National Library of Energy BETA

Sample records for hydrothermal system beneath

  1. Inferences On The Hydrothermal System Beneath The Resurgent Dome...

    Open Energy Info (EERE)

    Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera, East-Central California, USA, From Recent Pumping Tests And Geochemical Sampling Jump to:...

  2. Hydrothermal System | Open Energy Information

    Open Energy Info (EERE)

    Hydrothermal Systems: A hydrothermal system is one that included fluid, heat, and permeability in a naturally occurring geological formation for the production of electricity....

  3. Hydrothermal Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Projects Hydrothermal Projects Hydrothermal Projects Geothermal electricity production has grown steadily, tapping a reliable, nearly inexhaustible reserve of hydrothermal systems where fluid, heat, and permeability intersect naturally in the subsurface. The United States Geological Survey estimates that 30 GW of hydrothermal resources lie beneath the surface--ten times the current installed capacity. Hydrothermal Projects Projects Database Program Links What is Play Fairway

  4. Surficial Extent And Conceptual Model Of Hydrothermal System...

    Open Energy Info (EERE)

    And Conceptual Model Of Hydrothermal System At Mount Rainier, Washington Abstract A once massive hydrothermal system was disgorged from the summit of Mount Rainier in a highly...

  5. Development of a Hydrothermal Spallation Drilling System for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Spallation Drilling System for EGS Development of a Hydrothermal Spallation Drilling System for EGS Project objective: Build and demonstrate a working prototype ...

  6. Inferences On The Hydrothermal System Beneath The Resurgent Dome...

    Open Energy Info (EERE)

    of this zone would allow a pressure change induced at distances of several kilometers below the well to be observable within a matter of days. This indicates that...

  7. Mapping the Hydrothermal System Beneath the Western Moat of Long...

    Open Energy Info (EERE)

    papers or abstracts of papers presented at a two-day symposium held at the Lawrence Berkeley Laboratory (LBL) on 17 and 18 March 1987. Speakers presented a large body of new...

  8. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  9. Hydrothermal System | Open Energy Information

    Open Energy Info (EERE)

    of the underlying resource.1 Occurrence Models "To search efficiently for blind geothermal systems, general geographic regions must first be identified based upon...

  10. Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems

    SciTech Connect (OSTI)

    Aggarwal, J.K.; Palmer, M.R.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

  11. Instabilities during liquid migration into superheated hydrothermal systems

    SciTech Connect (OSTI)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    1995-01-26

    Hydrothermal systems typically consist of hot permeable rock which contains either liquid or liquid and saturated steam within the voids. These systems vent fluids at the surface through hot springs, fumaroles, mud pools, steaming ground and geysers. They are simultaneously recharged as meteoric water percolates through the surrounding rock or through the active injection of water at various geothermal reservoirs. In a number of geothermal reservoirs from which significant amounts of hot fluid have been extracted and passed through turbines, superheated regions of vapor have developed. As liquid migrates through a superheated region of a hydrothermal system, some of the liquid vaporizes at a migrating liquid-vapor interface. Using simple physical arguments, and analogue laboratory experiments we show that, under the influence of gravity, the liquid-vapor interface may become unstable and break up into fingers.

  12. Hydrothermal Convection Systems with Reservoir Temperatures greater...

    Open Energy Info (EERE)

    Systems with Reservoir Temperatures greater than or equal to 90 degrees C Authors Brook, Mariner, Mabey, Swanson, Guffanti and Muffler Published Journal Assessment of...

  13. Petroleum generation and migration in submarine hydrothermal systems; An overview

    SciTech Connect (OSTI)

    Simoneit, B.R.T. )

    1990-03-01

    The conversion of organic matter to petroleum by hydrothermal activity is an easy process,occurring in nature in many types of environments. Geologically immature organic matter of mariner sediments is being altered by this process in Guaymas Basin (Gulf of California), Escanaba Trough and Middle Valley (northeast Pacific), Bransfield Strait (Antarctica), and Atlantis II and Kebrit Deeps (Red Sea). Contemporary organic detritus and viable microorganisms are also converted in part to petroleum-like products by the same process when present to become entrained, as for example on the East Pacific Rise at 13{degrees}N and 21{degrees}N and on the mid-Atlantic Ridge at 26{degrees}N. The hydrocarbon products (methane to asphalt) generated in all these areas have been elucidated in terms of composition, organic matter sources, and analogy to reservoir petroleum. This petroleum represents a major input of carbon to the primary chemosynthetic productivity of hydrothermal vent systems and may be important to interactions with metals in hydrothermal ore formation.

  14. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaszuba, John P.; Sims, Kenneth W.W.; Pluda, Allison R.

    2014-06-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  15. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    SciTech Connect (OSTI)

    Kaszuba, John P. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Sims, Kenneth W.W. [Univ. of Wyoming, Laramie, WY (United States). School of Energy Resources; Pluda, Allison R. [Univ. of Wyoming, Laramie, WY (United States). Wyoming High-Precision Isotope Lab.

    2014-03-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  16. Products of an Artificially Induced Hydrothermal System at Yucca Mountain

    SciTech Connect (OSTI)

    S. Levy

    2000-08-07

    Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than

  17. The Hydrothermal System of Long Valley Caldera, California |...

    Open Energy Info (EERE)

    a deep subsystem or hydrothermal reservoir in the welded tuff containing relatively hot ground water. Hydrologic, isotopic, and thermal data indicate that recharge to the...

  18. Hydrogeochemistry and hydrogeology of the Canino Hydrothermal System (Italy)

    SciTech Connect (OSTI)

    Chiodini, G.; Giaquinto, S.; Frondini, F.; Santucci, A. )

    1991-01-01

    In this paper the Canino area, central Italy, is characterized by the discharge of a large quantity of Ca-SO{sub 4} thermal waters, the total flow rate of which is estimated to be 200 l/s. Ten to twenty l/s of the thermal flow are of an Na-Cl component from a deep source, which was identified by means of the B, Cl, Cs, Na, and Li contents of the waters. The Canino Na-Cl fluids have ratios among these species close to those of the geothermal fluids of Latera. The Canino hydrothermal system, which is located within buried carbonate structures, is therefore made up of a shallower zone, where the Ca-SO{sub 4} hydrotype is prevalent, and another deeper zone where an Na-Cl brine is present. For the sulphate fluids circulating in the upper levels of the system, a temperature of 70-100{degrees} C has been estimated, while a possible higher enthalpy resource may be represented by the chloride aqueous solutions circulating at deeper levels.

  19. Hydrothermal model of the Momotombo geothermal system, Nicaragua

    SciTech Connect (OSTI)

    Verma, M.P.; Martinez, E.; Sanchez, M.; Miranda, K.; Gerardo, J.Y.; Araguas, L.

    1996-01-24

    The Momotombo geotherinal field is situated on the northern shore of Lake Managua at the foot of the active Momotombo volcano. The field has been producing electricity since 1983 and has an installed capacity of 70 MWe. The results of geological, geochemical and geophysical studies have been reported in various internal reports. The isotopic studies were funded by the International Atomic Energy Agency (IAEA), Vienna to develop a hydrothermal model of the geothermal system. The chemical and stable isotopic data (δ18O and δD) of the geothermal fluid suggest that the seasonal variation in the production characteristics of the wells is related to the rapid infiltration of local precipitation into the reservoir. The annual average composition of Na+, K+ and Mg2+ plotted on the Na- K-Mg triangular diagram presented by Giggenbach (1988) to identify the state of rock-water interaction in geothermal reservoirs, shows that the fluids of almost every well are shifting towards chemically immature water due to resenroir exploitation. This effect is prominent in wells Mt-2. Mt-12, Mt-22 and Mt-27. The local groundwaters including surface water from Lake Managua have much lower tritium concentrations than sonic of the geothermal well fluids, which have about 6 T.U. The high-tritium wells are located along a fault inferred froin a thermal anomaly. The tritium concentration is also higher in fluids from wells close to the lake. This could indicate that older local precipitation waters are stored in a deep layer within the lake and that they are infiltrating into the geothermal reservoir.

  20. Hydrothermal industrialization electric-power systems development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    The nature of hydrothermal resources, their associated temperatures, geographic locations, and developable capacity are described. The parties involved in development, required activities and phases of development, regulatory and permitting requirements, environmental considerations, and time required to complete development activities ae examined in detail. These activities are put in proper perspective by detailing development costs. A profile of the geothermal industry is presented by detailing the participants and their operating characteristics. The current development status of geothermal energy in the US is detailed. The work on market penetration is summarized briefly. Detailed development information is presented for 56 high temperature sites. (MHR)

  1. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    DOE Patents [OSTI]

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.

    2016-08-02

    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  2. Reaction chemistry of nitrogen species in hydrothermal systems: Simple reactions, waste simulants, and actual wastes

    SciTech Connect (OSTI)

    Dell`Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.

    1995-02-01

    Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species.

  3. Development of a Hydrothermal Spallation Drilling System for...

    Open Energy Info (EERE)

    System for EGS Project Type Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Drilling Systems Project...

  4. Trace-Element Distribution In An Active Hydrothermal System,...

    Open Energy Info (EERE)

    the history of the system. Authors Odin D. Christensen, Regina A. Capuano and Joseph N. Moore Published Journal Journal of Volcanology and Geothermal Research, 1983 DOI Not...

  5. What lies beneath the Cerro Prieto geothermal field?

    SciTech Connect (OSTI)

    Elders, W.A.; Williams, A.E.; Biehler, S.

    1997-12-31

    Although the Cerro Prieto geothermal reservoir is one of the world`s largest geothermal developments, conflicting ideas persist about the basement beneath it. The current plan to drill a 6 km deep exploratory well in the eastern part of the field has brought this controversy into sharper focus. This paper discusses criteria which any model of what lies beneath the reservoir must meet, in terms of regional tectonics and geophysics, of the metamorphic and igneous rocks thus far encountered in drilling, and of models of possible heat sources and coupling between the hydrothermal and magmatic systems. Our analysis confirms the interpretation that the crystalline basement beneath the sediments, rather than being granitic, is oceanic in character, resembling an ophiolite complex. The heat source is most likely a cooling gabbroic intrusion, several kilometers in diameter, overlain by a sheeted dike swarm. A 6 km deep bore-hole centered over such an intrusion would not only be one of the world`s deepest geothermal wells but could also be one of the hottest.

  6. Faults and gravity anomalies over the East Mesa hydrothermal-geothermal system

    SciTech Connect (OSTI)

    Goldstein, N.E.; Carle, S.

    1986-05-01

    Detailed interpretations of gravity anomalies over geothermal systems may be extremely useful for mapping the fracture or fault systems that control the circulation of the thermal waters. This approach seems to be particularly applicable in areas like the Salton Trough where reactions between the thermal waters and the porous sediments produce authigenic-hydrothermal minerals in sufficient quantity to cause distinct gravity anomalies at the surface. A 3-D inversion of the residual Bouguer gravity anomaly over the East Mesa geothermal field was made to examine the densified volume of rock. We show that the data not only resolve a north-south and an intersecting northwest structure, but that it may be possible to distinguish between the active present-day hydrothermal system and an older and cooler part of the system. The densified region is compared spatially to self-potential, thermal and seismic results and we find a good concordance between the different geophysical data sets. Our results agree with previous studies that have indicated that the main feeder fault recharging the East Mesa reservoir dips steeply to the west.

  7. The low temperature hydrothermal system of Campiglia, Tuscany (Italy); A geochemical approach

    SciTech Connect (OSTI)

    Celati, R.; Grassi, S.; D'Amore, F.; Marcolini, L. )

    1991-01-01

    This paper reports on the Campiglia hydrothermal system which is a low temperature hydrothermal system located in southwestern Tuscany, a region of Italy characterized by intense geothermal activity and by the presence of high temperature exploited geothermal reservoirs. Six water-points, with temperatures ranging between 20 and 47{degrees} C and different chemical and isotopic compositions, are found close to the margins of outcrops of the main regional aquifer formation. Systematic hydrogeological, geochemical and isotopic observations and temperature measurements were carried out on the different springs and wells for a period of three years (1984-1986). Constant water characteristics with time were observed in four water-points; two wells had variable trends depending on mixing processes. A groundwater circulation model characterized by flowpaths of different length and depth is suggested by the variety of chemical and isotopic characteristics and is consistent with geothermometry, which indicates temperatures up to 25{degrees} C higher than those measured at the spring emergencies. An important water supply to the system comes from local recharge, although regional circulation may also be present, particularly in the eastern part of the investigated area.

  8. Mineral formation and redox-sensitive trace elements in a near-surface hydrothermal alteration system

    SciTech Connect (OSTI)

    Gehring, A.U.; Schosseler, P.M.; Weidler, P.G.

    1999-07-01

    A recent hydrothermal mudpool at the southwestern slope of the Rincon de la Vieja volcano in Northwest Costa Rica exhibits an argillic alteration system formed by intense interaction of sulfuric acidic fluids with wall rock materials. Detailed mineralogical analysis revealed an assemblage with kaolinite, alunite, and opal-C as the major mineral phases. Electron paramagnetic resonance spectroscopy (EPR) showed 3 different redox-sensitive cations associated with the mineral phases, Cu{sup +} is structure-bound in opal-C, whereas VO{sup 2+} and Fe{sup 3+} are located in the kaolinite structure. The location of the redox-sensitive cations in different minerals of the assemblage is indicative of different chemical conditions. The formation of the alteration products can be described schematically as a 2-step process. In a first step alunite and opal-C were precipitated in a fluid with slightly reducing conditions and a low chloride availability. The second step is characterized by a decrease in K{sup +} activity and subsequent formation of kaolinite under weakly oxidizing to oxidizing redox conditions as indicated by structure-bound VO{sup 2+} and Fe{sup 3+}. The detection of paramagnetic trace elements structure-bound in mineral phases by EPR provide direct information about the prevailing redox conditions during alteration and can, therefore, be used as additional insight into the genesis of the hydrothermal, near-surface system.

  9. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, Montana

    SciTech Connect (OSTI)

    Blackketter, Donald

    2015-06-30

    Executive Summary An innovative 50-ton ground-source heat pump (GSHP) system was installed to provide space heating and cooling for a 56,000 square foot (5,200 square meter) building in Butte Montana, in conjunction with its heating and chiller systems. Butte is a location with winter conditions much colder than the national average. The GSHP uses flooded mine waters at 78F (25C) as the heat source and heat sink. The heat transfer performance and efficiency of the system were analyzed using data from January through July 2014. This analysis indicated that for typical winter conditions in Butte, Montana, the GSHP could deliver about 88% of the building’s annual heating needs. Compared with a baseline natural-gas/electric system, the system demonstrated at least 69% site energy savings, 38% source energy savings, 39% carbon dioxide emissions reduction, and a savings of $17,000 per year (40%) in utility costs. Assuming a $10,000 per ton cost for installing a production system, the payback period at natural gas costs of $9.63/MMBtu and electricity costs of $0.08/kWh would be in the range of 40 to 50 years. At higher utility prices, or lower installation costs, the payback period would obviously be reduced.

  10. Geothermal hydrothermal

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal hydrothermal section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  11. Petrology and geochemistry of Alto Peak, a vapor-cored hydrothermal system, Leyte Province, Philippines

    SciTech Connect (OSTI)

    Reyes, A.G.; Giggenbach, W.F.; Saleras, J.R.M.; Salonga, N.D.; Vergara, M.C.

    1993-10-01

    Based on detailed petrological information on secondary mineral assemblages and the composition of fluids trapped in inclusions and discharged from five wells, the Alto Peak geothermal field was found to represent a combined vapor and liquid-dominated system. A central core or chimney, with a diameter of about 1 km, a height of some 3 km and occupied by a high gas vapor (1.1 to 5.6 molal CO{sub 2}), is surrounded by an envelope of intermediate salinity water (7,000 mg/kg Cl) with temperatures between 250 and 350 C. The transition from purely vapor-dominated to liquid-dominated zones takes place via two-phase zones occupied by fluid mixtures of highly variable compositions. Much of the lower temperature, mature neutral pH Cl water is likely to have formed during an earlier stage in the evolution of the system. High temperatures of > 300 C, and associated alteration, are limited to wells AP-1D and the lower parts of AP-2D and are ascribed to re-heating by recent magmatic intrusions. The isotopic composition of the well discharges suggests that they contain some 40 to 50% of magmatic water. Alto Peak is considered a typical example of hydrothermal systems associated with many dormant volcanoes.

  12. Eruptive history and petrochemistry of the Bulusan volcanic complex: Implications for the hydrothermal system and volcanic hazards of Mt. Bulusan, Philippines

    SciTech Connect (OSTI)

    Delfin, F.G. Jr.; Panem, C.C.; Defant, M.J.

    1993-10-01

    Two contrasting conceptual models of the postcaldera magmatic system of the Bulusan volcanic complex are constructed on the basis of a synthesis of volcanological, petrochemical, and petrologic data. These models predict that hydrothermal convection below the complex will occur either in discrete, structurally-focused zones or over a much broader area. Both models, however, agree that hydrothermal fluids at depth will be highly acidic and volcanic-related. Future ash-fall eruptions and mudflows are likely to affect the area previously chosen for possible drilling. Such risks, combined with the expected acidic character of the hydrothermal system, argue against drilling into this system.

  13. Hydrothermal Resources Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-08-31

    This two-page fact sheet provides an overview of hydrothermal resources and hydrothermal reservoir creation and operation.

  14. Origin of fluids and the evolution of the Atlantis II deep hydrothermal system, Red Sea: Strontium isotope study

    SciTech Connect (OSTI)

    Anschutz, P.; Blanc, G.; Stille, P.

    1995-12-31

    Atlantis II is the largest and most mineralized of the deeps along the axis of the Red Sea spreading center. Its basaltic substratum is covered by recent layered metalliferous sediments, which precipitated from an overlying brine pool. The {sup 87}Sr/{sup 86}Sr ratio and the strontium concentration of interstitial waters within these sediments range between 0.70708 and 0.70725 and between 43 and 53 ppm, respectively. They are close to what is found for the present-day deep brine pool (0.707105, 45.10 ppm). The strontium concentration and the {sup 87}Sr/{sup 86}Sr ratio of the Atlantis II Deep brines can be derived from those of the interstitial waters of the surrounding Miocene evaporite by hydrothermal interaction with oceanic basaltic rocks at a maximal water/rock ratio 2-3. This water/rock ratio is similar to that calculated for oceanic hydrothermal systems on sediment-free ridges. Interstitial waters show a linear trend on plot of {sup 87}Sr/{sup 86}Sr vs. 1/Sr. The highest strontium concentration and the most radiogenic interstitial waters correspond to sediment samples enriched in iron and manganese oxide minerals. These waters reflect the diagenetic release of strontium by oxide minerals and initially precipitated at the interface between the brine pool and more radiogenic seawater. The solid fraction of the sediment has {sup 87}sr{sup 86}Sr isotopic compositions intermediate to those of the brines and seawater. The solid fraction of the sediment has {sup 87}Sr/{sup 86}Sr isotopic compositions intermediate to those of the brines and seawater. The most radiogenic strontium values were observed in samples strongly enriched in marine microbiota. The gradual isotopic evolution in the lowest part of the western basin sediments testifies to the gradual influence of the hydrothermal activity in the deep in the beginning of the Atlantis II Deep sedimentary history. 62 refs., 6 figs., 2 tabs.

