals Connector (OSTI)

Method for calculating the magnetization distribution magnetized by capacitor-discharge impulse magnetizer is expanded to 3D, and the calculated flux distribution is compared with measured one.

Norio Takahashi

2001-01-01T23:59:59.000Z

397

Spin and orbital magnetization loops obtained using magnetic Compton scattering  

SciTech Connect

We present an application of magnetic Compton scattering (MCS) to decompose a total magnetization loop into spin and orbital magnetization contributions. A spin magnetization loop of SmAl{sub 2} was measured by recording the intensity of magnetic Compton scattering as a function of applied magnetic field. Comparing the spin magnetization loop with the total magnetization one measured by a vibrating sample magnetometer, the orbital magnetization loop was obtained. The data display an anti-coupled behavior between the spin and orbital magnetizations and confirm that the orbital part dominates the magnetization.

Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198 (Japan); Koizumi, A. [Graduate School of Materials Science, University of Hyogo, Hyogo 678-1297 (Japan)] [Graduate School of Materials Science, University of Hyogo, Hyogo 678-1297 (Japan)

2013-02-25T23:59:59.000Z

398

Fundamental Scientific Problems in Magnetic Recording  

SciTech Connect

Magnetic data storage technology is presently leading the high tech industry in advancing device integration--doubling the storage density every 12 months. To continue these advancements and to achieve terra bit per inch squared recording densities, new approaches to store and access data will be needed in about 3-5 years. In this project, collaboration between Oak Ridge National Laboratory (ORNL), Center for Materials for Information Technology (MINT) at University of Alabama (UA), Imago Scientific Instruments, and Seagate Technologies, was undertaken to address the fundamental scientific problems confronted by the industry in meeting the upcoming challenges. The areas that were the focus of this study were to: (1) develop atom probe tomography for atomic scale imaging of magnetic heterostructures used in magnetic data storage technology; (2) develop a first principles based tools for the study of exchange bias aimed at finding new anti-ferromagnetic materials to reduce the thickness of the pinning layer in the read head; (3) develop high moment magnetic materials and tools to study magnetic switching in nanostructures aimed at developing improved writers of high anisotropy magnetic storage media.

Schulthess, T.C.; Miller, M.K.

2007-06-27T23:59:59.000Z

399

Recent lunar magnetism  

E-Print Network (OSTI)

The magnetization of young lunar samples (magnetic fields (e.g. core dynamo and long-lived impact plasma fields) have not been present within the last 1.5 Ga. To better ...

Buz, Jennifer

2011-01-01T23:59:59.000Z

400

Metallic Magnetic Hetrostructures  

E-Print Network (OSTI)

This work studied sputter deposited conventional spin valves (SV) and related structures. In SV layered structures, two ferromagnetic layers are separated by a non-magnetic spacer. Under an external magnetic field, the relative orientation...

Leung, Chi Wah

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Plasma Magnetic Insulation  

Science Journals Connector (OSTI)

29 June 1987 research-article Plasma Magnetic Insulation B. B. Kadomtsev Theoretically the strong magnetic field of a tokamak should confine electrons and ions in a high-temperature...

1987-01-01T23:59:59.000Z

402

Magnetic assisted statistical assembly  

E-Print Network (OSTI)

The objective of this thesis is to develop a process using magnetic forces to assemble micro-components into recesses on silicon based integrated circuits. Patterned SmCo magnetic thin films at the bottom of recesses are ...

Cheng, Diana I

2008-01-01T23:59:59.000Z

403

Magnetic Nanoparticle NANOMATERIALS  

E-Print Network (OSTI)

Magnetic Nanoparticle Metrology NANOMATERIALS We are developing best practice metrology for characterization of magnetic nanoparticle systems (e.g. blocking temperature, anisotropy, property distributions, T nanoparticles and provide guidelines to the FDA to properly compare systems when approving nanoparticle systems

404

Uranium Monochalcogenides: Magnetic Form Factor and Magnetic Neutron Scattering  

Science Journals Connector (OSTI)

Fig. R.66. UY. (A) Magnetic form factor. The radial ?j i? integrals, which contribute to the neutron magnetic fo...

R. Tro?

2009-01-01T23:59:59.000Z

405

LHC Magnet Program | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnet Program Magnet Program The Superconducting Magnet Division is building a number of dipole magnets for the Large Hadron Collider (LHC), which is now under construction at CERN in Geneva, Switzerland. Scheduled to begin operation in 2007, this machine will collide beams of protons with the unprecedented energy of 7 TeV per beam to explore the nature of matter at its most basic level (RHIC can collide beams of protons with energies of 0.25 TeV, but is mostly used to collide heavy ions with energies of 0.1 TeV per nucleon). The magnets are being built as part of the US program, recommended by the High Energy Physics Advisory Panel (HEPAP) and approved by Congress, to contribute to the construction and, later, use of that frontier machine by the US high energy physics community. Fermi National Accelerator Laboratory (FNAL) and

406

Neutron Imaging Explored as Complementary Technique for Improving Cancer  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Imaging Explored as Complementary Technique for Improving Cancer Neutron Imaging Explored as Complementary Technique for Improving Cancer Detection August 05, 2013 Researcher Maria Cekanova analyzes the neutron radiographs of a canine breast tumor (black color in top image of monitor screen) using the software to visualize in color the various intensities of neutron transmissions through the breast tissue. ORNL and University of Tennessee collaboration now analyzing first results from neutron radiographs of cancerous tissue samples Today's range of techniques for detection of breast and other cancers include mammography, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), and optical imaging. Each technology has advantages and disadvantages, with limitations either

407

Magnetic susceptibility in QCD  

E-Print Network (OSTI)

Magnetic susceptibility in the deconfined phase of QCD is calculated in a closed form using a recent general expression for the quark gas pressure in magnetic field. Quark selfenergies are entering the result via Polyakov line factors and ensure the total paramagnetic effect, increasing with temperature. A generalized form of magnetic susceptibility in nonzero magnetic field suitable for experimental and lattice measurements is derived, showing a good agreement with available lattice data.

V. D. Orlovsky; Yu. A. Simonov

2014-05-12T23:59:59.000Z

408

Mesoporous Multifunctional Upconversion Luminescent and Magnetic “Nanorattle” Materials for Targeted Chemotherapy  

Science Journals Connector (OSTI)

The material emits visible luminescence upon NIR excitation and can be directed by an external magnetic field to a specific target, making it an attractive system for a variety of biological applications. ... (5-10) Along these lines, luminescent and magnetic nanoparticles have been used as biolabeling and contrast agents, and for magnetic resonance imaging (MRI), leading recently to major advances in biological and biomedical imaging. ... Field-dependent magnetization curves of the MUC-F-NR were recorded using a superconducting quantum interference device (SQUID) magnetometer with fields up to 5 T (Figure 2b). ...

Fan Zhang; Gary B. Braun; Alessia Pallaoro; Yichi Zhang; Yifeng Shi; Daxiang Cui; Martin Moskovits; Dongyuan Zhao; Galen D. Stucky

2011-12-01T23:59:59.000Z

409

Full Length Article: Color-appearance-model based fusion of gray and pseudo-color images for medical applications  

Science Journals Connector (OSTI)

Fusion of gray and pseudo-color images presents more information of biological tissues in a single image and facilitates the interpretation of multimodalities in medical practice. However, fused results are hampered by the problems of blurred details, ... Keywords: Biomedical image fusion, CIECAM02, Color appearance model (CAM), Magnetic resonance imaging (MRI), Rainbow palette, Ultrasound

Tianjie Li, Yuanyuan Wang, Cai Chang, Na Hu, Yongping Zheng

2014-09-01T23:59:59.000Z

410

Magnetism Theory Group / POSTECH Magnetism Theory Group / POSTECH  

E-Print Network (OSTI)

Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH J.H . Park et al. #12;'s of FeinCsm e tal The chargeandorbitalordering geom etryin YB a C o 2 O 5 S. K. Kwon etal .Magnetism Theory

Min, Byung Il

411

RESEARCH: Argonne's Super Magnet  

Science Journals Connector (OSTI)

RESEARCH: Argonne's Super Magnet ... The world's largest superconducting magnet has been successfully built and operated by Argonne National Laboratory, at Argonne, Ill. ... The magnet will be part of Argonne's bubble chamber, also the world's largest, which should be completed on schedule this summer. ...

1969-02-03T23:59:59.000Z

412

Noble gas magnetic resonator  

DOE Patents (OSTI)

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

413

Magnetism in transition metals  

Science Journals Connector (OSTI)

By using the Hubbard tight-binding-type Hamiltonian and the cluster Bethe-lattice approximation we calculate for Fe the Curie temperature TC=2250 K and the temperature dependence of the magnetic moments and the magnetization. Moreover, we show how previous theories for itinerant magnets may be extended to include short-range spin correlations.

J. L. Morán-López; K. H. Bennemann; M. Avignon

1981-06-01T23:59:59.000Z

414

A Study in Magnetism  

Science Journals Connector (OSTI)

... this century, for the simple comprehensiveness and original beauty of his researches in electricity and magnetism; chiefly, perhaps, for his discovery of magneto-electricity—the kind of electricity that ... space surrounding a magnet was thrown into a peculiar condition by the presence of the magnetism. Two centuries previously another Englishman, as uniquely great if not greater, Dr. Gilbert ...

SILVANUS P. THOMPSON

1878-11-28T23:59:59.000Z

415

A MAGNETIC CALIBRATION OF PHOTOSPHERIC DOPPLER VELOCITIES  

SciTech Connect

The zero point of measured photospheric Doppler shifts is uncertain for at least two reasons: instrumental variations (from, e.g., thermal drifts); and the convective blueshift, a known correlation between intensity and upflows. Accurate knowledge of the zero point is, however, useful for (1) improving estimates of the Poynting flux of magnetic energy across the photosphere, and (2) constraining processes underlying flux cancellation, the mutual apparent loss of magnetic flux in closely spaced, opposite-polarity magnetogram features. We present a method to absolutely calibrate line-of-sight (LOS) velocities in solar active regions (ARs) near disk center using three successive vector magnetograms and one Dopplergram coincident with the central magnetogram. It exploits the fact that Doppler shifts measured along polarity inversion lines (PILs) of the LOS magnetic field determine one component of the velocity perpendicular to the magnetic field, and optimizes consistency between changes in LOS flux near PILs and the transport of transverse magnetic flux by LOS velocities, assuming that ideal electric fields govern the magnetic evolution. Previous calibrations fitted the center-to-limb variation of Doppler velocities, but this approach cannot, by itself, account for residual convective shifts at the limb. We apply our method to vector magnetograms of AR 11158, observed by the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory, and find clear evidence of offsets in the Doppler zero point in the range of 50-550 m s{sup -1}. In addition, we note that a simpler calibration can be determined from an LOS magnetogram and Dopplergram pair from the median Doppler velocity among all near-disk-center PIL pixels. We briefly discuss shortcomings in our initial implementation, and suggest ways to address these. In addition, as a step in our data reduction, we discuss the use of temporal continuity in the transverse magnetic field direction to correct apparently spurious fluctuations in resolution of the 180 Degree-Sign ambiguity.

Welsch, Brian T.; Fisher, George H. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Sun, Xudong [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

2013-03-10T23:59:59.000Z

416

Magnetically attached sputter targets  

DOE Patents (OSTI)

An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

Makowiecki, D.M.; McKernan, M.A.

1994-02-15T23:59:59.000Z

417

Imaging bolometer  

DOE Patents (OSTI)

Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

Wurden, Glen A. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

418

Imaging bolometer  

DOE Patents (OSTI)

Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

Wurden, G.A.

1999-01-19T23:59:59.000Z

419

In-situ magnetization of NdFeB magnets for permanent magnet machines  

SciTech Connect

In-situ magnetizers are needed to facilitate the assembly of permanent magnet machines and to remagnetize the magnets after weakening due to a fault condition. The air-core magnetizer in association with the silicon steel lamination structure of the rotor has advantages over its iron-core counterpart. This novel method has been used to magnetize the NdFeB magnets in a 30-hp permanent magnet synchronous motor. The magnetizing capability for different magnetizer geometries was investigated for the magnetization of NdFeB material. The design, testing, and operation of this magnetizer are reported in this paper.