  15. Preliminary evidence for fractionation of stable chlorine isotopes in ore-forming hydrothermal systems

    SciTech Connect (OSTI)

    Eastoe, C.J.; Guilbert, J.M. ); Kaufmann, R.S. )

    1989-03-01

    Chloride from fluid inclusions in hydrothermal minerals is found to have variable and distinctive {delta}{sup 37}Cl values spanning the range -1.1 0/{per thousand} to +0.8 {per thousand}. In Mississippi Valley-type deposits of Tennessee, brines of high (>0{per thousand}) and low (near -1{per thousand}) {delta}{sup 37}Cl are present. High {delta}{sup 37}Cl brines may be saline formation waters, but low {delta}{sup 37}Cl brines remain unexplained. In porphyry copper deposits, both high {delta}{sup 37}Cl (0.8{per thousand}, 0.3{per thousand}) and low {delta}{sup 37}Cl (-1.1{per thousand}, 0.7{per thousand}) hypersaline brines of probable magmatic origin occur. High-salinity magmatic brines with low {delta}{sup 37}Cl values contrast isotopically with high {delta}{sup 37}Cl, less concentrated brines responsible for quartz-sericite-pyrite assemblages.

  16. Luminescent nanocrystals in the rare-earth niobatezirconia system formed via hydrothermal method

    SciTech Connect (OSTI)

    Hirano, Masanori Dozono, Hayato

    2013-08-15

    Luminescent nanocrystals based on the rare-earth niobates (Ln{sub 3}NbO{sub 7}, Ln=Y, Eu) and zirconia (ZrO{sub 2}) that were composed of 50 mol% Ln{sub 3}NbO{sub 7} and 50 mol% ZrO{sub 2}, were hydrothermally formed as cubic phase under weakly basic conditions at 240 C. The lattice parameter of the as-prepared nanoparticles corresponding to the composition of Y{sub 3?x}Eu{sub x}NbO{sub 7}4ZrO{sub 2} that was estimated as a single phase of cubic gradually increased as the content of europium x increased. The existence of small absorbance peaks at 395 and 466 nm corresponding to the Eu{sup 3+7}F{sub 0}?{sup 5}L{sub 6}, and {sup 7}F{sub 0}?{sup 5}D{sub 2} excitation transition, respectively, was clearly observed in the diffuse reflectance spectra of the as-prepared samples containing europium. The optical band gap of the as-prepared samples was in the range from 3.5 to 3.7 eV. The photoluminescence spectra of the as-prepared nanocrystals containing europium showed orange and red luminescences with main peaks at 590 and 610 nm, corresponding to {sup 5}D{sub 0}?{sup 7}F{sub 1} and {sup 5}D{sub 0}?{sup 7}F{sub 2} transitions of Eu{sup 3+}, respectively, under excitation at 395 nm Xe lamp. The emission intensity corresponding to {sup 5}D{sub 0}?{sup 7}F{sub 2} transition increased as heat-treatment temperature rose from 800 to 1200 C. - Graphical abstract: This graphical abstract shows the excitation and emission spectra and a transmission electron microscopy image of nanocrystals (with composition based on the rare-earth niobates (Ln{sub 3}NbO{sub 7}, Ln=Y, Eu) and zirconia (ZrO{sub 2}) that were composed of 50 mol% Ln{sub 3}NbO{sub 7} and 50 mol% ZrO{sub 2}) formed via hydrothermal route. Display Omitted - Highlights: Nanocrystals composed of 50 mol% Y{sub 3?x}Eu{sub x}NbO{sub 7} and 50 mol% ZrO{sub 2} was directly formed. The nanocrystals were hydrothermally formed under weakly basic conditions at 240 C. The Y{sub 3}NbO{sub 7} showed an UV-blue and broad

  17. Whole Algae Hydrothermal Liquefaction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Process Design and Economics for Whole Algae Hydrothermal Liquefaction, a paper from Pacific Northwest National Laboratory.

  18. Production of Advanced Biofuels via Liquefaction - Hydrothermal

    Office of Scientific and Technical Information (OSTI)

    Liquefaction Reactor Design: April 5, 2013 (Technical Report) | SciTech Connect Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013 Citation Details In-Document Search Title: Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013 This report provides detailed reactor designs and capital costs, and operating cost estimates for the hydrothermal liquefaction reactor system, used for

  19. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  20. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    SciTech Connect (OSTI)

    Goff, F.; Nielson, D.L.

    1986-05-01

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  1. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    SciTech Connect (OSTI)

    Lutken, Carol; Macelloni, Leonardo; D'Emidio, Marco; Dunbar, John; Higley, Paul

    2015-01-31

    This study was designed to investigate temporal variations in hydrate system dynamics by measuring changes in volumes of hydrate beneath hydrate-bearing mounds on the continental slope of the northern Gulf of Mexico, the landward extreme of hydrate occurrence in this region. Direct Current Resistivity (DCR) measurements were made contemporaneously with measurements of oceanographic parameters at Woolsey Mound, a carbonate-hydrate complex on the mid-continental slope, where formation and dissociation of hydrates are most vulnerable to variations in oceanographic parameters affected by climate change, and where changes in hydrate stability can readily translate to loss of seafloor stability, impacts to benthic ecosystems, and venting of greenhouse gases to the water-column, and eventually, the atmosphere. We focused our study on hydrate within seafloor mounds because the structurally-focused methane flux at these sites likely causes hydrate formation and dissociation processes to occur at higher rates than at sites where the methane flux is less concentrated and we wanted to maximize our chances of witnessing association/dissociation of hydrates. We selected a particularly well-studied hydrate-bearing seafloor mound near the landward extent of the hydrate stability zone, Woolsey Mound (MC118). This mid-slope site has been studied extensively and the project was able to leverage considerable resources from the team’s research experience at MC118. The site exhibits seafloor features associated with gas expulsion, hydrates have been documented at the seafloor, and changes in the outcropping hydrates have been documented, photographically, to have occurred over a period of months. We conducted observatory-based, in situ measurements to 1) characterize, geophysically, the sub-bottom distribution of hydrate and its temporal variability, and 2) contemporaneously record relevant environmental parameters (temperature, pressure, salinity, turbidity, bottom currents) to

  2. Continental Scientific Drilling Program thermal regimes: comparative site assessment geology of five magma-hydrothermal systems

    SciTech Connect (OSTI)

    Goff, F.; Waters, A.C.

    1980-10-01

    The geology and salient aspects of geophysics and hydrogeochemistry of five high-grade geothermal systems in the USA are reviewed. On the basis of this information, a target location is suggested for a deep (5- to 8-km) borehole that will maximize the amount of scientific information to be learned at each of the five geothermal areas.

  3. Model for the heat source of the Cerro Prieto magma-hydrothermal system, Baja California, Mexico

    SciTech Connect (OSTI)

    Elders, W.A.; Bird, D.K.; Williams, A.E.; Schiffman, P.; Cox, B.

    1981-01-01

    Earlier studies at Cerro Prieto led to the development of a qualitative model for fluid flow in the geothermal system before it was drilled and perturbed by production. Current efforts are directed towards numerical modeling of heat and mass transfer in the system in this undisturbed state. This one-dimensional model assumes that the heat source was a single basalt/gabbro intrusion which provided heat to the system as it cooled. After compilation of various information of the physical properties of the reservoir, the enthalpy contained in two 1 cm thick sections across the reservoir orthogonal to each other was calculated. Various shapes, sizes and depths for the intrusion were considered as initial conditions and boundary conditions for the calculations of heat transfer. A family of numerical models which so far gives the best matches to the conditions observed in the field today have in common a funnel-shaped intrusion with a top 4 km wide emplaced at a depth of 5 km some 30,000 to 50,000 years ago, providing heat to the geothermal system.

  4. Hydrothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These geothermal systems can occur in widely diverse geologic settings, sometimes without clear surface manifestations of the underlying resource. In 2008, the U.S. Geological ...

  5. Hydrothermal systems in two areas of the Jemez volcanic field: Sulphur Springs and the Cochiti mining district

    SciTech Connect (OSTI)

    WoldeGabriel, G.

    1989-03-01

    K/Ar dates and oxygen isotope data were obtained on 13 clay separates (<2 ..mu..m) of thermally altered mafic and silicic rocks from the Cochiti mining district (SE Jemez Mountains) and Continental Scientific Drilling Project (CSDP) core hole VC-2A (Sulphur Springs, Valles caldera). Illite with K/sub 2/O contents of 6.68%--10.04% is the dominant clay in the silicic rocks, whereas interstratified illite/smectites containing 1.4%--5.74% K/sub 2/O constitute the altered andesites. Two hydrothermal alteration events are recognized at the Cochiti area (8.07 m.y., n = 1, and 6.5--5.6 m.y., n = 6). The older event correlates with the waning stages of Paliza Canyon Formation andesite volcanism (greater than or equal to13 to less than or equal to8.5 m.y.), whereas the younger event correlates with intrusions and gold- and silver-bearing quartz veins associated with the Bearhead Rhyolite (7.54--5.8 m.y.). The majority of K/Ar dates in the hydrothermally altered, caldera-fill rocks of core hole VC-2A (0.83--0.66 m.y., n = 4) indicate that hydrothermal alteration developed contemporaneously with resurgence and ring fracture Valles Rhyolite domes (0.89--0.54 m.y.). One date of 0 +- 0.10 m.y. in acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole probably correlates with Holocene hydrothermal activity possibly associated with the final phases of the Valles Rhyolite (0.13 m.y.).

  6. Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico

    SciTech Connect (OSTI)

    WoldeGabriel, G.; Goff, F. )

    1989-11-01

    Two hydrothermal alteration events (8.07 Ma, one sample; 6.51-5.60 Ma, six samples) related to the waning stages of late Miocene volcanism ({ge} 13 to {le} 5.8 Ma) are recognized at the Cochiti district (southeast Jemez Mountains). Most of the K/Ar dates (0.83 {plus minus} 0.11-0.66 {plus minus} 0.21 Ma, four samples) in the hydrothermally altered, caldera-fill rocks of core hole VC-2A at Sulfur Springs, Valles caldera, indicate post-Valles caldera hydrothermal alteration. A sample from acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole was too young to be dated by the K/Ar method and is possibly associated with current hot-spring activity and the youngest pulses of volcanism. Oxygen-isotope data from illite/smectite clays in the Cochiti district are zonally distributed and range from {minus}2.15{per thousand} to {plus}7.97{per thousand} (SMOW), depending upon temperature, extent of rock-fluid interaction, and composition. The samples from VC-2A get lighter with depth ({minus}0.20{per thousand} to {plus}1.62{per thousand}). The K/Ar and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were deposited in the late Miocene (5.99-5.60 Ma) and mid-Quaternary ({approximately}0.66 Ma), respectively, by hydrothermal fluids composed primarily of meteoric water.

  7. Volatiles in hydrothermal fluids- A mass spectrometric study...

    Open Energy Info (EERE)

    Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  8. A Hydrothermal Model of the Roosevelt Hot Springs Area, Utah...

    Open Energy Info (EERE)

    hydrothermal system appears to be controlled to some extent by the details of the permeability structure in the immediate vicinity if the high surface heat flow region. Authors...

  9. Partitioning and Leaching Behavior of Actinides and Rare Earth Elements in a Zirconolite- Bearing Hydrothermal Vein System

    SciTech Connect (OSTI)

    Payne, Timothy E.; Hart, Kaye P.; Lumpkin, Gregory R.; McGlinn, Peter J.; Giere, Reto

    2007-07-01

    Chemical extraction techniques and scanning electron microscopy were used to study the distribution and behavior of actinides and rare earth elements (REE) in hydrothermal veins at Adamello (Italy). The six samples discussed in this paper were from the phlogopite zone, which is one of the major vein zones. The samples were similar in their bulk chemical composition, mineralogy, and leaching behavior of major elements (determined by extraction with 9 M HCl). However, there were major differences in the extractability of REE and actinides. The most significant influence on the leaching characteristics appears to be the amounts of U, Th and REE incorporated in resistant host phases (zirconolite and titanite) rather than readily leached phases (such as apatite). Uranium and Th are very highly enriched in zirconolite grains. Actinides were more readily leached from samples with a higher content of U and Th, relative to the amount of zirconium. The results show that REE and actinides present in chemically resistant host minerals can be retained under aggressive leaching conditions. (authors)

  10. Hydrothermal energy extraction, Auburn, New York: Final report: Volume 2, Chapters 6-10

    SciTech Connect (OSTI)

    Castor, T.P.

    1988-03-01

    This paper discusses a hydrothermal energy extraction system in detail. General topics covered are: Reservoir circulation loop; HVAC buffer loop; and automatic temperature control system. (LSP)

  11. Integrated model for the natural flow regime in the Cerro Prieto hydrothermal system, B. C. , Mexico, based upon petrological and isotope geochemical criteria

    SciTech Connect (OSTI)

    Elders, W.A.; Williams, A.E.; Hoagland, J.R.

    1981-01-01

    Studies of cuttings and core at Cerro Prieto have now been extended to more than 50 boreholes. The aims of this petrological and isotopic work are to determine the shape of the reservoir, its physical properties, and its temperature distribution and flow regime before the steam field was produced. A map showing the first occurrence of hydrothermal epidote shows a dome-shaped top to the steam-producing zone. The hottest of the mapped mineral zones - the biotite vermiculite zone - shows a dome displaced to the northeast relative to the epidote zone. Patterns of mineral zones observed in wells are consistent with patterns of oxygen isotopic ratios in calcite and quartz. Using both criteria all of the boreholes so far studied were classified as belonging to one of four different regimes. These are: (a) the thermal plume of upward flowing water close to boiling, marked by a regular sequence of prograde mineral zones and large isotopic shifts; (b) the discharge system where fluid leaks to the surface, as indicated by the occurrence of only a few low temperature mineral zones, which extend over large depth intervals with little isotope exchange; (c) the horizontal flow zone, in which boreholes penetrate reversals of both mineral zones and isotope shifts with increasing depth; and (d) the recharge zone where cold water is descending. Plotting these four types of boreholes on a map reveals a simple, consistent, pattern. This is interpreted to have been produced by a thermal plume dipping at 45/sup 0/ to the northeast.

  12. Hydrothermal Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Geothermal Technologies Office » Hydrothermal Resources Hydrothermal Resources The Geysers geothermal field in California is still the largest producer of geothermal energy in the world. The Geysers geothermal field in California is still the largest producer of geothermal energy in the world. The development of advanced exploration tools and technologies will accelerate the discovery and utilization of the U.S. Geological Survey's estimated 30,000 MWe of undiscovered hydrothermal

  13. Hydrothermal Alteration | Open Energy Information

    Open Energy Info (EERE)

    been provided for this term. Add a Definition Opalized rock is often valued for its spectacular colors and it may indicate past hydrothermal activity (reference: https:...

  14. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  15. Whole Algae Hydrothermal Liquefaction Technology Pathway | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Whole Algae Hydrothermal...

  16. Other Hydrothermal Deposits | Open Energy Information

    Open Energy Info (EERE)

    Capping Other Hydrothermal Alteration Products Colorful hydrothermal deposits dot the landscape at the Hverir Geothermal Area, Iceland. Photo by Darren Atkins User-specified field...

  17. Colorado's Hydrothermal Resource Base - An Assessment | Open...

    Open Energy Info (EERE)

    Hydrothermal Resource Base - An Assessment Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Colorado's Hydrothermal Resource Base - An Assessment Author...

  18. track 2: hydrothermal | geothermal 2015 peer review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: hydrothermal | geothermal 2015 peer review track 2: hydrothermal | geothermal 2015 peer review Inability to accurately predict temperature and permeability of the geothermal reservoir from the surface is a major cost and exploration risk for geothermal systems. While the majority of known geothermal resources across America have been identified, the USGS predicts that more than 30 gigawatts of geothermal energy potential - enough to power about 30 million homes - resides deep in the earth in

  19. Colorado's hydrothermal resource base: an assessment

    SciTech Connect (OSTI)

    Pearl, R.H.

    1981-01-01

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  20. Fluid rare earth element anlayses from geothermal wells located on the Reykjanes Peninsula, Iceland and Middle Valley seafloor hydrothermal system on the Juan de Fuca Ridge.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2015-05-01

    Results for fluid rare earth element analyses from four Reykjanes peninsula high-temperature geothermal fields. Data for fluids from hydrothermal vents located 2400 m below sea level from Middle Valley on the Juan de Fuca Ridge are also included. Data have been corrected for flashing. Samples preconcentrated using a chelating resin with IDA functional group (InertSep ME-1). Analyzed using an Element magnetic sector inductively coupled plasma mass spectrometry (ICP-MS).

  1. Hydrothermal System | Open Energy Information

    Open Energy Info (EERE)

    those promising locations to focus exploration efforts and investment. In so doing, such models can increase the expected success rate of exploratory drilling, reduce risk, and...

  2. Hydrothermal Resources Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Resources Fact Sheet Hydrothermal Resources Fact Sheet Overview of hydrothermal resources Hydrothermal Fact Sheet.pdf (3.53 MB) More Documents & Publications U.S. Department of Energy progress in geothermal energy deployment was addressed at the State of the Industry Geothermal Briefing in Washington, DC on February 24, 2015. Eric Hass, hydrothermal program manager for the Geothermal Technologies Office presented. Exploration drilling in the Wind River Valley basin validates the

  3. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  4. Property:IdentifiedHydrothermalPotential | Open Energy Information

    Open Energy Info (EERE)

    ntifiedHydrothermalPotential Property Type Quantity Description Conventional hydrothermal electricity generation potential from identified hydrothermal sites, as determined by the...

  5. Property:UndiscoveredHydrothermalPotential | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description Estimated conventional hydrothermal electricity generation potential from undiscovered hydrothermal sites, as determined by...

  6. Evidence For Gas And Magmatic Sources Beneath The Yellowstone...

    Open Energy Info (EERE)

    of magma beneath the Yellowstone caldera. Authors Stephan Husen, Robert B. Smith and Gregory P. Waite Published Journal Journal of Volcanology and Geothermal Research,...

  7. Anomalous shear wave attenuation in the shallow crust beneath...

    Open Energy Info (EERE)

    volcanic region, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Anomalous shear wave attenuation in the shallow crust beneath the...

  8. Hydrothermal synthesis and photocatalytic performance of hierarchical...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANNEALING; BISMUTH COMPOUNDS; CATALYSTS; CITRATES; CRYSTAL GROWTH; HYDROTHERMAL SYNTHESIS; ION ...

  9. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    SciTech Connect (OSTI)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  10. Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes...

    Open Energy Info (EERE)

    to exist beneath the western moat, perhaps beneath Mammoth Mountain. Authors Brian M. Smith and Gene A. Suemnicht Published Journal Journal of Volcanology and Geothermal...