Chang, L.; Eastham, T.R.; Dawson, G.E. (Dept. of Electrical Engineering, Queen's Univ., Kingston, Ontario K7L 3N6 (CA))

1991-09-01T23:59:59.000Z

420

TRACKING TONGUE MOTION IN THREE DIMENSIONS USING TAGGED MR IMAGES Xiaofeng Liu1  

E-Print Network (OSTI)

TRACKING TONGUE MOTION IN THREE DIMENSIONS USING TAGGED MR IMAGES Xiaofeng Liu1 , Maureen Stone3 and strain analysis of tagged magnetic res- onance (MR) imaging [1]. It was originally applied to car- diac This research was supported by NIH grants R01 HL047405 and R01 DC001758 (a) (b) Fig. 1. (a) A tagged MR image

Prince, Jerry L.

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dynamic Surface Reconstruction from 4D-MR Images Matthias Fenchel1  

E-Print Network (OSTI)

Dynamic Surface Reconstruction from 4D-MR Images Matthias Fenchel1 , Stefan Gumhold2 , Hans approach is applied to 4D-MR images of a human heart in motion. 1 Introduction Image segmentation-Peter Seidel3 1 Siemens AG Medical Solutions, Magnetic Resonance, Karl-Schall-Str. 4, 91052 Erlangen 2 TU

Gumhold, Stefan

422

An Integrated Method of Adaptive Enhancement for Unsupervised Segmentation of MRI Brain Images  

E-Print Network (OSTI)

An Integrated Method of Adaptive Enhancement for Unsupervised Segmentation of MRI Brain Images of the adaptive enhancement for an unsupervised global-to-local segmentation of brain tissues in three-dimensional (3-D) MRI (Magnetic Resonance Imaging) images. Three brain tissues are of interest: CSF (Cerebro

Pizurica, Aleksandra

423

2-3 High Field Magnetic Resonance Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

HFMRF Overview HFMRF Overview High Field Magnetic Resonance Facility A significant portion of research conducted in the High Field Magnetic Resonance Facility (HFMRF) focuses on developing a fundamental, molecular-level understanding of biochemi- cal and biological systems and their response to environmental effects. A secondary focus is in materials science and catalysis and the chemical mechanisms and processes that operate in these areas. Resident and matrixed research staff within this facility offer expertise in the areas of structural biology, solid-state materials characterization, and magnetic resonance imaging (MRI) techniques. Instrumentation & Capabilities NMR * 900-MHz NMR (operational in 2004) * 800-MHz NMR * 750-MHz NMR * 600-MHz NMR (2 systems)

424

Permanent magnet steam generator  

SciTech Connect

This patent describes a system for magnetic heating of a fluid by motor rotation of a permanent magnet rotor adjacent an assembly of ferro-magnetic condensing plate and of copper heat absorber plate with protrusions through the ferro-magnetic condensing plate into an enclosure with the fluid therein and having fluid inlet and fluid outlet. The assembly has a first shaft and a second shaft coaxially spaced therefrom, a respective the motor connected to the outer end of each shaft, and a respective the permanent magnet rotor connected to the inner end of each shaft, adjacent a the heat absorber plate. The improvement described here comprises: the enclosure including a steel boiler with a first the ferro-magnetic condensing plate closing off a first end thereof and a second the ferro-magnetic condensing plate closing off a second end thereof, a the copper heat absorbing plate affixed on each ferro-magnetic plate; means, free of pockets, for promoting turbulent flow of the fluid with uniformly good heat transfer including the protrusion being a plurality of heat sinks, each heat sink of the plurality of heat sinks comprising an integral elongate member with an alternately large diameter and smaller diameter portions regularly spaced therealong. The elongate members through the first the ferro-magnetic condensing plate are coaxially aligned with the elongate members through the second the ferro-magnetic condensing plate.

Gerard, F.; Gerard, F.J.

1986-09-30T23:59:59.000Z

425

Ferromagnetic resonance in $\\epsilon$-Co magnetic composites  

E-Print Network (OSTI)

We investigate the electromagnetic properties of assemblies of nanoscale $\\epsilon$-cobalt crystals with size range between 5 nm to 35 nm, embedded in a polystyrene (PS) matrix, at microwave (1-12 GHz) frequencies. We investigate the samples by transmission electron microscopy (TEM) imaging, demonstrating that the particles aggregate and form chains and clusters. By using a broadband coaxial-line method, we extract the magnetic permeability in the frequency range from 1 to 12 GHz, and we study the shift of the ferromagnetic resonance with respect to an externally applied magnetic field. We find that the zero-magnetic field ferromagnetic resonant peak shifts towards higher frequencies at finite magnetic fields, and the magnitude of complex permeability is reduced. At fields larger than 2.5 kOe the resonant frequency changes linearly with the applied magnetic field, demonstrating the transition to a state in which the nanoparticles become dynamically decoupled. In this regime, the particles inside clusters can ...

Chalapat, Khattiya; Huuppola, Maija; Koponen, Lari; Johans, Christoffer; Ras, Robin H A; Ikkala, Olli; Oksanen, Markku A; Seppälä, Eira; Paraoanu, G S

2014-01-01T23:59:59.000Z

426

Dynamic Switching of the Spin Circulation in Tapered Magnetic Nanodisks  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic Switching of the Spin Dynamic Switching of the Spin Circulation in Tapered Magnetic Nanodisks Dynamic Switching of the Spin Circulation in Tapered Magnetic Nanodisks Print Monday, 22 April 2013 12:09 fischer-magnetic vortices Ferromagnetic NiFe disks (500-nm-wide and 20-nm-thick), were fabricated by e-beam lithography onto a waveguide structure. Field pulses, generated by launching current pulses into the waveguide trigger the magnetization dynamics in the elements. Using the soft x-ray microscope XM-1 providing 25-nm spatial resolution, circularly polarized soft x-rays give rise to XMCD contrast which allows to record an image of the in-plane circulation of the magnetic vortex. The topology of vortices-areas where there is a spinning motion around an imaginary axis-is a physical phenomenon which is found across a large

427

RSNA 2002: Image Fusion Image Fusion  

E-Print Network (OSTI)

of anatomical feature #12;RSNA 2002: Image Fusion Types of Data to be Registered Anatomic CT, MRI, US DigitizedRSNA 2002: Image Fusion Image Fusion: Introduction to the Technology Charles A. Pelizzari, Ph.D. Department of Radiation and Cellular Oncology The University of Chicago #12;RSNA 2002: Image Fusion "Fusion

Pelizzari, Charles A.