  11. Hydrothermal Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Success Stories Hydrothermal Success Stories June 9, 2015 Hydrothermal Success Stories Energy Department Honored for Inroads in Geothermal Energy As renewable energy takes a stronger role in supplying the U.S. grid, geothermal power could support a more flexible role to balance the intermittent and variable capacity of wind and solar. June 5, 2015 Geothermal energy, traditionally a baseload power source among renewables, is poised to emerge also as a flexible power source, balancing

  12. Basement Structure and Implications for Hydrothermal Circulation...

    Open Energy Info (EERE)

    California Abstract Detailed surface mapping, subsurface drill hole data, and geophysical modeling are the basis of a structural and hydrothermal model for the western part of Long...

  13. Other Hydrothermal Alteration Products | Open Energy Information

    Open Energy Info (EERE)

    Alteration Products Numerous types of colorful hydrothermal alterations compose the landscape at Kerlingarfjoll Geothermal area, Iceland. Photo by Darren Atkins User-specified...

  14. Hydrothermal Exploration Data Gap Analysis Update

    Broader source: Energy.gov [DOE]

    Hydrothermal Exploration Data Gap Analysis presentation by Kate Young, Dan Getman, and Ariel Esposito at the 2012 Peer Review Meeting on May 10, 2012

  15. Correlation of hydrothermal sericite composition with permeability...

    Open Energy Info (EERE)

    of hydrothermal sericite composition with permeability and temperature, Coso Hot Springs geothermal field, Inyo County, California Jump to: navigation, search OpenEI Reference...

  16. Structural Settings Of Hydrothermal Outflow- Fracture Permeability...

    Open Energy Info (EERE)

    Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  17. Hydrothermal Exploration Data Gap Analysis Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Exploration Data Gap Analysis Update GTP Peer Review Lunch Presentation Westminster, CO Kate Young Dan Getman Ariel Esposito May 10, 2012 2 Data Gap Analysis PROJECT ...

  18. Hydrothermally Deposited Rock | Open Energy Information

    Open Energy Info (EERE)

    at Paleochori, Milos, Greece. http:www.photovolcanica.comVolcanoInfoMilosMilos.html Hydrothermally deposited rock includes rocks and minerals that have precipitated from...

  19. Hydrothermally Altered Rock | Open Energy Information

    Open Energy Info (EERE)

    Paleochori cliffs Milos, Greece. http:www.photovolcanica.comVolcanoInfoMilosMilos.html Hydrothermal alteration refers to rocks that have been altered from their original...

  20. Colorado's hydrothermal resource base---an assessment | Open...

    Open Energy Info (EERE)

    hydrothermal resource base---an assessment Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Colorado's hydrothermal resource base---an assessment Author...

  1. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect (OSTI)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  2. Hyperbaric Hydrothermal Atomic Force Microscope

    DOE Patents [OSTI]

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  3. Hyperbaric hydrothermal atomic force microscope

    DOE Patents [OSTI]

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  4. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guritno; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-18

    Wet macroalgal slurries can be converted into a biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable oil product were accomplished at relatively low temperature (350 C) in a pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics. As a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  5. Hydrothermal Exploration at Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Geothermal Technologies Office, Department of Energy, explored hydrothermal potential at Pilgrim Hot Springs, Alaska and discovered a resource siginificant enough for a spectrum of geothermal energy developments, including on-site power generation.

  6. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  7. Reconnaissance of the hydrothermal resources of Utah

    SciTech Connect (OSTI)

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  8. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  9. Characterization of advanced preprocessed materials (Hydrothermal)

    SciTech Connect (OSTI)

    Rachel Emerson; Garold Gresham

    2012-09-01

    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  10. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  11. The Effects of Hydrothermal Agingon a Commercial Cu SCR Catalyst

    Broader source: Energy.gov [DOE]

    Examines the effect of hydrothermal aging on the Nox reduction over a commercial Cu-zeolite SCR catalyst.

  12. Whole Algae Hydrothermal Liquefaction Technology Pathway | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Liquefaction Technology Pathway Whole Algae Hydrothermal Liquefaction Technology Pathway This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Whole Algae Hydrothermal

  13. Whole Algae Hydrothermal Liquefaction Technology Pathway (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Technical Report: Whole Algae Hydrothermal Liquefaction Technology Pathway Citation Details In-Document Search Title: Whole Algae Hydrothermal Liquefaction Technology Pathway This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with

  14. Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013

    SciTech Connect (OSTI)

    Knorr, D.; Lukas, J.; Schoen, P.

    2013-11-01

    This report provides detailed reactor designs and capital costs, and operating cost estimates for the hydrothermal liquefaction reactor system, used for biomass-to-biofuels conversion, under development at Pacific Northwest National Laboratory. Five cases were developed and the costs associated with all cases ranged from $22 MM/year - $47 MM/year.

  15. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Stuckless, J.S.; Whelan, J.F.; Steinkampf, W.C.

    1991-05-01

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent {sup 14}C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent {sup 14}C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent {sup 14}C age and {delta}{sup 13}C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab.

  16. Analysis of pumping-induced unsaturated regions beneath aperennial river

    SciTech Connect (OSTI)

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.; Zhou, Q.

    2007-05-15

    The presence of an unsaturated region beneath a streambedduring groundwater pumping near streams reduces the pumping capacity whenit reaches the well screens, changes flow paths, and alters the types ofbiological transformations in the streambed sediments. Athree-dimensional, multi-phase flow model of two horizontal collectorwells along the Russian River near Forestville, California was developedto investigate the impact of varying the ratio of the aquifer tostreambed permeability on (1) the formation of an unsaturated regionbeneath the stream, (2) the pumping capacity, (3) stream-water fluxesthrough the streambed, and (4) stream-water travel times to the collectorwells. The aquifer to streambed permeability ratio at which theunsaturated region was initially observed ranged from 10 to 100. The sizeof the unsaturated region beneath the streambed increased as the aquiferto streambed permeability ratio increased. The simulations also indicatedthat for a particular aquifer permeability, decreasing the streambedpermeability by only a factor of 2-3 from the permeability wheredesaturation initially occurred resulted in reducing the pumpingcapacity. In some cases, the stream-water fluxes increased as thestreambed permeability decreased. However, the stream water residencetimes increased and the fraction of stream water that reached that thewells decreased as the streambed permeability decreased, indicating thata higher streambed flux does not necessarily correlate to greaterrecharge of stream water around the wells.

  17. A Low-Velocity Zone in the Basement Beneath the Valles Caldera...

    Open Energy Info (EERE)

    Zone in the Basement Beneath the Valles Caldera, New Mexico Abstract We present quantitative results of forward modeling applied to a suite of travel time delays observed...

  18. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  19. Iridium material for hydrothermal oxidation environments

    DOE Patents [OSTI]

    Hong, Glenn T.; Zilberstein, Vladimir A.

    1996-01-01

    A process for hydrothermal oxidation of combustible materials in which, during at least a part of the oxidation, corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises iridium, iridium oxide, an iridium alloy, or a base metal overlaid with an iridium coating. Iridium has been found to be highly resistant to environments encountered in the process of hydrothermal oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 800.degree. C.

  20. Hydrothermal reaction of fly ash. Final report

    SciTech Connect (OSTI)

    Brown, P.W.

    1994-12-31

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  1. Hydrothermal liquefaction of biomass: Developments from batch to continuous process

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Biller, Patrick; Ross, Andrew; Schmidt, Andrew J.; Jones, Susanne B.

    2015-02-01

    This review describes the recent results in hydrothermal liquefaction (HTL) of biomass in continuous-flow processing systems. Although much has been published about batch reactor tests of biomass HTL, there is only limited information yet available on continuous-flow tests, which can provide a more reasonable basis for process design and scale-up for commercialization. High-moisture biomass feedstocks are the most likely to be used in HTL. These materials are described and results of their processing are discussed. Engineered systems for HTL are described however they are of limited size and do not yet approach a demonstration scale of operation. With the results available process models have been developed and mass and energy balances determined. From these models process costs have been calculated and provide some optimism as to the commercial likelihood of the technology.

  2. Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods

    SciTech Connect (OSTI)

    Li, Jianlin; Wu, Qingliu; Wu, Ji

    2015-01-01

    This chapter summarizes the synthesis of various types of nanoparticles as well as surface modifications of nanomaterials using hydrothermal and solvothermal methods. First, the definition, history, instrumentation, and mechanism of hydrothermal and solvothermal methods as well as the important parameters af-fecting the nucleation and crystal growth of nanomaterials are briefly introduced. Then the specific hydrothermal and solvothermal methods used to grow oxides, Group II-VI, III-V, IV, transitional metals, and metal-organic framework nanoparticles are summarized. Finally, the hydrothermal and solvothermal strategies used for the surface modification of nanomaterials are discussed.

  3. Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From...

    Open Energy Info (EERE)

    Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Oxygen...

  4. Clay Minerals Related To The Hydrothermal Activity Of The Bouillante...

    Open Energy Info (EERE)

    Minerals Related To The Hydrothermal Activity Of The Bouillante Geothermal Field (Guadeloupe) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  5. Characterization of past hydrothermal fluids in the Humboldt...

    Open Energy Info (EERE)

    has permitted hydrothermal circulation, producing both the geothermal area and nearby gold deposits. A total of five wells have been drilled with three obtaining core....

  6. Hydrothermal Heat Discharge In The Cascade Range, Northwestern...

    Open Energy Info (EERE)

    Heat Discharge In The Cascade Range, Northwestern United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal Heat Discharge In...

  7. Fabrication and Hydrothermal Corrosion of NITE-SiC with Various...

    Office of Scientific and Technical Information (OSTI)

    Conference: Fabrication and Hydrothermal Corrosion of NITE-SiC with Various Sintering Additives Citation Details In-Document Search Title: Fabrication and Hydrothermal Corrosion of ...

  8. Grenville foreland thrust belt hidden beneath the eastern US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. (Cornell Univ., Ithaca, NY (United States))

    1993-01-01

    Grenville foreland thrust structures are observed beneath the eastern US midcontinent on COCORP (Consortium for Continental Reflection Profiling) line OH-1 and a short seismic line in southwest Ohio. These structures represent the first evidence for a significant Grenville foreland thrust belt preserved in eastern North America. On the COCORP lines, the structures include a thrust ramp anticline and an associated asymmetric syncline. The Grenville front tectonic zone appears to truncate these foreland structures, indicating a later, second phase expressed as a deeply penetrating, out-of-sequence thrust zone associated with the main uplift of the Grenville province on the east. A short, shallow seismic line in southwestern Ohio reveals an east-dipping sequence of prominently layered rocks that may lie above a footwall ramp to a deeper Grenville thrust fault. A drill hole into the less reflective top of this dipping sequence encountered unmetamorphosed sedimentary rocks like those increasingly reported from other drill holes in southwestern Ohio and adjacent states. Although possibly part of a late Precambrian (Keweenawan ) rift, these clastic sedimentary rocks may instead preserve evidence of a heretofore unrecognized Grenville foreland basin in eastern North America. Alternatively these Precambrian sedimentary rocks together with an underlying, but yet undrilled, strongly layered sequence may correlate with similarly layered rocks observed on COCORP and industrial seismic lines within the Middle Proterozoic granite-rhyolite province to the west in Indiana and Illinois and indicate that unmetamorphosed sedimentary material is an important constituent of the granite-rhyolite province. 25 refs., 6 figs.

  9. Layered rocks beneath the Phanerozoic platform of the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. (Cornell Univ., Ithaca, NY (United States))

    1991-03-01

    A thick sequence of layered rocks lies hidden beneath the Phanerozoic cover of the central US over large regions. A thick sequence of Precambrian layered rocks in imaged on the COCORP transect across southern Illinois and Indiana. The thickness of this layered sequence varies from 1-3 times the thickness of the overlying Phanerozoic section of the Illinois basin. The layered sequence is observed for close to 200 km in an east-west direction. Similar layered reflections are seen on the COCORP data from Hardeman Co., TX, and neighboring southwest Oklahoma. Both of these known occurrences lie within the region of the middle Proterozoic Granite/Rhyolite province of the US midcontinent, an area within which scattered wells to basement commonly encounter 1.3-1.5 Ga undeformed granite and/or compositionally similar rhyolite. Therefore, these layered assemblages may comprise a thick sequence of silicic volcanic and sedimentary rocks (perhaps also injected by mafic sills) between scattered volcanic-intrusive centers, such as exposed in the St. Francois Mountains of southeast Missouri. However, in places such as Illinois and Indiana, the near absence of deep wells leaves the possibility that the upper portion of these layered rocks may locally be of late Proterozoic or earliest Paleozoic age. The reprocessing of available industry data, analyzed in conjunction with the existing COCORP data, includes extended vibroseis correlation. These industry data are invaluable in the author's effort to expand the known distribution of these layered rocks (e.g., into north-central Illinois) and to map their structures.

  10. Funding Opportunity: Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal development to 6¢/ kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6¢/ kWh by 2030.

  11. Baseline Mapping Study of the Steed Pond Aquifer and Crouch Branch Confining Unit Beneath A/M Area, Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    JACKSON, DENNISG.

    1998-09-01

    This report presents the results of a baseline mapping project conducted for the Environmental Restoration Department at Savannah River Site. The purpose of this report is to map the distribution of mud (clay and silt-sized material) within each hydrogeologic unit from the surface down to the top of the Crouch Branch aquifer beneath the A/M Area. The distribution of mud layers and variations in the percentage of clay and silt within the strata is extremely important in order to fully characterize the extent of DNAPL beneath the A/M Area and determine the geometry of the contaminant plumes emanating from them. Precision mapping of these layers can aid in locating areas where contamination is most likely to have migrated into the saturated zone. In addition, this information can be used to refine the current remediation systems or assist in designing new remedial systems.

  12. Direct use of hydrothermal energy: a review of environmental aspects

    SciTech Connect (OSTI)

    O'Banion, K.; Layton, D.

    1981-08-28

    The potential environmental impacts of the exploration, development, and production of hydrothermal geothermal energy for direct use applications are reviewed and evaluated. Mitigation strategies and research and development needs are included. (MHR)

  13. The Near-Surface Hydrothermal Regime of Long Valley Caldera ...

    Open Energy Info (EERE)

    of Long Valley Caldera Citation Arthur H. Lachenbruch,Michael L. Sorey,Robert Edward Lewis,John H. Sass. 1976. The Near-Surface Hydrothermal Regime of Long Valley Caldera....

  14. Whole Algae Hydrothermal Liquefaction: 2014 State of Technology

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Snowden-Swan, Lesley J.; Anderson, Daniel; Hallen, Richard T.; Schmidt, Andrew J.; Albrecht, Karl O.; Elliott, Douglas C.

    2014-07-30

    This report describes the base case yields and operating conditions for converting whole microalgae via hydrothermal liquefaction and upgrading to liquid fuels. This serves as the basis against which future technical improvements will be measured.

  15. Methods to enhance the characteristics of hydrothermally prepared slurry fuels

    DOE Patents [OSTI]

    Anderson, Chris M.; Musich, Mark A.; Mann, Michael D.; DeWall, Raymond A.; Richter, John J.; Potas, Todd A.; Willson, Warrack G.

    2000-01-01

    Methods for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300.degree. to 350.degree. C.

  16. A Serendipitous, Long-Term Infiltration Experiment: Water and Tritium Circulation Beneath the CAMBRIC Ditch at the Nevada Test Site

    SciTech Connect (OSTI)

    Maxwell, R M; Tompson, A B; Kollet, S J

    2008-11-20

    Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used to characterize subsurface hydrologic transport processes in arid climates. A sixteen year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in groundwater beneath Frenchman Flat in 1965, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport, tailored specifically for large scale and efficient calculations. Simulations have been used to estimate radionuclide travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the ditch and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the ditch, the water table, and monitoring wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing accurate interpretations and forecasts of contaminant migration processes.

  17. Hydrothermally altered and fractured granite as an HDR reservoir in the EPS-1 borehole, Alsace,

    SciTech Connect (OSTI)

    Genter, A.; Traineau, H.

    1992-01-01

    As part of the European Hot Dry Rocks Project, a second exploration borehole, EPS-1, has been cored to a depth of 2227 m at Soultz-sous-Forets (France). The target was a granite beginning at 1417 m depth, overlain by post-Paleozoic sedimentary cover. Structural analysis and petrographic examination of the 800-m porphyritic granite core, have shown that this rock has undergone several periods of hydrothermal alteration and fracturing. More than 3000 natural structures were recorded, whose distribution pattern shows clusters where low-density fracture zones (less than 1 per meter) alternate with zones of high fracture density (more than 20 per meter). Vein alteration, ascribed to paleohydrothermal systems, developed within the hydrothermally altered and highly fractured zones, transforming primary biotite and plagioclase into clay minerals. One of these zones at 2.2 km depth produced a hot-water outflow during coring, indicating the existence of a hydrothermal reservoir. Its permeability is provided by the fracture network and by secondary porosity of the granitic matrix resulting from vein alteration. This dual porosity in the HDR granite reservoir must be taken into account in the design of the heat exchanger, both for modeling the water-rock interactions and for hydraulic testing.

  18. Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes Print Despite the considerable amount of iron that enters the oceans from the continents and from hydrothermal...

  19. Integration of hydrothermal-energy economics: related quantitative studies

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    A comparison of ten models for computing the cost of hydrothermal energy is presented. This comparison involved a detailed examination of a number of technical and economic parameters of the various quantitative models with the objective of identifying the most important parameters in the context of accurate estimates of cost of hydrothermal energy. Important features of various models, such as focus of study, applications, marked sectors covered, methodology, input data requirements, and output are compared in the document. A detailed sensitivity analysis of all the important engineering and economic parameters is carried out to determine the effect of non-consideration of individual parameters.

  20. Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    via Surface Modification of SiO2 with TiO2 and ZrO2 | Department of Energy Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 This study demonstrates the feasibility of developing highly stable, sulfur-tolerant oxidation catalysts that use less Pt via surface modification of silica supports

  1. Tularosa Basin Play Fairway Analysis: Hydrothermal Alteration Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Adam Brandt

    2015-11-15

    This is a hydrothermal alteration map of the Tularosa Basin area, New Mexico and Texas that was created using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral data band ratios based upon diagnostic features of clay, calcite, silica, gypsum, ferric iron, and ferrous iron. Mesoproterozoic granite in the San Andreas Range often appeared altered, but this may be from clays produced by weathering or, locally, by hydrothermal alteration. However, no field checking was done. This work was done under U.S. D.O.E. Contract #DE-EE0006730

  2. Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of SiO2 with TiO2 and ZrO2 Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 This study ...

  3. Present State of the Hydrothermal System in Long Valley Caldera...

    Open Energy Info (EERE)

    laterally from west to east at depths less than 1 km within and around the resurgent dome. Maximum measured temperatures within these zones are near 170C but estimates from...

  4. New Evidence On The Hydrothermal System In Long Valley Caldera...

    Open Energy Info (EERE)

    Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits. Journal of Volcanology and Geothermal Research. 48(3-4):229-263. Related Geothermal...

  5. Spatial And Temporal Geochemical Trends In The Hydrothermal System...

    Open Energy Info (EERE)

    tracking changes in river solute flux. Authors Shaul Hurwitz, Jacob B. Lowenstern and Henry Heasler Published Journal Journal of Volcanology and Geothermal Research, 2007 DOI Not...

  6. The Shallow Hydrothermal System of Long Valley Caldera, California...

    Open Energy Info (EERE)

    Abstract Abstract unavailable. Authors Gene A. Suemnicht, Michael L. Sorey, Joseph N. Moore and Robert Sullivan Conference Stanford, CaliforniaThirty-Second Workshop on...

  7. Geochemical Modeling of the Near-Surface Hydrothermal System...

    Open Energy Info (EERE)

    with non-thermal groundwater. Our conceptual model is based on hypotheses in the literature and published geochemical and petrologic data. Mixing of thermal and non-thermal...

  8. Relations Of Ammonium Minerals At Several Hydrothermal Systems...

    Open Energy Info (EERE)

    to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that...

  9. Temporal Relations of Volcanism and Hydrothermal Systems in Two...

    Open Energy Info (EERE)

    and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were...

  10. Low-Temperature Hydrothermal Resource Potential Estimate

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katherine Young

    2016-06-30

    Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. The paper (submitted to GRC 2016) describing the methodology and analysis is also included.

  11. Hydrothermal Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean-Energy Reserves New geothermal data could open up clean energy reserves nationwide. Scientific American reported that the National Geothermal Data System is helping to...

  12. Preliminary result of P-wave speed tomography beneath North Sumatera region

    SciTech Connect (OSTI)

    Jatnika, Jajat; Nugraha, Andri Dian; Wandono

    2015-04-24

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 3030 km2 for inside the study area and 8080 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5?km down to 100?km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80?km down to 100?km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  13. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Lance Prothro

    2008-03-01

    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  14. Evidence for long-lived subduction of an ancient tectonic plate beneath the southern Indian Ocean

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.; Grand, S. P.

    2015-11-14

    In this study, ancient subducted tectonic plates have been observed in past seismic images of the mantle beneath North America and Eurasia, and it is likely that other ancient slab structures have remained largely hidden, particularly in the seismic-data-limited regions beneath the vast oceans in the Southern Hemisphere. Here we present a new global tomographic image, which shows a slab-like structure beneath the southern Indian Ocean with coherency from the upper mantle to the core-mantle boundary region—a feature that has never been identified. We postulate that the structure is an ancient tectonic plate that sank into the mantle along anmore » extensive intraoceanic subduction zone that migrated southwestward across the ancient Tethys Ocean in the Mesozoic Era. Slab material still trapped in the transition zone is positioned near the edge of East Gondwana at 140 Ma suggesting that subduction terminated near the margin of the ancient continent prior to breakup and subsequent dispersal of its subcontinents.« less

  15. Evidence for long-lived subduction of an ancient tectonic plate beneath the southern Indian Ocean

    SciTech Connect (OSTI)

    Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.; Grand, S. P.

    2015-11-14

    In this study, ancient subducted tectonic plates have been observed in past seismic images of the mantle beneath North America and Eurasia, and it is likely that other ancient slab structures have remained largely hidden, particularly in the seismic-data-limited regions beneath the vast oceans in the Southern Hemisphere. Here we present a new global tomographic image, which shows a slab-like structure beneath the southern Indian Ocean with coherency from the upper mantle to the core-mantle boundary region—a feature that has never been identified. We postulate that the structure is an ancient tectonic plate that sank into the mantle along an extensive intraoceanic subduction zone that migrated southwestward across the ancient Tethys Ocean in the Mesozoic Era. Slab material still trapped in the transition zone is positioned near the edge of East Gondwana at 140 Ma suggesting that subduction terminated near the margin of the ancient continent prior to breakup and subsequent dispersal of its subcontinents.

  16. Hydrothermal Photo Library | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To extend the available heat extraction per well, the Office partnered with FORO Energy to design a high-power laser system with the potential to decrease hard-rock drilling costs. ...

  17. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Albrecht, Karl O.; Hallen, Richard T.; Holladay, Johnathan E.

    2013-10-01

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 °C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating was effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.

  18. Low temperature hydrothermal maturation of organic matter in sediments form the Atlantis II Deep, Red Sea

    SciTech Connect (OSTI)

    Simoneit, B.R.; Grimalt, J.O.; Hayes, J.M.; Hartman, H.

    1987-04-01

    Hydrocarbons and bulk organic matter of two sediment cores located within the Atlantis II Deep have been analyzed. Although the brines overlying the coring areas were reported to be sterile, microbial inputs and minor terrestrial sources represent the major sedimentary organic material. This input is derived from the upper water column above the brines. Both steroid and triterpenoid hydrocarbons show that extensive acid-catalyzed reactions are occurring in the sediments. In comparison with other hydrothermal or intrusive systems, the Atlantis II Deep exhibits a lower degree of thermal maturation. This is easily deduced from the elemental composition of the kerogens and the absence of polynuclear aromatic hydrocarbons of a pyrolytic origin in the bitumen. The lack of carbon number preference among the n-alkanes suggests, especially in the case of the long chain homologs, that the organic matter of Atlantis II Deep sediments has undergone some degree catagenesis. However, the yields of hydrocarbons are much lower than those observed in other hydrothermal areas. The effect of lower temperature and poor source-rock characteristics appear to be responsible for the differences.

  19. Hydrothermal synthesis and characterization of zirconia based catalysts

    SciTech Connect (OSTI)

    Caillot, T. Salama, Z.; Chanut, N.; Cadete Santos Aires, F.J.; Bennici, S.; Auroux, A.

    2013-07-15

    In this work, three equimolar mixed oxides ZrO{sub 2}/CeO{sub 2}, ZrO{sub 2}/TiO{sub 2}, ZrO{sub 2}/La{sub 2}O{sub 3} and a reference ZrO{sub 2} have been synthesized by hydrothermal method. The structural and surface properties of these materials have been fully characterized by X-ray diffraction, transmission electron microscopy, surface area measurement, chemical analysis, XPS, infrared spectroscopy after adsorption of pyridine and adsorption microcalorimetry of NH{sub 3} and SO{sub 2} probe molecules. All investigated mixed oxides are amphoteric and possess redox centers on their surface. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acidbase properties than classical coprecipitation method. Both Lewis and Brnsted acid sites are present on the surface of the mixed oxides. Compared to the other samples, the ZrO{sub 2}/TiO{sub 2} material appears to be the best candidate for further application in acidbase catalysis. - Graphical abstract: Mesoporous amorphous phase with a high surface area of titania zirconia mixed oxide obtained by hydrothermal preparation. - Highlights: Three zirconia based catalysts and a reference were prepared by hydrothermal synthesis. Mixed oxides present larger surface areas than the reference ZrO{sub 2}. ZrO{sub 2}/TiO{sub 2} catalyst presents a mesoporous structure with high surface area. ZrO{sub 2}/TiO{sub 2} catalyst presents simultaneously strong acidic and basic properties.

  20. Massive sulfide deposits and hydrothermal solutions: incremental reaction modeling of mineral precipitation and sulfur isotopic evolution

    SciTech Connect (OSTI)

    Janecky, D.R.

    1986-01-01

    Incremental reaction path modeling of chemical and sulfur isotopic reactions occurring in active hydrothermal vents on the seafloor, in combination with chemical and petrographic data from sulfide samples from the seafloor and massive sulfide ore deposits, allows a detailed examination of the processes involved. This paper presents theoretical models of reactions of two types: (1) adiabatic mixing between hydrothermal solution and seawater, and (2) reaction of hydrothermal solution with sulfide deposit materials. In addition, reaction of hydrothermal solution with sulfide deposit minerals and basalt in feeder zones is discussed.

  1. Technology Solutions Case Study: Capillary Break Beneath a Slab: Polyethylene Sheeting over Aggregate, Southwestern Pennsylvania

    SciTech Connect (OSTI)

    2014-07-01

    In this project, Building America team IBACOS worked with a builder of single- and multifamily homes in southwestern Pennsylvania (climate zone 5) to understand its methods of successfully using polyethylene sheeting over aggregate as a capillary break beneath the slab in new construction. This builder’s homes vary in terms of whether they have crawlspaces or basements. However, in both cases, the strategy protects the home from water intrusion via capillary action (e.g., water wicking into cracks and spaces in the slab), thereby helping to preserve the durability of the home.

  2. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    SciTech Connect (OSTI)

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study

  3. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Syracuse, Ellen M.; Maceira, Monica; Prieto, German A.; Zhang, Haijiang; Ammon, Charles J.

    2016-04-12

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone.more » The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. As a result, we also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.« less

  4. Correlation of wireline log characteristics with hydrothermal alteration and other reservoir properties of the Salton Sea and Westmorland geothermal fields, Imperial Valley, California, USA

    SciTech Connect (OSTI)

    Muramoto, F.S.; Elders, W.A.

    1984-05-01

    A detailed study of wireline logs from 11 wells in the Salton Sea and Westmorland geothermal systems was undertaken in order to determine the effects of hydrothermal alteration on the response of electrical and gamma-gamma density well logs. For the Salton Sea geothermal field, definite correspondence between log responses and hydrothermal mineralogy is evident, which in turn is related to the physical properties of the rocks. Three hydrothermal and one unaltered zone can be identified from log data on shales. These are: (1) the unaltered montmorillonite zone (<100/sup 0/ to 190/sup 0/C); (2) the illite zone (100/sup 0/ to 190/sup 0/C to 230/sup 0/ to 250/sup 0/C); (3) the chlorite zone (230/sup 0/ to 250/sup 0/C to 290/sup 0/ to 300/sup 0/C); and (4) the feldspar zone (>290/sup 0/ to 300/sup 0/C). The characteristic responses on well logs by which these zones are identified result primarily from changes in clay mineralogy of the shales and increases in density with progressive hydrothermal metamorphism. In the Westmorland geothermal field, differentiating mineral zones from log responses was only partially successful. However, analyses of both well log and petrologic data for wells Landers 1 and Kalin Farms 1 suggest that the former is heating up and the latter is cooling.

  5. Evaluation of hydrothermal resources of North Dakota. Phase III final technical report

    SciTech Connect (OSTI)

    Harris, K.L.; Howell, F.L.; Wartman, B.L.; Anderson, S.B.

    1982-08-01

    The hydrothermal resources of North Dakota were evaluated. This evaluation was based on existing data on file with the North Dakota Geological Survey (NDGS) and other state and federal agencies, and field and laboratory studies conducted. The principal sources of data used during the study were WELLFILE, the computer library of oil and gas well data developed during the Phase I study, and WATERCAT, a computer library system of water well data assembled during the Phase II study. A field survey of the shallow geothermal gradients present in selected groundwater observation holes was conducted. Laboratory determinations of the thermal conductivity of core samples were done to facilitate heat-flow calculations on those holes-of-convenience cased.

  6. Stratified precambrian rocks (sedimentary?) beneath the midcontinent region of the US. Final technical report

    SciTech Connect (OSTI)

    Hauser, E.C.

    1993-02-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan?) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  7. Stratified precambrian rocks (sedimentary ) beneath the midcontinent region of the US

    SciTech Connect (OSTI)

    Hauser, E.C.

    1993-02-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan ) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  8. Raman spectroscopic investigations of hydrothermal solutions

    SciTech Connect (OSTI)

    Yang, M.M.

    1988-01-01

    There is still very little information about the stoichiometries, structures and stabilities of metal complexes at high temperatures and pressures. Raman spectroscopy is ideally suited to probe and study concentrated electrolyte solutions at the molecular level. This thesis includes the design and construction of a Raman cell operable up to 300C and 15MPa. In order to obtain quantitative thermodynamic information from Raman spectroscopic measurements, a chemically inert internal standard must be used. Perchlorate is commonly used for this purpose at low temperatures, but it may be unstable at high temperatures and its explosive properties make it undesirable. A new preferred internal standard; trifluoromethanesulfonic acid is introduced and its spectra p to 300C discussed. The use of this compound as a high temperature internal standard enabled stepwise stability constants of zinc-bromo complexes to be determined. Although bromide is not an important ligand in geologic systems, its chemical similarity to chloride can provide insights into the study of zinc-chloro species which do not have very informative Raman spectra. The importance of organic ligands in geologic settings such as the Mississippi-Valley Type Pb-Zn sulfide deposits is now being realized. Chapter four presents the first high temperature spectroscopic measurements of lead and zinc acetate aqueous solutions. Not only do these studies verify the stability of lead and zinc acetate complexes up to 250 C but they also show that the type of complex formed is a function of pH, metal-ligand ratio and temperature, thus having important implications for zoning of Pb-Zn sulfide deposits.

  9. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity

    SciTech Connect (OSTI)

    Adams, MM; Hoarfrost, AL; Bose, A; Joye, SB; Girguis, PR

    2013-05-14

    Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C-2), propane (C-3), and butane (C-4) in anoxic sediments in contrast to methane (C-1). In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV Juan de Fuca Ridge) are an ideal site for investigating the anaerobic oxidation of C-1-C-4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C-1-C-4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75 degrees C) anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR) measurements provide clear evidence for C-1-C-4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C-2-C-4 alkanes. Maximum C-1-C-4 alkane oxidation rates occurred at 55 degrees C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM). Of the alkanes investigated, C-3 was oxidized at the highest rate over time, then C-4, C-2, and C-1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C-2-C(4)alkanes with AOM for available oxidants and the influence on the fate of C-1 derived from these hydrothermal systems.

  10. Hydrothermal synthesis and characteristics of anions-doped calcium molybdate red powder phosphors

    SciTech Connect (OSTI)

    Shi, Shikao; Zhang, Yan; Liu, Qing; Zhou, Ji

    2013-10-15

    Graphical abstract: - Highlights: Four anion-doped CaMoO{sub 4}:Eu{sup 3+} red phosphors were prepared by hydrothermal approach. Some samples exhibit nearly spherical morphology and well-distributed fine particles. The red luminescence can be obviously enhanced after certain amount of anion doping. The improved phosphor system is a potential candidate for white LED applications. - Abstract: Applying hydrothermal and subsequent heat-treatment process, CaMoO{sub 4}:Eu{sup 3+} was doped with four anions (SiO{sub 3}{sup 2?}, PO{sub 4}{sup 3?}, SO{sub 4}{sup 2?} and ClO{sub 3}{sup ?}) to prepare fine red powder phosphors. The introduction of small amount of anions into the host had little influence on the structure, which was confirmed by X-ray diffraction patterns. The anion-doped phosphor samples (except SiO{sub 3}{sup 2?}) exhibited nearly spherical morphology, and the particle sizes were in the range of 0.30.4 ?m for SO{sub 4}{sup 2?}-doped samples, and 0.81.2 ?m for PO{sub 4}{sup 3?} and ClO{sub 3}{sup ?}-doped samples. Excited with 395 nm near-UV light, all samples showed typical Eu{sup 3+} red emission at 615 nm, and PO{sub 4}{sup 3?}, SO{sub 4}{sup 2?} and ClO{sub 3}{sup ?}-doped samples enhanced the red luminescence as compared with the individual CaMoO{sub 4}:Eu{sup 3+} sample. In particular, relative emission intensity for optimum ClO{sub 3}{sup ?}-doped phosphors reached more than 6-fold that of the commercial red phosphor, which is highly desirable for the powder phosphors used in the solid-state lighting industry.

  11. Ionic liquid assisted hydrothermal fabrication of hierarchically organized γ-AlOOH hollow sphere

    SciTech Connect (OSTI)

    Tang, Zhe; Liu, Yunqi; Li, Guangci; Hu, Xiaofu; Liu, Chenguang

    2012-11-15

    Highlights: ► The γ-AlOOH hollow spheres were synthesized via an ionic liquid-assisted hydrothermal treatment. ► Ionic liquid plays an important role in the morphology of the product. ► Ionic liquid can be easily removed from the product and reused in next experiment. ► A “aggregation–solution–recrystallization” formation mechanism may occur in the system. -- Abstract: Hierarchically organized γ-AlOOH hollow spheres with nanoflake-like porous surface texture have been successfully synthesized via an ionic liquid-assisted hydrothermal synthesis method in citric acid monohydrate (CAMs). It was found that ionic liquid [bmim]{sup +}Cl{sup −} played an important role in the morphology of the product due to its strong interactions with reaction particles. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). The results show that the product has narrow particle size distribution (500–900 nm particle diameter range), high specific surface area (240.5 m{sup 2}/g) and large pore volume (0.61 cm{sup 3}/g). The corresponding γ-Al{sub 2}O{sub 3} hollow spheres can be obtained by calcining it at 550 °C for 3 h. The proposed formation mechanism and other influencing factors of the γ-AlOOH hollow sphere material, such as reaction temperature, reaction duration, CAMs and urea, have also been investigated.

  12. Preliminary results of characteristic seismic anisotropy beneath Sunda-Banda subduction-collision zone

    SciTech Connect (OSTI)

    Wiyono, Samsul H.; Nugraha, Andri Dian

    2015-04-24

    Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strong correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.

  13. A comprehensive analysis of contaminant transport in the vadose zone beneath tank SX-109

    SciTech Connect (OSTI)

    Ward, A.L.; Gee, G.W.; White, M.D.

    1997-02-01

    The Vadose Zone Characterization Project is currently investigating the subsurface distribution of gamma-emitting radionuclides in S and SX Waste Management Area (WMA-S-SX) located in the 200 West Area of the US Department of Energy`s Hanford Site in southeastern Washington State. Spectral-gamma logging of boreholes has detected elevated {sup 137}Cs concentrations as deep as 38 m, a depth considered excessive based on the assumed geochemistry of {sup 137}Cs in Hanford sediments. Routine groundwater sampling under the Resource Conservation and Recovery Act (RCRA) have also detected elevated levels of site-specific contaminants downgradient of WMA-S-SX. The objective of this report is to explore the processes controlling the migration of {sup 137}Cs, {sup 99}Tc, and NO{sub 3} through the vadose zone of WMA-S-SX, particularly beneath tank SX-109.

  14. Deep crustal sediment study: Widespread precambrian layered rocks (sedimentary ?) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. [Cornell Univ., Ithaca, NY (United States)

    1992-05-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the U.S. midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1-3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the U.S. midcontinent, and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  15. Deep crustal sediment study: Widespread Precambrian layered rocks (Sedimentary ) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C.

    1992-01-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the US midcontinent and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  16. Deep crustal sediment study: Widespread Precambrian layered rocks (Sedimentary ?) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C.