428

Nanometric Optical Imaging Frontiers in Chemical Imaging  

E-Print Network (OSTI)

Nanometric Optical Imaging Frontiers in Chemical Imaging Seminar Series Presented by... Professor growing field which has provided for nanometric optical imaging in the near-field. Even though a variety of techniques are being developed with nanometric optical imaging potential, near-field optics remains the most

429

New imaging technique provides improved insight into controlling the plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

New imaging technique provides improved insight into controlling the plasma New imaging technique provides improved insight into controlling the plasma in fusion experiments By John Greenwald December 9, 2013 Tweet Widget Facebook Like Google Plus One Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. A key issue for the development of fusion energy to generate electricity is the ability to confine the superhot, charged plasma gas that fuels fusion reactions in magnetic devices called tokamaks. This gas is subject to instabilities that cause it to leak from the magnetic fields and halt fusion reactions. Now a recently developed imaging technique can help researchers improve

430

New imaging technique provides improved insight into controlling the plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

New imaging technique provides improved insight into controlling the plasma New imaging technique provides improved insight into controlling the plasma in fusion experiments By John Greenwald December 9, 2013 Tweet Widget Facebook Like Google Plus One Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. A key issue for the development of fusion energy to generate electricity is the ability to confine the superhot, charged plasma gas that fuels fusion reactions in magnetic devices called tokamaks. This gas is subject to instabilities that cause it to leak from the magnetic fields and halt fusion reactions. Now a recently developed imaging technique can help researchers improve

431

High Field Magnet R&D |Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

High Field Magnet R&D High Field Magnet R&D The Superconducting Magnet Division is developing advanced magnet designs and magnet-related technologies for high field accelerator magnets. We are currently working on magnets for three inter-related programs: High Field Magnets for Muon Collider Papers, Presentations Common Coil Magnets Papers, Presentations Interaction Region Magnets Papers, Presentations High Temperature Superconductor (HTS) Magnets Papers, Presentations This is part of a multi-lab superconducting magnet development program for new accelerator facilities that would be part of the U.S. High Energy Physics program. These programs (@BNL, @FNAL, @LBNL) are quite complimentary to each other, so that magnet designs and technologies developed at one laboratory can be easily transferred to another. The BNL

432

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

433

Passive magnetic bearing system  

DOE Patents (OSTI)

An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

Post, Richard F.

2014-09-02T23:59:59.000Z

434

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Structure of Magnetic  

E-Print Network (OSTI)

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Chapter 3 Structure of Magnetic Fields Many of the most interesting plasmas are permeated by or imbedded in magnetic fields.1 As shown in Fig. 3.1, the magnetic field properties of magnetic fields in plasmas can be discussed without specifying a model for the plasma

Callen, James D.

435

Pulse magnetic welder  

DOE Patents (OSTI)

A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

Christiansen, D.W.; Brown, W.F.

1984-01-01T23:59:59.000Z

436

Brownian motion and magnetism  

Science Journals Connector (OSTI)

We present an interesting connection between Brownian motion and magnetism. We use this to determine the distribution of areas enclosed by the path of a particle diffusing on a sphere. In addition, we find a bound on the free energy of an arbitrary system of spinless bosons in a magnetic field. The work presented here is expected to shed light on polymer entanglement, depolarized light scattering, and magnetic behavior of spinless bosons.

Supurna Sinha and Joseph Samuel

1994-11-01T23:59:59.000Z

437

The Virtues of Magnetism  

Science Journals Connector (OSTI)

The Virtues of Magnetism ... In Mozart’s late opera Così fan tutte from 1790, Despina, the accomplice of thread puller Don Alfonso, instantly heals the two male characters who are pretending to be dying by using the virtues of magnetism. ... Although magnetism had been known for centuries, its scientific sources were not yet understood at the end of the 18th century, when Lorenzo da Ponte wrote the libretto. ...

Jan-Ole Joswig; Tommy Lorenz; Gotthard Seifert

2013-12-23T23:59:59.000Z

438

Magnetic differential torque sensor  

SciTech Connect

A new torque sensor structure is presented. The basic idea is a simple torque sensor with a variable magnetic circuit excited by an axially magnetized permanent magnet ring. The circuit is constituted by iron toothed rings, whose teeth relative position changes whenever an applied torque twists the rotating shaft. A Hall probe measures the induction in an airgap where the induction is uniform. The new structure is an association of two previous ones, thus creating a differential system with the related advantages: diminution of thermal drifts, zero mean value for the signal. The new magnetic circuit is studied by calculating equivalent reluctances through energy calculations and by using electrical analogies.

Lemarquand, V.; Lemarquand, G. [Univ. de Savoie, Annecy-le-Vieux (France)] [Univ. de Savoie, Annecy-le-Vieux (France)

1995-11-01T23:59:59.000Z

439

Holographic Magnetic Phase Transition  

E-Print Network (OSTI)

We study four-dimensional interacting fermions in a strong magnetic field, using the holographic Sakai-Sugimoto model of intersecting D4 and D8 branes in the deconfined, chiral-symmetric parallel phase. We find that as the magnetic field is varied, while staying in the parallel phase, the fermions exhibit a first-order phase transition in which their magnetization jumps discontinuously. Properties of this transition are consistent with a picture in which some of the fermions jump to the lowest Landau level. Similarities to known magnetic phase transitions are discussed.

Gilad Lifschytz; Matthew Lippert

2009-06-21T23:59:59.000Z

440

Magnetic Field Viewing Cards  

Science Journals Connector (OSTI)

For some years now laminated cards containing a green magnetically sensitive film have been available from science education suppliers. When held near a magnet these cards appear dark green in regions where the field is perpendicular to the card and light green where the field is parallel to the card. The cards can be used to explore the magnetic field near a variety of magnets as well as near wire loops. In this paper we describe how to make these cards and how we have used them in our physics classrooms and labs.

Stephen Kanim; John R. Thompson

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Recycling Magnets | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Magnets July 15, 2013 The cost of a nuclear or particle physics experiment can be enormous, several hundred million dollars for the Large Hadron Collider Experiments,...

442

Nuclear Magnetic Moments  

Science Journals Connector (OSTI)

This paper contains approximate formulas (Eqs. (5) and (6) for the calculation of nuclear magnetic moments from observed hyperfine structure separations.

S. Goudsmit

1933-04-15T23:59:59.000Z

443

Magnetism in hafnium dioxide  

Science Journals Connector (OSTI)

Thin films of HfO2 produced by pulsed-laser deposition on sapphire, yttria-stabilized zirconia, or silicon substrates show ferromagnetic magnetization curves with little hysteresis and extrapolated Curie temperatures far in excess of 400K. The moment does not scale with film thickness, but in terms of substrate area it is typically in the range 150–400?Bnm?2. The magnetization exhibits a remarkable anisotropy, which depends on texture and substrate orientation. Pure HfO2 powder develops a weak magnetic moment on heating in vacuum, which is eliminated on annealing in oxygen. Lattice defects are the likely source of the magnetism.

J. M. D. Coey; M. Venkatesan; P. Stamenov; C. B. Fitzgerald; L. S. Dorneles

2005-07-22T23:59:59.000Z

444

Transverse Optical Magnetism  

Science Journals Connector (OSTI)

Magnetic interactions with light are usually so small that they are ignored, even in nonlinear optics. Scientists have discovered that parametric processes can drive the interactions...

Rand, Stephen

2010-01-01T23:59:59.000Z

445

Magnetism and Electricity  

Science Journals Connector (OSTI)

... of the mariner's compass being especially good; indeed, the whole chapter on terrestrial magnetism is the best elementary account of the subject which has come under our notice. ...

1889-11-14T23:59:59.000Z

446

Magnetic Braids Anthony Yeates  

E-Print Network (OSTI)

flux function Main result Conclusion 2. Thermonuclear confinement devices. ITER (Internat'l Thermonuclear Experimental Reactor). Inside the KSTAR tokamak. Correspond to periodic magnetic braids. 4 / 22

Dundee, University of

447

Magnetism Highlights| Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetism Magnetism SHARE Magnetism Highlights 1-5 of 5 Results ARCS maps collaborative magnetic spin behavior in iron telluride December 01, 2011 - Researchers have long thought that magnetism and superconductivity are mutually exclusive. The former typically involves localized atomic electrons. The latter requires freely propagating, itinerant electrons. Unexpected Magnetic Excitations in Doped Insulator Surprise Researchers October 01, 2011 - When doping a disordered magnetic insulator material with atoms of a nonmagnetic material, the conventional wisdom is that the magnetic interactions between the magnetic ions in the material will be weakened. Neutron Analysis Reveals Unique Atomic-Scale Behavior of "Cobalt Blue" September 01, 2011 - Neutron scattering studies of "cobalt blue," a

448

Doppler Imaging of Exoplanets and Brown Dwarfs  

E-Print Network (OSTI)

Doppler Imaging produces 2D global maps of rotating objects using high-dispersion spectroscopy. When applied to brown dwarfs and extrasolar planets, this technique can constrain global atmospheric dynamics and/or magnetic effects on these objects in un- precedented detail. I present the first quantitative assessment of the prospects for Doppler Imaging of substellar objects with current facilities and with future giant ground-based telescopes. Observations will have the greatest sensitivity in K band, but the H and L bands will also be useful for these purposes. To assess the number and availability of targets, I also present a compilation of all measurements of photometric variability, rotation period (P), and projected rotational velocity (v sin i) for brown dwarfs and exoplanets. Several bright objects are already accessible to Doppler Imaging with currently available instruments. With the development of giant ground-based telescopes, Doppler Imaging will become feasible for many dozens of brown dwarfs and...

Crossfield, Ian J M

2014-01-01T23:59:59.000Z

449

BEPC-II Magnet Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

BEPC-II Magnet Project BEPC-II Magnet Project Project Overview The BEPC-II magnets are Interaction Region magnets to be used as part of an upgrade to the Beijing Electron Positron Collider. Two magnets will be produced, both of which will be inserted within the solenoidal detector at one of the collision points. Since the best use of the quadrupole focusing in this case requires placing the magnet as close to the collision point as possible, these magnets will be used within the magnetic field of the detector. This constrains the materials that can be used for construction to only non-magnetic materials. It also places severe demands on the structure of the magnet and it's holding supports due to the reaction forces between the solenoid and the magnet. To create the coil pattern for the final magnet, the coils will be

450

National High Magnetic Field Laboratory: An Introduction to Magnets...  

NLE Websites -- All DOE Office Websites (Extended Search)

is a magnet); opposite poles attract, like poles repel. In all magnets, the magnetic field lines run from south to north, and these fields are what produce forces on other...

451

Journal of Magnetism and Magnetic Materials 252 (2002) 159161 Magnetically induced alignment of FNS  

E-Print Network (OSTI)

Journal of Magnetism and Magnetic Materials 252 (2002) 159­161 Magnetically induced alignment the observation of magnetically controlled anchoring of ferro-nematic suspensions. We found that application of a weak magnetic field to a cell with the ferro-suspension induces an easy orientation axis with weak

Reznikov, Yuri

452

Journal of Magnetism and Magnetic Materials 225 (2001) 337345 Irreversible magnetization in nickel nanoparticles  

E-Print Network (OSTI)

in this magnetic nanoparticle system. # 2001 Elsevier Science B.V. All rights reserved. PACS: 75.10.Nr; 75.50.KjJournal of Magnetism and Magnetic Materials 225 (2001) 337­345 Irreversible magnetization in nickel in revised form 20 October 2000 Abstract We report magnetic studies on nickel nanoparticle films of average

Zuo, Fulin

453

Split image optical display  

DOE Patents (OSTI)

A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

Veligdan, James T. (Manorville, NY)

2007-05-29T23:59:59.000Z

454

EXOTIC MAGNETS FOR ACCELERATORS.  

SciTech Connect

Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

WANDERER, P.