    1992-06-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the US midcontinent and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  17. Capillary Break Beneath a Slab: Polyethylene Sheeting over Aggregate, Southwestern Pennsylvania (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capillary Break Beneath a Slab: Polyethylene Sheeting Over Aggregate Southwestern Pennsylvania PROJECT INFORMATION Project Name: Capillary Break Beneath a Slab: Polyethylene Sheeting Over Aggregate Location: Southwestern PA Type: Residential Partners: Builder is confidential Building America Team: IBACOS, www.ibacos.com Building Component: Foundation, water management Application: New construction; single- and multifamily homes Year Tested: 2013 Applicable Climate Zone(s): All except dry

  18. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOE Patents [OSTI]

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  19. Vanadium oxides nanostructures: Hydrothermal synthesis and electrochemical properties

    SciTech Connect (OSTI)

    Mjejri, I.; Etteyeb, N.; Sediri, F.

    2014-12-15

    Highlights: • Vanadium oxides nanostructures were synthesized hydrothermally. • Reversible redox behavior with doping/dedoping process. • Doping/dedoping is easier for Li{sup +} to Na{sup +}. • Energy-related applications such as cathodes in lithium batteries. - Abstract: A facile and template-free one-pot strategy is applied to synthesize nanostructured vanadium oxide particles via a hydrothermal methodology. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to characterize the structure and morphology of the samples. The products are gradually changed from sheet-shaped VO{sub 2}(B) to rod-like V{sub 3}O{sub 7}·H{sub 2}O with decreasing cyclohexanediol as both protective and reducing agent. The specific surface area of the VO{sub 2}(B) nanosheets and V{sub 3}O{sub 7}·H{sub 2}O nanorods was found to be 22 and 16 m{sup 2} g{sup −1}, respectively. Thin films of VO{sub 2}(B) and V{sub 3}O{sub 7}·H{sub 2}O deposited on ITO substrates were electrochemically characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The voltammograms show reversible redox behavior with doping/dedoping process corresponding to reversible cation intercalation/de-intercalation into the crystal lattice of the nanorods/nanosheets. This process is easier for the small Li{sup +} cation than larger ones Na{sup +}.

  20. Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes Print Wednesday, 29 April 2009 00:00 Despite the considerable amount of iron that enters the oceans from the continents and from hydrothermal vents at mid-ocean ridges on the seafloor, there are large regions of the global ocean where iron availability is so low that it limits life. Oceanographers have long explained this anomaly by assuming that the iron in

  1. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    SciTech Connect (OSTI)

    Moller, Nancy; Weare J. H.

    2008-05-29

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  2. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect (OSTI)

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  3. Acid-base behavior in hydrothermal processing of wastes. 1997 annual progress report

    SciTech Connect (OSTI)

    1997-01-01

    'A major obstacle to the development of hydrothermal technology for treating DOE wastes has been a lack of scientific knowledge of solution chemistry, thermodynamics and transport phenomena. The progress over the last year is highlighted in the following four abstracts from manuscripts which have been submitted to journals. The authors also have made considerable progress on a spectroscopic study of the acid-base equilibria of Cr(VI). They have utilized novel spectroscopic indicators to study acid-base equilibria up to 380 C. Until now, very few systems have been studied at such high temperatures, although this information is vital for hydrothermal processing of wastes. The pH values of aqueous solutions of boric acid and KOH were measured with the optical indicator 2-naphthol at temperatures from 300 to 380 C. The equilibrium constant Kb-l for the reaction B(OH)3 + OH{sup -} = B(OH){sup -4} was determined from the pH measurements and correlated with a modified Born model. The titration curve for the addition of HCl to sodium borate exhibits strong acid-strong base behavior even at 350 C and 24.1 MPa. At these conditions, aqueous solutions of sodium borate buffer the pH at 9.6 t 0.25. submitted to Ind. Eng. Chem. Res. Acetic Acid and HCl Acid-base titrations for the KOH-acetic acid or NH{sub 3} -acetic acid systems were monitored with the optical indicator 2-naphthoic acid at 350 C and 34 MPa, and those for the HCl;Cl- system with acridine at 380 C and up to 34 MPa (5,000 psia ). KOH remains a much stronger base than NH,OH at high temperature. From 298 K to the critical temperature of water, the dissociation constant for HCl decreases by 13 orders of magnitude, and thus, the basicity of Cl{sup -} becomes significant. Consequently, the addition of NaCl to HCl raises the pH. The pH titration curves may be predicted with reasonable accuracy from the relevant equilibrium constants and Pitzer''s formulation of the Debye- Htickel equation for the activity coefficients.'

  4. Response-time improved hydrothermal-method-grown ZnO scintillator...

    Office of Scientific and Technical Information (OSTI)

    Response-time improved hydrothermal-method-grown ZnO scintillator for soft x-ray free-electron laser timing-observation Citation Details In-Document Search Title: Response-time...

  5. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction

    Broader source: Energy.gov [DOE]

    Whole algae hydrothermal liquefaction is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

  6. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  7. SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities

    SciTech Connect (OSTI)

    Wang, Yingyong; Jin, Guoqiang; Tong, Xili; Guo, Xiangyun

    2011-11-15

    Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: {yields} SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. {yields} The dopped MCM-41 materials show a wormhole-like mesoporous structure. {yields} The thermal stability of the dopped materials have an increment of almost 100 {sup o}C compared with the pure MCM-41. {yields} The hydrothermal stability of the dopped materials is also better than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N{sub 2} physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 {sup o}C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.

  8. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOE Patents [OSTI]

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  9. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOE Patents [OSTI]

    Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  10. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The wavesmore » grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.« less

  11. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    SciTech Connect (OSTI)

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The waves grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.

  12. Phase structure within a fracture network beneath a surface pond: Field experiment

    SciTech Connect (OSTI)

    GLASS JR.,ROBERT J.; NICHOLL,M.J.

    2000-05-09

    The authors performed a simple experiment to elucidate phase structure within a pervasively fractured welded tuff. Dyed water was infiltrated from a surface pond over a 36 minute period while a geophysical array monitored the wetted region within vertical planes directly beneath. They then excavated the rock mass to a depth of {approximately}5 m and mapped the fracture network and extent of dye staining in a series of horizontal pavements. Near the pond the network was fully stained. Below, the phase structure immediately expanded and with depth, the structure became fragmented and complicated exhibiting evidence of preferential flow, fingers, irregular wetting patterns, and varied behavior at fracture intersections. Limited transient geophysical data suggested that strong vertical pathways form first followed by increased horizontal expansion and connection within the network. These rapid pathways are also the first to drain. Estimates also suggest that the excavation captured from {approximately}10% to 1% or less of the volume of rock interrogated by the infiltration slug and thus the penetration depth could have been quite large.

  13. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    SciTech Connect (OSTI)

    Zheng, Ji-Lu Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  14. Distribution of radionuclides and water in Bandelier Tuff beneath a former Los Alamos liquid waste disposal site after 33 years

    SciTech Connect (OSTI)

    Nyhan, J.W.; Drennon, B.J.; Abeele, W.V.; Trujillo, G.; Herrera, W.J.; Wheeler, M.L.; Booth, J.W.; Purtymun, W.D.

    1984-07-01

    The distribution of radionuclides and water in Bandelier Tuff beneath a former liquid waste disposal site at Los Alamos was investigated. The waste use history of the site was described, as well as several pertinent laboratory and field studies of water and radionuclide migration in Bandelier Tuff. The distribution of plutonium, /sup 241/Am, and water was determined in a set of about 800 tuff samples collected to sampling depths of 30 m beneath two absorption beds. These data were then related to site geohydrologic data. Water and radionuclide concentrations found after 33 years were compared with the results of similar studies previously performed at this site, and the implications of these comparisons are discussed relative to nuclear waste management. 19 references, 6 figures, 4 tables.

  15. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    Horton, Duane G.

    2007-03-16

    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  16. Crustal structure beneath two seismic stations in the Sunda-Banda arc transition zone derived from receiver function analysis

    SciTech Connect (OSTI)

    Syuhada; Hananto, Nugroho D.; Handayani, Lina; Puspito, Nanang T; Yudistira, Tedi; Anggono, Titi

    2015-04-24

    We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stations by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.

  17. Drying grain using a hydrothermally treated liquid lignite fuel

    SciTech Connect (OSTI)

    Bukurov, Z.; Cvijanovic, P.; Bukurov, M.; Ljubicic, B.R.

    1995-12-01

    A shortage of domestic oil and natural gas resources in Yugoslavia, particularly for agricultural and industrial purposes, has motivated the authors to explore the possibility of using liquid lignite as an alternate fuel for drying grain. This paper presents a technical and economic assessment of the possibility of retrofitting grain-drying plants currently fueled by oil or natural gas to liquid lignite fuel. All estimates are based on lignite taken from the Kovin deposit. Proposed technology includes underwater mining techniques, aqueous ash removal, hydrothermal processing, solids concentration, pipeline transport up to 120 km, and liquid lignite direct combustion. For the characterization of Kovin lignite, standard ASTM procedures were used: proximate, ultimate, ash, heating value, and Theological analyses were performed. Results from an extensive economic analysis indicate a delivered cost of US$20/ton for the liquid lignite. For the 70 of the grain-drying plants in the province of Vojvodina, this would mean a total yearly saving of about US $2,500,000. The advantages of this concept are obvious: easy to transport and store, nonflammable, nonexplosive, nontoxic, 30%-40% cheaper than imported oil and gas, domestic fuel is at hand. The authors believe that liquid lignite, rather than an alternative, is becoming more and more an imperative.

  18. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  19. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2003-01-30

    Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region are natural laboratories for studying the factors that promote long-term storage of CO{sub 2}. They also provide sites for storing additional CO{sub 2} if it can be separated from the flue gases of coal-fired power plants in this part of the U.S.A. These natural reservoirs are developed primarily in sandstones and dolomites; shales, mudstones and anhydrite form seals. In many fields, stacked reservoirs are present, indicating that the gas has migrated up through the section. There are also geologically young travertine deposits at the surface, and CO{sub 2}-charged groundwater and springs in the vicinity of known CO{sub 2} occurrences. These near-surface geological and hydrological features also provide examples of the environmental effects of leakage of CO{sub 2} from reservoirs, and justify further study. During reporting period covered here (the first quarter of Year 3 of the project, i.e. October 1-December 31, 2002), the main achievements were: (1) Planning workshop for project participants as well as other Utah researchers involved in CO{sub 2} projects (22 October, 2002), and Utah Geological Survey, Salt Lake City; (2) Presentation of paper to special CO{sub 2} sequestration session at the Geological Society of America Annual Meeting, Denver, 29 October, 2002; (3) Presentation of paper to special CO{sub 2} sequestration session at the Fall Meeting of American Geophysical Union, San Francisco, 10 December, 2002; (4) Identification of dawsonite (sodium-aluminum carbonate) as a late stage mineral deposited in CO{sub 2} feedzone at Springerville, Arizona; (5) Successful matching of known physical constraints to flow beneath the Hunter cross section being used to simulate the effects of CO{sub 2} injection. In about 1000 years, most injected CO{sub 2} may be lost to the surface from the three shallowest reservoirs considered, assuming no reactive processes; and (6) Inclusion

  20. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  1. Enhanced Geothermal Systems (EGS)- the Future of Geothermal Energy

    Broader source: Energy.gov [DOE]

    While the amount of conventional hydrothermal power worldwide has reached nearly 12 gigawatts, exponentially more geothermal resources can be accessed through next-generation technologies known as enhanced geothermal systems (EGS).

  2. Fish debris record the hydrothermal activity in the Atlantis II deep sediments (Red Sea)

    SciTech Connect (OSTI)

    Oudin, E.; Cocherie, A.

    1988-01-01

    The REE and U, Th, Zr, Hf, Sc have been analyzed in samples from Atlantis II and Shaban/Jean Charcot Deeps in the Red Sea. The high Zr/Hf ratio in some sediments indicates the presence of fish debris or of finely crystallized apatite. The positive ..sigma..REE vs P/sub 2/O/sub 5/ and ..sigma..REE vs Zr/Hf correlations show that fish debris and finely crystallized apatite are the main REE sink in Atlantis II Deep sediments as in other marine environments. The hydrothermal sediments and the fish debris concentrates have similar REE patterns, characterized by a LREE enrichment and a large positive Eu anomaly. This REE pattern is also observed in E.P.R. hydrothermal solutions. Fish debris from marine environments acquire their REE content and signature mostly from sea water during early diagenesis. The hydrothermal REE signature of Atlantis II Deep fish debris indicate that they probably record the REE signature of their hydrothermal sedimentation and diagenetic environment. The different REE signatures of the Shaban/Jean Charcot and Atlantis II Deep hydrothermal sediments suggest a sea water-dominated brine in the Shaban/Jean Charcot Deep as opposed to the predominantly hydrothermal brine in Atlantis II Deep. Atlantis II Deep fish debris are also characterized by their high U but low Th contents. Their low Th contents probably reflect the low Th content of the various possible sources (sea water, brine, sediments). Their U contents are probably controlled by the redox conditions of sedimentation.

  3. Contact metasomatic and hydrothermal minerals in the SH2 deep well, Sabatini Volcanic District, Latium, Italy

    SciTech Connect (OSTI)

    Cavarretta, G.; Tecce, F.

    1987-01-01

    Metasomatic and hydrothermal minerals were logged throughout the SH2 geothermal well, which reached a depth of 2498 m in the Sabatini volcanic district. Below 460 m of volcanics, where the newly formed minerals were mainly chlorite, calcite and zeolites (mostly phillipsite), drilling entered the Allochthonous Flysch Complex. Evidence of the ''Cicerchina facies'' was found down to 1600 m depth. Starting from 1070 m, down to hole bottom, a contact metasomatic complex was defined by the appearance of garnet. Garnet together with K-fledspar, vesuvianite, wilkeite, cuspidine, harkerite, wollastonite and apatite prevail in the top part of the contact metasomatic complex. Vesuvianite and phlogopite characterize the middle part. Phlogopite, pyroxene, spinel and cancrinite predominate in the bottom part. The 1500 m thick metasomatic complex indicates the presence at depth of the intrusion of a trachytic magma which released hot fluids involved in metasomatic mineral-forming reactions. Minerals such as harkerite, wilkeite, cuspidine, cancrinite, vesuvianite and phlogopite indicate the intrusive melt had a high volatile content which is in agreement with the very high explosivity index of this volcanic district. The system is at present sealed by abundant calcite and anhydrite. It is proposed that most, if not all, of the sulphates formed after reaction of SO/sub 2/ with aqueous calcium species rather than from sulphates being remobilized from evaporitic (Triassic) rocks as previously inferred. The hypothesis of a CO/sub 2/-rich deep-derived fluid ascending through major fracture systems and contrasting cooling in the hottest areas of Latium is presented.

  4. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  5. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leow, Shijie; Witter, John R.; Vardon, Derek R.; Sharma, Brajendra K.; Guest, Jeremy S.; Strathmann, Timothy J.

    2015-05-11

    Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200–350 °C, 5–20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on factors influencing microalgae cell composition during cultivation and separate reports on HTL products linked to cell composition, the field still lacks a quantitative model to predict HTL conversion product yield and qualities from feedstock biochemical composition; the tailoring of microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae biofuels that must be leveraged upon for optimization of the whole process. This study developed predictive relationships for HTL biocrude yield and othermore » conversion product characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range of compositions (23–59% dw lipids, 58–17% dw proteins, 12–22% dw carbohydrates) and a defatted batch (0% dw lipids, 75% dw proteins, 19% dw carbohydrates). HTL biocrude yield (33–68% dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) content. A component additivity model (predicting biocrude yield from lipid, protein, and carbohydrates) was more accurate predicting literature yields for diverse microalgae species than previous additivity models derived from model compounds. FA profiling of the biocrude product showed strong links to the initial feedstock FA profile of the lipid component, demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA structural components could be represented using the defatted batch. These findings were used to introduce a new FA-based model that predicts biocrude oil yields along with other critical parameters, and is capable of adjusting for the wide variations in HTL methodology and microalgae species through the defatted batch. Lastly, the FA model was linked to an upstream cultivation model (Phototrophic Process Model

  6. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition

    SciTech Connect (OSTI)

    Leow, Shijie; Witter, John R.; Vardon, Derek R.; Sharma, Brajendra K.; Guest, Jeremy S.; Strathmann, Timothy J.

    2015-05-11

    Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200–350 °C, 5–20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on factors influencing microalgae cell composition during cultivation and separate reports on HTL products linked to cell composition, the field still lacks a quantitative model to predict HTL conversion product yield and qualities from feedstock biochemical composition; the tailoring of microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae biofuels that must be leveraged upon for optimization of the whole process. This study developed predictive relationships for HTL biocrude yield and other conversion product characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range of compositions (23–59% dw lipids, 58–17% dw proteins, 12–22% dw carbohydrates) and a defatted batch (0% dw lipids, 75% dw proteins, 19% dw carbohydrates). HTL biocrude yield (33–68% dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) content. A component additivity model (predicting biocrude yield from lipid, protein, and carbohydrates) was more accurate predicting literature yields for diverse microalgae species than previous additivity models derived from model compounds. FA profiling of the biocrude product showed strong links to the initial feedstock FA profile of the lipid component, demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA structural components could be represented using the defatted batch. These findings were used to introduce a new FA-based model that predicts biocrude oil yields along with other critical parameters, and is capable of adjusting for the wide variations in HTL methodology and microalgae species through the defatted batch. Lastly, the FA model was linked to an upstream cultivation model (Phototrophic Process Model

  7. Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes Print Despite the considerable amount of iron that enters the oceans from the continents and from hydrothermal vents at mid-ocean ridges on the seafloor, there are large regions of the global ocean where iron availability is so low that it limits life. Oceanographers have long explained this anomaly by assuming that the iron in the sea is primarily incorporated as Fe(III) into inorganic minerals that lack both the mobility to

  8. Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes Print Despite the considerable amount of iron that enters the oceans from the continents and from hydrothermal vents at mid-ocean ridges on the seafloor, there are large regions of the global ocean where iron availability is so low that it limits life. Oceanographers have long explained this anomaly by assuming that the iron in the sea is primarily incorporated as Fe(III) into inorganic minerals that lack both the mobility to

  9. Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes Print Despite the considerable amount of iron that enters the oceans from the continents and from hydrothermal vents at mid-ocean ridges on the seafloor, there are large regions of the global ocean where iron availability is so low that it limits life. Oceanographers have long explained this anomaly by assuming that the iron in the sea is primarily incorporated as Fe(III) into inorganic minerals that lack both the mobility to

  10. Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes Print Despite the considerable amount of iron that enters the oceans from the continents and from hydrothermal vents at mid-ocean ridges on the seafloor, there are large regions of the global ocean where iron availability is so low that it limits life. Oceanographers have long explained this anomaly by assuming that the iron in the sea is primarily incorporated as Fe(III) into inorganic minerals that lack both the mobility to

  11. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    SciTech Connect (OSTI)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    The Cameroon Volcanic Line (CVL) is a major geologic feature that cuts across Cameroon from the south west to the north east. It is a unique volcanic lineament which has both an oceanic and a continental sector and consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. The oceanic sector includes the islands of Bioko (formerly Fernando Po) and Sao Tome and Principe while the continental sector includes the Etinde, Cameroon, Manengouba, Bamboutos, Oku and Mandara mountains, as well as the Adamawa and Biu Plateaus. In addition to the CVL, three other major tectonic features characterize the region: the Benue Trough located northwest of the CVL, the Central African Shear Zone (CASZ), trending N70 degrees E, roughly parallel to the CVL, and the Congo Craton in southern Cameroon. The origin of the CVL is still the subject of considerable debate, with both plume and non-plume models invoked by many authors (e.g., Deruelle et al., 2007; Ngako et al, 2006; Ritsema and Allen, 2003; Burke, 2001; Ebinger and Sleep, 1998; Lee et al, 1994; Dorbath et al., 1986; Fairhead and Binks, 1991; King and Ritsema, 2000; Reusch et al., 2010). Crustal structure beneath Cameroon has been investigated previously using active (Stuart et al, 1985) and passive (Dorbath et al., 1986; Tabod, 1991; Tabod et al, 1992; Plomerova et al, 1993) source seismic data, revealing a crust about 33 km thick at the south-western end of the continental portion of the CVL (Tabod, 1991) and the Adamawa Plateau, and thinner crust (23 km thick) beneath the Garoua Rift in the north (Stuart et al, 1985) (Figure 1). Estimates of crustal thickness obtained using gravity data show similar variations between the Garoua rift, Adamawa Plateau, and southern part of the CVL (Poudjom et al., 1995; Nnange et al., 2000). In this study, we investigate further crustal structure beneath the CVL and the adjacent regions in

  12. Selective hydrothermal synthesis of BiOBr microflowers and Bi{sub 2}O{sub 3} shuttles with concave surfaces

    SciTech Connect (OSTI)

    Xiao Peipei; Zhu Lingling; Zhu Yongchun; Qian Yitai

    2011-06-15

    Through controlling the amount of NaOH added, BiOBr and Bi{sub 2}O{sub 3} with different shapes were hydrothermally synthesized in the reaction system of Bi(NO{sub 3}){sub 3}-hexadecyl trimethyl ammonium bromide (CTAB)-NaOH. As 8 mmol of NaOH was added, BiOBr microflowers constructed of nanoflakes were synthesized. The thickness of these single-crystal nanoflakes was about 20 nm. In the similar condition, when the amount of NaOH added was 28 mmol, Bi{sub 2}O{sub 3} shuttles with concave surfaces were obtained. The length of these shuttles was 100 {mu}m and the diameter at the middle of these shuttles was 50 {mu}m. The photocatalytic activity of as-prepared BiOBr microflowers was evaluated by the degradation of methyl orange (MO) under visible-light irradiation ({lambda}>420 nm), which was up to 96% within 90 min. - Graphical abstract: Through controlling the amount of NaOH added, BiOBr microflowers and Bi{sub 2}O{sub 3} shuttles with concave surfaces were hydrothermally synthesized in the reaction system of Bi(NO{sub 3}){sub 3}-hexadecyl trimethyl ammonium bromide (CTAB)-NaOH. Highlights: > BiOBr microflowers constructed of nanoflakes were synthesized hydrothermally. > Bi{sub 2}O{sub 3} shuttles with concave surfaces were also synthesized. > Their formation mechanisms were studied based on the experimental results. > The photocatalytic activity of BiOBr microflowers was evaluated under visible-light irradiation.

  13. Low-temperature hydrothermal synthesis of the three-layered sodium cobaltite P3-Na{sub x}CoO{sub 2} (x ∼ 0.60)

    SciTech Connect (OSTI)

    Miclau, M.; Bokinala, K.; Miclau, N.

    2014-06-01

    Highlights: • We report direct synthesis of the high temperature stable phase, P3-Na{sub 0.6}CoO{sub 2}. • The hydrothermal synthesis of P3-Na{sub 0.6}CoO{sub 2} involves one step and low temperature. • The yield diagram for Na–Co–H{sub 2}O system has been builded up to 250 °C. • We propose a formation mechanism of P3-Na{sub 0.6}CoO{sub 2} phase using the unit cell theory. • The thermal stability of P3-Na{sub 0.6}CoO{sub 2} has been investigated by means of HT-XRD. - Abstract: In order to obtain the layered sodium cobalt oxide materials by hydrothermal synthesis, the yield diagram for Na–Co–H{sub 2}O system has been built and studied. In the same time, the well-known data of Co–H{sub 2}O system have been extended at 250 °C in basic solution. We had first synthesized directly the high temperature stable phase, P3-Na{sub 0.6}CoO{sub 2} by a one-step low-temperature hydrothermal method. The rhombohedral structure of P3-Na{sub 0.6}CoO{sub 2} has been determined by X-ray diffraction (XRD) and the purity of phases has been confirmed by XPS. The thermal stability of P3-Na{sub 0.6}CoO{sub 2} has been investigated by means of high temperature X-ray diffraction in 298–873 K range and when the temperature has reached 723 K, the completely transformation of P3-Na{sub 0.6}CoO{sub 2} in the rhombohedral stable phase α-NaCoO{sub 2} (space group R-3m) was observed. Also, a formation mechanism of P3-Na{sub 0.6}CoO{sub 2} phase using the unit cell theory in the hydrothermal process was proposed.

  14. Hydrothermal method of synthesis of rare-earth tantalates and niobates

    DOE Patents [OSTI]

    Nyman, May D; Rohwer, Lauren E.S.; Martin, James E

    2012-10-16

    A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  15. Optical characteristics of ZnO single crystal grown by the hydrothermal method

    SciTech Connect (OSTI)

    Chen, G. Z.; Yin, J. G. E-mail: yjg@siom.ac.cn; Zhang, L. H.; Zhang, P. X.; Wang, X. Y.; Liu, Y. C.; Zhang, C. L.; Gu, S. L.; Hang, Y.

    2015-12-15

    ZnO single crystals have been grown by the hydrothermal method. Raman scattering and Photoluminescence spectroscopy (PL) have been used to study samples of ZnO that were unannealed or annealed in different ambient gases. It is suggested that the green emission may originate from defects related to copper in our samples.

  16. Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions

    DOE Patents [OSTI]

    Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA

    2003-12-30

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  17. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    SciTech Connect (OSTI)

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  18. A study of thermal properties of sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method

    SciTech Connect (OSTI)

    Preda, Silviu; Rutar, Melita; Umek, Polona; Zaharescu, Maria

    2015-11-15

    Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.

  19. Hydrothermal Phase Relations Among Uranyl Minerals at the Nopal I Analog Site

    SciTech Connect (OSTI)

    Murphy, William M.

    2007-07-01

    Uranyl mineral paragenesis at Nopal I is an analog of spent fuel alteration at Yucca Mountain. Petrographic studies suggest a variety of possible hydrothermal conditions for uranium mineralization at Nopal I. Calculated equilibrium phase relations among uranyl minerals show uranophane stability over a broad range of realistic conditions and indicate that uranyl mineral variety reflects persistent chemical potential heterogeneity. (author)

  20. Synthesis of ZrO{sub 2} nanoparticles by hydrothermal treatment

    SciTech Connect (OSTI)

    Machmudah, Siti Widiyastuti, W. Prastuti, Okky Putri Nurtono, Tantular Winardi, Sugeng; Wahyudiono,; Kanda, Hideki; Goto, Motonobu

    2014-02-24

    Zirconium oxide (zirconia, ZrO{sub 2}) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl{sub 4} precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 200C with precursor concentration of 0.1 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal.

  1. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    to drive and sustain extensional geothermal systems. (c) 2005 CNR. Published by Elsevier Ltd. All rights reserved. Authors B. M. Kennedy and M. C. van Soest Published Journal...

  2. FTIR study of the photocatalytic degradation of gaseous benzene over UV-irradiated TiO{sub 2} nanoballs synthesized by hydrothermal treatment in alkaline solution

    SciTech Connect (OSTI)

    Zhu, Zhengru [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Zhao, Qidong; Qu, Zhenping; Hou, Yang; Zhao, Ling [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Liu, Shaomin [Department of Chemical Engineering, Curtin University of Technology, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University of Technology, Perth, WA 6845 (Australia); Chen, Guohua [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)] [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-12-15

    In this study, photocatalysts of TiO{sub 2} nanoballs were obtained via a hydrothermal treating of commercial P25 in alkaline solution, and then characterized with SEM, XRD, BET and surface photovoltage spectroscopy techniques. The UV-assisted photodegradation of gaseous benzene over P25 and the prepared TiO{sub 2} nanoballs was monitored by an in situ infrared technique. The results demonstrated that the prepared TiO{sub 2} nanoballs in anatase form were more active than commercial P25 in photocatalytic oxidation of gaseous benzene. The promoted activity of the hydrothermal-treated TiO{sub 2} is attributed to the increasing specific surface area and larger band gap induced by the reduced crystallite size. The spectra of FTIR indicated that weakly adsorbed phenol was formed as the reaction progress. Hydroxyl groups on the surface of TiO{sub 2} nanoballs are able to react with photo-produced phenol, which is then retained on the catalyst surface leading to the progressive deactivation of the catalyst in the gas-solid system.

  3. Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process

    SciTech Connect (OSTI)

    Qiu, Yu; Lei, Jixue; Yin, Bing; Zhang, Heqiu; Ji, Jiuyu; Hu, Lizhong; Bian, Jiming; Liu, Yanhong; Zhao, Yu; Luo, Yingmin

    2014-03-17

    A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ∼10 mV to 7 V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.

  4. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    SciTech Connect (OSTI)

    Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.; Sodano, Henry A.

    2015-06-01

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.

  5. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks

    SciTech Connect (OSTI)

    Wang Ling; Hao Yanjing; Zhao Yan; Lai Qiongyu; Xu Xiaoyun

    2010-11-15

    NiO microspheres were successfully obtained by calcining the Ni(OH){sub 2} precursor, which were synthesized via the hydrothermal reaction of nickel chloride, glucose and ammonia. The products were characterized by TGA, XRD and SEM. The influences of glucose and reaction temperature on the morphologies of NiO samples were investigated. Moreover, the possible growth mechanism for the spherical morphology was proposed. The charge/discharge test showed that the as-prepared NiO microspheres composed of nanoparticles can serve as an ideal electrode material for supercapacitor due to the spherical hollow structure. -- Graphical Abstract: Fig. 5 is the SEM image of NiO that was prepared in the different hydrothermal reaction temperatures. It showed that reaction temperature played a crucial role for the morphology of products.

  6. Interfacial hydrothermal synthesis of SnO{sub 2} nanorods towards photocatalytic degradation of methyl orange

    SciTech Connect (OSTI)

    Hou, L.R. Lian, L.; Zhou, L.; Zhang, L.H.; Yuan, C.Z.

    2014-12-15

    Highlights: Efficient interfacial hydrothermal strategy was developed. 1D SnO{sub 2} nanorods as an advanced photocatalyst. SnO{sub 2} nanorods exhibit photocatalytic degradation of the MO. - Abstract: One-dimensional (1D) SnO{sub 2} nanorods (NRs) have been successfully synthesized by means of an efficient interfacial hydrothermal strategy. The resulting product was physically characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscope, etc. The as-fabricated SnO{sub 2} NRs exhibited excellent photocatalytic degradation of the methyl orange with high degradation efficiency of 99.3% with only 60 min ultra violet light irradiation. Meanwhile, the 1D SnO{sub 2} NRs exhibited intriguing photostability after four recycles.

  7. Sonochemical and hydrothermal synthesis of PbTe nanostructures with the aid of a novel capping agent

    SciTech Connect (OSTI)

    Fard-Fini, Shahla Ahmadian; Salavati-Niasari, Masoud; Mohandes, Fatemeh

    2013-10-15

    Graphical abstract: - Highlights: • PbTe nanostructures were prepared with the aid of Schiff-base compound. • Sonochemical and hydrothermal methods were employed to fabricate PbTe nanostrucrues. • The effect of preparation parameters on the morphology of PbTe was investigated. - Abstract: In this work, a new Schiff-base compound derived from 1,8-diamino-3,6-dioxaoctane and 2-hydroxy-1-naphthaldehyde marked as (2-HyNa)-(DaDo) was synthesized, characterized, and then used as capping agent for the preparation of PbTe nanostructures. To fabricate PbTe nanostructures, two different synthesis methods; hydrothermal and sonochemical routes, were applied. To further investigate, the effect of preparation parameters like reaction time and temperature in hydrothermal synthesis and sonication time in the presence of ultrasound irradiation on the morphology and purity of the final products was tested. The products were analyzed with the aid of SEM, TEM, XRD, FT-IR, and EDS. Based on the obtained results, it was found that pure cubic phased PbTe nanostructures have been obtained by hydrothermal and sonochemical approaches. Besides, SEM images showed that cubic-like and rod-like PbTe nanostructures have been formed by hydrothermal and sonochemical methods, respectively. Sonochemical synthesis of PbTe nanostructures was favorable, because the synthesis time of sonochemical method was shorter than that of hydrothermal method.

  8. Hydrothermal pretreatment to prevent scale during liquefaction of certain solid carbonaceous materials

    DOE Patents [OSTI]

    Stone, John B.; Floyd, Frank M.

    1984-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by hydrothermal pretreatment. The said pretreatment is believed to convert the scale-forming components to the corresponding carbonate prior to liquefaction. The said pretreatment is accomplished at a total pressure within the range from about 1000 to about 4400 psia. Temperature during said pretreatment will generally be within the range from about 500.degree. to about 700.degree. F.

  9. Hydrothermal Processing of Biomass Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Processing of Biomass March 26, 2015 Thermochemical Conversion Doug Elliott, Rich Hallen, and Andy Schmidt Pacific Northwest National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Advance HTL technology towards 2020 goal of $3/gge at 50% reduced GHG. Improve overall process performance and economics Determine the value and best pathway to market for the product Demonstrate high process and carbon

  10. Synthesis of lithium cobalt oxide by single-step soft hydrothermal method

    SciTech Connect (OSTI)

    Kumar Bokinala, Kiran; CNRS, Universite de Bordeaux, ICMCB, 87 Avenue du Dr. A. Schweitzer, Pessac F-33608; Universitatea Politehnica, Timisoara ; Pollet, M.; Artemenko, A.; Miclau, M.; Grozescu, I; Universitatea Politehnica, Timisoara

    2013-02-15

    Lithium cobalt double oxide LiCoO{sub 2} was synthesized at 220 Degree-Sign C by soft hydrothermal method using Co(OH){sub 2} and LiOH as precursors, LiOH/NaOH as mineralizers and H{sub 2}O{sub 2} as oxidant. The soft hydrothermal synthesis method offers the dual advantage of a much lower synthesis time and a higher purity in comparison with other synthesis methods. The compound was identified by X-ray diffraction and its purity was checked by magnetic and electron magnetic resonance measurements. The grain morphology was studied by Scanning Electron Microscopy and an exponential growth of particle size with synthesis time was observed. - Graphical abstract: Concave cuboctohedrons obtained after 60 h reaction time. Highlights: Black-Right-Pointing-Pointer An optimized soft hydrothermal method for a fast synthesis of high purity LiCoO{sub 2} compound is reported. Black-Right-Pointing-Pointer Both lamellar and cuboctahedral particles could be stabilized. Black-Right-Pointing-Pointer Secondary phases content is lower than 0.1%. Black-Right-Pointing-Pointer Close to surface defects were evidenced using EMR.

  11. Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications

    SciTech Connect (OSTI)

    Chen, Haijun; Cui, Qun; Wu, Juan; Zhu, Yuezhao; Li, Quanguo; Zheng, Kai; Yao, Huqing

    2014-04-01

    Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N{sub 2} sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake

  12. Ordovician carbonate formation waters in the Illinois Basin: Chemical and isotopic evolution beneath a regional aquitard

    SciTech Connect (OSTI)

    Stueber, A.M. ); Walter, L.M. . Dept. of Geological Sciences)

    1992-01-01

    Formation waters from carbonate reservoirs in the upper Ordovician Galena Group of the Illinois Basin have been analyzed geochemically to study origin of salinity, chemical and isotopic evolution, and relation to paleohydrologic flow systems. These carbonate reservoirs underlie the Maquoketa Shale Group of Cincinnatian age, which forms a regional aquitard. Cl-Br relations and Na/Br-Cl/Br systematics indicate that initial brine salinity resulted from subaerial evaporation of seawater to a point not significantly beyond halite saturation. Subsequent dilution in the subsurface by meteoric waters is supported by delta D-delta O-18 covariance. Systematic relations between Sr-87/Sr-86 and 1/Sr suggest two distinct mixing events: introduction of a Sr-87 enriched fluid from a siliciclastic source, and a later event which only affected reservoir waters from the western shelf of the basin. The second mixing event is supported by covariance between Sr-87/Sr-86 and concentrations of cations and anions; covariance between Sr and O-D isotopes suggests that the event is related to meteoric water influx. Systematic geochemical relations in ordovician Galena Group formation waters have been preserved by the overlying Maquoketa shale aquitard. Comparison with results from previous studies indicates that waters from Silurian-Devonian carbonate strata evolved in a manner similar to yet distinct from that of the Ordovician carbonate waters, whereas waters from Mississippian-Pennsylvanian strata that overlie the New Albany Shale Group regional aquitard are marked by fundamentally different Cl-Br-Na and Sr isotope systematics. Evolution of these geochemical formation-water regimes apparently has been influenced significantly by paleohydrologic flow systems.

  13. P-SV conversions at a shallow boundary beneath Campi Flegrei caldera (Italy) - evidence for the magma chamber

    SciTech Connect (OSTI)

    Ferrucci, F.; Hirn, A.; De Natale, G.; Virieux, J.; Mirabile, L. Inst. de Physique du Globe, Paris Osservatorio Vesuviano, Naples CNRS, Inst. de Geodynamique, Valbonne Ist. Universitario Navale, Naples )

    1992-10-01

    Seismograms from an active seismic experiment carried out at Campi Flegrei caldera (near Naples, Italy), show a large-amplitude SV-polarized shear wave, following by less than 1.5-s P waves reflected at wide angle from a deep crustal interface. Early arriving SV-polarized waves, with the same delay to direct P waves, are also observed in seismograms from a regional 280 km-deep, magnitude 5.1 earthquake. Such short delays of S to P waves are consistent with a P-SV conversion on transmission occurring at a shallow boundary beneath the receivers. The large amplitude of the converted-SV phase, along with that the P waves are near vertical, requires a boundary separating a very low rigidity layer from the upper caldera fill. The converted phases are interpreted as a seismic marker of a magma chamber. The top of this magma chamber is located slightly deeper than the deepest earthquakes observed during the 1982-1984 unrest of Campi Flegrei. 8 refs.

  14. Airflow-terrain interactions through a mountain gap, with an example of eolian activity beneath an atmospheric hydraulic jump

    SciTech Connect (OSTI)

    Gaylord, D.R.; Dawson, P.J.