2005-09-18T23:59:59.000Z

455

Streched Magnetic Moments  

E-Print Network (OSTI)

We note that for a system of 2 nucleons in a stretched case (J=J1+J2) the magnetic moment of the combined system is the sum of the magnetic moments of the 2 constituents. We compile other simple formulas.

Larry Zamick; Yitzhak Sharon

2012-07-12T23:59:59.000Z

456

Magnetic insulation (reply)  

Science Journals Connector (OSTI)

... DR WINTERBERG REPLIES: Contrary to Blewett's belief, magnetic insulation has not only been experimentally confirmed2 since I proposed it several years ago1, but ... generators (for example, the MJ Aurora machine). The magnetic field needed for the insulation effect in this case is generated by the strong azimuthal self-induced field of the ...

F. WINTERBERG

1974-06-28T23:59:59.000Z

457

Magnetic reconnection in space  

SciTech Connect

Models of magnetic reconnection in space plasmas generally consider only a segment of the magnetic field lines. The consideration of only a segment of the lines is shown to lead to paradoxical results in which reconnection can be impossible even in a magnetic field constrained to be curl free or can be at an Alfven rate even when the plasma is a perfect conductor. A model of reconnecting magnetic fields is developed which shows the smallness of the interdiffusion distance {delta}{sub d} of magnetic field lines does not limit the speed of reconnection but does provide a reconnection trigger. When the reconnection region has a natural length L{sub r}, the spatial scale of the gradient of magnetic field across the magnetic field lines must reach L{sub g} Almost-Equal-To 0.3L{sub r}/ln(L{sub r}/{delta}{sub d}) for fast reconnection to be triggered, which implies a current density j Almost-Equal-To B/{mu}{sub 0}L{sub g} that is far lower than that usually thought required for fast reconnection. The relation between magnetic reconnection in space and in toroidal laboratory plasmas is also discussed.

Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

2012-09-15T23:59:59.000Z

458

Itinerant-electron magnetism  

Science Journals Connector (OSTI)

... A conference on Itinerant-Electron Magnetism was held in Oxford on September 13?15, 1976. It was sponsored by the ... was held in Oxford on September 13?15, 1976. It was sponsored by the Magnetism Section of the European Physical Society and the Institute of Physics. The Proceedings will ...

E. P. Wohlfarth

1976-11-18T23:59:59.000Z

459

Treatise on Terrestrial Magnetism  

Science Journals Connector (OSTI)

... and from which the writer also attempts to deduce some of the other phenomena of magnetism. There seems to us to be some ambiguity in the writer's method of ... , to arrive at laws, that we may hope to form a theory of terrestrial magnetism, than from “making an hypothesis,”and then attempting to apply it to facts. ...

J. S.

1872-01-04T23:59:59.000Z

460

Remarks on Terrestrial Magnetism  

Science Journals Connector (OSTI)

... auror are secondary currents produced by rapid, though small, changes in the earth's magnetism. In this hypothesis the earth was viewed as similar to the soft iron core ... conductors in which secondary currents would be generated whenever any change took place in the magnetism of the core.

B. STEWART

1870-01-06T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A Treatise on Magnetism  

Science Journals Connector (OSTI)

... principle expressed by Newton when he said “Hypotheses non fingo.” The elementary laws of magnetism are deduced by rigorous induction from particular cases and are then applied to explain phenomena ... the mathematics employed throughout are of a simple character, so that the first principles of magnetism are thus thrown open to one who has gone no great way in mathematical reading ...

JAMES STUART

1871-12-14T23:59:59.000Z

462

Magnetism and Matter  

Science Journals Connector (OSTI)

... DR. STONER and all physicists interested in magnetism are to be congratulated on the appearance of this admirable monograph. In 1926, the ... admirable monograph. In 1926, the author published a book on the same subject, “Magnetism and Atomic Structure”. The present treatise, far from being merely a revised edition ...

H. A. K.

1935-07-20T23:59:59.000Z

463

Magnetism: Managed mess  

Science Journals Connector (OSTI)

... crime-fighting gadgetry (Fig. 1) — noted long ago that “he who controls magnetism controls the Universe”. And efforts to control ... controls the Universe”. And efforts to control magnetism continue to make progress, as Silevitch et al. ably demonstrate in this issue ( ...

Zachary Fisk

2007-08-01T23:59:59.000Z

464

Molecular and Cosmical Magnetism  

Science Journals Connector (OSTI)

... RECENT researches on magnetism tend to suggest that the negative electron may be a magneton or unitary electromagnet as ... previously considered and observed in relation to ferromagnetic bodies on the assumption that the ferro-magnetism is due to electrons in orbital motion as a whole. Wider conclusions can be ...

S. CHAPMAN

1920-11-25T23:59:59.000Z

465

Electricity and Magnetism  

Science Journals Connector (OSTI)

... and practical applications; or, speaking briefly, theory and practice. In the theoretical part, magnetism is first treated, then electricity, in the order statical electricity, electro-chemistry, and ... first treated, then electricity, in the order statical electricity, electro-chemistry, and electro-magnetism. In the practical part are comprised telegraphy and telephony, electric lighting and transmission of ...

A. GRAY

1891-11-05T23:59:59.000Z

466

Progress in Magnetism  

Science Journals Connector (OSTI)

... HISTORIES of physics and magnetism have much in common, beginning with the discovery of the lode-stone by the ... , beginning with the discovery of the lode-stone by the Greeks. Modern texts on magnetism tend to overlook the work of past philosophers and it is very refreshing to find ...

C. A. BATES

1965-11-13T23:59:59.000Z

467

Magnetism and Atomic Structure  

Science Journals Connector (OSTI)

... the information with regard to the atom has been obtained by studying spectra; chemistry, magnetism, X-ray scattering, etc., play only a subsidiary part. We must admit, ... for fresh sources of information. Much may be said in support of the opinion that magnetism will open a new way by which to approach the study of the structure of ...

P. KAPITZA

1927-06-04T23:59:59.000Z

468

Magnetism and Electricity  

Science Journals Connector (OSTI)

... WRITTEN in colloquial language, this book, which is a first-year course on magnetism and electricity, will appeal to many beginners besides the students in technical institutions, for ... have almost forgotten that their jargon is not that of the man in the street. Magnetism is first dealt with, and then the ideas of static and current electricity are ...