    1987-09-01

    The integration of atmospheric soundings from a fully instrumented aircraft with detailed sedimentary and geomorphic analyses of eolian features in the Ferris dune field of south-central Wyoming lends insight into the manner in which topography interacts with airflow to modify eolian activity. Topographically modified airflow results in zones of airflow deceleration, acceleration, and enhanced atmospheric turbulence, all of which influence the surface morphology and sedimentology. Extreme lateral confluence of prevailing airflow produces accelerated, unidirectional winds. These winds correlate with unusually continuous and elongate parabolic dunes that extend into a mountain gap (Windy Gap). Persistently heightened winds produced at the entrance to Windy Gap have resulted in a concentration of active sand dunes that lack slipfaces. Common development of a strongly amplified atmospheric wave analogous to a hydraulic jump in the gap contributes to the formation of a variety of eolian features that mantle the surface of Windy Gap and the Ferris dune field tail. Heightened, unidirectional winds in this zone promote grain-size segregation, the formation of elongated and aligned sand drifts, climbing and falling dunes, elongate scour streaks, and parabolic dunes that have low-angle (< 20/sup 0/) cross-stratification. Deflation of bedrock and loose sediment has been enhanced in the zone of maximum turbulence beneath the hydraulic jump.

  15. Systems Engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering Systems Engineering Project objectives: to create an interactive, physics based, systems analysis tool for geothermal energy development that will: Identify points of attack to maximize efforts and investment dollars; Identify the parameter space where geothermal energy production is physically and economically viable; Provide a platform for public education and interaction. analysis_lowry_systems_engineering.pdf (473.49 KB) More Documents & Publications track 2: hydrothermal

  16. Evolution of Pre-Jurassic basement beneath northern Gulf of Mexico coastal plain

    SciTech Connect (OSTI)

    Van Siclen, D.C.

    1990-09-01

    Data from the northern Gulf Coast region reveal a late Paleozoic wrench fault system along which North America (NA) moved southeast (present directions) alongside the northeastern edge of future South America (SA), to where collision with that continent converted a broad continental embankment off the Southern Oklahoma aulacogen into the Ouachita thrust belt. At the same time, Africa farther east, to which protruding SA was firmly joined, was continuing to advance the Appalachian thrusts on the opposite side of these faults. This relationship left no space between the American continents for the conventional remnant ocean or microcontinents. By Late Triassic time, however, extension south of the Ouachita Mountains was forming the series of Interior rift basins, at both ends of which new wrench faults transferred the extension southward to the DeSoto Canyon and South Texas rift basins. Genetically, the Ouachita thrusts are part of the subduction zone along the front of a former SA forearc basin, which continued to receive marine sediments into middle Permian. The Wiggins arch southeast of it is a sliver of that continent, left with NA when the Interior basin rifting jumped from that forearc basin southward across bordering outer basement highs to begin opening the deep Gulf of Mexico (GOM) basin. The Late Triassic crustal extension resulted from right-lateral translation of NA around the bulge of northwestern Africa. About 200 mi of this placed Cape Hatteras against Africa's Cap Blanc, in the configuration from which the magnetic data indicate spreading began in the Central North Atlantic Ocean. The reality of this translation is confirmed by widespread rifting at the same time in western North Africa and between all three northern Atlantic continents; this drew the tip of the Tethys sea southward to Cape Hatteras and led to deposition of voluminous Late Triassic red beds and evaporites along it.

  17. Review and Assessment of Commercial Vendors/Options for Feeding and Pumping Biomass Slurries for Hydrothermal Liquefaction

    SciTech Connect (OSTI)

    Berglin, Eric J.; Enderlin, Carl W.; Schmidt, Andrew J.

    2012-11-01

    The National Advanced Biofuels Consortium is working to develop improved methods for producing high-value hydrocarbon fuels. The development of one such method, the hydrothermal liquefaction (HTL) process, is being led by the Pacific Northwest National Laboratory (PNNL). The HTL process uses a wet biomass slurry at elevated temperatures (i.e., 300 to 360°C [570 to 680°F]) and pressures above the vapor pressure of water (i.e., 15 to 20 MPa [2200 to 3000 psi] at these temperatures) to facilitate a condensed-phase reaction medium. The process has been successfully tested at bench-scale and development and testing at a larger scale is required to prove the viability of the process at production levels. Near-term development plans include a pilot-scale system on the order of 0.5 to 40 gpm, followed by a larger production-scale system on the order of 2000 dry metric tons per day (DMTPD). A significant challenge to the scale-up of the HTL process is feeding a highly viscous fibrous biomass wood/corn stover feedstock into a pump system that provides the required 3000 psi of pressure for downstream processing. In October 2011, PNNL began investigating commercial feed and pumping options that would meet these HTL process requirements. Initial efforts focused on generating a HTL feed and pump specification and then providing the specification to prospective vendors to determine the suitability of their pumps for the pilot-scale and production-scale plants. Six vendors were identified that could provide viable equipment to meet HTL feed and/or pump needs. Those six vendors provided options consisting three types of positive displacement pumps (i.e., diaphragm, piston, and lobe pumps). Vendors provided capabilities and equipment related to HTL application. This information was collected, assessed, and summarized and is provided as appendices to this report.

  18. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid

    SciTech Connect (OSTI)

    Zhao, Jinbo; School of Materials Science and Engineering, Shandong University, 250061, Jinan ; Wu, Lili; School of Materials Science and Engineering, Shandong University, 250061, Jinan ; Zou, Ke; School of Materials Science and Engineering, Shandong University, 250061, Jinan

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Ni(OH){sub 2} precursors were synthesized in ionic liquid and water solution by hydrothermal method. Black-Right-Pointing-Pointer NiO hollow microspheres were prepared by thermal treatment of Ni(OH){sub 2} precursors. Black-Right-Pointing-Pointer NiO hollow microspheres were self-assembled by mesoporous cubic and hexagonal nanocrystals with high specific surface area. Black-Right-Pointing-Pointer The mesoporous structure is stable at 773 K. Black-Right-Pointing-Pointer The ionic liquid absorbed on the O-terminate surface of the crystals to form hydrogen bond and played key roles in determining the final shape of the NiO novel microstructure. -- Abstract: The novel NiO hexagonal hollow microspheres have been successfully prepared by annealing Ni(OH){sub 2}, which was synthesized via an ionic liquid-assisted hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption and Fourier transform infrared spectrometer (FTIR). The results show that the hollow NiO microstructures are self-organized by mesoporous cubic and hexagonal nanocrystals. The mesoporous structure possessed good thermal stability and high specific surface area (ca. 83 m{sup 2}/g). The ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate ([Bmim][BF{sub 4}]) was found to play a key role in controlling the morphology of NiO microstructures during the hydrothermal process. The special hollow mesoporous architectures will have potential applications in many fields, such as catalysts, absorbents, sensors, drug-delivery carriers, acoustic insulators and supercapacitors.

  19. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  20. Template-free hydrothermal derived cobalt oxide nanopowders: Synthesis, characterization, and removal of organic dyes

    SciTech Connect (OSTI)

    Nassar, Mostafa Y.; Ahmed, Ibrahim S.

    2012-09-15

    Graphical abstract: XRD patterns of the products obtained by hydrothermal treatment at 160 C for 24 h, and at different [Co{sup 2+}]/[CO{sub 3}{sup 2?}] ratios: (a) 1:6, (b) 1:3, (c) 1:1.5, (d) 1:1, (e) 1:0.5. Highlights: ? Spinel cobalt oxide nanoparticles with different morphologies were prepared by hydrothermal approach. ? The optical characteristics of the as-prepared cobalt oxide revealed the presence of two band gaps. ? Adsorption of methylene blue dye on Co{sub 3}O{sub 4} was investigated and the percent uptake was found to be >99% in 24 h. -- Abstract: Pure spinel cobalt oxide nanoparticles were prepared through hydrothermal approach using different counter ions. First, the pure and uniform cobalt carbonate (with particle size of 21.829.8 nm) were prepared in high yield (94%) in an autoclave in absence unfriendly organic surfactants or solvents by adjusting different experimental parameters such as: pH, reaction time, temperature, counter ions, and (Co{sup 2+}:CO{sub 3}{sup 2?}) molar ratios. Thence, the spinel Co{sub 3}O{sub 4} (with mean particle size of 30.547.35 nm) was produced by thermal decomposition of cobalt carbonate in air at 500 C for 3 h. The products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), scanning electron microscope (SEM), and thermal analysis (TA). Also, the optical characteristics of the as-prepared Co{sub 3}O{sub 4} nanoparticles revealed the presence of two band gaps (1.451.47, and 1.831.93 eV). Additionally, adsorption of methylene blue dye on Co{sub 3}O{sub 4} nanoparticles was investigated and the uptake% was found to be >99% in 24 h.

  1. Hydrothermal oxidation of Navy shipboard excess hazardous materials

    SciTech Connect (OSTI)

    LaJeunesse, C.A.; Haroldsen, B.L.; Rice, S.F.; Brown, B.G.

    1997-03-01

    This study demonstrated effective destruction, using a novel supercritical water oxidation reactor, of oil, jet fuel, and hydraulic fluid, common excess hazardous materials found on-board Navy vessels. This reactor uses an advanced injector design to mix the hazardous compounds with water, oxidizer, and a supplementary fuel and it uses a transpiring wall to protect the surface of the reactor from corrosion and salt deposition. Our program was divided into four parts. First, basic chemical kinetic data were generated in a simple, tubular-configured reactor for short reaction times (<1 second) and long reaction times (>5 seconds) as a function of temperature. Second, using the data, an engineering model was developed for the more complicated industrial reactor mentioned above. Third, the three hazardous materials were destroyed in a quarter-scale version of the industrial reactor. Finally, the test data were compared with the model. The model and the experimental results for the quarter-scale reactor are described and compared in this report. A companion report discusses the first part of the program to generate basic chemical kinetic data. The injector and reactor worked as expected. The oxidation reaction with the supplementary fuel was initiated between 400 {degrees}C and 450 {degrees}C. The released energy raised the reactor temperature to greater than 600 {degrees}C. At that temperature, the hazardous materials were efficiently destroyed in less than five seconds. The model shows good agreement with the test data and has proven to be a useful tool in designing the system and understanding the test results. 16 refs., 17 figs., 11 tabs.

  2. Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae Final Report

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Santosa, Daniel M.; Valkenburt, Corinne; Jones, Susanne B.; Tjokro Rahardjo, Sandra A.

    2009-11-03

    This report describes the results of the work performed by PNNL using feedstock materials provided by the National Renewable Energy Laboratory, KL Energy and Lignol lignocellulosic ethanol pilot plants. Test results with algae feedstocks provided by Genifuel, which provided in-kind cost share to the project, are also included. The work conducted during this project involved developing and demonstrating on the bench-scale process technology at PNNL for catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae. A technoeconomic assessment evaluated the use of the technology for energy recovery in a lignocellulosic ethanol plant.

  3. Hydrothermal synthesis and magnetic properties of ErCrO{sub 4} nanoparticles

    SciTech Connect (OSTI)

    Sundarayya, Y. Kumar, K. Ashwini Sondge, Rajesh Srinath, S. Kaul, S. N.

    2014-04-24

    Homogeneous single phase ErCrO{sub 4} nanoparticles have been synthesized by a modified sol-gel followed by hydrothermal method. X-ray diffraction reveals that the compound crystallizes into tetragonal structure with space group I41/amd. The average crystallite size was estimated to be 21(1) nm. Morphological analysis of the sample confirms uniform particles of size 20 nm. DC magnetic measurements show that ErCrO{sub 4} undergoes a paramagnetic-antiferromagnetic transition at 16 K, due to the superexchange Er-O-Cr-O-Er antiferromagnetic interactions.

  4. Synthesis and characterization of hybrid nanostructures produced in the presence of the titanium dioxide and bioactive organic substances by hydrothermal method

    SciTech Connect (OSTI)

    Zima, Tatyana; Baklanova, Natalya; Bataev, Ivan

    2013-02-15

    Hybrid nanostructures produced by hydrothermal treatment of TiO{sub 2} in the presence of bioactive organic substances such as chitosan, aminoterephthalic acid and their mixture have been investigated. Sodium polytitanates as one-dimensional elongated structures with lengths of several hundred of nanometers were obtained in the presence of chitosan and aminoterephthalic acid. With chitosan the elongated nanostructures are formed by successive superposition of structural fragments-nanostrips with well-ordered multilayered morphology and increased distance between successive layers to 1.2 nm. Quite different amorphous products as agglomerates with roundest and rhomboid morphology are formed when the mixture of chitosan and aminoterephthalic acid is added to the reaction system. One can propose that main reason of such behavior is a low rate of diffusion of dissolved Ti(IV) ions in the high viscous mixed chitosan-aminoterephthalic system. An effect of organic substances on the formation, morphology and transformation of various titanates is discussed. - Graphical abstract: The typical images of hybrid nanostructures produced by hydrothermal treatment of TiO{sub 2} in the presence chitosan and mixed chitosan with aminoterephthalic acid. Highlights: Black-Right-Pointing-Pointer Various shapes of TiO{sub 2} based structures can be produced in the presence of organic. Black-Right-Pointing-Pointer An addition of chitosan results in the formation of the elongated nanostructures. Black-Right-Pointing-Pointer These structures have multilayered morphology and increased distance between layers. Black-Right-Pointing-Pointer Different agglomerates are formed when chitosan and aminoterephthalic acid are mixed.

  5. Real-Space Microscopic Electrical Imaging of n+-p Junction Beneath Front-Side Ag Contact of Multicrystalline Si Solar Cells

    SciTech Connect (OSTI)

    Jiang, C. S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.

    2012-04-15

    We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, which is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.

  6. Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading

    SciTech Connect (OSTI)

    Zhu, Yunhua; Biddy, Mary J.; Jones, Susanne B.; Elliott, Douglas C.; Schmidt, Andrew J.

    2014-09-15

    A series of experimental work was conducted to convert woody biomass to gasoline and diesel range products via hydrothermal liquefaction (HTL) and catalytic hydroprocessing. Based on the best available test data, a techno-economic analysis (TEA) was developed for a large scale woody biomass based HTL and upgrading system to evaluate the feasibility of this technology. In this system, 2000 dry metric ton per day woody biomass was assumed to be converted to bio-oil in hot compressed water and the bio-oil was hydrotreated and/or hydrocracked to produce gasoline and diesel range liquid fuel. Two cases were evaluated: a stage-of-technology (SOT) case based on the tests results, and a goal case considering potential improvements based on the SOT case. Process simulation models were developed and cost analysis was implemented based on the performance results. The major performance results included final products and co-products yields, raw materials consumption, carbon efficiency, and energy efficiency. The overall efficiency (higher heating value basis) was 52% for the SOT case and 66% for the goal case. The production cost, with a 10% internal rate of return and 2007 constant dollars, was estimated to be $1.29 /L for the SOT case and $0.74 /L for the goal case. The cost impacts of major improvements for moving from the SOT to the goal case were evaluated and the assumption of reducing the organics loss to the water phase lead to the biggest reduction in the production cost. Sensitivity analysis indicated that the final products yields had the largest impact on the production cost compared to other parameters. Plant size analysis demonstrated that the process was economically attractive if the woody biomass feed rate was over 1,500 dry tonne/day, the production cost was competitive with the then current petroleum-based gasoline price.

  7. Hydrothermal dolomitization of Jurassic-Cretaceous limestones in the southern Alps (Italy): Relation to tectonics and volcanism

    SciTech Connect (OSTI)

    Cervato, C. )

    1990-05-01

    Dolomitization has affected up to 750m of the Jurassic and Cretaceous pelagic carbonate sequence of the southern continental margin of the Alpine Tethys; the sequence crops out in the southern Alps of Italy (Monti Lessini). Late Paleocene to Miocene extrusion of basaltic tuffs, breccias, and lavas was contemporaneous with the dolomitization was was associated with extensive tectonism in an ancient back-arc basin. More than 200 samples were analyzed by X-ray diffraction, cathodoluminescence, scanning electron microscopy, stable isotope ratios (carbon, oxygen, strontium), and clay mineralogy. The dolomite contains 40% to 50% MgCO{sub 3}. In thin sections, the crystal size distribution is unimodal (about 100 {mu}m), possibly indicating a single nucleation for the main crystallization phase. The {delta}{sup 13}C of the dolomite is not appreciably different from the undolomitized pelagic limestone (+1.0{per thousand} to +2.0{per thousand} Peedee belemnite (PDB)). The {delta}{sup 18}O variation (-5.0{per thousand} to -13.0{per thousand} PDB) is due to temperature variation in the system. The {sup 87}Sr/{sup 86}Sr ratio in the dolomite (0.70839-0.70867) is consistent with the ratio in late Oligocene-Miocene marine water. Clay minerals in limestone and dolomite differ in the presence of neoformed Mg-chlorite, indicating a maximum temperature of about 150C for dolomitization. The dolomite is suggested to have a hydrothermal origin. The heat flow associated with the volcanism allowed marine water to penetrate the system and circulate in convective cells through the tectonic breccias, locally dolomitizing the limestone.

  8. Pencil-like zinc oxide micro/nano-scale structures: Hydrothermal synthesis, optical and photocatalytic properties

    SciTech Connect (OSTI)

    Moulahi, A.; Sediri, F.

    2013-10-15

    Graphical abstract: - Highlights: Zinc oxide micro/nanopencils have been synthesized hydrothermally. Photocatalytic activity has been evaluated by the degradation of methylene blue under UV light irradiation. ZnO nanopencils exhibit much higher photocatalytic activity than the commercial ZnO. - Abstract: Zinc oxide micro/nanopencils have been successfully synthesized by hydrothermal process using zinc acetate and diamines as structure-directing agents. The morphology, the structure, the crystallinity and the composition of the materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The optical properties of synthesized ZnO were investigated by UVvis spectroscopy. The photocatalytic activity of the material has been evaluated by the degradation of methylene blue under UV irradiation. As a result, after the lapse of 150 min, around 82% bleaching was observed, with ZnO nanopencils yielding more photodegradation compared to that of commercial ZnO (61%)

  9. Hydrothermal synthesis of nanostructured zinc oxide and study of their optical properties

    SciTech Connect (OSTI)

    Moulahi, A.; Sediri, F.; Gharbi, N.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Nanostructured ZnO were successfully obtained by a hydrothermal route. Black-Right-Pointing-Pointer Inorganic precursor and molar ratio are key factors for morphology and particle size. Black-Right-Pointing-Pointer Optical properties were also studied. -- Abstract: Nanostructured ZnO (nanorods, nanoshuttles) have been synthesized by hydrothermal approach using ZnCl{sub 2} or Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O as zinc sources and cetyltrimethylammonium bromide as structure-directing agent. Techniques X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible absorption, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy have been used to characterize the structure, morphology and composition of the nanostructured zinc oxide. The optical properties of the as-obtained materials were also studied and showing that it is possible to apply the ZnO nanoshuttles and nanorods on the UV filter, photocatalysis, and special optical devices.

  10. Efficient removal rhodamine B over hydrothermally synthesized fishbone like BiVO{sub 4}

    SciTech Connect (OSTI)

    Lin, Xue; Li, Hongji; Yu, Lili; Zhao, Han; Yan, Yongsheng; Liu, Chunbo; Zhai, Hongjv

    2013-10-15

    Graphical abstract: - Highlights: Fishbone like BiVO{sub 4} product was synthesized through hydrothermal method. BiVO{sub 4} sample was characterized by various characterization technologies. Fishbone like BiVO{sub 4} presented outstanding photocatalytic performance. - Abstract: Fishbone like BiVO{sub 4} product has been successfully synthesized by a hydrothermal method without using any surfactant or template. The pH value was found to play an important role in the formation of this morphology. The band gap of the as-prepared fishbone like BiVO{sub 4} sample was estimated to be about 2.36 eV from the onset of UVvis diffuse reflectance spectrum (UVvis DRS) of the photocatalyst. The as-prepared fishbone like BiVO{sub 4} sample exhibited excellent visible-light-driven photocatalytic efficiency. Over this catalyst, the 100% degradation of rhodamine B (Rh B) (0.005 mmol L{sup ?1}) was obtained after visible light irradiation (? > 420 nm) for 180 min. This is much higher than that of bulk BiVO{sub 4} sample prepared by solid-state reaction. The reason for the differences in the photocatalytic activities of fishbone like BiVO{sub 4} sample and bulk BiVO{sub 4} sample was further investigated.

  11. Hydrothermal Resources

    Broader source: Energy.gov (indexed) [DOE]

    SubTER Crosscut The US Energy Department and National Laboratories have created a crosscutting initiative focused on revolutionizing sustainable subsurface energy production and ...

  12. Sodium dodecyl benzene sulfonate-assisted synthesis through a hydrothermal reaction

    SciTech Connect (OSTI)

    Sobhani, Azam; Salavati-Niasari, Masoud; Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 8731751167, Islamic Republic of Iran

    2012-08-15

    Graphical abstract: Reaction of a SeCl{sub 4} aqueous solution with a NiCl{sub 2}6H{sub 2}O aqueous solution in presence of sodium dodecyl benzene sulfonate (SDBS) as capping agent and hydrazine (N{sub 2}H{sub 4}H{sub 2}O) as reductant, produces nanosized nickel selenide through a hydrothermal method. The effect of temperature, reaction time and amounts of reductant on the morphology, particle sizes of NiSe nanostructures has been investigated. Highlights: ? NiSe nanostructures were synthesized by hydrothermal method. ? A novel Se source was used to synthesize NiSe. ? SDBS as capping agent plays a crucial role on the morphology of products. ? A mixture of Ni{sub 3}Se{sub 2} and NiSe was prepared in the presence of 2 ml hydrazine. ? A pure phase of NiSe was prepared in the presence of 4 or 6 ml hydrazine. -- Abstract: The effects of the anionic surfactant on the morphology, size and crystallization of NiSe precipitated from NiCl{sub 2}6H{sub 2}O and SeCl{sub 4} in presence of hydrazine (N{sub 2}H{sub 4}H{sub 2}O) as reductant were investigated. The products have been successfully synthesized in presence of sodium dodecyl benzene sulfonate (SDBS) as surfactant via an improved hydrothermal route. A variety of synthesis parameters, such as reaction time and temperature, capping agent and amount of reducing agent have a significant effect on the particle size, phase purity and morphology of the obtained products. The sample size became bigger with decreasing reaction temperature and increasing reaction time. In the presence of 2 ml hydrazine, the samples were found to be the mixture of Ni{sub 3}Se{sub 2} and NiSe. With increasing the reaction time and amount of hydrazine a pure phase of hexagonal NiSe was obtained. X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images indicate phase, particle size and morphology of the products. Chemical composition and purity of the products were characterized by X

  13. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S.; Hodgson, Jeffrey W.

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  14. Process improvement studies on the Battelle Hydrothermal Coal Process. Final report, April 1978-April 1984

    SciTech Connect (OSTI)

    Stambaugh, E.P.; Miller, J.F.; Conkle, H.N.; Mezey, E.J.; Smith, R.K.

    1985-06-01

    The report gives results of a study to improve the economic viability of the Battelle Hydrothermal (HT) Coal Process by reducing the costs associated with liquid/solid separation and leachant regeneration. Laboratory experiments were conducted to evaluate process improvements for (1) separating the spent leachant and residual sodium from the coal product, (2) reducing the moisture content of the coal product, and (3) regenerating the leachant. In addition, coal desulfurization experiments were performed and economic studies were conducted to evaluate the impacts of process improvements on coal desulfurization costs. Using countercurrent washing, the optimum washing circuit was composed of four disc-filter stages, six belt-filter stages to separate spent leachant and sodium from the clean coal, and a centrifuge stage to dewater the coal. Several regenerates were found to be effective in removing greater than about 85% of the total sulfide sulfur from the spent leachant: iron carbonate was the leading candidate.

  15. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOE Patents [OSTI]

    Elliott, Douglas C; Oyler, James R

    2014-11-04

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  16. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOE Patents [OSTI]

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  17. Synthesis and characterization of WO{sub 3} nanostructures prepared by an aged-hydrothermal method

    SciTech Connect (OSTI)

    Huirache-Acuna, R.; Paraguay-Delgado, F.; Albiter, M.A.; Lara-Romero, J.; Martinez-Sanchez, R.

    2009-09-15

    Nanostructures of tungsten trioxide (WO{sub 3}) have been successfully synthesized by using an aged route at low temperature (60 deg. C) followed by a hydrothermal method at 200 deg. C for 48 h under well controlled conditions. The material was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Specific Surface Area (S{sub BET}) were measured by using the BET method. The lengths of the WO{sub 3} nanostructures obtained are between 30 and 200 nm and their diameters are from 20 to 70 nm. The growth direction of the tungsten oxide nanostructures was determined along [010] axis with an inter-planar distance of 0.38 nm.

  18. Characterization of the Aqueous Fractions from Hydrotreatment and Hydrothermal Liquefaction of Lignocellulosic Feedstocks

    SciTech Connect (OSTI)

    Panisko, Ellen A.; Wietsma, Thomas W.; Lemmon, Teresa L.; Albrecht, Karl O.; Howe, Daniel T.

    2015-03-01

    In this study the aqueous phases resulting from the hydrothermal liquefaction of biomass and the hydrotreatment of fast pyrolysis bio-oils were analyzed via TC, COD, GC-MS, GC-FID, HPLC, and ICP-OES to determine the organic and inorganic species present and the quantitative amounts of each. This work is necessary to address a significant knowledge gap in the literature related to the aqueous phases from thermochemical processes. Results showed that water from the hydrotreatment of eight different bio-oils contained less than 1 wt% total carbon, in many cases less than 0.2%. Negligible organic carbon was observed. Hydrothermal liquefaction samples contained between 1-2 wt% carbon, accounting for 34 – 45% of the total carbon sent to the reactor. The majority of this carbon was present as acids, with glycolic acid and acetic acid having the highest concentrations. Alcohols, specifically methanol and ethanol, were also present. Numerous ketones were observed, consisting of mainly acetone and cyclopenta-ones. The amount of the total carbon identified and quantified in the HTL samples ranged from 64 – 82%. Inorganic species present in the HT samples were sodium, silicon, and sulfur. The highest levels of sulfur were observed in the grasses and agricultural residue (corn stover). The HTL samples exhibited much higher inorganic content, with very high levels of sodium and potassium. Alkali and alkali earth metals, as well as sulfur, were also present at levels high enough to raise concerns for the use of catalysts in downstream upgrading or reforming processes.

  19. Aeromagnetic anomalies and discordant lineations beneath the Niger Delta: Implications for new fracture zones and multiple sea-floor spreading directions in the meso-Atlantic' Gulf of Guinea cul-de-sac

    SciTech Connect (OSTI)

    Babalola, O.O.; Gipson, M. Jr. )

    1991-06-01

    An aeromagnetic contour map compiled over shallow water and onshore portions of the Nigerian continental margin, shows several elongate, long-wavelength anomaly closures with some alternating polarity, separated by steep gradient, NE lineations. The lineations are interpreted as new fracture zones or extensions of previously mapped ones. The NE trend in the western delta region is concordant with the fracture zone trends of the deeper Gulf of Guinea. Aeromagnetic lineations of the SE Niger Delta Basin however, discordantly trend ENE. Their termination against the former, is interpreted as evidence of early sea-floor spreading in a ENE-WSW direction in addition to the well documented NE-SW spreading of the Gulf of Guinea and the rest of the meso-Atlantic sea-floor; The geophysical crustal structure indicate the existence of two Early Cretaceous triple junctions beneath the Niger Delta Basin. The two triple-junctions further support the hypothesis that the African continent was a multi-plate system (in the Niger Delta region) during the early opening of the Atlantic.

  20. Modeling magnetic fields from a DC power cable buried beneath San Francisco Bay based on empirical measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter; Carretero, Luis

    2016-02-25

    Here, the Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the Sanmore » Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia- Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured

  1. Selected data for low-temperature (less than 90{sup 0}C) geothermal systems in the United States: reference data for US Geological Survey Circular 892

    SciTech Connect (OSTI)

    Reed, M.J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

    1983-12-15

    Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

  2. Hydrothermal synthesis of flowerlike SnO{sub 2} nanorod bundles and their application for lithium ion battery

    SciTech Connect (OSTI)

    Wen, Zhigang; Zheng, Feng; Yu, Hongchun; Jiang, Ziran; Liu, Kanglian

    2013-02-15

    SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. Field-emission scanning electron microscopy and transmission electron microscopy images showed that the as-prepared flowerlike SnO{sub 2} nanorod bundles consist of tetragonal nanorods with size readily tunable. Their electrochemical properties and application as anode for lithium-ion battery were evaluated by galvanostatic discharge–charge testing and cycle voltammetry. SnO{sub 2} nanorod flowers possess improved discharge capacity of 694 mA h g{sup −1} up to 40th cycle at 0.1 C. - Highlights: ► The flowerlike SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. ► SnO{sub 2} nanorod bundles with tunable size by controlling concentration of SnCl{sub 4}. ► A probable formation mechanism of SnO{sub 2} nanorod bundles has been proposed.

  3. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    DOE Patents [OSTI]

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  4. The effects of hydrothermal temperature on the photocatalytic performance of ZnIn{sub 2}S{sub 4} for hydrogen generation under visible light irradiation

    SciTech Connect (OSTI)

    Tian, Fei; Zhu, Rongshu; Song, Kelin; Niu, Minli; Ouyang, Feng; Cao, Gang

    2015-10-15

    Highlights: • The ZnIn{sub 2}S{sub 4} (120, 140, 160, 180, and 200 °C) was prepared. • The activities splitting water to hydrogen under visible light were evaluated. • The activity achieved the best when hydrothermal temperature was 160 °C. • The activity order is related to the surface morphology and surface defects. - Abstract: A series of ZnIn{sub 2}S{sub 4} photocatalysts were successfully synthesized using the hydrothermal method with different hydrothermal temperatures (120, 140, 160, 180, and 200 °C) and characterized by various analysis techniques, such as UV–vis, XRD, SEM, BET and PL. The results indicated that these photocatalysts had a similar band gap. The hydrothermal temperature had a huge influence on the properties of the photocatalysts such as the BET surface area, the total pore volume, the average pore diameter, the defects and the morphology. The photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated based on photocatalytic hydrogen production from water under visible-light irradiation. The activity order is attributed to the coefficient of the surface morphology and the surface defects. The hydrogen production efficiency achieved the best when the hydrothermal temperature was 160 °C. On the basis of the characterization of the catalysts, the effects of the hydrothermal temperature on the photocatalytic activity of ZnIn{sub 2}S{sub 4} were discussed.

  5. Comparison of LiMnPO4 made by Combustion and Hydrothermal Syntheses

    SciTech Connect (OSTI)

    Chen, Jiajun; Doeff, Marca M.; Wang, Ruigang

    2008-05-15

    Among the olivine-structured metal phosphate family, LiMnPO{sub 4} exhibits a high discharge potential (4V), which is still compatible with common electrolytes, making it interesting for use in the next generation of Li ion batteries. The extremely low electronic conductivity of this material severely limits its electrochemical performance, however. One strategy to overcome this limitation is to make LiMnPO{sub 4} nanoparticulate to decrease the diffusion distance. Another is to add a carbon or other conductive coating in intimate contact with the nanoparticles of the main phase, as is commonly done with LiFePO{sub 4}. The electrochemical performance of LiFePO{sub 4} is highly dependent on the quality of the carbon coatings on the particles [1-2], among other variables. Combustion synthesis allows the co-synthesis of nanoparticles coated with carbon in one step. Hydrothermal synthesis is used industrially to make LiFePO{sub 4} cathode materials [3] and affords a good deal of control over purity, crystallinity, and particle size. A wide range of olivine-structured materials has been successfully prepared by this technique [4], including LiMnPO{sub 4} in this study. In this paper, we report on the new synthesis of nano-LiMnPO{sub 4} by a combustion method. The purity is dependent upon the conditions used for synthesis, including the type of fuel and precursors that are chosen. The fuel to nitrate ratio influences the combustion temperature, which determines the type and amount of carbon found in the LiMnPO{sub 4} composites. This can further be modified by use of carbon structural modifiers added during a subsequent (optional) calcination step. Figure 1 shows a transmission electron microscopy (TEM) image of the spherical nano-sized LiMnPO{sub 4} particles typically formed by combustion synthesis. The average particle size is around 30 nm, in agreement with values obtained by the Rietveld refinement of XRD patterns. The small size of the particles cause the peak

  6. Comparison of LiMnPO4 made by Combustion and Hydrothermal Syntheses

    SciTech Connect (OSTI)

    Chen, Jiajun; Doeff, Marca M.; Wang, Ruigang

    2008-10-12

    Among the olivine-structured metal phosphate family, LiMnPO{sub 4} exhibits a high discharge potential (4V), which is still compatible with common electrolytes, making it interesting for use in the next generation of Li ion batteries. The extremely low electronic conductivity of this material severely limits its electrochemical performance, however. One strategy to overcome this limitation is to make LiMnPO{sub 4} nanoparticulate to decrease the diffusion distance. Another is to add a carbon or other conductive coating in intimate contact with the nanoparticles of the main phase, as is commonly done with LiFePO{sub 4}. The electrochemical performance of LiFePO{sub 4} is highly dependent on the quality of the carbon coatings on the particles, among other variables. Combustion synthesis allows the co-synthesis of nanoparticles coated with carbon in one step. Hydrothermal synthesis is used industrially to make LiFePO{sub 4} cathode materials and affords a good deal of control over purity, crystallinity, and particle size. A wide range of olivine-structured materials has been successfully prepared by this technique, including LiMnPO{sub 4} in this study. In this paper, we report on the new synthesis of nano-LiMnPO{sub 4} by a combustion method. The purity is dependent upon the conditions used for synthesis, including the type of fuel and precursors that are chosen. The fuel to nitrate ratio influences the combustion temperature, which determines the type and amount of carbon found in the LiMnPO{sub 4} composites. This can further be modified by use of carbon structural modifiers added during a subsequent (optional) calcination step. Figure 1 shows a transmission electron microscopy (TEM) image of the spherical nano-sized LiMnPO{sub 4} particles typically formed by combustion synthesis. The average particle size is around 30 nm, in agreement with values obtained by the Rietveld refinement of XRD patterns. The small size of the particles cause the peak broadening evident

  7. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water

    SciTech Connect (OSTI)

    Hwang, In-Hee; Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

  8. Flower-like NiO structures: Controlled hydrothermal synthesis and electrochemical characteristic

    SciTech Connect (OSTI)

    Chai, Hui; Chen, Xuan; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang ; Jia, Dianzeng; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang ; Bao, Shujuan; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang ; Zhou, Wanyong

    2012-12-15

    Graphical abstract: Flower-like porous NiO was obtained via thermal decomposition of the precursor prepared by a hydrothermal process using hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), BrunauerEmmettTeller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of electrochemical measurements demonstrated that the flower-like porous NiO has high capacity (340 F g{sup ?1}) with excellent cycling performance as electrode materials of electrochemical capacitors (ECs), which may be attributed to the unique microstrcture of NiO. Data analyses indicated that NiO with novel porous structure attractive for practical and large-scale applications in electrochemical capacitors. Display Omitted Highlights: ? Synthesis and characterization of NiO with novel porous structure is presented in this work. ? The electrochemical performance of product was examined. ? NiO with excellent performance as electrode materials may be due to the unique microstrcture. ? NiO with novel porous structure attractive for practical with high capacity (340 F g{sup ?1}). -- Abstract: Flower-like porous NiO was obtained by thermal decomposition of the precursor prepared by a hydrothermal process with hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), BrunauerEmmettTeller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting structures of NiO exhibited porous like petal building blocks. The electrochemical measurements results demonstrated that flower-like porous NiO has high capacity (340 F g{sup ?1}) with excellent cycling performance as electrode materials for electrochemical capacitors

  9. Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents

    SciTech Connect (OSTI)

    Moazeni, Maryam; Hajipour, Hengameh; Askari, Masoud; Nusheh, Mohammad

    2015-01-15

    The ion exchange process is a promising method for lithium extraction from brine and seawater having low concentrations of this element. To achieve this goal, it is vital to use an effective adsorbent with maximum lithium adsorption potential together with a stable structure during extraction and insertion of the ions. In this study, titanium dioxide and then lithium titanate spinel with nanotube morphology was synthesized via a simple two-step hydrothermal process. The produced Li{sub 4}Ti{sub 5}O{sub 12} spinel ternary oxide nanotube with about 70 nm diameter was then treated with dilute acidic solution in order to prepare an adsorbent suitable for lithium adsorption from local brine. Morphological and phase analysis of the obtained nanostructured samples were done by using transmission and scanning electron microscopes along with X-ray diffraction. Lithium ion exchange capacity of this adsorbent was finally evaluated by means of adsorption isotherm. The results showed titanium dioxide adsorbent could recover 39.43 mg/g of the lithium present in 120 mg/L of lithium solution.

  10. One-step synthesis of titanium oxide nanocrystal- rutile by hydrothermal method

    SciTech Connect (OSTI)

    Yan, Evyan Yang Chia; Zakaria, Sarani; Chia, Chin Hua

    2014-09-03

    Pure rutile phase titanium oxides (TiO{sub 2}) nanocrystals were synthesized via hydrothermal method with titanium tetrachloride (TiCl{sub 4}) and water (H{sub 2}O) treated in an autoclave. The particle size and phase assemblages were characterized using Scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. Band gap energy (E{sub g}) of the nanocrystals was estimated from the Ultra violet – visible light (UV-vis) absorption spectra. It was demonstrated that TiO{sub 2} nanocrystals can be prepared through increasing of temperature and period of treatment. It is believed that the presence of acid chloride (HCl) as by-product during the hydrolysis played an important role in controlling the growth of morphology and crystal structures. The E{sub g} of the samples were estimated from the plot of modified Kubelka-Munk function were in the range of 3.04 – 3.26eV for the samples synthesized at temperature ranging from 50 to 200°C for 16 hours.