1922-11-11T23:59:59.000Z

469

The Origin of Magnetism  

Science Journals Connector (OSTI)

... A of the British Association at Hull this year a discussion on “The Origin of Magnetism,“ it was met with the criticism from eminent quarters that the time was not ... to one another nor providing an answer to the essential question of the origin of magnetism. In spite of the comparative failure of the discussion in its wider aspects, one ...

A. O. RANKINE

1922-11-04T23:59:59.000Z

470

Gravitation and Magnetism  

Science Journals Connector (OSTI)

......1 August 1950 research-article Articles Gravitation and Magnetism E. A. Milne It is shown by the methods of kinematic relativity that there should be a connection between gravitation and magnetism of the type suggested by the empirical formulae of Blackett......

E. A. Milne

1950-08-01T23:59:59.000Z

471

National High Magnetic Field Laboratory Slideshow: Seeing Magnetic...  

NLE Websites -- All DOE Office Websites (Extended Search)

more about magnets You can start here with a straightforward rundown. Compasses in Magnetic Fields Experiment with the compass in this tutorial to see how it responds to...

472

Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

3 - 6/13/06 3 - 6/13/06 Superconducting Magnet Division S&T Committee Program Review June 22-23, 2006 Conference Room A, Bldg. 725, BNL DRAFT AGENDA Thursday, June 22 0830 Executive Session to address the charge S. Aronson (25 min) 0855 Welcome S. Aronson (5 min) 0900 Superconducting Magnet Division Status & M. Harrison (45 + 15 min) Issues - mission statement, core competencies, themes, program, problems, etc. 1000 Themes - Nb3Sn, HTS, Direct wind, Accelerator integration, P. Wanderer (20 + 10 min) rapid cycling Core Competencies 1030 Superconducting Materials A. Ghosh (20 + 5 min) 1055 Break 1110 Magnetic Design R. Gupta (20 + 5 min) 1135 Magnet Construction M. Anerella (20 + 5 min) 1200 Magnet Testing G. Ganetis (20 + 5 min)

473

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

474

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

475

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

476

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

477

Magnet pole tips  

DOE Patents (OSTI)

An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

Thorn, C.E.; Chasman, C.; Baltz, A.J.

1981-11-19T23:59:59.000Z

478

Cryogenic permanent magnet undulators  

Science Journals Connector (OSTI)

In order to obtain high magnetic fields in a short period undulator, superconductive undulators have been actively investigated in recent years. In this paper, however, we propose a new approach, the cryogenic permanent magnet undulator (CPMU) design, using permanent magnets at the cryogenic temperature of liquid nitrogen or higher. This cryogenic scheme can be easily adapted to currently existing in-vacuum undulators and it improves the magnetic field performance by 30%–50%. Unlike superconductive undulators operating around the liquid helium temperature, there is no big technological difficulty such as the thermal budget problem. In addition, existing field correction techniques are applicable to the CPMUs. Since there is no quench in the CPMUs, the operation of the CPMUs has the same reliability as conventional permanent magnet undulators.

Toru Hara; Takashi Tanaka; Hideo Kitamura; Teruhiko Bizen; Xavier Maréchal; Takamitsu Seike; Tsutomu Kohda; Yutaka Matsuura

2004-05-18T23:59:59.000Z

479

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

480

Sources and Magnetic Charge  

Science Journals Connector (OSTI)

A beginning is made on a phenomenological reconstruction of the theory of magnetic charge. The concept is introduced by reference to a new kind of photon source. It is shown that photon exchange between different source types is relativistically invariant. The space-time generalization of this coupling involves an arbitrary vector. The only way to remove a corresponding arbitrariness of physical predictions is to recognize the localization of charge and impose a charge quantization condition. The consideration of particles that carry both kinds of charge loosens the charge restrictions. The great strength of magnetic attraction indicated by g24?=4(137) suggests that ordinary matter is a magnetically neutral composite of magnetically charged particles that carry fractional electric charge. There is a brief discussion of such a magnetic model of strongly interacting particles, which makes contact with empirical classification schemes. Additional remarks on notation, and on the general nature of the source description, are appended.

Julian Schwinger

1968-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "hyperspectral imaging magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Argonne CNM: Electronic and Magnetic Materials and Devices Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic & Magnetic Materials & Devices Electronic & Magnetic Materials & Devices Group Leader: Saw-Wai Hla The objective of the Electronic and Magnetic Materials and Devices (EMMD) group at the CNM is to discover, understand, and utilize new electron and spin-based materials and phenomena in constrained geometries. Potential benefits include reduced power dissipation, new medical imaging methods and therapies, improved efficiency of data storage by spin current and electrical field-assisted writing, and enhanced energy conversion in photovoltaic devices. Research Activities Understanding complex magnetic order and coupling phenomena: Magnetic nanostructures are prone to complex magnetic ordering phenomena that do not occur in the bulk and that will have strong impact on the further development of functional magnetic nanostructures. Basic science on the influence of demagnetizing effects, geometrical frustration, next-nearest neighbor exchange interactions, unusual anisotropy values, and the spin-orbit interaction at reduced dimensionality are performed with a special focus on temperature-dependent magnetic order-disorder transitions.

482

Bio-Med Variable Field MRI Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Bio-Med Variable Field MRI Project Bio-Med Variable Field MRI Project One of the Research and Development projects currently underway is the Bio-Med magnet. Destined for use within the solenoidal field of an MRI, it is designed for use where the subject, in this case a rat, must be tracked in order to obtain an image. Typical MRIs require the subject to remain stationary, and a rat will not normally oblige when it is awake. By moving the composite field (MRI Solenoid plus Bio-Med dipole) to track the rat, it is possible to allow the rat some freedom of motion, while still imaging the brain functions. For the rapid movement typical of a rat, the Bio-Med coil magnet must be capable of very rapid changes in field. Superconducting magnets are typically not designed to allow rapid field variations. To do so typically

483

Observation of Dirac Monopoles in a Synthetic Magnetic Field  

E-Print Network (OSTI)

Magnetic monopoles --- particles that behave as isolated north or south magnetic poles --- have been the subject of speculation since the first detailed observations of magnetism several hundred years ago. Numerous theoretical investigations and hitherto unsuccessful experimental searches have followed Dirac's 1931 development of a theory of monopoles consistent with both quantum mechanics and the gauge invariance of the electromagnetic field. The existence of even a single Dirac magnetic monopole would have far-reaching physical consequences, most famously explaining the quantization of electric charge. Although analogues of magnetic monopoles have been found in exotic spin-ices and other systems, there has been no direct experimental observation of Dirac monopoles within a medium described by a quantum field, such as superfluid helium-3. Here we demonstrate the controlled creation of Dirac monopoles in the synthetic magnetic field produced by a spinor Bose-Einstein condensate. Monopoles are identified, in both experiments and matching numerical simulations, at the termini of vortex lines within the condensate. By directly imaging such a vortex line, the presence of a monopole may be discerned from the experimental data alone. These real-space images provide conclusive and long-awaited experimental evidence of the existence of Dirac monopoles. Our result provides an unprecedented opportunity to observe and manipulate these quantum-mechanical entities in a controlled environment.

M. W. Ray; E. Ruokokoski; S. Kandel; M. Möttönen; D. S. Hall

2014-08-13T23:59:59.000Z

484

SP - 19 Magnetic Field Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

19 Page 1 Revision 02 August 6, 2007 NATIONAL HIGH MAGNETIC FIELD LABORATORY NHMFL FLORIDA STATE UNIVERSITY SAFETY PROCEDURE SP-19 MAGNETIC FIELD SAFETY ...

485

millionImaging research infrastructure  

E-Print Network (OSTI)

Centre for Imaging Technology Commercialization, led by Aaron Fenster $34 million Hybrid imaging infrastructureimaging #12;IMAGING Investment $100 millionImaging research infrastructure Formation

Denham, Graham

486

The feasibility of Quadrupole Dip Imaging with PMRI: focus on multiple sclerosis  

E-Print Network (OSTI)

Magnetic Resonance (MR) techniques provide valuable information for the diagnosis, monitoring, treatment, and study of many diseases. However, limitations on the sensitivity and specificity warrant the development of new imaging techniques...

Jeter, Edward Hilton

2013-02-22T23:59:59.000Z

487

Quantum-secured imaging  

E-Print Network (OSTI)

We have built an imaging system that uses a photon's position or time-of-flight information to image an object, while using the photon's polarization for security. This ability allows us to obtain an image which is secure against an attack in which the object being imaged intercepts and resends the imaging photons with modified information. Popularly known as "jamming," this type of attack is commonly directed at active imaging systems such as radar. In order to jam our imaging system, the object must disturb the delicate quantum state of the imaging photons, thus introducing statistical errors that reveal its activity.

Mehul Malik; Omar S. Magaña-Loaiza; Robert W. Boyd

2012-12-11T23:59:59.000Z

488

Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic Resonance  

NLE Websites -- All DOE Office Websites (Extended Search)

Allan M. Cormack, Computerized Axial Tomography (CAT) Allan M. Cormack, Computerized Axial Tomography (CAT) and Magnetic Resonance Imaging (MRI) Resources with Additional Information magnetic resonance imaging system Computed axial tomography, commonly known as CAT scanning, was introduced in 1972. During a CAT scan, a large coil of x-ray tubes rotates around the patient's body, taking x-rays from all angles. A computer integrates all of these x-rays into a single, three-dimensional image on a television screen. The data can be saved on the computer. Allan M. Cormack, a high energy physicist at Tufts University, shared the 1979 Nobel Prize in Physiology and Medicine for his key work in developing the methods for CAT scanners. At the time of development, these methods were widely regarded as the most significant advance in medical radiography since the 1895 discovery of x-rays.

489

Tailoring Magnetic Properties in Bulk Nanostructured Solids  

E-Print Network (OSTI)

permanent magnets). Under specific temperature and applied magnetic field conditions, exchange coupling

Morales, Jason R.

2011-01-01T23:59:59.000Z

490

Magnetically catalyzed fusion  

Science Journals Connector (OSTI)

We calculate the reaction cross sections for the fusion of hydrogen and deuterium in strong magnetic fields as are believed to exist in the atmospheres of neutron stars. We find that in the presence of a strong magnetic field (B?1012 G), the reaction rates are many orders of magnitude higher than in the unmagnetized case. The fusion of both protons and deuterons is important over a neutron star’s lifetime for ultrastrong magnetic fields (B?1016 G). The enhancement may have dramatic effects on thermonuclear runaways and bursts on the surfaces of neutron stars. © 1996 The American Physical Society.

Jeremy S. Heyl and Lars Hernquist

1996-11-01T23:59:59.000Z

491

Mesoscopic Spin Magnetism  

Science Journals Connector (OSTI)

We investigate the spin magnetism of mesoscopic metallic grains. In the average response of an ensemble of grains there are corrections to macroscopic behavior due to both spectral fluctuations and electron-electron interactions. These corrections are a nonlinear function of the magnetic field. Their temperature dependence is calculated numerically and analytically. An experiment is proposed to measure the unknown interaction coupling constant in the Cooper channel. For a single sample the magnetization is found to fluctuate reproducibly about the mean. These fluctuations directly probe the energy level statistics.

H. Mathur; M. Gökçeda?; A. Douglas Stone

1995-03-06T23:59:59.000Z

492

Reversed magnetization A NOVEL DEVICE FOR CONTINUOUS FLOW MAGNETIC TRAPPING  

E-Print Network (OSTI)

1. 3 µm5 µm Reversed magnetization A NOVEL DEVICE FOR CONTINUOUS FLOW MAGNETIC TRAPPING AND SORTING Martin d'hères, France ABSTRACT The manipulation of magnetically labeled bio-objects of nano or micrometer sizes is now realizable by combining the magnetic forces with microfluidics. This paper reports

Paris-Sud XI, Université de

493

Force and Stiffness of Passive Magnetic Bearings Using Permanent Magnets.  

E-Print Network (OSTI)

1 Force and Stiffness of Passive Magnetic Bearings Using Permanent Magnets. Part 2 : Radial Magnetization R. Ravaud, G. Lemarquand, V. Lemarquand Abstract This paper deals with the calculation of the force and the stiffness between two ring permanent magnets whose polarization is radial

Boyer, Edmond

494